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Chapter 1

Advanced age is the most important risk factor for many diseases, among which most types
of cancer and cardiometabolic diseases. Besides age, sex is a key determinant for many non-
communicable diseases. Age-standardized incidence rates of mainly cardiovascular disease
related outcomes are higher for men than for women, but only until the age of 60 years!,
which is until the menopausal transition is completed. From that moment onwards, age-
standardized incidence rates of these diseases are similar for both sexes.' This observation
has fueled research that investigated the association between female reproductive aging

and risk of several non-communicable diseases.

Female reproductive aging and risk of
non-communicable diseases

In epidemiological research, accelerated female reproductive aging is often quantified as
an earlier age at natural menopause or as a shorter reproductive lifespan, i.e. a shorter
period in which a woman would be able to conceive. Previous studies that investigated
the relation between natural age at menopause and cancer suggest that accelerated female
reproductive aging is associated with a decreased risk of breast?, ovarian® and endometrial
cancer”. Evidence for an association with other cancer types is less consistent.>* At the same
time, accelerated female reproductive aging has also been linked to an increased risk of

cardiometabolic diseases, including cardiovascular disease and diabetes.”!!

The menopausal transition marks a period of physiological changes, which are mostly
attributed to the dramatic drop in estradiol and rise in follicle-stimulation hormone levels.'?
However, the biological mechanisms that explain the association between reproductive aging
and risk of non-communicable disease are not fully revealed yet. Whereas the causal role of
estrogens, including estradiol, in the development of different cancers is increasingly being
recogn ized'* %, their role in the etiology of cardiometabolic diseases is less clear. Clinical
trials investigating whether exogenous estrogens would prevent cardiovascular disease even
suggested that supplementing these hormones may increase risk of cardiovascular disease.'®
7 These findings contradict a protective effect of estrogens on the risk of cardiometabolic
diseases. Indirectly, these findings also contest the hypothesis that accelerated reproductive
aging, and thus an earlier drop in estradiol, would increase the risk of cardiometabolic
diseases. Recent evidence suggests that another hormone could potentially explain the
association between reproductive aging and disease risk; anti-Miillerian hormone (AMH),

also known as Miillerian inhibiting substance.
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Anti-Miillerian hormone as indicator of reproductive aging

Until the late 90s, AMH was primarily known for its role in sexual differentiation during
embryogenesis.’® Expression of AMH in male embryos induces regression of the Miillerian
ducts, which would have developed into the fallopian tubes, uterus, cervix and upper part
of the vagina in the absence of AMH." Intriguingly, AMH is also produced after birth and
can be measured in the circulation of both women and men.? In women, AMH is expressed
in the antral stage ovarian follicles?, and circulating AMH levels start to decline from age
~25 until menopause® *, when the ovarian reserve is depleted. Consequently, circulating
AMH levels can also be used as indicator for female reproductive aging. Accordingly, higher
age-specific AMH levels correlate with a higher future age at natural menopause.?* In
men, AMH is produced by Sertoli cells and also decreases with increasing age, although
less prominent than in women.?® In addition, circulating AMH levels have been linked to

spermatogenesis quality, which is considered to be a marker for male fertility.?’

In theory, AMH signaling could also take place in non-gonadal tissues, as the receptor
through which AMH signals (AMH receptor type 2; AMHR?2) is expressed by a wide range
of tissues, including breast, prostate, liver, pancreatic, lung and arterial smooth muscle
tissue.”® Fundamental studies indeed suggest that AMH signaling can take place in cells of
the ovary®%, breast®'** and prostate®> 34, but evidence for other tissues is currently lacking.
Yet, expression of AMHR?2 in tissues involved in the pathogenesis of several cancer types
and cardiometabolic disease® suggests that AMH may be a mechanism through which

reproductive aging is associated with risk of the aforementioned diseases.

Anti-Miillerian hormone as risk factor for
non-communicable diseases

In both in vitro and in vivo models for cancer, administration of exogenous AMH induces
apoptosis and inhibits cell growth?’3% 3, suggesting a protective effect of AMH on tumor
growth. Conversely, epidemiological studies found that higher endogenous AMH levels

3639 These epidemiological findings

were associated with an increased risk of breast cancer.
are in concordance with previous research that suggested that accelerated reproductive
aging, quantified as a higher age at natural menopause, is associated with a higher risk of
breast cancer.? Epidemiological studies have also assessed whether circulating AMH levels
are associated with a handful of other cancer types, but their results are less consistent.*0-
It is therefore still unclear if, and how, circulating AMH levels are associated with risk of

other cancer types, besides breast cancer.
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Previous studies on ovarian and endometrial cancer mostly included women of late
reproductive age in whom variation in AMH is already minimal. As a consequence,
these studies were likely underpowered to detect true associations, which could explain
their inconsistent findings. One strategy to provide more clarity on the role of AMH in
the etiology of cancer is therefore to include a larger proportion of early reproductive
women when studying risk of female-specific cancers. Besides, including a wider range of
cancer diagnoses would elucidate whether AMH only has a role in the etiology of certain
cancer types, or in the etiology of cancer in general. Another knowledge gap concerns
the temporal association between circulating AMH levels and risk of cancer. Previous
studies only included a single AMH measurement per participant, even though age-related
AMH trajectories have been shown to vary between women.? Studies including repeated
AMH measurements up to the time of cancer diagnosis could provide more insight into the

association between circulating AMH levels and risk of cancer over time.

Higher age-specific AMH levels have been associated with a better cardiometabolic
health*+*’, which is in concordance with the relation found in observational studies between
age at natural menopause and cardiovascular disease and diabetes.*! In addition, AMH
levels appear to correlate with intermediate cardiovascular and metabolic outcomes,
like atherosclerosis® and insulin resistance.*® These findings are supported by a study in
monkeys that found a correlation between higher baseline circulating AMH levels and
smaller atherosclerotic plaques after ~2 years.* However, most previous studies have a
cross-sectional study design, which makes it difficult to disentangle whether circulating
AMH levels merely correlate with, or may also have a causal effect on cardiometabolic
disease risk. Furthermore, research investigating these associations in men is lagging
behind research in women. Finally, generalizability of research findings regarding AMH
and diabetes risk to the general population remains to be investigated, since previous studies
often only included participants who were already at a higher risk because of obesity or

polycystic ovary syndrome.

Aims and outline of the thesis

The overall aim of this thesis was to investigate whether circulating AMH levels are
(causally) associated with risk of different non-communicable diseases, including cancer,

cardiovascular disease and type 2 diabetes.

The first two chapters focus on the (temporal) association between circulating AMH

levels and risk of cancer. Chapter 2 summarizes the available evidence from the literature
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regarding prediagnosis and pretreatment AMH levels and risk of different types of cancer,
including but not limited to breast, ovarian and prostate cancer. In Chapter 3 we investigated
the association of age-specific AMH levels with risk of cancer, and more specifically with
risk of breast cancer, cancers in other AMHR2-expressing tissues and cancers in non-
AMHR?2-expressing tissues, using data from female participants of the Doetinchem Cohort
Study. We further examined if age-related AMH trajectories were different for women who

developed cancer compared to women who did not.

Chapter 4 and 5 focus on the association between circulating AMH levels and
cardiometabolic disease outcomes. In Chapter 4 we again used data from the Doetinchem
Cohort Study, this time to investigate associations between age-specific AMH levels at
baseline of the cohort, and age-related AMH trajectories and incident type 2 diabetes. In
Chapter 5, we examined whether circulating AMH levels were associated with different
measures of subclinical cardiovascular disease, using cross-sectional and longitudinal data
of Dutch middle-aged and older men.

To gain more insight into potential biological mechanisms through which AMH could be
involved in the etiology of cancer and cardiometabolic diseases we performed a genome-
wide association study for circulating AMH in early and middle reproductive age women
(Chapter 6). In Chapter 6, we additionally explored the causal relationship between
circulating AMH levels and risk of breast cancer and polycystic ovary syndrome. In
Chapter 7, we used summary-level data from the UK Biobank, and the Stroke Genetics
Network and DIAMANTE consortia to explore the causal relationship between circulating
AMH levels and risk of coronary artery disease, ischemic stroke and type 2 diabetes in

women, respectively.

A brief summary of our main findings is presented in Chapter 8, along with a discussion of
the challenges that we encountered in the interpretation of the results presented throughout
this thesis and directions for future research. Chapter 9 contains a summary of the main

findings presented in this thesis.
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Abstract

Experimental research suggests that anti-Miillerian hormone (AMH) inhibits tumor growth.
Conversely, epidemiological studies suggest that higher AMH concentrations increase breast
cancer risk, while associations with other cancers are inconsistent. Therefore, our aim
was to provide a systematic review of current epidemiological evidence on AMH levels
in relation to different cancer types. We performed a systematic search of PubMed and
Embase for publications on circulating AMH in relation to cancer. Methodological quality
of articles was assessed using the Study Quality Assessment Tools of the National Heart,
Lung and Blood Institute. We included 12 articles on breast, ovarian and endometrial cancer,
lymphomas, non-gynecological cancers, childhood cancer and prostate cancer. Five studies
measured AMH prior to cancer diagnosis; the other studies measured AMH after diagnosis
but prior to treatment. Higher prediagnosis AMH levels were associated with an increased
risk of breast cancer. Associations with other types of cancer remained inconclusive,
although analyses stratified by age hinted at an increased risk of ovarian and endometrial
cancer in younger women. Pretreatment AMH levels were lower in women diagnosed with
different types of cancer compared with AMH levels in healthy women. However, because
we considered most of the studies that established pretreatment AMH levels to be of poor
methodological quality, mainly because of inadequate correction for age at measurement and
other important confounders, we refrain from definite conclusions based on these results.
Future studies with young participants are needed to assess whether and how AMH affects

the risk of different cancer types over time.



AMH levels and risk of cancer: a systematic review

Introduction

Anti-Miillerian hormone (AMH) is considered to be a suitable marker for the assessment
of ovarian function in women after cancer therapy, given its role in ovarian follicle
development.! Based on experimental research, it has been suggested that AMH is a potential
therapeutic agent for cancer.>* In vivo and in vitro studies showed that administration of
AMH induced apoptosis and inhibited tumor cell growth in models for ovarian®, breast®
7 and prostate” ® cancer. The involvement of AMH in processes like cell proliferation
and apoptosis, raises the question whether AMH might also inhibit tumor development,
especially as many different tissues are potentially responsive to AMH because of expression
of the AMH type 2 receptor (AMHR?2).

Results from a recent individual participant data (IPD) meta-analysis of 10 studies on AMH
and breast cancer suggested that women with higher plasma AMH levels are not protected,
but actually have an increased risk of breast cancer.!” This finding contests the potential
protective effect of AMH in cancer biology. Studies on circulating AMH and risk of other
types of cancer, including ovarian'*'? and prostate cancer'?, are inconsistent. We aimed to
provide a systematic overview of the current epidemiological evidence on AMH levels in

relation to different types of cancer.

Methods

Data sources and search strategy

We performed a systematic search of the electronic databases PubMed and Embase, last
updated on April 29, 2019, for publications on circulating AMH levels in relation to cancer
risk. For the identification of eligible publications MeSH and Emtree terms for “anti-
Miillerian hormone” and “cancer” were used in combination with title/abstract keywords
and synonyms for AMH and cancer. In addition, a combination of terms was used to restrict
the search strategy to etiological research. These search strings are represented in Table
1. We additionally searched for articles that cited and were cited by included articles in
Scopus and references, respectively. Authors of conference abstracts were contacted if no
full-text publication was identified through this search strategy to check whether a full-
text publication was available. This systematic review was conducted in adherence to the
PRISMA guidelines™ (Supplemental data).



Chapter 2

Table 1: PubMed and Embase search strings.

PubMed search strategy

Terms for “anti-Miillerian

hormone”

((“ANTI-MULLERIAN HORMONE”[MESH]) OR (“AMH”[TIAB] OR ANTI-
MULLERIAN HORMONE[TIAB] OR ANTI-MUELLERIAN HORMONE[TIAB]
OR ANTIMULLERIAN HORMONE[TIAB] OR ANTIMUELLERIAN]tiab] OR
(MULLERIAN INHIBITING[TIAB] OR MULLERIAN INHIBITOR[TIAB] OR
MULLERIAN INHIBITORY[TIAB]) OR “ANTI-MULLERIAN FACTOR”[TIAB] OR
“MULLERIAN REGRESSION FACTOR”[TIAB]))

Terms for “cancer”

((“Neoplasms”[Mesh]) OR (cancer*[tiab] OR carcinoma*[tiab] OR neoplasm*[tiab] OR
tumor*[tiab] OR tumour*[tiab] OR malignan*[tiab] or sarcoma*[tiab] or lymphoma* or

leukemi*[tiab] or leukaemi*[tiab] or melanomal[tiab] or oncolog*[tiab] or adenoma*[tiab]))

Terms for restriction to
etiological research

((epidemiology[mesh] or “comparative study”[mesh] or comparative stud*[tiab] or
risk*[Title/Abstract] OR risk[MeSH:noexp] OR cohort studiesfMeSH Terms] OR group[Text
Word] OR groups[Text Word] OR grouped [Text Word]) or (Validat* OR Predict*.ti. OR
Rule*) OR (Predict*[tiab] AND (Outcome*[tiab] OR Risk*[tiab] OR Model*[tiab])) OR
((History[tiab] OR Variable*[tiab] OR Criteria[tiab] OR Scor*[tiab] OR Characteristic*[tiab]
OR Finding*[tiab] OR Factor*[tiab]) AND (Predict*[tiab] OR Model*[tiab] OR
Decision*[tiab] OR Identif*[tiab] OR Prognos*[tiab])) OR (Decision*[tiab] AND
(Model*[tiab] OR Clinical*[tiab] OR logistic models[mesh])) OR (Prognostic[tiab] AND
(History[tiab] OR Variable*[tiab] OR Criteria[tiab] OR Scor*[tiab] OR Characteristic*[tiab]
OR Finding*[tiab] OR Factor*[tiab] OR Model*[tiab])))

Embase search strategy

Terms for “anti-Miillerian

hormone”

((‘Muellerian inhibiting factor’/exp) OR (‘AMH’:ti,ab,de OR ANTI-MULLERIAN
HORMONE:ti,ab,de OR ANTI-MUELLERIAN HORMONE:ti,ab,de OR
ANTIMULLERIAN HORMONE:ti,ab,de OR ANTIMUELLERIAN:ti,ab,de OR
(MULLERIAN INHIBITING:ti,ab,de OR MULLERIAN INHIBITOR:ti,ab,de OR
MULLERIAN INHIBITORY:ti,ab,de) OR ‘ANTI-MULLERIAN FACTOR’:ti,ab,de OR
‘MULLERIAN REGRESSION FACTOR’:ti,ab,de))

Terms for “cancer”

((‘neoplasm’/exp) OR (cancer*:ti,ab,de OR carcinoma*:ti,ab,de OR neoplasm*:ti,ab,de
OR tumor*:ti,ab,de OR tumour*:ti,ab,de OR malignan*:ti,ab,de or sarcoma*:ti,ab,de
or lymphoma* or leukemi*:ti,ab,de or leukaemi*:ti,ab,de or melanoma:ti,ab,de or
oncolog*:ti,ab,de or adenoma*:ti,ab,de))

Terms for restriction to

etiological research

((‘epidemiology’/exp OR ‘comparative study’/exp OR comparative stud*:ti,ab,de OR
risk*:ti,ab,de OR ‘risk’/de OR ‘cohort analysis’/exp OR group:ti,ab,de OR groups:ti,ab,de
OR grouped:ti,ab,de) or (Validat* OR Predict*:ti OR Rule*) OR (Predict*:ti,ab,de AND
(Outcome*:ti,ab,de OR Risk*:ti,ab,de OR Model*:ti,ab,de)) OR ((History:ti,ab,de OR
Variable*:ti,ab,de OR Criteria:ti,ab,de OR Scor*:ti,ab,de OR Characteristic*:ti,ab,de OR
Finding*:ti,ab,de OR Factor*:ti,ab,de) AND (Predict*:ti,ab,de OR Model*:ti,ab,de OR
Decision*:ti,ab,de OR Identif*:ti,ab,de OR Prognos*:ti,ab,de)) OR (Decision*:ti,ab,de AND
(Model*:ti,ab,de OR Clinical*:ti,ab,de OR ‘statistical model’/exp)) OR (Prognostic:ti,ab,de
AND (History:ti,ab,de OR Variable*:ti,ab,de OR Criteria:ti,ab,de OR Scor*:ti,ab,de OR
Characteristic*:ti,ab,de OR Finding*:ti,ab,de OR Factor*:ti,ab,de OR Model*:ti,ab,de)))

Inclusion and exclusion criteria

For this review, observational studies that investigated pretreatment levels of circulating

AMH in relation to cancer risk were considered eligible. Hence, both studies that measured

AMH (years) before cancer diagnosis, and studies that measured AMH after cancer

diagnosis but before initiation of cancer treatment were included. Study populations
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could not comprise participants with a history of cancer, and cancer patients could not
have received treatment (e.g. tumor resection, radiotherapy, chemotherapy) before blood
draw for AMH measurements, as different cancer treatments have been associated with a
decrease in AMH." Studies in which the control group consisted of women who received
IVF or were diagnosed with polycystic ovary syndrome were excluded. Studies that did
not report a mean (standard deviation) or median [interquartile range] of AMH levels in
cancer patients and healthy study participants and/or an odds ratio (95% CI), relative risk
(95% CI) or hazard ratio (95% CI), and that did not provide data to allow calculation of an
association measure, were also excluded. We additionally excluded review articles, case
reports, case series, guidelines and editorials. Conference abstracts were excluded if they
had not resulted in a full-text publication. Furthermore, publications in languages other than
English were excluded. If the same study population was used in different publications,
only the publication with the largest number of participants was included. Consequently,
we included the previously mentioned IPD meta-analysis on circulating AMH in relation
to breast cancer'® which included ten nested case-control studies, among which three
previously published studies'®'® that investigated the association between prediagnosis
AMH and breast cancer.

Assessment of methodological quality

The methodological quality of each included study was assessed using the Study Quality
Assessment Tools developed by the National Heart, Lung and Blood Institute (NHLBI).”
Depending on the study design, different sets of criteria were used to assess the risk of
bias in each study. Granted quality rates (“good”, “fair”, “poor”) were based upon our own
judgment, and clarified for studies that we considered to be of “poor” methodological quality.
As AMH levels are strongly correlated with age, and age is the most important risk factor
for cancer, we considered inadequate (description of) adjustment for age as an important
limitation of included studies. Accordingly, studies that did not adjust their analyses for
age, lacked details on age-matching of study participants (e.g. no details on age range used
for matching), or lacked appropriate statistical methods for analysis of age-matched data
(e.g. conditional analyses), received a “poor quality” rating. Apart from adjustment for age,
we considered adjustment for at least the following potentially confounding reproductive
factors an important requirement for a “good quality” rating in studies including female
participants: menopausal status at blood collection, oral contraceptive use at blood
collection, hormone replacement therapy at blood collection. In addition, we considered

adjustment for smoking behavior at blood collection an important criterion.
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Data-extraction

The following data were extracted from each included study: (1) study characteristics (first
author, year of publication, country of data collection); (2) study design and, if appropriate,
median time between blood draw and cancer diagnosis; (3) description of participants
(sample sizes, age range of total study population at blood draw); (4) timing of blood draw
for AMH measurement (prediagnosis or pretreatment); (5) sample type and assay used
for AMH measurement; (6) whether AMH was included as continuous and/or categorical
variable (transformation/categories); (7) how analyses were adjusted for age at AMH
measurement; (8) additional factors for which analyses were adjusted; (9) the reported
measure(s) of association; (10) conclusions from stratified analyses with respect to age, time
to cancer diagnosis and cancer subtypes, and (11) reported measure(s) of association for

analyses stratified by age at blood collection. Results were summarized per cancer type.

Results

Search results

Figure 1 shows the flow diagram describing the study selection procedure. A total of 2093
records were identified through our systematic search of PubMed and Embase. After
removal of duplicate records (n = 401), we screened titles and abstracts of 1692 records.
Main reasons for exclusion at this stage were: non-relevant (e.g. studies that did not include
data on AMH measurements and studies on polycystic ovary syndrome), wrong publication
type (e.g. reviews and case-reports), and inclusion of unsuitable study populations (e.g.
patients only and cancer survivors). Finally, we identified 49 publications that were eligible
for full-text screening. Of these 49 publications we excluded 37 publications that did not
meet our inclusion criteria as described in Figure 1, resulting in 12 included publications.

We identified no additional publications through cross-referencing.

Description of included studies

Characteristics of the 12 included studies are presented in Table 2. Results are presented
separately for the following cancer types; breast cancer (n = 4, including the IPD meta-
analysis), ovarian cancer (n = 2), endometrial cancer (n = 1), Hodgkin and non-Hodgkin
lymphoma (n = 2), non-gynecological cancers (n = 1), childhood cancer (n = 1), and prostate
cancer (n = 1). We identified five studies that examined prediagnosis AMH levels in relation
to risk of cancer, all were case-control studies nested in prospective cohort studies. We also

identified seven studies that compared pretreatment AMH levels in cancer patients with AMH
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levels in healthy study participants, of which six were case-control studies and one was a

cross-sectional study. Studies were performed in the USA, Europe, China and India.

Publications identified through
database searching
(n=2093)

PubMed (n = 828)
EMBASE (n = 1265)

q Duplicate publications removed
" (n =401)
Publications excluded (n= 1643),
— - - main reasons for exclusion:
Publications screened on title
and_abstract > - non-relevant studies
(n =1692) - wrong publication type
- wrong study population
= Full-text articles excluded (n = 37),
Full-text articles assessed for reasons for exclusion:
eligibility >
(n =49) - no pretreatment AMH (n = 2)
- control group would receive
IVF (n=4)
- control group comprised
women with benign pathology
(n=2)
- lack of measures of association
(n=6)
- overlap with larger study (n = 5)
- conference abstracts (n = 12)
- not relevant (n = 6)
> Cross-referencing
B (n=0)
y

Studies included in
qualitative synthesis
(n=12)

Figure 1. Flow diagram study selection.
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Chapter 2

Quality assessment

Table 3 presents the individual components on which quality assessment of the individual
(nested) case-control studies was based. Overall quality rates for these studies are also presented
in Table 3. Quality assessment of the included cross-sectional study is presented in Table 4. We
considered four studies to be of “good”, two studies to be of “fair”” and six studies to be of “poor”
quality. Because age-matching of cases and controls was either not conducted at all, inadequately
described or not taken into account in the statistical analyses, and adjustment for other potential
confounders was completely lacking, all six case-control studies that investigated pretreatment
AMH levels in relation to cancer were considered to be of “poor” quality. The two studies that
we considered to be of “fair” quality adjusted inadequately for important confounders. This

should be taken into account when interpreting corresponding results.

Breast cancer

Of the four studies that investigated AMH levels in relation to breast cancer, one study
included prediagnosis AMH levels. This large IPD meta-analysis of ten nested case-control
studies calculated AMH quartiles for each participating cohort separately, as actual values
are not comparable between cohorts, because of between study differences. Subsequently,
they estimated breast cancer risk per cohort-specific quartile with the lowest cohort-specific
quartile as the reference, and finally pooled ORs. They observed that higher AMH levels were
associated with an increased risk of breast cancer (p, , across AMH quartiles < 0.0001)."
More specifically, women in the highest AMH quartile were at a 60% increased risk of breast
o — 160,

95% CI: 1.31, 1.94). In nine of the ten included studies the direction of this association was

cancer, compared to women of the same age in the lowest AMH quartile (OR,

consistent with the IPD meta-analysis result, and no significant heterogeneity between the
studies was observed (I* =22.7%, p-value = 0.23). In the meta-analysis, the association
between AMH and breast cancer risk appeared to be strongest within women aged 45 — 49
o — 183, 95% CI: 1.38, 2.42) compared to younger and older
women (£40 years: ORQ4VSQ1 =126, 95% CI: 0.93, 1.71; 41 — 44 years: ORQ4VSQI =1.22, 95%
CI:0.90, 1.66; >50 years: ORQMQ] = 1.65, 95% CI: 1.03, 2.65). As opposed to these findings,

pretreatment AMH levels were significantly lower in breast cancer cases compared to healthy

years at blood collection (OR,,

subjects in a cross-sectional study, although only in women older than 37 (threshold calculated
using bootstrap procedure) at the time of blood collection (B = -0.85, 95% CI: -1.48, -0.22).2
Two case-control studies also found lower pretreatment AMH levels in breast cancer cases
compared to healthy controls.??? The cross-sectional study adjusted for age at measurement
through inclusion of age in the regression models. The two case-control studies reported to
have matched cases and controls on age, but only one study described the age distribution
separately for cases and controls (mean age cases = sd: 35.2 & 1.5 years; mean age controls + sd:

34.5+ 0.9 years).?? Both case-control studies lacked appropriate analyses for matched data.
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Table 4: Quality assessment of cross-sectional study.

Breast cancer

Suetal., 2013,
USA®

1. Was the research question or objective in this paper clearly stated? Yes
2. Was the study population clearly specified and defined? Yes
3. Was the participation rate of eligible persons at least 50%? CD
4. Were all the subjects selected or recruited from the same or similar populations Yes
(including the same time period)?
Were inclusion and exclusion criteria for being in the study prespecified and applied
uniformly to all participants?
5. Was a sample size justification, power description, or variance and effect estimates provided? Yes
6. For the analyses in this paper, were the exposure(s) of interest measured prior to the Yes
outcome(s) being measured?
7. Was the timeframe sufficient so that one could reasonably expect to see an association N/A
between exposure and outcome if it existed?
8. For exposures that can vary in amount or level, did the study examine different levels Yes
of the exposure as related to the outcome (e.g., categories of exposure, or exposure
measured as continuous variable)?
9. Were the exposure measures (independent variables) clearly defined, valid, reliable, Yes
and implemented consistently across all study participants?
10. Was the exposure(s) assessed more than once over time? N/A
11. Were the outcome measures (dependent variables) clearly defined, valid, reliable, Yes
and implemented consistently across all study participants?
12. Were the outcome assessors blinded to the exposure status of participants? NR
13. Was loss to follow-up after baseline 20% or less? N/A
14. Were key potential confounding variables measured and adjusted statistically for No*
their impact on the relationship between exposure(s) and outcome(s)?
Overall quality rating Fair
*Clarification #1 No adjustment for hormone

replacement therapy and oral
contraceptive use

CD, cannot determine; NR, not reported; N/A, not applicable
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Ovarian cancer

Two independent nested-case control studies investigated the association between
prediagnosis AMH levels and risk of ovarian cancer." > In both studies, AMH levels were
not associated with risk of ovarian cancer in the main analysis. However, a study which
included 315 pregnant women (range age at blood draw: 22.4 -43.2 years) observed that a
doubling in AMH concentration in women younger than 32.7 years (median age) at blood
draw was associated with an increased risk of invasive serous ovarian cancer (OR = 1.64,
95% CI: 1.06, 2.54)." In contrast, in the same study a doubling in AMH concentration was
associated with a decreased risk of ovarian cancer in women older than 32.7 years at blood
draw (OR = 0.69, 95% CI: 0.49, 0.96). No apparent age effect was observed in the study by
Jung et al. (range age at blood draw: 24.1 — 46.8), although the number of cases per AMH

category for both age strata (< 40 years vs. > 40 years) was limited."

Endometrial cancer

One nested-case control study examined prediagnosis AMH levels in relation to risk of
endometrial cancer.”® This study included 329 endometrial cancer cases and 339 controls
from eight prospective cohort studies (range age at blood draw: 19 — 47). Neither the
analyses of log-transformed AMH levels, nor the analyses of AMH tertiles (OR , = 1.29,
95% CI: 0.82, 2.03) provided evidence for an association between circulating AMH levels
and risk of endometrial cancer. Analyses stratified by age (£40 years vs. >40 years) did not
support effect-modification by age (phamgmeity = 0.13), although stronger effect estimates
were observed for women up to 40 years of age compared to women older than 40 years
(OR,, ., =197,95% CI: 0.76,5.12; and OR , = 1.36, 95% CI: 0.79, 2.35, respectively).

Lymphoma

Two case-control studies compared mean pretreatment AMH levels in lymphoma patients
to mean AMH levels in healthy controls.?* 2 In these studies, lymphoma patients included
Hodgkin and non-Hodgkin lymphomas. In both studies, pretreatment AMH levels were
significantly lower in lymphoma patients than in controls (2.06 + 1.52 ng/mL versus 3.20
+ 2.19 ng/mL and 1.08 + 0.74 ng/mL versus 2.03 + 1.93 ng/mL, respectively). One of
these studies completely lacked age-adjustment, and reported a significant difference in
age between cases (median age (IQR): 30.5 years (28-34) and controls (median age (IQR):
37 years (35-39)).% The other study performed age-matching of cases and controls and
applied appropriate statistical analyses, but lacked details on the matching procedure and

age distribution of cases and controls.?*
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Non-gynecological cancer

A case-control study that included a group of non-gynecological malignancies without
further specification of diagnoses, observed similar median pretreatment AMH levels
in patients and healthy controls (2.80 ng/mL (1.60-4.15) and 2.80 ng/mL (1.20 — 4.90),
respectively).?® Although matching of cases and controls on age was not described, age
was not significantly different between cases (mean age + sd: 26.4 + 6.9 years) and controls

(mean age =+ sd: 28.8 £ 6.2 years).

Childhood cancer

One case-control study investigated pretreatment AMH levels in relation to childhood
cancer in girls.”” Diagnoses included lymphoblastic leukemia, acute myeloid leukemia,
Hodgkin and non-Hodgkin lymphoma, nephroblastoma, sarcoma and neuroblastoma. This
study found significantly lower mean AMH standard deviation scores (SDS) in patients
compared to controls (difference in mean AMH SDS between cases and controls: -0.8, P
<0.001) and additionally reported median AMH levels in cases and controls (1.4 ug/L (0.1
—10.2) and 3.0 pg/L (0.1 — 18.3), respectively). Mean AMH SDS were comparable across
different types of cancer. The use of SDS is an appropriate method to adjust for age effects

in age-matched data.

Prostate cancer

Only one of the included studies focused on circulating AMH in relation to risk of cancer in
men."” This nested case-control study investigated prediagnosis AMH levels in relation to
prostate cancer in 998 cases and 999 controls. No association was observed between AMH
5Ol 1.15, 95% CI: 0.89, 1.48). Potential effect

modification by age at blood draw was not examined in this study.

quartiles and risk of prostate cancer (ORQ

Discussion

In this systematic review we show that higher prediagnosis AMH levels are associated
with an increased risk of breast cancer, whereas associations with other types of cancer are
inconclusive. In contrast, pretreatment AMH levels are generally lower in women diagnosed
with different types of cancer compared to AMH levels in healthy women. However, because
we considered most studies including pretreatment AMH levels to be of poor methodological
quality due to inadequate adjustment for age at AMH measurement and other potential

confounders, we cannot draw definite conclusions based on the corresponding results.
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This is the first review that presents a systematic overview of the current epidemiological
evidence on the relation of AMH levels with risk of different cancer types. We performed an
extensive systematic search of PubMed and Embase up to April 2019. Studies that measured
AMH in either prediagnosis or pretreatment samples were included to gain more insight
in differences in AMH levels between cancer cases and healthy individuals, both years
before and at the moment of diagnosis. Unfortunately, given the limited number of studies
for each cancer outcome, we could not perform meta-analyses. Besides, we cannot exclude
the possibility of publication bias, even though we tried to limit this by contacting authors

of conference abstracts for which we did not find a full-text publication.

Some limitations with regard to the studies included in this review have to be addressed
as well. In both women?*?* and men'*3** AMH levels are strongly correlated with age. As a
result, age is an important confounder in the association between AMH and risk of cancer,
and adequate adjustment for age at blood collection is therefore very important. However,
most studies that included pretreatment AMH levels did not adequately adjust their analyses
for age at blood collection. Studies either did not take age at measurement in account at all,
or reported to have matched their cases and controls on age but did not perform appropriate
analyses for matched data. Also details on the age-matching procedures, like the age range
used to match participants, were often lacking. Apart from potential confounding by age,
confounding by other risk factors for cancer (e.g. smoking behavior or oral contraceptive
use) cannot be excluded in most studies. Adjustment for important confounders was
often lacking or selection of confounders was based on univariate analyses, even though
confounder selection based on available knowledge has the preference.’ In line with this,
adjustment for circulating testosterone might be important as in women a statistically
significant positive correlation between AMH and testosterone has been observed.*>33 Only
Ge et al. retained circulating testosterone in their final analyses, but no evident confounding

effect of testosterone was observed.'®

The IPD meta-analysis on breast cancer observed that the association of AMH with breast
cancer risk was strongest in middle aged women (45-49 years old), compared to younger
and older women. However, the confidence intervals of the different age groups largely
overlapped. This finding may be driven by the inclusion of a number of small studies that
included older women and reported very large effect sizes. Ideally a one-stage analysis
with inclusion of study-specific effects should be performed to adequately assess if age at
measurement is indeed an effect-modifier.’* Studies on ovarian and endometrial cancer did
not observe a stronger effect of AMH in older women. On the contrary, effect estimates
appeared to be stronger in younger women, although only statically significant in de study
of Schock et al."” This could have to do with limited statistical power to detect an actual

risk-increasing effect in most studies, as the proportion of women younger than 40 years was
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limited. Considering its biological function, AMH levels strongly decrease from the age of
40 and become undetectable around menopause. Inclusion of mostly middle aged women
could therefore explain null findings in the main analyses on prediagnosis AMH. AMH
measurements at an age at which variation was already minimal, hampers the detection of
a potential association. In comparison, participants in studies including pretreatment AMH

measurements were in general younger than 40 years at the time of blood donation.

A limitation of studies that measured AMH at the time of cancer diagnosis is that a potential
causal association between AMH and cancer cannot be proven based on their results,
although in combination with the evidence from prospective studies, i.e. nested case-
control studies, they can provide some insight into a potential temporal association between
AMH and cancer. However, we observed no consistent relation between prediagnosis and
pretreatment AMH levels and cancer. For instance, AMH levels were higher years before
breast cancer diagnosis, whereas pretreatment AMH levels were lower when compared to
healthy controls. Ideally, to elucidate if and how AMH is involved in tumor development,
future studies should include repeated AMH measurements up to cancer diagnosis and
assess how AMH trajectories differ between cancer patients and healthy individuals. In
addition, studies including repeated AMH measurements are needed to complement the
studies included in this review which only included single AMH measurements, as previous

research has shown that AMH trajectories differ between women.”

Based on the wide range of tissues that express the receptor through which AMH signaling
occurs (e.g. prostate and ovarian tissue), we hypothesized that if AMH would play a role in
tumor development we would observe a similar effect of AMH on risk of different types of
cancer. Yet we only observed an association between prediagnosis AMH and risk of breast
cancer, where women with higher AMH levels were at an increased risk of breast cancer.
Although the number of studies on other types of cancer is small, and they included a much
smaller number of cases, it is also possible that the association between AMH and breast
cancer does not involve AMHR?2 signaling. Instead, circulating AMH levels might be a
biomarker for ovarian reserve and, accordingly, a proxy for time to menopause. Higher
AMH levels are indicative of a larger ovarian reserve, and of a later age at menopause.* %
Previous studies observed that a later age at menopause is observed with an increased risk
of breast cancer.”” 3 Moreover, Mendelian randomization analyses supported that a later
age at menopause has a causal effect on breast cancer risk.* A later age at menopause has
also been associated with an increased risk of ovarian cancer®” and endometrial cancer.*!
However, if AMH would be merely a marker for age at menopause, this would imply that
higher AMH levels also would associate with an increased risk of these cancers. But the

included studies did not provide evidence that supports this hypothesis.
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To conclude, based on our systematic overview of the current epidemiological evidence on
pretreatment AMH levels in relation to cancer we cannot conclude that AMH is actually
involved in tumor development. However, only a handful of studies on prediagnosis AMH
levels in relation to cancer has been published thus far, and the range of studied cancer
diagnoses is limited. Moreover, most of these studies included only a small proportion of
younger women. Most studies that investigated pretreatment AMH levels in relation to
cancer were of poor methodological quality, therefore we refrain from drawing definite
conclusions based on these results. Future research should focus on elucidating if and how
AMH affects risk of different cancer types over time. This should ideally take place in large
prospective studies including young participants for whom repeated AMH measurements

up to the moment of cancer diagnosis are available.
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limits used, such that it could be repeated.
Study selection 9  State the process for selecting studies (i.e., screening, eligibility, included in 4-5
systematic review, and, if applicable, included in the meta-analysis).
Data collection 10 Describe method of data extraction from reports (e.g., piloted forms, 6
process independently, in duplicate) and any processes for obtaining and confirming
data from investigators.
Data items 11 List and define all variables for which data were sought (e.g., PICOS, funding 6
sources) and any assumptions and simplifications made.
Risk of bias in 12 Describe methods used for assessing risk of bias of individual studies 5-6
individual studies (including specification of whether this was done at the study or outcome
level), and how this information is to be used in any data synthesis.
Summary measures 13 State the principal summary measures (e.g., risk ratio, difference in means). 4,6
Synthesis of results 14 Describe the methods of handling data and combining results of studies, if NA
done, including measures of consistency (e.g., I?) for each meta-analysis.
Risk of bias across 15 Specify any assessment of risk of bias that may affect the cumulative evidence NA

studies

(e.g., publication bias, selective reporting within studies).

Additional analyses

16 Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, NA

meta-regression), if done, indicating which were pre-specified.

i
=



AMH levels and risk of cancer: a systematic review

Section/topic # Checklist item f:iz::;l
RESULTS
Study selection 17 Give numbers of studies screened, assessed for eligibility, and included in the 7 and
review, with reasons for exclusions at each stage, ideally with a flow diagram.  Figure 1
Study 18 For each study, present characteristics for which data were extracted (e.g., Table 2
characteristics study size, PICOS, follow-up period) and provide the citations.
Risk of bias within 19 Present data on risk of bias of each study and, if available, any outcome level Table
studies assessment (see item 12). 3 and
Table 4
Results of 20 For all outcomes considered (benefits or harms), present, for each study: (a) Table 2
individual studies simple summary data for each intervention group (b) effect estimates and
confidence intervals, ideally with a forest plot.
Synthesis of results 21 Present results of each meta-analysis done, including confidence intervals and NA
measures of consistency.
Risk of bias across 22 Present results of any assessment of risk of bias across studies (see Item 15). NA
studies
Additional analysis 23 Give results of additional analyses, if done (e.g., sensitivity or subgroup NA
analyses, meta-regression [see Item 16]).
DISCUSSION
Summary of 24 Summarize the main findings including the strength of evidence for each main 12
evidence outcome; consider their relevance to key groups (e.g., healthcare providers,
users, and policy makers).
Limitations 25 Discuss limitations at study and outcome level (e.g., risk of bias), and at 12-14
review-level (e.g., incomplete retrieval of identified research, reporting bias).
Conclusions 26 Provide a general interpretation of the results in the context of other evidence, 12-15
and implications for future research.
FUNDING
Funding 27 Describe sources of funding for the systematic review and other support (e.g., 16

supply of data); role of funders for the systematic review.

Checklist from: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for
Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): €1000097.

W






Anti-Miillerian
hormone levels
and risk of cancer
in women

Renée M. G. Verdiesen
Carla H. van Gils

Rebecca K. Stellato

W. M. Monique Verschuren
Frank J. M. Broekmans
Annelien C. de Kat
Yvonne T. van der Schouw
N. Charlotte Onland-Moret

Maturitas, 2021; 143:216-222



Chapter 3

Abstract

Objectives: To examine if age-specific anti-Miillerian hormone (AMH) levels are associated
with cancer risk; and to investigate if age-related AMH trajectories differ between women
who develop cancer and women who do not. More specifically, we examined associations
with breast cancer, cancers in other tissues expressing AMH receptor AMHR2, and cancers

in non-AMHR2-expressing tissues.

Study design: We included longitudinal data from 3025 women in the prospective
Doetinchem Cohort Study. Cox proportional hazards models were used to assess the
association of baseline age-specific AMH tertiles with cancer. We applied linear mixed
models to compare age-related AMH trajectories between women who were diagnosed

with cancer and women who were not.

Main outcome measures: cancer (n = 385; 139 breast cancers, 112 cancers in other AMHR2-

expressing tissues, 134 cancers in non-AMHR2-expressing tissues).

Results: Overall, baseline age-specific AMH levels were not associated with cancer
risk, although in women £ 40 years an increased risk was suggested for breast cancer
(HR,,.,,=2.06, 95%CI = 0.95-4.48; HR , ., = 2.03, 95%CI = 0.91-4.50). Analysis of
age-related AMH trajectories suggested that AMH levels were higher at younger ages
and declined faster in women who were diagnosed with cancer compared to women who

were not, but our results did not provide evidence for actual differences in trajectories.

Conclusions: Our results did not provide evidence for an association between age-specif-
ic AMH levels and age-related trajectories and risk of cancer. However, effect estimates

for breast cancer were in line with risk-increasing effects found in previous studies.
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Introduction

Higher circulating anti-Miillerian hormone (AMH) levels in women have been associated
with increased breast cancer risk." Although AMH is primarily known for its functions in
sexual differentiation during embryogenesis® and ovarian follicle development?, histologic
evidence on the expression of AMH receptor type 2 (AMHR?2) in different non-gonadal

tissues*® suggests responsiveness of a wide range of tissues to AMH.

This raises the question whether AMH levels are also associated with other forms of
cancer, such as ovarian and lung cancer. A small number of studies examined circulating
AMH levels in relation to different cancer types, but except for breast cancer results are
inconsistent (see Verdiesen et al.” for a detailed overview). Furthermore, previous studies
included a single AMH measurement per participant, although age-related AMH trajectories
have been shown to vary between women.® Individual age-related AMH trajectories may

therefore elucidate if, and how, circulating AMH levels affect cancer risk over time.

To provide more insight into the relation between circulating AMH levels and cancer risk,
we examined the association of age-specific AMH levels with the risk of cancer, using
data from female participants of the Doetinchem Cohort Study. We further examined if
age-related AMH trajectories were different for women who developed cancer compared
to women who did not. More specifically, we aimed to confirm previous findings for breast
cancer and to investigate associations between circulating AMH levels and risk of cancers

in other AMHR2-expressing tissues, and cancers in non-AMHR2-expressing tissues.

Methods

Study population

We used data of female participants (median age 39 years, range 20-59) from the Doetinchem
Cohort Study, an ongoing prospective cohort study of 3641 men and 4128 women, who
were randomly selected from the municipal register of Doetinchem, The Netherlands,
between 1987 and 1991.>° Every 5 years, follow-up visits take place, during which physical
examinations and questionnaires are completed. The study was approved by the Medical
Ethics Committee of The Netherlands Institution of Applied Scientific Research. All

participants signed informed consent prior to study inclusion.

This study included data from Round 1 (baseline; 1987-1991) to Round 5 (2008-2012).

Women without any available AMH measurement (n = 802), and women whose data could
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not be linked to the cancer registry (n = 224) or who were diagnosed with cancer prior to
their first AMH measurement (n = 77), were excluded, leaving 3025 women with at least
one available AMH measurement for analysis (Figure 1). The number of women with an
AMH measurement per examination round was 2855, 2772, 2281, 2153 and 1909 for Round
1 through Round 5, respectively.

Doetinchem Cohort Study - Men
N =7769 d N =3641
\ 4
Women . Women without available
N =4128 = plasma samples
N =802
v " N
Women with at least 1 available . Women who did not.g|ve
informed consent for linkage
plasma sample . . .
N = 3326 with the nation cancer registry
N=224
v
Women who gave informed Women with a cancer diagnosis
consent for linkage with the . prior to their first AMH
national cancer registry L measurement
N = 3102 N=77
Women without a cancer
diagnosis prior to their first
AMH measurement
N =3025
v v
No incident Incident Types of cancer
cancer case cancer case »
N =2640 N =385 Breast (N = 139)

Digestive (N = 65)

Ill - defined, secondary, unspecified sites (N = 38)
Respiratory, intrathoracic (N = 34)

Female genital organs (N = 32)

Skin (N = 27)

Hematopoetic and reticuloendothelial (N = 20)
Urinary tract (N = 17)

Eye, brain, CNS (N = 8)

Lip, oral cavity, pharynx (N = 4)

Thyroid, endocrine glands (N = 1)

Figure 1. Flow chart study population.
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AMH measurements

Details on AMH measurements and sample storage conditions have been described
previously.® " Briefly, AMH was measured in all available plasma samples, collected
from Round 1 to Round 5. Missing AMH measurements were the consequence of either
non-attendance at certain examination rounds, no consent to blood draw at the particular
examination, depletion of plasma samples because of other blood measurements, or an
occasional unsuccessful AMH measurement. AMH was measured using the ultrasensitive
picoAMH ELISA (Ansh Labs, Webster, Texas, USA) in the Ansh Labs laboratory. Because
of its detection limit of 1.846 pg/mL (0.013 pmol/L), we were able to measure very low
AMH levels in postmenopausal women in the Doetinchem Cohort Study.® The inter- and
intra-assay coefficients of variation were 4.4 and 3.9%, respectively. There was no indication
of plate drift, as all CVs within plate columns and rows of the picoAMH assay were below
5%.1" AMH measurements below the detection limit were set to half the detection limit
(0.923 pg/mL; 0.007 pmol/L).

Covariates

Information on potential confounders was collected through questionnaires and physical
examinations. We included the following covariates in our analyses: age at blood collection
(years), age at menarche (years), body mass index (BMI) (kg/m2), parity and age at first
full-term pregnancy (AFTP) (nulliparous/ 1-2 children and AFTP <25 years/ 1-2 children
and AFTP >25 years/ >3 children and AFTP <25 years/ > 3 children and AFTP > 25 years),
current oral contraceptive (OC) use (yes/no), ever hormone replacement therapy (HRT) use
(yes/no), menopausal status (premenopausal/postmenopausal), current smoking (yes/no),
alcohol consumption (glasses/day), family history of breast cancer (yes/no) and educational
attainment (primary education up to completing intermediate vocational education/up to
higher secondary education/college degree or higher). A more detailed description of these

covariates has been included in the Supplemental Methods.

Cancer outcomes

Through linkage of cohort data with the Dutch Cancer Registry, we identified 385 cases in
registry data that were complete until 31 December 2014. Cancers were classified as “cancers
in AMHR2-expressing tissues” based on previously published histological evidence® or data
from the Genotype-Tissue Expression (GTEX) portal (www.gtexportal.org). As a result, the
following tumors were defined as “tumors originating from AMHR2-expressing tissues”:
breast (n = 139), bronchus and lung (n = 32), hematopoietic and reticuloendothelial (n = 20),
corpus uteri (n = 13), ovary (n = 11), kidney, except renal pelvis (n = 11), pancreas (n =9),
lymph nodes (n = 6), cervix uteri (n = 4), uterus, unspecified (n = 2), small intestine (n = 2),

liver and intrahepatic bile ducts (n = 1), adrenal gland (n = 1). Breast cancer (n = 139; 127
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invasive tumors and 12 with unknown behavior) and “cancers in other AMHR 2-expressing
tissues” (n = 112) were included as separate outcomes. We additionally included the outcome
“cancers in non-AMR2-expressing tissues” (n = 134), which comprised tumors in the

remaining tissues.

Statistical analyses

We calculated age-specific AMH tertiles at baseline (Round 1) using general linear
modeling with CG-LMS* (Cole and Green, Lambda, Mu, and Sigma method; R package

13 version 5.1-2), as previously published."* Log-transformed AMH was modelled

“gamlss
over age using splines, because of the non-linear decline of AMH with increasing age.
Previous analyses showed that this model fits the AMH data in the Doetinchem Cohort
Study well.! The CG-LMS method allows for estimation of the distribution of AMH at
every age, and corresponding percentile values (for 33.3% and 66.7%) were used to create
age-specific tertiles. Accordingly, women could be classified as having either low (1st age-
specific tertile), normal (2nd age-specific tertile), or high (3rd age-specific tertile) AMH

levels given their age.

Characteristics for women with an available AMH measurement at baseline (n = 2855) were
described using mean (standard deviation), median [interquartile range (IQR)], or frequency

(%). We summarized these baseline characteristics by age-specific AMH tertiles.

Missing information on most baseline and time-varying covariates was below 2%. Data
on menopausal status was missing for up to 24.9% in Round 3, due to the relatively high
proportion of OC users. Missing values for baseline age-specific AMH tertiles and baseline
and time-varying covariates were imputed with multiple imputation (50 iterations, 10
imputed datasets) using the R package “mice” (version 3.3.0)"5 (Supplemental Methods).
Subsequent regression analyses were performed in each imputed dataset; regression
coefficients and standard errors of the mean were pooled according to Rubin’s Rule of

combination'® using the pool function in “mice”.

Baseline age-specific AMH tertiles and cancer risk

We investigated associations between baseline age-specific AMH tertiles and incident
cancer, by estimating hazard ratios (HRs) and 95% confidence intervals (95% CIs) from
Cox proportional hazards models. We used follow-up time in years as underlying time scale
(t, = baseline examination, t = linkage of data with cancer registry; 31 December 2014),
and adjusted models for known risk factors for cancer: age at baseline, age at menarche,
current OC use, parity and AFTP, menopausal status, BMI, educational attainment, current

smoking, alcohol consumption and family history of breast cancer.
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Mean AMH trajectories in women who developed cancer compared to women who did not
To assess whether age-related AMH trajectories differed between women who were
diagnosed with cancer and women who were not diagnosed with cancer during follow-up,
we used linear mixed models (R package “nlme”"’; version 3.1-139). Measurements from
examination Rounds 1-5 were used to construct AMH trajectories. In total, we analyzed
11,655 AMH measurements performed in the period from baseline until cancer diagnosis,
censoring, or end of follow-up, whichever came first. Of these measurements, 4223 (36.2%)
were below the limit of detection (< 1.846 pg/mL). Missing AMH measurements were
not imputed as this is not needed for linear mixed model analyses.!® Imputed values were

included for the covariates described below.

Linear mixed models included repeated log transformed AMH measurements as dependent
variable and age in years, modelled with natural splines (2 knots: 36 and 45 years, upper
boundary: 65 years), as the underlying timescale. To assess whether models including
incident cancer status (yes/no) and interaction terms of this case variable and the spline
terms were a better fit to the data compared with models without these variables, a global
likelihood ratio test was applied' using the testModels function (method “D3”) implemented
in R package “mitml”* (version 0.3-7). All models additionally included the following fixed
effects: age at blood collection (time-dependent), current OC use (time-dependent), current
smoking (time-dependent), BMI (time-dependent), menopausal status (time-dependent),
alcohol consumption (time-dependent), age at menarche, parity and AFTP, educational level
and family history of breast cancer. We also included random intercepts and random slopes
for each woman. We used the estimated fixed effects from the fitted models to calculate
predicted geometric mean AMH trajectories over age, which were adjusted for the described
potential confounders. Predicted AMH trajectories and standard errors of the mean were

also pooled using Rubin’s Rule. All analyses were performed in R (version 3.4.3).%!

Sensitivity analyses

Because AMH is known to strongly decrease from age 40 and because less variation is
found in AMH levels after this age®, we performed sensitivity analyses restricted to women
younger than 40 years at baseline (n = 1543). We additionally performed sensitivity analyses
in which we excluded (1) AMH measurements within two years prior to diagnosis, (2)
women who were current OC users at baseline of the cohort (n = 766, on average across 10
imputation sets), and (3) women who had ever reported hormone replacement therapy (HRT)
use (n =923, on average across 10 imputation datasets). Sensitivity analyses excluding
current OC users at baseline were only performed for Cox proportional hazards models,

since current OC use was included as time-varying covariate in the linear mixed models.
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Results

Baseline characteristics of women with an available AMH measurement at Round 1 are
presented by age-specific AMH tertiles in Table 1. Women in the lowest age-specific AMH
tertile were older than women in the middle and highest age-specific AMH tertiles. Women
in the highest age-specific AMH tertile were more likely to be premenopausal, and less
likely to be current OC user, ever HRT user or current smoker compared to women in the
lowest age-specific AMH tertile. In addition, women in the highest age-specific AMH
tertile were more likely to have attained a higher educational level and to have a positive
family history of breast cancer. Alcohol consumption was also higher among women in the
highest age-specific AMH tertile.

Baseline age-specific AMH tertiles and cancer risk

We observed no increased risk of cancer in women with higher age-specific AMH levels
(HR,,,, = 1.00, 95% CI = 0.77 — 1.28 and HR , ,, = 1.12, 95% CI = 0.86 — 1.46; Table2).
Restricting our analyses to breast cancer resulted in somewhat stronger risk-increasing
effect estimates, but confidence intervals were wide and included the null (Table 2).
Associations between age-specific AMH levels and risk of cancers in other AMHR2-
expressing tissues were similar to those for risk of total cancer, whereas a risk-decreasing
effect of higher AMH levels was suggested for cancers in non-AMHR2-expressing tissues
(HR,,,, =0.74, 95% CI = 0.49 — 1.14 and HR , ;, = 0.96, 95% CI = 0.62 — 1.49; Table2).
Restricting analyses to women £ 40 years at baseline (n = 1543) resulted in stronger effect
estimates for breast cancer, although corresponding confidence intervals still indicated
considerable uncertainty: HR,  =2.06, 95% CI = 0.95 — 4.48 and HR , ., = 2.03, 95%
CI=0.91 —4.50 (Table 2). Effect estimates for cancers in non-AMHR2-expressing tissues
were also more extreme in women < 40 age at baseline due to increased uncertainty (Table
2). Exclusion of AMH measurements within two years prior to diagnosis, exclusion of
current OC users at baseline, and exclusion of women that ever-used HRT did not change

our conclusions (Supplemental Table 1).
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Mean AMH trajectories in women who developed cancer compared to women who
did not

On average, 3.9 AMH measurements were available per woman (see Supplemental Table 2
for details on repeated AMH measurements). Figure 2 presents predicted geometric mean
AMH trajectories in women who were diagnosed with cancer during follow-up and women
who were not, averaged across the ten imputed datasets. These plots suggested that AMH
levels were higher around age 30 and subsequently declined faster in women who were
later diagnosed with cancer compared to women who were not, but our results did not
provide evidence for an actual difference in trajectories (p-value global likelihood ratio
tests > 0.05 for each outcome; Supplemental Table 3). Sensitivity analyses restricted to
women younger than 40 years at baseline, exclusion of AMH measurements within two
years prior to cancer diagnosis, and exclusion of women who reported ever having used
HRT also did not provide evidence for differences in trajectories (p-value for each global
likelihood ratio test > 0.05).

A B C D

no cancer
= total cancer

no cancer
== breast cancer

no cancer

= cancers in other (m—_cancersin non-
AMHR2-expressing AMHR2-expressing
tissues . tissues

no cancer
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Figure 2. Predicted geometric mean AMH trajectories (solid lines) and 95% confidence intervals
(dashed lines) over age in women who developed (A) total cancer, (B) breast cancer, (C) cancers in
other AMHR2-expressing tissues, and (D) cancers in non-AMHR2-expressing tissues compared to
women who did not develop cancer during follow-up. Plots show average predicted AMH trajectories
across 10 imputed datasets. Trajectories are adjusted for the time-varying covariates current oral
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Figure 2. (continued)

contraceptive use, current smoking, body mass index, menopausal status, alcohol consumption; and
the time-invariant covariates age at menarche, parity and age at first full-term pregnancy, educational
level and family history of breast cancer.

Discussion

This study found no evidence for associations between baseline age-specific AMH and
cancer risk, although the risk-increasing effect estimates for breast cancer were in line
with previously published findings. Examination of AMH trajectories indicated that AMH
levels around age 30 may be higher, and may decline faster, in women who are diagnosed
with cancer compared to women who are not. However, our results did not provide strong

evidence for an actual difference in age-related AMH trajectories.

The main strength of this study is that we were the first to investigate the association
between age-related AMH trajectories and risk of cancer, whereas previous studies included
only one AMH measurement for each participant. Also, this is the first study to investigate
the effect of AMH on the risk of total cancer, and on cancer types subdivided based on
expression of AMHR2. Additional strengths of this study are its large study population,
with a median follow-up period of 25 years, and time-varying information on risk factors for
cancer. Nevertheless, the current analyses are mostly exploratory in nature because of the
limited number of cancer cases, and the limited number of measurements at younger ages.
As aresult, we cannot rule out that age-related AMH trajectories do differ between women
who later develop cancer and women who do not. Moreover, the heterogeneous nature across

and within cancer types most likely also limited statistical power to detect associations.

Following our objective to investigate whether AMH trajectories differed for women who
were or were not diagnosed with cancer during follow-up, we used linear mixed models in
which AMH was included as dependent variable. An evident disadvantage of this approach
is that time until cancer diagnosis is not taken into account. Although various methods that
can model repeated measurements and time to event data are available (e.g. Cox proportional
hazards models including a time-varying exposure or joint models), these approaches test
whether AMH levels at, or near, the moment of diagnosis are associated with risk of cancer,
whereas we were specifically interested in the complete AMH trajectory over time up to

the moment at which women were diagnosed with cancer.

Even though not statistically significant, our finding for breast cancer is in line with a

previous individual participant data meta-analysis, reporting that women in the highest
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AMH quartile were at a 60% increased risk of breast cancer compared to women in the
lowest AMH quartile.! Interestingly, in this meta-analysis the relation of baseline circulating
AMH levels with breast cancer was strongest in women aged 45-49 years at blood draw,
whereas in our longitudinal analyses AMH levels were not different between future breast
cancer cases and healthy women in that age range. A possible explanation for this difference
may be the fact that the study by Ge et al. included a number of small studies in older
women, which reported very large effect sizes. In contrast to previous studies on AMH and
female specific cancers, we could not assess potential confounding of our results by estradiol
and/or testosterone levels, as these were not measured in our study population. However, as
correction for endogenous estradiol and/or testosterone did not influence results of previous

studies"?*?*, we do not expect a large confouding effect of these hormones in our study.

Our results provide no answer to the question whether AMH is merely a proxy for time
until menopause, or whether AMH has a direct effect on tissues that express its receptor,
AMHR?2. Performing a formal mediation analysis for age at menopause was not feasible
in the current study population, due to the limited number of cases that underwent the
menopausal transition (for breast cancer only 72 cases; i.e. 52%). We hypothesized that if
AMH regulates cell growth in AMHR2-expressing tissues, we would observe a stronger
effect of high AMH levels on risk of cancers in AMHR2-expressing tissues than for total
cancer, and absence of an association with cancers in non-AMHR2-expressing tissues.
However, apart from supporting the association between high AMH and an increased risk
of breast cancer, our results do not support an association with cancers in other AMHR2-
expressing tissues. Due to the low number of cases in this latter group, we could not
examine the association between AMH and individual cancer types, such as ovarian and
endometrial cancer. Similarly, we were not able to investigate associations with different

breast cancer subtypes.

In conclusion, plasma AMH levels were not associated with risk of cancer, although our
findings are in agreement with previous evidence suggesting that higher circulating AMH
levels are associated with an increased risk of breast cancer. Our longitudinal analyses
suggested that AMH levels may be higher around age 30 and may decline faster in women
who later develop cancer, but our results did not provide clear evidence for an actual
difference in trajectories. Prospective studies with repeated AMH measurements in a larger
population of young women are required to establish if, and at which age, AMH could be

considered a risk factor for cancer, and specifically for breast cancer.
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Supplemental data

Supplemental methods
Details on the assessment of covariates and the multiple imputation procedure are pro-

vided below.

Covariates

BMI was calculated using weight and height measurements obtained during physical
examinations. Current oral contraceptive use was assessed through the categorical
questions: “Have you ever used oral contraceptives?” (Yes, currently/Yes, ever/No, never)

in Round 1, and “Are you currently using oral contraceptives?”” (Yes/ No) in Rounds 2-5.

Ever and current use of HRT was not asked in examination Round 1. Therefore, we used
data from Round 2-5 to classify women as ever or never HRT users. Women were classified
as ever HRT users when they had answered the question “Have you ever used estrogens or
female hormones because of menopausal complaints?” at least once with “Yes” in Round
2-5. If women answered this question each round with either “No” or “Not applicable”
they were classified as never HRT users, in all other situations this variable was set to
missing. We performed a sensitivity analysis excluding women who were classified as
“ever had HRT”.

Menopausal status was assessed using data on cycle regularity, date of last menstrual
period and reproductive surgery, as previously described.! Women who had amenorrhea
for at least 12 consecutive months were considered postmenopausal, as defined by the
World Health Organization.> Women who underwent a bilateral oophorectomy were
considered postmenopausal from the moment they had surgery. Menopausal status was set
to missing for women who had a hysterectomy without bilateral oophorectomy, and imputed
subsequently as described in the statistical analyses section. In addition, menopausal status
was set to missing and subsequently imputed in current OC users because Dutch guidelines
recommend the use of OCs in perimenopausal women with vasomotor complaints.
Also, Dutch women use OCs up to the age of 52 when OCs are the preferred method of

birth control.

Current smoking was assessed in each examination round using the question “Are you
currently smoking cigarettes?” to which women could reply (1) “Yes, I smoke on average
1 or more cigarettes a month”; (2) Yes, but I smoke less than 1 cigarette a month”; (3) No,
I smoked cigarettes in the past, but quit”; and (4) “No, I never smoked”. For the current

study, women were classified as current smokers if they smoked on average > 1 cigarette
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per month. Alcohol consumption was calculated in women who reported to consume on

average more than 1 glass of alcohol per week.

Family history of breast cancer was based on data obtained over the complete follow-up
period of the Doetinchem Cohort Study; women were classified as having a family history
of breast cancer if they reported that their mother and/or sister(s) were diagnosed with breast

cancer before or during follow-up.

Educational attainment was classified as previously reported® (low: primary education up
to completing intermediate vocational education; middle: up to higher secondary education;

high: college degree or higher).

Multiple imputation

Imputation models were dependent on the type of variable: predictive mean matching,
logistic regression, multinomial logit, and ordered logit models were used for continuous,
binary, nominal and ordinal categorical variables, respectively. Predictor variables were
selected based on their presence in subsequent analyses, their mutual correlations and
their correlation with the imputed variables. For imputation of repeated variables we used

variables for the previous and following examination rounds as predictors.
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Supplemental Table 2. AMH measurement related characteristics stratified by menopausal status for Round
1 to Round 5 of the Doetinchem Cohort Study.*

Premenopausal women

Postmenopausal women

Available AMH measurement at Round 1°
Age (years)*?

AMH (pg/mL)*

Measurements above the LOD (%)
Available AMH measurement at Round 2°
Age (years)™d

AMH (pg/mL)®

Measurements above the LOD (%)
Available AMH measurement at Round 3°
Age (years)*!

AMH (pg/mL)*

Measurements above the LOD (%)
Available AMH measurement at Round 4°
Age (years)*

AMH (pg/mL)®

Measurements above the LOD (%)
Available AMH measurement at Round 5°
Age (years)™d

AMH (pg/mL)*

Measurements above the LOD (%)

2355 (82.5)
37.0 [31.1 - 42.7]
1625 [441 — 3686]
95.6
1958 (70.6)
41.8[35.7 - 46.9]
798 [125 — 2 229]
91.1
1339 (58.7)
44.0[39.4 - 48.5]
350 [25.4 — 1 397]
85.6
750 (34.8)
452 [41.8 - 48.7]
267 [33.1 - 924]
87.2
408 (21.4)
47.6[43.9 - 50.3]
130 [9.9 - 532]
817

500 (17.5)
55.5[51.9 - 57.3]
0.92[0.92 - 0.92]
12.8
814 (29.4)
57.8 [54.2 - 62.2]
0.92[0.92 - 0.92]
10.1
942 (41.3)
59.7 [54.6 - 64.3]
0.92[0.92 - 0.92]
6.4
1403 (65.2)
59.1 [54.4 - 66.4]
0.92[0.92 - 1.85]
10.3
1501 (78.6)
62.0[56.9 - 68.2]
0.92[0.92 - 0.92]
8.1

* Numbers differed between imputation sets, as menopausal status was imputed; presented values are averages

® Number (%)
¢ Median [IQR]

4 Median age does not increase with 5 years over rounds because women shift from premenopausal to postmenopausal
status over examination rounds. Also, women could skip examination rounds resulting in different groups of women in

different examination rounds
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Abstract

Aims/hypothesis: Given its role in ovarian follicle development, circulating anti-Miillerian
hormone (AMH) is considered to be a marker of reproductive ageing. Although accelerated
reproductive ageing has been associated with a higher risk of type 2 diabetes, research on
the relationship between AMH and type 2 diabetes risk is scarce. Therefore, we aimed
to investigate whether age-specific AMH levels and age-related AMH trajectories are

associated with type 2 diabetes risk in women.

Methods: We measured AMH in repeated plasma samples from 3293 female participants
(12,460 samples in total), aged 20—59 years at recruitment, from the Doetinchem Cohort
Study, a longitudinal study with follow-up visits every 5 years. We calculated age-specific
AMH tertiles at baseline to account for the strong AMH—age correlation. Cox proportional
hazards models adjusted for confounders were used to assess the association between
baseline age-specific AMH tertiles and incident type 2 diabetes. We applied linear mixed
models to compare age-related AMH trajectories for women who developed type 2 diabetes

with trajectories for women who did not develop diabetes.

Results: During a median follow-up of 20 years, 163 women developed type 2 diabetes.
Lower baseline age-specific AMH levels were associated with a higher type 2 diabetes risk
(HR, ., 1.24 [95% CI1 0.81, 1.92]; HR, . 1.62 [95% CI 1.06, 2.48]; p,_ = 0.02). These
findings seem to be supported by predicted AMH trajectories, which suggested that plasma
AMH levels were lower at younger ages in women who developed type 2 diabetes compared
with women who did not. The trajectories also suggested that AMH levels declined at a
slower rate in women who developed type 2 diabetes, although differences in trajectories

were not statistically significant.

Conclusions/interpretation: We observed that lower age-specific AMH levels were
associated with a higher risk of type 2 diabetes in women. Longitudinal analyses did
not show clear evidence of differing AMH trajectories between women who developed
type 2 diabetes compared with women who did not, possibly because these analyses were
underpowered. Further research is needed to investigate whether AMH is part of the
biological mechanism explaining the association between reproductive ageing and type
2 diabetes.
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Introduction

Female reproductive ageing has been associated with risk of chronic diseases, including
type 2 diabetes, in later life [1]. Women with an earlier menopause have been found to
be at a higher risk of postmenopausal type 2 diabetes [2]. This association appears to be
independent from the effect of BMI [3, 4]. Yet, the biological mechanisms underlying the
association between reproductive ageing and type 2 diabetes remain to be established. A
potential causal candidate explaining this association is anti-Miillerian hormone (AMH), a
gonadal hormone expressed by early-stage ovarian follicles in premenopausal women [5].
From birth onwards, the ovarian follicle pool decreases until menopause [6]. Accordingly,
circulating AMH levels decline with age until they become undetectable after menopause.

AMH can therefore be used as marker for reproductive ageing in women [7, 8].

To date, the relationship between circulating AMH and type 2 diabetes has been examined
in one small study in pregnant women [9]. Several studies investigated AMH in relation to
conditions, such as insulin resistance, that predispose to type 2 diabetes but their results
are inconsistent [10-14]. Furthermore, most of these studies had a cross-sectional design
and/or included only women with polycystic ovary syndrome (PCOS). As a result, reverse
causation could not be excluded in previous studies and generalisability of their results to

healthy women is limited.

Therefore, the aim of the current study was to investigate the association between AMH and
type 2 diabetes using data from women in the population-based Doetinchem Cohort Study.
Specifically, we investigated associations between age-specific AMH levels at baseline of

the cohort and age-related AMH trajectories and incident type 2 diabetes.

Methods

Study population

The Doetinchem Cohort Study is an ongoing prospective cohort study, which has been
described in more detail previously [15, 16]. Briefly, the Doetinchem Cohort Study included
3641 men and 4128 women, aged 20—59 years at recruitment, who were randomly selected
from the municipal register of Doetinchem, the Netherlands, between 1987 and 1991.
Every 5 years, study participants are invited for a follow-up visit during which physical
examinations are conducted, extensive questionnaires are completed and blood samples are
collected. Invitations for the follow-up visits are sent irrespective of attendance at previous

follow-up rounds. The Doetinchem Cohort Study received approval from the Medical Ethics
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Committee of the Netherlands Institution of Applied Scientific Research and all study
participants signed an informed consent prior to study inclusion. For the current study
we only used data from female participants (median age at recruitment 39 years, range
20-59 years) from examination Round 1 (baseline 1987-1991) to examination Round 5
(2008-2012).

Exclusion criteria

For 3326 of the 4128 female participants in the Doetinchem Cohort Study, at least one AMH
measurement was available for any of the five included examination rounds. For this study
we excluded women who were diagnosed with diabetes prior to their first available AMH
measurement (n=33) (Fig. 1). We included data for the remaining 3293 women in subsequent
analyses. The number of women with an AMH measurement per examination round was
3104, 2888, 2488, 2305 and 2038 for Rounds 1, 2, 3, 4 and 5, respectively.

Doetinchem Cohort Study Men
n=7769 n=3641
A 4
Women Women without available
n=4128 plasma samples
n =802
A 4 - :
- - Women diagnosed with type 2
Women with at least 1 available diabetes prior to their first
AMH measurement available AMH
n=3326 measurement

i n=33

Women included in the current
study
n=3293

\ 4 \ 4
Women Women with

without type 2 incident type 2
diabetes diabetes
n=3130 n=163

Figure 1. Flow chart for study population.
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AMH measurements

Approval for AMH measurements was given by the Ethical Committee for Biobank Studies
of the University Medical Center Utrecht. Details of these measurements and sample storage
conditions have been described previously[17, 18]. In short, AMH was measured in all
available plasma samples, collected from baseline to examination Round 5, from each
female study participant. Missing AMH measurements were the consequence of either
non-attendance at certain follow-up visits, no consent to blood draw at the particular
examination, depletion of plasma samples because of other blood measurements, or an
occasional unsuccessful AMH measurement. AMH was measured using the picoAMH
ELISA (Ansh Labs, Webster, TX, USA) in the Ansh Labs laboratory. This AMH assay has
a lower detection limit of 0.013 pmol/l. AMH measurements below the limit of detection
were set to half this value (0.007 pmol/l).

Covariates

Data on age at blood collection (years), educational attainment (low, middle, high),
current smoking (yes, no), alcohol consumption (glasses/day), physical activity (inactive,
active), parity (nulliparous, parous), current oral contraceptive use (yes, no), ever hormone
replacement therapy (HRT) use (yes, no) and menopausal status (premenopausal,
postmenopausal) were collected through questionnaires. Time-varying data was available
for age at blood collection, BMI, current smoking, alcohol consumption, physical activity,

hypertension, total cholesterol, current oral contraceptive use and menopausal status.

Educational attainment was classified using the following categories: primary education up
to completing intermediate vocational education (low); up to higher secondary education
(middle); and higher vocational education and university (high) [19]. Women were classified
as current smokers if they reported smoking on average >1 cigarette per month. Total alcohol
consumption (glasses/day) was calculated in women who reported consuming on average
more than one glass of alcohol per week. Physical activity was assessed using the validated
Cambridge Physical Activity Index [20]. Because data on physical activity at baseline was
completely missing, we assumed that physical activity at baseline was equal to data from
Round 2. Questions on current and ever HRT use were only included in questionnaires from
Rounds 2-5. Consequently, women were classified as ever HRT users when they reported
HRT use on at least one of these questionnaires. Women who reported no HRT use on any
of the questionnaires were classified as never HRT users. Menopausal status was assessed
as previously described [17]; women who had amenorrhea for at least 12 consecutive months
were considered postmenopausal. Women who underwent a bilateral oophorectomy were
considered postmenopausal from the moment they had surgery. Menopausal status was set

to ‘missing’ for women who had a hysterectomy without bilateral oophorectomy and for
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current oral contraceptive users, and imputed subsequently as described in the statistical
analyses section. We imputed menopausal status in current oral contraceptive users
because Dutch guidelines state that oral contraceptive use is preferable in perimenopausal
women with vasomotor complaints. In addition, women with birth control wishes use oral

contraceptives as the preferred method up to the age of 52.

BMI (kg/m?) was calculated using standardised weight and height measurements obtained
during physical examinations. Hypertension (yes, no) was classified according to the
guidelines of the WHO (systolic BP >140 mmHg and/or diastolic BP >90 mmHg) and/or
use of BP-lowering medication. Total cholesterol (mmol/l) was measured in non-fasting
EDTA-plasma until 1998 and in serum from 1998 onwards, using standardised enzymatic
methods [16].

Ascertainment of type 2 diabetes

Women reporting that they had been diagnosed with diabetes for the first time at Rounds
2-5 were classified as incident type 2 diabetes cases. In addition, non-fasting glucose
measurements were available in Rounds 2-5, and women with at least one glucose
measurement >11.1 mmol/l were also classified as incident cases. Previous research has
shown that 86% of the self-reported diabetes cases in the Doetinchem Cohort Study could
be confirmed by general practitioner or pharmacy registries [21]. In total, we identified 163
incident type 2 diabetes cases over a median follow-up period of 20 years. For women who
reported their age at diabetes diagnosis, we set their diagnosis date to the first day of January
of the corresponding year. For the remaining women, we set their diagnosis date to the first
day of January of the year in which the examination during which they first reported to have

been diagnosed with diabetes or at which their glucose was >11.1 mmol/I took place.

Statistical analyses

We calculated age-specific baseline AMH tertiles using general linear modelling with the
Cole and Green, Lambda, Mu and Sigma (CG-LMS) method [22] (R package ‘gamlss’,
version 5.1-2 [23]), as previously described [24]. logAl\/IH at examination Round 1 was
modelled over age using splines because of the non-linear decline in AMH with increasing
age. Previous analyses showed that this model fits the AMH data in the Doetinchem Cohort
Study well [17]. The CG—LMS method allows for estimation of the distribution of AMH at
every age, and corresponding percentile values (for 33.3% and 66.7%) were used to create
age-specific tertiles. Accordingly, women could be classified as having either low (first
age-specific tertile), normal (second age-specific tertile) or high (third age-specific tertile)

AMH levels given their age.
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Characteristics for women with an available AMH measurement at baseline (n=3104)
were described using medians (IQR) or percentages (7). We summarised these baseline
characteristics by age-specific AMH tertiles. In addition, we compared baseline
characteristics and the proportion of incident diabetes cases between women with and
without an AMH measurement at each round, to assess whether missing AMH measurements

were potentially associated with these characteristics.

Missing values for baseline age-specific AMH tertiles and baseline and time-varying
covariates were imputed with multiple imputation (100 iterations, ten imputed datasets)
using the R package ‘mice’ (version 3.3.0) [25] (ESM Methods). We based the number
of imputed datasets on the average proportion of missing values on variables included in
the association analyses (8.0%), as recommended previously [26]. Subsequent regression
analyses were performed in each imputed dataset; regression coefficients and 95% Cls were

pooled according to Rubin’s Rule of combination [27] using the pool function in ‘mice’.

Baseline age-specific AMH tertiles and type 2 diabetes risk

We assessed associations between baseline age-specific AMH tertiles and incident type 2
diabetes by estimating HRs and 95% CIs from Cox proportional hazards models. We used
follow-up time in years as underlying time scale (t, represented baseline examination;
t_ represented either date on which participant last attended an examination or date at
diabetes diagnosis), and adjusted models for known risk factors for type 2 diabetes and
reproductive factors. Fully adjusted models included the following baseline variables: age;
BMI; educational attainment; current smoking; alcohol consumption; physical activity;
hypertension; total cholesterol; current oral contraceptive use; parity; and menopausal
status. We visually checked the proportional hazards assumption using scaled Schoenfeld
residuals and statistically tested it using the cox.zph function in R (R package ‘survival’,
version 2.44-1.1 [28]), which consistently indicated that the proportional hazards assumption

was not violated.

Mean AMH trajectories in women who develop type 2 diabetes compared with women
who do not

To assess whether age-related AMH trajectories differed between women with and without
incident type 2 diabetes, we used linear mixed models (R package ‘nlme’, version 3.1-139
[29]). AMH trajectories were constructed using available measurements from examination
Rounds 1-5. We included non-imputed AMH values in the linear mixed model analyses, as
these analyses provide unbiased estimates when outcomes are missing at random [30]. Imputed
values were included for the covariates described below. We excluded AMH measurements

after diabetes diagnosis. In women with incident type 2 diabetes, the earliest age at which



Chapter 4

AMH was measured was 21.4 years. Accordingly, we excluded 79 AMH measurements that
were available at earlier ages for women without diabetes, as differences in AMH trajectories
between both groups cannot be assessed at ages for which no measurements were available in
one of the groups. Two women without diabetes were completely excluded from these analyses
due to these excluded measurements. In addition, one woman with incident type 2 diabetes
was excluded from our longitudinal analyses because no AMH measurements were available
before her diagnosis. As a result, we included data from 3290 women, among which there
were 162 incident cases of type 2 diabetes, in our longitudinal analyses. In total, we included
12,460 AMH measurements performed in the period from baseline until diabetes diagnosis
or last-attended examination round. Of these measurements, 4587 (36.8%) were below the
limit of detection (<0.013 pmol/l).

Models included repeated W AMH levels as dependent variable and age in years, modelled
with natural splines (2 knots, 36 and 45 years; upper boundary, 65 years), as the underlying
timescale. To assess whether models including incident type 2 diabetes status (yes, no)
and interaction terms of this case variable and the spline terms were a better fit to the data
compared with models without these variables, a global likelihood ratio test was applied [31]
using the testModels function (method ‘D3’) implemented in R package ‘mitml’ (version
0.3-7 [32]). Linear mixed models additionally included the following fixed effects: age at
blood collection; BMI; educational attainment; current smoking; alcohol consumption;
physical activity; hypertension; total cholesterol; current oral contraceptive use; parity; and
menopausal status. Except for educational attainment and parity, all included covariates
were time-varying. We also included random intercepts and random slopes for age for
each woman. We used the estimated fixed effects from these models to calculate predicted
geometric mean AMH trajectories adjusted for the described potential confounders over age
per imputation set. Predicted AMH trajectories and corresponding 95% Cls were pooled

using Rubin’s Rule. All analyses were performed in R, version 3.6.0 [33].

Sensitivity analyses

To rule out a potential effect of undiagnosed type 2 diabetes on AMH measurements included
in our analyses, we repeated our main analyses after excluding AMH measurements in
samples collected within 2 years prior to diabetes diagnosis (7=8). We also explored how
imputation of baseline age-specific AMH tertiles influenced our survival analyses through
excluding women with missing AMH data at baseline (n = 189). Current HRT use has
been shown to affect both AMH levels and risk of diabetes. As current HRT use was not
assessed at Round 1, we could not model this variable as a time-varying covariate. Instead,
we assessed a potential effect of HRT use on our main results by performing analyses

excluding women who reported any use of HRT at Rounds 2—5 (» = 1490 on average over
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ten imputed datasets). In addition, we performed sensitivity analyses in which we excluded
women who never reported having had regular menstrual cycles during follow-up (r = 268),
as this could be an indication that these women had PCOS. Although an irregular menstrual
cycle in itself is not sufficient to diagnose PCOS, no other data was available that allowed

us to assess whether women potentially had PCOS.

Results

Characteristics of the women with an available AMH measurement at baseline are presented
by age-specific tertile in Table 1. Women in the middle and highest tertiles were younger,
more often premenopausal, less likely to ever have used HRT, and more physically active
than women in the lowest age-specific AMH tertile. In addition, women in the highest
age-specific tertile were more likely to be highly educated and consume more alcohol but
were less likely to be a current oral contraceptive user, current smoker or to be hypertensive
compared with women in the middle and lowest age-specific AMH tertiles. Baseline
characteristics and the proportion of incident diabetes cases were mostly comparable
between women with and women without a missing AMH measurement, for each of the

five examination rounds (ESM Table 1).

Baseline age-specific tertiles and risk of type 2 diabetes

We observed that women with lower age-specific AMH levels had a higher risk of type 2
diabetes (HR, ., 1.24 [95% CI 0.81, 1.92]; HR, ., 1.62 [95% CI 1.06, 2.48]; p, . across
tertiles = 0.02) (Table 2). Sensitivity analyses excluding AMH measurements performed in
plasma samples collected within 2 years prior to diabetes diagnosis and analyses excluding
women with missing AMH data at baseline did not change these results (Table 2). Exclusion
of women with potential PCOS did not considerably change effect estimates either, although
associations were no longer statistically significant (Table 2). Exclusion of women who ever
had HRT resulted in wider CIs and decreased effect estimates for both the first and second
age-specific AMH tertile.
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Table 1. Characteristics of women with an available AMH measurement at baseline of the Doetinchem
Cohort Study (n = 3104) presented by age-specific AMH tertiles.

Characteristic Lowest age-specific Middle age-specific Highest age-specific
AMH tertile AMH tertile AMH tertile
(n=907) (n=1184) (n=1013)
AMH, pmol/l 0.21 (0.01-5.38) 8.90 (0.85-19.29) 26.85 (7.07-45.31)
Age, years 42.0 (32.6-51.4) 38.5(31.6—-46.2) 39.1 (32.1-45.8)
BMI, kg/m? 23.7 (21.7-26.3) 23.7(21.7-26.2) 23.3(21.4-25.7)
Educational attainment®
Low 70.9 (641) 69.3 (818) 64.0 (646)
Middle 16.7 (151) 19.1 (226) 21.0 (212)
High 12.4 (112) 11.6 (137) 15.0 (152)
Reproductive factors
Parous, yes 77.1 (699) 75.1 (889) 78.6 (796)
Premenopausal® 73.9 (588) 83.0 (906) 96.2 (917)
Current OC use® 29.8 (269) 27.6 (327) 18.8 (190)
Ever HRT use®® 36.5 (206) 27.2 (190) 27.8 (184)
Lifestyle factors
Current smoker, yes* 35.2 (319) 35.4 (419) 30.3 (307)
Current alcohol consumption®
No 20.7 (188) 19.8 (235) 17.6 (178)
<1 glass/week 31.7 (287) 31.4 (372) 29.8 (302)
>1 glass/week 47.6 (431) 48.7 (576) 52.6 (532)
Physical activity*©
Inactive 31.5(224) 26.2 (242) 27.0 (225)
Active 68.5 (486) 73.8 (682) 73.0 (608)
Total cholesterol, mmol/1* 54 (4.7-6.2) 5.3 (4.6-6.0) 5.2 (4.6-5.8)
Hypertension, yes 15.4 (140) 14.4 (171) 10.8 (109)

AMH, anti-Miillerian hormone; OC, oral contraceptive; HRT, hormone replacement therapy

Data are presented as median (IQR) or percentage (1)

*Missing values (n): educational attainment (9); menopausal status (263), current oral contraceptive use (7), ever HRT use
(1179), current smoking (1), current alcohol consumption (3), physical activity (637), total cholesterol (1)

°Ever variable presented because of absent data on HRT use at baseline

¢Physical activity at examination Round 2 due to absent data on physical activity at baseline

86
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Table 2. HRs (95% Cls) for the association between baseline age-specific AMH tertiles and risk of type 2
diabetes in women of the Doetinchem Cohort Study.

Population Lowest age-specific Middle age-specific Highest age-specific p value for
AMH tertile AMH tertile AMH tertile trend
(reference)
Total study population (n = 3293,  1.62 (1.06, 2.48)* 1.24 (0.81, 1.92) 1.00 0.02
163 cases)
Exclusion of AMH measurements  1.55 (1.00, 2.40)* 1.19 (0.76, 1.85) 1.00

within 2 years prior to type 2

diabetes diagnosis

(n=3285, 155 cases)

Exclusion of women with a 1.62(1.04,2.52)* 1.29 (0.83, 2.00) 1.00
missing AMH measurement at

baseline ( n= 3104, 148 cases)

Exclusion of women who ever  1.26 (0.72, 2.20) 0.74 (0.41, 1.32) 1.00
used HRT

(n= 1803, 95 cases)*

Exclusion of women who poten- 1.57(0.97, 2.54) 1.13(0.71, 1.83) 1.00
tially had PCOS (n = 3025,

138 cases)

Cox proportional hazards models were adjusted for the following baseline variables: age (years), parity (nulliparous, parous),
current oral contraceptive use (yes, no), menopausal status (premenopausal, postmenopausal), BMI (kg/m?), educational
attainment (low, middle, high), current smoking (yes, no), alcohol consumption (glasses/day), physical activity (inactive,
active), hypertension (yes, no), total cholesterol (mmol/l)

*Numbers differed between imputation sets, as the variable ever HRT use itself was imputed; presented numbers are average
sample sizes and average numbers of cases

*p <0.05

Mean AMH trajectories in women who are diagnosed with type 2 diabetes com-
pared with women who are not

On average, 3.8 AMH measurements were available per woman. Figure 2 presents predicted
geometric mean AMH trajectories in incident type 2 diabetes cases and women without type
2 diabetes averaged across the ten imputation sets. This plot suggests that AMH levels were
lower until approximately 37 years of age and that from the age of 30 years onwards AMH
levels declined more slowly in women who developed type 2 diabetes compared with women
who did not develop type 2 diabetes. However, neither the type 2 diabetes case variable
nor interaction terms of this case variable with splines for age were statistically significant
(ESM Table 2). Comparing models including these diabetes variables with models that
did not include them did not indicate that age-related AMH trajectories differed between
women with and without type 2 diabetes either (p value global likelihood ratio test = 0.58).
Exclusion of AMH measurements within 2 years prior to diagnosis, exclusion of women
who reported ever having used HRT and exclusion of women who potentially had PCOS
did not change these results (ESM Table 2).
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Figure 2. Predicted geometric mean AMH trajectories (pmol/l) (solid lines) and 95% Cls (dashed
lines) over age in women who were diagnosed with type 2 diabetes compared with women who were
not diagnosed with type 2 diabetes during follow-up. Plots show average predicted AMH trajectories
across ten imputed datasets. Trajectories are adjusted for current oral contraceptive use, current smok-
ing, BMI, menopausal status, alcohol consumption, physical activity, hypertension, total cholesterol,
parity and educational level. T2D, type 2 diabetes

Discussion

In this prospective cohort study we observed that lower age-specific AMH levels were
associated with a higher risk of type 2 diabetes in women. Longitudinal analyses that
included multiple AMH measurements per woman did not show clear evidence of a
difference in age-related trajectories between women with and without incident diabetes,
possibly because of the limited number of AMH measurements at younger ages, particularly

in women diagnosed with type 2 diabetes.

The main strength of this study is that we investigated the association between age-
specific AMH and age-related trajectories and risk of type 2 diabetes in women in a large
longitudinal population-based cohort study with a median follow-up of 20 years. To date,

just one small study (n=69) examined AMH in relation to type 2 diabetes in women, and
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only included pregnant women [9]. Additional strengths of the current study are its time-
varying information on AMH as well as a wide array of potential confounders, including

BMI. Nevertheless, residual confounding cannot be ruled out completely.

A potential limitation of this study is that type 2 diabetes case ascertainment was based on
self-report and non-fasting glucose measurements. Accordingly, we made an assumption
about the date of type 2 diabetes diagnosis, which we set to the first day of January of
the year in which a woman first reported that she had been diagnosed with diabetes and/
or in which her glucose was >11.1 mmol/l. This approach may have resulted in some
misclassification, although diagnosis dates obtained from hospital discharge or general
practitioner registries are not precise either, because diabetes develops over several years.
However, sensitivity analyses in which we excluded AMH measurements performed in
plasma samples collected within 2 years prior to the assumed type 2 diabetes diagnosis
date did not change our findings, suggesting that our assumption did not induce reverse
causation bias. Furthermore, previous research has shown that most of the self-reported
diabetes cases in the Doetinchem Cohort Study (86%) could be verified with data from

general practitioner or pharmacy registries [21].

The only previous study examining AMH in relation to type 2 diabetes in women [9]
observed no difference in AMH levels between women with type 2 diabetes, women with
gestational diabetes and a healthy control group of women during the second and third
trimester of pregnancy. The generalisability of this finding may be limited, as it has been
suggested that circulating AMH levels temporarily drop during late-stage pregnancy [34].
In line with our results, a previous study in men observed a lower risk of type 2 diabetes in
overweight individuals with higher AMH levels [35]. In men, AMH is produced by Sertoli
cells and also decreases with increasing age [36], although to a lesser degree than in women.
Lower AMH levels have also been observed in men with the metabolic syndrome [37] and in
obese boys with insulin resistance [38], conditions that are both associated with an increased
risk of type 2 diabetes. In women, lower AMH levels have also been reported to correlate
with higher HOMA-IR [11] and higher fasting insulin [39], although other studies could
not replicate this [10, 13, 40] (see de Kat et al [41] for a more detailed discussion). Similarly,
results of studies on the relationship between AMH and conditions that predispose to type

2 diabetes in women diagnosed with PCOS are inconsistent [12, 14, 41].

Because AMH levels are higher in women with PCOS [42], and these women are at an
increased risk of type 2 diabetes [43], we performed a sensitivity analysis in which we
excluded women who potentially had PCOS. Based on the positive associations between
AMH and PCOS and between PCOS and type 2 diabetes, we hypothesised that if PCOS

was a confounder in our analyses, we would observe an even lower risk of type 2 diabetes
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in women with higher AMH levels after exclusion of those with PCOS. However, our
effect estimates did not change. A likely explanation for this is that we classified women as
potentially having PCOS when they reported never having had regular menstrual cycles,
whereas in practice PCOS is diagnosed based on a set of criteria that additionally include
clinical and/or biochemical hyperandrogenism and/or polycystic ovaries [44]. Future studies
including data on actual PCOS diagnosis should indicate whether PCOS acts as confounder

in the observed association between AMH and type 2 diabetes.

Given its role in ovarian follicle development and its expression in these follicles [5], AMH
is considered to be a proxy for ovarian ageing and, accordingly, lower AMH levels have
been associated with an earlier age at menopause [45]. Previous studies observed that an
earlier age at menopause was associated with a higher risk of type 2 diabetes [2-4], which
is in accordance with our results. However, the question remains as to whether ovarian
ageing is indeed causally associated with risk of diabetes or whether residual confounding
by biological ageing influenced our and previous findings. Future studies including data
on both proxies for ovarian (e.g. AMH and/or age at menopause) and biological ageing (e.g.
epigenetic clock) may provide more insight into this matter. In addition, functional studies
may investigate if AMH signalling actually takes place in the pancreas and how this might
be related to the pathophysiology of type 2 diabetes, since the receptor through which AMH
signals (AMHR?2) is expressed in pancreatic tissue [46].

In conclusion, we observed that women with lower age-specific AMH levels were at a
higher risk of type 2 diabetes. Longitudinal analyses also indicated that AMH levels may be
lower in women who develop type 2 diabetes compared with women who do not, although
our results did not provide clear evidence for an actual difference in age-related AMH
trajectories. Future studies that investigate the association between age-specific AMH
(trajectories) and type 2 diabetes should ideally include a larger proportion of younger

women and, if possible, include proxies for biological ageing.
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Supplemental data

Electronic supplementary material (ESM) methods

Missing values in baseline age-specific AMH tertiles and baseline and time-varying
covariates and were imputed with multiple imputation (100 iterations, 10 imputed datasets)
using the R package “mice”. Imputation models were dependent on the type of variable:
predictive mean matching, logistic regression, and ordered logit models were used for
continuous (BMI, alcohol consumption and total cholesterol), binary (current smoking,
physical activity, hypertension, current oral contraceptive use, menopausal status, ever
hormone replacement therapy use), and ordinal categorical (age-specific AMH tertiles,
educational attainment) variables, respectively. Predictor variables were selected based
on their presence in subsequent analyses, their mutual correlations and their correlation
with the imputed variables. For imputation of repeated variables we used variables for the

previous and following examination rounds as predictors.
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Abstract

Context: Recent research suggests that higher circulating anti-Miillerian hormone (AMH)
levels are associated with lower occurrence of (subclinical) cardiovascular disease (CVD)

in women, but evidence in men is limited.

Objective: We aimed to investigate whether circulating AMH levels are associated with

measures of subclinical CVD in middle-aged and older men.

Design: Prospective cohort study with a median follow-up time of 8.7 years. Serum AMH
was measured at baseline. We assessed both cross-sectional and longitudinal associations

using linear regression models adjusted for confounders.
Setting: Dutch middle-aged and older men from the community.
Participants: 394 men (aged 40-80 years) with an available AMH measurement at baseline.

Main Outcome Measures: At baseline (2001-2002): carotid intima-media thickness
(CIMT), pulse wave velocity (PWV), abdominal aortic diameter, and Framingham risk score
(FRS) predictions. At follow-up (2010-2011): CIMT, mean carotid aortic plaque score, PWV,
and FRS predictions. All outcomes were transformed using rank-based inverse normal

transformation to meet the normality assumption.

Results: Higher AMH levels were associated with lower CIMT at baseline (= -0.04;
95%CI =0.07, -0.01), but not with the other baseline subclinical CVD measures.
Longitudinal analyses suggested that higher baseline AMH levels were associated with
lower mean plaque scores at follow-up (B=-0.03, 95%CI =-0.07, 0.00), but not with the

other follow-up outcomes.

Conclusions: Our results suggested that AMH is associated with current CIMT and future
carotid aortic plaque burden in men, implying that circulating AMH is potentially associated

with structural rather than with functional changes of the arterial wall.



Circulating AMH levels and markers of subclinical CVD in men

Introduction

Anti-Miillerian hormone (AMH) is a gonadal hormone that is primarily known for its crucial
role in sexual differentiation during embryogenesis.' In adult men and women, AMH is
produced by immature Sertoli cells and antral stage ovarian follicles?, respectively. Based
on few fundamental studies®*, it has been proposed that AMH may also have a role in the

pathogenesis of cardiovascular diseases (CVD).

Recent epidemiological research indeed suggests that higher circulating AMH levels may
be associated with a lower risk of both subclinical CVD? ¢ and clinical CVD” 8, but studies
in men are scarce” °. In addition, most previous studies had a cross-sectional design and
did not adjust for potential confounding by circulating sex hormones, which hampers

establishing whether AMH could play a causal role in CVD pathology in both sexes.

To gain more insight into the mechanisms through which AMH levels may affect CVD
risk, we aimed to investigate whether circulating AMH levels are associated with different
subclinical CVD measures in middle-aged and older men. More specifically, we examined
associations of AMH with markers of atherosclerosis, arterial stiffness, abdominal aortic
dilation, and 10-year risk of coronary heart disease (CHD), using cross-sectional and

longitudinal data.

Materials and Methods

Study population

We used data from a Dutch population-based cohort study, which included 400 middle-
aged and older men aged 40 to 80 years. Details about the scope of this cohort and about
recruitment of study participants have been described into detail previously.!" Briefly,
participants were recruited through either convenience sampling or a random selection of
the municipal register in 2001 — 2002. After a median follow-up period of 8.7 years, all study
participants who were still alive and not living abroad (n = 346) were invited for a follow-
up visit in 2010-2011. Of these 346 study participants, 270 were re-examined at follow-up
(participation rate 68%). Reasons for non-attendance at follow-up examinations were being
physically or mentally unable to visit the study center (n = 40), not interested (n = 22), and
non-response (n = 14). During baseline and follow-up visits, questionnaires were completed,
fasting blood samples were collected, and physical examinations were conducted. This study
received approval from the Institutional Review Board of the University Medical Center

Utrecht, and all study participants signed an informed consent prior to study inclusion. For
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the current study we excluded study participants without an available serum sample (n = 6).

As aresult 394 men were included in subsequent analyses.

AMH measurements

Serum samples collected at baseline were stored at -80°C. In September 2019, AMH was
measured in serum samples using the cobas e 411 analyzer (Roche Diagnostics) by the
Clinical Chemistry Laboratory at the University Medical Center Utrecht. The cobas e
411 is a fully automated analyzer that uses a ElectroChemiLuminescence technology for
immunoassay analysis. This method has a variation coefficient of £ 6%, and for AMH its
lower limit of quantification is 0.03 pg/L. Of the 394 samples, one measurement exceeded
the upper limit of quantification (23 pg/L). For this sample AMH was remeasured in a diluted

aliquot. None of the AMH measurements were below the lower limit of quantification.

Subclinical cardiovascular disease measures

Atherosclerosis

We included carotid intima-media thickness (CIMT) and carotid artery plaque burden as
markers of atherosclerosis. CIMT (mm) was measured at baseline and follow-up through
ultrasonography of both the left and right carotid arteries using a 7.5-MHz linear array
transducer (at baseline: Acuson Aspen, Siemens; at follow-up: Acuson Sequoia, Siemens).
For each study participant, the average CIMT of eight predefined angles (90°, 120°, 180°,
and 150° for the right carotid artery and 180°, 210°, 240°, and 270° for the left carotid
artery) was included as measure of CIMT. Carotid artery plaque burden was only assessed
at follow-up, using ultrasound images of 12 arterial sites (near and far walls of right and left
common carotid artery, the bifurcation and internal carotid artery). A 4-level rating scale
was used to quantify plaque burden at each of these sites; 0 = no plaque, 1= minimal plaque,
2 = moderate plaque and 3 = severe plaque. We used these 12 scores to calculate mean

plaque scores for each participant, which we included as outcome in subsequent analyses.

Arterial stiffness

We included pulse wave velocity (PWV) as marker of arterial stiffness. PWV (m/s) was
measured at baseline and follow-up using using a SphygmoCor device (PWV Medical,
Sydney, Australia), as described previously.'> To cover a complete respiratory cycle, an
average of ten successive waveforms was measured. The whole procedure was repeated
three times per participant and average PWYV values were included as measure of PWV.
We set two biologically implausible baseline PWV measurements (2.75 and 30.51 m/s) to

missing and subsequently imputed.
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Abdominal aortic dilation

We included abdominal aortic diameter as indicator of abdominal aortic dilation, which
can be used as indicator for abdominal aortic aneurysms. Abdominal aortic diameter
(cm) was measured at both baseline and follow-up visits, but due to the high proportion
of missing aortic diameter data at follow-up (91%) we only included aortic diameter at
baseline in our analyses. Aortic diameter was measured through ultrasonography (Acuson

Aspen, Siemens).

10-year risk of CHD
For each participant, 10-year risk of CHD was calculated using the Framingham risk score
formula published by Wilson et al. (1998).1* Framingham risk score probabilities were

calculated using both baseline data and follow-up data.

Covariates

Information on age (years), smoking status (current/former/never) and educational
attainment (low/middle/high/university) were collected through questionnaires. Body mass
index (BMI) (kg/m?) was calculated using height and weight measurements obtained during
physical examination. Systolic blood pressure (mm Hg) was measured in supine position
using a semi-automated oscillometric method. We included the average of the two systolic

blood pressure measurements in subsequent analyses.

Total cholesterol was measured in serum samples using an automatic enzymatic procedure
(Synchron LX Systems, Beckman Coulter, Mydrecht, The Netherlands). Details on serum
sex hormone measurements have been described previously.!! Briefly, total testosterone
was measured using an in-house competitive radioimmunoassay employing a polyclonal
anti-testosterone (Dr JH Pratt, Indianapolis, IN, USA). The lower limit of detection of
this assay was 0.24 nmol/L. Sex hormone binding globuline (SHBG) was measured
using an immunometric technique on an Immulite Analyzer (Diagnostic Products
Corporation, Los Angeles, CA, USA). The lower limit of detection of this method was
5 nmol/L. Dihydroepiandrosterone sulphate (DHEAS) was measured on an Advantage
Chemiluminescence System (Nichols Institute Diagnostics, San Juan Capistrano, CA, USA),
which has a lower limit of detection of 0.1 mmol/L. Total estradiol was measured using an
in-house competitive radioimmunoassay employing a polyclonal anti-E2 antibody (Dr F
de Jong, Erasmus MC, Rotterdam, The Netherlands). The lower limit of detection was 20
pmol/L. Free testosterone, and free estradiol were calculated using algorithms previously

described by Vermeulen et al.'* and S6dergard et al.”’, respectively.
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Statistical analyses

Baseline characteristics of study participants were described using median [interquartile
range (IQR)], or percentage (n). We summarized baseline characteristics by AMH tertiles.
In addition, we calculated Spearman’s rank correlation coefficients to assess correlations
between age, and AMH, free testosterone, free estradiol and DHEAS. We also calculated

correlations between AMH levels and levels of the three sex hormones.

Imputation procedure

Missing information on baseline variables was below 6%, but missing follow-up data ranged
from 34% for CIMT to 52% for mean aortic plaque scores. Previous research showed
that multiple imputation of missing follow-up data yields unbiased effect estimates if the
follow-up data is missing at random.' To assess if our missing data met this assumption,
we compared baseline characteristics of men without missing values on relevant variables
(n = 164) to characteristics of men with missing values on at least one of these variables
(n=230) prior to imputation. We imputed missing values on both baseline and follow-up
variables using multiple imputation (100 iterations, 50 imputed datasets), for which we used
the R-package “mice” (version 3.6.0).”7 Subsequent regression analyses were performed in
each imputed dataset; regression coefficients and standard errors were pooled according to

Rubin’s Rule of combination'®, using the pool function implemented in “mice”.

Cross-sectional analyses

Because of their non-normal distributions, we transformed CIMT, PWYV, aorta diameter
and Framingham risk score predictions using rank-based inverse normal transformation
(INT) implemented in R-package “RNOmni” (version 0.7.1).”” This approach first transforms
observations onto the probability scale using the empirical cumulative distribution
function. As a second step, the observations are transformed into Z-scores using the probit

function."”

We investigated associations of continuous AMH and AMH tertiles with baseline INT
CIMT, INT PWYV, INT aorta diameter and INT Framingham risk score predictions using
linear regression models. First, we performed unadjusted analyses (Model 1). Second,
we adjusted regression models for age (Model 2) and, third, for other known CVD risk
factors (Model 3); BMI, smoking status, educational attainment, systolic blood pressure
and total cholesterol. Finally, we conducted analyses additionally adjusted for levels of free
testosterone, free estradiol and DHEAS (Model 4). Analyses including INT Framingham
risk score predictions as outcome were not adjusted for age and Model 3 only included BMI
and educational level, as age, smoking status, systolic blood pressure and total cholesterol,

were already used to calculate Framingham risk score predictions.
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Longitudinal analyses

Follow-up CIMT, mean plaque burden scores, PWV and Framingham risk score predictions
were also transformed using rank-based INT. We assessed the association between AMH
and each INT outcome using linear regression models. Models were adjusted for baseline
measurements of the corresponding outcome and for the same baseline covariates as
described for the cross-sectional analyses. Because we did not have baseline measurements
for carotid artery plaque burden, we fitted an additional model for mean plaque scores, in
which we additionally included CIMT at baseline (Model 5). All analyses were performed

using R (version 3.5.1).%

Sensitivity analyses

Since higher circulating AMH levels have been associated with a lower risk of diabetes and
CVD, we performed sensitivity analyses excluding men with prevalent diabetes or CVD,
to assess how this affected our results. Sensitivity analyses excluding men with prevalent
diabetes were not performed for analyses including Framingham risk score predictions as
outcome, as diabetes is included as predictor in the Framingham risk score itself. In addition,
we performed sensitivity analyses excluding two outlying AMH measurements (> 15 png/L)
to assess their effect on our results. We also performed a sensitivity analysis in which
we truncated follow-up outcome measures prior to imputation for participants who died
during follow-up (n = 51). Excluding these participants completely from the longitudinal
analyses potentially could have introduced selection bias. If imputations in participants
who died were done on the basis of the distribution of CIMT, PWV, mean plaque score
and FRS predictions in participants who survived, this could also have biased subsequent
regression analyses. Besides, such an approach would create an immortal study population,
which is not realistic. Therefore, we performed worst-case scenario analyses for which we
assigned arbitrary values representing death due to CVD to each outcome at follow-up to
assess how this influenced our results. We truncated CIMT, mean plaque score, PWV and
FRS proportions at follow-up to 2.0 mm, 3 (representing severe plaque at each measured
site), 25.0 m/s and 1.0, respectively. Subsequently, we repeated multiple imputation and

association analyses using the same approach as described for the main analysis.

Results

Baseline characteristics of the study population are presented by AMH tertiles in Table 1.
Men with AMH levels in the middle and highest tertiles were younger and less likely to

have prevalent CVD than men with AMH levels in the lowest tertile. In addition, men in
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the highest AMH tertile were less likely to be current smokers or prevalent diabetes cases

compared to men in the middle and lowest AMH tertiles.

Table 1. Baseline characteristics of the study population (n = 394) presented by AMH tertiles.

AMH tertiles
1 AMH tertile 2" AMH tertile 3¢ AMH tertile
(=129) (n=134) (m=131)
AMH (pg/L)* 1.9[1.4,2.2] 3.2[2.8,3.6] 5.9[4.8,7.2]
Age (years)® 65.0 [56.0, 72.0] 59.0 [48.0, 70.0] 59.0 [48.0, 66.5]
BMI (kg/m?)* 26.2 [24.0,28.2] 26.5[24.2,28.6] 25.5[23.8,27.3]
Educational attainment®
Low 17.1 (22) 16.4 (22) 16.8 (22)
Middle 26.4 (34) 27.6 (37) 32.8(43)
High 35.7 (46) 40.3 (54) 27.5 (36)
University 20.9 (27) 15.7 (21) 22.9 (30)
Smoking status®
Current 26.4 (34) 26.9 (36) 19.1 (25)
Former 59.7 (77) 49.3 (66) 55.0(72)
Never 14.0 (18) 23.9(32) 26.0 (34)
Systolic blood pressure (mm Hg)** 142.0 [124.8, 157.0]  139.0 [127.0, 156.0]  140.0 [129.0, 157.0]
Total cholesterol (mmol/L)*¢ 5.6[4.9,6.2] 6.0 [5.3,6.7] 5.8[5.2,6.4]
Prevalent diabetes® 7.0 (9) 7.5 (10) 5.3(7)
Prevalent CVD® 25.6 (33) 13.4 (18) 13.0 (17)
Free testosterone (pmol/L)* 316.5[266.7,374.6] 343.1[293.6,407.3] 360.2 [309.3, 443.8]
Free estradiol (pmol/L)* 1.5[1.3, 1.8] 1.5[1.3, 1.8] 1.5[1.3,1.7]
DHEAS (pmol/L)* 5.5[3.6, 8.2] 6.4[4.5,9.1] 6.9[4.3,9.1]

AMH, anti-Miillerian hormone; BMI, body mass index; CVD, cardiovascular disease; DHEAS, dihydroepiandrosterone
sulphate

* Median [IQR]

b Percentage (n)

¢ Missing values (n): systolic blood pressure (21), total cholesterol (1)

We observed a weak negative correlation between age and AMH levels (Spearman’s
rho = -0.21). Higher age was also correlated with lower free testosterone (Spearman’s
rho =-0.50), free estradiol (Spearman’s rho =-0.18) and DHEAS levels (Spearman’s
rho = 0.54) (Figure 1). We observed weak positive correlations between AMH and free
testosterone (Spearman’s rho = 0.23) and DHEAS levels (Spearman’s rho = 0.13). AMH

levels were not correlated with levels of free estradiol.

Comparison of baseline characteristics among study participants with (n =230) and
without complete data (n = 164) indicated that men with one or more missing values on
variables included in association analyses were older, less likely to be never smokers, had

a higher systolic blood pressure, and were more likely to have prevalent diabetes or CVD

108
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(Supplemental Table 1). In general, participants with missing data were less healthy than
participants without missing data. We observed a similar pattern of differences in baseline

characteristics between men who attended and who did not attend the follow-up visit.

Spearman’s
rank based
correlation

DHEAS I .

-10 -05 00 05 1.0

Fe2

Fte

AMH

age

age AMH Fte Fe2 DHEAS

Figure 1. Spearman’s rank-based correlation coefficients for age, AMH and sex hormones.

AMH, anti-Miillerian hormone; Fte, free testosterone; Fe2, free estradiol; DHEAS, dihydroepiandros-
terone sulphate

Cross-sectional analyses

After adjustment for age and other risk factors for CVD, higher AMH levels were associated
with lower baseline INT CIMT (B .. =-0.04; 95% CI = -0.07, -0.01), but not with INT
PWYV, or INT aorta diameter measured at baseline (Table 2). Analyses including AMH tertiles
supported a linear association between circulating AMH levels and INT CIMT (p, = 0.01)
Adjustment for free testosterone, free estradiol and DHEAS levels did not change these results.
In addition, we observed that higher AMH levels were associated with lower INT Framingham
risk score predictions (3 =-0.05; 95% CI =-0.09, -0.02; Table 2), but effect estimates

continuousAMH

attenuated after adjustment for free testosterone, free estradiol and DHEAS (3 =-0.03;

continuousAMH

95% CI=-0.06, 0.00; Table 2). Stepwise adjustment for these sex hormones showed that free

testosterone affected effect estimates most.
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Sensitivity analyses excluding men with prevalent diabetes attenuated the association
between the middle AMH tertile and baseline INT CIMT, but did not affect other estimates
(Supplemental Table 2). Exclusion of men with prevalent CVD and exclusion of outlying

AMH measurements did not change results from fully adjusted models either.

Longitudinal analyses

Over a median follow-up period of 8.7 years, CIMT, PWV and FRS predictions increased
compared to baseline (Table 3). We observed no associations between AMH and INT CIMT
at follow-up (Table 4). However, our results suggested that higher continuous AMH levels
were associated with lower INT mean plaque scores, independent of CIMT at baseline
(Beontimousamn = ~0-03, 95% CI =-0.07, 0.00). Effect estimates for the AMH tertiles were
in accordance with this, but associations were no longer statistically significant after
adjustment for baseline CIMT. AMH levels were not associated with INT PWV or INT
FRS at follow-up (Table 4). Sensitivity analyses excluding prevalent diabetes, CVD and
the two outlying AMH measurements did not change our conclusions regarding CIMT,
PWYV and FRS predictions, but the association between AMH and mean plaque score was
no longer statistically significant. Analyses including truncated values for participants that

died during follow-up did also not change any of our conclusions (Supplemental Table 3).

Table 3. Median [IQR] measures for subclinical CVD measured at baseline and follow-up presented by
AMH tertiles.

AMH tertiles
T1 T2 T3
(<2.5 pg/L) (2.5-4.0 pg/L) (>4.0 pg/L)

Subclinical CVD measures®

Atherosclerosis
CIMT at baseline (mm)
CIMT at follow-up (mm)

Average plaque score at follow-up

0.85 [0.76, 0.97]
0.94[0.85, 1.09]
0.58 [0.33, 0.92]

0.78 [0.71,0.91]
0.90 [0.80, 1.01]
0.33 [0.17,0.75]

0.76 [0.67, 0.92]
0.88 [0.77, 1.01]
0.42[0.08, 0.67]

Arterial stiffness
PWYV at baseline (m/s)
PWYV at follow-up (m/s)

9.47[8.17, 10.93]
9.80[8.25, 11.90]

8.71[7.31,10.25]
9.25 [7.85, 10.80]

8.77 [7.40, 10.45]
9.10 [7.55, 11.15]

Abdominal aortic diameter at baseline (cm)

1.90 [1.70, 2.00]

1.80 [1.60, 2.00]

1.80 [1.60, 2.00]

10-year risk of coronary heart disease
Framingham risk score prediction at baseline
(proportion)

Framingham risk score prediction at follow-up
(proportion)

0.18 [0.13, 0.27]

0.22[0.13, 0.41]

0.15[0.10, 0.25]

0.18 [0.12, 0.31]

0.140.08, 0.22]

0.17 [0.10, 0.37]

IQR, interquartile range; CVD, cardiovascular disease; AMH, anti-Miillerian hormone; CIMT carotid intima-media

thickness; PWV, pulse wave velocity

*Presented median values [IQR] are averages across 50 multiply imputed datasets
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Discussion

In the current study, cross-sectional analyses suggested that higher AMH levels are
associated with lower CIMT, independent of risk factors for CVD and circulating sex
hormones. Higher AMH levels were also associated with lower Framingham risk score
predictions, but adjustment for free testosterone, DHEAS and free estradiol attenuated
this association. Our results did not provide evidence for associations between AMH and
aorta diameter or PWV. Longitudinal analyses did not provide evidence for associations
between circulating AMH levels and CIMT at follow-up, but our results indicated that
higher AMH is potentially associated with a lower plaque score after a median follow-
up period of 8.7 years. Circulating AMH levels were not associated with PWV and FRS

predictions at follow-up.

The main strength of this study is its prospective design, which enabled us to investigate
both cross-sectional and longitudinal associations between AMH and different measures of
subclinical CVD. Most previous studies only studied these associations cross-sectionally,
and mostly in women.*'® Furthermore, previous research on the relation of AMH with
CVD related outcomes did not examine potential confounding by testosterone, estradiol
and DHEAS. A third strength is the relatively large sample size of this study compared
to previous studies that investigated the association between circulating AMH and
subclinical CVD.

A limitation of the current study is its selective loss to follow-up. Due to the age distribution
of the study population at baseline (25% >70 years), a considerable proportion of the
participants was not able to attend the follow-up examination after ~9 years. Extra effort
was taken to maximize the participation rate at follow-up, amongst others through house
calls, although follow-up measurements for CIMT, PWYV and plaque scores could not be
performed outside of the outpatients’ clinic. To limit bias due to this selective loss to follow-
up, we imputed missing data using a multiple imputation approach, which is preferable
over not addressing missing follow-up data at all.'® In addition, we performed a worst-case
scenario sensitivity analysis in which we assigned participants who died during follow-up
values reflecting death due to CVD. Results from this analysis did not indicate that the

results of our main analyses were biased.

Our findings regarding AMH and CIMT at baseline and mean carotid artery plaque score
at follow-up are in concordance with a previous cross-sectional study that reported that
higher circulating AMH levels were associated with lower CIMT in 70 healthy women.’ In
addition, higher baseline circulating AMH levels correlated with smaller atherosclerotic

plaques after ~2 years in female monkeys.* Our findings add to these findings that AMH
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is also associated with CIMT in men, and that this association appears to be independent
of circulating sex hormones. Other previous studies examining the relation between AMH
and CIMT included a small number of women with type 1 diabetes®?!, which limits direct

comparison to findings in healthy individuals.

Similar to two previous studies® 2!, our results do not support that AMH is associated with
PWV. In other words, our results suggest that circulating AMH is associated with structural
but not with functional changes of the arterial wall. We did also not observe an association
between AMH and abdominal aortic diameter, whereas Dennis et al. reported that lower
AMH levels were correlated with a larger infrarenal aortic diameter.”® An explanation
for this discrepancy may be the difference in locations at which the aortic diameter was
measured, since the study by Dennis et al. did not find a difference in AMH levels between
men with an abdominal aortic aneurysm and healthy men.'® Another explanation may be that
the number of participants with an aortic diameter larger than 3.0 cm, which is indicative
of a dilated abdominal aorta, in the current study was too small to detect an association
(n=12).

Finally, our results did not provide evidence for an association of circulating AMH levels
with 10-year risk predictions for CHD after adjustment for circulating sex hormones. To date,
no other studies have directly investigated this association, but our finding is in agreement
with a previous longitudinal study that did not find an association between AMH and silent
CHD?, which was quantified as possible or probable CHD on an electrocardiogram. On the
other hand, higher AMH levels have been found to be associated with lower incidence of
CHD and total CVD in women.” Research investigating the association between circulating

AMH levels and clinical cardiovascular disease in men is currently lacking.

Future research is required to confirm whether the observed associations between AMH
and cardiovascular health reflect a direct effect of AMH or merely correlation. Since
higher circulating AMH levels have also been independently associated with lower ~10-
year all-cause mortality in men (HR = 0.94; 95 %CI = 0.90—0.98)*, future studies should
be conducted to disentangle whether AMH may be a proxy for biological aging instead
of a cardiovascular hormone. Ideally, such studies would examine if the relation between
circulating AMH levels and cardiovascular outcomes is confounded by biological aging

through inclusion of, for example, epigenetic data.

In conclusion, our results indicate that AMH is associated with current CIMT and potentially
with future mean carotid aortic plaque score. However, future studies are required to
confirm if our findings are clinically relevant and if AMH is causally associated with, or

merely a biomarker for, atherosclerosis.
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Supplemental data

Supplemental Table 1. Baseline characteristics of study participants with and without missings on variables

relevant for association analyses.

Participants with at least one

Participants without

missing missings
(n=230) (n=164)

AMH (pg/L)* 3.2[2.1,4.7] 3.3[2.4,4.9]
Age (years)® 65.0 [55.0, 72.0] 56.5[48.0, 65.0]
BMI (kg/m?)?* 26.3[24.2,28.6] 25.6[23.2,27.6]
Educational attainment”

Low 17.8 (41) 15.2 (25)

Middle 30.9 (71) 26.2 (43)

High 34.8 (80) 34.1 (56)

University 16.5 (38) 24.4 (40)
Smoking status®

Current 20.9 (48) 28.7 (47)

Former 59.6 (137) 47.6 (78)

Never 19.6 (45) 23.8(39)
Systolic blood pressure (mm Hg)* 144.0 [131.0, 159.0] 136.5[123.8, 148.3]
Total cholesterol (mmol/L)* 5.8 [5.0, 6.4] 5.71[5.2,6.3]
Prevalent diabetes® 7.8 (18) 498
Prevalent CVD? 23.0 (53) 9.1 (15)
Free testosterone (pmol/L)* 332.3[279.0, 389.4] 352.8 [305.8, 431.1]
Free estradiol (pmol/L)* 1.5[1.3, 1.8] 1.5[1.3, 1.8]
DHEAS (pmol/L)* 5.5[3.8,8.1] 7.0 [4.9, 9.6]

CIMT at baseline (mm)*

0.84 [0.74, 0.96]

0.76 [0.69, 0.86]

PWY at baseline (m/s)*

9.52[8.24, 11.54]

8.32[7.31,9.50]

Abdominal aortic diameter (cm)?*

1.90 [1.70, 2.10]

1.80 [1.60, 2.00]

Framingham risk score predictions
(proportions)*

0.1910.12,0.27]

0.13[0.08, 0.19]

AMH, anti-Miillerian hormone; BMI, body mass index; CVD, cardiovascular disease; DHEAS, dihydroepiandrosterone
sulphate; CIMT, carotid intima-media thickness; PWV, pulse wave velocity

*Median [IQR]
® Percentage (n)
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Supplemental Table 2. Results of cross-sectional sensitivity analyses; associations between circulating
AMH levels and rank-based inverse normal transformed measures for subclinical CVD measured at baseline
after (1) exclusion of prevalent diabetes cases, (2) exclusion of prevalent CVD cases, and (3) exclusion of

two outlying AMH measurements.

Continuous AMH AMH tertiles
(ng/L)
T1 T2 T3
B (95%CI) B (95%CI) B (95%CI) B (95%CI)
Subclinical CVD measures
CIMT
Main analysis -0.04 (-0.07,-0.01) ref -0.21 (-0.39,-0.03) -0.24 (-0.43, -0.06)
Excluding prevalent diabetes -0.04 (-0.07, -0.01) ref -0.18 (-0.37,0.01) -0.23 (-0.42, -0.04)
Excluding prevalent CVD -0.04 (-0.07, -0.01) ref -0.22 (-0.42,-0.03) -0.24 (-0.45,-0.04)
Excluding outlying AMH measurements  -0.03 (-0.07, 0.00) ref -0.21 (-0.39,-0.03) -0.23 (-0.42,-0.04)
PWV
Main analysis -0.01 (-0.03, 0.01) ref -0.11 (-0.27,0.06)  -0.08 (-0.25, 0.09)
Excluding prevalent diabetes -0.01 (-0.04, 0.01) ref -0.15(-0.32,0.02)  -0.11 (-0.28, 0.07)
Excluding prevalent CVD -0.01 (-0.04, 0.02) ref -0.11 (-0.29,0.08)  -0.07 (-0.26, 0.11)
Excluding outlying AMH measurements  0.00 (-0.03, 0.02) ref -0.11 (-0.27,0.06)  -0.08 (-0.25, 0.09)
Aorta diameter
Main analysis 0.00 (-0.04, 0.03) ref -0.03 (-0.26, 0.20)  0.03 (-0.21, 0.27)
Excluding prevalent diabetes 0.00 (-0.04, 0.03) ref -0.04 (-0.28,0.20)  0.03 (-0.22, 0.27)
Excluding prevalent CVD 0.00 (-0.04, 0.03) ref -0.02 (-0.27,0.23)  0.02 (-0.23, 0.28)
Excluding outlying AMH measurements 0.00 (-0.04, 0.04) ref -0.03 (-0.26,0.20)  0.03 (-0.21, 0.28)
Framingham risk score predictions
Main analysis -0.03 (-0.06, 0.00) ref -0.05 (-0.26, 0.16)  -0.20 (-0.42, 0.02)
Excluding prevalent diabetes N/A ref N/A N/A
Excluding prevalent CVD -0.03 (-0.06, 0.01) ref 0.03 (-0.21,0.28)  -0.18 (-0.42, 0.07)
Excluding outlying AMH measurements  -0.04 (-0.07, 0.00) ref -0.05(-0.27,0.16)  -0.20 (-0.41, 0.02)

AMH, anti-Miillerian hormone; CVD, cardiovascular disease; CIMT, carotid intima-media thickness; PWV, pulse wave velocity

Presented estimates correspond to fully adjusted models (Model 4), and thus included the following potential confounders:

age, body mass index, educational attainment, smoking status, systolic blood pressure, and total cholesterol, free

testosterone, free estradiol and dihydroepiandrosterone sulphate (DHEAS)
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Supplemental Table 3. Results of sensitivity analyses including truncated values for participants who died
during follow-up.

Continuous AMH AMH tertiles
(ng/L)
T1 T2 T3
B (95%CI) B (95%CI) B (95%CI) B (95%CI)

Subclinical CVD measures at follow-up*

CIMT -0.01 (-0.04, 0.02) ref 0.14 (-0.03, 0.31)  0.07 (-0.10, 0.25)
Mean plaque score -0.03 (-0.06, 0.00) ref -0.05 (-0.25,0.14) -0.11 (-0.32, 0.09)
PWV -0.02 (-0.05, 0.01) ref 0.08 (-0.11, 0.28)  0.03 (-0.18, 0.23)
Framingham risk score predictions 0.00 (-0.03, 0.03) ref 0.03 (-0.17,0.22)  0.04 (-0.15, 0.24)

AMH, anti-Miillerian hormone; CVD, cardiovascular disease, CIMT, carotid intima-media thickness; PW'V, pulse wave velocity
*Presented estimates correspond to fully adjusted models for each outcome (Model 4 for CIMT, PWV and Framingham
risk score predictions and model 5 for mean plaque score)
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Abstract

Anti-Miillerian hormone (AMH) is expressed by antral stage ovarian follicles in women.
Consequently, circulating AMH levels are detectable until menopause. Variation in age-
specific AMH levels has been associated with breast cancer and polycystic ovary syndrome
(PCOS), amongst other diseases. Identification of genetic variants underlying variation in
AMH levels could provide clues about the physiological mechanisms that explain these
AMH-disease associations. To date, only one variant in MCMS has been identified to be
associated with circulating AMH levels in women. We aimed to identify additional variants
for AMH through a GWAS meta-analysis including data from 7049 premenopausal women
of European ancestry, which more than doubles the sample size of the largest previous
GWAS. We identified four loci associated with AMH levels at p < 5x10-%: the previously
reported MCMS locus and three novel signals in or near AMH, TEX41, and CDCA7. The
strongest signal was a missense variant in the AMH gene (rs10417628). Most prioritized genes
at the other three identified loci were involved in cell cycle regulation. Genetic correlation
analyses indicated a strong positive correlation among SNPs for AMH levels and for age at
menopause (r,= 0.82, FDR=0.003). Exploratory Mendelian randomization analyses did not
support a causal effect of AMH on breast cancer or PCOS risk, but should be interpreted
with caution as they may be underpowered and the validity of genetic instruments could
not be extensively explored. In conclusion, we identified a variant in the AMH gene and

three other loci that may affect circulating AMH levels in women.
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Introduction

Anti-Miillerian hormone (AMH) is generally known for its function in sexual differentiation,
during which AMH signaling is essential for the regression of internal female reproductive
organs in male embryos." In women, AMH is expressed by granulosa cells of primary
ovarian follicles, and AMH expression continues until the antral stage.> AMH becomes
undetectable after menopause, when the ovarian reserve is depleted, and AMH can therefore

be used as a marker for reproductive aging.’

Variation in age-specific circulating AMH levels has been associated with the occurrence
of several non-communicable diseases, including breast cancer.* In addition, it has been
suggested that AMH may be involved in the pathogenesis of polycystic ovary syndrome
(PCOS).* Gaining more insight into genetic variation and biological mechanisms underlying
inter-individual variation in AMH expression through genome-wide association studies
(GWAS:s) could provide new clues regarding postnatal functions of AMH, and possibly, the

etiologies of non-communicable diseases associated with AMH levels.

Previous GWASs on circulating AMH levels included either a mixture of male and female
adolescents®, a very small study population’, or women of late reproductive age® in whom
AMH levels are generally very low. Of the previous GWASs, only the largest (n = 3344)
identified a single genetic variant for AMH levels in premenopausal women, at chromosome
20 (rs16991615)3, which is also associated with natural age at menopause.” '© As sample
sizes of previous GWASs were relatively small, a larger GWAS meta-analysis might lead
to detection of more AMH variation loci. Moreover, as most variation in AMH levels in
women is observed at ages 20 to 40 years'!, including younger women will increase power
to identify additional loci. Therefore, we aimed to identify additional genetic variants for
AMH through a GWAS meta-analysis including 7049 premenopausal female participants.
For that, we combined summary statistics from the AMH GWAS meta-analysis by Ruth
et al.® with GWAS data from 3705 additional women of early and middle reproductive age

from 3 different cohorts.

Subjects and Methods

Study population

We included data from 7049 premenopausal female participants (median age ranged from
15.3 to 48 years across cohorts; Table 1) of European ancestry. In addition to the data
from the AMH GWAS meta-analysis by Ruth et al.® (n = 3344), we included data from
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the Doetinchem Cohort Study'* * (n =2084), the Study of Women’s Health Across the
Nation (SWAN)* (n = 425), and data from adolescent daughters of the Avon Longitudinal
Study of Parents and Children (ALSPAC)"* (n = 1196). The GWAS by Ruth et al. included
data from the Generations Study'®, Sister Study'’, Nurses’ Health Study', Nurses’ Health
Study 11", and ALSPAC mothers®. For the current study, we requested summary statistics
excluding data from ALSPAC mothers, as we wanted to analyze data from the ALSPAC
mothers separately to investigate potential bias due to cryptic relatedness. More details
about participating studies and the definitions used for the assessment of menopausal status
are described in the Supplemental Methods and Supplemental Table 1. All studies received

ethical approval from an institutional ethics committee.

Table 1. Distributions of AMH and age per participating study.

Study N AMH, pmol/L Age at blood collection, years
(median (IQR)) (median (IQR))

Studies contributing to summary
statistics GWAS Ruth et al.?*

Generations Study 379 3.9(0.8,11.7) 44 (40, 48)
Sister Study 438 1.2 (0.1, 6.0) 48 (45, 51)
Nurses’ Health Studies 642 6.1(2.0,13.9) 44 (41, 47)
Additional studies

Doetinchem Cohort Study 2084 10.9 (2.9, 25.6) 37.2(31.2,42.9)
ALSPAC mothers 1885 2.0(0.4,5.2) 46 (44, 49)
ALSPAC daughters 1196 26.1 (18.2,39.8) 15.3(15.3, 15.5)
SWAN 425 1.1(0.2,3.3) 47.3 (45.3,49.3)
Total 7049

* In the original study ALSPAC mothers were included as well, but in the current analyses summary statistics from ALSPAC
were included separately to assess potential genomic inflation due to inclusion of both ALSPAC mothers and daughters.
Therefore, we treated the ALSPAC mothers as individual study.

AMH measurements

Included studies measured AMH in either serum or plasma using different AMH ELISA
assays. Also, the methodology for handling AMH measurements below the assay limit of
detection (LOD) differed across studies. A detailed overview of these study-specific details
has been included in Supplemental Table 1. Across studies, the percentage of measurements

under the assay-specific LODs ranged from 0% to 24.2%.

Genotyping and imputation
Extensive details on genotyping and imputation procedures for each participating study are
presented in Supplemental Table 2. Briefly, samples of the Generations Study, Sister Study,

and most samples of the Nurses’ Health Studies, were genotyped using the OncoArray
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array.® The remaining 225 samples of the Nurses’ Health Studies were genotyped using
Illumina HumanHap550 and HumanHap610 arrays.® Samples of the Doetinchem Cohort
Study were genotyped using the [llumina Infinium Global Screening Array-24 Kit (Illumina
Inc., San Diego, California, United States of America). For genotyping of samples from
ALSPAC mothers and daughters, the [llumina Human660W-Quad array and Illumina
HumanHap550 quad genome-wide SNP genotyping platform were used, respectively.
SWAN participants were genotyped using the [llumina Multi-Ethnic Global Array (MEGA
Al). All participating studies performed sample and SNP QC prior to imputation, which
was done using the Haplotype Reference Consortium (HRC) panel version rl.1 2016
(Supplemental Table 2).

Association analyses
All studies converted AMH concentrations to pmol/L using 1 pg/mL = 0.00714 pmol/L.
As AMH levels are not normally distributed, AMH measurements were transformed using

rank-based inverse normal transformation in all studies, as previously described.®

In all studies linear models were fitted, assuming additive SNP effects, adjusted for age
at blood collection (years) (Supplemental Methods). Analyses were further adjusted for
population stratification by inclusion of either 10 principal components (ALSPAC, SWAN)
or a kinship matrix (Generations Study, Sister Study, Nurses’ Health Studies, Doetinchem
Cohort Study). In addition, we included summary statistics of the meta-analysis of the
Generations Study, Sister Study, and Nurses’ Health Studies, which was performed using
METAL, as described elsewhere.® Separate association analyses were conducted for the
ALSPAC mothers and daughters, because of the large differences in both age and AMH
distributions between these groups (Supplemental Methods).

Prior to meta-analysis, we performed file-level and meta-level QC on all summary statistics
files to clean and check the data, and to identify potential study-specific problems. File-
level and meta-level QC were conducted using the R package EasyQC (v9.2), following
a previously published protocol* (Supplemental Methods). No study-specific issues were
identified through these QC procedures (Figure S1-S5). In addition, we sought to confirm
that inclusion of ALSPAC mothers and daughters as separate cohorts would not result in
inflation of effect estimates due to cryptic relatedness (411 mother-daughter pairs were
present in the ALSPAC data). We checked this through meta-analyzing only data of the two
ALSPAC cohorts and checking both the corresponding QQ plot and calculating 1. Given the
absence of genomic inflation (I = 1.01, QQplot in Figure S6) we included summary statistics
of both ALSPAC mothers and daughters in the meta-analysis.
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We performed an inverse variance weighted meta-analysis using METAL (version 2011-
03-25). Genomic control was applied for all included studies. SNPs with a minor allele
frequency (MAF) < 1% and/or poor imputation quality (info score < 0.4 or r* < 0.3,
depending on which metric was provided) were excluded. As a result, 8,298,138 autosomal
SNPs were included in this AMH GWAS meta-analysis. To assess if observed effect
estimates were homogeneous across studies, we additionally performed a heterogeneity
analysis in METAL.

To identify lead and secondary SNPs within genome-wide significant associated loci, we
performed an approximate conditional and joint association analysis.?> We used Genome-
wide Complex Trait Analysis (GCTA)? (version 1.93.1f beta) to run a stepwise model
selection procedure to select independently associated SNPs (cojo-slct) using the summary-
level data. We estimated linkage disequilibrium (LD) between SNPs using data of 4059

unrelated participants from the EPIC-NL cohort* as LD reference panel.

Because of the strong correlation between AMH and age, and the difference in both the
AMH and age distributions in the ALSPAC daughters compared to the other included
cohorts, we performed a sensitivity analysis in which we excluded the ALSPAC daughters.
Furthermore, this sensitivity analysis served as an additional check that inclusion of both

ALSPAC mothers and daughters did not cause identification of false-positive hits.

Gene-based genome-wide association analysis

We performed a gene-based genome-wide association analysis using the MAGMA?
implementation (v1.08) in the online Functional Mapping and Annotation of Genome-
wide Association Studies (FUMA) platform (FUMA)* (parameter settings are listed in
Supplemental Table 3). For this analysis, SNPs located in gene bodies were aggregated to
18,896 protein coding genes (Ensembl build 92). MAGMA tests the joint association of all
SNPs in each gene with inverse normal transformed AMH levels using a multiple linear
regression approach, which takes LD between SNPs into account.”® FUMA considered genes
to be significantly associated with circulating AMH levels if p < 2.65 x 10-¢ (Bonferroni
corrected p-value; 0.05/ 18,896).

Functional annotation using FUMA

FUMA is an integrative web-based platform that uses 18 biological resources and can be
used to functionally annotate lead variants from GWAS, and to prioritize the most likely
causal SNPs and genes?®. We used the SNP2GENE process integrated into FUMA (v1.3.6a)*
for the characterization of genomic loci and functional gene mapping (parameter settings are
listed in Supplemental Table 3). We included SNPs identified in our approximate conditional

and joint analysis as predefined lead SNPs for the characterization of genomic risk loci.
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SNPs that were in LD with these lead SNPs (1> > 0.6) within a 500kb window based on the
1000G Phase 3 European reference panel population in FUMA, and a GWAS meta-analysis
p-value < 0.05 were selected as candidate SNPs. Non-GWAS-tagged SNPs from the 1000G
Phase 3 European reference that met these LD and distance criteria were also selected as
candidate SNPs. Candidate SNPs were annotated based on Combined Annotation Dependent
Depletion (CADD) scores?”’, Regulome DB scores?, and chromatin states® (Supplemental
Table 3). Positional mapping, eQTL mapping and chromatin interaction mapping were used
to map SNPs to genes (Supplemental Table 3). For chromatin states, eQTL mapping and
chromatin interaction mapping we only selected for tissues and cell types that are most

likely to be involved in AMH expression and signaling (Supplemental Table 3).

Pathway analysis using DEPICT

We used the hypothesis-free pathway analysis tool DEPICT (v1)* to prioritize the most
likely causal genes at associated loci, to highlight gene sets enriched in genes within
associated loci, and to identify tissues/cell types that are implicated by the associated loci.
For these analyses, we included all suggestive significant SNPs (p < 5 x 10°%), which were
clumped at LD r? < 0.1 and a physical distance of 500kb using PLINK v.1.9 as part of the
DEPICT pipeline.

LD Score Regression

We estimated SNP heritability using the LD Hub web interface (v1.9.3)% for LD score
regression®. In addition, we used LD Hub to estimate SNP-based genetic correlations
between AMH and phenotypes that have been associated with AMH in observational
studies. These genetic correlation analyses make use of GWAS summary statistics for all
SNPs to estimate genetic covariance among SNPs for two traits.* Included phenotypes
comprised reproductive traits, hormones (leptin), anthropometric traits, blood lipids,
glycemic traits, metabolites, cardiometabolic traits, cancer, autoimmune diseases, bone
mineral density, aging and smoking behavior. Of the 597 UK Biobank traits in the LDHub
database, we only included traits that corresponded to these phenotype categories, resulting
in 345 comparisons. To correct for multiple testing, we calculated false discovery rates
(FDR), using the p.adjust function in R (R package “stats”).>* FDR adjusted p-values < 0.05

were considered to be significant.

Mendelian randomization

In observational studies, AMH has been associated with breast cancer*, and PCOS*, amongst
other diseases. As the exact function of AMH in the etiology of these diseases is unclear,
and actual AMH levels are associated with predicted future age at menopause and current

menopausal status, causality of these AMH-disease associations remains to be determined.
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Mendelian randomization (MR) is a method that may provide evidence for causality of
observational associations.** Because our AMH GWAS meta-analysis only included women,
and previous research suggests that genetic variants for inter-individual differences in AMH
levels differ between males and females®, we performed MR analyses for the female-specific
outcomes breast cancer and PCOS only. We performed two-sample MR analyses®” using
the R package “TwoSampleMR” (version 0.5.1)*. We included identified lead SNPs as
genetic instruments for AMH. For the outcomes, we included summary statistics from
the most recent largest GWASs for breast cancer (n = 228,951; 122,977 cases)* and PCOS
(n=113,238; 10,074 cases)*’. Wald ratio estimates were calculated for individual SNPs and
a random effects inverse variance weighted (IVW) meta-analysis approach was used to
combine these estimates. To assess the strength of included genetic variants for AMH we
calculated F-statistics corresponding to the IVW analyses, using the proportion of variance
in AMH explained by the genetic variants, the sample size of the outcome GWASs, and
the number of variants included.* We compared the overall MR estimate (i.e. IVW) to
SNP-specific MR estimates (i.e. Wald ratio) since inconsistent estimates are indicative of
horizontal pleiotropy, which is a violation of the MR assumptions.* In addition, we tested
for heterogeneity in causal effects amongst the genetic instruments using Cochrane’s Q
statistics and performed leave-one-out sensitivity analyses to assess the potential effect of

outlying variants.

Results

Descriptive statistics on age and AMH levels of the study participants included in this
GWAS meta-analysis are presented per study in Table 1. Median AMH ranged from 1.1
pmol/L in SWAN to 26.1 pmol/L in ALSPAC daughters. Median age ranged from 15.3 years
in ALSPAC daughters to 48 years in the Sister Study.

Genome-wide association analysis

We identified four genome-wide significant lead SNPs (p <5 x 10-®) for inverse normally
transformed AMH, in four loci (Table 2, Figure 1, Figure S7-S8). Approximate conditional
and joint analysis did not reveal secondary signals. In addition to the previously reported
locus on chromosome 20 (rs16991615, nearest gene: MCMS), we identified 1 locus on
chromosome 19 (nearest gene: AMH) and 2 loci on chromosome 2 (nearest genes: TEX41
and CDCA7). The strongest signal was rs10417628 on chromosome 19, which is physically
located in the AMH gene (B =-0.34, se = 0.05, p= 1.2 x 10" ) (Figure S8A). Combined the
four lead SNPs explained 1.47% of the variance in AMH levels.
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In the sensitivity analysis excluding ALSPAC daughters, all four loci from the main
analysis remained genome-wide significant, and an additional locus at chromosome 5
(rs116090962, nearest gene: CTB-9943.1) was identified (f = 0.38, se = 0.07, p=6.0 x
10-) (Supplemental Table 4).

Gene-based genome-wide association analysis

Gene-based genome-wide association analysis, which tested associations between 18,896
protein coding genes and inverse normal transformed AMH, highlighted the following two
significant genes: AMH and BMP4 (Figure S9).

Functional Annotation using FUMA
Through the SNP2GENE process, FUMA identified 82 candidate SNPs that were in LD
with the four identified lead SNPs (Supplemental Table 5). These candidate SNPs were used

for the prioritization of genes.

In total, 12 genes were mapped to the locus of the previously identified SNP on chromosome
20 (rs16991615) (Supplemental Table 6), of which MCM8 and CRLSI were prioritized based
on eQTL mapping (Figure 2A). CRLSI was the only gene prioritized based on both eQTL
mapping and chromatin interactions. However, as rs16991615 is a missense variant located
in exon 9 of the MCMS$ gene, and this was the only SNP identified for this locus, MCMS$ is

the most likely gene causing this signal.

For the locus on chromosome 19, 3 candidate SNPs (rs10417628, rs12462821, rs7247495)
were identified. The lead SNP in this locus (rs10417628) is also a missense variant, located
in exon 5 of the AMH gene, making this the most likely causal gene at this locus. The other
2 variants were located in intronic and intronic non-coding RNA regions. Based on the
used parameter settings, FUMA mapped 8 genes to the AMH locus (Supplemental Table
6), of which 4 were highlighted by eQTL mapping (AMH, C190rf35, SPPL2B and LSM?7)
and 1 through chromatin interactions (A BHDI17A) (Figure 2B).

Most of the candidate SNPs were identified for the locus on chromosome 2 near TEX4I.
All 77 variants were located in either intronic or exonic long noncoding RNA regions. Of
the 15 genes mapped to this locus (Supplemental Table 6), no genes were prioritized based
on eQTL mapping, but several genes were prioritized based on chromosome interactions,
including ZEB2-AS1 (Figure 2C). In the other locus on chromosome 2, for which CDCA7 is
the nearest gene, no additional candidate SNPs were identified and no genes were mapped

to this locus.
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Pathway analysis using DEPICT

Using the DEPICT tool, 188 suggestive associated SNPs (p < 5 x 10-°) were clumped
at LD > < 0.1 and a physical distance of 500 kb, resulting in 24 clumps as input for the
enrichment analyses (Supplemental Table 7). The top three prioritized gene sets were “URI1
PPI subnetwork”, “NFYB PPI subnetwork™ and “nuclear inner membrane” (Supplemental
Table 8). “Induced Pluripotent Stem Cells” was identified as the highest prioritized cell type
(Supplemental Table 9). However, none of these enrichments were statistically significant
(FDR > 0.05).

DEPICT prioritized nine genes at FDR < 0.05 as most likely causal genes (Supplemental
Table 10). Of the genome-wide associated loci, only MCMS (rs16991615), and CDCA7
(rs11683493) were prioritized at this FDR threshold. AMH and BMP4 were also prioritized
by DEPICT, but FDR values were > 0.20.

LD Score Regression

We used LD score regression implemented in LD Hub to calculate SNP heritability for
AMH based on the meta-analysis summary statistics. Total SNP heritability (hgz) on the
observed scale was estimated to be 15% (se = 7%). We additionally performed genetic
correlations analyses between AMH and 345 traits on LD Hub. After correction for multiple
testing, AMH was only significantly correlated with age at menopause (r, = 0.82, se = 0.19,
FDR = 0.003) (Supplemental Table 11).

MR analyses

IVW MR estimates did not indicate a causal effect of circulating AMH on breast cancer risk
(OR,,,, = 1.00, 95%CI: 0.74 — 1.36; Table 3). Results from the single SNP analysis including
the variant in the AMH locus also did not support a causal association with breast cancer
(OR,,,,= 0.99, 95%CI = 0.87 — 1.12), whereas analyses for the remaining variants suggested
a risk decreasing effect of the SNPs in the TEX4] and CDCA?7 loci and a risk increasing
effect of the variant in the MCMS locus (Table 3). In agreement with these findings, a formal
heterogeneity test for the [IVW estimate indicated heterogeneity in causal effects amongst
the four genetic variants (2.13 x 107", although the interpretation of this heterogeneity
p-value is limited due to the small number of included SNPs. Leave-one-out sensitivity
analyses supported the outlying effect of rs16991615 (MCMS$ locus) (Figure S10).
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Table 3. Mendelian randomization estimates for causal effects of circulating AMH on breast cancer and PCOS risk.

Outcome Method Odds Ratio 95% CI p

Breast Cancer IVW 1.00 0.74 - 1.36 0.98
Wald ratio estimate for rs10417628 (AMH) 0.99 0.87-1.12 0.85
Wald ratio estimate for rs13009019 (TEX41) 0.84 0.72-0.97 0.02
Wald ratio estimate for rs16991615 (MCMS) 1.60 1.37 - 1.87 1.79 x 10°
Wald ratio estimate for rs11683493 (CDCA7) 0.76 0.65 - 0.89 9.41 x 10*

PCOS IVW 1.29 0.85-1.95 0.23
Wald ratio estimate for rs10417628 (4MH) 1.27 0.64 -2.56 0.49
Wald ratio estimate for rs13009019 (TEX41) 1.66 0.80 - 3.45 0.18
Wald ratio estimate for rs16991615 (MCM8) 1.75 0.83 -3.69 0.14
Wald ratio estimate for rs11683493 (CDCA7) 0.66 0.29 - 1.50 0.32

AMH, anti-Miillerian hormone; PCOS, polycystic ovary syndrome; IVW, inverse variance weighted; MR, Mendelian
randomization
Odds ratio and 95%CI are per 1 unit increase in inverse normally transformed AMH

For PCOS, the IVW MR estimate suggested that higher genetically predicted AMH levels
are potentially associated with an increased risk of PCOS, but confidence intervals were
wide and included the null (OR = 1.29, 95%CI = 0.85 — 1.95; Table 3). Single SNP
analyses resulted in a similar effect estimate for the variant in the AMH locus (OR = 1.27,
95%CI = 0.64 — 2.56), risk increasing effects for the SNPs in the TEX4/ and MCMS$ loci, and
arisk decreasing effect of the variant in the CDCA7 locus (Table 3). The heterogeneity test
did not suggest heterogeneous effects of the individual SNPs (p = 0.30), most likely because
of the high uncertainty in individual SNP estimates, but again interpretation of this p-value
is limited with only four SNPs. Leave-one-out sensitivity analyses indicated rs11683493
(CDCA7 locus) affected the IVW estimate most, and that exclusion of this variant resulted
in a positive association (OR ,,,, = 1.53, 95%CI = 1.01 - 2.33) (Figure S11).

Discussion

We identified four loci for circulating AMH levels in women of European ancestry. In addition
to confirming a previously reported signal in the MCMS$ locus, we discovered three new
signals in and near the AMH, TEX41 and CDCA?7 genes. In total, 35 genes were prioritized for
these loci based on physical position, eQTL mapping and chromatin interactions, but pathway
analyses did not reveal enrichments of gene-sets, tissues or cell types for genes annotated
to suggestive associated SNPs. Genetic correlation analyses supported a shared genetic
architecture between AMH levels and age at menopause. Exploratory MR analyses did not

provide strong evidence of a causal effect of circulating AMH on breast cancer and PCOS.
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We confirmed the association between rs16991615 and circulating AMH levels, previously
reported by Ruth et al.®. This SNP is a missense variant located in exon 9 of the MCM8
gene, rendering MCMS the most likely causal gene at this locus. In humans, MCMS$ plays
arole in in homologous recombination, which is critical for DNA repair.** Previous studies
have linked MCMS$ deficiency to premature ovarian failure and infertility, but also to cancer
development.®* * 4 Associations between rs16991615 and age at menopause* and number
of ovarian follicles*® have also been reported, which suggests that this locus is associated

with circulating AMH levels because of its influence on the number of antral follicles.

Our GWAS study is the first AMH GWAS that identified a missense SNP (rs10417628) in
the AMH gene in women. A previous AMH GWAS including adolescents from ALSPAC
identified three SNPs in the AMH gene that were only significantly associated with AMH
levels in male adolescents, and of which one (rs2385821) was in moderate LD with our lead
SNP rs10417628 (R*= 0.55).6 However, approximate conditional and joint analyses suggested
that these variants represent the same signal at the AMH locus. Although identification of a
genetic variant in the gene encoding for AMH itself suggests that we reveal an actual signal for
circulating AMH concentrations, a recent case report suggests that the amino acid substitution
corresponding to rs10417628 reduces AMH detection by the picoAMH assay from Ansh Labs
without influencing AMH bioactivity.”” We sought to verify this finding in a subsample of the
Doetinchem Cohort Study, for which AMH was measured using both the picoAMH assay
and the less sensitive Gen II assay from Beckman Coulter. For the only woman who was
estimated to be homozygous for the T allele (dosage T allele = 1.9, age at measurement = 28.3
years), AMH levels were indeed undetectable using the picoAMH assay, whereas circulating
AMH levels were detected using the Gen II assay (318 pg/mL). In addition, median AMH
levels measured using the Gen II assay were less different between women homozygous
for the reference allele and heterozygous women (median AMH levels, == =953.0
pg/mL, IQR: 428.0 - 1999.0; median AMH levels, = 848.0 pg/mL, IQR: 509.0 -
1310.0), compared to AMH levels measured using the picoAMH assay (median AMH
1&:\/f:lshmmZygousrcfallclc =1485.9 pg/mL, IQR: 704.4 - 3150.0; median AMH levelshctcmzygmls =811.0
pg/mL, IQR: 462.3 - 1480.9). For ALSPAC, which also used the Gen II assay to measure
AMH, the distribution of AMH levels was similar across adult women homozygous for the
reference allele and heterozygous women as well. However, in the ALSPAC daughters median
AMH levels were clearly higher in adolescents homozygous for the reference allele compared
to heterozygous adolescents. Among the ALSPAC participants, only one adolescent was
homozygous for the T allele, but her AMH levels could not be shared due to disclosure risk.
Because of the lack of publicly available information on the antibodies and conformational
epitopes of the Gen II assay, and the limited and inconsistent evidence in the current study,

we do not want to draw any definite conclusions about this yet.
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For the associated loci on chromosome 2 it is more challenging to assign possible causal
genes, as TEX41 is a long noncoding RNA and the SNP in the CDCA7 locus was located
in an intergenic region. Gene mapping based on chromatin interactions with TEX4]
highlighted several genes, including the long non-coding RNA ZEB2-4S1 (ZEB2 antisense
RNA 1). ZEB2-ASI up-regulates expression of the protein ZEB2.* ZEB2 (also known
as SIP1) inhibits signal transduction in TGF-p and BMP signaling through interaction
with ligand-activated SMAD proteins.*” > Among other BMP proteins, BMP4 has been
reported to regulate AMH expression through activation of SMAD proteins.*" > Based
on identification of BMP4 in our gene-based association analysis and its prioritization by
DEPICT, we hypothesize that BMP4 induced AMH expression may be regulated by ZEB2

interaction. However, fundamental laboratory research is needed to prove this.

CDCA7 (also known as JPOI) is a direct target gene of the transcription factor MYC and is
involved in apoptosis.*® Functional annotation did not map any genes to this locus and thus the
mechanism through which this locus affects circulating AMH levels remains to be elucidated.
Based on the involvement of CDCA?7 in apoptosis, it may be possible that this gene affects the
number of antral follicles, which are the main producers of AMH in women.? Ideally, future
studies should explore whether the observed genetic associations may merely reflect the size of
the ovarian reserve, through adjusting analyses for antral follicle count. Such analyses would
also show if we can actually use the identified variants are instruments for circulating AMH

levels itself or for the quantity of antral follicles in MR analyses.

We did not find support for a causal effect of circulating AMH levels on breast cancer and
PCOS risk in our exploratory MR analyses. To be valid genetic instruments for MR, SNPs
have to fulfil the following three criteria®: (1) SNPs have to be associated with circulating
AMH levels; (2) SNPs cannot be associated with confounders of the studied AMH-outcome
associations, and (3) SNPs cannot influence the outcomes through mechanisms that do
not involve circulating AMH levels. Because rs10417628 in the AMH gene potentially
reflects AMH detection instead of AMH expression, analyses including this variant
should be interpreted with caution. However, leave-one-out analyses excluding this variant
did not affect IVW MR estimates. Based on the function of genes mapped to the loci
on chromosomes 20 and 2, it is likely that these variants affect breast cancer and PCOS
risk through mechanisms independent of AMH (e.g. DNA replication and apoptosis), in
particular the MCMS$ locus, which has also been identified in breast cancer GWAS.* Due
to the limited number of identified lead SNPs it was not possible to assess if our results
were indeed biased by horizontal pleiotropy. Furthermore, weak instrument bias may still
have biased MR results towards the null, since the F statistics may be overestimated in this
GWAS (853.9 for breast cancer, and 422.4 for PCOS). Consequently, we should be cautious

about excluding a causal effect of AMH on the studied outcomes.
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Previous research suggests that AMH levels in females rise during puberty, until the mid
to late twenties, and after that decrease until menopause.'”* Based on these observations
and the differences in both age and AMH distributions between the ALSPAC adolescents
and other participants, we performed a sensitivity analysis excluding the adolescents from
ALSPAC. This analysis revealed an additional locus on chromosome 5 (rs116090962, nearest
gene: CTB-9943.1), although we could not find clues for its association with circulating
AMH levels in adult women only, nor with AMH levels in general. Study-specific betas
revealed an opposite effect for the MCMS locus and a minimal effect for the CDCA7 locus in
adolescents compared to effects in adult women. A larger GWAS including older adolescents
and a larger proportion of females aged 20 to 40, would be required to reveal potential gene-

age interactions that explain variation in AMH expression.

The main strengths of the current GWAS meta-analysis are its size, which is twice the
size of the previous GWAS meta-analysis, and its larger proportion of women of early-
reproductive age. Given AMH’s function in ovarian follicle development, circulating levels
and variation in AMH levels decrease with age. As a result, statistical power to identify
genetic variants for circulating AMH increases if younger women are included. Still, our
sample size remains relatively small for a GWAS, and future larger studies may lead to the
detection of additional variants for circulating AMH levels. This is supported by our chip
heritability estimate of 15% (se = 7%), which indicates that there are likely more SNPs that
contribute to variability in AMH levels. Identification of additional genetic variants will
also facilitate increased power to identify pathways and tissues enriched for genes involved
in AMH expression. A second limitation of this study is potential overlap in participants
between the current AMH GWAS and the GWAS for breast cancer” (maximum n = 1459;
20.7% of current study) and PCOS*’ (maximum n = 225; 3.2% of current study). Overlap
in participants in two-sample MR analyses may bias effect estimates and inflate Type 1

error rates.>

In conclusion, we replicated the previously reported association with the MCMS$ locus and
identified 3 novel loci for circulating AMH levels in women, including the AMH locus.
The strongest signal in this locus possibly affects AMH detection by specific assays rather
than AMH bioactivity, but further research is required to confirm this hypothesis. Genes
mapped to the MCMS8, TEX41 and CDCA?7 loci are involved in the cell cycle and processes
like DNA replication and apoptosis. The mechanism underlying their associations with
AMH may affect the size of the ovarian follicle pool. MR analyses did not support a causal
effect of AMH on breast cancer and PCOS, but these finding should be interpreted with
caution because we could not robustly explore how valid the instruments were and weak

instrument bias may have biased estimates towards the null.
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Supplemental data

Document S1: Supplemental Methods.
Document S2: Figures S1 — S13.
Document S3: Supplemental Tables 1 — 11.
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Supplemental methods

Study population

Studies included in the previous GWAS study: Generations Study, Sister Study,
Nurses’ Health Study and Nurses’ Health Study 11

We included AMH GWAS summary statistics from the most recent previous AMH GWAS
analysis.! We requested summary statistics excluding data from ALSPAC, resulting in meta-
analysis summary statistics for the Generations Study (n = 379, median age: 44 years, IQR:
40, 48), Sister Study (n = 438, median age: 48 years, IQR: 45, 51), Nurses’ Health Studies
(n =642, median age: 44, IQR: 41, 47). These population-based cohort studies have been
described in more detail previously.”® Details on the premenopausal women included in
the previous AMH GWAS by Ruth et al. are presented in Supplemental Table 1 and are

described into more detail elsewhere."®

Doetinchem Cohort Study

The Doetinchem Cohort Study is an ongoing prospective cohort study that included 3641
men and 4128 women, aged 20-59 years at recruitment, who were randomly selected
from the municipal register of Doetinchem, The Netherlands, between 1987 and 1991.
Every five years, study participants are invited for a follow-up visit, during which physical
examinations and extensive questionnaires are completed, and blood samples are collected.
The Doetinchem Cohort Study received ethical approval from the Medical Ethics Committee
of The Netherlands Institution of Applied Scientific Research and all study participants
signed an informed consent prior to study inclusion. For more details see previous reports.”

8 Details on the included participants are presented in Supplemental Table 1.

Avon Longitudinal Study of Parents and Children

The Avon Longitudinal Study of Parents and Children (ALSPAC) is a longitudinal birth
cohort, which has been described in detail elsewhere.” '° In short, 14,541 women who were
expected to give birth between 13t April 1991 and 31% December 1992 from the South West
of England were enrolled in ALSPAC between 1990 and 1992.'° Initially, 14,676 fetuses
were included in ALSPAC. When the oldest children were approximately 7 years old, an
attempt was made to bolster the initial sample with eligible cases who had failed to join
the study originally. The total sample size for analyses using any data collected after the
age of seven is therefore 15,454 pregnancies, resulting in 15,589 foetuses. Of these 14,901

were alive at 1 year of age.
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Ethical approval for the study was obtained from the Avon Longitudinal Study of Parents
and Children Ethics and Law Committee and the Local Research Ethics Committees.
Written informed consent was obtained from all adult participants in the study. Consent
for biological samples has been collected in accordance with the Human Tissue Act (2004).
Please note that the study website contains details of all the data that is available through
a fully searchable data dictionary and variable search tool and reference the following
webpage: <http:/www.bristol.ac.uk/alspac/researchers/our-data/>. Details on the included

participants are presented in Supplemental Table 1.

Study of Women’s Health Across the Nation

The Study of Women’s Health Across the Nation (SWAN) is a multi-site, multiracial/ethnic
longitudinal study of women’s health designed to describe the biological, behavioral, and
psychosocial characteristics that occur during midlife and the menopausal transition. Briefly,
the SWAN cohort was enrolled in 1996-97 and consists of 3302 community-based women
from seven sites with data from five race/ethnic groups: Black (n=935), Chinese (n=250),
Hispanic (n=286), Japanese (n=281), and White (n=1550). To be eligible for enrollment
women had to be aged 42 to 52 years old, have an intact uterus and at least one ovary,
have had a menstrual period in the previous three months, and not be taking hormones.
Subsequently, 1757 participants consented to provide genetic materials. Immortalized cell
lines were developed successfully for 1588, with 1536 processed into distributable diluted,
extracted DNA and 1464 successfully genotyped. A total of 738 were of European ancestry,
425 of whom had AMH measures and contributed to this analysis. The study protocol was
approved by the Institutional Review Boards at each study site. All participants provided
written, informed consent at each visit. Details of SWAN are described elsewhere.!! Details

on the included participants are presented in Supplemental Table 1.

Study-specific association analyses

The Doetinchem Cohort Study, ALSPAC, and SWAN performed association analyses based
on a standardized analysis plan, which was distributed in advance. The analyses described
in this analyses plan were in agreement with the analyses conducted for the previous AMH
GWAS study.! All studies assumed an additive model and adjusted analyses for age at blood
collection (years) and population stratification, either by including principal components
(ALSPAC, SWAN) or a kinship matrix (Doetinchem Cohort Study, Generations Study,
Sister Study, Nurses’ Health Studies).

Doetinchem Cohort Study
We used rvtests' (version 20170210) to perform association analyses in the Doetinchem

Cohort Study. Linear mixed model analyses were adjusted for age at blood collection and
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a kinship matrix was included to adjusted for cryptic relatedness. This kinship matrix was

calculated using the vef2kinship script provided by rvtests.

Avon Longitudinal Study of Parents and Children

Because of the large differences in both age and AMH distribution between the ALSPAC
mothers and daughters, we considered it inappropriate to analyze them together using a
linear mixed model method to correct for relatedness. Consequently, separate association
analyses were conducted for the ALPSAC mothers and daughters. For both groups, linear
regression analyses were performed in SNPTEST v2.5', and models were adjusted for age

at blood collection and 10 principal components.

Study of Women’s Health Across the Nation
Rvtests (version 20190205) was used to perform association testing in SWAN. Linear

regression analyses were adjusted for age at blood draw and 10 principal components.

Generations Study, Sister Study, Nurses’ Health Study and Nurses’ Health Study I1
For the Generations Study, Sister Study, and Nurses’ Health Studies, linear mixed model
association analyses were performed using GEMMA 0.94.1", which calculates a kinship
matrix. Analyses were adjusted for age at blood draw. In the current meta-analysis we
included summary statistics of the meta-analysis of these studies, which was performed
using METALPY, as described elsewhere.!

File-level and meta-level QC prior to meta-analysis

Prior to meta-analysis, we performed file-level QC on all summary statistics files to clean and
check the data, as described elsewhere.” File-level QC consisted of (1) removal of rows with
missing data on alleles, p-values, betas, standard errors or allele frequency; (2) removal of
rows with unrealistic values (e.g. p-values < 0 or > 1); (3) exclusion of monomorphic SNPs; (4)
harmonizing alleles; and (5) removal of duplicated SNPs. Subsequently, we performed meta-level
QC to identify potential study-specific problems following a previously published protocol.!®
Meta-level QC comprised creation of five plots: (1) SE-N plot, which reveals potential issues
with trait transformation; (2) P-Z scatter plot, which reveals potential issues with betas, standard
errors and p-values; (3) Allele frequency plot, to check for issues with allele frequencies or strand;
(4) QQ plots, to assess genomic inflation, and (5) A .. plot, also to assess genomic inflation. Both
file-level and meta-level QC were performed using the R package EasyQC (v9.2).!° No study-
specific issues were identified through these QC procedures (Figure SI-S5).
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Figure S5. Lambda-N plot to reveal issues with population stratification.

For each study, the lambda for genomic control is plotted against the maximum sample size. The orange line
indicates the optimal lambda; 1. = 1.0. The red line indicates the threshold for values that indicate problems
with population stratification; 1. = 1.1. This plot suggests that none of the included studies has population
stratification issues. Plot was created using the EasyQC R-package.!
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Figure S6. QQ plot of meta-analysis p-values of ALSPAC mothers and daughters only.

Observed —logl0 p-values from the meta-analysis including only ALSPAC mothers and daughters are plotted against
expected —log10 p-values from a theoretical 2 distribution. Corresponding lambda is 1.009.
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Figure S7. QQ plot of meta-analysis p-values for inverse normally transformed AMH in women.

Observed —logl0 p-values for each of the 8,298,138 SNPs included in the meta-analysis are plotted against
expected —logl0 p-values from a theoretical y? distribution. Corresponding lambda is 1.006.
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Figure S8. Regional association plots for genome-wide significant loci for inverse normally trans-
formed AMH in women.

Regional plots for the AMH locus (panel A), TEX41 locus (panel B), MCMS locus (panel C), and CDCA7
locus (panel D) show SNPs plotted by their position and —log10 P-value for association with inverse normally
transformed AMH. Nearby genes are depicted below each plot. Plots were created using FUMA .2
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Figure S10. Estimates leave-one-out analyses for the association between circulating AMH and risk
of breast cancer.

Plot was created using the TwoSampleMR R-package.’
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Figure S11. Estimates leave-one-out analyses for the association between circulating AMH and
risk of PCOS.

Plot was created using the TwoSampleMR R-package.’
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Abstract

Context: Higher age-specific circulating AMH levels have been linked to a lower risk of
cardiometabolic outcomes. However, whether AMH has a casual role in the etiology of

these diseases is currently unknown.

Objective: To explore if circulating AMH levels have a causal effect on risk of coronary

artery disease (CAD), ischemic stroke and type 2 diabetes (T2D) in women.
Design: a two-sample Mendelian randomization (MR) approach.

Methods: We used four single nucleotide polymorphisms (SNPs) from the most recent AMH
GWAS meta-analysis as instrumental variables. Summary-level data for CAD, ischemic
stroke and T2D were extracted from the UK Biobank, the Stroke Genetics Network, and
DIAMANTE consortia, respectively. To assess potential pleiotropy we tested if the four
AMH SNPs, either individually or combined as weighted genetic risk score, were associated

with a range of traits in the UK Biobank.

Results: MR estimates did not support a causal effect of circulating AMH levels on CAD
(OR,,,, = 1.13,95%CI: 0.95 — 1.35), ischemic stroke (OR = 1.11, 95%CI: 0.83 — 1.49), and
T2D (OR,,, = 0.98,95%CI = 0.87 - 1.10). After adjustment for multiple testing, we observed
associations between genetically predicted AMH and age at menopause and age at menarche
in the UK Biobank, but not with intermediate traits on the causal pathway between AMH

and cardiometabolic health, such as atherosclerosis or glucose levels.

Conclusions: This study does not provide evidence for a causal effect of circulating AMH
levels on CAD, ischemic stroke and T2D in women, although weak instrument bias cannot
be excluded.
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Introduction

In women, anti-Miillerian hormone (AMH) is expressed by early antral stage ovarian
follicles.! AMH declines with age, and becomes undetectable after menopause, when the
ovarian reserve is depleted, and AMH can therefore be used as a marker for reproductive
aging.? Accelerated female reproductive aging, often quantified as an earlier age at
menopause, has been linked to a higher risk of cardiometabolic diseases®3, but the causal
mechanisms underlying these associations remain to be established. Based on recent
observational studies that provided evidence for an association between higher circulating
AMH levels and lower risk of cardiovascular disease® and diabetes’ in women, it has been
postulated that AMH may have a causal role in the etiology of these diseases. However, a
potential causal effect of AMH on risk of cardiometabolic disease is difficult to establish

in observational studies.

Mendelian randomization (MR) analysis uses genetic variants as instrumental variables for
the risk factor of interest to estimate causal effects on outcomes that are not influenced by
confounding, and are not altered by disease occurrence (reverse causation).® In two-sample
MR, summary-level data from independent genome-wide association studies (GWAS) for
the exposure and outcome(s) are used instead of individual data from one study population,
with generally a larger number of participants, increasing statistical power to detect a
causal association.” For AMH, we have recently identified four genetic variants in ~7000

premenopausal women.'”

Using these genome-wide significant genetic variants for AMH levels, we aimed to explore
if circulating AMH levels could have a causal effect on risk of cardiometabolic disease
in women, using a two-sample MR approach and summary-level data of large GWAS for

coronary artery disease (CAD), ischemic stroke and type 2 diabetes (T2D).

Materials and Methods

Instrumental variable selection

Recently, we have identified four single nucleotide polymorphisms (SNPs) in an AMH
GWAS meta-analysis that included data of 7049 European ancestry premenopausal women.!°
One of the variants is a missense variant located in the AMH gene (rs10417628). However, for
this SNP the possibility that it is associated with AMH levels through impaired detection by
specific AMH assays instead of reduced AMH bioactivity cannot be excluded.” " Therefore,

and because inclusion of multiple genetic instruments increases statistical power to detect
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a causal association'?, we included all four SNPs associated with circulating AMH levels
in premenopausal women at genome-wide significance (p < 5 x 10-%). Combined, these
four SNPs explained 1.47% of the variance in circulating AMH levels (i.e. R? = 0.0147).
In the GWAS, AMH levels (pmol/L) were transformed using rank-based inverse normal
transformation. As a result, presented odds ratios (ORs) for outcomes correspond to one unit
increase in inverse normally transformed circulating AMH levels. AMH GWAS analyses
were adjusted for population stratification (either by inclusion of the first 10 principal

components or a genetic relationship matrix) and age at AMH measurement.

Outcome data sources

We included summary-level data for genetic associations of the four AMH variants with
CAD, ischemic stroke and T2D in women of European descent from the UK Biobank®,
and the Stroke Genetics Network (SiGN)"* and DIAMANTE™" consortia, respectively.

The UK Biobank is a large, population-based cohort study established to study the
interrelationships between environment, lifestyle, and genes. The UK Biobank (www.
ukbiobank.ac.uk) recruited over 500,000 men and women between 2006 and 2010", aged
between 37 and 73 years at baseline. The UK Biobank was approved by the North West
Multi-Centre Research Ethics Committee, and all participants provided written informed
consent to participate in the UK Biobank study. Prevalence of CAD was determined
using self-reported data as per prior analysis.'”” Additionally, we used the Hospital Episode
Statistics “Spell and Episode” category with hospital in-patient stay diagnoses. CAD was
defined using the International classification of disease (ICD) version 9 codes 410, 412 and
414, ICD version 10 codes 121-125, Z951 and Z955, and the Office of Population Censuses
and Surveys Classification of Interventions and Procedures, version 4 (OPCS-4) codes
K40-K46, K49, K50 and K75. Controls were excluded if their father, mother or sibling was
reported to suffer from any heart disease in order to reduce biological misclassification.
CAD GWAS analyses were performed using linear mixed models implemented in BOLT-
LMM software'® (v2.3.1), and adjusted for age at inclusion, genotyping array (UK Biobank
Axiom or UK BiLEVE Axiom), and the first 30 principal components provided by the UK
Biobank. BOLT-LMM effect estimates and standard errors were transformed to log odds

ratios and corresponding standard errors as previously described."”

The SiGN consortium is a previously compiled dataset consisting of 14,549 ischemic stroke
cases of several cohorts and publicly available controls.”® The SiGN study population has
been described previously, together with details on genetic quality control and genotype
imputation methodology.”” Different procedures were used to establish ischemic stroke
diagnosis, which have been described into detail elsewhere.” Female sex was defined as

the presence of XX chromosomes. GWAS analyses for ischemic stroke were performed
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using BOLT-LMM! (v2.3.1), and adjusted for population stratification, by inclusion of
a genetic relation matrix, and age. BOLT-LMM estimates for ischemic stroke were also
transformed to log odds ratios and corresponding standard errors using a previously

published approximation.”

The DIAMANTE consortium included 74,124 T2D cases and 824,006 controls from 32
GWASs and has been described into detail elsewhere."* Studies included in DIAMANTE
based T2D diagnosis on different criteria, including but not limited to, fasting glucose and
HbAlc levels, hospital discharge diagnosis, use of diabetes medication, and self-report.
For the current study, we requested results from sex-specific GWAS analyses, which were

adjusted for population stratification and study-specific covariates."

There was no overlap in participants between the UK Biobank and the AMH GWAS.
However, there may be some overlap in participants between SiGN and DIAMANTE and
the AMH GWAS, since all three studies included participants from the Nurses’ Health
Study (maximum overlap n = 642). An additional 127 participants of EPIC-Interact®® may
overlap between the AMH GWAS and DIAMANTE (total maximum overlap n = 769).

Statistical analysis

We calculated MR estimates for the individual SNPs in relation to each disease outcome
using the Wald ratio method. Individual Wald ratio estimates were meta-analyzed using a
random-effects inverse-variance weighted (IVW) method. To assess the strength of included
genetic variants for AMH we calculated F-statistics corresponding to the IVW analyses,
using the proportion of variance in AMH explained by the genetic variants, the sample
size of the outcome GWASs, and the number of variants included.”’ We compared overall
MR estimates (i.e. [IVW) to SNP-specific MR estimates (i.e. Wald ratio) since inconsistent
estimates are indicative of horizontal pleiotropy. In addition, we tested for heterogeneity
in causal effects amongst the individual SNPs using Cochrane’s Q statistics and performed
leave-one-out sensitivity analyses to assess the influence of outlying variants. For stroke, we
examined whether causal associations were affected by exclusion of early onset cases (age
<50 years at diagnosis), because early onset stroke is suggested to have a different etiology
than stroke at older ages.?? All MR analyses were performed using the “TwoSampleMR”
package (version 0.4.25 )» in R (version 3.5.1).%

To assess potential pleiotropy (i.e. whether genetic variants are associated with multiple
traits) we tested if the four AMH SNPs, either individually or combined as a genetic
risk score, were associated with a range of traits in the UK Biobank. For this analysis,
we selected 44 traits that were either likely to be confounders or that could affect

cardiometabolic health through pathways not involving AMH (i.e. horizontal pleiotropy;
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e.g. active smoking and body mass index), and traits that could be mediators on the causal
pathway between AMH and cardiometabolic disease (i.e. vertical pleiotropy; e.g. markers
for subclinical atherosclerosis and glycemic traits). An overview of the 44 investigated
traits has been included in Supplemental Table 1. Depending on the type of trait linear
or logistic regression models were fitted. We created a heatmap of z-scores aligned with
higher genetically predicted AMH levels to visually represent potential pleiotropy. To
correct for multiple testing, we considered false discovery rate (FDR) values < 0.05 to be

statistically significant.

Results

Descriptive data outcome data sources

The included number of cases and controls for each outcome are presented in Table 1.

Table 1. Number of cases and controls for each outcome.

Outcome Study Number of cases Number of controls
Coronary artery disease UK Biobank 11,802 137,950
Ischemic stroke SiGN 4678 12,863

« Age at onset > 50 years 4247 12,863
Type 2 diabetes DIAMANTE 30,053 434,336

SiGN, Stroke Genetics Network

CAD

We did not find evidence for a causal association between circulating AMH levels and CAD
risk (OR ., = 1.13, 95%CI: 0.95 — 1.35) (Table 2). Results from single SNP analyses for the
variants in the AMH, CDCA7 and MCMS$ loci also did not support a causal association with
CAD (Table 2), but we observed a risk increasing effect of the SNP in the TEX4! locus
(OR = 1.43, 95%CT: 1.07 - 1.91). The heterogeneity test for the [IVW estimate did not indicate
heterogeneous effects of the individual SNPs (Cochran’s Q =4.42, p = 0.22). Leave-one-
out sensitivity analyses showed that exclusion of the SNP in the CDCA7 locus resulted in
a significant association between genetically predicted circulating AMH levels and CAD
risk, although the IVW effect estimate did not change considerably (OR,,,, = 1.19, 95%CI:
1.00, 1.42; Supplemental Figure 1).
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Table 2. Mendelian randomization estimates for causal effects of circulating AMH levels on coronary artery
disease, ischemic stroke and type 2 diabetes in women.

Outcome Method F-statistic Odds Ratio 95% CI p-value

Coronary artery disease IVw 558.5 1.13 0.95-1.35 0.18
Wald ratio estimate for 1.06 0.82-1.37 0.65
110417628 (AMH)

Wald ratio estimate for 1.43 1.07-1.91 0.02
rs13009019 (TEX41)

Wald ratio estimate for 1.15 0.85-1.57 0.37
16991615 (MCMS)

Wald ratio estimate for 0.92 0.67-1.26 0.60
1rs11683493 (CDCA7)

Ischemic stroke VW 65.4 1.11 (0.83 - 1.49) 0.48
Wald ratio estimate for 1.31 (0.78 - 2.20) 0.30
rs10417628 (AMH)

Wald ratio estimate for 0.97 (0.55-1.70) 0.90
rs13009019 (TEX41)

Wald ratio estimate for 0.85 (0.46 - 1.59) 0.62
rs16991615 (MCMS8)

Wald ratio estimate for 1.35 (0.71 - 2.56) 0.35
rs11683493 (CDCA7)

Type 2 diabetes IvVw 1732.1 0.98 (0.87 - 1.10) 0.74
Wald ratio estimate for 1.01 (0.83-1.23) 0.93
rs10417628 (AMH)

Wald ratio estimate for 0.91 (0.72 - 1.15) 0.43
rs13009019 (TEX41)
Wald ratio estimate for 0.99 (0.77 - 1.26) 0.93
rs16991615 (MCMS8)
Wald ratio estimate for 1.01 (0.79 - 1.30) 0.93

111683493 (CDCA7)

AMH, anti-Miillerian hormone; IVW, inverse variance weighted
Odds ratio and 95%CI are per 1 unit increase in inverse normally transformed AMH

Ischemic stroke

The IVW estimate did not provide clear evidence for a causal association between
higher genetically predicted AMH levels and risk of ischemic stroke (OR,,, = 1.11,
95%CI = 0.83 - 1.49). Wald ratio estimates for the individual genetic variants did also
not support a causal association with ischemic stroke (Table 2). Causal effects across the
four genetic variants were not heterogeneous (Cochran’s Q = 1.69, p = 0.64). Leave-one-
out analyses suggested that IVW results would not change after exclusion of any of the

SNPs (Supplemental Figure 1).
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Exclusion of women younger than 50 years of age at stroke diagnosis attenuated IVW
estimates (OR ,,,= 0.95, 95%CI: 0.70 - 1.27) and effect estimates for the SNPs in the AMH,
CDCA7 and TEX41 loci (Supplemental Table 2). The effect estimate for the MCM8 locus
changed to a risk increasing effect on ischemic stroke in women aged older than 50 at
diagnosis, but its confidence interval was very wide and still included the null (OR = 1.14,
95%CI = 0.60 - 2.17).

T2D

IVW MR estimates did not support an association between genetically predicted AMH
and T2D (OR,, = 0.98, 95%CI = 0.87 - 1.10). Results from the single SNP analyses
also did not indicate causal associations with T2D risk (Table 2). The heterogeneity test
statistic did not suggest heterogeneous effects amongst the four SNPs (Cochran’s Q = 0.54,
p = 0.91), and leave-one-out analyses indicated that none of the SNPs had outlying effects
(Supplemental Figure 1).

Associations between genetic instruments for AMH and possible pleiotropic traits

Associations between the individual AMH SNPs and the weighted genetic risk score
including all four variants are presented in Figure 1. After correction for multiple testing, we
observed a positive significant association between the SNP in the MCMS$ locus (rs16991615)
and age at menopause and age at menarche. The weighted genetic risk score was only
associated with age at menopause. We did not find associations with intermediate traits
on the causal pathway between AMH and cardiometabolic health, such as subclinical

atherosclerosis or HbAlc and glucose levels.
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Figure 1. Heatmap of associations between the individual genetic variants for AMH and the weighted
genetic risk score (AMH GRS) and 44 traits of the UK Biobank.

The heatmap presents z-scores for 44 UK Biobank traits that correspond to higher genetically predicted AMH
levels. Only associations between rs16991615 (MCMS$ locus) and age at menopause and age at menarche, and
the association between the AMH GRS and age at menopause were statistically significant at false discovery
rate < 0.05. Abbreviations: IMT, intima-media thickness; SHBG, sex hormone binding globulin.

Discussion

Our MR analyses did not provide evidence for causal effects of circulating AMH levels on
the risk of CAD, ischemic stroke and T2D in women. However, due to the limited number

of genetic instruments, these findings should be interpreted with caution.
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Genetic instruments used for MR analyses have to meet the following assumptions to yield
valid MR estimates: (1) genetic variants have to be strongly associated with the exposure;
(2) genetic variants cannot be associated with confounders of the studied associations;
and (3) genetic variants cannot affect the studied outcomes through mechanisms that do
not involve the exposure.” To meet the first criterion we only included SNPs associated
with circulating AMH levels at genome-wide significance as genetic instruments. We
also quantified the strength of the combination of these four SNPs through calculation of
F-statistics for each outcome (558.5 for CAD, 65.4 for ischemic stroke, and 1732.1 for T2D).
Although a F-statistic higher than 10 is considered to indicate a strong genetic instrument,
the estimated F statistics may be overestimated due to the use of the R? from the discovery
AMH GWAS. It is therefore still possible that weak instrument bias may have biased our
MR estimates towards the null and reduced statistical power to detect a causal effect.?® Due
to the limited number of genetic variants we were not able to assess violation of the second
and the third MR assumption using methods such as MR-Egger and MR-PRESSO.

We did assess potential pleiotropy of the genetic instruments for AMH with 44 traits in
the UK Biobank. These analyses did not provide evidence for associations of the genetic
variants, either individually or combined into a genetic risk score, with intermediate traits
on the causal pathway between AMH and cardiometabolic health, such as subclinical
atherosclerosis or HbAlc and glucose levels. We also did not observe associations between
genetically predicted AMH and potential confounders like body mass index and active
smoking. Heterogeneity tests and leave-one-out analyses did not support bias due to
horizontal pleiotropy, although their results should also be interpreted with caution due
to the limited number of SNPs. Our results suggested that higher genetically predicted
AMH levels are associated with age and menarche and age at menopause. Indeed, previous
GWAS identified rs16991615 at the MCMS locus as genetic variant for age at menopause.>”
28 Whether these associations reflect horizontal or vertical pleiotropy remains difficult
to disentangle since AMH, age at menarche and age at menopause are all linked to the

functional ovarian reserve.?”2%3°

Potential overlap in study participants between the exposure and outcome GWAS from
which summary-level data were used, could bias MR estimates towards the observational
association.’! For both SiGN and DIAMANTE, numbers of overlapping participants
were small compared to the total numbers in the study (642 and 769, respectively). We
assessed the magnitude of potential bias due to sample overlap in the current study using
a web application developed by Burgess et al. (https:/sb452.shinyapps.io/overlap), and
observed that, if anything, this bias would have been minimal for both ischemic stroke and
T2D. Moreover, MR estimates for each outcome indicated null effects, whereas previous

observational studies showed that higher AMH levels were associated with a lower risk of
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cardiometabolic disease.®” Therefore, the effect of this type of bias on the MR estimates

seems negligible.

We are aware of one previous MR study on AMH, looking at the association with ischemic
heart disease in men and women®, using genetic variants that were significant in male
adolescents only.* In contrast with our results, this MR provided some evidence for an
association of higher genetically predicted AMH levels with a lower risk of ischemic heart
disease in women and men combined, yet the validity of this finding is questionable since
the used genetic instruments violated the first MR assumption of being strongly related to
AMH levels in females. In addition, no details about possible heterogeneous effects across
the individual SNPs were described.

Our findings are not in agreement with observational studies that found that women with
higher age-specific AMH levels had a lower risk of these cardiometabolic diseases®’. On
the other hand, previous MR studies investigating the causal effect of age at menopause,
another indicator for reproductive aging, on CAD also did not find evidence for a causal
association.** 3 To date, no MR studies investigated whether age at menopause may be

causally associated with stroke or diabetes.

An explanation for the discrepancy between the observational and MR findings for the
relation between AMH, but also other indicators of reproductive aging, and cardiometabolic
disease may be residual confounding by (biological) aging. Given its role in ovarian follicle
development and the expression of AMH in these follicles, lower AMH levels are strongly
correlated with higher age in women. Also, decelerated reproductive aging, corresponding
to higher age-specific AMH levels, has been linked to longevity.***” Future studies in which
both circulating AMH levels and markers for biological aging (e.g. DNA methylation)
are available could explore this hypothesis. Another explanation for the discrepancy with
observational findings may be that signaling factors that are either upstream or downstream
of AMH in the same pathway, instead of AMH itself, are causally associated with risk of
cardiovascular disease. Among the suggested upstream regulators of AMH is BMP43, and
reported downstream targets of AMH include NF-kB*-#, which have both been linked to
cardiovascular disease.*>** One approach to disentangle these relationships would be to
perform a mediation MR analysis including separate genetic instruments for AMH, BMP4
and NF-kB.*

In conclusion, our results do not support a causal effect of circulating AMH levels on CAD,
ischemic stroke and T2D in women. These results should be interpreted carefully, since

bias towards the null due to weak instrument bias in our analyses cannot be excluded.
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Supplemental Data

Supplemental Table 1: Overview of the 44 UK Biobank traits tested for an association with the individual
genetic variants for AMH and the weighted genetic risk score.

UK Biobank trait

Pulmonary hypertension

Cardiomyopathy

Valvular disease (incl. endocarditis)

Aortic stenosis

Peripheral artery disease in extremities (incl. aneurysms)

Atrial fibrillation/Atrial flutter

Heart failure

Aneurysm (any location)

Hypertrophic cardiomyopathy

Thromboembolism

Thrombosis

Venous thromboembolism

Osteoporosis (incl medication)

Anaemia

Hypertension (incl. touchscreen medication)

Atherosclerosis

Hyperlipidemia (incl. medication)

Active smoker

Hyperthyroidism

Hypothyroidism

Diastolic blood pressure, mean across manual & automatic

Systolic blood pressure, mean across manual & automatic

Pulse pressure, mean across manual & automatic

Mean arterial pressure, mean across manual & automatic
Arterial Stiffness

Carotid intima-media thickness, mean at 120 degrees

Carotid intima-media thickness, mean at 150 degrees

Carotid intima-media thickness, mean at 210 degrees

Carotid intima-media thickness, mean at 240 degrees

C-reactive protein (high-sensitivity) in mg/L

Body mass index (kg/m2)

Waist hip ratio

Low density lipoprotein in mmol/L

High density lipoprotein in mmol/L

Total cholesterol in mmol/L

Triglyceride in mmol/L

HbAlc mmol/L

Glucose in mmol/L

Log?2 Interpolated Alcohol in UK Units (8 mg or 10 mL Alc) per week
Age at Menarche

Age at Menopause

Oestradiol in pmol/L

Sex hormome binding globulin in nmol/L

Testosterone in nmol/L
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Supplemental Table 2. Mendelian Randomization estimates for causal effects of circulating AMH levels
on ischemic stroke in women > 50 years at diagnosis.

Outcome Method Odds Ratio 95% CI1 p
Ischemic stroke in age Ivw 0.95 0.70 - 1.27 0.72
onset > 50 years
Wald ratio estimate for 0.87 0.52 - 1.46 0.60
rs10417628 (AMH)
Wald ratio estimate for 0.86 0.48 - 1.54 0.61
rs13009019 (TEX41)
Wald ratio estimate for 1.14 0.60 - 2.17 0.70
1816991615 (MCMS8)
Wald ratio estimate for 1.01 0.53 - 1.96 0.97

111683493 (CDCA7)

AMH, anti-Miillerian hormone; IVW, inverse variance weighted
Odds ratio and 95%CI are per 1 unit increase in inverse normally transformed AMH
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Chapter 8

In this thesis we used diverse methodological approaches to investigate whether circulating
anti-Miillerian hormone (AMH) levels are causally associated with risk of cancer and
cardiometabolic diseases. Whereas evidence from previous studies indicates a relation
between higher AMH levels and risk of breast cancer (Chapter 2), we did not find clear
evidence for a causal effect of AMH on (breast) cancer risk (Chapter 3 and 6). Results
from Chapter 4 and 5 indicated that lower AMH levels are associated with a higher risk of
type 2 diabetes in women and potentially with a higher degree of subclinical atherosclerosis
in men, respectively. On the other hand, Mendelian randomization (MR) analyses did not
support a causal effect of AMH on risk of several cardiometabolic diseases (Chapter 7),
potentially due to weak genetic instruments for AMH, which may have biased our results
towards the null. Accordingly, our results do not provide conclusive evidence in favor of,
nor against, a causal relation between endogenous AMH levels and risk of cancer and
cardiometabolic diseases. Challenges commonly faced in etiological epidemiology, such as
residual confounding and reverse causation, are a main thread running through the previous
thesis chapters. In this chapter, these challenges are discussed in the light of the research
presented in this thesis. We also discuss directions for future research on the role of AMH

in the etiology of cancer and cardiometabolic diseases.

Challenges in etiological epidemiology

Etiological epidemiology aims to identify risk factors that are causally associated with
the outcome of interest. Although the randomized controlled trial is the paradigm for such
research, observational studies are often used instead because of ethical and practical
reasons. For the studies presented in this thesis, for example, randomized controlled trials are
not feasible since endogenous AMH levels cannot be allocated. Inferring causal associations
from observational data faces challenges that are not encountered in randomized controlled
trials, such as (residual) confounding. Additionally, it remains difficult in observational
studies to establish whether exposures have an actual causal role in the etiology of the

outcome of interest.

Triangulation

To overcome these challenges in etiological epidemiology and strengthen causal inferences
from observational data, Lawlor and colleagues recently advocated the need for a
“triangulation framework in etiological epidemiology”.! The term “triangulation” originates
from navigation and cartography in which it refers to determining a difficult to measure

location through the use of the angles of at least two known locations.? In the context of
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etiological epidemiology, the following definition has been proposed: “The practice of
strengthening causal inferences by integrating results from several different approaches,
where each approach has different (and assumed to be largely unrelated) key sources of

9]

potential bias”.

If we look at the work in this thesis, where we use different methodologies to address the
same causal research questions, it perfectly fits in this triangulation framework. Cross-
sectional analyses such as described in Chapter 5, may be prone to reverse causation, which
means that the outcome affects the exposure instead of the other way around. Longitudinal
analyses (Chapter 3, 4 and 5) allow the possibility to investigate and limit the risk of bias by
reverse causation. MR analyses (Chapter 6 and 7) can also be used for this purpose, since
the genetic exposure is present since conception and thus will be present before the onset of
disease in adulthood. Moreover, MR analyses can be used to limit risk of bias by (residual)
confounding, which is a common source of bias in observational studies (Chapter 3, 4, and 5).
As long as the genetic instrumental variables meet the three MR assumptions”, results are
unlikely to be biased due to confounding. On the other hand, MR estimates are prone to
weak instrument bias (i.e. bias because of differences in confounders between exposure
subgroups if the genetic instrumental variables explain little variation in the exposure®) and
bias caused by population stratification (i.e. differences in the frequency of genetic variants

across different ethnic (sub)populations).*

Although we used these diverse methodological approaches to assess the causal relation
between AMH and cancer, and AMH and cardiometabolic diseases, a bottleneck in some
of the studies was limited statistical power to detect true (causal) associations. For example
for type 2 diabetes, results from our longitudinal analyses in Chapter 4 indicated that lower
AMH levels are associated with a higher risk of type 2 diabetes in women, but our MR
analyses in Chapter 7 did not support a causal effect of AMH on the risk of type 2 diabetes.
Combined these results do not provide strong evidence for a causal relation. However, our
MR analyses were possibly biased toward the null due to the small proportion of variation
in circulating AMH levels explained by the four genetic variants (1.47%). The lack of
triangulation of our results could therefore be the consequence of reduced statistical power,

rather than the true absence of a causal effect of AMH.

Accordingly, it is not possible to establish if AMH has a causal role in the etiology of cancer
and cardiometabolic diseases based on the findings presented in this thesis. In addition to

the reduced statistical power in Chapter 3, 6 and 7, the relation between AMH and female

* MR assumptions: (1) genetic variants have to be strongly associated with the exposure; (2) genetic variants
cannot be associated with confounders of the studied associations; and (3) genetic variants cannot affect
the studied outcomes through mechanisms that do not involve the exposure.
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reproductive aging complicates making causal inferences regarding the role of AMH. The
link between reproductive aging and biological aging adds an additional layer of complexity

to the interpretation of our results.

Disentangling effects of AMH and reproductive aging

Given the biological link between circulating AMH levels and ovarian aging, it is
difficult to establish whether AMH itself has a causal role in the pathophysiology of
non-communicable diseases or if AMH is merely a marker of female reproductive aging.
Moreover, AMH may also be a marker of male reproductive aging. Circulating AMH
levels have been linked to spermatogenesis quality®, which is considered to be a marker
for male fertility. Here we describe three possible scenarios through which AMH could
affect disease risk, using the association between AMH and type 2 diabetes in women

(Chapter 3) as example (Figure 1).

@ Reproductive aging as mediator

U ovarian follicle poolH l AMH J—}(T reproductive aging)— - }[T type 2 diabetesj

@ AMH/reproductive aging as innocent bystander

w Treproductive aging) B> T type 2 diabetes
T

L craantollideool | correlation or the other way around
1 AMH

@ AMH as causal factor independent of reproductive aging

T reproductive aging) > f type 2 diabetes
—p T type 2 diabetes

Figure 1. Schematic overview of three possible scenarios through which AMH could be associated

¢ ovarian follicle pool

with risk of type 2 diabetes in women.

Female reproductive aging is driven by depletion of the pool of antral follicles, which are
the main producers of AMH in women.® Hence, decreasing numbers of antral follicles
result in decreased AMH production, and therefore lower levels of circulating AMH. AMH
acts as inhibitor of primordial follicle recruitment, and it has been suggested that this
reduction in AMH production results in more activated primordial follicles. This would

provoke a more rapid depletion of the ovarian follicle pool, and accordingly an earlier age
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at menopause.” Women with an earlier menopause have been found to be at a higher risk
of postmenopausal type 2 diabetes.® Following this lead, the first possible scenario is that
AMH indirectly affects risk of type 2 diabetes through its role in female reproductive
aging, i.e. that reproductive aging is a mediator (Figure 1a). A second possibility is that
circulating AMH levels are merely a marker of the reproductive aging process, but that
AMH signaling is not involved in the pathophysiology of type 2 diabetes, i.e. that AMH is
a so-called “innocent bystander”, or the other way around (Figure 1b). On the other hand,
the receptor through which AMH signaling takes place (AMHR?2) is expressed in several
non-gonadal tissues, among which pancreatic tissue’. The third possible scenario is therefore
that AMH can have a causal role in the pathophysiology of diabetes, potentially independent
of reproductive aging (Figure 1c). Finally, it might very well be possible that actual biology
involves a more complex combination of these simplified scenarios and that additional

processes are involved, like biological aging, as we discuss later in this chapter.

One of the main difficulties in disentangling whether AMH itself has a causal role in
the etiology of breast cancer, type 2 diabetes and cardiovascular disease lies in the
quantification of the reproductive aging process. Reproductive aging is a complex exposure
that represents a wide range of physiological processes, including, but not limited to, various
hormonal changes.!® Ideally, repeated data on all relevant components that reproductive
aging encompasses should be used to determine in which reproductive phase women are.
However, the most recent Stages of Reproductive Aging Workshop (STRAW) criteria only
include specific menstrual criteria for some, and not even for all, of the defined reproductive
stages.!" Although the STRAW criteria clearly recognize the importance of the inclusion
of quantitative criteria for endocrinological parameters, including AMH and estradiol, the
lack of standardized assays forms a serious obstacle to actual inclusion of information about
hormonal levels into the current criteria." As a result, it is hardly possible to establish which
of the scenarios presented in Figure 1 best represent(s) biology based on epidemiological

research only.

Functional studies could provide more insight into this subject; for instance through the use
of experimental models in which AMHR2, the gene encoding the receptor that is required
for AMH signaling, is knocked-out in target tissues only. For type 2 diabetes, for example,
the absence of AMH signaling in pancreatic tissue may reveal if AMH is involved in
pathophysiology. More robust epidemiological evidence on the causal role of AMH could
potentially be obtained through MR analyses that include more genetic instrumental
variables for AMH (i.e. a stronger genetic instrument). However, in order to identify more
genetic variants for AMH, genome-wide association studies (GWAS) including a larger
number of participants should be conducted first. Most large studies with available AMH

and genotyping data to date have been included in our meta-analysis in Chapter 6. Hence,
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conducting a much larger GWAS for AMH requires that AMH levels are measured in
additional large cohort studies that include sufficient women of early reproductive age, and
preferably also adult men, which requires both financial and time investments. Moreover,
the aforementioned considerations raise the question whether we should study AMH as
independent risk factor at all, or rather as part of a more complex exposure. We elaborate

on this latter issue in the paragraph “Directions for future research”.

Excluding potential residual confounding by biological aging

Because of the relation between AMH and reproductive aging, and the link between
reproductive aging and biological aging, the results of Chapter 4 (type 2 diabetes) and
Chapter 5 (markers of subclinical cardiovascular disease) are potentially biased due to
residual confounding by biological aging. The link between reproductive and biological
aging has been acknowledged for decades. Because of this link, it has been postulated
that the observational relation between accelerated reproductive aging and higher risk of
cardiovascular diseases may be confounded by accelerated biological aging. This hypothesis
is indirectly supported by recent MR analyses that dispute a causal association between age

at menopause, and (risk factors for) cardiovascular disease.'>

Similar to reproductive aging, biological aging is a complex exposure that encompasses
chronological age but also functional aspects, such as cognitive functioning and physical
fitness." As a consequence, adjusting association analyses for chronological age alone will
only partly remove a potential confounding effect by biological aging. Currently, several
biomarkers are available to quantify human biological aging on the molecular level, of
which the epigenetic/DNA methylation clock and leukocyte telomere length are most

frequently used.

There is some evidence that DNA methylation and leukocyte telomere length are correlated
with circulating AMH levels in men'® and in women'®, although the direction of this
correlation is inconsistent across studies. Higher AMH levels in men were associated with
a higher odds of having a short leukocyte telomere length, which was defined as a telomere
length shorter than the 75" percentile in the cohort.”” This finding suggests an association
between higher AMH levels and accelerated biological aging. In contrast, accelerated
biological aging based on DNA methylation has been linked to lower circulating AMH
levels in women undergoing ovarian stimulation, but these analyses were not adjusted for
other factors.'® In other words, clear evidence for an association between circulating AMH

levels and molecular markers of biological aging has yet to emerge.

We did not have data available to investigate if the associations studied in this thesis were

potentially confounded by biological aging. However, our GWAS meta-analysis (Chapter
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6) provided some circumstantial evidence for a shared genetic architecture between
circulating AMH levels and DNA methylation, since CDCA7 has also been identified as
a DNA methylation regulating gene.”” Besides, genes mapped to the CDCA7, MCM8 and
TEX41 loci are involved in the cell cycle and processes like DNA replication and apoptosis,
which can be linked to the “genomic instability” and “cellular senescence” hallmarks of
aging."® Consequently, residual confounding by biological aging should be excluded in future
studies before claims about causal relations between AMH and risk of cancer, and AMH

and risk of cardiometabolic diseases, can be made.

Directions for future research

In the previous paragraphs, we formulated suggestions for future research to disentangle
effects of AMH and reproductive aging on disease risk, and highlighted the need for
additional research to establish whether biological aging may (partly) explain the
observational relation between AMH and disease risk. Additionally, we formulated three
topics that should be considered during the conceptual design of future studies on the role

of AMH in the etiology of cancer and cardiometabolic diseases.

Modelling AMH as part of a hormone profile rather than as simple exposure

Investigating individual hormones in relation to disease outcomes in epidemiological
research is a tremendous oversimplification of biology. As the Britannica encyclopedia
states, a hormone is an “organic substance secreted by plants and animals that functions
in the regulation of physiological activities and in maintaining homeostasis”.!” To maintain
homeostasis, hormones interact with and regulate one another in a time- and context-
dependent manner. Also for AMH, interactions with other reproductive hormones have been
reported in a time- and context-dependent manner.?’->> Accordingly, investigating AMH as
part of a hormone profile in relation to disease risk, instead of as a single risk factor, would

very likely better represent actual biology.

Modelling AMH as part of a complex hormone exposure corresponds to the concept of
the exposome, which refers to the total exposure to internal (e.g. endogenous hormones)
and external factors (e.g. lifestyle factors) over the life-time.*® The internal exposome
can be quantified using so-called -omics data, which refers to the complete set of certain
molecules; e.g. genomics refers to all genes in the genome and their interactions.>* For
the analysis of (multi)-omics data, data-reduction methods (e.g. principal component
analysis) and clustering methods (e.g. hierarchical cluster analysis and k-means cluster

analysis), either on their own or combined, are used to model mixtures of exposures rather
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than single exposures.”® Although the use of clustering techniques to construct hormone
profiles is not novel?® %, previous studies that investigated hormone profiles as complex
exposure in relation to risk of cancer and cardiometabolic disease are scarce® ? and did
not include AMH data. An explanation for this may be that for most study populations only
a subset of the relevant reproductive hormones is measured due to relatively high costs
of multiple hormone measurements. Interestingly, high-throughput -omics technologies
allow for the measurement of a wide range of molecules in a single biological sample.
Due to the reducing costs of these technologies, collecting complete hormone data will
become increasingly feasible for large study populations in the near future. Ideally, repeated
hormone measurements would be performed for each study participant to investigate

hormone profiles based on age-related hormone trajectories in relation to disease risk.

Complementary research could involve studies that include participants in whom hormone
profiles are known to be different, like women with polycystic ovary syndrome and patients
with disorders of sex development (e.g. persistent Miillerian duct syndrome and Klinefelter
syndrome). Such studies would mimic natural experiments, in which combinations of
hormones naturally differ between patient groups and healthy participants, and could be

investigated in relation to the risk of different diseases.

Investigating time-specific associations between AMH and disease risk

In addition to considering to model AMH as complex exposure, it would also be worth to
consider investigating age-specific effects of AMH on disease risk. It is perfectly possible
that AMH only affects disease risk during a critical period, like AMH’s time-specific role
during embryogenesis.’® Another possibility is that the magnitude of an effect of AMH
differs over the life course. For breast cancer, a previous study indeed suggested that
the association between AMH and breast cancer differs by age at AMH measurement.*!
However, it is not clear to what extent this finding was driven by a number of small studies

including mostly older women, which reported very large effect sizes.

Even though we aimed to assess the temporal association between AMH and risk of
cancer, and AMH and risk of type 2 diabetes, our trajectory analyses suffered from
the limited number of AMH measurements at younger ages. AMH has been measured
in cohorts including children and adolescents (e.g. ALSPAC)*> 3, but mostly in female
study populations with a median age of 40 years or higher.3!: 3% Studies with a substantial
proportion of study participants aged 20 to 35 years are currently lacking (Figure 2). In male
study populations, the median age at which AMH was measured was even higher compared

to female study populations.'> 4
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Figure 2. Schematic overview of studies that measured AMH in women (purple) or men (yellow)

presented by the median/mean age at AMH measurement.”

As aresult, large-scale analyses investigating if AMH, either as single exposure or as component
of a hormone profile, has a time-specific effect on disease risk are currently only feasible in
middle-aged to older study participants. Additional AMH data-collection in younger study
populations is thus needed to accurately estimate temporal associations between AMH and non-
communicable diseases. The main challenge that cohort studies will face is that long periods of
follow-up are needed until the number of incident disease cases is large enough to ensure that
analyses have sufficient statistical power to detect true associations. Therefore, collecting AMH

data for case-control sets nested in existing cohorts with sufficient follow-up, as has been done

**  ALSPACa, Avon Longitudinal Study of Parents and Children — adolescent participants; SL Fong, study
population publication SL Fong et al. (2012); FMC, Finnish Maternity Cohort; OVA, Ovarian Aging Study;
TLGS, Tehran Lipid and Glucose Study; DCS, Doetinchem Cohort Study; Guernsey, Guernsey Cohort;
CLUEII, Campaign Against Cancer and Heart Disease; EPIC, European Prospective Investigation into
Cancer and Nutrition; SWHS, Shanghai Women's Health Study; CSB, Columbia, Missouri Serum Bank;
NHS, Nurses' Health Study; ORDET, Hormones and Diet in the Etiology of Breast Cancer; CARDIA,
Coronary Artery Risk Development in Young Adults; NHS2, Nurses' Health Study IT; BGS, Breakthrough
Generations Study; Sister, Sister Study; NYUWHS, New York University Women's Health Study; SWAN,
Study of Women's Health Across the Nation; ALSPACm, Avon Longitudinal Study of Parents and Chil-
dren — adult participants; NHANES, National Health and Nutrition Examination Survey; PCLO, Prostate,
Lung, Colorectal, and Ovarian Cancer Screening Trial.
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previously for several cancer types?' 3364043 will be the most efficient approach. Combining all
relevant studies into living individual participant data meta-analyses*, i.e. continuously updated

analyses, would increase efficiency to investigate age-specific effects of AMH even further.

Integrating epidemiological research with fundamental research to answer the same
research question

Most previous studies that investigated circulating AMH levels in relation to disease
risk, including ours, based their hypothesis on circumstantial evidence from a handful of
fundamental studies. For example, our hypothesis that endogenous AMH may be involved
in tumorigenesis was based on a limited number of fundamental studies in which the effect
of recombinant AMH on (breast) cancer cells was tested, using in vitro as well as in vivo
model systems.*-*8 However, these experiments do not directly translate to the function
of endogenous AMH in humans. Besides, such experiments do not address the question
whether and how AMH signaling plays a role in the development of cancer. We should
therefore be very careful not to extrapolate certain findings from fundamental studies
(e.g. inhibiting tumor cell growth) to a different setting (e.g. tumor development), which
we subsequently only further investigate in epidemiological research. Instead, it would be
more powerful if epidemiologists and wet-lab biologists would collaborate more intensively.
Such collaborations can tackle the same research question from different perspectives and
therefore generate even more valuable insights, as has been proven by similar initiatives in
genetic epidemiology in translating GWAS findings to function. Moreover, integration of
fundamental findings with the research presented in this thesis is essential to elucidate if

circulating AMH has a causal role in the etiology of cancer and cardiometabolic diseases.

Concluding remarks

In this thesis, we used a triangulation framework by applying diverse methodological
approaches to investigate the (causal) associations between circulating AMH levels and cancer,
(subclinical) cardiovascular disease and type 2 diabetes. Nevertheless, given the biological
link between AMH and reproductive aging in women, and reproductive function in men, it is
practically impossible to disentangle whether AMH has a causal role in the etiology of these
diseases based on epidemiological findings alone. The link between reproductive aging and
biological aging adds an additional layer of complexity in establishing the causal relation
between AMH and non-communicable disease risk. We therefore advocate collaborative
initiatives between epidemiologists and wet-lab biologists to reveal whether AMH is a leading

lady or best friend in the etiology of cancer and cardiometabolic diseases.
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Chapter 9

Reproductive aging has been linked to the risk of several non-communicable diseases,
including breast cancer, cardiovascular disease and type 2 diabetes. However, the causality
of these associations and the underlying biological mechanisms are not fully revealed yet. A
potential causal candidate explaining the association between reproductive aging and risk
of the aforementioned diseases is anti-Miillerian hormone (AMH). The aim of this thesis
was to investigate whether circulating AMH levels are (causally) associated with the risk

of cancer, type 2 diabetes, and cardiovascular disease.

The first two chapters focus on the (temporal) association between circulating AMH
levels and risk of cancer. In Chapter 2 we provide a systematic overview of the current
epidemiological evidence on endogenous AMH levels in relation to risk of different cancer
types. We included 12 studies on breast, ovarian and endometrial cancer, lymphomas,
non-gynecological cancers, childhood cancer and prostate cancer. Of these, five studies
measured AMH prior to cancer diagnosis; the others measured AMH after diagnosis but
prior to cancer treatment. Altogether, we found that higher AMH levels were associated with
an increased risk of breast cancer, whereas there was little evidence for associations with
other cancer types. Analyses stratified by age at AMH measurement hinted at an increased
risk of ovarian and endometrial cancer in younger women with higher AMH levels, but
these three studies included too few women to provide a definite answer. Postdiagnosis-
pretreatment AMH levels were lower in women diagnosed with different types of cancer
compared with AMH levels in healthy women. However, we considered most of the studies
that included postdiagnosis-pretreatment AMH levels to be of poor methodological quality,
because of inadequate correction for age and other important confounders. We therefore
refrained from drawing definite conclusions regarding the relation between postdiagnosis-

pretreatment AMH levels and cancer.

To gain more insight into the relation between circulating AMH levels and cancer, we
subsequently examined the association of age-specific AMH levels with the risk of cancer in
Chapter 3. Previous studies included a single AMH measurement per participant, although
age-related AMH trajectories have been shown to vary between women. We therefore
explored the temporal association between AMH and cancer through investigating if age-
related AMH trajectories were different for women who developed cancer compared to
women who did not. For this purpose, we used data of 3025 female participants of the
Doetinchem Cohort Study. AMH was repeatedly measured in blood samples collected at
S-year intervals over a period of 20 years, resulting in 11,655 measurements available for
analyses. We calculated age-specific AMH tertiles at baseline to account for the strong
AMH-age correlation. In addition to overall cancer, we separately investigated associations
between circulating AMH levels and breast cancer, cancers in other AMHR2-expressing

tissues, and cancers in non-AMHR 2-expressing tissues. Age-specific AMH levels measured
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at baseline of the study were not associated with any of these cancer outcomes. Because
AMH is known to strongly decrease from age 40, and because less variation is found in
AMH levels after this age, we performed additional analyses restricted to women younger
than 40 years at baseline of the cohort. Analyses among these 1543 younger women
supported previous studies that found higher AMH levels to be associated with a higher
risk of breast cancer (HR, ., =2.06, [95% CI 0.95, 4.48]; HR , ., =2.03, [95% CI 0.91,
4.50]). Examination of AMH trajectories indicated that AMH levels around age 30 may
be higher, and may decline faster, in women who are diagnosed with cancer compared to
women who are not, but our results did not provide strong evidence for an actual difference

in age-related AMH trajectories.

Few studies have investigated endogenous AMH in relation to cardiometabolic diseases.
Their results are inconsistent and most of these studies had a cross-sectional design. We
therefore used data from the Doetinchem Cohort Study and a similar approach as in Chapter
3, to investigate associations between age-specific AMH levels at baseline of the cohort,
and age-related AMH trajectories, and the risk of incident type 2 diabetes. The results of
this analysis are reported in Chapter 4. During a median follow-up of 20 years, 163 women
developed type 2 diabetes. Lower baseline age-specific AMH levels were associated with a
higher risk of type 2 diabetes (HR ., , = 1.24, [95% CI1 0.81, 1.92]; HR | .= 1.62, [95% CI
1.06, 2.48]). Trajectory analyses, including 12,460 AMH measurements, did not show clear
evidence of different AMH trajectories in women who developed type 2 diabetes compared
with women who did not. Yet, it remains to be elucidated whether AMH is indeed causally
associated with risk of diabetes, or whether residual confounding influenced our findings.
Further research is therefore needed to investigate whether AMH is part of the biological

mechanism explaining the association between reproductive aging and type 2 diabetes.

The association between circulating AMH levels and risk of cardiometabolic diseases has
been studied most frequently in women. However, as AMH is also measurable in men, AMH
could potentially play a role in cardiovascular disease pathology in both sexes. Therefore, we
investigated whether circulating AMH levels were associated with measures of subclinical
cardiovascular disease in middle-aged and older participants of a Dutch population-based
cohort study in Chapter 5. Among 394 men (aged 40-80 years) we examined cross-
sectional associations between AMH levels and carotid intima-media thickness (CIMT),
pulse wave velocity (PWV), abdominal aortic diameter and Framingham risk score (FRS)
predictions (i.e. predicted 10-year risk of coronary heart disease) at baseline. We additionally
assessed longitudinal associations with CIMT, carotid aortic plaque score, PWV and FRS
predictions. Our results indicated that higher AMH levels were associated with a lower
CIMT at baseline (estimates for inverse-normally transformed CIMT; B =-0.04, [95% CI
0.07, -0.01]). In addition, our results suggested that higher AMH levels are potentially
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associated with a lower mean carotid aortic plaque score after a median follow-up time of
8.7 years, independent of CIMT at baseline (estimates for inverse-normally transformed
mean plaque score;  =-0.03, [95%CI =-0.07, 0.00]). Although higher AMH levels were
associated with lower baseline FRS predictions, this effect attenuated after adjustment for
circulating sex hormone levels. Circulating AMH levels were not associated with aorta
diameter and PW'V at baseline, and also not with PWV and FRS predictions at follow-up.
In conclusion, AMH may be associated with structural (i.e. atherosclerosis) but not with

functional changes (i.e. arterial stiffness) of the arterial wall.

A question that remained after completion of the aforementioned studies, was whether
the role of AMH in the etiology of the investigated diseases is actually causal. Gaining
more knowledge about the genetic variation and biological mechanisms underlying inter-
individual variation in circulating AMH levels could provide new clues about the functions
of AMH. As a result, more insight into the mechanisms through which AMH is involved in
the etiology of cancer, cardiovascular disease and type 2 diabetes can be gained. Moreover,
genetic variants for circulating AMH levels enable the assessment of potential causal
effects of AMH on disease outcomes using a Mendelian randomization (MR) approach.
To identify such genetic variants, we performed a genome-wide association study (GWAS)
meta-analysis for AMH in Chapter 6. We used data from seven cohorts, and in total from
7049 premenopausal women of European ancestry, which more than doubled the sample
size of the largest previous AMH GWAS. We identified four genetic loci associated with
AMH levels at the genome-wide significance level: the previously reported MCMS locus
and three novel signals in or near AMH, TEX41, and CDCA7. The strongest signal was a
missense variant in the AMH gene (rs10417628). Most prioritized genes at the other identified
loci were involved in processes related to cell cycle regulation, such as apoptosis. Genetic
correlation analyses indicated a strong positive correlation among SNPs for AMH levels
and SNPs for age at menopause (r, = 0.82, FDR = 0.003). Exploratory MR analyses did not
support a causal effect of AMH on breast cancer or polycystic ovary syndrome risk, but
should be interpreted with caution as they may be underpowered and validity of genetic
instruments could not be extensively explored. In conclusion, we identified one variant in
the AMH gene and three other loci that are associated with inter-individual variation in

circulating AMH levels in women.

In Chapter 7 we used these four AMH SNPs to explore whether the relation between
circulating AMH levels and cardiometabolic disease risk could be causal, using a MR
approach. We included outcome data for coronary artery disease, ischemic stroke and
type 2 diabetes of female participants of the UK Biobank, the Stroke Genetics Network,
and DIAMANTE consortia, respectively. Our results did not support a causal effect of
circulating AMH levels on coronary artery disease (OR,,,, = 1.13, [95% CI: 0.95 — 1.35]),
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ischemic stroke (OR,,, = 1.11, [95% CI: 0.83 — 1.49]), or type 2 diabetes (OR,,, = 0.98,
[95% CI=0.87 - 1.10]) in women. After adjustment for multiple testing, we observed that
higher genetically predicted AMH levels were associated with a later age at menopause and
a later age at menarche in the UK Biobank, but not with intermediate traits on the causal
pathway between AMH and cardiometabolic disease, such as subclinical atherosclerosis
or HbAlc and glucose levels. These results do not provide evidence for a causal effect of
circulating AMH levels on coronary artery disease, ischemic stroke and type 2 diabetes in
women, although we cannot exclude the possibility of weak instrument bias that may have

biased our results towards the null.

In Chapter 8 we discuss the main challenges that we encountered during the interpretation
of the results from the preceding chapters. We also provide recommendations for future
research on the role of AMH in the etiology of cancer, and cardiometabolic diseases. In our
view, future epidemiological research should go hand in hand with fundamental research
to reveal whether AMH actually plays a role in the pathophysiology of these diseases. The
findings presented in this thesis lay a valuable scientific foundation for such research, but
in itself do not provide definitive evidence in favor, nor against, a causal role of endogenous

AMH in the etiology of different cancer types and cardiometabolic diseases.
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De term ‘reproductieve veroudering’ verwijst naar het afhemen van zowel het aantal eicellen
als de kwaliteit daarvan tot het moment dat vrouwen in de overgang komen. Reproductieve
veroudering is in verband gebracht met het risico op verschillende ziekten, waaronder
borstkanker, hart- en vaatziekten en diabetes type 2. Of reproductieve veroudering
daadwerkelijk een oorzakelijke rol speelt in het ontstaan van deze ziekten, en welke
biologische processen hieraan ten grondslag liggen, is nog niet helemaal duidelijk. Anti-
Miiller hormoon (AMH) is een hormoon dat bij vrouwen geproduceerd wordt door de
eiblaasjes in de eierstokken. AMH speelt tijdens de zwangerschap een belangrijke rol
bij de geslachtsontwikkeling van het embryo. In eerste instantie werd gedacht dat AMH
geen functie meer had na dit proces. Echter, receptoren waaraan AMH kan binden blijken
aanwezig te zijn in verschillende organen. Het is daarom mogelijk dat AMH de relatie
tussen reproductieve veroudering en het risico op bovenstaande ziekten verklaart. In dit
proefschrift is onderzocht of AMH-concentraties gemeten in het bloed een (oorzakelijk)

verband hebben met het risico op kanker, diabetes type 2 en hart- en vaatziekten.

De eerste twee hoofdstukken in dit proefschrift gaan over het verband tussen AMH-
concentraties in het bloed en het krijgen van kanker. In hoofdstuk 2 wordt een systematisch
overzicht gegeven van de huidige epidemiologische bevindingen met betrekking tot de
relatie tussen AMH-concentraties en het risico op verschillende soorten kanker. In dit
overzicht hebben we 12 eerder gepubliceerde studies opgenomen die één van de volgende
kankersoorten onderzochten: borst-, eierstok- en baarmoederkanker, lymfomen, niet-
gynaecologische tumoren, kanker bij kinderen en prostaatkanker. Vijf van deze studies
maten AMH-concentraties jaren voordat de diagnose kanker gesteld werd en de andere
zeven studies maten AMH-concentraties na de diagnose, maar voor het begin van de
behandeling. Op basis van deze twaalf studies concludeerden we dat er bewijs is voor een
relatie tussen hogere AMH-concentraties en het risico op borstkanker, en dat er momenteel
weinig bewijs is voor een relatie met andere kankersoorten. Analyses binnen verschillende
leeftijdsgroepen suggereerden dat hogere AMH-concentraties in jongere vrouwen mogelijk
ook geassocieerd zijn met een hoger risico op eierstok- en baarmoederkanker, hoewel op
basis van het kleine aantal vrouwen in deze analyses geen definitieve conclusies getrokken
kunnen worden. AMH-concentraties gemeten tussen diagnose en behandeling waren lager
in vrouwen die gediagnosticeerd waren met kanker vergeleken met gezonde vrouwen.
Echter, omdat de meeste studies die AMH-concentraties maten in de periode tussen
diagnose en behandeling een slechte studie-opzet hadden, konden we op basis van deze
zeven studies niet tot harde conclusies komen over de relatie tussen kanker en AMH-

concentraties gemeten ten tijde van de diagnose.
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Omdat er dus nog veel onduidelijkheid is over de relatie tussen AMH en kanker, hebben wij dit
verder onderzocht in hoofdstuk 3. Eerst onderzochten we de relatie tussen leeftijdsspecifieke
AMH-concentraties en het risico op kanker. Daarnaast gebruikten we meerdere AMH
metingen per studiedeelnemer, om per persoon te schatten hoe AMH afneemt tijdens het
ouder worden. Hoewel is aangetoond dat deze leeftijd-gerelateerde AMH-trajecten verschillen
tussen vrouwen, namen voorgaande studies slechts één AMH meting per studiedeelnemer
mee. Vanwege deze individuele verschillen in AMH-trajecten, hebben we in hoofdstuk 3
onderzocht of leeftijd-gerelateerde AMH-trajecten verschilden tussen vrouwen die kanker
ontwikkelden en vrouwen die geen kanker ontwikkelden. Voor dit onderzoek gebruikten
we gegevens van 3.025 vrouwelijke deelnemers uit de Doetinchem Cohort Studie. AMH-
concentraties werden iedere vijf jaar gemeten in het bloed gedurende een periode van 20
jaar, wat resulteerde in een totaal van 11.655 metingen die geanalyseerd konden worden.
We onderzochten het verband tussen AMH-concentraties en het ontstaan van alle vormen
van kanker samen, maar ook apart voor borstkanker, tumoren in andere weefsels waarin de
AMH-receptor AMHR?2 aanwezig is, en tumoren in weefsels waarin AMHR?2 niet aanwezig
is. Leeftijdsspecifieke AMH-concentraties gemeten in bloed afgenomen aan het begin van
de studie toonden geen verband met deze vier uitkomsten. Omdat AMH-concentraties sterk
beginnen te dalen vanaf 40 jaar, en omdat er minder variatie zit in AMH-concentraties vanaf
deze leeftijd, onderzochten we de relatie tussen AMH en het ontstaan van kanker ook in de
subgroep vrouwen die 40 jaar of jonger was aan het begin van de studie. Analyses binnen
deze groep van 1.543 jongere vrouwen bevestigden resultaten van voorgaande studies die
aantoonden dat hogere AMH-concentraties geassocieerd waren met een hoger risico op
borstkanker. Analyses waarin we leeftijd-gerelateerde AMH-trajecten vergeleken tussen
vrouwen die kanker kregen en vrouwen die geen kanker kregen, suggereerden dat AMH-
concentraties rond de leeftijd van 30 jaar mogelijk hoger zijn, en daarna mogelijk sneller dalen
in vrouwen die gediagnosticeerd worden met kanker. Echter, een daadwerkelijk verschil in
leeftijd-gerelateerde AMH-trajecten tussen deze twee groepen kunnen we op basis van onze

resultaten niet bewijzen.

Slechts een beperkt aantal studies hebben de relatie tussen AMH-concentraties in het bloed
en het risico op hart- en vaatziekten en diabetes onderzocht, en produceerden tegenstrijdige
resultaten. Daarnaast maten voorgaande studies AMH-concentraties en deze ziekte-
uitkomsten op hetzelfde moment, waardoor het onduidelijk blijft of AMH daadwerkelijk een
rol kan spelen in het ontstaan van hart- en vaatziekten en diabetes. Daarom onderzochten we
de verbanden tussen leeftijdsspecifiecke AMH-concentraties aan het begin van de studie, en
leeftijd-gerelateerde AMH-trajecten, en het risico op diabetes type 2 met behulp van gegevens
van de Doetinchem Cohort Studie. We gebruikten hiervoor dezelfde aanpak als beschreven

voor hoofdstuk 3. De resultaten van deze analyses zijn beschreven in hoofdstuk 4. In de
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totale groep van 3.293 vrouwen ontwikkelden er 163 vrouwen diabetes type 2, gedurende
een periode van 20 jaar. Vrouwen met lagere leeftijdsspecificke AMH-concentraties aan
het begin van de studie hadden een hoger risico op het krijgen van diabetes type 2. Er was
geen duidelijk verschil in leeftijd-gerelateerde AMH-trajecten te zien tussen vrouwen die
diabetes type 2 ontwikkelden en vrouwen die geen diabetes ontwikkelden. Hoewel onze
resultaten suggereerden dat er een relatie tussen AMH-concentraties en diabetes type 2 is,
moet toekomstig onderzoek uitwijzen of AMH daadwerkelijk een oorzakelijke rol speelt in

het ontstaan van diabetes.

Het verband tussen AMH-concentraties en het risico op hart- en vaatziekten en diabetes is
met name in vrouwen onderzocht. Echter, omdat AMH ook meetbaar is bij mannen, is het
mogelijk dat AMH een rol zou kunnen spelen in het ontstaan van hart- en vaatziekten bij
zowel mannen als vrouwen. Om deze reden hebben we in hoofdstuk 5 onderzocht of er een
verband is tussen AMH-concentraties in het bloed en een beginnend stadium van hart- en
vaatziekten in Nederlandse middelbare en oudere mannen. We gebruikten gegevens van 394
studiedeelnemers om de relaties tussen AMH en slagadervernauwing, vaatstijfheid, diameter
van de buikslagader en het 10-jaars risico op coronaire hartziekten, alle gemeten aan het
begin van de studie, te onderzoeken. Daarnaast onderzochten we de relatie tussen AMH-
concentraties gemeten in bloed afgenomen aan het begin van de studie en slagadervernauwing,
slagaderverkalking, vaatstijfheid en 10-jaars risico op coronaire hartziekte gemeten na ruim
8,5 jaar. Onze resultaten suggereerden dat hogere AMH-concentraties geassocieerd waren
met een mindere mate van slagadervernauwing aan het begin van de studie. Verder waren
hogere AMH-concentraties geassocieerd met minder slagaderverkalking na ruim 8,5 jaar,
onafhankelijk van de mate van slagadervernauwing aan het begin van de studie. Hoewel
hogere AMH-concentraties ook verband hielden met een lager 10-jaars risico op coronaire
hartziekte, verdween dit verband na correctie voor geslachtshormonen. AMH-concentraties
waren niet geassocieerd met diameter van de buikslagader en vaatstijfheid gemeten aan het
begin van de studie, en ook niet met vaatstijfheid en 10-jaars risico op coronaire hartziekte
na ruim 8,5 jaar. Kortom, er is mogelijk wel een verband tussen AMH-concentraties en
veranderingen in de structuur van de vaatwand, maar onze resultaten duiden niet op een

verband met veranderingen in de functie van de vaatwand.

Een vraag die onbeantwoord bleef na afronding van bovenstaande studies was, of AMH
daadwerkelijk een oorzakelijke rol speelt bij het ontstaan van de onderzochte ziekte-uitkomsten.
Het vergaren van meer kennis over de genetische variatie en biologische mechanismen die ten
grondslag liggen aan de variatie in AMH-concentraties tussen personen, kan meer inzicht
opleveren in de mogelijke processen waardoor AMH betrokken is bij het ontstaan van
kanker, hart- en vaatziekten en diabetes type 2. Bovendien kunnen genetische varianten die

geassocieerd zijn met AMH-concentraties gebruikt worden om effecten van AMH op ziekte-



Nederlandse samenvatting

uitkomsten te besturen met behulp van Mendeliaanse randomisatie analyses. Om dergelijke
genetische varianten voor AMH-concentraties te vinden, hebben we in hoofdstuk 6 een
genoomwijde associatie studie (GWAS) uitgevoerd. Voor deze studie gebruikten we gegevens
van zeven studies, en in totaal van 7.049 premenopauzale vrouwen van Europese afkomst;
meer dan twee keer zoveel als in de vorige AMH GWAS. We vonden vier posities op het
DNA die samenhingen met AMH-concentraties: het reeds bekende signaal in het MCMS gen,
en drie nieuwe signalen in of in buurt van de AMH, TEX41 en CDCA7 genen. Het sterkste
signaal was een genetische variant in het AMH gen (rs10417628). Van de genen die mogelijk
de andere drie signalen veroorzaakten, waren de meeste betrokken in celcyclus processen,
zoals celdood. Verder vonden we een sterke positieve correlatie tussen genetische varianten
voor AMH-concentraties en genetische varianten voor menopauzeleeftijd. Verkennende
Mendeliaanse randomisatie analyses duidden niet op een oorzakelijk effect van AMH op
het risico op borstkanker of polycysteus ovarium syndroom. Echter, deze resultaten moet
voorzichtig geinterpreteerd worden vanwege de mogelijk beperkte statistische power om een
echt effect aan te kunnen tonen, en vanwege de beperkte mogelijkheid om validiteit van de
analyses te garanderen. Kortom, we hebben een genetische variant in het AMH gen en drie

andere genetische varianten voor AMH-concentraties in vrouwen ontdekt.

In hoofdstuk 7 hebben we de vier genetische varianten uit hoofdstuk 6 gebruikt om, met
behulp van Mendeliaanse randomisatie analyses, te verkennen of AMH-concentraties mogelijk
oorzakelijk geassocieerd zijn met hart- en vaatziekten en diabetes type 2. Voor deze analyses
hebben we gegevens van de UK Biobank, the Stroke Genetics Network en DIAMANTE
studies gebruikt om het effect van AMH op coronaire hartziekten, ischemische beroerte en
diabetes type 2, respectievelijk, te onderzoeken. We vonden geen bewijs voor een oorzakelijk
effect van AMH-concentraties op deze drie ziekte-uitkomsten bij vrouwen. Onze resultaten op
basis van gegevens van de UK Biobank suggereerden wel dat genetische varianten voor hogere
AMH-concentraties geassocieerd waren met een hogere menopauzeleeftijd, en met een latere
leeftijd waarop de eerste menstruatie plaatsvond, maar niet met factoren die het risico op hart-

en vaatziekten en diabetes beinvloeden, zoals slagadervernauwing, HbAlc en glucose.

In hoofdstuk 8 bespreken we de voornaamste uitdagingen met betrekking tot de interpretatie
van de resultaten beschreven in hoofdstuk 2 tot en met 7. Daarnaast doen we aanbevelingen
voor toekomstig onderzoek naar de rol van AMH bij het ontstaan van kanker en hart- en
vaatziekten. Wat ons betreft, moet toekomstig epidemiologisch onderzoek hand in hand
gaan met fundamenteel onderzoek om te achterhalen of AMH inderdaad een effect heeft
op het ontstaan van deze ziekten. De bevindingen beschreven in dit proefschrift leggen
een waardevolle wetenschappelijke fundering voor dergelijk onderzoek, maar vormen
opzichzelfstaand geen doorslaggevend bewijs voor, 6f tegen, een oorzakelijk verband tussen

AMH en het ontstaan van verschillende soorten kanker en hart- en vaatziekten en diabetes.
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Dankwoord

Aangekomen aan het einde van dit proefschrift, en daarmee ook het einde van mijn
promotietraject, wil ik graag iedereen bedanken die heeft bijgedragen aan de inhoud van
dit boek(je) en iedereen die mij de afgelopen 4 jaar op iedere andere mogelijke manier heeft

aangemoedigd en gesteund. Een aantal mensen wil ik graag in het bijzonder bedanken.

In de eerste plaats wil ik alle studiedeelnemers die hun gegevens beschikbaar hebben

gesteld voor het onderzoek in dit proefschrift bedanken.

Prof. dr. ir. Y.T. van der Schouw, prof. dr. C.H. van Gils, dr. N.C. Onland-Moret,
beste Yvonne, Carla en Charlotte, 2 jaar lang vrijwel iedere week overleg met het complete
promotieteam was natuurlijk super luxe. Bedankt voor alle inhoudelijke discussies, feedback

en support.

Yvonne, het blijft voor mij een raadsel hoe jij je volle mailbox zo managet dat er altijd
een snel antwoord komt op belangrijke mailtjes. Ook jouw feedback op manuscripten
kwam vaak al de volgende dag binnen. Mede daardoor hebben we afgelopen zomer in een
sneltreinvaart het laatste artikel voor mij proefschrift kunnen schrijven, iets wat ondanks

het hoge tempo een enorm leuke ervaring was.

Carla, jij voelde gedurende de afgelopen jaren feilloos aan wanneer ik wat extra
aanmoediging nodig had, en wist daarvoor altijd de juiste woorden te vinden. Jouw input
op mijn genetische papers hebben ervoor gezorgd dat ze voor een bredere doelgroep te
volgen zijn. Bovendien kon ik mede dankzij jou meteen aan de slag als postdoc in een groep

waar ik helemaal op mijn plek ben.

Charlotte, wat ons beiden betreft is de AMH GWAS de kers op dit proefschrift. Ik vind het
ontzettend gaaf dat ik dit project samen met jou heb kunnen opzetten en uitvoeren. Ook op

onze inhoudelijke een-op-een discussies kijk ik met veel plezier terug.

Dr. S.L. Pulit, lieve Sara, you sparked my interest in - and passion for - genetic epidemiology
even before I started my PhD. Even though you were no member of my supervisory team,
you were definitely member of team Renée. Thank you that your door was always open to
discuss science and overly ambitious project plans. You taught me so much about doing
research, supervising and positive reinforcement (babysteps). Thank you for everything,
but above all thank you for your friendship. I really hope that it will be possible — either

online or offline — to have you stand beside me as paranymph.
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Geachte leden van de beoordelingscommissie, prof. dr. ir. Hester den Ruijter, prof. dr.
Dorret Boomsma, prof. dr. ir. Roel Vermeulen, prof. dr. ir. René Eijkemans en prof.

dr. Bart Fauser, hartelijk bedankt voor het lezen en beoordelen van dit proefschrift.

Mijn dank gaat tevens uit naar alle samenwerkingspartners; jullic hebben de artikelen
in dit proefschrift naar een hoger niveau getild. To all AMH GWAS collaborators, thank
you for your efforts and feedback. In het bijzonder wil ik Rebecca Stellato bedanken.
Rebecca, bedankt voor jouw onmisbare hulp bij alle gepubliceerde - en alle niet-
gepubliceerde - geavanceerde analyses voor hoofdstuk 3 en 4. En natuurlijk ook bedankt
voor de grammaticale revisies van manuscripten en de oprechte complimenten die je met

je feedback meestuurde. Jij maakt complexe statistiek zoveel leuker.

Joke Metselaar-van den Bos en Zorica Slijepcevic, jullie wil ik hartelijk bedanken voor
alle hulp bij het organiseren en het daadwerkelijk verzamelen van de EPIC-NL samples voor
genotypering met de GSA-array. Joke, ik zal nooit vergeten dat we samen de -40 vriezer bij
het RIVM in zijn gedoken om de laatste samples te halen. Henk van Kranen, dank voor alle
keren dat je te hulp schoot met de sleutels. Ruard, Floris, Jolien, Anniek, Sharon, Linda
en Nanne, zonder jullie raapskills hadden we nooit zo snel alle samples uit de vloeibare

stikstof kunnen vissen. Bedankt voor jullie inzet, alle leuke gesprekken en kopjes koffie.

Dear Hanbin, thank you for being such an enthusiastic and motivated student. I am very
proud of the work that you put in your MSc research project, and even more on your
perseverance during the pandemic. Reading the happy comments in your R scripts still
makes me smile. I look forward to following your future career moves, may it be in academic

research or another field.

Dear colleagues in the Schmidt group, thank you for the warm welcome, the nice virtual
coffee breaks and inspiring discussions. I am looking forward to all the exciting future

research projects by - and with - you.

Leden van het junioren oncologie overleg, het Geoffrey Rose overleg, de Mendelian

randomization meeting en de Stat Gen meeting, bedankt voor alle leerzame momenten.

Lieve (oud)mede-promovendi, bedankt voor alle goede gesprekken en gezelligheid.
Promoveren was zoveel minder leuk geweest zonder jullie! De (foute kersttrui)borrels en

promovenski’s had ik voor geen goud willen missen.

Lieve Lisette en Linda, dank jullie wel voor de openhartige gesprekken; zowel de werk-
gerelateerde als persoonlijke. Lisette, ik kan met niemand anders zo hard lachen om flauwe

(Ryan Gosling) statistiekgrappen of gewoon om het woord four. Linda, het was altijd een
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feestje om met jou op kantoor te zitten - zelfs als we allebei onze dag niet hadden. Tk mis

ons gezamenlijke kopje koffie om de werkdag mee te beginnen.

Lieve Alicia en Annemarijn, ik kan me niet voorstellen hoe ik de laatste maanden was
doorgekomen zonder ons virtuele Slack kantoor en natuurlijk onze writing retreat. Alicia,
jouw gedrevenheid werkt aanstekelijk. Annemarijn, op vrijdagen een fysiek thuiskantoor

met jou delen is het hoogtepunt van de week. Dank jullie wel voor alles!

Lieve Katrien, bedankt voor alle schrijfochtenden, peptalks, borrels en natuurlijk voor het
van Geuns weekstartbord. Jouw telefoontjes in de laatste dagen voor mijn deadline waren

precies wat ik nodig had.

Dear Marian, thank you for your great laugh, for dancing (Bachata) together, and for all
the gezelligheid. We should definitely join forces and do something cool and fun together
after you finished your PhD!

Dear Liliana, I am not sure whether I even would have started a research master if you had
not joined the Experimental Virology lab in Groningen. Tu eres mi modelo a seguir por tu

perseverancia y una increible cientifica y amiga.

Work hard, play hard; lieve Veerle en Danique, met jullie stoom afblazen na een drukke
werkweek zorgde dat ik er weer even tegenaan kon. Ik kijk uit naar het eerstvolgende feestje
waarop we lekker met de voetjes van de vloer kunnen! Worst case scenario moeten we toch

maar wat vaart maken met onze eigen borrelboot voor kleinschalige feestjes.

Jesse, lieve buddy, onze vriendschap ontstond aan het begin van mijn PhD avontuur. Koffie
halen was altijd één groot feest, en om 16.00 uur kreeg ik steevast een shot motivatie bij
mijn laatste kopje. Wat hebben we veel meegemaakt de afgelopen jaren; jij was er altijd
als ik je nodig had en ik kan niet onder woorden brengen hoe dankbaar ik je daarvoor ben.
Dat jij 11 maart als paranimf naast mij in het Academiegebouw - of voor de webcam - staat

en we weer eens een (klein) feestje kunnen vieren, is iets waar ik enorm naar uit kijk.

Lieve familie Jurriens, lieve Ad, Nicolette, Lonne, Karlijn en Liselotte - en Daniélle
natuurlijk! -, jullie zijn als familie. Dank jullie wel voor alle fijne momenten en jullie

oprechte interesse.

Lieve Arie, Marja, Angélique, Mark, Cas en Luc, ik had nooit gedacht dat ik met zoveel
plezier naar mijn schoonfamilie zou gaan. Ook jullie bedankt voor alle interesse en support,
en voor alle fijne momenten met elkaar. Arie, ik verwacht dat jij het kan overnemen als ik

flauwval — ook al zit je in het (virtuele) publiek.
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Lieve papa, mama en Manon: anyplace, anywhere, anytime - wat er ook gebeurt jullie
staan altijd voor me klaar. Niets is te gek, zelfs afreizen naar de Verenigde Staten aan het
begin van de pandemie niet. Zus, dank je wel voor al jouw out-of-the-academic-box advies.
Hoewel ik er altijd eerst even over na moet denken, zorgen jouw inzichten ervoor dat ik weer
met een frisse blik verder kan. Mama, wat geniet ik van onze schaterlach-buien, bijvoorbeeld
als je ‘genoom’ in mijn Nederlandse samenvatting aanpast naar ‘gnoom’. Papa, ik vind de
omslag prachtig, dank je wel. Lieve ouders en zus, jullie hebben mij altijd aangemoedigd

om het beste uit mezelf te halen. Dank jullie wel voor alles.

Lieve Arjan, van sporadische danspartner, naar partner, naar alles-in-¢én vanwege de
(gedeeltelijke) lockdowns. Wat ben ik blij dat jij er altijd voor me bent; zonder jou had ik
niet zo gefocust aan de laatste loodjes kunnen werken. Dank je wel voor de inhoudelijke
discussies over de onderliggende biologie, voor al je liefde, steun en aanmoediging. Ik ben

blij dat je — bijna — altijd gelijk hebt (en dat ik — bijna — altijd je advies ter harte neem).
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