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1 Introduction

1.1 Brief history of magnetism

The understanding of magnetism has played a leading role in hu-
man behavior, from the compass used in the Chinese dynasties to
the Giant Magnetoresistance being the fundamental ingredient of
the hard disk drives in the current age of information. In this thesis
we try to understand new phenomena in magnetic materials which
hopefully lead to new applications for the future. In this section
we will first lead you along the magnetic milestones and then go
more in depth into ferromagnetism and atomic models.
Permanent magnets have been known to humankind in ancient
Greece, China and the Americas in the form of lodestones (Fe3Oy).
Around 20BC - 20AD, the first usage for these “magic” stones was
found in China where they used a magnetic rod to point along the
earth’s magnetic field. The first artificial magnets were found by
heating up Iron (Fe) to above the Curie temperature and aligning
to the earth magnetic field in 1064 by Zheng Gongliang [1]|. Also,
in what is regarded as the first scientific text treats magnets, W.
Gilbert deduced that the compass aligns to the earth’s magnetic
field 2], and is not steered by the stars, as was thought before.
In the 19th century big steps were made in the understanding of
electromagnetism: Orsted found out that a current-carrying elec-
tric wire yields a magnetic field, which was quickly adapted by
Ampere and Arago who coiled such a wire and create an electro-
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magnet. This research pinnacled to the Maxwell equations in 1864
[3]. By now, the framework of electromagnetism is known. But,
currently there is still a lot of active research in the field of perma-
nent magnetism, especially considering magnetic multilayers. In
this thesis we will study the effects of such magnetic multilayers.

To further explain permanent magnets we need to differentiate
three types of magnetism. Diamagnetism implies a repulsive re-
action to an applied magnetic field, Paramagnetism is associated
with an attraction to an external magnetic field and lastly, fer-
romagnetism has a magnetic field independent of an applied field
[4]. In this thesis we are investigating materials with ferromag-
netic properties. An atomic theory of (ferro)magnetism should
describe two distinct phenomena: hysteresis under an applied field
and spontaneous magnetization below the Curie temperature. In
Fig. 1.1 we show typical curves for both phenomena. The first fit-
ting theory to describe permanent magnetism and agreeing with
both phenomena was by Pierre Weiss in 1906 [5]. He made two as-
sumptions: First, that the atom’s magnetic dipole prefers to align
with each other over (lower) thermal fluctuations, explaining the
temperature dependence of magnets. Second, that group of atoms
align in domains, and these domains are pointing in random di-
rections meaning that the total magnetization would be zero. By
applying an external magnetic field the domains would gradually
align and this explains the hysteresis loop. These assumptions were
made by Pierre Weiss without any foundation, but we now under-
stand that this is a good physical picture of atomic behavior in
magnetic systems.

The internal magnetic field in the Weiss model was multiple
orders of magnitude larger than the total magnetization, which is
greater than any field measured outside a magnet. To give this
a satisfactory explanation we need to include quantum physics.
The key ingredient which quantum physics includes in the atomic
model of ferromagnetism is spin of the electrons. Each atom caries
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Figure 1.1: (a) magnetic hysteresis loop and (b) temperature de-
pendence of an magnet showing the critical Curie temperature.

a magnetic moment originating from electrons orbiting around the
nucleus and the quantum mechanical spin. It turns out that the
contribution of the spin is far stronger than this orbital angular
momentum. Therefore, permanent magnets are truly a quantum
mechanical phenomenon. This claim is made even stronger by Niels
Bohr and Hendrika van Leeuwen who proved that magnetism in
classical physics is impossible altogether |6, 7.

Paramagnetism and ferromagnetism are comparable in that
their atoms have non-zero magnetic moments, but the difference
between the two is that the average moment of all spins is zero
in the paramagnetic case and non-zero in the ferromagnetic case.
To describe where this difference is coming from, we have to look
at the interactions between the atoms. These interactions are the
Heisenberg exchange interaction, where neighboring spins favour
to align. The hamiltonian of Heisenberg exchange is written as:

H=-7Y 8-S (1.1)
(i)
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where S; are the spins of the atoms, J is the strength of the Heisen-
berg exchange interaction and (i, j) refers to a summation over
neighboring spins only. We have a richness of models following
from the Heisenberg model. J > 0 is the ferromagnetic case. But
for J < 0 you get antiferromagnetic, or when considering two type
of spins: ferrimagnetic systems (see Fig. 1.2).

As in the Weiss model, the spins in the J > 0 Heisenberg model
align, but in experimental settings domains form because of dipole-
dipole interactions. To have a macroscopic magnetization we have
to break the rotation symmetry of the spins. We do this by adding
an external magnetic field

H=B-Y S, (1.2)

where B is the strength of the magnetic field. Furthermore, certain
materials have anisotropic behavior originating from the crystalline
structure of the atoms or the shape of the material itself. Because
of this anisotropy, the domains formed by dipole-dipole interactions
have a preferred direction for their spins, for example either up or
down. This symmetry is broken easier and thus these materials
can be natural permanent magnets below the curie temperature.
Around 1930 the consensus was that most physics describing
the quantum mechanical effects in condensed matter were consid-
ered known. Dirac even went far as saying: "The underlying physi-
cal phenomena necessary for a mathematical explanation of a large

CHETEEE SRR el e T

J>0 J<0 J<0

Figure 1.2: Ordering of spins in a Heisenberg model which is (a)
ferromagnetic (J > 0), (b) antiferromagnetic (J < 0), (c) ferri-
magnetic.
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part of physics and all of chemistry are now understood in prin-
ciple, the only difficulty being that the exact application of these
laws leads to equations much too complicated to be soluble” [8]. In
this thesis we are still busy trying to solve the much too compli-
cated equations and say something about state of the art magnetic
compounds.

1.2 Antiferromagnetism

One of the applications of the Heisenberg model occurs as we con-
sider the model for J < 0. Here, all spins are oriented in an alter-
nating order in the ground state, as drawn in Fig. 1.2 (b). This
is referred to as Antiferromagnetic or Néel ordering, named after
Louis Néel who first described this in 1936 [9] and was awarded
a Nobel prize for this. Antiferromagnetism was postulated before
experimental observation, this was found later in Mn™* [10]. Since
then it has been found in multiple materials, such as Cr, MnO and
NiO [10-12]. But Louis Néel was not very hopeful for use of the
materials, he wrote in his Nobel price speech: “They (antiferromag-
netic materials red.) are extremely interesting from the theoretical
viewpoint but do not seem to have any applications.” Neverthe-
less, multiple practical applications are found today. Lately, AFM
materials have gotten a lot of attention in the spintronics com-
munity since they are relatively robust against external magnetic
fields [13]. Furthermore, one of the most well known applications
is the Giant Magneto Resistance (GMR), which we will treat later.
GMR is dependent on Synthetic Antiferromagnets.

1.2.1 Synthetic Antiferromagnets

Synthetic antiferromagnets (SAFs) consists of ferromagnetic layers
with a spacer of normal metal in between. For clarification we
show a cartoon of this in Fig. 1.3. The ferromagnetic layers are
coupled by spin dependent Ruther-Kittel-Kasuya-Yosida-coupling
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Figure 1.3: Schematic drawing of a Synthetic Antiferromagnet

(SAF).

interaction

(RKKY-coupling). This can be either positive or negative, depen-
dent on the size of the spacer [14-18|. The advantage of SAFs is
that we can engineer them such that their properties are suitable
for applications. Furthermore, we can influence the SAFs, e.g. by
applying pressure [19, 20| or an electric field [21], such that their
properties are tunable: we can increase/decrease the interlayer cou-
pling or even switch the sign of the coupling. In this thesis we show
multiple examples of how SAFs can be used to influence magnetic
textures.

1.3 Information carriers

While society is getting more dependent on information technol-
ogy, new techniques need to be developed to keep up with the
demand. Because, following the famous Moore’s law, also the sup-
ply and demand of computer memory increased exponentially since
the 70’s, as shown in Fig. 1.4, and we do not expect that the cur-
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rent techniques are capable to sustain this growth. Historically
speaking, important computer memory techniques are based on
magnetic materials. One of the most prolific methods is magnetic
tape. This method, best known for recording music, is still used to
this day for backup of digital data of large servers. Magnetic tape
consists of a thin sheet of plastic with on one side magnetic iron
oxide. The information is written on the tape by the magnetization
direction of the iron oxide, e.g. for digital data you can interpret
magnetic domains pointing "up" as ones and pointing "down" as
zeros. This can be read out by leading the tape along a read out
head containing a coil which induces an electrical current from the
magnetic flux of the passing tape. Writing data is possible by re-
versing the order: put an electrical current through the coil and the
induced magnetic field will change the tape’s magnetic structure.

Another magnetic computer memory technique is the bubble
technology. In a two dimensional slab of magnetic garnet, the com-
bination of dipole-dipole interactions and boundary effects lead to
the formation of domains in circular shapes, i.e. bubbles. These
bubbles have a diameter of around 1 pm [23] and have a different
magnetization direction compared to the rest of the otherwise po-
larized slab. In Fig. 1.5 we show a cartoon of such a bubble. The
bubbles can be moved trough the system by an electrical current.
In this way information could be stored and moved around trough
the system. Big advantages of bubble memory are: non volatility,
meaning that the memory remains intact when the power of the
memory is off, and the absence of moving parts, since only a mag-
netic field is needed to operate the memory. In the end, the bubble
memory has never been widely adopted because of the low perfor-
mances compared to its competitors: hard disk drives and flash
memory turned out to be much faster, cheaper and have higher
information density.

Today, modern computer storage consists of hard disc drives
and solid state drives. Here we will focus on the hard disc drives.
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Figure 1.4: Example of a memory analogy of Moore’s law, the
capacity of hard disk drives (HDD) been rising exponentially over
time. Data from [22].
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Figure 1.5: Schematic drawing of isolated magnetic bubbles. Hy is
an external magnetic field, h the thickness of the two dimensional
garnet slab and d the diameter of the bubble. Taken from [24].

They consist of a disc divided in small magnetic domains pointing
in opposite directions, this is all read out or written on by a mag-
netic head comparable to those of the magnetic tape. The head is
mounted on an arm which can move above the disc to reach differ-
ent parts of the disc just like the mechanics of an old record player.
To improve the sensitivity of the read out head, giant magnetoresis-
tance (GMR) is used. This resistance has a very strong dependence
on the magnetic alignment in the head, and by using spin valves
this alignment is easily influenced by an external magnetic field
[25]. Therefore, the read our head is much more sensitive to small
changes of the magnetization in the hard disk. The discovery of
GMR is attributed to Albert Fert and Peter Griinberg [26, 27]. In
GMR multiple magnetic layers are stacked on top of each other to
form a synthetic antiferromagnet. The resistance of such a system
is dependent on the relative magnetization of the layers: parallel
magnetization of the layers gives a higher resistance then anti-
parallel magnetized layers. The difference of the resistance is up
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Figure 1.6: Drawing of the design of a racetrack memory. From
[30].

to 220% |28|, this is considered giant. The principle behind GMR
originates from the scattering of electrons. There are two ways the
electron scatter: First, there is scattering at the surfaces between
the opposite polarized layers. Due to the different polarizations of
the layers there is a strong exhange field around the surface which
is responsible for the scattering. Second, inside the ferromagnetic
layers the electrons scatter from the magnetic atoms, dependent on
the spin of the electron and the atom. By having multiple orien-
tations of ferromagnetic layers the probability to scatter increases.
From a physicist standpoint it is charming to note that GMR is
one of the first applications where spin and charge of electrons is
combined instead of treated separately and can be considered as
the launch of a new field of research: spintronics [29].

One of the new proposals for computer memory is called the
magnetic racetrack memory [30]. This technique has a higher stor-
age density than solid state drives and has a faster read write
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speed than hard drives [31]. Magnetic racetracks brings elements
of the techniques mentioned above together: A long solid strip of
magnetic material can decode computer bytes. The bits are stored
through magnetisation direction just as in the magnetic tape. Only
here, the magnetization pattern is moved through the system by
an electrical current, analogues to how bubbles are moved by an
magnetic field in bubble memory. In a racetrack, the domains can
reach speeds above 1500 m/s [32]. A schematic drawing is shown
in Fig. 1.6. For the pattern to be moved trough the system without
loss of shape and thus information, they need to be very stable.
This is achieved by topological protection, see Section 1.4, either
by a domain wall or by using skyrmions [33], which is a smaller,
more stable bubble. Elemental to creating the topological protec-
tion of the patterns is a layering of magnetic layers just as in a
SAF. Finally, there is an added benefit of the magnetic race track
memory: the magnetic strips can be folded in a U-like structure.
In this way the racetrack uses three spatial dimensions which is
beneficial over other techniques that only use two.

1.4 Topological structures

All research in this thesis can be traced back to the effects of the
Dzyaloshinskii-Moriya interaction, which produces rich and sur-
prising effects in magnetic materials. Dzyaloshinskii-Moriya in-
teraction was first described as an explanation why a-Fe,O3 was
showing weak ferromagnetic behavior despite having an antiferro-
magnetic ordering of its spins. Dzyaloshinskii showed phenomeno-
logically in [34] that spins placed perpendicular to the trigonal axis
with an AFM order have the same symmetry as canted spins which
have a net magnetization perpendicular to the trigonal axis. Writ-
ing out the hamiltonian for this case, we see that it includes the
term

— —

D- [Sz X Sj]v <13)
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Figure 1.7: 1D spin structure only factoring DMI D = (1,0, 0)

which is essential to form the canted spin arrangement, and thus
the weak ferromagnet. Also it proves that the canted spin con-
figuration is the more favorable configuration. Shortly afterwards,
Moriya showed that this effect was coming from the spin-orbit cou-
pling [35]. He described this as the anti-symmetric part of the
anisotropic super exchange interaction, and from his calculations
it is possible to calculate the strength of D which was not possi-
ble with Dzyaloshinskii’s. Later, an interaction of the form as in
Eq. (1.3), was called the Dzyaloshinskii-Moriya interaction, or in
short: DMI.

In 1980 A. Fert showed that DMI is important in doped CuMn
since there is an addition of RKKY interaction of the DMI type
in the interaction between conduction electrons and non magnetic
(heavy metal) particles [36]. Essential in these materials is a Struc-
tural Inversion Asymmetry, often referred to as a broken inversion
symmetry, and a strong spin-orbit coupling. In this thesis we study
materials having these same two requirements.

So how does the DMI influence a simple, understandable sys-
tem? For example, let us take a one-dimensional spin chain. With
classical spins S of unit length who rotate in three dimensions. If
the only interaction between the spins in there is the D= (1,0,0)
DMI, every next spin in the chain wants to orient perpendicular to
the previous spin to minimize the DMI. The direction is always the
same and we end up with a spiral configuration as shown in figure
Fig. 1.7. This spiraling behavior and chirality are the important
takeaways for our thesis which originate from the DMI.
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1.4.1 Domain walls

If we extend our spin chain example from our previous section by
including nearest neighbor exchange interaction and anisotropy we
will get a configuration including polarized domains and so called
domain walls in between them. The nearest neighbor exchange
interaction between two spins, is described in Eq. (1.1) and favors
the spins to be aligned. The anisotropy is written as

K(S.)?% (1.4)

where K is the strength of the anisotropy and 5‘2 is the z-direction
of the spin. This anisotropy favors one axes for the polarized spins
to point along, in this case this is the z-axis and is perpendicular
to the spin chain. Therefore this is referred to as the Perpendicular
Magnetic Anisotropy, or PMA. For a longer spin chain, domains
of spins oriented along both directions of the anisotropy axis will
form, and the border between these domains are thus called domain
walls.

The influence of the DMI is that each domain wall always turns
in the same direction. See Fig. 1.8 for a schematic drawing of such
domain walls. This chirality protects the domains since the walls
can not be continuously deformed such that the wall disappears. In
contrast with two opposite rotating walls, where they can be fused
together to annihilate each other. The mathematical study of ob-
jects that can not be continuously deformed is called topology, and
in physics we say that these domain wall structures are topological
protected. This can be described more rigorously. If we start with
two domain walls in a spin chain with spins pointing up at both
ends, we can map the direction of every spin to an S* configura-
tion, where S! denotes the unit circle. Mathematically speaking,
this mapping is classified by the homotopy group 71 (S') = Z. This
means that we can compute the winding number w of the domain
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wall by
1 L, oOm
W= [ m a—dm (1.5)

where 7 is the continuous magnetization of the spins, m* the
vector perpendicular to the magnetization ! and we integrate in
the direction of the line, x. This winding number is exactly 1 for a
pair of protected domain walls, and 0 if they are not topologically
protected. It is important to notice two things. First, we treat the
magnetization of the spins as two-dimensional, which is valid for
sufficiently large D because the vector D forces the spins to rotate
in one plane only. And second, the integral evaluates to 1 only for
a full rotation, since a well defined system has spins pointing in
the same direction at infinity. Therefore, a single domain wall as
depicted in Fig. 1.8 is only half a rotation and has thus a winding
number of w = 1/2.

There are two kinds of domain walls originating from the DMI.
As one can see from Eq. (1.3) the cross product prefers two neigh-
boring spins to orient perpendicular with respect to each other.
Seen from the first spin S there is a whole plane oriented per-
pendicular. The vector D determines how the second spin S is
oriented in this perpendicular plane. The plane has two dlrectlons.
parallel and perpendicular to the spin chain. For the first parallel
option the vector D= (1,0,0), which leads to a so called Néel do-
main wall, and for the second perpendicular option D= (0,1,0),
we end up with a Bloch domain wall.

1.4.2 Skyrmions

For this section we want to extend our spin chain to a full two-
dimensional magnetic slab with DMI, nearest neighbor exchange,
anisotropy and an external magnetic field. In the case that the

IThere are of course two perpendicular vectors possible, but here we choose
just one.
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Figure 1.8: Schematic drawing of (a) Néel domain wall and (b)
Bloch domain wall
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Figure 1.9: Schematic drawing of three wave vectors of spirals,
oriented towards each other with equally spaced angles between
them. These three spirals together form a triangular vortex lattice.

DMI is large enough magnetic spirals will form and can point,
in principle, in all directions along the slab. If we have three of
those spirals with directions qq, g2 and qs, we can form a lattice
of vortex-like structures by orienting these spirals towards each
other with equally divided angles between the spirals, as drawn in
Fig. 1.9. This vortex lattice is analogous to the Abrikosov lattice
in superconductors. It can be shown that for the right parame-
ters this lattice has a more favorable energy than a stripe pattern
[37]. This vortex structure is solitonic in nature and is called a
skyrmion. In Fig. A.2 we show such a skyrmion structure. Also
here, both options of DMI vectors can give you either Néel or Bloch
skyrmions. Néel skyrmions are formed in thin magnetic films, while
Bloch skyrmions are formed in bulk magnets where the DMI has
a different vector D.

We can map all the spins of a skyrmion to an S? configuration,
just like we could map the spins of a domain wall to an S* structure.
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Figure 1.10: Schematic drawing of a skyrmion and the map of a
skyrmion to a sphere S2.
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We can also calculate a winding number in two dimensions by

1 L (O0m  Om

which gives a value of exactly 1 for skyrmions. You can view the
skyrmion as a two-dimensional extension of the domain wall, but
classified by homotopy group m(S?) = Z. The name Skyrmion
is derived from high energy physics where Tony Skyrme used soli-
tonic solutions in the non-linear o-model to describe a meson field
where topological protected structures emerged as baryons [38].
There is a difference: the high energy skyrmions have homotopy
group 73(S%) = Z and our magnetic skyrmions have the homotopy
group mo(S?%) = 7 [39]. Therefore, some people prefer to refer to
magnetic skyrmions as baby skyrmions instead of just skyrmions.
The topological protection of skyrmions makes them interesting for
the information technologies mentioned in Section 1.3.

The condensed matter skyrmion renaissance started in 2009
with the first detection of Bloch skyrmions in MnSi [40], thereafter
a flurry of new types of materials containing skyrmions was found
such as thin film ferromagnets (Feg 5Cog 551,Fe on Ir(111)) [41, 42],
doped semiconductors (Fe;_,CoxSi for x = 0.2) [43] and also in
helimagnets at higher temperature such as FeGe [44] . Now they
are even found at room temperature which shows their suitability
for technological applications [45]. Furthermore we like to note
here that DMI is not the only way to form skyrmions, it has been
shown that competing Heisenberg exchange interactions in frus-
trated magnets [46], magnets with double-exchange interactions
[47] and quantum hall systems [48, 49] also possess the necessary
properties to form skyrmions.

1.4.3 Hopfions

As we have seen, we can have topological structures in one dimen-
sion and two dimensions, the logical follow-up question would be
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what a three-dimensional topological soliton structure would look
like. We can create such a structure in a three-dimensional fer-
romagnet with nearest neighbor exchange interactions, DMI and
shape anisotropy. A three-dimensional structure itself is a bit dif-
ficult to draw but it is composed as follows: we start with a string
of skyrmions. Now we take one end of this string and twist it a full
revolution, and thereafter join the two ends of the twisted skyrmion
string [50]. This donut-like shape is called a hopfion and is solitonic
by nature. In Fig. 1.11 we plotted the magnetization of two dif-
ferent intersections of a hopfion, where in (a) you can see that the
hopfion is indeed a donut-like shape, and in (b) that the string in
both sides of the donut consists of a skyrmion. On the boundary
of the hopfion the magnetization has to have the same value, in
this case all pointing in the positive z-direction. The topology of
a hopfion is equivalent to a closed ball S3, and the magnetization
is a map classified by the homotopy group m3(S?) = Z. The topo-
logical charge of a hopfion, the Hopf charge, is calculated different
than the previous winding numbers. Here, a magnetic field line
is the line composed of spins pointing in the same direction, i.e.
the line of constant magnetization. In Fig. 1.12 we plotted three
of such lines. The Hopf charge is defined by the number of links
between any of two lines in a structure. Thus, in this case the Hopf
charge is 1. Hopfions can be a promising candidate for information
technologies.
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10
l 0.5
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Figure 1.11: Cut trough of a hopfion in the (a) x-direction and (b)
z-direction.

1.5 Monte Carlo simulations

Most results in this thesis are obtained using Monte Carlo simu-
lations. But what is special about Monte Carlo simulations com-
pared to other numerical methods? The error of most numerical
methods scales with the number of dimensions, d, as N~'/¢ where
N is the number of points of your simulation. As an example, the
number of possible states of a simple Ising spin model goes as 2",
with n the number of spins. And, in this thesis we treat systems
with up to 327.680 spins. Thus, with the speed of our current
computers we would need a lot more patience to simulate such a
system than a 4 year Ph.D. project can provide. Luckily, there
are Monte Carlo simulations where the error scales independent of
the dimensionality as 1/ V/N and is a good method to probe our
systems with extreme high dimensions [51].

Monte Carlo is a probabilistic simulation method. Einstein said
that God does not play dice, but in Monte Carlo simulations we
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Figure 1.12: Schematic drawing of a skyrmion and the map of a
skyrmion to a sphere S2.
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X X

Figure 1.13: Schematic drawing of (a) a Riemann integral where
the area under the continuous curve is approximated by a finite
sum of N rectangles, and (b) a Monte Carlo simulation calculating
the same area under the curve, where we approximate this by the
ratio between the total number of points, N, and the number of
points under the curve (green).

use this dice to say something about physics. Where people in the
Monte Carlo casino bet on the random outcomes of the die, we
use these random numbers to estimate integrals and sums. For
example, we can estimate the area under a curve by mapping the
random outcome of the die on coordinate system, and then count
the number of random coordinates placed under or above the curve,
as drawn in Fig. 1.13. But, to determine the partition function of
a spin system we need more sophisticated methods, for our system
we use methods comparable to the Metropolis algorithm.

Let us explore all of this more rigorously and focus more on
spin systems to explain this Metropolis algorithm. We want to
calculate observables from the partition function,

7 =Y e PP (1.7)
{s:}

where {s;} are all possible spin configurations, § the inverse tem-
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perature 1/(kpT’) dependent on the Boltzmann constant kg and
temperature T, and E; the energy corresponding to spin configu-
ration s;. Now w; = e #Fi can be viewed as the weight of a spin
configuration s; and the probability P;, to find this weight is

1
Psl- = Ee_ﬁEi- (18)

Subsequently, we use this probability to do importance sampling
to speed up the process. Furthermore, for correct sampling of our
physical system we need to obey two conditions. The first condition
is ergodicity, where we need to be able to reach all possible states
in our simulation with a realistic probability. And second, detailed
balance needs to be fulfilled by,

P _P

=7 1.
Pj—n‘ Pz ( 9)

For Metropolis Monte Carlo simulations [52, 53| it is important
that we can view the simulation as a Markov process of all possible
spin configurations. We can do so since the probability to go from
one to another state is

P, = Psi/Ps]- — o BE—E;)

Thus this probability is only dependent on the states s; and s;,
and is independent of all other history, which are the requirements
for a Markov process. On this the Metropolis algorithm is built
where we propose a new spin configuration s; and accept this with
the transition probability

PEi El <0
Poy=40 0 0 (1.10)
1, else

where F;; = F; — E;. In essence, the Metropolis algorithm does
importance sampling using this probability. Furthermore, this al-
gorithm allows us to examine parts of a large phase space that are
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relevant at a chosen temperature. Also, if the starting point of the
simulation is out of equilibrium the systems will thermalize after
enough time.

1.6 This thesis

This thesis consists of three main chapters: In Chapter 2 we con-
sider a two-layer SAF containing skyrmions: two ferromagnetic
layers with DMI, anisotropy and an external magnetic field, cou-
pled by interlayer exchange. Using Monte Carlo simulations we
found the phase diagram for where the skyrmions form and we
found that for a sufficiently large antiferromagnetic coupling the
crystal structure of the skyrmions can change from triangular to
square.

Chapter 3 focuses on SAFs with a varying number of layers.
We describe a system where only DMI, interlayer and intralayer ex-
change interactions are present. The DMI in each subsequent layer
has an opposite sign leading to an alternating pattern. Because of
the presence of this DMI, a spiral magnetic structure forms. We
found three different phases: the first where each layer has a spiral
with a turning sense corresponding to the DMI of the concerning
layer, the second where all spirals have a turning sense correspond-
ing to the average DMI of the whole system and lastly, no spirals
at all.

And finally, in Chapter 4, we return to skyrmions. Here, our
system consists of two ferromagnetic layers, each containing one
skyrmion exactly, coupled by interlayer exchange coupling. We
discuss the dynamic properties of the two skyrmions by using the
principle of least action analytically, and solve the Landau-Gilbert
equation numerically for a ground state obtained by Monte Carlo
simulations. We present the eigenfrequencies of the skyrmions and
discuss them and the influence of the interlayer exchange coupling
on them using both methods mentioned.



2 Structural transitions of
skyrmion lattices in syn-
thetic antiferromagnets

2.1 Introduction

Skyrmions in magnetic materials have been attracting great inter-
est recently. Skyrmions were first introduced in particle physics
and correspond to a classical stationary solution of the equations
of motion with which a topological invariant is associated [38].
Later, such topological configurations were considered in magnetic
systems by Bogdanov and Hubert [37]. Skyrmions can be small,
in the nanometer range, and behave as (pseudo)particles that can
be moved without decaying. Miihlbauer et al. demonstrated their
existence with neutron scattering in MnSi in 2009 [55]. Later,
thin magnetic multilayers proved to be able to possess magnetic
skyrmions [41, 42, 56|. Initially, skyrmions were found at low
temperatures but recently also room-temperature skyrmions have
been created experimentally [45, 57-60]. Due to their solitonic be-
haviour and their rigidity originating from their topological prop-

!The contents of this chapter are based on the work of E. van Walsem, R.A.
Duine, J. Lucassen, R. Lavrijsen and H.J.M. Swagten [54]. EvW, JL, RL, HS
and RD conceived the project. EvW carried out all computations and wrote
the initial manuscript. All authors commented on the manuscrip.
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erties they hold great promise for information technologies [30, 33,
61]. For example, skyrmion race track memory systems are being
developed in which skyrmions act as bits and in which their postion
is manipulated by current [33, 62, 63].

One of the classes of materials for hosting skyrmions are thin
magnetic multilayers, such as Co/Pt, with high perpendicular
magnetic anisotropy (PMA). The PMA is stronger than the in-
plane anisotropy thus providing opportunities for skyrmions since
the spin in the centre of a skyrmion is oriented perpendicular to
the layer as well. Furthermore, Dzyaloshinskii-Moriya interactions
(DM interaction or DMI) are essential for forming skyrmions in
thin magnetic films [34, 35]. DMI needs two conditions to form:
breaking of inversion symmetry and spin-orbit coupling. The
stacking of different materials in the multilayers satisfies the first
condition. To comply with the second condition, heavy metals
such as Pt or Ta are used in the multilayers [64]. DMI can have
different forms. The interfacial DMI that arises in magnetic mul-
tilayers stabilises Néel skyrmions, whereas the bulk DMI, in e.g.
MnSi, stabilises Bloch skyrmions.

Examples of multilayer systems are synthetic antiferromagnets
(SAFs) [65]. SAFs consist of two ferromagnetic multilayers which
are coupled antiferromagnetically through the spin-dependent
RKKY coupling [66-68|. By changing the thickness of the spacer,
the coupling between the layers is oscillatory from antiferromag-
netic to ferromagnetic and the magnitude is also dependent on
the thickness of the spacer [14-18, 69]. Additionally, it has been
shown that the coupling can be tuned with an external electric
field [21]. The interlayer exchange coupling is much weaker than
the exchange coupling within the layers so the antiferromagnetic
order can compete with external fields and anisotropy. Zhang et al.
have shown that SAFs are promising for developing the skyrmion
race track memory because the Magnus force, which influences
the direction of a moving skyrmion, is opposite in the different
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layers and thus cancels out [70]. Furthermore, exchange coupling
between layers has been shown to stabilise skyrmions [60, 71].

In this paper we consider skyrmion lattices in synthetic anti-
ferromagnets. We find that skyrmion lattices still occur for both
synthetic ferromagnetic and synthetic antiferromagnetic coupling,
although in the synthetic antiferromagnetic case a bigger magnetic
field is needed to stabilise skyrmions. In addition, we find a struc-
tural phase transition in the synthetic-antiferromagnetic case from
a triangular lattice to a square lattice. Skyrmion lattices in mul-
tilayer systems usually have a triangular configuration [37, 41, 55]
although examples of square lattices also exist [42]. Similar transi-
tions between triangular and square skyrmion lattices under mag-
netic field have been reported before in MnSi 72|, Centrosymmet-
ric Magnets [73] and 2D layers [74]. In S-Mn-type Cog Zng Mny
the same transition is found for cooling in an applied magnetic
field [75]. Analogous to skyrmions, similar transitions between tri-
angular and square lattices are observed in vortex lattices in two
component Bose Einstein Condensates, where the two components
play the role of the two layers [76]. In contrast to the examples
above, the structural phase transition in SAFs has a possibility to
be tuned in situ by altering the coupling between the layer by an
electric field. Furthermore, in systems where also the DMI varies
between the layers more exotic lattice configurations are achiev-
able. Our research thus forms a route to tailoring skyrmion-lattices
configurations.

In Section 3.2 we discuss our model and the simulations. Af-
ter this we show results of our simulations in Section 3.3 and in
Section 2.4 we discuss these results. Finally, we conclude with an
outlook in Section 3.4.
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2.2 Model and method

We model the two magnetic layers by classical Heisenberg spins
with ferromagnetic nearest neighbour coupling Jyy, easy-axis
anisotropy K along z and the Dzyaloshinskii-Moriya interaction
D. Furthermore, both layers experience a uniform magnetic field
B and are coupled to each other with interlayer exchange .J,. In
each layer the spins are positioned on the basis vectors of the
simple square lattice X, y. We apply periodic boundary conditions
in the x and y-direction and open boundary conditions in the
z-direction. The Hamiltonian is given by the sum of an interlayer
and an intralayer part:

H = Hintra + Hinter' (21)

The intralayer part is expressed as:

Hintra = _ny Z Z S? : (Sff_,_;( + Sg—i—&)

ac{T,B} r
+K ) Y (Se-2)’-B- > Y So
ac{T,B} r ac{T,B} r
=D > ) (Se xS y-SExSiy %), (22
ae{T,B} r

where S denotes a normalised spin at position r in either the
top (a = T') or bottom (o = B) layer. For simplicity we assume
B = Bz to be aligned with the z-axis. The interlayer part is given
by:

Hiter = —J, Z S? : Sf:iz (23)
We use Monte Carlo simulations to investigate the ground state

of this model. In our Monte Carlo simulation a random configu-
ration of spins is generated. In one Monte Carlo step we pick a



2.8. Results 29

random spin and propose a new vector its direction. This vector
is chosen from a cap which size is chosen such that the acceptance
rate in our Metropolis algorithm is 50%. To reach the ground state
and avoid getting trapped in local minima, we use simulated an-
nealing. There we thermalise a system at a high temperature, far
above the critical temperature, and subsequently lower the temper-
ature stepwise until a temperature close to zero is reached. This
proces is done multiple times. The simulations are started at a
scaled temperature of kg7'/Jy = 10, where kg is the Boltzman
constant and 7" is the temperature. At each temperature step the
scaled temperature is lowered by a factor of 0.95 until a value of
kgT/Jy = 0.01 is reached.

2.3 Results
2.3.1 Phases

In this section we address the three types of phases in our simu-
lations: the spiral state, skyrmion state and fully polarised state.
In the spiral state the DMI and exchange dominate. The rotation
direction of the spirals is determined by the DMI, where a positive
DMI leads to clockwise rotating spirals, and thus a negative DMI
to counterclockwise spirals. Furthermore, the wavelength is deter-
mined by the ratio of the DMI and intralayer exchange coupling.
See Fig. 2.1 A for a snapshot of a z-projection of a spiral state. For
an increased external magnetic field we find the skyrmion state.
Skyrmions form in lattices and between the skyrmions spins point
along the external magnetic field, as shown in Fig. 2.1 B. High
external magnetic field can suppress the formation of skyrmions
and subsequently systems containing a small number of skyrmions,
without lattices structure, are found as well. The size of a skyrmion
is determined by the ratio of the DMI and intralayer exchange
coupling and is called the skyrmion pitch size p which is given by
D/Jy, = tan(2w/p). In the polarised state the external magnetic



Chapter 2. Structural transitions of skyrmion lattices in synthetic
30 antiferromagnets

field dominates over the anisotropy and DMI and all the spins in
the system point in the same direction as the external magnetic
field as shown in Fig. 2.1 C.

We determine the skyrmion state from the winding number.
The winding number (also called chirality or topological charge) is
an integer which represents the number of times the spins enclose
an unit sphere. The skyrmion state is recognised as the system with
a nonzero winding number. In the continuum limit the winding
number is expressed as:

1 om Om

where z,y are the directions within the plane and m = (S)/|(S)|
is the magnetisation direction in the system. In Fig. 2.1 we show
the phase diagram, and typical spin configurations of the phases.
Systems with a nonzero winding number possess skyrmions and
thus are indicated as such in the phase diagram. In the phase
diagram we plotted a contour plot of the total winding number of
the system. In our systems the skyrmions have a winding number
of positive one so the total winding number of a system is a measure
for the total number of skyrmions in the system. In lattice systems,
such as described in this paper, the winding number is continuous
instead of integer. We find that in practice the winding number is a
useful tool to distinguish the skyrmion phase from other magnetic
phases.

Upon including the interlayer exchange, we see that in the syn-
thetic ferromagnetic region there is no significant difference com-
pared to the non-interacting picture as shown in figure Fig. 2.2.
Looking at the synthetic antiferromagnetic region we see that the
skyrmion pocket is situated at higher external magnetic field. This
is explained as follows: the spiral state can adjust to the synthetic
antiferromagnetic coupling by shifting the spirals in different lay-
ers half a period with respect to each other without increasing the
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energy. On the contrary, the polarised phase cannot adjust in a
comparable way and needs a higher external magnetic field to ad-
just to the synthetic antiferromagnetic coupling. The skyrmion
state is partly polarised while also having a lattice which can shift
in respect to each other. Our simulations show that the lower
bound of the skyrmion pocket rises considering the energetic ad-
vantage of the spiral state. The higher bound of the pocket rises as
well because of the energy advantage of the skyrmion lattices over
the polarised state originating from the shifting of the skyrmion
lattices with respect to each other.

2.3.2 Structural phase transition

Taking a closer look at the synthetic antiferromagnetic skyrmion
phases we notice that the lattice configurations change from a
hexagonal lattice, Fig. 2.3 a), to a square one Fig. 2.3 ¢). We
determine the lattice configurations of the skyrmions by looking at
the reciprocal lattice which we obtain by taking a two dimensional
Fourier transform of the configuration. A hexagonal lattice show
six equally distributed first order peaks, as shown in Fig. 2.3 b),
where a square lattice shows four Fig. 2.3 d). The spiral phase
is recognisable with having a zero winding number and two peaks
with an angle of 180 degrees between each other. The fully po-
larised state has no nonzero winding number nor a nontrivial re-
ciprocal lattice.

In Fig. 2.4 the phase diagram for different intra-layer exchange
and external magnetic field is shown. It is visible that the skyrmion
pocket location is dependent on the magnetic field in the antiferro-
magnetic intra-layer exchange region as already shown in Fig. 2.2.
This leads to a larger spiral phase in the antiferromagnetic region.
The hexagonal structural phase is dominant in the ferromagnetic
part of the phase diagram and extends in the antiferromagnetic
region: for a large antiferromagnetic intra-layer exchange the lat-
tice configuration changes from hexagonal to square. This square
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Figure 2.1: Phase diagram of the skyrmion pocket for B.Jy,/D?
versus KJy,/D? with J,/Jy=0 at kgT/Jy = 0.01. The colour
scale depicts the winding number. The outer contour line is at
winding number equals 0.5. A, B, C depicts the phases found
on the given locations in the phase diagram, snapshots and phase
diagram are from a 16x16 system with a pitch of p = 8. The
colour in the snapshots depicts the z-component of the spin using
the colorbar in Fig. 2.3.
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Figure 2.2: Phase diagram of the skyrmion pocket for B.Jy,/D?
versus K Jy,/D? at kgT/J, = 0.01 with J,/J5, = 0 (blue), —0.25
(red) and 0.25 (green). The skyrmion pocket is drawn for systems
with a total winding number w > 0.5. It shows that the skyrmion
pocket for J,/Ji, = 0, and 0.25 overlay, and that the skyrmion
pocket for J,/Ji, = —0.25 occurs for higher magnetic field. The
simulated system had a system size of 16x16 spins with a pitch of
p=2_8.
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Figure 2.3: Spin configurations of a 64x64, p = 13, BJy,/D? =
0.56, KJyy/D?* = 0 system at kgT'/J,, = 0.01. Showing a) hexag-
onal lattice configuration with J,/J;, = —0.14, b) the two dimen-
sional Fourier transform of the hexagonal lattice configuration c)
square lattice configuration with J,/Js, = 0.01. d) the two dimen-
sional Fourier transform of the square lattice configuration. From
the Bragg peaks the lattice configuration is classified.

skyrmion lattice occurs only in the antiferromagnetic part.

2.4 Discussion

In this section, we turn to a physical interpretation of our results.
For small skyrmions, skyrmions consisting of a small number of
spins, the skyrmion lattice has a preferred orientation with respect
to the underlying lattice, this can indicate that the skyrmion lattice
is influenced by pinning to the underlying lattice. To test whether
the square lattice configurations originate from this effect we in-
creased the skyrmion pitch by lowering the DMI in our simulations.
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Figure 2.4: Spin configurations of a 16x16 system showing a)
square lattice configuration, b) spiral configuration and c) hexag-
onal lattice configuration. The colour in the snapshots depicts the
z-component of the spin using the colorbar in Fig. 3. d) Phase di-
agram of a two layer SAF for changing interlayer exchange .J,/Jyy
and magnetic field BJy,/D?. The colour blue corresponds to an-
tiferromagnetic ordering between the two layers, and red to fer-
romagnetic ordering. The boundary of the skyrmion phase is in-
dicated by the black lines. The colour scale depicts the smallest
angle found between two peaks in the 2D Fourier Transformation
of the state. The striped phase b) gives an angle of 180°, where the
square lattice configuration a) gives 90° and the triangular lattice
configuration ¢) 60°. This phase diagram is calculated for a 16x16
system with a pitch of p = 8 and K J,y/D? = 0 at kgT'/J,, = 0.01.
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We found that the skyrmion lattices orient independently of the
underlying lattice and that the skyrmion lattice still possesses the
square configuration for increased skyrmion pitch. Moreover, the
periodic boundary conditions do not seem to influence the found
results. Changing the aspect ratio of our systems or changing the
periodic boundary conditions to twisted boundary conditions leads
to no significant change in the skyrmion lattice configurations.

The phase transition between the hexagonal and square skyrmion
lattice can be explained as follows. The spin in the centre of the
skyrmion points in the same direction in both layers, i.e. along the
external magnetic field. Due to the antiferromagnetic interlayer
exchange two skyrmions in different layers favour to be not on top
of each other. Therefore, the skyrmion lattices are shifted relative
to each other such that the skyrmions are positioned such that the
spins in the different layers point oppositely. This implies that the
skyrmion lattices in different layers are each other’s dual lattice.
The dual layer of a hexagonal lattice is a honeycomb lattice, and
the dual lattice of square lattice is a square lattice again. It is not
possible with equal skyrmion densities to form a honeycomb lattice
in the dual lattice of the hexagonal lattice since the skyrmions will
overlap. For a square lattice it is possible to position the skyrmions
in their own dual lattice, which gives an energetic advantage over
the triangular lattice. For a schematic display see Fig. 2.5. To test
our interpretation we change the skyrmion density in one of the
layers by altering the Dzyaloshinskii-Moriya interaction in that
layer. By increasing the DMI, the skyrmion size decreases and the
skyrmion density increases. Our interpretation suggests that the
skyrmion lattice can have a honeycomb configuration in the layer
with altered DMI because the smaller skyrmions do not overlap
anymore. In Fig. 2.6 a snapshot is plotted of a spin configuration
for parameters in the synthetic antiferromagnetic-square lattice
regime but with different DMI for the two layers. Here the trian-
gular lattice configuration manifests in the lower density layer and
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the honeycomb lattice in the higher density layer, confirming our
interpretation of the structural phase transition.

As seen in Fig. 2.4, the structural phase transition occurs
around J,/Jy, = —0.25 for p = 8. By looking at simulations with
larger systems and skyrmion pitch sizes we noted that the phase
transition occurs at different values of intra-layer exchange depen-
dent on the pitch size of the skyrmions. For larger pitch size the
phase transition is at higher intra-layer exchange, e.g. for skyrmion
pitch p = 13 the phase transition is around J,/Jy, = —0.02. While
our finding of the existence of the structural transition appears
thus unchanged for larger system sizes, the precise value of J,/ Jyy
where the transition occurs is dependent on skyrmion size. Be-
cause of the excessive simulation time, we have not attempted
finite-size scaling to determine the thermodynamic limit of the
value of J,/Jy, where the transition occurs.

2.5 Conclusion and Outlook

In this article we studied skyrmions in synthetic antiferromagnets.
We found that skyrmions still occur in bilayer synthetic antifer-
romagnets, but in the synthetic antiferromagnetic case a higher
external magnetic field is needed than in the synthetic ferromag-
netic case or the case without intralayer coupling. Skyrmion lat-
tices in the synthetic antiferromagnetic case shift from a triangu-
lar to a square lattice for increasing interlayer coupling. Both the
interlayer coupling and the external field have influence on the lat-
tice geometry and both parameters are experimentally adjustable
through either spacer thickness, external electric field, and through
external magnetic field. As seen in Fig. 2.4, the phase transition
between the hexagonal synthetic antiferromagnetic part and the
square synthetic antiferromagnetic part has a magnetic field de-
pendence which gives an opportunity for applications.

Different skyrmion lattices configurations such as the hexagonal-
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(a) (b)

Figure 2.5: Schematic display of (a) a triangular lattice (green)
together with its dual lattice (red) (b) a square lattice (green)
with its dual lattice (red). The dual lattice of triangular lattice (a)
has a higher density than the triangular lattice self, while the dual
lattice of the square lattice (b) has an equal density.
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Figure 2.6: Snapshot of a spin configuration in both layers with
32x32 spins, J,/Jxy = —0.20, BJ/D?* = 0.65, K.J,,/D? = 0 at
kgT/Jxy = 0.01, the colour depicts the z-component of the spin
(see colorbar Fig. 2.3). Layer a) has a pitch of p = 10 and layer b)

p = 6.25. We see a triangular lattice in a) and a honeycomb lattice
in b).
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honeycomb configurations mentioned in Section 2.4 could be ex-
plored further. For example, the phase diagram could be deter-
mined.

Experimental verification of triangular-honeycomb configura-
tions can be obtained by multilayer systems with different DMI in
both layers. This can be engineered by creating two layers with dif-
ferent compositions [77]. Direct observations of skyrmion lattices
can be obtained by spin polarised scanning tunnelling microscopy
or Lorentz transmission electron microscopy |78, 79]. The phase
transition between the two lattice configurations is dependent on
the ratio between the interlayer and intralayer exchange, and the
ratio between the DMI and intralayer exchange. For a pitch size of
p = 13 the interlayer- intralayer exchange ratio is J,/Jy, ~ 0.007.
This value is experimentally achievable [65].

This work is part of the research programme Skyrmionics -
towards skyrmions for nanoelectronics, which is financed by the
Netherlands Organisation for Scientific Research (NWO).



3 Layer effects on the mag-
netic textures in mag-
nets with local inversion
asymmetry

3.1 Introduction

The role of electronic devices in society is ever increasing, and
there is a need to make them smaller and faster, whereas keep-
ing a low-power consumption. However, the current technologies
are reaching their limits since the information density cannot be
increased much further. Therefore, new technologies need to be
developed. One of the most promising new technologies for data
processing and storage are magnetic systems with chiral textures
such as chiral magnetic domain walls and skyrmions [37, 38, 81—
83]. Their chiral and topological properties make for sturdy tex-
tures which can become extremely small, this makes them suitable
for applications. An example of such a design is the skyrmion-
racetrack memory, which is a promising route for fast and energy

!The contents of this chapter are based on the work of E. van Walsem, R.A.
Duine and M.H.D. Guimaraes [80]. RD and MHDG conceived the project,
EvW carried out all computations and wrote the initial manuscript, MHDG
designed Fig. 3.1 (a). All authors commented on the manuscript.
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efficient memory and processing devices [30, 33, 61].

(a)

Layer 1 W
o

o -<«——— Global Inversion symmetry

L]

Local inversion

/ asymmetry

Figure 3.1: Schematics of (a) a bulk crystal with a global inversion
symmetry whereas showing local inversion asymmetry and (b) the
model used in our simulations. Here, the arrows are Heisenberg
spins and can rotate freely in three dimensions, Jy, is the intralayer
coupling, J, is the interlayer coupling, and D is the DMI.

At the moment, a plethora of systems is known to host
skyrmionic textures, such as the chiral magnet MnSi which hosts
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Layer 1 Layer 2 Layer 3

Figure 3.2: Snapshot of a 32x32 cut out of a three layer 128x128
spinsystem with J,/Jy, = 0.10 and D/Jy, = 0.50. The color red
indicates that a spin is pointing upwards and blue downwards.
Spin spirals are clearly visible, and the sign of the DMI has a clear
effect on the turning sense (counterclockwise for layers 1 and 3 and
clockwise for layer 2).

so-called Bloch skyrmions and ultra thin ferromagnetic films which
typically host Néel skyrmions [41, 42, 45, 55-60]. These thin mag-
netic films are formed by stacking multiple layers of different
metals, and the order of these layers determine their magnetic
properties. Furthermore, a new class of suitable materials is
emerging: the Van der Waals crystals. These crystals consists of
two dimensional layers of one atom thick, stacked on top of each
other via Van der Waals bonds [84, 85|. Two-dimensional layers
can be exfoliated from bulk materials, such as graphite, hexagonal
boron nitride and Crl; [84, 86, 87]. Because of the freedom to stack
different kinds of materials, the end product is tunable and can
be formed such that the desired properties are present in the end
product with virtually no strain since the weak interlayer bonds
make them less sensitive to lattice mismatch problems.

In this article, we demonstrate how a local DMI arising from
a local inversion asymmetry can give rise to chiral structures even
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in materials with global inversion symmetry. DMI is an interac-
tion formed when strong spin-orbit coupling and broken inversion
symmetry are present. An example of such symmetry breaking is
the interface between two different materials, such as Co and Pt
[34, 35]. The DMI is also referred to as antisymmetric exchange
since the interaction picks up a minus sign when exchanging two
spins. Because of this property, the interaction leads to chiral mag-
netic textures. One example of chiral magnetic textures is spirals
with a preferred turning sense (either clockwise (CW) or coun-
terclockwise (CCW)) which are formed by DMI in the absence of
fields and anisotropies. Here we note that a local DMI can arise
in crystal possessing global inversion symmetry, but which show a
local inversion asymmetry (as drawn in Fig. 3.1). This allows for a
DMI term to be non zero locally whereas averaging out when the
complete infinite crystal is taken into account This is analogous to
the “hidden spin polarization” effect that occurs because of local
inversion symmetry breaking and was elucidated in Ref. [88] and
experimentally verified in Van der Waals crystals [89-92|. We are
interested in magnets where this local DMI has an alternating na-
ture of its sign in subsequent layers. Especially, we are interested
in materials with (anti)ferromagnetic coupling between the layers.
To comply with this condition, Van der Waals crystals need to have
bulk inversion symmetry, layer inversion asymmetry, magnetism,
and high spin-orbit coupling. An example of a Van der Waals ma-
terial meeting these criteria is FesGeTey [85], which belongs to the
space-group P63/mmec [93] in its bulk form and point-group Ds, in
its monolayer form [94]. The condition of local inversion asymme-
try in a globally inversion symmetric system can also be obtained
in sputtered metallic thin films, such as Ta/Co/Pt/Co/Ta systems
making it even easier to perform such DMI engineering [95].

In this article, we discuss how a locally nonzero DMI influences
magnetic textures. We show what different textures form and find
that these chiral textures occurring in the system are influenced by
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the stacking of the layers. The resulting spin spiral wavelength and
their turning sense are affected by the interlayer coupling relative to
the DMI. Furthermore, we find that the number of layers influences
the wavelength of the spin spirals in the system, and an even-
odd effect is found for the number of layers in the system. The
tunability of the spin spirals suggests that skyrmions will also be
tunable in their size. The tunability of the spin spiral wavelength
and turning sense demonstrate the potential of DMI engineering
for new magnetic devices. Moreover, since spin spiral systems can
develop skyrmions upon applied magnetic fields, our results also
serve as a basis for the design of skyrmionic devices.

The remainder of this paper is organized as follows. In Sec-
tion 3.2 we discuss our model and how the simulations are per-
formed. After this we show results of our simulations in Section 3.3
where we focus on the phase diagram, wavelength and turning sense
found in the system with an odd number of layers. This is com-
pared in Section 3.3.4 to systems with an even number of layers.
Finally, we conclude with an outlook in Section 3.4.

3.2 Model and Method

To model a stack of coupled ferromagnetic layers, we describe them
with a classical Heisenberg spin model. Each layer is modeled by
equally spaced spins on a square lattice. This is performed for
simplicity and is a decent approximation since we are modeling
temperatures far below the Curie temperature and are interested
in smooth textures, such as spin spirals. The layers are placed
right on top of each other as shown in Fig. 3.1 (b), and each layer
has an alternating sign for the DMI strength. We assume that the
leading interactions within the layers are ferromagnetic nearest-
neighbor exchange, and DMI. The leading interaction between the
layers is assumed to be nearest-neighbor exchange varying from the
ferromagnetic to the antiferromagnetic regime. We note that these
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conditions are met for various Van der Waals crystals as well as for
metallic thin film heterostructures with Ruderman-Kittel-Kasuya-
Yosida (RKKY) coupled layers.

We describe the Hamiltonian H with separate terms for the
intra- and interlayer terms,

H = Hintra + Hinter- (31>

The interactions within the layers are expressed as follows:

Hintra = ny Z Z Sa r+x + Sr+y)
N
+Y(CLTIDY (S X Sts ¥ - SIxSIy oK), (32)
a=1 r

where Jy is the intralayer coupling, D is the Dzyaloshinskii-Moriya
interaction, S is the spin at position r in layer « = 1,2, ... and X
and y are the unit vectors in the x and y directions, respectively.
The number of layers is denoted with N and the (—1)® term reg-
ulates the alternating DMI sign in the system. The interactions
between the layers are described by:

1nter = J Z Z Sa Sa+1
(3.3)

where J, is the intralayer coupling.

To investigate the ground state of this model, we use Monte
Carlo simulations. We begin the simulation by taking a ran-
dom spin configuration at a high temperature. Then, we use the
Metropolis algorithm to thermalize the system [52, 53]. This al-
gorithm picks a random spin and proposes a new semi random
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direction. This new direction is such that the average acceptance
ratio is 50%, which is determined from the energy difference be-
tween the new and the old spin configuration: AFE. The acceptance
probability P is then P = exp(AE/kgT) if AE < 0or P =1
in all other cases. Finally, we accept or reject this new direction
with a probability of 0.5. When the system is fully thermalized,
we decrease the temperature and repeat this thermalization and
lowering of the temperature until the temperature gets close to
zero and approaches the ground state. We start our simulations
at kgT'/Jyxy = 10, where kg is the Boltzman constant and T is the
temperature. To this end, the temperature is lowered by a factor
of 0.95 until kgT'/J¢y, = 0.01.

3.3 Results for odd number of layers

For low temperatures, we expect that magnetic textures will form
in the ferromagnet. The DMI leads to the formation of a chiral spi-
ral inside the layer and, depending on the sign of the DMI, the turn-
ing sense of the spiral should be different in each subsequent layer.
The size of the spiral should be influenced by the relative strength
between the DMI and the intralayer coupling terms (D/Jy,). We
performed simulations for varying parameters of DMI (D/Jy,) and
interlayer coupling (.J,/ Jyy) and systems with sizes varying between
32x32 spins and 256x256 spins. We find that the systems thermal-
ize and form a stable state where a clear chiral spiral pattern is
visible. In Fig. 3.2, we show snapshots of such a system with chiral
spirals. We preformed simulations for a varying number of layers,
and, in this part of the article, we will discuss systems with an odd
number of layers. The even number of layer systems are discussed
later in Section 3.3.4.



Chapter 3. Layer effects on the magnetic textures in magnets with local
48 mversion asymmetry

3.3.1 Phases and Phase Diagram

The magnetic structures in our systems will be determined by the
competition among the three terms in the model: the intralayer
coupling, which favors the alignment of the spins inside the layer,
the DMI, which leads to a chiral spiral inside of the layer, and the
interlayer coupling, which favors the (anti-)alignment of the spins
between the layers.

Our simulations show six prominent magnetic phases. The first
two phases are the fully polarized phases where the interlayer ex-
change is dominant, i.e., |J,|/Jxy > D/Jy,. Here, no magnetic
structure appears, all spins are always aligned inside the layer. For
a negative interlayer exchange J,, the layers are antiferromagneti-
cally (AFM) oriented with respect to each other, this is in contrast
with a positive interlayer exchange where the layers are oriented
ferromagnetically (FM). A cartoon of this is shown in Fig. 3.3 (a)
Ia for J, > 0 and Ib for J, < 0. The next two phases, phases Ila
and [Ib, are obtained by increasing the DMI and magnetic spirals
start to form. Here, the DMI term is non-negligible when com-
pared to J,. We have observed this for all finite non zero values of
D/ Js. Since the interlayer coupling is still fairly large compared
to the DMI in this phase, the system behaves, such as the complete
system possesses a single “‘net” DMI value, and all spirals have the
same turning sense as is shown in Fig. 3.3 (a) IIa and IIb. Impor-
tant to note, here, is that the system we consider in this section is
still inversion asymmetric due to the odd number of layers which
does allow for a net DMI to be present. Furthermore, the sign
of the interlayer coupling J, determines the relative orientation of
the layers, here, as well. The difference is shown in Fig. 3.3 Ila for
FM and IIb for AFM orientation between the layers. The last two
phases are where the DMI is dominant and since the sign of the
DMI is alternating, the turning sense of the spirals is also alternat-
ing in subsequent layers. As is drawn in Fig. 3.3 (a) IIla and IIIb.
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Figure 3.3: (a) Cartoon of two coupled spin layers corresponding
to the phases described above. (b) Phase diagram of an odd mul-
tilayer system. Phases Ia and Ib correspond to the ferromagnetic
(FM) and antiferromagnetic (AFM) polarized phases respectively,
phases Ila (FM) and IIb (AFM) to the interlayer coupling dom-
inant phase and phases IIla (FM) and IIIb (AFM) to the DMI
dominant phase. The phase diagram is determined with help from
the second layer of a five layers system with 256x256 spins with a
DMI between 1 and -1 and a .J,/Jy, between 1 and -1.

Here, the interlayer exchange is only present to regulate the rela-
tive orientation of the layers. The snapshot in Fig. 3.2 is taken in
the DMI dominant phase (II1a), a counterclockwise turning sense
is visible in layers 1 and 3 and a clockwise turning sense in layer
2. In Fig. 3.3 (b), we plot the phase diagram where these three
phases occur for different values of DMI and interlayer coupling.

In Fig. 3.4, we show the average turning sense for a system
with five layers. We determined this turning sense by looking at
the average value of turning direction between two neighboring
spins Crs, which we defined by

CTS = Sgn[(sr X SrJrfc) Z)],
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Figure 3.4: Average turning sense in each layer. To calculate this
average turning sense each spin is given a value of +1 corresponding
to the orientation with respect to their neighboring spin, finally an
average of all these values is calculated. A value of 41 corresponds
to a clockwise (CW) turning sense and -1 to an counter clockwise
(CCW) turning sense. This is plotted for five layers of 256x256
spins with a DMI between 1 and -1, and a J,/Jy, between 1 and
-1.
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where our reference vector g = (0, 1,0), is the unit vector along y.
A positive C'tg corresponds to a CW orientation between the spins,
and negative Cg corresponds to a CCW orientation. The total
average value of all turning directions gives an indication of how
the spiral is oriented in the layer on average. In Fig. 3.4, the fully
polarized phases Ia and Ib are clearly visible as the white region
where D/Jy, = 0 and no turning sense is present. For increased
DMI, a non zero average turning sense is visible, corresponding to
phases ITa and IIb. In each subsequent layer, the turning sense
has the same direction. Increasing the DMI even further, we find
phases Illa and IIb, and this is clearly visible in Fig. 3.4. There is
a stronger turning sense, and each subsequent layer switches the
turning sense following the sign of the DMI. In layers 2 and 4, a
right (left) turning sense is found for a negative (positive) value of
D/ Jyy, instead of a left (right) turning sense.

The only difference between ferromagnetic (J, > 0) and anti-
ferromagnetic (J, < 0) interlayer couplings is is the relative orien-
tation of the layers. For the rest, all plots in Fig. 3.4 (b) are sym-
metric around J,/Js,. We can explain this from looking at Fig. 3.4
(a) ITa and IIb, here, we see that the ferromagnetic coupled layers
have aligned spirals, and the antiferromagnetic coupled layers have
anti aligned spirals. This difference can be described as a phase
shift between the spirals of half a wavelength. Furthermore, for
Fig. 3.4 (a) Illa, the spins pointing perpendicular to the layer are
aligned between the layers, but due to the alternating nature of the
DMI, the parallel pointing spins are anti aligned. In Fig. 3.4 (a)
ITIb the opposite is true: The perpendicular spins are anti aligned,
but the parallel spins are not. This contrast makes that there is
no noticeable energy difference between the ferromagnetic and the
antiferromagnetic cases.
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3.3.2 Wave vector

In this section, we will focus on the wave vector of the spirals
found in phase Ila/b and I1Ia/b. The wave vector is defined by the
number of cycles a spiral forms per spin and is determined by the
ratio of DMI and intralayer exchange coupling. A higher ratio leads
to a shorter spiral period and thus a larger wave vector. We expect
that the competition between the DMI and the interlayer coupling
has significant effects on the spirals since two coupled spirals with
different turning senses cannot be coupled such that all spins are
aligned. In Fig. 3.3 (a) III, it is visible that the interlayer coupling
between the two spirals gives a different energy contribution per
spin: a favorable energy contribution for the vertically aligned spins
and an unfavorable one for the horizontal anti aligned spins. It is
impossible to shift the spirals relative to each other such that the
interlayer coupling is favorable for all spins. The wave vector will
be the largest where the interlayer coupling is not present. Here,
with J,/Jxy = 0 the wave vector is the same as a single layer system
and goes to zero where the interlayer coupling is much larger than
the DMI.

In Fig. 3.5, we show the wave vector for constant DMI, D/ Jy
ranging from 0 to 1, and varying interlayer exchange. A big varia-
tion in the wave vector is found between small and large interlayer
exchanges. The wave vector for the large interlayer exchange is
around one-fifth the size of the wave vector for the small interlayer
exchange. The drop off between these two cases corresponds to the
phase transition in the phase diagram between phases Ila/b and
[ITa/b. Thus, we see that phase Ila/b has a larger wave vector
than phase IIla/b. Also, here, there is no clear distinction visi-
ble between the ferromagnetic and the antiferromagnetic interlayer
couplings. To examine the distance between the different cases of
D/ Js in Fig. 3.5, we plot the wave-vector dependence on the DMI
for different values of interlayer coupling J,/Js, in Fig. 3.6. Here,
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we see that the relation between DMI and wave vector without any
interlayer coupling is linear, but for increasing interlayer coupling,
this linearity is not found since the wave vector is dependent on
the different phases of the system.

Since the wave vector is influenced by finite-size effects, we used
a finite-size scaling to determine the true wave vector. For this,
simulations were preformed for systems with system size 64x64,
128x128 and 256x256 and we extrapolated the wave vector linearly
in 1/L. An example of a plot with different system sizes and the
resulting true wave vector is shown in Fig. 3.8. In the inset, we
show one of the data fits we used to determine the wave vector.
The wave vector is determined as the average distance to the origin
for all pixels in a two dimensional Fourier transform that are more
then five standard deviations above the mean of all pixels in a
layer, divided by the system size.

3.3.3 Influence of the number of layers

We investigated the wave vector for systems with three, four, and
five layers. In this section, we are focusing on systems with an odd
number of layers only. See Fig. 3.7 for a comparison between two
systems with three and five layers. It is visible that the drop off is
larger for a larger number of layers. Examining the ratio between
the long wavelength in the DMI dominant phase and the shorter
wavelength in the interlayer coupling dominant phase we find two
effects. First, this ratio is roughly 3 for a system with three layers
and around 5 for a system with five layers. Our hypothesis is that
the sum of the DMI divided by the number of layers gives a net
DMI for strong interlayer coupling. At J,/Js, = 0, the layers are
completely decoupled and behave as individual layers. Here, the
net DMI in each individual layer is exactly D/Jy,. As we increase
J,, the interlayer coupling leads to a “dilution” of the DMI, and, at
very large interlayer coupling, the system behaves as a system with
a single DMI value, given by the sum of the DMI in each individual
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Figure 3.5: Wave vector for various values of DMI plotted for a
range of interlayer coupling for a five layer system. A small wave
vector corresponds to a larger spiral wave length.
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Figure 3.6: Wave vector for various values of interlayer coupling
plotted for a range of DMI for a five layer system corresponding to
Fig. 3.5. It is visible that the linear behavior of the wave vector is
affected by the interlayer coupling.
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D/Jy |-0.75 -0.50 -0.25 0.25 0.50 0.75
Layer 1 | 288 296 2.66 282 3.14 288
Layer 2 | 3.00 3.04 2.69 275 324 3.01
Layer 3 1291 295 260 274 313 2389

Table 3.1: Table of the ratio between the wave number in the
DMI dominating phase IIIa/b and the phase ITa/b in a three-layer
system. Columns are for D/Jy, and rows are for the different
layers in a system. This is for a three layer system. The ratio
is determined for J,/Js, = £1 and J,/Js, = 0. The results for
D/Jy, = +£1 are omitted in this table because this strong the
interlayer coupling must be stronger than the intralayer coupling
to reach phase I1a/b.

layer divided by the number of layers. As the number of layers
increases, the DMI gets divided by an increasing number, Therefore
leading to a decrease in the net total DMI and a reduction of
the observed wave vector. Because of the alternating DMI the
total sum of the DMI is D leading to a net DMI D, = D/3 for
three layers and D, = D/5 for five layers. This is only a rough
approximation which works within 10% of the ratio. Second, the
precise ratio of the layers themselves shows a pattern. There is a
symmetry, the two outermost layers have the same ratio, whereas
the inner layer has a different ratio. For example, in a five layered
system, the second and fourth layers have the same ratio, and there
is a symmetry around the middle layer. This hints to a richer
structure between the layers. We show the ratios in Table 3.1 and
Table 3.2 for which we used a system with J,/Jy, = £1 for the
wave vector of an interlayer coupling dominating phase and the
values at .J,/Jy, = 0 as the DMI dominating phase.
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Figure 3.7: Comparison of the wave vectors of a system with three
layers and a system with five layers. Both layers are plotted for a
DMI of D/Js, = 0.75. A drop off between 2.6 and 3.2 is visible in
the three-layered system and between 3.3 and 5.3 in the five-layered
system.
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D/Jy |-0.75 -0.50 -0.25 0.25 0.50 0.75
Layer 1 | 447 4.65 3.37 3.25 521 4.57
Layer 2 | 4.65 477 338 3.34 531 4.60
Layer 3 | 4.56 4.68 340 3.29 5.28 4.59
Layer 4 | 4.66  4.77  3.37 3.27 5.34 4.63
Layer 5 | 451 464 344 324 521 451

Table 3.2: Table of the ratio between the wave number in the DMI
dominating phase IIla/b and the phase IIa/b in a five layer system.
Columns are for D/Jy,, and rows are for the different layers in a
system. This is for a five layer system. Our approximation of
D, breaks down at D/Jy, = £0.25 where the ratios are much
smaller. The ratio is determined for J,/Jy, = £1 and J,/Jy, = 0.
The results for D/J,, = 1 are omitted in this table because this
strong the interlayer coupling must be stronger than the intralayer
coupling to reach phase Ila/b.

3.3.4 Results for even number of layers

When a thin ferromagnet with local inversion asymmetry has an
even number of layers, the sum of the total DMI will be zero, i.e.,
D¢ will be zero. Thus, in the ferromagnetic dominant phase, we
expect to observe no spin spirals. This is, indeed, the case. In
Fig. 3.8, we plot the wave vector of a system with four layers. In
the DMI dominant phase, we still find spin spirals with a wave vec-
tor of 0.07 inverse lattice spacings, which is comparable to the odd
layered case. However, in the interlayer coupling dominate phase,
the wave vector drops to the predicted 0. Unfortunately, the finite-
size scaling breaks down in this regime and gives noisy results, and
to prevent confusion, we decided not to show the noisy results. To
ensure that the wave vector is, indeed, zero, we examined quali-
tatively all snapshots of the systems where |.J,/Ji,| < 0.5. Here,
we, indeed, see that no spin spirals are present in the interlayer
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dominating region. However, we observe localized spin textures,
a region where the spins are oriented differently from the rest of
the polarized system. These are formed by thermal fluctuations
around the nucleation temperature and are stabilized by the DMI
which is still present. This is a metastable state, but due to the
higher number of local minima in the phase space, our Monte Carlo
simulations do not reach the global minimum. By comparing these
textures to uniform magnetized textures, we found that these ar-
tifacts have a higher energy and are, thus, not representative for
the ground state. The error bars for these structure also indicate
the volatility of these textures and indicate that they are not the
ground state.

3.4 Conclusion, discussion and outlook

In conclusion, we presented results on the behavior of spin tex-
tures in ferromagnets with a local inversion asymmetry between
the layers which leads to alternating DMI for consecutive layers.
We found strong effects for the chiral spiral textures originating
from the DMI. Furthermore, we were able to distinguish three dif-
ferent phases: the polarized phase, the DMI-dominant phase, and
the interlayer coupling-dominant phase. The interlayer coupling-
dominant phase has shown different behaviors for the number of
layers in a system by influencing the wavelength of the spirals and
shown a strong difference between odd and even numbers of layers
in a system.

In this paper, we used a minimal model. Future research can
be focused to include additional magnetic effects known to influ-
ence textures, such as anisotropy, dipole-dipole interactions, and
an external magnetic field. Altought the finite-size scaling of our
results gives a good indication of the expected wave number and a
maximum system size of 256x256 spins is still efficient to simulate,
more certainty in the wave number is possible with larger system
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Figure 3.8: Wave vector plotted against interlayer coupling J,/Jyy
for a system with four layers and a DMI of D/ J,, = 0.50. Different
system sizes 64x64, 128x128 and 256x256 are plotted, and a finite-
size scaling made with a linear fit in 1/L is added. The inset
shows the finite-size scaling for .J,/Jx, = 0. Here, we only show
the results smaller than |J,/Jy| < 0.5 since the finite-size scaling
did not work above this value.
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sizes. More computations can also be used to test our hypothesis
of the net DMI that occurs in coupled layers. A higher number of
layers should continue the trend reported in this paper. Further-
more, the phase diagram in this paper gives a direction to where
the different phases occur, a more detailed version can be achieved
by simulations for more parameters. The small energy scales and
high number of meta stable states of chiral systems makes it dif-
ficult for Monte Carlo simulations to reach the ground state. By
preforming multiple simulations and finding comparable spin con-
figurations we are convinced that our results are close to the ground
state and are representative of the ground state itself.

Our results shown here demonstrate that rich magnetic struc-
tures can be obtained through local DMI engineering. First, as
a useful method to measure the Dzyaloshinskii-Moriya interaction
in Van der Waals ferromagnets or multilayer ferromagnets with
a broken local inversion symmetry. When the number of layers
and coupling between the layers is known, the DMI can be de-
termined by looking at the spiral wave vector in the upper layer.
Second, possible applications that need the ability to tune spiral
wave length or even completely turn off spin spirals. This can be
achieved by changing the coupling between the layers, e.g., through
applying pressure a Van der Waals material [20, 96] or by changing
the spacing layer in a RKKY-coupled metallic stack. Third, our
results serve as a prelude to investigating skyrmions in Van der
Waals magnets. Moreover, an addition of an external magnetic
field should lead to the formation of skyrmions.
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4

Collective modes of skyrmions
in synthetic antiferromagnets

4.1 Introduction

The coupling of magnetic layers containing skyrmions leads to ex-
citing new insights. For example: we have shown in Chapter 2 that
layers containing skyrmion lattices change their lattice structure
upon tuning the interlayer coupling strength. Moreover, skyrmion
tracks benefit from coupling two layers, since the Magnus effect,
where a skyrmion deviates from its trajectory depending on its
winding number, is negated by coupling two skyrmions with op-
posite winding number such that the two Magnus effects are nul-
lified 70, 97|. Furthermore, it has also been shown that coupling
multiple layers stabilize skyrmions altogether [60]. Crucial for fur-
ther research into the effect of coupling layers with skyrmions is to
detect the skyrmions present in them. Various methods to de-
tect skyrmions are known, such as topological hall effect mea-
surements|58, 98|, x-ray microscopy [45, 58, 99|, magnetic force
microscopy [58, 100], magneto-optical Kerr effect (MOKE) mi-

'The contents of this chapter are based on the results of a project in the
Theory for technology course of the Theoretical Physics master at Utrecht
University. It is written together with Joren Harms who was actively involved
in the analytical calculations and Patrick van Dieten who was actively involved
in the numerical magnon mode calculations.
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croscopy |101], Lorentz transmission electron microscopy (LTEM)
[41, 102, 103| and microwave response measured by a ferromagnetic
resonance (FMR) spectrometer [104-106]. An FMR measurement
is especially attractive as it is relatively simple and its theoretical
understanding requires the computation of the collective modes of
the system. Furthermore, on the basis of these collective modes,
skyrmions can be used as an oscillator to generate microwave ra-
diation giving rise to applications. In this chapter we focus on the
detection of skyrmions by a FMR spectrometer. We theoretically
predict the response of a skyrmion by looking at its frequency. This
has been shown before for one layer [107] and has been proven use-
ful for detecting skyrmions in Ref [108, 109]. However, both have
not been done for coupled systems of skyrmions. In this chapter we
present the characteristics of the eigenfrequencies of two coupled
skyrmions. We determined these frequencies using two methods.
An analytic method where we minimize the action for our system,
and a numerical method where we diagonalize the hamiltonian on
a ground state determined by Monte Carlo simulations. We com-
pare both methods and give some theoretical guidance on how to
experimentally detect skyrmions in bilayers in the future.

4.1.1 General description of the system

In this chapter we consider two coupled magnetic layers. The mag-
netic layers are described by three dimensional Heisenberg spins ar-
ranged on a square lattice. Within this magnetic layer, we choose
the interactions between the spins such that skyrmions are formed.
For this we need the following interactions: a ferromagnetic in-
teraction originating from exchange coupling, a chiral component
such as strain in triangular materials or the Dzyaloshinksii Moriya
interaction (DMI), and an easy axis anisotropy to fix the pre-
ferred axis for the spins to align with or a magnetic field to fix
the preferred direction. Between the layers the spins are coupled
through an exchange interaction which can be either ferromagnetic
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or antiferromagnetic. We choose the interactions such that pre-
cisely one skyrmion per layer is formed with equal winding number
1. The magnetic layers have open boundaries and therefore both
skyrmions are repulsive from the boundaries and will be positioned
in the center of their layer. Because of the absence of currents the
position of the skyrmion is fixed.

Our system can be described by a hamiltonian, we do this in two
parts: the intralayer part which describes all the above mentioned
factors inside of the layer and the interlayer part which describes
the coupling of the layers trough an exchange interaction. The
intralayer Hamiltonian is expressed as:

Hintra = _ny Z Z Sff ’ (Sf‘é—i-ic + S?—i—}")

ac{T,B} r
+K Y Y (See2) -B- > > s
ae{T,B} r ac{T,B} r
=D > > (S xSy -SExSL %), (41)
ac{T,B} r

where S¢ is a classical Heisenberg spin at position r in layer « (top,
T, or bottom, B). J, is the interlayer coupling, K the anisotropy,
B the external magnetic field and D the Dzyaloshinskii-Moriya
interaction. The Hamiltonian that describes the coupling of the
layers is given by:

Hinter = _JZ Z SZ : Sf+27 (42)

where .J, is the interlayer exchange coupling. The total hamiltonian
is thus:

H = Hintra + Hinter- (43)
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Examples of materials described by these hamiltonians are Syn-
thetic Antiferromagnets (SAFs). In SAFs two thin film magnetic
multilayers are coupled trough a metallic spacer. By varying the
thickness of the spacer layer the coupling strength is regulated, and
can even change sign.

4.2 Analytical method

In this section we will start with an action describing the system
which we will minimize to find the equations of motion of the sys-
tem. From there we are able to find the eigenfrequencies of the
bilayer skyrmions.

The action of the system can be written as the action of the
separate layers, and the interaction between those layers:

S = Stop + Sbottom + Sint- (44)

In this chapter we study the small coupling region. In this
region the skyrmions only interact with spin waves within their
own layer. Therefore we can use the results from Psaroudaki et
al. to describe the top and bottom layers independently [110]. In
their paper they describe the interaction of a skyrmion with spin
waves by using a mass term M as:

1 .
Shass = / dr 5MR2 (4.5)

where R is the position of the center of mass of the skyrmion in its
own layer. In this chapter we do not calculate the mass term M,
but calculations for this are found in [110]. The Magnus effect on
the skyrmion can be described as:

ﬁeﬂC
Sma nus —
g Q 9

EiniRj (46)

where B = 875, €;; the Levi-Civita symbol and () the topological
charge or the winding number of the skyrmions. In this chapter
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we are only interested in skyrmions with a charge ) = 1. In
our system we have closed boundary conditions. To describe the
repulsion of the skyrmions by the boundary we add an effective
quadratic potential:
K K

V(R) = 732 = E(Rf{ + R2). (4.7)
This will pull the skyrmion towards the center of the system with
strength K.

4.2.1 Ferromagnetic interaction

The interaction between the layers is due to either a ferromagnetic
exchange coupling or an anti-ferromagnetic one. In this subsection
we will focus on the ferromagnetic exchange coupling first and the
antiferromagnetic exchange coupling will be treated in the next
subsection.

The interaction action, Siy, in terms of magnetization /g is

described by:
Sint = pint/dex Qr(x — Rr(7)) - Qp(x — Rp(7)), (4.8)

where Ry p is the position of the center of the skyrmion in either
the top (T) or bottom (B) layer. We can rewrite this by introduc-
ing two new parameters defined by the sum and difference of the
skyrmion centers:

R(r) = 5(Ra(r) + Ra(r))
r(r) = 5(Ra(r) ~ Ro(r)). (49)

Implementing this in the action Eq. (4.8) and assuming both
skyrmions are placed on top of each other, since they are both po-
sitioned in the middle of their layer due to the quadratic potential,
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we can assume |r| < 1. Therefore, the action can be expressed as:
@ 1 a. B
Sint =~ —pint | dTdx |2 — 0, Q2T + 5(8QGBQAI' r’)| x
1
|:QB + 0 2pre + 5(8aaﬁﬂgrar5)} . (4.10)
By expanding this expression and some algebra we end up with:
St = F — pint/deX (8aQA . 8gﬂB)r°‘rfB -+ 0(1‘3) (411)

where we need to note that the first term, F/, contains contributions
that do not depend on the skyrmion position but is not necessarily
Zero.

Combining the four terms described above we end up with the
following effective action:

1 . .
Set|Ra, Rp) = /dT {5]\/./ (Ri + R%)

+ %Q]RZRA
ﬁeff i 157
+ TGinBR{B

K
-3 (R} + R3)

-5 (Rx — Rp)? } (4.12)

where we defined a = piny [ dx (0,824 - 95Q2p) from Eq. (4.11).
The skyrmion configuration €2 can be described following Bog-
danov et al. [111]:

Ny = sin 6y cos ¢gp + sin fy sin bod + cos b2, (4.13)
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where we used cylindrical coordinates p, 6 and ¢, 6y is the polar
angle and ¢ the angle in the azimuthal direction. We determine
the value of 6y and ¢y by minimizing the energy: a continuous
version of Eq. (4.3):

EIQ(x) :/dx{—%ﬂ-VQQ%—%Q-(V < Q)+ K(1—02)

(4.14)

By parametrizing by Eq. (4.13) and integrating out ¢ and z we
end up with an energy density which we can minimize for 6, and
¢p. For a thin film ¢g = 0. Finally, we end up with the following
differential equation for 6y(p):

0%0o(p) L 100(p) _ sin(200(p)) +Siﬂ(90(P))2 _BJ./D? sin(6o(p))
dp*  p Op 2p? p 2
which we can solve for different values of magnetic field B.J,,/D?.

We show some examples of skyrmion profiles 0y(p) in Fig. 4.1.
Using this we can write the coupling « as:

oo 2
oz:/ dp/ do p - (Og)?
0 0
00 12
:7?/ dp{p- (9,00)2 + 00}. (4.15)
0

p

In Fig. 4.2 we plotted the coupling for different skyrmion configu-
rations with different values of external magnetic field e

=0,

B

D2
Using the principle of least action we derive the equations of

motion for our effective action S.g. This is expressed as follows:

M Z?A (K + Beg€ijOr — o R
RB - o —K + 5eff€ija7— — RB ’

(4.16)
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— Blyy/D?=0.0

BJy/D?=0.2
— Blyy/D?=0.4
— Blyy/D?=0.6
— Blyy/D?=0.8
— Bly/D?=1.0

0o(0)

5 10 15 20
o

Figure 4.1: Configurations of the polar angle 6y(p) of skyrmions
for different values of BJy,/D?>.

or in Fourier space:

MW Ra _ —K +iwfBegeij — o Ra
RB « —K+ i(ﬂﬁeﬂféij — RB '

(4.17)

From these equations of motion, Eq. (4.17), we determine the eigen-
frequencies as the eigenvalues of this equation. We express them

as:
w _ﬁeﬁ"i (565)2+£
T oM oM M’
. 66& 565 2 (20[+K)
oM T \/<2M) L VA (4.18)

In the limit where the mass of the skyrmion goes to zero we can

%)
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oo Ot
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Figure 4.2: Coupling strength a between skyrmions in two layers
for different magnitudes of external magnetic field B.J,,/D?*. We
chose piy = 1. The line is added to guide the eye.
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write the eigenfrequencies as:

K
wp ==+ ,
! 5eff
2 K
wy = £ (4.19)
Beﬁ

Here we see that w; is independent of coupling o and we interpret
that eigenmode as two skyrmions precessing in phase. On the other
hand w- is dependent on the coupling o and we interpret this as the
skyrmions precessing out of phase. Revisiting our eigenfrequencies
including the mass term, Eq. (4.18) we see two differences. First,
there is a split in energies between low and high frequencies where
the massless term only has low frequencies. Second, the mass in-
troduces a reduction of wy which is equivalent to the influence of
mass in classical systems.

In figure Fig. 4.3 we plotted these eigenfrequencies for different
values of magnetic field. Here you can see two constant eigenfre-
quencies, wy and two eigenfrequencies ws varying with the magnetic
field. The influence of the coupling parameter « is clearly visible
in wy. We expect this aspect to be bigger for larger J,/Jy, and this
is indeed visible.

4.2.2 Antiferromagnetic regime

In the antiferromagnetic regime we have to reassess the coupling
parameter « since one can see from Eq. (4.11) that in this case
a becomes negative. This means that for the antiferromagnetic
region, our coupling has to be expanded to the fourth order. The
fourth order term is also taken from Eq. (4.8) and will be referred
to as v from now on. This leads to a effective potential:

K «
Vo= 5 (R} + RE) = S (Rr — Ro)* + %(RT — Rp)*. (4.20)
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Figure 4.3: Eigenfrequencies of two ferromagnetically coupled lay-
ers with a skyrmion plotted versus magnetic field B.Jy,/D? . Here
we plotted for different coupling strengths J,/Js, = 0.1,0.4 and
1.0, and chose M = 0.5, Beg = 24,K = 15. The colors indicate the
four different ferromagnetic eigenfrequencies.
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Using coordinate transformation Eq. (4.9) and thereafter varying
this with respect to R, which gives: R = 0, we end up with the
potential:

Vo = Kr? — %(2@2 + %(2r)4. (4.21)

The minimum of this potential is given by:

20— K
8y

o = s (422)

if 2a > K. If 2a < K we take the minimum ry = 0. Thus, for anti-
ferromagnetical coupling we have to calculate the eigenfrequencies
for both cases.

The first case: 2a > K. We vary our effective action Eq. (4.12)
including the new effective potential Eq. (4.20) around r¢, Eq. (4.22).
Solving these equations of motion leads to the following eigenfre-

quencies:
2
wy = 5]\; + \/(5]\;) + % (4.23)
2
wy = 5]\; + \/(5]\;) + % (4.24)

And for the case 2a < K, we perturb the same action around
ro = 0. This leads to the eigenfrequencies:

2
w :fﬂji\/(fj\j> +%, (4.25)

1
2
w :fj\ji\/(§]§> +¥. (4.26)

2
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Figure 4.4: Eigenfrequencies of two antiferromagnetic coupled lay-
ers with a skyrmion plotted versus magnetic field B.J,,/D?. Here
we plotted for different coupling strengths .J,/Jy, = —0.1, —0.4 and
—1.0, and chose M = 0.5, Beg = 24,K = 15. The colors indicate
the four different ferromagnetic eigenfrequencies. The kink in the
frequencies occur at K = 2a where the border is between the two
cases of our potential minimum 7.
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In Fig. 4.4 the eigenfrequencies for antiferromagnetic coupling
show comparable behavior to the ferromagnetic ones. Two eigen-
frequencies independent from magnetic field which are around the
same frequencies as the ferromagnetic frequencies, and two eigen-
frequencies dependent on the interlayer coupling. The transition
point at 2a = K clearly leaves it marks. The line of J,/J,= 0.4
is discontinuous at wy = 0 which is where this transition point is.
Furthermore, the frequencies for small coupling, .J,/Jx,= 0.1, and
large coupling, J,/Jxy= 0.4, have opposite reactions to the mag-
netic field since they are both positioned at different sides of the
transition point.

4.3 Numerical method

The eigenfrequencies of the confined skyrmion can also be obtained
using numerical simulations. Here we simulate a system contain-
ing skyrmions using Monte Carlo techniques. These Monte Carlo
simulations only give stationary solutions since we are looking at
averages. We will include fluctuations in the stationary states to
determine the dynamics of such systems. Below we will describe
the Monte Carlo simulations and the dynamical solutions for these
configurations and present their results.

4.3.1 Monte Carlo

As previous described in chapters Chapter 2 and Chapter 3 we
use Monte Carlo systems to simulate magnetic systems containing
skyrmions. We used simulated annealing where we start from a
random spin configuration at a high temperature and slowly low-
ering the temperature until a configuration close to the ground
state is found. Here it is important that the configuration resem-
bles the ground state since the following calculations only work
for the ground state or a state really close to it. In this paper
we are interested in single skyrmion behavior, i.e. we only want
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one skyrmion in each layer. To construct such a state we included
open boundary conditions. This forces the skyrmion to sit in the
middle of the layer. This also increases the phase space where
only one skyrmion in stead of a lattice of skyrmions is found. We
simulated for various parameters of magnetic field and interlayer
coupling, for simplicity we chose to not include anisotropy. For
these parameters, four phases were found: the polarized phase,
where the ferromagnetic intralayer coupling and external magnetic
field are dominant and all spins point in the same direction. The
spiral phase where the DMI is dominant and spirals are formed.
And two skyrmion phases where we found skyrmions and identi-
fied them by a non-zero winding number. The difference between
the two phases is that one phase has a singular skyrmion per layer
and the other a lattice of multiple skyrmions. In this paper we
are only interested in systems with only one skyrmion and thus a
winding number of 1 in a layer. We found skyrmions in the ferro-
magnetic as well the antiferromagnetic interlayer coupling region.
Because of their repellent nature the parameter space is smaller for
the antiferromagnetic coupling, since there is less space to fit two
skyrmions inside the boundaries. In Fig. 4.5 we show one of the
skyrmion configurations. This is an example of one of the systems
used in the analysis below.

4.3.2 Non-interacting magnons

In this section we describe the excited states of the systems found
using the Monte Carlo simulations. We calculate the excited ener-
gies as follows. We start with the Hamiltonian Eq. (4.3) and view
the spins quantum mechanically. To do calculations with these
small spins we need to preform the Holstein Primakoff transforma-
tion to transform the spin operators .S; to bosonic operators a, al
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FM coupling AFM coupling
Layer 1 Layer 1

Layer 2

Figure 4.5: Configurations of bilayer skyrmion systems with open
boundaries for ferromagnetic coupling (FM) and antiferromagnetic
coupling (AFM). Here the z-component of the spin system is plot-
ted for both layers 1 and 2. The repellent character of the open
boundaries is clearly visible in both cases since the skyrmions are
placed in the center of the layers, furthermore the AFM case
shows also some repulsion between both skyrmions themselves.
Both skyrmions have the same pitch D/J,, = arctan(27/10),
and anisotropy K., /D? = 0. For FM the interlayer coupling
strength is .J,/Jxy, = 0.11 and BJy,/D?* = 0.56. In the AFM case
J,/Jy = —0.11 and BJ,,/D?* = 0.69.
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through:
ata
se =25y [1— 224, (4.27)
2s
n
s_ = hv/2safy/1 - C;“, (4.28)
s
s, = h(s —a'a). (4.29)

We expand the square root to second order. The first order gives
us the classical energy of the system F. and the second order gives
us the non-interacting magnons.

af
H=F,;+ FEy+ (aT,a)H (a) ,
where the matrix H and vector (afa) has components labeled by
lattice positions. This gives a non diagonal hamiltonian H. To
diagonalize this H, we use the Bogoliubov approach. This leads
to a diagonal matrix for in terms of new operators (v,~'). The
subsequent hamiltonian looks like:

1

),

N
H = Ea+ Ey+ ) hoihi+ 5

1=1

T T
Where (7;) =T (1) and 7 labels the modes. The ground state
energy is thus:

N
1
EcszEcl+Eo+§§;mi.

This shift in the energy of ground state state caused by quantum
fluctuations is known the as zero-point energy [112]:

N
1
Egp = Eos — Ea = Eo + 5 > huw;. (4.30)
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The collective mode frequency can be calculated from the ground
state of our system. We define the ground state as:

from where we can calculate the number of magnons per lattice
site as

p

In the same manner we can describe the extra energy which spins
obtain from exciting the system with magnons. We define the
excited state:

) = ~]IGS),
for magnon mode k. This gives a number of magnons at site ¢ as
pin = (Welalailtn) = vl + luisl® + vk, (4.33)
p

Finally we can compute the added energy per spin by computing
the difference between the zero point and the excited mode energy.
Furthermore, an indication of the nature of the mode is given by
its magnon number relative to the ground state:

Apiy = le,k — p) = |uir]® + |va] . (4.34)

In Fig. 4.6 we plotted the distribution of the magnon modes on a
skyrmion system from our Monte Carlo simulations. Here we show
the first two modes which are the well studied precession (a) and
breathing (b) mode, and an excited mode (c).

Using this framework we calculated the energies of skyrmion
systems for a range of interlayer couplings. In Fig. 4.7 we show the
energies of the three first excited modes, here we see that the pre-
cession and breathing mode have no dependence on the interlayer
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e
e

Figure 4.6: Magnon activity Ap; ;, for a 16x16 bilayer system with
a skyrmion with pitch length p = 10. (a) is the lowest "precession"
state, b) the first excited "breathing" state and c) the an excited
state.
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All three modes of skyrmion for B/J,,=0.6
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Figure 4.7: Energies of the three lowest magnon modes of a
skyrmion state with pitch p = 8, and BJy,/D = 0.6 for differ-
ent values of J,/ Jyy.

coupling. Contrarily, the next excited state has a linear depen-
dency on the interlayer coupling J,/Jy,. We preformed compara-
ble calculations for a range of magnetic field parameters which we
show in Fig. 4.8. A clear influence of the magnetic field is visible.
This leads to a large energy difference for the higher excited state
and small differences for the precession and breathing mode.

4.4 Discussion

Both analytical and numerical results are found for spin waves in
systems containing skyrmions. Comparing these numerical results
with the previous analytical results a few things stand out. First,
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All three modes of skyrmion
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Figure 4.8: Energies of the three lowest magnon modes of a
skyrmion state with pitch p = 8 different values of J,/J,, and
various values of magnetic field B.Jy,/D. Also shown: b) detailed
version of the breathing mode and ¢) precession mode for different
values of J,/Jyy
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the overall structure is comparable with a flat response to magnetic
field for one of the frequencies (w; and the lowest precession state).
And second, the higher frequencies are proportional dependent on
the interlayer coupling. A difference is that the numerical method
delivers more states and shows a breathing mode which does not
exhibit a strong dependence on the interlayer coupling.

Unfortunately, we could not compare the two methods in the
antiferromagnetic interlayer coupling region since we could not find
a positive definite Hamiltonian describing the physics in the anti-
ferromagnetic interlayer coupling domain numerically.

We are hopeful that our results show enough fingerprints to de-
tect two coupled skyrmion layers by finding a distinct combination
of constant and rising energies as a function of the coupling. Fur-
thermore, we show how the different procession modes look like in
a bilayer system which can be used to identify skyrmions as well.
The antiferromagnetic region is interesting to further investigate,
the different behaviors above and below the critical point 2o = K
make them very recognizable and suitable for future applications.
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In this thesis we focussed on chiral effects in magnetic multilay-
ers. Those multilayers already proved to posses qualities which
are favorable for new applications such as making skyrmions more
stable and nullifying the Magnus effect which is a big hurdle for
applications with moving skyrmions. We added new insight to the
family of effects originating from multilayer systems. In Chapter 2,
we showed that skyrmion lattices in two layers can change their
configuration. The natural lattice configuration for skyrmions is
hexagonal, but under influence of antiferromagnetic coupling be-
tween two layers this configuration can be changed to a square
one. The nature of this transition is such that we can adjust the
lattice configuration with external forces. This is promising for
new applications, e.g. the number of skyrmions a spin wave meets
when traveling through a system can be controlled by switching
skyrmion lattice configurations. In Chapter 3 we showed that he-
lical spin spirals are also influenced by the added complexity of
stacking layers. In this case we showed that coupled layers with
alternating DMI have an extensive phase space. Using the inter-
layer coupling, the turning sense and wavelength of the spirals can
be tuned. Interesting to note is that number of layers has a big
influence on this effect: Increasing the number of layers showed a
stronger effect on the wavelength of the spirals. Also, an even odd
effect was found, where we showed that in systems with an even
number of layers the spirals can disappear completely for a strong
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interaction between the layers. This gives rise for new applications
as well since the phase transition between the spiral directions and
the transition turning the spirals on and off are controllable ex-
ternally. In the final chapter Chapter 4 we showed how to detect
skyrmions in multilayers using microwave ferromagnetic resonance
spectroscopy. This is important because when multiple layers are
stacked, most techniques only probe the top layer. In our research
we show the distinct resonance of two coupled skyrmions.

As discussed above, the added complexity by adding layers is
very promising for new creative applications. More research is
needed to fully reap the promise of multilayers in chiral systems.
The Monte Carlo simulations we performed were limited and can
be expanded upon by using more sophisticated algorithms. Fur-
thermore, the research of Chapter 2 and Chapter 3 can be com-
bined: When adding more layers in Chapter 2 this will possibly
give opportunities to construct more skyrmion lattice configura-
tions. Moreover, using different values of DMI in both layers more
complex skyrmion lattices can be constructed such as an honey-
comb skyrmion lattice. The work of Chapter 3 can be expanded
by including anisotropy and an external magnetic field to create
skyrmions with different winding numbers. It will be interesting
to study how these skyrmions will form and what lattice structure
they will adopt depending on the number of layers. This can possi-
bly lead to other interesting skyrmion lattices. Finally, it is possible
to tie this whole thesis together by calculating the microwave fer-
romagnetic resonance of the systems described in Chapter 2 and
3, and those mentioned above. This will guide experimental re-
search with detecting exotic skyrmion lattice configurations and
spiral wave structures in the future.

While experimental verification of our results are, as of writing,
not realized, the systems described in this thesis are well within the
current technical abilities and hopefully are of interest for experi-
mental groups.
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Nederlandse samenvatting

Het is verbazingwekkend hoeveel magneten je gebruikt in je dage-
lijks leven. Niet alleen op je koelkast zitten magneten, maar ook in
de speaker van je mobieltje en in de harde schijf van je computer
wordt er gebruik van gemaakt. In de wedloop van technologiebe-
drijven worden er steeds snellere harde schijven met meer opslag
ontwikkeld. Echter, de huidige technieken lopen tegen een limiet
aan. Daarom zijn er nieuwe technieken nodig om harde schijven
mee te bouwen. Een van de nieuwe technieken waar veel inte-
resse in is zijn hele dunne magneten waar bijzondere magnetische
structuren in voorkomen. In dit proefschrift hebben we onderzoek
gedaan naar dit soort magneten. In deze samenvatting willen we
uitleggen hoe een magneet werkt, wat voor bijzondere structuren
er in magneten bestaan en waarom deze zo nuttig zijn voor toe-
passingen als harde schijven. Daarna zullen we kort uitleggen wat
we in het bijzonder hebben onderzocht aan deze magneten.

Hoe werkt een magneet?

Een permanente magneet is een stuk materiaal dat van zichzelf
magnetisme vertoond: er vormt zich een magneetveld om het ma-
teriaal met twee polen die altijd dezelfde kant op staan. Maar
waarom blijft het ene stuk materiaal wel aan een koelkast hangen
en de andere niet? Magneten bestaan uit allemaal atomen die op
zichzelf ook weer kleine magneetjes zijn. Dit kleine magneetje komt
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van een kwantummechanisch verschijnsel dat spin heet en wordt
vaak met een pijl aangegeven in tekeningen. In een magneet zijn
alle spins dezelfde kant op gericht. Het magnetisch moment van
alle atomen werken dan samen en het totale magneetveld van het
materiaal staat dan in dezelfde richting. materiaal met deze eigen-
schap noemen we dan een ferromagneet, in Fig. A.1(a) hebben we
een voorbeeld van een ferromagneet getekend waar je kan zien dat
alle spins dezelfde kant op zijn gericht. De atomen weten welke
kant ze op moeten staan omdat ze wisselwerken met hun buren.
In ferromagneten is die wisselwerking dus erg goed. Maar er be-
staan ook materialen waar deze wisselwerking niet sterk genoeg is
of juist tegenwerkt. In een antiferromagneet willen alle spins om
en om staan. In dit geval heffen de kleine magneetvelden elkaar op
en is het materiaal juist niet magnetisch. Een voorbeeld hiervan
hebben we getekend in Fig. A.1 (b).

ST S =]

Ferromagnetisch Antiferromagnetisch Chirale spiraal

Figuur A.1: Schematische tekening van verscheidene spin structu-
ren.
materiaal

Chirale structuren

De wisselwerking tussen de spins gaat niet alleen maar of de spin
parallel of anti-parallel staat. Bijvoorbeeld als je een dunne laag
platinum onder een magneet plakt wordt de wisselwerking ver-
stoord. In dit geval willen twee atomen die naast elkaar staan in de
magneet juist niet parallel aan elkaar staan, maar loodrecht zoals
in Fig. A.1 (¢). Omdat de laag platinum maar aan een kant van
je magneet zit is deze interactie altijd in dezelfde richting, en dus
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chiraal. Als je zulke wisselwerking in een dunne magneet hebt krijg
je een spiraal structuur zoals op de achterkant van dit proefschrift
is getekend. Dit is een oppervlakte effect, namelijk het wordt ver-
oorzaakt door het raakvlak tussen de magneet en het platinum en
is dus het sterkst dicht bij de oppervlakte. Een zo dun mogelijke
magneet heeft hier het meeste effect van en daarom bestuderen we
dunne tweedimensionale magneten in dit proefschrift.

Als je een magnetisch veld aanlegt over een ferromagneet, bij-
voorbeeld door hem midden in een grote elektrische spoel te stop-
pen, dan willen de spins juist in de richting van dit magneetveld
staan. In het geval van een magneet met spiralen die we net hierbo-
ven besproken hebben ontstaat er een competitie tussen de spiralen
en het magneetveld. Hierdoor vormen er bijzondere structuren die
skyrmionen genoemd worden. In een skyrmion vormen alle spins
een soort kruin zoals we in Fig. A.2 (a) getekend hebben. Deze
hele verzameling van spins die dat kruin vormen is de skyrmion.

Skyrmionen zijn erg interessant omdat ze heel robuust zijn, ze
behouden altijd hun vorm. Daarom kunnen we de skyrmionen door
het systeem bewegen zonder dat ze kapot gaan. Daarnaast kunnen
ze ook nog erg klein zijn, tot enkele nanometers in diameter. Dit
maakt ze erg geschikt voor harde schijf toepassingen: er passen veel
skyrmions op een chip, en je raakt ze niet kwijt. Een skyrmion is
zo stevig vanwege een wiskundig “slot” uit de topologie. Als je van
een skyrmion bijhoudt in welke richting de spins allemaal op wijzen
dan kan je ze precies op een bol afbeelden. In Fig. A.2 (b) hebben
we dat getekend. De chiraliteit die we eerder besproken hebben
heeft hier een grote rol in.

Dit proefschrift

In Chapter 2 hebben we twee dunne magnetische lagen gesimu-
leerd waar skyrmionen in voor komen. In dit systeem kwamen zo
veel skyrmionen voor dat ze een rooster vormen. Omdat skyrmi-
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Figuur A.2: Schematische tekening van (a) een skyrmion en (b)
een bol waar alle spins van een skyrmion op afgebeeld zijn.
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onen elkaar af stoten nemen ze plaatst op een driehoekig rooster.
Vervolgens hebben we deze als twee boterhammen boven op elkaar
gelegd. De combinatie van die twee lagen magnetisch materiaal
heet een synthetische antiferromagneet omdat de koppeling tussen
de lagen zo wel aantrekkend als afstotend kan werken afhankelijk
van de afstand. In Fig. A.3 (a) heb we geschetst hoe twee drie-
hoekige skyrmion roosters (groen en rood) plaatsen als ze elkaar
afstoten. Maar wat bleek is dat als we de koppeling tussen die
twee lagen sterker maken, dan veranderd het rooster in een vier-
kant rooster, zoals Fig. A.3 (b). Omdat de koppeling tussen twee
lagen aan te passen is met externe krachten zoals een elektrisch veld
of gewoon door er op te drukken is het mogelijk om te schakelen
tussen verschillende roosterconfiguraties van skyrmionen.

() (b)
Figuur A.3: Schematische tekening van twee skyrmion roosters
boven elkaar. Rooster 1 is met groene cirkels afgebeeld en rooster

2 met rode cirkels. In (a) zijn twee driehoekige rooters getekend
en in (b) twee vierkante.
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In Chapter 3 hebben we chirale spiralen bestudeerd. Daar heb-
ben we meerdere magnetische lagen met spiralen op elkaar gesta-
peld zodat dat draairichting van de spiralen in elke laag andersom
is. We hebben gekeken hoe de spiralen hier op reageren. Het blijkt
als je de koppeling tussen deze lagen heel sterk maakt de golflengte
van de spiralen veranderd. Een belangrijk gegeven is hoeveel lagen
het systeem heeft. Bij een oneven aantal lagen wordt de golflengte
veel langer, evenredig met het aantal lagen. En bij een even aantal
lagen verdwijnt de spiraal zelfs. Dit is allemaal, net zoals onze vo-
rige bevinding, extern te beinvloeden waardoor dat mogelijkheden
geeft voor toepassingen.

In Chapter 4 zijn we teruggegaan naar de skyrmionen. Hier
hebben we twee losse skyrmionen boven elkaar geplaatst. Daar
hebben we uitgerekend hoe we zulke skyrmionen kunnen detec-
teren als we het magneetveld niet kunnen zien. Dit kunnen we
doen door microgolven (zoals in de magnetron) door het systeem
te sturen. Skyrmionen resoneren op een bepaalde manier met deze
microgolven. We weten nu ook welke karakteristieken we kunnen
verwachten als er twee skyrmionen boven elkaar zitten. Hiervoor
was het alleen bekend hoe een enkele laag skyrmionen reageert.
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