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CHAPTER 1

Introduction

In this chapter, we briefly introduce some basic concepts and models of anomalous dif-
fusion. After expressing the motivation of our research, and presenting the properties
of three spin models are considered in this thesis, the Monte Carlo methods used in this
thesis are discussed. This is followed by a description of the Metropolis algorithm, the
Wolff algorithm, and Kawasaki dynamics. Then, we also show how finite-size scaling
can be used to extract critical exponents from the data obtained from Monte Carlo
simulations. At the end of this chapter, the outline of the thesis is provided.
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1.1 Anomalous diffusion

In case of normal diffusion the mean-square displacement (MSD) of a particle 〈∆r2(t)〉
increases linearly in time. The term anomalous diffusion is used to denote a particle’s
mean-square displacement 〈∆r2(t)〉 deviating from (its normal behavior of) increas-
ing linearly in time t; and commonly refers to the power-law behavior 〈∆r2(t)〉 ∼ tc

for some c 6= 1. The cases of c < 1 and c > 1 are known as subdiffusion and superdif-
fusion respectively.

Although the term “anomalous” diffusion was originally coined to denote an anomaly
— in this case, a deviation from normal diffusion — anomalous diffusion has increas-
ingly become the norm [1]. Observed in many materials and systems such as in fractal
systems and disordered media [2, 3], financial markets [4], transport in (crowded) cel-
lular interiors [5], and migration of cells [6], bacteria [7], and animal foraging [8],
anomalous diffusion has naturally received intense attention in the last decade. In-
terest in the topic revolves largely around the following questions. What causes the
exponent to differ from unity? Can one predict the exponent from the underlying dy-
namics of the system? Are there universality classes for systems exhibiting anomalous
diffusion?

A number of distinct classes of stochastic processes have been developed/identified
for anomalous diffusion in the recent years. Three most prominent theoretical (stochas-
tic) models of anomalous diffusion are:

• Transport on fractals: a popular model used for percolating and disordered ma-
terials [3, 9, 10, 11], wherein the moving particle encounters obstacles on its
path,

• Continuous-time random walk (CTRW): a model where particles move from
trap to trap [12, 13, 14, 15], where times of waiting at the traps as well as the
trap-to-trap distance is power-law distributed, and

• Gaussian models like fractional Brownian motion (fBm) which describes a Gaus-
sian process with power-law memory [16, 17], attributed to the “material medium”
that surrounds the particle that undergoes anomalous diffusion.

Despite the progress as mentioned above, which model describes an instance of
(experimentally) observed anomalous diffusion is often the subject of fierce debate, as
evidenced by the recent case of anomalous diffusion observed for tracer particles in
cell cytoplasm [18, 19, 20, 21, 22, 23], where all three of the above stochastic models
have been fitted to the experimental data [19, 20, 21, 22, 23, 24, 25, 26]. For physical
systems where the dynamical rules for particle movement are known (in contrast to a
complicated medium like a cell cytoplasm), one would expect to have a much easier
task to model anomalous diffusion, yet it can still remain quite a challenge.

An overview of the available theoretical models, including a summary of their dis-
tinctive features and stochastic properties can be found in a recent perspective article
[27].
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1.2 Motivation for this thesis
Recently, Walter and Barkema [28] reported numerically that the magnetization of
the 2D Ising model at the critical temperature experiences anomalous diffusion with
anomalous exponent equal to γ/(νz) ≈ 0.81 (Fig. 1.1), where γ = 1.75 and ν = 1.0
are two equilibrium critical exponents for the 2D Ising model, and z ≈ 2.1665 [29] is
the dynamical exponent. Their qualitative explanation for this subdiffusive behavior
(note γ/(νz) < 1) is as follows.
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Figure 1.1: The mean-square displacement (MSD) of the total magnetization in the
2D Ising model at Tc. The solid line indicates that the total magnetization experiences
anomalous diffusion with the anomalous exponent c ≈ γ/(νz).

The mean-square displacement (MSD) of the total magnetization M(t) is defined
as

〈∆M2(t)〉 = 〈[M(t)−M(0)]2〉. (1.1)

At the short times (t ≈ 1), the individual spin flips in the model are uncorrelated,
and since there are LD spins all together in the D-dimensional Ising model,

〈∆M2(t)〉 ∼ LDt. (1.2)

At long times (t & Lz), the magnetization is no longer auto-correlated, i.e., 〈M(t)M(0)〉 ≈
0, meaning that

〈∆M2(t)〉 = 〈2M(t)2〉 ∼ LD+γ/ν . (1.3)

If the two points 〈∆M2(1)〉 ≈ (1, LD) and 〈∆M2(Lz)〉 ≈ (Lz, LD+γ/ν) in a
log-log plot are joined by a straight line, then the line will have a slope of γ/(νz),
which is exactly the subdiffusion exponent seen in Fig. 1.1. However, this qualitative
explanation does not provide an insight into the underlying physics of the anomalous
diffusion in the Ising model.

The central theme of this thesis is the subdiffusive behavior of magnetization in a
number of spin models at their critical temperatures (inclusive of the Ising model). We
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establish that the subdiffusive behavior from “restoring forces”, works as “inertia” of
the surrounding spins to resist changes in magnetization. The restoring forces give rise
to to memory effects, slowing down the MSD of the total magnetization, and thereby
leading to the subdiffusive behavior.

The restoring forces can be measured — as we do for all the spin models consid-
ered in this thesis — by tracking the “velocity” autocorrelation function of magne-
tization 〈Ṁ(t)Ṁ(0)〉. As we do so, we find that 〈Ṁ(t)Ṁ(0)〉 ∼ −LDt(c−2) (note
the negative sign, due to the restoring force). Mathematically, integrating this quantity
twice in time using the Green-Kubo relation one obtains

〈∆M(t)2〉 ∼ LDtc. (1.4)

This physics of anomalous diffusion of magnetization is consistent with a Generalized
Langevin Equation (GLE) description with power-law memory effects in time, i.e., the
fBm description of anomalous diffusion. Emphatically, the negative sign in the veloc-
ity autocorrelation function in Eq. (1.4) rules out a CTRW description for anomalous
diffusion in these spin models.

The work in this thesis also suggests that anomalous diffusion of magnetization in
spin models likely generically belongs to the fBm class.

1.3 Spin models considered in this thesis

We have considered three spin models here, i.e., the normal Ising model, the scalar
φ4 model, and the bond-diluted Ising model in two- and (or) three-dimensions with
computer simulations. Periodic boundary conditions are employed. Now, let’s get into
more details about different models.

1.3.1 Ising model and its critical properties

As one of the most important and well known models to study phase transition, the
Ising model describes the evolving dynamics of N spins on the lattice. The Hamilto-
nian of the Ising model on an L×L square lattice, without an external field, is defined
as

H = −J
∑

〈i,j〉

sisj , (1.5)

where si = ±1 is the spin at site i, and J is the coupling constant of interaction among
the spins. The summation runs over all the nearest-neighbor spins.

It has been proved by Ernst Ising that there is no phase transition for the 1D Ising
model [30]. However, for the spatial dimension d ≥ 2 the transition does exist, and
Onsager solved the 2D Ising model analytically [31].

When the temperature is approaching the critical temperature, the correlation length
diverges, a number of critical exponents are proposed to understand the critical behav-
ior of the system, and some of them are listed in Tab. 1.1.
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becomes large, the behavior of the order parameter m is approaching to the analytic
result.

Ising model
dimension d

γ ν zc Tc

2 7/4 1 2.1665(12)
2

ln(1 +
√

2)
3 1.237075(10) 0.629971(4) 2.03(4) 4.5116174(2)

Table 1.1: Some critical exponents and the critical temperature in the Ising model [32],
using kB = J = 1 for the critical temperature Tc.

1.3.2 φ4 model and its critical properties

The φ4-model has become one of the most useful tools in studying of critical phenom-
ena [33, 34, 35, 36]. In two dimensions, the lattice version of the φ4-model is defined
by the action S and HamiltonianH as

S =
H
kBT

= −β
∑

〈ij〉

φiφj +
∑

i

[φ2
i + λ(φ2

i − 1)2], (1.6)

where −∞ < φi < ∞ is the dynamical variable at site i, β and λ are two model
constants. The summation of the first term in the r.h.s of Eq. (1.6) runs over all the
nearest-neighbor spins, and for an L × L square lattice 0 ≤ (i, j) < L. The order
parameter for the φ4-model is defined as Φ =

∑
i φi, and the dynamics of the model

is given by [37, 38]

φ̇i = −Ω
∂S
∂φi

+ ξ(i, t) (1.7)

〈ξ(i, t)ξ(i′, t′)〉 = 2Ωδ(i− i′)δ(t− t′), (1.8)
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where ξ(i, t) is a Gaussian noise term, and Ω represents the dissipation constant, which
is related to the noise term by the Fluctuation-Dissipation relation (1.8).

The equilibrium properties of the model in relation to the critical phenomenon are
well-studied. Earlier investigations of the 2D and 3D lattice φ4-model have indicated
that the critical exponents γ and ν are the same as these for the Ising model, e.g. in
2D, γ = 1.75 and ν = 1 [39, 40, 41]. Simultaneously, Monte Carlo simulations of the
2D lattice φ4-model have supported the idea that the φ4-model belongs to the Ising
universality class [42], although its dynamical properties are not well studied.

1.3.3 Bond-diluted Ising model and its critical properties
As a variation of the Ising model, the Hamiltonian of the bond-diluted Ising model
without an external field is defined as

H = −
∑

〈ij〉

Jijsisj , (1.9)

where si = ±1 is the spin residing at site i, 〈ij〉 denotes the sum running over all
nearest neighbor sites, and the coupling constant Jij is given by the distribution func-
tion

P (Jij) = pδ(Jij − 1) + (1− p)δ(Jij), (1.10)

with p being the bond concentration (0 ≤ p ≤ 1). The function (1.10) simply means
that the value of Jij is 1 with probability p, and 0 otherwise.

For the normal Ising model (p = 1), there is a second-order phase transition at
Tc(1) = 2/ ln(1 +

√
2) [32]. When p reaches the percolation threshold pc = 1/2, its

critical temperature decreases to zero: Tc(pc) = 0 [43]. We have shown in Chapter
5 that for the 2D bond-diluted Ising model, the equilibrium exponents γ and ν are
numerically indistinguishable respectively from 7/4 and unity for p ≥ 0.6, confirming
the results from Ref. [44].

1.4 Markov Chain Monte Carlo
To study the equilibrium properties of models like the Ising model, a commonly used
technique is Markov Chain Monte Carlo.

We generate a Markov chain as

C0, C1, C2, .....Cn. (1.11)

The probability for configurationCt+1 depends only on the previous configuration
Ct. The probability of getting to Ct+1 from Ct is via the transition probability

P (Ct → Ct+1), (1.12)

where the transition probability P (Ct → Ct+1) should not vary over time, and it
depends only on the states Ct and Ct+1. Besides, it should obey the following con-
strain that
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∑

Ct

P (Ct → Ct+1) = 1. (1.13)

In order to generate states that are sampled according to the Boltzmann distribu-
tion, it is sufficient to have algorithms that satisfy the conditions of "ergodicity" and
"detailed balance".

1.4.1 Ergodicity
An important property of Monte Carlo algorithms is ergodicity. It means that given a
long enough time of simulation, the system should be able to reach any state of the
system from any other state.

As mentioned before, in our Monte Carlo simulations, we want to sample the
configurations according to the Boltzmann distribution. If the algorithm we have em-
ployed violates ergodicity, then there is at least a state v that can not be reached from
another state u no matter how long we have run our simulation. When the state u is
chosen as the initial state, then the Boltzmann probability will not hold because of the
zero probability to find the state v. Therefore, ergodicity should not be violated for the
algorithms that we have used, so that we can measure the correct average values of the
quantities we are interested in.

1.4.2 Detailed balance
When our Monte Carlo method meets the condition of ergodicity, the system can reach
any state from any other state. Another important condition is detailed balance. To-
gether, ergodicity and detailed balance ensure that when the system reaches equilib-
rium, the probability distribution of the configurations is indeed the Boltzmann distri-
bution.

Mathematically the condition of detailed balance can be defined as [45]

pvP (v → u) = puP (u→ v). (1.14)

This condition indicates that on average the frequency of transitions from state
u to v is the same as the frequency of transitions from v to u. When the system is
equilibrated, it guarantees that the probability distribution of the configurations is the
Boltzmann distribution, which reveals that pv = exp(−βEv) and pu = exp(−βEu),
resulting in

P (u→ v)

P (v → u)
=
pv
pu

= e−β(Ev−Eu). (1.15)

This equation, together with Eq. (1.13), are the constraints for the transition probabil-
ity in our algorithms.

Next, we will discuss some well known algorithms and dynamics. First, we dis-
cuss Glauber dynamics, in which single spins are proposed to be flipped, and the pro-
posed spin-flips are accepted according to the Metropolis algorithm. Next, we discuss
a cluster algorithm named Wolff algorithm. Thirdly, we discuss Kawasaki dynamics
in which spins of neighboring sites are exchanged.
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1.5 Simulation algorithms and dynamics

1.5.1 Glauber dynamics
The first algorithm we need to explore is the Metropolis algorithm, also known as
Metropolis-Hastings algorithm.It was first proposed by Nicholas Metropolis and his
coauthors in 1953 [46]. It was used as a fast algorithm to sample atomistic states of
hard-sphere gases. Later in 1970 [47], Hastings extended this algorithm to a more
general formula; this extended algorithm is called the Metropolis-Hastings algorithm.

The algorithm describes that in the Ising model with the so-called Glauber dynam-
ics, which is a single-spin-flip dynamics, i.e., at each time step, only a single spin will
be selected to attempt a flip. The transition probability between two state u and v is

P (u→ v) =

{
e−β(Ev−Eu) if Ev − Eu > 0
1 otherwise

(1.16)

Supposing we have two states u and v, and Ev − Eu > 0, then we have

P (u→ v)

P (v → u)
=
e−β(Ev−Eu)

1
= e−β(Ev−Eu). (1.17)

We can obtain the same result as Eq. (1.17) for Ev − Eu < 0. It proves that the
Metropolis probability Eq. (1.16) satisfies detailed balance.

For Ising-like models, in practice we implement the Metropolis algorithm by using
the following steps:

1 Initialize. One commonly-used initial state is obtained by assigning arbitrary
values to each spin. Another commonly-used initial state is obtained by taking
all spins up (or down).

2 For each iteration t, a single spin is randomly selected to flip, yielding a transi-
tion from state u to state v. The resulting energy difference ∆E = Ev − Eu is
measured. If ∆E < 0, then the flip is accepted. Otherwise, the flip is accepted
with the usual Metropolis probability e−β∆E .

Normally, a thermalization process is necessary for all simulations so that we can
measure different quantities after the system has reached its equilibrium state. The
single-spin-flip dynamics with Metropolis probability is known as Glauber dynamics.

1.5.2 Wolff algorithm
Glauber dynamics is often already a fast algorithm. However, we are mostly interested
in the physics near the critical point, and due to the phenomenon of critical slowing
down [45], exactly at the critical point, the dynamics is not very fast. Often, the corre-
lation time τ at the critical point increases in power-law fashion with the system size
L:

τ ∼ Lz. (1.18)
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Figure 1.3: (a)-(c) Typical snapshots obtained via the Metropolis algorithm for the 2D
Ising model with the temperatures are T = 2.0, Tc, and 3.0, respectively. The green
dots represent value +1 of the spin, and the red ones are for spins whose value is −1.
The system size is L = 100 for each figure. (d)-(f) The corresponding time series of
the order parameter m after the system reaches its equilibrium state.
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The dynamical exponent of the Metropolis algorithm is z = 2.1665(12) [29],
which indicates that this algorithm is still a bit slow at Tc. It inspires us to look for a
new algorithm for simulating faster dynamics around the critical point, and the Wolff
algorithm is one of the candidate solutions.

The Wolff algorithm, which was proposed by Ulli Wolff in 1989 [48], is a cluster
algorithm. It is a relatively small extension of previous work of Swendsen and Wang
[49] which flips multiple clusters in a single iteration. In contrast, the Wolff algorithm
only flips one single cluster at each time step. When we are in state u, at first, a seed
spin is selected randomly. Then, we begin to check its neighbors. Those neighbor spins
that share the same value with the seed spin, are added to the cluster with probability
Padd. For each new spin that was added to the cluster, we also check its neighbors
and test them in the same way to find out whether we should add these neighbors to
the cluster or not. We repeat this procedure until there are no spins left in the cluster
whose neighbors have not been considered to join the cluster. Finally, the cluster is
ready, and we flip all spins in the cluster, leading us to the new state v.

About the probability Padd, a convenience choice is

Padd = 1− exp(−2βJ). (1.19)

Since the transition probability can be separated as

P (u→ v) = g(u→ v)A(u→ v), (1.20)

where g(u → v) is the selection probability, which defines the probability that given
an initial state u, our algorithm will generate the target state v, and A(u → v) is the
acceptance ratio.

For the Wolff algorithm, if there are m attempts to add a new spin to the cluster
are failed when we go from state u to v, and there are n failures from state v to u, then
the selection probabilities are (1− Padd)m and (1− Padd)n. Then we have

P (u→ v)

P (v → u)
=
g(u→ v)A(u→ v)

g(v → u)A(v → u)
= (1− Padd)m−n

A(u→ v)

A(v → u)
(1.21)

The acceptance ratios are chosen as A(u→ v) = A(v → u) = 1, and the energy
difference of state u and v depends on the failure cases. For each of the failure cases
from u to v, the bond to be broken is shared by two aligned spins, resulting in the
energy change +2J . From state v to u, it experiences a similar process. So, if we
focus on the energy change between state v and state u, then we have

Ev − Eu = 2Jm+ (−2Jn) = 2J(m− n). (1.22)

Combining Eqs.(1.20) - (1.22) we have

P (u→ v)

P (v → u)
= e−2βJ(m−n) = e−β(Ev−Eu) (1.23)

Eq. (1.23) tells us that the selected probability Padd satisfies the detailed balance.
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As we can find from Ref. [45], around the critical temperature, the Wolff algorithm
indeed is a much faster algorithm than the Metropolis algorithm. Since we want to
improve the efficiency of our simulation, when we study the target system with other
algorithms as for instance Glauber dynamics, the Wolff algorithm normally is used to
thermalize the system to its equilibrium state around Tc so that we can save a lot of
time to deal with the measurement process.

1.5.3 Kawasaki Dynamics

Both Glauber dynamics and Wolff algorithm are invented for the Ising model in which
the magnetization is allowed to fluctuate in time. However, there are some situations
that require us to keep the magnetization to be a constant, for instance in the context
of lattice gas models. We call the Ising model with constant density of magnetiza-
tion the conserved-order-parameter (COP) Ising model. Kawasaki dynamics [50] is
an algorithm for the COP Ising model.

Unlike what we have done for the normal Ising model with Glauber dynamics,
in which we attempt to flip a single spin at one step, now two neighboring sites are
selected in each time step. We try to exchange their spin values, and the change will
be rejected or accepted through the Metropolis probability

P (u→ v) =

{
e−β(Ev−Eu) if Ev − Eu > 0
1 otherwise

(1.24)

We have proven that this probability fulfills detailed balance. It can be shown that
it also satisfies ergodicity, within the set of states with the same magnetization. This al-
gorithm turns out to be not so efficient. A faster choice is that instead of choosing two
neighboring spins, we select two spins at random positions, and then do the exchange
dynamics. This non-local exchange dynamics is faster than the normal Kawasaki dy-
namics, and obtains the same equilibrium results; it can therefore be used for thermal-
ization.

For now, three well-used algorithms for Ising-like models are introduced. Cer-
tainly, there are more algorithms worth to be mentioned, we recommend Refs. [45,
51, 52] for more details.

1.6 Finite Size Scaling

After collecting data from Monte Carlo simulations, it is always worth to ask what we
can learn from them. For systems with a second-order phase transition, the behavior at
the critical point attracts a lot of attention. Normally, we are interested in the behavior
of quantities in the thermodynamic limit, where the system size goes to infinite. Un-
fortunately, due to the limited power of a computer, we can only simulate systems with
relatively small sizes. A method is required that can extract critical exponents and the
critical temperature from data obtained with small sizes, and finite-size scaling (FSS)
is such a method.
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To understand how FSS works, we employ the magnetic susceptibility χ as an
example, and it is defined as

χ(L) = βN(〈m2〉 − 〈m〉2) (1.25)

Based on the theory of FSS [45], at the critical point, the susceptibility is rescaled
as

χ = Lγ/ν χ̄(L1/νT ′) (1.26)

where T ′ = |T − Tc|/Tc is the reduced temperature.

 0

 10

 20

 30

 40

 50

 60

 70

-0.15 -0.05 0.05 0.15 0.25

    

    

    

χ

T ′

L = 60

L = 40

L = 20

(a)

0.01

0.02

0.03

0.04

0.05

-6 -4 -2  0  2  4  6  8

    

    

    
χ
L

−
γ
/
ν

T ′ L1/ν

L = 60
L = 40
L = 20

(b)

Figure 1.4: (a) The magnetic susceptibility as a function of temperature. (b) By scaling
the susceptibility as χ = Lγ/ν χ̄(L1/νT ′), where T ′ = |T − Tc|/Tc is the reduced
temperature, it provides us the approximate values of the equilibrium exponents γ ≈
1.76, ν ≈ 1.0, and the critical temperature Tc ≈ 2.26.

The scaling results shown in Figure 1.4 demonstrate the power of the FSS: when
the susceptibility curves for different system sizes are scaled on top of each other,
it provides us the proper values of the equilibrium exponents γ and ν and the critical
temperature Tc. The FSS is a powerful tool that helps us to determine accurately many
critical properties.

1.7 Thesis outline
Until now we have provided a basic introduction into anomalous diffusion, and intro-
duced some background of Ising-like models. Then the simulation methods are de-
scribed in some detail, followed by three specific algorithms. We have also discussed
finite size scaling, which is a useful method to analyze the data generated from Monte
Carlo simulations.

In chapter 2, the anomalous diffusion is reported as a common phenomenon at
the critical point for both 2D and 3D Ising models. We have numerically proven that
the GLE is a proper model to describe the anomalous diffusion in the Ising model.
Besides, we find that the anomalous exponent can be used to measure the dynamical
exponent for Ising-like systems.

We then explore more of the anomalous diffusion near but not exactly at the critical
point in chapter 3. The diffusion exponent flows are measured for temperatures around



Introduction 13

Tc, and we obtain that for T < Tc, there is no true exponent, instead it has a peak value
in the exponent flow diagram. While for T > Tc, the true exponent does exist. We find
that the diffusion exponent is flowing away from the critical value of the true exponent
from both sides, indicating that these results could be treated as a method to identify
the phase transition in the Ising system.

In chapter 4, we measure the dynamical exponent of the 2D scalar φ4 model,
which is a model claimed to belong to the same universality class as the 2D Ising
model, via two independent methods: directly measuring the decay of the correla-
tion function 〈m(t)m(0)〉, then obtain z from these data, and the scaling of the MSD
〈[m(t)−m(0)]2〉. Our results confirm that the 2D scalar φ4 model indeed shares the
dynamical exponent with the 2D Ising model, indicating that they belong to the same
universality class.

After this chapter, the bond-diluted Ising model with different bond concentra-
tions is considered in chapter 5, and we find that the dynamical exponent increases to
infinity when the bond concentration approaches the percolation threshold, which is
referred to as "super slowing down" behavior.

Up to this point, what we have investigated are mainly numerical results. In chapter
6, we try to figure out the possibility to derive analytically the dynamical properties
of a model in the set of Ising systems. The 2D Ising model with Kawasaki dynamics
is studied. Its Fourier modes are treated as the dynamical eigenmodes, from which we
calculate the MSD and autocorrelation function analytically in approximation. The
results are consistent with findings in the previous chapters and the analytic methods
help us eliminate the strong deviations arising from finite-size effects.

Finally, we conclude the thesis in chapter 7, and some unsolved problems are
proposed for future studies.





CHAPTER 2

Generalized Langevin Equation Formulation for
Anomalous Diffusion in the Ising Model at the Critical

Temperature

We consider the two- (2D) and three-dimensional (3D) Ising model on a square lat-
tice at the critical temperature Tc, under Monte-Carlo spin flip dynamics. The bulk
magnetization and the magnetization of a tagged line in the 2D Ising model, and the
bulk magnetization and the magnetization of a tagged plane in the 3D Ising model
exhibit anomalous diffusion. Specifically, their mean-square displacement increases
as power-laws in time, collectively denoted as ∼ tc, where c is the anomalous expo-
nent. We argue that the anomalous diffusion in all these quantities for the Ising model
stems from time-dependent restoring forces, decaying as power-laws in time — also
with exponent c— in striking similarity to anomalous diffusion in polymeric systems.
Prompted by our previous work that has established a memory-kernel based Gener-
alized Langevin Equation (GLE) formulation for polymeric systems, we show that a
closely analogous GLE formulation holds for the Ising model as well. We obtain the
memory kernels from spin-spin correlation functions, and the formulation allows us to
consistently explain anomalous diffusion as well as anomalous response of the Ising
model to an externally applied magnetic field in a consistent manner.
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2.1 Introduction
Despite the progress as mentioned in Sec.1.1, which model describes an instance of
(experimentally) observed anomalous diffusion is often the subject of fierce debate, as
evidenced by the recent case of anomalous diffusion observed for tracer particles in
cell cytoplasm [18, 19, 20, 21, 22, 23], where all three of the above stochastic models
have been fitted to the experimental data [24, 25, 19, 20, 21, 22, 23, 26]. For physical
systems where the dynamical rules for particle movement are known (in contrast to a
complicated medium like a cell cytoplasm), one would expect to have a much easier
task to model anomalous diffusion, yet it can still remain quite a challenge.

For polymeric systems, where anomalous diffusion is commonplace, it is only re-
cently that Panja has established that the anomalous diffusion for tagged monomers
are explained by “restoring forces” that decay as a power-law in time with the anoma-
lous exponent of diffusion [53, 54]. From these characteristics it has been shown that
anomalous diffusion in polymeric systems can be modeled by a Generalized Langevin
Equation (GLE) with a memory kernel, and it belongs to the class of fBm [55].

The fBm characteristics of anomalous diffusion have been verified for flexible
[56, 57] and semiflexible polymers [58], and polymer membranes [59, 60, 61]. Im-
portantly, they have been used to successfully explain the dynamics of translocation
of polymers across membranes [62, 63, 64, 65]. The fBm model framework has been
generalized/extended to the linear transport regime for flexible polymers [54], and has
similarly been used to explain field-driven polymer translocation [66] and polymer
adsorption [67] for weak fields and adsorption energies. It has also found applications
in strong nonlinear regimes for flexible polymers [68].

In this chapter, we take on characterizing anomalous diffusion in magnetization
space for the Ising model on a square lattice at the critical temperature, undergoing
Monte-Carlo spin-flip dynamics. That the total magnetization for this model exhibits
anomalous diffusion has been reported by one of us in Ref. [28]. Additionally, we
report that the magnetization of a tagged line in the 2D Ising model, and the magneti-
zation of a tagged plane in the 3D Ising model, also exhibit anomalous diffusion. We
argue that the anomalous diffusion for all these quantities for the Ising model stems
from time-dependent restoring forces, decaying as power-laws in time — with the
anomalous exponent of diffusion — in striking similarity to polymeric systems, and
show that a closely analogous GLE formulation holds for the Ising model as well. We
obtain the memory kernel from spin-spin correlation functions, and the formulation
allows us to consistently explain anomalous diffusion as well as anomalous response
of the Ising model to an externally applied magnetic field in a consistent manner.

The organization of this chapter is as follows. In Sec. 2.2 we introduce the Ising
model and report the anomalous exponents of magnetization. In Sec. 2.3 we explain
how restoring forces —that hold the key to anomalous diffusion — develop and work.
In Sec. 2.4 we develop the GLE formulation for anomalous diffusion in the Ising
model. The chapter is concluded with a discussion in Sec. 2.5.
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2.2 Anomalous diffusion in the Ising model at the crit-
ical temperature

2.2.1 The model and dynamics
We consider the Ising model on a square lattice. The Hamiltonian, at zero external
magnetic field, is rewritten as

H0 = −J
∑

〈ij〉

sisj , (2.1)

where si = ±1 is the spin at site i, and J is the coupling constant of interaction among
the spins. The summation runs over all the nearest-neighbor spins. The linear size of
the system is L; i.e., 0 ≤ (i, j) < L. Our samples satisfy periodic boundary conditions
at all times, and all properties we report here are studied (or measured) at the critical
temperature Tc.

The key quantity of focus in this chapter is the mean-square displacement (MSD)
for magnetization M(t) at time t as

〈∆M2(t)〉 = 〈[M(t)−M(0)]2〉, (2.2)

where M(t) can take several forms. All angular brackets in this chapter, including
those in Eq. (2.2), denote ensemble average. In the two-dimensional (2D) Ising model,
we consider the respective cases where it is the bulk magnetizationM2D,b, or the “line
magnetization” M2D,l, the magnetization of a tagged line of spins in the y-direction.
Similarly, in the three-dimensions, we consider the bulk magnetization M3D,b and the
magnetization M3D,p of a tagged xz-plane.

We simulate the dynamics of the system using Monte Carlo moves, following the
Metropolis algorithm. At any time-step a spin is randomly selected to flip, and the
resulting change ∆E, where E is the energy of the system, is measured. The move is
accepted with unit probability if ∆E ≤ 0; if not, then the move is accepted with the
usual Metropolis probability e−∆E/(kBTc), where kB is the Boltzmann constant.

All simulation results reported here use kB = J = 1.

2.2.2 Anomalous diffusion in the Ising model
Let us denote by D the spatial dimension of the support of the tagged magnetization
given by M , meaning D = 1 for a tagged line and D = 2 for bulk in the 2D Ising
model, while for the 3D Ising model D = 2 for a tagged plane and D = 3 for bulk.
At short times t . 1, the individual spin flips in the model are uncorrelated, and since
there are LD spins all together in these entities spatial dimensions,

〈∆M2(t)〉 ' LDt. (2.3)

At long times, t� Lzc , where the zc is the dynamic exponent for the Ising model
at Tc, we expect 〈M(t)M(0)〉 = 0. This means that

〈∆M2(t)〉 ≡ 〈[M(t)−M(0)]2〉
t�Lzc

= 2〈M2〉, (2.4)
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which is a purely equilibrium quantity which we can calculate from the equilibrium
spin-spin correlations. We then have

〈M2〉 =
∑

i∈LD

∑

jεLD

〈sisj〉 =
∑

i∈LD

∑

jεLD

r2−d−η
ij ≈

∫ L

1

dDr

rd−2+η
∼ L2D−d+2−η,

(2.5)
where rij is the Euclidean distance between the two spins i and j, d is the spatial
dimension of the model (i.e., d = 2 and 3 for two- and three-dimensional Ising models
respectively), and the critical exponent η is related to γ and ν via the scaling relation

2 − η = γ/ν. (Note this result requires an integral
∫ L

1

dDr

rd−2+η
to be dominated by

large r, which is why we have excluded line magnetizationD = 1 in three dimensions
d = 3 from this chapter.)

We now make the scaling assumption of an intervening power law with time

〈∆M2(t)〉 ∝ tc (2.6)

connecting across intermediate times from Eq. (2.3) at t ' 1 to Eqs. (2.4-2.5) at
t ' Lzc . The match at t ' 1 forces 〈∆M2(t)〉 ' LDtc, and the match at large time
Lzc then requires LD+czc ' L2D−d+γ/ν , leading to

c =
D − d+ γ/ν

zc
. (2.7)

The full scaling prediction valid for all t� 1 is then

〈∆M2(t)〉/L2D−d+γ/ν = f (t/Lzc) (2.8)

where f(x) ' xc for x� 1. Using the values of the critical exponents corresponding
to kB = J = 1, as presented in Table 2.1, the explicit power laws for 1 . t . Lzc

become
〈∆M2

2D,l(t)〉 ∼ Lt(γ/ν−1)/zc ≈ Lt0.35

〈∆M2
2D,b(t)〉 ∼ L2tγ/(νzc) ≈ L2t0.81

〈∆M2
3D,p(t)〉 ∼ L2t(γ/ν−1)/zc ≈ L2t0.48.

〈∆M2
3D,b(t)〉 ∼ L3tγ/(νzc) ≈ L3t0.97, (2.9)

indicating that anomalous diffusion in the Ising model is ubiquitous at the critical
temperature. As pointed out earlier, the results of the bulk magnetization were first
obtained by one of us in Ref. [28].

The power-laws in Eq. (2.9) are verified in Figure 2.1. To obtain these data, we
first thermalised the system. We then produced a number of independent time-series
of M(t), from which we measured 〈∆M2(t)〉. In some of the plots in Figure 2.1 we
notice a small deviation from the power-laws at late times: we have verified that this
is caused by periodic boundary conditions — they are different when free boundary
conditions are employed. Two examples of this can be found in Appendix A.
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Figure 2.1: The mean-square displacement (MSD) of the magnetization 〈∆M2(t)〉
in the Ising model at Tc: (a) tagged line magnetization for the 2D Ising model, (b)
bulk magnetization for the 2D Ising model, (c) tagged plane magnetization for the 3D
Ising model, and (d) bulk magnetization for the 3D Ising model. The x- and y-axes
are scaled according to Eq. (2.8) leading to excellent data collapse over different L.
The black solid lines denote the power-laws shown in Eq. (2.6).
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Ising model
dimension d

γ ν zc Tc

2 7/4 1 2.1665(12)
2

ln(1 +
√

2)
3 1.237075(10) 0.629971(4) 2.03(4) 4.5116174(2)

Table 2.1: The relevant critical exponents and the critical temperature in the Ising
model [29, 32, 69], using kB = J = 1 for the critical temperature Tc.

2.3 Restoring forces: the physics of anomalous diffu-
sion in the Ising model

In this section we focus on the physics of anomalous diffusion. We argue that anoma-
lous diffusion in the Ising model stems from restoring forces, in close parallel to poly-
meric systems.

2.3.1 Restoring forces

Imagine that the value of the tagged magnetization M changes by an amount δM due
to thermal spin flips on the tagged line at t = 0. Due to the interactions dictated by
the Hamiltonian, the spins within and surrounding the tagged region, in the ensuing
times, will react to this change. This reaction will be manifest in the two following
ways: (a) the surrounding spins will to some extent adjust to the change over time,
and (b) during this time the value of M will also readjust to the persisting values of
the surrounding spins, undoing at least a part of δM . It is the latter that we interpret
as the result of “inertia” of the surrounding spins that resists changes in M , and the
resistance itself acts as the restoring force to the changes in the tagged magnetization.

Since the imposed change δM will be partially undone for t > 0, we can expect
the “velocity” autocorrelation function 〈Ṁ(0)Ṁ(t)〉 to be negative, an ingredient that
we will use to establish the connection between the restoring forces and anomalous
diffusion in Sec. 2.3.3.

2.3.2 The time-decay behavior of restoring forces

The main ingredient to connect the restoring forces and anomalous diffusion lies in
how the former decays in time. To this end, we first consider the following thought-
experiment, along the line described above in Sec. 2.3.1. On an equilibrated set of
samples of the two-dimensional Ising model we create a small excess tagged mag-
netization δM at t = 0 with the constraint that we do not allow this excess to be
subsequently undone; this corresponds to an imposed evolution of the tagged mag-
netization dM(t)/dt = (δM) δ(t), where δ(t) is the Kronecker delta function. The
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Figure 2.2: Plots showing the scaling form 〈m〉Lκ ∼ f(BLλ) with κ− λ = D− d+
γ/ν, confirming Eq. (2.11). The (numerically found) values of λ are 0.1 in 2D and
0.43 in 3D: (a) 〈m2D,l〉 (b) 〈m2D,b〉, (c) 〈m3D,p〉 and (d) 〈m3D,b〉 (note: γ/ν ≈ 1.75 in
2D and ≈ 1.97 in 3D).
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L

L

ℓ(t)

ℓ(t)

Figure 2.3: The thought experiment performed on the tagged line magnetization for the
two-dimensional Ising model. A small excess (line) magnetization δM2D,l is created
on the tagged line of spins, denoted by the dashed line, with the constraint that we do
not allow the excess magnetization to be undone. Up to time t, this action creates a
rectangular zone of width `(t) ∼ t1/zc around the tagged line, shown by the red solid
lines, which we can consider equilibrated to the new situation, in the following sense.
If we consider the red square of size `(t) × `(t), then after time t the spins therein
will all have equilibrated to the segment of the tagged line within that square, and vice
versa.

resulting restoring force at later time t we will then write as

f(t) = −k(t) δM (2.10)

where we interpret k(t) as the magnetic analogue of a spring constant: in conventional
magnetic language this is related to the susceptibility of the tagged magnetization
through k−1 = LDχ.

For long times t � Lzc our spring constant will be the equilibrium one which is
given by the equilibrium Fluctuation Theorem as

k−1 = β〈M2〉 ∼ L2D−d+γ/ν . (2.11)

Equation (2.11) can be confirmed by equilibrating samples under the magnetic ana-
logue of an externally applied force, which is an external field applied to the tagged
magnetization (i.e., the field is applied on the domain of support of the magnetization),
such that the Hamiltonian becomes H = H0 −MB. We then expect a mean tagged
magnetization density 〈m〉 = ML−D = k−1BL−D ' BLD−d+γ/ν at small values
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of B, which is the manifestation of linear response of the system under weak exter-
nal forcing. More generally, we can expect a full scaling form 〈m〉Lκ ∼ f(BLλ) for
some κ and λ, where the scaling function f(x) has the property that f(x → ∞) →
constant, and f(x → 0) ∼ x due to the linear dependence of 〈m〉 on B as B → 0.
The latter condition implies that κ− λ = D − d+ γ/ν.

The scaling form 〈m〉 = ML−D = k−1BL−D ' BLD−d+γ/ν with κ − λ =
D−d+γ/ν is confirmed in Figure 2.2. The quantity λ is numerically found to be 0.1
and 0.43 for Ising models in two- and in three-dimensions respectively.

For intermediate times we expect equilibrium response to be achieved only locally
across a length-scale `(t) ∼ t1/zc within and around the tagged zone (see Figure 2.3).
Within a region of the tagged zone of side `(t) we then expect a contribution of tagged
magnetization 〈∆M〉`(t) ∼ B`(t)2D−d+γ/ν . Adding the response from (L/`(t))D

such regions then leads to

〈M(t)〉 = k(t)−1B ∼ BLD`(t)D−d+γ/ν ∼ BLDtc, (2.12)

where the exponent c is as already given in Eq. (2.7). The various cases of this result
are verified in Figure 2.4.
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Figure 2.4: Average magnetization as a function of time when the magnetic field is
switched on for the equilibrated samples at t = 0: (a) tagged line magnetization
〈M2D,l(t)〉 and (b) bulk magnetization 〈M2D,b(t)〉 for the 2D Ising model, and (c)
the tagged plane magnetization 〈M3D,p(t)〉 and (d) bulk magnetization 〈M3D,b(t)〉
for the 3D Ising model.

To summaries, the key result of this section is that if we create an excess tagged
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magnetization δM at t = 0 and do not allow it to relax away, then a time-dependent
restoring force f(t) acts such as would reverse it, where

Tagged line magnetization in two-dimensions:
frest(t) = −L−1 t−(γ/ν−1)/zc) δM2D,l,

Bulk magnetization in two-dimensions:
frest(t) = −L−2 t−γ/(νzc) δM2D,b,

Tagged plane magnetization in three-dimensions:
frest(t) = −L−2 t−(γ/ν−1)/zc δM3D,p,

and Bulk magnetization in three-dimensions:
frest(t) = −L−3 t−γ/(νzc) δM3D,b. (2.13)

2.3.3 Anomalous diffusion stems from these restoring forces

The main result of Sec. 2.3.2, for which Ṁ(t) ∝ δ(t), can be represented as the
following formal time-dependent “impedance-admittance relation” [62, 63, 64]

frest(t) = −
∫ t

0

dt′ µ(t− t′)Ṁ(t′), (2.14)

with a causal memory function given by µ(t) = k(t) ∼ L−Dt−c as in Eq. (2.13) for
t > 0, and µ(t) = 0 for t < 0. Equation (2.14) is obtained from Eq. (2.13) using
the superposition principle: the total restoring force at time t is a sum of all preceding
δM values weighted by the (power-law) memory kernel µ. In this formulation, Ṁ(t)
plays the role of current through a circuit, with frest(t) playing the role of the voltage,
and µ(t) is the time-dependent impedance. On the one hand, this formulation means
that 〈frest(t)frest(t

′)〉Ṁ=0 = µ(|t− t′|), while on the other, we can invert Eq. (2.14) to
express Ṁ(t) as a function of frest(t) involving the time-dependent admittance a(t) as

Ṁ(t) = −
∫ t

0

dt′ a(t− t′)frest(t
′), (2.15)

and correspondingly 〈Ṁ(t)Ṁ(t′)〉frest=0 = a(t − t′), with the impedance and the
admittance following the relation ã(s)µ̃(s) = 1 in the Laplace space s. These imply
that a(t) = 〈Ṁ(t)Ṁ(0)〉frest=0

∼ −LDtc−2. Integrating this quantity twice in time
using the Green-Kubo relation we obtain

〈∆M(t)〉2 ' LDtc (2.16)

(we will return to this calculation more formally in Sec. 2.4), leading us not only to
the anomalous exponents of Eq. (2.6), but also the correct L-dependent prefactors for
the data collapse in Figure 2.1. The results are summarized in Table 2.2.
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Magnetization of µ(t) 〈∆M(t)〉2

tagged line in 2D L−1t−(γ/ν−1)/zc Lt(γ/ν−1)/zc

bulk in 2D L−2t−γ/(νzc) L2tγ/(νzc)

tagged plane in 3D L−2t−(γ/ν−1)/zc L2t(γ/ν−1)/zc

bulk in 3D L−3t−γ/(νzc) L3tγ/(νzc)

Table 2.2: Memory functions and anomalous diffusion of magnetization in the Ising
model. The anomalous diffusion applies only until the terminal relaxation time scaling
∼ Lzc .

2.3.4 Restoring forces and anomalous diffusion: a similar story
for polymer dynamics

Although slightly off-topic, we now briefly point out that the dynamics of the restoring
forces and anomalous diffusion for magnetization in the Ising model is practically
identical to those in polymer dynamics [53, 54, 56, 62, 63, 64, 66, 67]. This subsection
forms the basis of Sec. 2.4, where we discuss the Generalized Langevin Equation
formulation of anomalous diffusion in the Ising model.

Even though anomalous diffusion in polymeric systems is the norm rather than
an anomaly, we specifically pick the Rouse polymer to demonstrate the similarity; for
instance, the anomalous diffusion of a tagged monomer in the Rouse model, which
scales as t2ν/(1+2ν) until the terminal Rouse time τR ∼ N1+2ν (and diffusively there-
after). Here, ν is the Flory exponent (= 3/4 in two and ≈ 0.588 in three dimensions),
and N is the polymer length.

Imagine that we move a tagged monomer by a small distance δ~r at t = 0 and
hold it at its new position ∀t > 0 (just like in our thought experiment of Sec. 2.3.2,
where we created an excess magnetization δM at t = 0 and did not allow it to be
undone). For more details, we refer the reader to Ref. [56], where we analyzed this
thought experiment. In the ensuing time, all the monomers within a backbone dis-
tance nt ∼ t1/(1+2ν), counting away from the tagged monomer will equilibrate to the
new position of the tagged monomer. However, the end-to-end distance of this equili-
brated set of monomers is no longer their natural spatial extent (∼ nνt ), but is instead
stretched by an amount ∝ δ~r. With the (entropic) spring constant of these nt equili-
brated monomers scaling as∼ n−2ν

t , the mean force the tagged monomer experiences
at its new position is then given by ~frest(t) ∼ −n−2ν

t (δ~r) ∼ −t−2ν/(1+2ν)(δ~r) [i.e.,
force=(spring constant)×stretching distance]. This relation is identical in formulation
to Eqs. (2.13), and the rest of the emulated analysis (2.14-2.16) leads one to the result
that the mean-square displacement of the tagged monomer increases as t2ν/(1+2ν). Of
course this result only holds till the polymer’s terminal Rouse time τR ∼ N1+2ν , just
like the anomalous diffusion in the Ising model survives until the terminal relaxation
time scaling ∼ Lzc .

The reader may find a comparison of Table I in Ref. [54] and Table 2.2 of this
chapter interesting. Note that at the critical temperature the system size L corresponds
to the polymer length N : both systems reach criticality when these parameters reach
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infinity.

2.4 Generalised Langevin Equation formulation for
anomalous diffusion in the Ising model

In the previous section we focused on the physics of the anomalous diffusion in the
Ising model. Using a thought experiment we argued that the time-decay behavior of
the restoring forces is the key ingredient to describe the relation between the restoring
forces and anomalous diffusion in terms of the memory function µ(t). Equation (2.14)
and its inverse formulation led us not only to the anomalous exponents for the mean-
square displacements, but also to the correct L-dependent prefactors to obtain the
data collapse in Figure 2.1. These results pose now an interesting question: could we
formulate a stochastic differential equation for the anomalous diffusion in the Ising
model?

A comparison to the corresponding relations between the restoring forces and
anomalous diffusion for polymeric systems — taken up in the elaborate paper [54]
by one of us — offers a clue to a possible answer to the above question. Therein the
(anomalous) dynamics of a tagged monomer is shown to be described by the two fol-
lowing stochastic differential equations involving the monomeric velocity v(t), the
respective internal and external forces f(t) and fext that it experiences, and the mem-
ory function µ(t):

γv(t) = f(t) + q1(t)

f(t) = −
∫ t

0

dt′µ(t− t′) v(t′) + fext + q2(t). (2.17)

Here γ is the viscous drag on the monomer by the surrounding (effective) medium,
q1(t) and q2(t) are two noise terms satisfying 〈q1(t)〉 = 〈q2(t)〉 = 0, and the fluctuation-
dissipation theorems (FDTs) 〈q1(t) q1(t′)〉 ∝ γδ(t− t′) and 〈q2(t) q2(t′)〉 ∝ µ(t− t′)
respectively. (Note that factors of kBT terms have been suppressed from these equa-
tions.) The idea behind Eq. (2.17) is that while the internal restoring force builds on
the history of the monomeric velocity, the latter simply responds instantaneously to
the force it experiences.

Similarity between the second one of Eq. (2.17) and Eq. (2.14) prompts us to
propose the total force as

f(t) = −
∫ t

0

dt′ µ(t− t′)Ṁ(t′) + fext + g(t), (2.18)

for the Ising model, where fext is simply the externally applied force, such as a mag-
netic field. The noise term g(t) satisfies the condition that 〈g(t)〉 = 0 and the corre-
sponding FDT 〈g(t)g(t′)〉 = µ(|t − t′|). As we have done before, Eq. (2.18) can be
inverted, in terms of the admittance a(t), to write

Ṁ(t) = −
∫ t

0

dt′ a(t− t′)f(t′) + ω(t). (2.19)
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The noise term ω(t) similarly satisfies 〈ω(t)〉 = 0, and the FDT 〈ω(t)ω(t′)〉 = a(|t−
t′|). The impedance and the admittance are related to each other in the Laplace space
as ã(s)µ̃(s) = 1.

Additionally, we propose that in the Monte-Carlo dynamics, magnetization in the
Ising model instantaneously responds to the internal force as

ζṀ = f(t) + q(t), (2.20)

with a damping coefficient ζ and a corresponding white noise term q(t). Thereafter,
having combined Eqs. (2.18) and (2.20) we obtain

ζṀ = −
∫ t

0

dt′ µ(t− t′)Ṁ(t′) + fext + g(t) + q(t), (2.21)

or

Ṁ =

∫ t

0

dt′ θ(t− t′)[fext + g(t′) + q(t′)], (2.22)

where in the Laplace space θ̃(s)[ζ + µ̃(s)] = 1.Here, without the ζ term θ(t) is iden-
tical to a(t), introduced in Eq. (2.15).

At zero external magnetic field the dynamics of M simplifies to

Ṁ =

∫ t

0

dt′ θ(t− t′)[g(t′) + q(t′)], (2.23)

similar to Eq. (2.17) for polymeric systems. Without further ado, we then simply fol-
low Ref. [54] to conclude, with µ(t) ∼ L−Dt−c, that

〈Ṁ(t)Ṁ(t′)〉 = −θ(t− t′) ∼ −LD(t− t′)c−2. (2.24)

Note that in Eq. (2.24) we have ignored the ζ term, which essentially means that we
are ignoring the (uninteresting) time-scale . ζ−1. Subsequently, by integrating the Eq.
(2.24) twice in time using the Green-Kubo relation, the MSD of the magnetization can
be obtained as

〈∆M2(t)〉 ∼ LDtc, (2.25)

which are the same results obtained in Eq. (2.16). An example verification for the
velocity autocorrelation function (2.24) can be found in Appendix B.

This GLE formulation demonstrates that the anomalous diffusion in the Ising
model at the critical temperature is non-Markovian, with a power-law memory func-
tion µ(t). Quite simply, if µ(t) ∼ t−c, then the anomalous diffusion exponent is c.

2.4.1 Numerical confirmation of the GLE formulation (and deter-
mination of the damping coefficient ζ)

It is now imperative that we numerically test our proposed GLE formulation for
anomalous diffusion for the Ising model. Our key test is to check the FDT
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〈frest(t)frest(t
′)〉Ṁ=0 = µ(t−t′), for which we describe our approach below, followed

by presentation of the numerical results.
Conceptually, the task is simple. At a fixed value ofM , i.e., Ṁ = 0 at all times, we

need to numerically measure 〈frest(t)frest(t
′)〉. However, we cannot measure forces in

the Monte Carlo dynamics of the model since by definition one does not have forces
in discrete lattice models. In order to circumvent this difficulty, we use Eq. (2.20) as a
proxy for f(t) by choosing ζ = 1 and use the value Ṁ free (see below), which would
have applied to the tagged magnetization if the fixed M constraint were to be lifted at
that time.

We start with a thermalised system at t = 0. For t > 0 we fix the value of M
(this does not mean that all tagged spins are frozen), which we achieve by performing
non-local spin-exchange moves. Specifically, for the magnetization of a tagged line
in 2D and tagged plane in 3D, we avoid extreme values of M by choosing to fix
it in the interval −0.2 < m = ML−D < 0.2 (note that in the scaling limit all
values of m belong to this range). We then keep taking snapshots of the system at
regular intervals, and compute, at every snapshot (denoted by t), the expectation value
Ṁ free(t) conditional on the current configuration, which for our Metropolis Monte-
Carlo dynamics is given by,

Ṁ free(t) =
∑

i∈ tagged

(−2si) Min
(

1, e−∆Ei/(kBTc)
)

= f(t). (2.26)

This means that for every snapshot we take, we consider an attempt to flip each spin
in turn and find the expected change in M which would have occurred if this move
had been implemented, totaled over all the spins.

Finally, we note that since simulations are performed for finite systems with M
fixed at its t = 0 value, in any particular run we need a non-zero value of fext =
−〈f(t)〉 acting to sustain the initial value of M . Further, given that that in our proxy
measurement for f(t) using Eq. (2.20) we can only access frest(t)+fext, but not frest(t)
directly, it is the quantity

Γ(Ṁ2D,l(t)) = 〈Ṁ(t)Ṁ(t′)〉 − 〈Ṁ(t)〉〈Ṁ(t′)〉
= L2D(〈f(t)f(t′)〉 − 〈f(t)〉〈f(t′)〉)

(2.27)

that should correctly proxy 〈g(t)g(t′)〉Ṁ=0 = µ(t− t′), and we expect the following
results:

Γ(Ṁ2D,l(t)) ∼ Lt−(γ/ν−1)/zc ≈ Lt−0.35,

Γ(Ṁ2D,b(t)) ∼ L2t−γ/(νzc) ≈ L2t−0.81,

Γ(Ṁ3D,p(t)) ∼ L2t−(γ/ν−1)/zc ≈ L2t−0.48,

Γ(Ṁ3D,b(t)) ∼ L3t−γ/(νzc) ≈ L3t−0.97. (2.28)

These results are verified in Figure 2.5, along with the effective exponents as numeri-
cally obtained derivative d(ln Γ)/d(ln t) as insets.
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In Figure 2.5, the data quality for 3D bulk at long times suffers from the difficulty
of collecting statistically independent datasets at long times. There are also small de-
viations from the power-laws at late times for line magnetization in 2D and plane
magnetization in 3D; we suspect that these relate to similar deviations observed in
Figure 2.1.
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Figure 2.5: Plots showing the scaling of (a) Γ(Ṁ2D,l(t)), (b) Γ(Ṁ2D,b(t)), (c)
Γ(Ṁ3D,p(t)) and (d) Γ(Ṁ3D,b(t)) as a function of t/Lzc . Insets show the effective
exponent, numerically obtained derivative −d(ln Γ)/d(ln t), with the dotted lines de-
noting the expected values of the slope. Note that the critical exponent η is related to
γ and ν via the scaling relation η = 2− γ/ν.

Additionally, we have followed the procedure described in Ref. [70] to obtain
the power-law exponents from data in Figure 2.5; these values, together with the error
bars, for the respective largest system sizes, can be found in Table 2.3. We have chosen
the largest system sizes for this purpose since they contain the least amount of finite
size effects.

2.4.2 The GLE formulation for driven Ising systems
The GLE formulation (2.19-2.20) also describes the anomalous response of the model
to external magnetic fields. Starting from Eq. (2.22) and focusing on the response to an
external field fext = B switched on at t = 0, we readily obtain the results of Eq. (2.12)
for the tagged magnetization induced for times 1 . t . Lzc by taking an ensemble



30 2.5. Discussion

System Estimated exponent from
Figure 2.5

Expected value

tagged line in 2D,
L = 512

−0.35± 0.02 −0.35

bulk in 2D, L = 512 −0.81± 0.03 −0.81
tagged plane in 3D,

L = 64
−0.47± 0.02 −0.48

bulk in 3D, L = 128 −0.97± 0.04 −0.97

Table 2.3: Power-law exponents from data in Figure 2.5, together with error bars, for
the respective largest system sizes. Evidently, the data compare well with the expected
exponents.

average that reduces the noise terms g(t) and q(t) to zero; specifically,

〈M2D,l(t)〉 ∼ BLt(γ/ν−1)/zc ≈ BLt0.35,

〈M2D,b(t)〉 ∼ BL2tγ/(νzc) ≈ BL2t0.81,

〈M3D,p(t)〉 ∼ BL2t(γ/ν−1)/zc ≈ BL2t0.48,

〈M3D,b(t)〉 ∼ BL3tγ/(νzc) ≈ BL3t0.97, (2.29)

which have been verified already in Figure 2.4.

2.5 Discussion
In summary, in this chapter we report that the Ising model in two and three dimensions
exhibits ubiquitous anomalous diffusion behavior at the critical temperature. We have
performed four case studies for this: the bulk magnetization, magnetization of a tagged
line in 2D and that of a tagged plane in 3D. We have argued that the anomalous diffu-
sion stems from a time-dependent restoring force that involves a power-law memory
kernel. We have derived these power-laws as well as the corresponding L-dependent
prefactors.

Further, we have shown that the physics of anomalous diffusion in the Ising model
bears strong similarities to that in polymeric systems, allowing us to propose a GLE
description for anomalous diffusion in the Ising model. We have also verified that
the anomalous diffusion for the tagged magnetization in the Ising model belongs to
the fractional Brownian motion (fBm) class, although we do not explicitly report it
in this chapter. We have numerically tested the specific aspects of the GLE (such as
the FDTs), and the GLE description is also consistent with the observed anomalous
response of magnetization to externally applied magnetic fields. In a future paper,
work on which is already in progress, we will expand the GLE formulation to the
Ising model around the critical temperature.

Having said the above, we have not mathematically proved the GLE, neither the
fBm, for the Ising model. Some other kinds of models may also be consistent with the
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anomalous diffusion behavior observed by us in this chapter. They should, however,
feature restoring forces, transient response to an external magnetic field, and a nega-
tive velocity autocorrelation function (observed in Figure 2.7), in a consistent manner
as presented here. In particular, we note that the Ising model we study here is at equi-
librium at Tc, and therefore time-reversible, so anomalous diffusion models that are
developed for time-irreversible aging-type systems will not be applicable here.

Finally, we believe that the anomalous diffusion of the order parameter at the crit-
ical temperature can be found in other Ising-like systems, and if so, the GLE formula-
tion introduced in this chapter can be employed to describe those anomalous behavior
as well. In particular, if we know the critical temperature Tc, the critical exponents γ
and ν for a specific Ising-like system, then this method can be used to obtain the criti-
cal dynamical exponent zc from the power-laws as well as the scaling of the terminal
time ∼ Lzc (in other words, anomalous diffusion can be effectively used to measure
the critical dynamic exponent zc). We will test these ideas in our future work.

2.6 Appendixes

2.6.1 Appendix A: Boundary conditions effect.
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Figure 2.6: Comparison of the mean-square displacement for the line [Figure (a), sys-
tem size L = 128], and bulk [Figure (b), system size L = 64] magnetization for
the Ising model in 2D, with periodic boundary conditions (magenta pluses) and free
boundary conditions (green crosses). The data for the two different boundary condi-
tions are on top of each other in the scaling regime, differing only at late times.

In this appendix we demonstrate, in Figure 2.6, using two examples that the de-
viations from the power-law behavior at late times, as seen in Figure 2.1 are indeed
caused by the periodic boundaries.

2.6.2 Appendix B: Velocity autocorrelation of the magnetizations
In this appendix, in Figure 2.7 we present a verification for the Green-Kubo relation
used to convert the velocity autocorrelation function (2.24) to anomalous diffusion
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Figure 2.7: Velocity autocorrelation function 〈Ṁ(t)Ṁ(0)〉 of the 2D bulk magneti-
zation as a function of t. This quantity is negative, and behaves ∼ −t−2−γ/(νz) ≈
−t−1.19. The system size used in the simulation is L = 30.

(2.25): i.e., for an anomalous diffusion exponent c the velocity autocorrelation func-
tion anomalous exponent must be c − 2, as well as having an overall negative sign in
front.



CHAPTER 3

Anomalous diffusion in the off-critical Ising model with
Monte Carlo spin-flip dynamics

We study the equilibrium dynamics of the bulk magnetization M for the two- and
three-dimensional Ising model with Monte Carlo spin-flip dynamics near, but not ex-
actly at, the critical temperature Tc. We report that the data for the mean-square de-
viation (MSD) of the bulk magnetization 〈∆M2(t)〉 collapse on two separate master-
curves for T > Tc and for T < Tc. The mastercurves are of the form 〈∆M2(t)〉|T −
Tc|γL−d ∼ F(t |T − Tc|νzc), where d is the spatial dimension of the system, F is a
scaling function, γ and ν are two critical exponents, and zc is the critical dynamical
exponent. In the limit x → 0, F(x) ∼ xγ/(νzc) for both mastercurves. For large x,
F(x) ∼ x before saturation for T > Tc, and F(x)→ const. for T < Tc.
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3.1 Introduction

The term anomalous diffusion is used to describe a particle’s mean square displace-
ment deviating from its expected (or normal) behavior, viz. its linear increase in time.
Although the term ‘anomalous’ has been coined to denote an anomaly, in the last
decades it has been observed in a wide variety of systems [1], such as fractal systems
and disordered media [2, 3, 71], financial markets [4], transport in (crowded) cellu-
lar interiors [5], migration of cells [6], bacteria [7], animal foraging [8], polymeric
systems [53, 54, 55, 56, 62, 68] and biomembranes [72, 73].

Recently, we have shown that anomalous diffusion (of various forms of magneti-
zation) is also a regular occurrence for Ising-like models at Tc, such as the Ising model
with Monte Carlo spin-flip dynamics [28, 74] and Kawasaki dynamics [75], and the
φ4 model [76]. For all these models we have developed a memory-based fractional
Brownian motion (fBm) description of anomalous diffusion.

In this chapter, we supplement our work on Ising-like systems by studying the dy-
namics of magnetization at temperatures T in the neighborhood of Tc. At T → Tc,
the anomalous exponent approaches the expected value of the exponent at Tc, i.e.,
γ/(νzc), consistent with Refs. [28, 74]. Specifically, we report that the data for the
mean-square deviation (MSD) of the bulk magnetization 〈∆M2(t)〉 for the two- (2D)
and three-dimensional (3D) Ising model, simulated with Monte Carlo spin-flip dy-
namics, collapse on two separate mastercurves for T > Tc and T < Tc. The master-
curves are of the form 〈∆M2(t)〉|T − Tc|γL−d ∼ F(t |T − Tc|νzc), where d is the
spatial dimension of the system, F is a scaling function, γ and ν are two critical ex-
ponents, and zc is the critical dynamical exponent (see Table 1.1). In the limit x→ 0,
F(x) ∼ xγ/(νzc) for both mastercurves, while for large x,F(x) ∼ x before saturation
for T > Tc, and F(x)→ const. for T < Tc.

The chapter is organized as follows. In Sec. 3.2 we introduce the Ising model and
the Monte Carlo spin-flip dynamics. In Sec. 3.3 we present our data for the MSD of
the bulk magnetization. The chapter is concluded in Sec. 3.4.

3.2 The model and Monte Carlo spin-flip dynamics

We consider the Ising model on square and cubic lattices with periodic boundary con-
ditions. The Hamiltonian is given by

H = −J
∑

〈ij〉

sisj , (3.1)

where si = ±1 is the spin at site i, and J is the coupling constant of interaction among
the spins, and the summation runs over all pairs of neighboring sites. The linear size
of the system is the number of spins; i.e., 0 ≤ (i, j) < L. The summation runs over
all the nearest neighbor spins and M =

∑
i si is the bulk magnetization.

We simulate the dynamics of the system using Monte Carlo moves, following the
Metropolis algorithm. At any time-step a spin is randomly selected to flip, and the



Anomalous diffusion in the off-critical Ising model with Monte Carlo spin-flip
dynamics 35

resulting change ∆E, where E is the energy of the system, is measured. The move is
accepted with unit probability if ∆E ≤ 0; if not, then the move is accepted with the
usual Metropolis probability e−E/(kBT ), where kB is the Boltzmann constant and T
the temperature.

All simulation results reported here use kB = J = 1. The temperature ranges are
chosen to be (Tc − 0.1) < T < (Tc + 0.1) and T 6= Tc, where Tc = 2/ ln(1 +

√
2)

and 4.5116174(2) [32] for the 2D and 3D Ising model respectively.

3.3 Mean-square displacement of the bulk magnetiza-
tion

The mean-square displacement of the bulk magnetization is expressed as

〈∆M2(t)〉 = 〈[M(t)−M(0)]2〉 = 2〈M(t)2〉 − 2〈M(t)M(0)〉. (3.2)

The relaxation time of the system, τ , scales with T − Tc as

τ ∼ |T − Tc|−νzc , (3.3)

beyond which the correlation term 〈M(t)M(0)〉 must go to zero, leading to

〈∆M2(t)〉 −−−→
t�τ

2〈M(t)2〉 = 2
Ldχ

β
. (3.4)

Here χ is the magnetic susceptibility per spin. Close to the critical temperature it
diverges as

χ ∼ |T − Tc|−γ , (3.5)

where γ and ν are two equilibrium exponents.
Together, Eqs. (3.2-3.5) suggest the scaling form for the MSD of the bulk magne-

tization
〈∆M2(t)〉|T − Tc|γL−d ∼ F(t |T − Tc|νzc), (3.6)

where the scaling function F(x) ∼ xc for x � 1, and c is the anomalous diffusion
exponent.

The scaling result (3.6) is verified in Figure 3.1. To obtain the corresponding data,
the system is first thermalised using the Wolff algorithm. We then produce a number
of independent time series of M(t), from which we measure 〈∆M2(t)〉.

3.3.1 The effective exponent and its exponent flow diagram
In order to further investigate the mean-square displacement of the bulk magnetization,
we define its time-dependent effective exponent as

c(t) ≡ ∂ ln〈∆M2(t)〉
∂ ln t

, (3.7)
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Figure 3.1: The scaling behavior of the MSD of the bulk magnetization 〈∆M2(t)〉
in the (a) 2D and (b) 3D Ising model with Monte Carlo spin flip. The temperature
ranges are chosen to be Tc−0.1 < T < Tc+ 0.1 (T = Tc excluded). We have chosen
L = 512 and 1024 for the 2D, and L = 64 and 128 for the 3D systems. The data
collapse to mastercurves; one each for T > Tc (upper data) and T < Tc (lower data).
In the limit x → 0, F(x) ∼ xγ/(νzc) for both mastercurves. For large x, F(x) ∼ x
before saturation for T > Tc, and F(x)→ const. for T < Tc.
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Figure 3.2: The effective exponent c(t), as numerically obtained logarithmic derivative
∂(ln〈∆M2(t)〉)/∂(ln t). The dotted line denotes the expected value at T = Tc. The
temperature ranges are chosen to be Tc − 0.1 < T < Tc + 0.1, and T 6= Tc. (a) The
results for 2D Ising model with L = 512 and 1024, where the dotted line denotes the
value γ/(νzc) ≈ 0.807; (b) The results for 3D Ising model with L = 64 and 128,
where the value is γ/(νzc) ≈ 0.967 for the dotted line. Both the 2D and 3D results
demonstrate that when T → Tc, the slope of the MSD of the bulk magnetization
approaches the critical value from above and below respectively for T > Tc (upper
data) and T < Tc (lower data).



38 3.4. Conclusion

which we compute numerically.
The data for the effective exponent can be found in Figure 3.2. Using the same

x-axis variable in Figure 3.2 as that of Figure 3.1, we see that after scaling the data
with Eq. (3.6), the curves for different temperatures again fall on to two mastercurves,
respectively for below and for above Tc. Both mastercurves again demonstrate that
in the limit x → 0, F(x) ∼ xγ/(νzc) for both mastercurves. For large x, F(x) ∼ x
before saturation for T > Tc, and F(x)→ const. for T < Tc.

Further, we also numerically compute the logarithmic derivative ċ(t) ≡ ∂c(t)/∂ ln(t).
The idea behind this is that if we can conceptually express ċ(t) as a function of c(t);
i.e., as an “exponent flow diagram” ċ = G(c), then a true exponent will correspond to
G(c) = 0.

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.65  0.7  0.75  0.8  0.85  0.9  0.95  1

9 c
pt

q

cptq

L “ 1024✿

T ´ Tc “ ´0.0092 ✲✰✲

T ´ Tc “ ´0.0042 ✲ˆ✲

T ´ Tc “ ´0.0022 ✲˚✲

T ´ Tc “ 0.0038 ✲˝✲

T ´ Tc “ 0.0108 ✲‚✲

T ´ Tc “ 0.0308 ✲‚✲

L “ 512✿

T ´ Tc “ ´0.0292 ✲△✲
T ´ Tc “ ´0.0192 ✲N✲
T ´ Tc “ ´0.0092 ✲▽✲
T ´ Tc “ 0.0108 ✲İ✲

T ´ Tc “ 0.0308 ✲♦✲
T ´ Tc “ 0.0808 ✲�✲

‹

ÝÝÝÝÝÝÝÑ✐♥❝r❡❛s✐♥❣ T
ÝÝÝÝÝÝÝÝÝÝÝÝÑ

❞❡❝r❡❛s✐♥❣ T

Figure 3.3: The exponent flow diagram for the MSD of the bulk magnetization for the
2D Ising model. Here, the system sizes are L = 512 and 1024, and the temperature
varies from Tc−0.1 to Tc+0.1. The true exponent at the critical temperature,≈ 0.807,
appears at the intersection of the dotted and the dashed lines as a red star. Above and
below Tc the data flow away from this value in two different directions.

We plot the exponent flow diagram in Figure 3.3, with the true exponent ≈ 0.807
denoted by a red star. (we refrain from the exponent flow diagram for the 3D Ising
model since the numerical value of the exponent is very close to unity). In the figure
we see that above and below Tc the data flow away from this value in two different
directions.

3.4 Conclusion

To conclude, we have studied the MSD of the bulk magnetization, 〈∆M2(t)〉, for the
2D and 3D Ising model with Monte Carlo spin-exchange dynamics around the critical
temperature Tc. We find that the data of the MSD of the magnetization around Tc
can be scaled as 〈∆M2(t)〉|T − Tc|γL−d ∼ F(t|T − Tc|νzc) with a scaling function
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F , where γ, ν are two critical exponents, d is the spatial dimension and zc is the
critical dynamical exponent. For different temperatures the data collapse onto two
mastercurves, one for below and the other for above Tc. In the limit x → 0, F(x) ∼
xγ/(νzc) for both mastercurves. For large x, F(x) ∼ x before saturation for T > Tc,
and F(x) → const. for T < Tc. These results are consistent with the anomalous
exponent γ/(νzc), as reported in Refs. [28, 74] at Tc.





CHAPTER 4

Critical Dynamical Exponent of the Two-Dimensional
Scalar φ4-Model with Local Moves

We study the scalar one-component two-dimensional (2D) φ4-model by computer
simulations, with local Metropolis moves. The equilibrium exponents of this model
are well-established, e.g. for the 2D φ4-model γ = 1.75 and ν = 1. The model has
also been conjectured to belong to the Ising universality class. However, the value of
the critical dynamical exponent zc is not settled. In this chapter, we obtain zc for the
2D φ4-model using two independent methods: (a) by calculating the relative termi-
nal exponential decay time τ for the correlation function 〈Φ(t)Φ(0)〉, and thereafter
fitting the data as τ ∼ Lzc , where L is the system size, and (b) by measuring the
anomalous diffusion exponent for the order parameter, viz., the mean-square displace-
ment (MSD) 〈∆Φ2(t)〉 ∼ tc as c = γ/(νzc), and from the numerically obtained value
c ≈ 0.80, we calculate zc. For different values of the coupling constant λ, we report
that zc = 2.17 ± 0.03 and zc = 2.19 ± 0.03 for the two methods respectively. Our
results indicate that zc is independent of λ, and is likely identical to that for the 2D
Ising model. Additionally, we demonstrate that the Generalized Langevin Equation
(GLE) formulation with a memory kernel, identical to those applicable for the Ising
model and polymeric systems, consistently captures the observed anomalous diffusion
behavior.
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4.1 Introduction

Despite the advances in the equilibrium properties of the φ4 model that were men-
tioned in Sec. 1.3.2, its critical dynamical properties are not settled.

As for the critical dynamical exponent, Blöte and Nightingale [77] have ana-
lyzed three variations of Ising-type models with next-nearest-neighbor interactions,
and found that they share the same critical exponents, not only γ and ν, but also the
critical dynamical exponent zc. Further works have supported their results both in 2D
and 3D [78, 79, 80]. For the 2D Ising model zc has been determined quite precisely
as zc = 2.1665 ± 0.0012 [29]. For the critical dynamical exponent of the 2D φ4-
model, z ≈ 2 was mentioned in Ref. [81], and the ε-expansion method has shown that
zc ∈ (2.04, 2.14) [82]. Further, zc has been measured using the heat bath algorithm,
yielding zc = 1.9 ± 0.21 [83]. In short, the value of the critical dynamical exponent
for the φ4-model still remains to be determined with higher precision.

In this chapter, we study the one-component 2D scalar φ4-model by computer
simulations, i.e., Eq. (1.6), with local Metropolis moves. In order to settle the value
of zc, we employ two independent methods: (a) we calculate the relative terminal
exponential decay time τ for the correlation function 〈Φ(t)Φ(0)〉, and thereafter fit
the data as τ ∼ Lzc , where L is the system size, (b) we measure the mean-square
displacement (MSD) of the order parameter 〈∆Φ2(t)〉 ∼ tc with c = γ/(νzc), and
from the numerically obtained value c ≈ 0.80 we calculate zc. We report that zc =
2.17±0.03 and zc = 2.19±0.03 for the two methods respectively. Our results suggest
that zc is independent of λ, and is likely identical to that for the 2D Ising model.

Further, the numerical result 〈∆Φ2(t)〉 ∼ t0.80 at the critical point means that Φ(t)
undergoes anomalous diffusion. We argue that the physics of anomalous diffusion in
the φ4-model at critical point is the same as for polymeric systems and the Ising model
[53, 54, 55, 74], and therefore a GLE formulation that holds for the Ising model at
criticality and for polymeric systems must also hold for the φ4-model. We obtain the
force autocorrelation function for the φ4-model at Φ̇ = 0, and the results allow us to
demonstrate the consistency between anomalous diffusion and its GLE formulation.

The chapter is organized as follows. In Sec. 4.2 we introduce the φ4-model and
the dynamics, and then show the results of the correlation term 〈Φ(t)Φ(0)〉 and the
mean-square displacement of the order parameter; from both we measure the critical
dynamical exponent. In Sec. 4.3 we briefly explain how the restoring force works,
which naturally leads us to the Generalized Langevin Equation (GLE) formulation for
the anomalous diffusion in the φ4-model, and verify the GLE formulation for anoma-
lous diffusion. The chapter is concluded in Sec. 4.4.
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4.2 The Measurement of the Critical Dynamical Expo-
nent

4.2.1 The Model and the Dynamics

We consider the scalar one-component two-dimensional φ4-model on an L×L square
lattice with periodic boundary conditions. The action is introduced in Eq. (1.6), and in
this chapter we focus on λ ≤ 1.

We simulate the dynamics of the system, i.e. Eq. (1.7), using Monte Carlo moves,
with the Metropolis algorithm: we randomly select a site i, for which we try to change
the existing value φi to a new value φ′i, given by

φ′i = φi + ∆φ

(
r − 1

2

)
, (4.1)

where r is a random number uniformly distributed within [0,1), and following Refs.
[40, 41], we set ∆φ = 3. The resulting change of the action ∆S after every attempted
change in φi is calculated. The move is accepted if ∆S ≤ 0; if not, then the move is
accepted with the usual Metropolis probability e−∆S . With ∆φ = 3, the acceptance
rates are between 40% and 60%.

In this chapter, all simulations have been performed on a 3.40GHz desktop PC
running Linux. We mainly focus on three different values of λ, i.e. λ = 0.1, 0.5, 1.0.
The corresponding critical coupling constant βc, obtained in Refs. [41, 84], are listed
in table 4.1.

λ Value of βc
0.1 0.60647915(35)
0.5 0.686938(10)
1.0 0.680601(11)

Table 4.1: The value of βc for λ = 0.1, 0.5 and 1.0 [41, 84].

Next, we use two independent methods to measure the dynamical exponent zc.

4.2.2 Measurement of the Correlation function 〈Φ(t)Φ(0)〉
In the first method, we measure the correlation function 〈Φ(t)Φ(0)〉 of the order pa-
rameter. To obtain the corresponding data, we run our simulations for 5× 107 Monte
Carlo steps per lattice site to thermalise the system. Subsequently, we keep taking
snapshots of the system at regular intervals over a total time of 5 × 108 Monte Carlo
steps per lattice site, and compute the order parameter Φ at every snapshot. From this
data set we calculate 〈Φ(t)Φ(0)〉.

We use system sizes L = 30, 40, ..., 90 for each value of λ. The required CPU
time is about 45 minutes for L = 30, reaching about 6 hours for L = 90.
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At long times we expect 〈Φ(t)Φ(0)〉 to behave as 〈Φ(t)Φ(0)〉/〈Φ(0)Φ(0)〉 ∼
exp(−t/τ), and define Q(t) = − ln [〈Φ(t)Φ(0)〉/〈Φ(0)Φ(0)〉], leading us to expect

Q(t) ∼ t/τ. (4.2)

We then calculate the relative value of terminal decay time τ by collapsing the Q(t)
data to a reference for every value of λ. More explicitly, for every value of λwe choose
theQ(t) data forL = 30 as reference, set its τ -value to unity, and then collapse the rest
of theQ(t) for other values of L to that reference, which yields us the relative value of
τ for that value of λ. As an example, Figure 4.1(a) demonstrates this procedure: with
a properly chosen relative value of τ , the 〈Φ(t)Φ(0)〉 data for different system sizes
collapse to the data of L = 30.

At the critical temperature τ ∼ ξzc , where ξ is the correlation length. According
to finite-size scaling theory, for finite system sizes ξ needs to be replaced by L, i.e.,

τ ∼ Lzc . (4.3)

λ zc

0.1 2.17 ± 0.03
0.5 2.15 ± 0.03
1.0 2.20 ± 0.03

Table 4.2: The measured values of zc for the 2D φ4-model at different λ. The critical
dynamical exponent zc is calculated by fitting the data of the relative value of τ as
τ ∼ Lzc . The results indicate that the value of zc is likely independent of λ, which
allows us to produce a single estimate of zc, viz., zc = 2.17± 0.03 (see main text).

The critical dynamical exponent zc is calculated by fitting the data of the relative
value of τ with Eq. (4.3). Results of this procedure are shown in Figure 4.1(b). The
corresponding values of zc can be found in Table. 4.2. The error bars in Table 4.2 are
obtained from the best fits of Figure 4.1(b). These results indicate that the value of zc
is likely independent of λ. If we do assume that, then we can combine the different
numerical values for different λ to produce a single estimate of zc, viz., zc = 2.17 ±
0.03.

4.2.3 Mean-Square Displacement of the Order Parameter
In the second method, we focus on the measurement of the mean-square displacement
of the order parameter at time t, given by

〈∆Φ2(t)〉 = 〈[Φ(t)− Φ(0)]2〉. (4.4)

To obtain the data of the MSD of the order parameter, we first thermalise the system
with 2 × 108 Monte Carlo moves per lattice site, then measure 〈∆Φ2(t)〉 in a further
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Figure 4.1: Measurement of zc from the Q(t) data for different values of λ at the
critical point. (a) An example of the measurement process to obtain the relative value
of terminal decay time τ . In this figure λ = 0.1 and τL=30 is the terminal decay time
of reference system size L = 30. The data collapse (to the reference) is obtained
by adjusting the relative values of terminal decay time for other system sizes; (b)
Measurement of zc by fitting the data of the relative value of decay time τ as τ ∼
Lzc .The symbols represent the simulation results of τ and the solid line corresponds
to τ ∼ L2.17.
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λ zc

0.1 2.20±0.03
0.5 2.18±0.02
1.0 2.20± 0.04

Table 4.3: The critical dynamical exponent zc, which is obtained from the numerically
obtained c with c = γ/(νzc), for the 2D φ4-model at different λ. The results, too,
indicate that the value of zc is likely independent of λ, which allows us to produce a
single estimate of zc, viz., zc = 2.19± 0.03 (see main text).

simulation over 2 × 109 Monte Carlo moves per lattice site, using the shifting time
window method.

For each value of λ, three different system sizes are used: L = 40, 80, 160. For
L = 40, the simulation runs for about 5 hours, and it takes about 3 days to obtain the
results for L = 160.

At short times (t ≈ 1), the individual changes of Φ are uncorrelated; i.e., the mean-
square displacement (MSD) of the order parameter must behave as 〈∆Φ2(t)〉 ∼ Ldt,
where d = 2 is the spatial dimension of the system.

At long times, t & Lzc , we expect 〈Φ(t)Φ(0)〉 = 0, which means that

〈∆Φ2(t)〉 ≈
t�Lzc

2〈Φ(t)2〉 ∼ Ld+γ/ν , (4.5)

which is an equilibrium quantity.
If we assume that the MSD is given by a simple power-law in the intermediate

time regime (1 . t . Lzc ), then we have

〈∆Φ2(t)〉 ∼ tc, (4.6)

where c = γ/(νzc). Note that exactly the same behavior has been found in the Ising
model [28, 74].

In order to measure the value of the exponent c from 〈∆Φ2(t)〉, we need to fo-
cus on the intermediate time regime, i.e. we consider the MSD data in (tmin, tmax)
to estimate the exponent. From these data we calculate the exponent c as numerical

derivative as c =
1

tmax − tmin

tmax−1∑

t=tmin

ln 〈∆Φ2(t+ 1)〉 − ln 〈∆Φ2(t)〉
ln (t+ 1)− ln t

. In order to

estimate zc for different λ from these data, we use the data from the largest system
size so that we can limit the influence of finite-size effects. From the numerically ob-
tained c we calculate zc and c = γ/(νzc), which we present in Table. 4.3. These
results, too, indicate that the value of zc is likely independent of λ. If we do assume
that, then we can combine the different numerical values for different λ to produce a
single estimate of zc, viz., zc = 2.19± 0.03.

The corresponding data for the MSD of Φ(t) for 80 ≤ L ≤ 160 for different values
of λ are shown in Figure 4.2. The small deviation in Figure 4.2 at late times is caused
by periodic boundary conditions: they are different when free boundary conditions are
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Figure 4.2: (a) The mean-square displacement (MSD) of the order parameter
〈∆Φ2(t)〉 in the φ4-model at the critical point. The MSD scales as 〈∆Φ2(t)〉 ∼ L2tc

where c = γ/(νzc). The x and y axes are scaled with λ-dependent numerical scale
factors to achieve good quality data collapse for different λ. The solid line denotes
the power-law behavior shown in Eq. (4.5). (b) The effective exponents, i.e., the nu-
merically differentiated d ln(〈∆Φ2(t)〉)/d ln(t), of the MSD of the order parameter
for different λ. The system sizes are L = 160 and the time period for calculating the
exponent c is t ∈ (tmin, tmax), where tmin ∼ 1 and tmax ∼ Lzc .
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utilized. (Exactly the same effect has been observed in our earlier work on the Ising
model [74]. Verification of the boundary effects is therefore not shown here, since the
deviations from the power-law do not scale with L, and consequently are not relevant
in the scaling limit.)

In conclusion, the critical dynamical exponent zc obtained with two independent
methods demonstrate that zc = 2.17 ± 0.03 or zc = 2.19 ± 0.03 for different values
of λ in the 2D scalar φ4-model. Both results are consistent with the value of zc for
the 2D Ising model (2.1665 ± 0.0012). In other words, our results indicate that zc is
independent of λ, and is likely identical to that for the 2D Ising model.

4.3 The GLE formulation of the anomalous diffusion
in the φ4-model

In Sec. 4.2.3 we numerically obtained that, in the intermediate time regime, the MSD
of the order parameter in the φ4-model behaves as

〈∆Φ2(t)〉 ∼ L2t0.80. (4.7)

This means that, at the critical point, the order parameter exhibits anomalous diffu-
sion. The same behavior has been observed in the Ising model [28]. The physics of
anomalous diffusion in the Ising model has been thoroughly analysed in Ref. [74],
where it has also been demonstrated that the physics is identical to that for polymeric
systems [53, 54, 55, 62, 63, 64, 66, 56].

Both in the Ising model and polymeric systems, the anomalous diffusion stems
from time-dependent restoring forces which lead to the GLE formulation. Translated
to the φ4-model, the physics of the restoring force can be described as follows.

Imagine that the order parameter locally changes by an amount δφ due to thermal
fluctuations at t = 0. Due to the interactions among the spins dictated by the Hamil-
tonian, the system will react to the change in δφ. This reaction will be manifest in the
two following ways: (a) the system will to some extent adjust to the change of δφ,
however it will take some time, and (b) during this time the order parameter will also
readjust to the persisting value of Φ, undoing at least part of δφ. It is the latter that we
interpret as the result of inertia that resists change in Φ, and the resistance itself acts
as the restoring force to the changes in the order parameter.

4.3.1 The GLE formulation for the anomalous diffusion in the φ4-
model

In the Ising model and polymeric systems, the restoring force has led to the GLE
description for the anomalous diffusion [74, 53, 54]. We now import that for the
φ4-model, with a time-dependent memory function µ(t) arising out of the restoring
forces. The GLE formulation for the anomalous diffusion is described as

ζΦ̇(t) = f(t) + q1(t) (4.8a)
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f(t) = −
∫ t

0

dt′µ(t− t′) Φ̇(t′) + q2(t). (4.8b)

Here f(t) is the internal force, ζ is the “viscous drag” on Φ(t), µ(t − t′) is the
memory kernel, q1(t) and q2(t) are two noise terms satisfying 〈q1(t)〉 = 〈q2(t)〉 =
0, and the fluctuation-dissipation theorems (FDTs) 〈q1(t) q1(t′)〉 ∝ ζδ(t − t′) and
〈q2(t) q2(t′)〉 ∝ µ(t− t′) respectively.

Equation (4.8b) can be inverted to write as

Φ̇(t) = −
∫ t

0

dt′ a(t− t′)f(t′) + ω(t). (4.9)

The noise term ω(t) similarly satisfies 〈ω(t)〉 = 0, and the FDT 〈ω(t)ω(t′)〉 = a(|t−
t′|). Then a(t) and µ(t) are related to each other in the Laplace space as ã(s)µ̃(s) = 1.

By combining Eq. (4.8a) and (4.8b), we obtain

ζΦ̇(t) = −
∫ t

0

dt′µ(t− t′) Φ̇(t′) + q1(t) + q2(t). (4.10)

or

Φ̇(t) = −
∫ t

0

dt′θ(t− t′) [q1(t) + q2(t)]. (4.11)

where in the Laplace space θ̃(s)[ζ + µ̃(s)] = 1. With t > t′, without any loss of
generality, using Eq. (4.11) the result of the velocity autocorrelation is

〈Φ̇(t)Φ̇(0)〉 ∼ θ(t− t′), (4.12)

where θ(t) can be calculated by Laplace inverting the relation θ̃(s)[ζ + µ̃(s)] = 1.
If µ(t) behaves as a power-law in time with an exponential cutoff such as

µ(t) ∼ L−2t−c exp(−t/τ), (4.13)

then we have [55]

〈Φ̇(t)Φ̇(t′)〉 = −θ(t− t′) ∼ −L2(t− t′)c−2 for t ≤ τ. (4.14)

By integrating Eq. (4.14) twice in time (the Green-Kubo relation), we obtain

〈∆Φ2(t)〉 ∼ L2tc for t ≤ τ. (4.15)

The form µ(t) ∼ L−2t−c not only obtains the anomalous exponent for the mean-
square displacement, but also the correct L-dependent prefactor to achieve the data
collapse in Figure 4.2, i.e., if µ(t) ∼ L−2t−c, then 〈∆Φ2(t)〉 ∼ L2tc.
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Figure 4.3: The linear relation Eq. (4.8a) between the average internal force 〈f〉 and
〈Φ̇〉 for different λ. Numerically, we find (inset) that the viscous drag ζ behaves as
ζ ∼ λ0.65.

4.3.2 Verification of the first equation of the GLE and the power-law
behavior of µ(t)

We now numerically verify our proposed GLE formulation, including the form of µ(t)
as stated in Eq. (4.12) for anomalous diffusion in the φ4-model.

First, in order to verify Eq. (4.8a), note that in the φ4-model, the force within the
system can be directly calculated as

f = − 1

L2

N∑

i=0

∂S
∂φi

∂φi
∂Φ

= − 1

L2

N∑

i=0

∂S
∂φi

. (4.16)

By taking ensemble averages on both sides of Eq. (4.8a) we obtain

〈f(t)〉 = ζ〈Φ̇〉. (4.17)

This linear relation is demonstrated in Figure 4.3. Additionally, in the inset we plot
the viscous drag ζ as a function of λ, and numerically obtain ζ ∼ λ0.65.

Next we verify the power-law behavior of µ(t) (Eq. (4.12)) following the FDT
〈f(t)f(t′)〉|Φ̇=0 = µ(t− t′).

We start with a thermalised system at t = 0. For t > 0 we fix the value of Φ
(without freezing the whole system), which we achieve by performing non-local spin-
exchange moves, i.e., at each move, we choose two lattice sites i and j at random, and
attempt to change the spin values to φ′i = φi + ∆φ and φ′j = φj −∆φ. We calculate
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the change in the energy ∆S before and after every attempted move, and accept or
reject the move with the Metropolis acceptance probability. While performing spin-
exchange dynamics, we keep taking snapshots of the system at regular intervals, and
compute, at every snapshot (denoted by t), the force f(t) from Eq. (4.16).
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Figure 4.4: Behavior Γ(f) ∼ t−0.8 for different λ in the intermediate time regime
following Eq. (4.19), then following the FDT, we have µ(t) ∼ t−0.8. The extra λ-
dependent factor λ0.35 is introduced numerically to collapse the data for different λ at
intermediate times. Further, zc = 2.17 has been used here to collapse the data.

We notice that since simulations are performed for finite systems with Φ fixed at
its t = 0 value, we will in any particular run have a non-zero value of 〈f(t)〉 acting to
sustain the initial value of Φ [74]. Thus we calculate the quantity

Γ(f) = 〈f(t)f(t′)〉 − 〈f(t)〉〈f(t′)〉, (4.18)

which we expect to represent µ(t− t′) for all values of λ, i.e.,

Γ(f) ∼ L−2t−c ≈ L−2t−0.80. (4.19)

The relation (4.19) is verified in Figure 4.4.

4.4 Conclusion

In this chapter, we have measured the critical dynamical exponent zc in the φ4-model
using two independent methods: (a) by calculating the relative terminal exponential
decay time τ for the correlation function 〈Φ(t)Φ(0)〉, and thereafter fitting the data
as τ ∼ Lzc , and (b) by measuring the mean-square displacement (MSD) of the order
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parameter 〈∆Φ2(t)〉 ∼ tc with c = γ/(νzc), and zc is calculated from the numerically
obtained value c ≈ 0.80. For different values of the coupling constant λ, we report
that zc = 2.17 ± 0.03 and zc = 2.19 ± 0.03 for these two methods respectively. Our
results indicate that zc is independent of λ, and is likely identical to that for the 2D
Ising model.

Further, the numerical result 〈∆Φ2(t)〉 ∼ t0.80 at the critical point means that
Φ(t) undergoes anomalous diffusion. We have argued that the physics of anomalous
diffusion in the φ4-model at the critical point is the same as for polymeric systems
and the Ising model [53, 54, 74], and therefore a GLE formulation that holds for the
Ising model at criticality and for polymeric systems must also hold for the φ4-model.
We obtain the force autocorrelation function for the φ4-model at Φ̇ = 0, and the
results allow us to demonstrate the consistency between anomalous diffusion and its
GLE formulation. In comparison to the Ising model, since Φ is a continuous order
parameter and there is a proper definition of the internal force, we believe that the
φ4-model is a better choice to verify the FDT for the GLE formulation.

Finally, we note that we have confined ourselves to the range λ ∈ (0, 1]. It is
clearly possible to extend our study to larger values of λ, in particular to λ → ∞,
where the model converges to the Ising model, but not without facing additional chal-
lenges, as follows. The thermal fluctuations decrease with increasing λ, and the ef-
fective interactions among the fields become weaker [41]. For large λ, the self-energy
term of the fields in the Hamiltonian becomes large. The step size has to be chosen
small, otherwise it will lead to many rejected moves. As a consequence, the system
gets trapped within narrow bands on the energy landscape. Our preliminary attempts
to simulate the model at large λ reveal that these traps give rise to artifacts (e.g., in
force autocorrelation function at fixed Φ) that are not easy to get rid of. These are
issues we will explore in the future.



CHAPTER 5

Super slowing down in the bond-diluted Ising model

In models in statistical physics, the dynamics often slows down tremendously near the
critical point. Usually, the correlation time τ at the critical point increases with system
size L in power-law fashion: τ ∼ Lz , which defines the critical dynamical exponent z.
We show that this also holds for the 2D bond-diluted Ising model in the regime p > pc,
where p is the parameter denoting the bond concentration, but with a dynamical critical
exponent z(p) which shows a strong p-dependence. Moreover, we show numerically
that z(p), as obtained from the autocorrelation of the total magnetization, diverges
when the percolation threshold pc = 1/2 is approached: z(p) − z(1) ∼ (p − pc)−2.
We refer to this observed extremely fast increase of the correlation time with size as
super slowing down. Independent measurement data from the mean-square deviation
of the total magnetization, which exhibits anomalous diffusion at the critical point,
supports this result.
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5.1 Introduction

The Ising model has proven to be a staple model in physics for studying phase transi-
tions and critical phenomena [85, 86]. The model was originally conceived to provide
a theoretical understanding of the existence of a Curie temperature for “pure” fer-
romagnetic materials; purity here refers to the fact that all throughout the material,
every lattice site contains a spin, and every spin interacts uniformly with the surround-
ing ones. From that point of view, it can be argued that in nature pure materials are
rare, i.e., impurities are by and large inevitable.

In the Ising model, the impurities have been implemented in terms of randomly
placed nonmagnetic spins (site-diluted Ising model) [87, 88, 89, 90, 91] or missing in-
teractions (bond-diluted Ising model) [92, 93, 94, 95, 96]. The inclusion of any kind of
randomness into the system can have significant effects on its critical properties [97].
For instance, a new universality class was found in the three-dimensional bond-diluted
Ising model [98, 99], and complex logarithmic corrections for the equilibrium proper-
ties were observed [91, 100]. Moreover, a large number of novel crossover behaviors
between pure and percolating Ising systems have been found [101, 102, 103, 104, 105,
106]. Also, the dynamics at the percolation threshold is discussed in Refs. [107, 108]
and the dynamical exponent for spin systems with random dilution, or randomness in
the coupling constants has been considered in Refs. [109, 110, 111, 112, 113]. De-
spite these advances, dynamical properties of the bond-diluted Ising model (i.e., as a
function of bond concentration p) remains poorly studied.

In this paper, we take on studying the slowing down of the dynamics of the total
magnetization autocorrelation function at the critical temperature Tc(p) in the square
(L×L) two-dimensional bond-diluted Ising model with Monte Carlo simulations. To
this end, using the Binder cumulant, we first measure Tc(p) at several values of p. We
then turn to the calculation of z(p) for several p > pc from the total magnetization au-
tocorrelation function: by collapsing this autocorrelation function to a reference curve,
we calculate the relative terminal exponential decay time τ [Tc(p)] for the correlation
function. Thereafter, by fitting this data as τ [Tc(p)] ∼ Lz(p), we directly extract z(p).
As p → p+

c , we empirically find that the dynamical exponent z(p) increases contin-
uously as z(p) − z(1) ∼ (p − pc)−2, with z(1) = 2.1665(12) the dynamical critical
exponent of the ordinary Ising model [29].

Further, we also consider the mean-square deviation (MSD) of the total magne-
tization M of the model, which for p = 1 has been shown to exhibit anomalous
diffusion as 〈∆M2(t)〉 ∼ tα with the anomalous exponent α =

γ

νz(1)
[74], with

γ = 7/4 and ν = 1. Given that the equilibrium critical exponents γ and ν are nu-
merically nearly independent of p for p ≥ 0.6 [44], combined with values for z(p) as
obtained through the terminal relaxation time for different p, the various MSD-curves
of the total magnetization are collapsed on top of each other with a p-dependent shift
factor G(p) via ln

(
〈∆M2〉/L2+γ/ν

)
/α(p) ∼ ln

(
t/Lz(p)

)
+ ln (G(p)) /α(p), with

α(p) = γ(p)/[ν(p) z(p)]. The result reveals that the magnetization indeed experi-
ences anomalous diffusion at the critical point, for a range of dilution p > pc. The
collapse of the MSD of the magnetization confirms that the measured values of z(p)
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are correct.
The chapter is organized as follows. In Sec. 5.2 we introduce the 2D bond-diluted

Ising model and measure its critical temperature at several values of p. In Sec. 5.3 we
obtain the dynamical exponent z(p) from the total magnetization autocorrelation func-
tion. In Sec. 5.4, we confirm z(p) values from the exponent of anomalous diffusion of
the MSD of the total magnetization. We conclude the chapter in Sec. 5.5.

5.2 Bond-diluted Ising model and its critical tempera-
ture

We consider the two-dimensional (2D) bond-diluted Ising model on an L× L square
lattice with periodic boundary conditions. For this model the Hamiltonian, without an
external field, is given by

H = −
∑

〈ij〉

Jijsisj , (5.1)

where si = ±1 is the spin residing at site i, 〈ij〉 denotes the sum running over all
nearest neighbor sites, and the coupling constant Jij is given by the distribution func-
tion

P (Jij) = pδ(Jij − 1) + (1− p)δ(Jij), (5.2)

with p being the bond concentration (0 ≤ p ≤ 1). The function (5.2) simply means
that the value of Jij is 1 with probability p, and 0 otherwise.

p 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.58 0.55

N 2000 5000 20000 20000 20000 20000 200000 200000 400000

Tc 1.956(10) 1.804(10) 1.650(20) 1.472(20) 1.310(25) 1.141(30) 0.951(20) 0.869(25) 0.727(40)

Table 5.1: Number of samples N(p) used to measure Tc(p), and the simulation results for Tc(p) (in-
cluding error bars) for different bond concentrations p.

For the pure Ising model (p = 1), there is a second-order phase transition at
Tc(1) = 2/ ln(1 +

√
2) [32]. When p reaches the percolation threshold pc = 1/2,

its critical temperature decreases to zero: Tc(pc) = 0 [43]. To determine Tc(p) for
in-between values of p, we use the Binder cumulant. It is defined as [114]

U(T, L) = 1− 〈M4〉
3〈M2〉2

, (5.3)

where 〈M4〉 and 〈M2〉 are the thermal averages of the fourth and second moments

of the total magnetization M =

L×L∑

i=1

si. For each value of p, the curves of U(T, L)

plotted vs. T for various values of L intersect at a fixed point, which determines the
critical temperature. The process is illustrated in Fig. 5.1(a).

We perform Monte Carlo simulations using the Wolff algorithm [45, 48] to calcu-
late Tc(p). Running many independent samples provides us with fairly accurate values
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of these critical temperatures, as noted in Table 5.1. In Fig. 5.1(b) we show that the
values for Tc(p) obtained this way match very well with those in Refs. [44, 115].

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 1.5  1.55  1.6  1.65  1.7  1.75

     

     

     

     

     

U
(T

,
L
)

T

✭❛✮

L = 60
L = 50
L = 40
L = 30
L = 20

✐♥t❡rs❡❝t✐♦♥ ♣♦✐♥t

 0

 0.5

 1

 1.5

 2

 0.5  0.6  0.7  0.8  0.9  1

 

 

 
T
c

p

✭❜✮

❘❡❢✳ ❬✷✺❪
❘❡❢✳ ❬✸✶❪
❖✉r r❡s✉❧ts

Figure 5.1: (a) Example calculation of Tc(p) for the 2D bond-diluted Ising model for
p = 0.8 using the Binder cumulant. The x-value of the intersection point indicates
that Tc(p = 0.8) = 1.650± 0.020. (b) Critical temperatures for different values of p,
as noted in Table 5.1. Our results match those of Refs. [44, 115] very well.

5.3 Dynamical exponent for different values of p
Having obtained the critical temperatures for a number of p-values as per above, in this
section, we measure the total magnetization autocorrelation function 〈M(t) ·M(0)〉.
In order to do so, we first run 2 × 106 Wolff Moves to thermalise the system. Subse-
quently, we evolve the system following Glauber dynamics, i.e. spin flips are proposed
at random locations, and accepted with the Metropolis acceptance probability. Time
is measured in terms of attempted Monte Carlo moves, since every spin attempts to
flip statistically once per unit time. As we continue to do so, we keep taking snapshots
of the full system at regular intervals over a total time of 2 × 107 attempted Monte
Carlo moves per lattice site, and correspondingly compute the total magnetization M
at every snapshot. This leads us to 〈M(t) ·M(0)〉. For different values of p, we run
500 to 2000 independent simulations to achieve decent accuracy. We vary the system
size from 10 to 40.

For a given value of p and the corresponding critical temperature Tc(p), we col-
lapse all the curves for the normalized total magnetization autocorrelation function
〈M(t) ·M(0)〉/〈M(0)2〉 to a reference curve (L = 10). This allows us to compute the
ratio of the terminal decay times τ [Tc(p)]/τ [Tc(p)]L=10. Fig. 5.2 demonstrates this
procedure for p = 0.8: with a properly chosen value of τ [Tc(p)]/τL=10[Tc(p)], the
〈M(t) ·M(0)〉/〈M(0)2〉 data for different system sizes collapse on the curve corre-
sponding to L = 10.

Further, given our argument in Appendix A that L is the characteristic length scale
for L ≥ 10 for the 2D bond-diluted Ising model when p ≥ 0.6, we have, at the critical
temperature,

τ(p)/τL=10(p) ∼ Lz(p). (5.4)
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Figure 5.2: The collapse of 〈M(t) · M(0)〉/〈M(0)2〉 as a function of
tτ [Tc(p)]/τ [Tc(p)]L=10 for p = 0.8. The system size varies from 10 to 40. Inset:
correspondingly, τ [Tc(p)]/τ [Tc(p)]L=10 as a function of L. The dynamical exponent
is obtained by fitting these data as τ [Tc(p)]/τ [Tc(p)]L=10 ∼ Lz(p). The solid line
corresponds to the function y = x2.285. From this we obtain z(0.8) ≈ 2.285.

By plotting the τ(p)/τL=10(p) data (inset Fig. 5.2), we extract z(p). The results from
this exercise for several values of p are shown in Fig. 5.3. Numerically, therein we find
that

∆z(p) = z(p)− z(1) ∼ (p− pc)−2 for pc < p < 1, (5.5)

where z(1) = 2.1665(12) [29] is the dynamical exponent for the pure 2D Ising model.
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Figure 5.3: The dynamical exponent difference ∆z(p) = z(p) − z(1) as a function
of p − pc, where z(1) = 2.1665(12) [29] is the dynamical exponent for the pure 2D
Ising model. The result implies that z(p)→∞ as p→ p+

c .

Based on concepts of normalization, we anticipated that away from the percolation
threshold pc, the correlation time as a function of system size would show a crossover
from the behavior for the bond-diluted Ising model at small system sizes to that of the
ordinary Ising model at large system sizes, with a crossover size that diverges if pc
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is approached. Instead, we find a fairly clean power-law behavior of the correlation
time for all system sizes, with a single exponent z(p) that varies strongly with p. As
a function of bond dilution p, the dynamical exponent z(p) increases monotonically
when p decreases from p = 1 to p = pc. Moreover, the numerical results suggest that
z(p) will become infinitely large when p approaches the percolation threshold p →
p+
c , i.e., the dynamics of the system gets extremely slow as p → p+

c , a phenomenon
we term as “super slowing down”.

5.4 Anomalous diffusion of the total magnetization

To confirm the observed behavior of super slowing down [i.e., the Eq. (5.5)] for the
bond-diluted Ising model by means of independent measurements, we now focus on
the mean-square deviation (MSD) of the magnetization as a function of time t as

〈∆M2〉 = 〈[M(t)−M(0)]2〉. (5.6)

At short times (t ≈ 1), changes in M , occurring due to random thermal fluctu-
ations of individual spins, are uncorrelated; hence 〈∆M2〉 ∼ L2t for the 2D Ising
model. At long times, t & Lz(p), we expect 〈M(t) ·M(0)〉 = 0, meaning that

〈∆M2〉 =
t&Lz(p)

2〈M(t)2〉 ∼ L2+γ(p)/ν(p). (5.7)

If we assume that the MSD is given by a simple power law in the intermediate time
regime (1 & t & Lz(p) ), then we obtain

〈∆M2〉 ∼ L2+γ(p)/ν(p)
(
t/Lz(p)

)α(p)

, (5.8)

where α(p) =
γ(p)

ν(p)z(p)
. For the pure Ising model in two dimensions (p = 1), we

have shown that [74]
〈∆M2〉/L2+γ/ν = f(t/Lz), (5.9)

where γ = 7/4 and ν = 1 are two equilibrium critical exponents. Here f(x) is a
scaling function such that lim

x→0
f(x) ∼ xγ/(νz) ≈ x0.81, and f(x) saturates for x & 1.

Indeed, given that γ(p) and ν(p) are nearly independent of p when p ≥ 0.6 [44] (see
also in Appendix B), if the scaling relation (5.9) also continues to hold for values of
p other than unity, then we can use it to obtain independent confirmation for the super
slowing down (5.5). We demonstrate this below by focusing on p ≥ 0.6.

Since in the previous section, we have obtained the values of z(p) for different p,
here, we describe the MSD of the total magnetization by modifying Eq. (5.8) as

〈∆M2〉/L2+γ/ν ∼ G(p)
(
t/Lz(p)

)α(p)

, (5.10)
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Figure 5.4: The collapse of the mean-square displacement of the total magnetization
via ln(〈∆M2〉/L2+γ/ν)/α(p) ∼ ln

(
t/Lz(p)

)
+ ln (G(p)) /α(p), where the obtained

values of z(p) from the last section are employed and G(p) is a p-dependent shift
factor. The slope of the solid line is unity. It confirms that the MSD of the total mag-
netization experiences anomalous diffusion at Tc(p) and the value of z(p) is increasing
when p→ pc+.

where G(p) is a p-dependent shift factor. We take logarithm of both sides of Eq.
(5.10) to write

ln
(
〈∆M2〉/L2+γ/ν

)
/α(p) ∼ ln

(
t/Lz(p)

)
+ ln (G(p)) /α(p). (5.11)

Suppose we choose the MSD of the total magnetization for the normal Ising model
as the reference [means that we set G(1) ≡ 1], if the values of z(p) obtained from the
last section are correct, then with these z(p) values and the shift factor G(p), the MSD
of the total magnetization for different p can be made to collapse onto the data for
p = 1 via Eq. (5.11).

In order to obtain the 〈∆M2(t)〉 data, once again, we first thermalise the system
with 2× 106 Wolff moves, then measure 〈∆M2〉 in a further simulation over 2× 107

attempted Monte Carlo moves per lattice site. We use three different system sizes:
L = 20, 40, 60 for every value of p.

Figure 5.4 implies that by using the values of z(p) obtained from the last section,
indeed for different p, the MSD of the magnetization can be collapsed onto the data for
p = 1 via Eq. (5.11). It confirms that the MSD of the total magnetization experience
anomalous diffusion at Tc(p) and z(p) values obtained from the terminal relaxation
time are correct.

In summary, with two different methods, we have shown that z(p) is diverging
when p → p+

c , i.e., the dynamics of the system is getting extremely slow when we
reduce the bond concentration to its percolation threshold. We do not have a quan-
titative explanation for this behavior. That said, it might arise from the fact that the
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fraction of ‘unhappy’ bonds (active bonds between sites with opposing spin values)
at the critical temperature decreases to zero if pc is approached, thereby removing the
energetic contribution of restoring forces; we provide some measurements for this in
Appendix C.

5.5 Discussion

In this paper, we study the critical dynamical exponent z(p) for the 2D bond-diluted
Ising model with bond concentration p. We first measure the critical temperature Tc(p)
for different bond concentrations p using the Binder cumulant. We then calculate the
relative values of the terminal decay time τ by collapsing the total magnetization auto-
correlation function to a reference value, from which we obtain z(p) using the relation
τ ∼ Lz(p).

We find that z(p) increases when p→ p+
c as a power-law z(p)−z(1) ∼ (p−pc)−2,

which we refer to as super slowing down. We confirm this result from independent
measurements of the MSD of the total magnetization that exhibits anomalous diffu-
sion.

Our results indicate that z(p)→∞ as p→ p+
c . This leaves us with the interesting

question: what happens to z(p) when p < pc? We plan to explore this in the future.

5.6 Appendixes

5.6.1 Appendix A: Relevant length scale for critical phenomena of
the bond-diluted Ising model
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Figure 5.5: (a) A snapshot of the biggest knot cluster for L = 50 and p = 0.6. Spins
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〈S(p, L)〉/L2 for various values of p and L: for p ≥ 0.6, q(p, L) is independent of L
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In the pure 2D Ising model of dimension L × L, the only relevant length scale
for critical phenomena is L. For the bond-diluted Ising model there are other length
scales, for instance corresponding to the size of the biggest cluster, S(p, L). Here, a
cluster is defined as the set of spins such that there is at least one continuous (bond-
following) path from every spin in the cluster to every other spin in the same cluster.
We define the size of the cluster by the total number of spins belonging to the cluster
[thus S(p, L) is the number of spins in the biggest cluster for an L × L system with
bond concentration p].

In Fig. 5.5(b) the quantity considered is q(p, L) = 〈S(p, L)〉/L2. If this quantity is
independent of L then it means that there is no difference between the two differently
defined length scales (apart from a scaling factor). For each result, we have generated
500 samples. We see in Fig. 5.5(b) that for p ≥ 0.6, q(p, L) is independent of L for
L ≥ 10. This means that for the range of dilution p ≥ 0.6 used in this paper, we can
use L as the relevant length scale for critical phenomena provided L ≥ 10.

5.6.2 Appendix B: Equilibrium critical exponents ν and γ
In this Appendix, we show that the equilibrium critical exponents ν and γ for the
bond-diluted Ising system with p ≥ 0.6 are numerically indistinguishable from their
values in the pure Ising model.

We note here that according to the Harris criterion [116], if the correlation length
critical exponent ν fulfills the inequality ν ≥ 2/d where d is the spatial dimensional-
ity, then disorder does not affect the critical behavior. For the 2D Ising model, ν = 1
is marginal, which translates into logarithmic corrections to some critical exponents.
In the pure Ising model, the exponents γ and ν do not show logarithmic corrections,
and our numerical results shown in this Appendix indicate that the ratio of γ and ν
is unchanged in the regime we studied, for p ≥ 0.6, without logarithmic corrections.
Also, the Binder cumulant does not show logarithmic corrections. This is not obvious,
and in fact there are reports of logarithmic corrections to the equilibrium properties of
the diluted spin systems [91, 117, 118]. We cannot rule out the possibility to have log-
arithmic corrections in the quantities measured by us, as these are difficult to observe
in simulations.

Firstly, if we get the values of Tc for different p, the Binder cumulant can be scaled
as

U(T, L) ∼ f(T ′L1/ν(p)), (5.12)

which will provide us the value of ν(p). Here T ′ = (T − TC)/TC is the reduced
temperature.

In Fig. 5.6, we collapse the data of U(L, T ) for L = 20, 40 and 60 with ν(p) ≈ 1.
It indicates that ν(p) is numerically indistinguishable from unity for p ≥ 0.6.

Next, we turn to measure the magnetic susceptibility χ. For this simulation, we
have used 500 independent samples for each value of p. It is a well known result [45]
that the susceptibility can be scaled as

χL−γ/ν = χ̃(T ′L1/ν), (5.13)
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where χ̃ is a dimensionless function.
After rescaling the susceptibility using Eq. (5.13), the data shown in Fig. 5.7

demonstrate that γ is numerically indistinguishable from 7/4 for p ≥ 0.6.
In other words, in this Appendix we have shown that γ and ν are numerically

indistinguishable respectively from 7/4 and unity for p ≥ 0.6, confirming the results
from Ref. [44].

5.6.3 Appendix C: Number of different types of bonds

In this Appendix, we connect the super slowing down in the 2D bond-diluted Ising
model with its equilibrium property, i.e., the ensemble average of the number of ‘un-
happy’ bonds, i.e. the number of interacting nearest-neighbor spins with opposite signs
at the critical temperature.

In the bond-diluted Ising model, we distinguish inactive bonds (with Jij = 0),
active bonds connecting sites with aligned spins, and active bonds that connect sites
with spins of opposite signs. For the active bonds, we denote the numbers of those
aligned and nonaligned spins by (n++ + n−−) and n+−, respectively. Energetically,
〈n++〉 and 〈n−−〉 are the bonds that try to keep the system as it is, and 〈n+−〉 is
driving spins to flip. If 〈n+−〉 decreases, then most of the proposed spin flips will be
rejected and the dynamics of the system will get slower.

In our simulations, we have performed 100 independent samples to obtain the
number of ‘unhappy’ bonds. The measured values of 〈n+−〉 at the critical temperature
can be found in Fig. 5.8, with a log-log plot as an inset. In particular, numerically we
find that

〈n+−〉/L2 ∼ (p− pc)0.97±0.03 for p ≥ pc. (5.14)

When p → p+
c , the values of 〈n+−〉 reduce to zero (or a value close to zero),

which means that most of the active bonds are ‘happy’ so that spins are unlikely to



Super slowing down in the bond-diluted Ising model 63

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

-8 -6 -4 -2  0  2  4  6

    

    

    

χ
L

−
γ
/
ν

T ′L1/ν

✭❛✮

L = 60
L = 40
L = 20

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

-15 -10 -5  0  5  10  15

    

    

    

χ
L

−
γ
/
ν

T ′L1/ν

✭❜✮

L = 60
L = 40
L = 20

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

-20 -15 -10 -5  0  5  10  15  20

    

    

    

χ
L

−
γ
/
ν

T ′L1/ν

✭❝✮

L = 60
L = 40
L = 20

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

-30 -20 -10  0  10  20  30  40

    

    

    

χ
L

−
γ
/
ν

T ′L1/ν

✭❞✮

L = 60
L = 40
L = 20

Figure 5.7: The scaling of magnetic susceptibility as a function of reduced tempera-
ture: χL−γ/ν = χ̃(T ′L1/ν). Here χ̃ is a dimensionless function, the values of γ(p)
and ν(p) are chosen to be their values for the normal Ising model, i.e., γ(p) = 1.75
and ν(p) = 1. For figures (a)-(d), the bond concentrations are p = 0.9, 0.8, 0.7 and
0.6. The good collapse of all the data indicates that both γ and ν are numerically
indistinguishable for p ≥ 0.6.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  0.2  0.4  0.6  0.8  1

    

    

    

10
-2

10
-1

10
0

10
-2

10
-1

10
0

〈n
+
−
〉/

L
2

p − pc

〈n
+
−
〉/

L
2

p − pc

L = 100

L = 80

L = 50

Figure 5.8: The value of 〈n+−〉 as a function of p − pc for L = 50, 80 and 100. The
solid line goes as ∼ (p − pc)0.97. The inset is a log-log plot of the data. It suggests
that when p→ p+

c , 〈n+−〉 → 0, then most of the bonds are activated so that nearly all
spins are unlikely to flip, resulting in the super slow dynamics of the system.
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flip. This might explain why the system is getting super slow when p approaches the
percolation threshold.



CHAPTER 6

Approximate dynamical eigenmodes of the Ising model
with local spin-exchange moves

We establish that the Fourier modes of the magnetization serve as the dynamical
eigenmodes for the two-dimensional Ising model at the critical temperature with lo-
cal spin-exchange moves, i.e., Kawasaki dynamics. We obtain the dynamical scaling
properties for these modes, and use them to calculate the time evolution of two dy-
namical quantities for the system, namely the autocorrelation function and the mean-
square deviation of the line magnetization. At intermediate times 1 . t . Lzc , where
zc = 4 − η = 3.75 is the dynamical critical exponent of the model, we find that
the line magnetization undergoes anomalous diffusion. Following our recent work on
anomalous diffusion in spin models, we demonstrate that the Generalized Langevin
Equation (GLE) with a memory kernel consistently describes the anomalous diffu-
sion, verifying the corresponding fluctuation-dissipation theorem with the calculation
of the force autocorrelation function.
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6.1 Introduction
For physical systems in statistical physics, the eigenvalues and eigenvectors (of the
Hamiltonian) play a central role. The eigenvectors form a complete orthogonal basis
in the space of variables used to express the Hamiltonian. The eigenvalues and eigen-
functions identify the ground and the excited states, as well as their energies, which
then form the groundwork for obtaining the partition function, the principal quantity
of interest for calculating all equilibrium ensemble-averaged observable.

For classical systems, the Hamiltonian also dictates the dynamics of systems through
the equations of motion. Here too, theoretically, the same concept holds, viz. with the
equation of motion of a degree of freedom q used to describe a Hamiltonian H being
given by

ζq̇ = −∂H
∂q

, (6.1)

with ζ being the friction coefficient in the overdamped limit, it really is an asset to
know the dynamical eigenvalues and eigenvectors. Together, the dynamical eigenval-
ues and eigenvectors ensure that the full time-dependence of any dynamical quantity
can be calculated exactly.

In contrast to eigenvalues and eigenvectors of the Hamiltonian itself, the scope
for dynamical eigenvalues and eigenvectors is far more restricted, for the following
reason. The eigenvectors {rα} are linear combinations of all the degrees of freedom
{qi}, reducing Eq. (6.1) to the form

ζαṙα = −λαrα, (6.2)

with λα being the corresponding dynamical eigenvalue, obtained from the diagonali-

sation of the Hessian matrix
∂2H
∂rβ∂rγ

. The dynamical eigenmodes {rα}, if they exist,

are often simply called the modes of the system. For the form (6.2) to hold, the Hes-
sian must be independent of {rα}, which restricts the class of such Hamiltonian only
to harmonic ones (i.e., H is quadratic in {qi}). Classic examples of such systems are
the bead-spring models of linear polymeric systems [119, 120], their extensions to star
and tadpole polymers [59], polymeric membranes [59, 121], 2D cytoskeleton of cells
[122, 123, 124] and graphite oxide sheets [124, 125, 126, 127].

Not all is however lost if the Hamiltonian is not harmonic (which is in fact almost
always the case). Note here that any complete orthogonal basis in the space of the
degrees of freedom can be used to describe the dynamics of the system. The main
disadvantage of choosing an arbitrary one is that the corresponding amplitudes remain
dynamically (nonlinearly) coupled at all times, preventing one from taking large time-
steps in computer simulations. Despite this shortcoming, sometimes one can be lucky
to realize that there are approximate modes that can allow one to take somewhat large
time-steps within a preordained error margin. Examples are the Rouse modes for self-
avoiding polymers [56], a reptating polymer chain [128], and polymer chains in a melt
[129, 130, 131].
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The focus of the present chapter are the (approximate dynamical) modes of the
two-dimensional (2D) square-lattice Ising model (system size L × L) with local spin
exchange moves — commonly known as Kawasaki moves [50] — at critical tem-
perature and at zero order parameter, introduced in Sec. 6.2.1. We focus on the line
magnetization for this model and find, surprisingly, that the Fourier modes provide
a very good approximation of the true dynamical eigenmodes. We numerically in-
vestigate the properties of these modes in Sec. 6.2.2-6.2.4, numerically revealing that
the equilibrium amplitude of the p-th mode behaves as (L/p)γ/ν (B0 + B1p

−1.75),
and that its decay time scales ∼ (L/p)zc , where γ = 7/4, ν = 1 and η = 2 −
γ/ν = 1/4 are the three equilibrium critical exponents of the Ising model, and
zc = 4 − η = 15/4 is the critical dynamical exponent for the model with local
spin exchange moves [132, 133, 134]. In Sec. 6.3 we use these results to analyti-
cally calculate two observables: the autocorrelation function, and the mean-square
deviation (MSD), of the line magnetization. We find that line magnetization exhibits
anomalous diffusion. Our results for anomalous diffusion are consistent with a pat-
tern that the dynamics of magnetization at the critical temperature in spin models is
anomalous [28, 74, 76]. Importantly, the anomalous diffusion is described by the Gen-
eralized Langevin Equation (GLE) [74, 76] (and bears strong resemblance to anoma-
lous diffusion in polymeric and membrane systems under a variety of circumstances
[53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68], which we verify in Sec.
6.4. We conclude the chapter in Sec. 6.5.

6.2 The model and the Fourier modes as the approxi-
mate dynamical modes

6.2.1 Ising model with local spin-exchange (Kawasaki) dynamics
We consider the two-dimensional (2D) Ising model on an L × L square lattice with
periodic boundary conditions in both x- and y-directions. The Hamiltonian for the
model is given by

H = −J
∑

〈(j,k)(m,n)〉

sj,k sm,n, (6.3)

where sj,k = ±1 is the spin value at x-location j and y-location k, and J is the cou-
pling constant for interactions among the spins and we set J = 1 during our simula-
tions. The summation runs over all the nearest-neighbor spins, and 0 ≤ (j, k,m, n) <
L. All properties we report here have been obtained by simulating the model at the
critical temperature Tc = 2/ ln(1 +

√
2), and by setting the value of the Boltzmann

constant kB to unity.
The model is simulated with Kawasaki dynamics at Tc. All simulations reported in

this chapter have been performed at zero (conserved) order parameter. In other words,
we fix the total magnetization of the system at zero, and at each Monte Carlo move,
two neighboring spins are randomly selected to exchange their values. The resulting
energy change ∆E is measured, and the move is accepted with the normal Metropolis
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probability min[1, exp(−∆E/T )]. For each unit of time, on average, all the spins are
supposed to be selected once.

6.2.2 Fourier modes for line magnetization

In this model we define the line magnetization as Ml(j, t) =

L−1∑

k=0

sj,k(t); correspond-

ingly, the p-th Fourier mode amplitude of the line magnetization is given by

Ap(t) =
1

L

L−1∑

j=0

Ml(j, t) exp(−2πipj/L) = Xp(t)− iYp(t), (6.4)

where

Xp(t) =
1

L

L−1∑

j=0

Ml(j, t) cos(2πpj/L),

Yp(t) =
1

L

L−1∑

j=0

Ml(j, t) sin(2πpj/L), (6.5)

respectively are the real and the imaginary parts of the Fourier transform, with p =
0, 1, . . . , (L− 1). The inverse Fourier transform is then given by

Ml(j, t) =

L−1∑

p=0

Ap(t) exp(2πipj/L) or

Ml(j, t) =
L−1∑

p=0

[Xp(t) cos(2πpj/L) + Yp(t) sin(2πpj/L)] . (6.6)

6.2.3 Equilibrium properties of the Fourier mode amplitudes
We express the equilibrium correlations of the Fourier modes as

Xpq(t) = 〈Xp(t)Xq(0)〉 and Ypq(t) = 〈Yp(t)Yq(0)〉, (6.7)

where the angular brackets (〈·〉) define an average over equilibrated ensembles.
The cross-correlation terms, 〈Xp(t)Yq(0)〉 and 〈Yp(t)Xq(0)〉 respectively, can be

argued to be equal to zero, as follows. Let us consider 〈Xp(t)Yq(0)〉 to illustrate

the calculation. First, having expressed it as
L−1∑

j,m=0

〈Ml(j, 0)Ml(m, t)〉 cos(2πpj/L)

sin(2πqm/L), then making the simultaneous substitutions j → (L − j) and m →
(L−m), and finally using Ml(0, t) = Ml(L, t) due to periodic boundary conditions,

we find that the term also equals −
L−1∑

j,m=0

〈Ml(L− j, 0)Ml(L−m, t)〉 cos(2πpj/L)
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sin(2πqm/L). Next, we use the fact that 〈Ml(j, 0)Ml(m, t)〉 is only a function of
|j−m|moduloL/2 (due to periodic boundary conditions) as well as only of |t| (due to
time reversibility invariance at equilibrium). This implies that 〈Ml(j, 0)Ml(m, t)〉 =
〈Ml(L− j, 0)Ml(L−m, t)〉, leading to the condition 〈Xp(t)Yq(0)〉 = −〈Xp(t)Yq(0)〉 =
0. For this reason we leave both 〈Xp(t)Yq(0)〉 and 〈Yp(t)Xq(0)〉 out of further con-
siderations.

Next, we argue that Xpp(0) = Ypp(0) at least up to O(L−2). In order to do so, we
first express Ypp(0) as

Ypp(0) =

L−1∑

j,m=0

〈Ml(j, 0)Ml(m, 0)〉 sin(2πpj/L) sin(2πpm/L)

=

L−1∑

j,m=0

〈Ml(j, 0)Ml(m, 0)〉 cos(2πpj′/L) cos(2πpm′/L),

(6.8)

where (j′,m′) =

(
j +

L

4p
,m+

L

4p

)
. We then again observe, just like in the above

paragraph, that 〈Ml(j, 0)Ml(m, t)〉 is only a function of |j − m| modulo L/2. This

implies that if
L

4p
is an integer, then upon relabeling the line indices the sum trivially

reduces to
L−1∑

j′,m′=0

〈Ml(j
′, 0)Ml(m

′, 0)〉 cos(2πpj′/L) cos(2πpm′/L) = Xpp(0). If

however
L

4p
is not an integer, then, we can still relabel the indices as

L−1∑

j′′,m′′=0

〈Ml(j
′′, 0)Ml(m

′′, 0)〉 cos(2πp(j′′ + ∆x)/L) cos(2πp(m′′ + ∆x)/L), with

∆x < 1, 1 being the lattice unit. Beyond this point, we can do a Taylor expansion
of the cosine terms, implying that the equality Ypp(0) = Xpp(0) must hold up to
O(L−2). This, together with the scaling of 〈|A2

p|〉 ∼ (L/p)γ/ν in the limit p→∞ for
the 2D Ising model as derived in Appendix A, we attempt to fit Xpp(0) = Ypp(0) to
the asymptotic scaling ∼ (L/p)γ/ν in Figure 6.1.

From this fit, we find that Xpp(0) ≈ Ypp(0) ≈ (L/p)γ/ν (B0 +B1p
−1.75), where

B0 = 0.0185 and B1 = 0.1 are two numerically obtained constants. Note also that

Xp(L−q)(t) = Xpq(t) and Yp(L−q)(t) = Ypq(t), (6.9)

an obvious result obtained from the symmetry of the mode amplitudes under p ↔
L− p.

The results of Figure 6.1 are supplemented with the data for χpq(0) ≡ Xpq(0)/√
Xpp(0)Xqq(0) and Υpq(0) ≡ Ypq(0)/

√
Ypp(0)Yqq(0) for L = 40 and p, q < L/2

(specifically, p, q = 1 to 10) in Figure 6.2. The values of the off-diagonal elements of
χpq(0) and Υpq(0) are not zero (we do not expect them to be zero even after caring
for numerical accuracy); however, they are at least two orders of magnitude smaller
than the diagonal ones.
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Figure 6.1: Xpp(0) and Ypp(0) as a function of p for different system sizes, with
p = 1 to 40, and L = 120, 160, 200. Fitting to the data leads to Xpp(0) = Ypp(0) ≈
(L/p)γ/ν (B0 + B1p

−1.75), where B0 = 0.0185 and B1 = 0.1. Inset: Xpp(0) data
for L = 200 is fitted in a log-log plot; the straight line has slope −1.75.

Together these results indicate that to a very good approximation the modes re-
main statistically independent during the system’s evolution by means of Kawasaki
dynamics.

6.2.4 Fourier modes as approximate dynamical eigenmodes of the
model

In Figure 6.3, we obtain a data collapse plot for the mean-square deviation (MSD) of
the complex mode amplitude 〈|∆A2

p(t)|〉, as a function of (p/L)zct for p = 1, 2, . . . , 10
for three different system sizes L = 120, 160, 200 (from our earlier works on spin sys-
tems [28, 74, 76] we expect that the data collapse would require scaling time with a
prefactor (p/L)zc ). The solid line in the figure then represents

〈∆A2
p(t)〉 =

√
2〈∆X2

p(t)〉 =
√

2〈∆Y 2
p (t)〉 ≈ 3.2527

(
L

p

)γ/ν
(p/L)zct

for (p/L)zct� 1. (6.10)

Since the MSDs of the mode amplitudes can be expressed in terms of their auto-
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Figure 6.2: The matrix (a), χpq(0) ≡ Xpq(0)/
√
Xpp(0)Xqq(0) and (b), Υpq(0) ≡

Ypq(0)/
√
Ypp(0)Yqq(0) in logarithmic greyscale for p, q = 1, 2, ..., 10 and L = 40.

The values of the off-diagonal elements of χpq(0) and Υpq(0) are not zero. However,
most of them are typically two or more orders of magnitude smaller than the diagonal
ones, which means the modes are statistically uncorrelated.
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Figure 6.3: The MSD of the complex modes amplitude 〈|∆A2
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√
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p (t)〉 =√
2 〈∆X2

p(t)〉, where 〈∆X2
p(t)〉 = 〈[Xp(t) − Xp(0)]2〉 and 〈∆Y 2

p (t)〉 = 〈[Yp(t) −
Yp(0)]2〉. For every system size L = 120 (red), 160 (blue), 200 (green), the MSD
of ten different mode amplitudes are measured. In the range t . (p/L)zc , the
modes shows normal diffusion and the solid line represents 〈|∆A2

p(t)|〉 (p/L)γ/ν ≈
3.2527 (p/L)zc t.
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correlation functions as

〈∆X2
p(t)〉 = 〈[Xp(t)−Xp(0)]2〉 = 2Xpp(0)

[
1− Xpp(t)

Xpp(0)

]

〈∆Y 2
p (t)〉 = 〈[Yp(t)− Yp(0)]2〉 = 2Ypp(0)

[
1− Ypp(t)

Ypp(0)

]
, (6.11)

with the approximationXpp(0) = Ypp(0) ≈ (L/p)γ/ν (B0+B1p
−1.75), for (p/L)zct�

1 in a large range shown in Figure 6.3, Eqs. (6.10-6.11) can be recast in the form

Xpp(t)

Xpp(0)
=
Ypp(t)

Ypp(0)
≈ exp

[
− 1.15(p/L)zct

0.0185 + 0.1 p−γ/ν

]
. (6.12)

To conclude, in this section we have demonstrated that to a very good approxi-
mation the Fourier modes for the 2D Ising model with Kawasaki dynamics remain
statistically uncorrelated at all times, and their autocorrelations decay exponentially
in time, from which we conclude that they are approximate dynamical eigenmodes.
This means that the properties of the modes amplitude can be used to calculate all dy-
namical quantities to a very good approximation [56, 59, 119, 120]. In the following
section, we will showcase this to calculate the autocorrelation function and the MSD
of line magnetization.

6.3 Dynamics of two physical observables using the Fourier
modes as approximate dynamical eigenmodes

In this section we focus on the dynamics observables of the system. Using the prop-
erties of the Fourier modes obtained in the last section, we analytically derive the
autocorrelation function and the mean-square deviation of the line magnetization.

6.3.1 Autocorrelation function of the line magnetization
The first dynamical observable we are dealing with is the autocorrelation function of
the line magnetization, defined as

C(t) = 〈Ml(x, t)Ml(x, 0)〉. (6.13)

This autocorrelation function can be expressed in terms of the modes by combin-
ing Eqs. (6.6), (6.9) and (6.13), yielding

C(t) = 4

L/2∑

p=1

Xpp(t)

= 4

L/2∑

p=1

(
L

p

)γ/ν
exp

[
− 1.15 (p/L)zct

0.0185 + 0.1 p−γ/ν

](
0.0185 + 0.1p−γ/ν

)
(6.14)

As shown in Figure 6.4, the prediction (6.14) fits the simulation results quite well.
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Figure 6.4: (color online) Comparison between the simulation results (points) and
expectation values from Eq. (6.14) (solid lines, same colors as the points) for the
autocorrelation function C(t) of the line magnetization, for different system sizes.

6.3.2 Anomalous diffusion of the line magnetization

Let us now consider the MSD of the line magnetization

〈∆M2
l (t)〉 = 〈[Ml(x, t)−Ml(x, 0)]2〉 (6.15)

as another dynamical observable.

Using Eq. (6.6) and 〈Xp(t)Yq(0)〉 = 〈Yp(t)Xq(0)〉 = 0, we have

〈∆M2
l (t)〉 =

L−1∑

p=0

L−1∑

q=0

〈[Xp(t)−Xp(0)][Xq(t)−Xq(0)] cos(2πpx/L) cos(2πqx/L)

+ [Yp(t)− Yp(0)][Yq(t)− Yq(0)] sin(2πpx/L) sin(2πqx/L)〉.
(6.16)

Then Eq. (6.16) can be simplified with the approximation Xpq(t) = Ypq(t) =
Xp(L−q)(t) = Yp(L−q)(t), and X0(t) as the conserved order parameter (chosen to be
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zero) of the dynamics, leading us to

〈∆M2
l (t)〉 = 2

L−1∑

p=1

L−1∑

q=1

[Xpq(0)−Xpq(t)]

= 8

L/2∑

p=1

L/2∑

q=1

Xpq(0)

[
1− Xpq(t)

Xpq(0)

]

= 8

L/2∑

p=1

Xpp(0)

[
1− Xpp(t)

Xpp(0)

]
.

(6.17)

Using the properties of Xpp(t) and Xpp(0) as obtained in Secs. 6.2.3-6.2.4, the
behavior of the MSD of the line magnetization can be divided into two time domains.

At long times t & Lzc ,
Xpp(t)

Xpp(0)
→ 0, meaning that 〈∆M2

l (t)〉 approaches a

constant ∼ Lγ/ν . At intermediate times 1 . t . Lzc ,

〈∆M2
l (t)〉=8

L/2∑

p=1

Xpp(0)

[
1−Xpp(t)

Xpp(0)

]

=8

L/2∑

p=1

(
L

p

)γ/ν [
1−exp

(
− 1.15 (p/L)zct

0.0185 + 0.1 p−γ/ν

)](
0.0185 + 0.1p−γ/ν

)
.

(6.18)

As shown in Figure 6.5 (a), the prediction (6.18) fits the simulation results quite well.
For an analytical expression for the MSD, with x = p/L, the sum (6.18) can be

reduced to the following integral:

〈∆M2
l (t)〉 = 8L

∫ 1/2

1/L

dx

xγ/ν

(
1−exp

[
− 1.15 txzc

{0.0185 + 0.1/(xL)γ/ν}

])

{
0.0185 + 0.1/(xL)γ/ν

}
,

(6.19)

but beyond that it is difficult to process it further without making approximations.
In particular, in the limit L → ∞ and finite values of x, the second term within
the curly brackets can be dropped. At the lower limit of x, the two terms within the
curly brackets are however comparable. Nevertheless, if we do drop this second term
altogether, then the integral can be easily performed to show that in the leading order
of L

〈∆M2
l (t)〉 ∼ L

(
t

L

)(γ/ν−1)/zc

⇒

〈∆M2
l (t)〉 ∼ Lγ/ν

(
t

Lzc

)(γ/ν−1)/zc

≈ Lγ/ν
(

t

Lzc

)0.2

.

(6.20)
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This behavior of the sum (6.20) is shown in Figure 6.5(b).
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Figure 6.5: (a) Comparison between the simulation results (points) and the results
obtained from Eq. (6.18) (solid lines, same color as the points) for the MSD of the
line magnetization 〈∆M2

l (t)〉 for different system sizes. (b) Confirmation of the sum
(6.20) to power-law t(γ/ν−1)/zc ≈ t0.2 for L→∞.

6.4 Generalised Langevin Equation formulation for the
anomalous diffusion in the Ising model with Kawasaki
dynamics

In Sec. 6.3 we have demonstrated that at the intermediate time regime, the line magne-
tization in the Ising model with Kawasaki dynamics exhibits anomalous diffusion. In
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our recent studies on the Ising and φ4 model with Glauber dynamics [74, 76], we have
argued that the anomalous diffusion of the magnetization belongs to the GLE class,
for which the restoring force plays an important role.

Imagine that we choose a tagged line, and since the thermal spin flips, at t = 0
its magnetization Ml changes by a little amount δMl. The surrounding spins will react
to this change due to the interactions dictated by the Hamiltonian, and it takes time
to spread this reaction. During this time, the value of Ml will also readjust to the
persisting values of the surrounding spins, undoing at least a part of δMl. It is the
latter that we interpret as the result of “inertia” of the surrounding spins that resists
changes inMl, and the resistance itself acts as the restoring force to the changes in the
tagged magnetization, and finally, leads to anomalous diffusion.

6.4.1 Generalized Langevin Equation for the line magnetization
From how the restoring force works introduced before, it not only indicates that there
is a memory effect which is significant during the ‘restoring’ process, but also leads
us to the GLE formulation to describe the anomalous diffusion.

In line with our previous works on the Ising and φ4 model with Glauber dynamics
[74, 76] and in polymeric systems [53, 54, 55, 59], the relation of the restoring force
f(t) and the “velocity” of magnetization Ṁl(t) can be expressed as

ζṀl(t) = f(t) + q1(t) (6.21a)

f(t) = −
∫ t

0

dt′µ(t− t′) Ṁl(t
′) + q2(t). (6.21b)

Here f(t) is the internal force, ζ is the “viscous drag” on Ml, µ(t− t′) is the memory
kernel, q1(t) and q2(t) are two noise terms satisfying 〈q1(t)〉 = 〈q2(t)〉 = 0, and the
fluctuation-dissipation theorems (FDTs) are given by 〈q1(t) q1(t′)〉 ∝ ζδ(t − t′) and
〈q2(t) q2(t′)〉 ∝ µ(t− t′) respectively.

Equation (6.21b) can be inverted to write as

Ṁl(t) = −
∫ t

0

dt′ a(t− t′)f(t′) + ω(t). (6.22)

The noise term ω(t) similarly satisfies 〈ω(t)〉 = 0, and the FDT 〈ω(t)ω(t′)〉 = a(|t−
t′|). Then a(t) and µ(t) are related to each other in the Laplace space as ã(s)µ̃(s) = 1.

To combine Eq. (6.21a) and (6.21b), we obtain

ζṀl(t) = −
∫ t

0

dt′µ(t− t′) Ṁl(t
′) + q1(t) + q2(t). (6.23)

or

Ṁl(t) = −
∫ t

0

dt′θ(t− t′) [q1(t) + q2(t)]. (6.24)

where in the Laplace space θ̃(s)[ζ + µ̃(s)] = 1. With t > t′, without any loss of
generality, using Eq. (6.24) the result of the velocity autocorrelation is

〈Ṁl(t)Ṁl(0)〉 ∼ θ(t− t′), (6.25)
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where θ(t) can be calculated by Laplace inverting the relation θ̃(s)[ζ + µ̃(s)] = 1.
If the memory term is a power law in time, i.e.,

µ(t) ∼ t−c. (6.26)

Using the results from Ref. [54], we have

〈Ṁl(t)Ṁl(0)〉|f=0 ∼ −(t− t′)c−2. (6.27)

By integrating Eq. (6.27) twice in time, we obtain that

〈∆M2
l (t)〉 ∼ tc. (6.28)

In summary, there is a power-law memory function µ(t) ∼ t−c which plays a vital
part in the GLE formulation. From this we can deduce that the anomalous diffusion
found in Eq. (6.18) is non-Markovian and the anomalous exponent is c.

6.4.2 Verification of the power-law behavior of µ(t)

Based on the FDT mentioned under Eq. (6.21b), we now numerically verify the be-
havior of µ(t).

During simulations, at t = 0, we thermalise the system to its equilibrium state.
For t > 0 we select a line and fix its value of the magnetization Ml by performing
non-local spin-exchange dynamics, i.e., we choose two lattice sites (j, k) and (m,n),
if sj,ksm,n = −1 then we exchange their values, else we keep their values as they
are. The energy change ∆E′ is measured and we accept the move with the Metropolis
probability min(1, exp(−∆E′/T )). For the rest of the system, we let them evolve
with the Kawasaki dynamics.

We then keep taking snapshots of the system at regular intervals. For every snap-
shot we take, we consider an attempt to flip each spin in turn and find the expected
change in Ml which would have occurred if this move had been implemented, totaled
over all the spins on the selected line, and the possible change of the line magnetiza-
tion is defined as f(t) = Ṁ(t). The quantity 〈f(t)f(0)〉 is plotted in Figure 6.6. The
figure is in good agreement with our expectation that µ(t) ∼ t−(γ/ν−1)/zc ; this result
has also been observed for the the 2D Ising model with Glauber dynamics [74].

6.5 Conclusion
In this chapter, we have studied the Fourier modes of the two-dimensional Ising model
with Kawasaki dynamics at critical temperature and at zero (conserved) order param-
eter. We have established that the Fourier modes are the dynamical eigenmodes of the
system to a very good approximation. Using these modes, we can reconstruct the dy-
namics of any dynamical variable; we have done so for the autocorrelation function
and the mean-square deviation (MSD) of line magnetization.

At the intermediate times, we have found that for 1 . t . Lzc , the line magnetiza-
tion undergoes anomalous diffusion. We have argued that like other spin models and
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Figure 6.6: The autocorrelation function 〈f(t)f(0)〉 as a function of time; the solid
line corresponds to 〈f(t)f(0)〉 ∼ t−(γ/ν−1)/zc ≈ t−0.2.

polymeric systems this anomalous behavior can be described by the GLE formulation
with a memory kernel. The corresponding fluctuation-dissipation theorem has been
verified by the calculation of the force autocorrelation.

With these results, we have showcased that for Kawasaki dynamics, the Fourier
modes, as the approximate dynamical eigenmodes, is a useful tool to analytically de-
rive the dynamical quantities in the Ising system. We however note that if the model
is evolved using Glauber dynamics, then we find that Xpp(t) decays as a stretched
exponential in time (not shown in this chapter), which clearly shows that the Fourier
modes are not the (approximate) dynamical eigenmodes. We do not understand this at
present. It could be explored in the future.

6.6 Appendix: Scaling of 〈|Ap|〉2 with p for the 2D Ising
model

In this appendix we obtain the scaling behavior of 〈|Ap|2〉 for the 2D Ising model
(note that the calculations presented here do not correspond to the total magnetization
of the sample kept fixed at zero, as is the case for Kawasaki dynamics in this chapter).

First we calculate the autocorrelation function of the line magnetization. We use
the classic result that at the critical temperature the spin-spin autocorrelation function
decays as r−η , where r is the Euclidean distance between the two spins and η =
2 − γ/ν = 0.25 for the 2D Ising model. With that knowledge, upon summing over i
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Figure 6.7: Schematic diagram for the calculation of the line-line autocorrelation func-
tion.

and j in the y-direction (see Figure 6.7), we obtain

〈Ml(j1, 0)Ml(j2, 0)〉 =

L−1∑

i=0

L−1∑

j=0

〈sj1,i sj2,j〉 ∼
L−1∑

i=0

L−1∑

j=0

[(i− j)2 + (j2 − j1)2]−η/2.

(6.29)
We next set a = (j1 − j2)/L, u = (i− j)/L and v = j/L to write order,

〈Ml(j1, 0)Ml(j2, 0)〉 ∼
∫ 1

−1

du
L2−η

[u2 + 4a2]η/2
. (6.30)

The calculation of 〈|Ap|2〉 follows from Eq. (6.30) in a similar manner.

〈|Ap|2〉 =
1

L2

L∑

j1=0

L∑

j2=0

〈Ml(j1, 0)Ml(j2, 0)〉 cos[2πp(j1 − j2)/L]. (6.31)

This time setting a→ a/2, Eq. (6.31) reduces to

〈|Ap|2〉 ∼ L2−η
∫ 1

−1

da

∫ 1

−1

du
1

[u2 + a2]η/2
cos(πpa)

= 4L2−η
∫ 1

0

da

∫ 1

0

du
1

[u2 + a2]η/2
cos(πpa).

(6.32)

For p = 0, Eq. (6.32) leads to |Ap(0)|2 ∼ L2−η , which is the classic result for the
equilibrium scaling 〈M2〉 ∼ L4−η = L2+γ/ν for the total sample magnetization M
for the 2D Ising model.
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For p 6= 0 we perform the integration over u in Eq. (6.32) to obtain

〈|Ap|2〉 ∼ L2−η
∫ 1

0

da f(a) cos(πpa)

︸ ︷︷ ︸
I(p)

,
(6.33)

with

f(a) =
(1+a2)1−η/2(5+a2−η)

(4−η)(2−η)

−
(1+a2)3−η/2 Hypergeometric2F1

(
1, (3−η)/2,−1/2,−1/a2

)

a2(4−η)(2−η)
.

(6.34)
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Figure 6.8: (a) Numerical integration of the integral in Eq. (6.34). (b) The figure shows
that I(p) ≈ B2 p

2−η in the limit p→∞, where B2 ≈ 0.0516, although convergence
to the asymptotic behavior is rather slow. The solid lines are fits to the data.

We then perform numerical integration separately for even and odd p-values for
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Eq. (6.34). The results, shown in Figure 6.8, demonstrate that in the limit p→∞

〈|Ap|〉2 ∼
(
L

p

)2−η

=

(
L

p

)γ/ν
, (6.35)

although convergence to the asymptotic behavior is rather slow.





CHAPTER 7

Conclusion and outlook

Although anomalous diffusion is a ubiquitous phenomenon in physics, biology, and
many other research fields, it is only recently that the phenomenon was observed in
the 2D Ising model at its critical temperature [28]. In this thesis, we have found that
anomalous diffusion is quite a common phenomenon in Ising-like models at their
critical point. The models considered in this thesis are the normal Ising model, the
2D scalar φ4 model, and the bond-diluted Ising model.

In chapter 2, the anomalous diffusion is found as a common phenomenon at the
critical point for both 2D and 3D Ising models. By calculating the velocity autocorre-
lation function of the magnetization and the autocorrelation function of the restoring
force, we have numerically proven that the GLE is a proper model to describe the
anomalous diffusion in the Ising model. Besides, we find that the anomalous exponent
can be used to measure the dynamical exponent for Ising-like systems.

We extend our findings to the off-critical temperatures in the Ising model in chap-
ter 3. The anomalous exponent flow, i.e., ċ as a function of c, is measured, where a
true exponent is defined as ċ ≡ 0. As we have obtained that at a temperature larger
than Tc, there is a true exponent for each temperature, while for T < Tc, there is no
true exponent but only a peak value for each temperature. Around the critical temper-
ature, both the true exponents and the peak values are flowing away from the critical
anomalous exponent, providing us a new insight to understand the phase transition.

Further, we claim that the anomalous exponent can be treated as a method to mea-
sure the dynamical exponent. We test the idea in the 2D scalar φ4 model (chapter 4)
and the 2D bond-diluted Ising model (chapter 5). In the 2D scalar φ4 model, the ob-
tained dynamical exponent confirms that it belongs to the 2D Ising universality class.
In the 2D bond-diluted Ising model, we find that when the bond concentration ap-
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proaches the percolation threshold, the dynamical exponent is increasing to infinity. It
means that the system is getting slower and slower. This phenomenon is regarded as
the "super slowing down" behavior.

After numerically proving and measuring different kinds of dynamical properties,
we turn our attention to find a way to calculate those dynamical properties analytically.
The 2D Ising model with Kawasaki dynamics is studied in chapter 6. We find that the
Fourier modes of the total magnetization are good approximations to be the dynami-
cal eigenmodes. The MSD and the autocorrelation function of the magnetization are
derived with the approximate dynamical eigenmodes. The analytical results fit the nu-
merical ones quite well. It also reduces the impact of the finite-size effects, i.e., we can
have results for vary large system sizes with the analytical method, which provides us
more accurate estimations of the anomalous exponent and other dynamical properties.

Until now, we have studied the anomalous diffusion in several Ising-like models.
However, there are many unexplored areas in the field of combining anomalous diffu-
sion and phase transitions.

In the future, we would like to figure out whether anomalous diffusion of the or-
der parameter can be found at the critical point in other systems with a second-order
phase transition. For particular interests, we want to extend our findings to the glassy
states. There are many unknowns in the systems undergoing glass transition, we hope
that the dynamical properties like the mean-square displacement of the order parame-
ters can provide some useful information that will deepen our understanding of glass
transition.

Finally, as a fantastic field, active matter catches a lot of attention in the last few
years [135]. One of the famous ideal models is the active Brownian particles (ABPs)
[136], which is a model with a gas-fluid like transition diagram. However, at the crit-
ical point, it hard to obtain accurate equilibrium properties, even the precise position
of the critical point is not yet clear. Besides, it is still under debate whether the critical
behavior at the critical point of the ABPs belongs to the Ising universality class or
not [137, 138]. We believe that the dynamical quantities will provide more convincing
evidence to solve this debate. The idea will be tested later.
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Samenvatting

Anomale diffusie is een bekend fenomeen in natuurkunde, biologie en vele andere
velden van de wetenschap. Echter, dit fenomeen is pas recentelijk gevonden in het 2D
Ising model op de kritische temperatuur [28]. In dit proefschrift hebben we gevonden
dat anomale diffusie een veelvoorkomend fenomeen is in Ising-achtige modellen op
het kritische punt. De modellen besproken in dit proefschrift zijn het normale Ising
model, het 2D scalaire φ4 model, en het bond-diluted Ising model.

In hoofdstuk 2 vinden we dat de anomale diffusie een veelvoorkomend fenomeen
is op het kritische punt voor 2D en 3D Ising modellen. Door de snelheid autocorre-
latie functie van de magnetisatie en de autocorrelatie van de herstelkracht te bereke-
nen, bewijzen we numeriek dat de GLE een toepasbaar model is om anomale dif-
fusie te beschrijven in het Ising model. Bovendien vinden we dat de anomale expo-
nent gebruikt kan worden om de dynamische exponent voor Ising-achtige modellen te
bepalen.

We breiden onze vindingen uit naar akritische temperaturen in het Ising model, in
hoofdstuk 3. De anomale exponent stroming, i.e., ċ als functie van c, is gemeten, en de
exacte exponent is gedefinieerd als ċ ≡ 0. Omdat we het op een lagere temperatuur dan
Tc hebben gevonden, kunnen we een exacte exponent vinden voor elke temperatuur,
terwijl bij T < Tc er geen exacte exponent maar alleen een piekwaarde voor elke
temperatuur is. Rondom de kritische temperatuur, stromen de exacte exponenten en
de piekwaarden weg van de kritische anomale exponent, wat extra inzichten in het
begrijpen van fasetransities biedt.

Vervolgens claimen we dat de anomale exponent gebruikt kan worden als een
methode om de dynamische exponent te bepalen. We testen dit idee in het 2D scalaire
φ4 model (hoofdstuk 4) en het 2D bond-diluted Ising model (hoofdstuk 5). In het
2D scalaire φ4 model, bevestigt de gevonden dynamische exponent dat het model tot
de 2D Ising universality klasse behoort. In het 2D bond-diluted Ising model, vinden
we dat als de bond concentratie de percolatiegrens benadert, de dynamische exponent
stijgt naar oneindig. Dat betekent dat het systeem trager en trager wordt, een fenomeen
dat "super slowing down" genoemd wordt.

Na het numeriek bewijzen en bepalen van verschillende dynamische eigenschap-



96 Samenvatting

pen, concentreren we ons op het vinden van een manier om deze eigenschappen an-
alytisch te berekenen. Het 2D Ising model met Kawasaki dynamica is bestudeerd
in hoofdstuk 6. We laten zien dat de Fourier modi van de algehele magnetisatie een
goede benadering zijn van de dynamische eigenmodi. De MSD en de autocorrelatie
functie van de magnetisatie zijn afgeleid van de benaderde dynamische eigenmodi.
De analytische resultaten fitten de numerieke resultaten vrij goed. Het verkleint ook
de impact van finite-size effects, i.e., we kunnen nu resultaten hebben voor grote sys-
teemgrootten met de analytische methode, wat ons meer nauwkeuriger schattingen
van de anomale exponent en andere dynamische eigenschappen biedt.

Tot op heden hebben we de anomale diffusie in verschillende Ising-achtige mod-
ellen bestudeerd. Er is nog echter veel onontgonnen terrein in het veld van het com-
bineren van anomale diffusie en fasetransities.

In de toekomst willen we ingaan op de vraag of anomale diffusie van de orde-
parameter kan worden gevonden op het kritische punt in andere systemen met een
tweede-orde fasetransitie. In het bijzonder zijn we geïnteresseerd in het uitbreiden van
onze resultaten naar glasstaten. Er zijn nog veel vragen in systemen die glastransi-
tie ondergaan, en we hopen dat de dynamische eigenschappen zoals de mean-square
displacement van de ordeparameter nuttige informatie kan bieden, dat ons begrip van
glastransities kan verdiepen.

Tenslotte, het fantastische veld van active matter krijgt veel aandacht in de laat-
ste paar jaar [135]. Een van de beroemde modellen is het active Brownian particles
(APBs) [136] model, wat een gas-vloeistof achtig transitiediagram heeft. Echter, op
het kritische punt is het lastig om nauwkeurige evenwichtseigenschappen te verkri-
jgen. De precieze positie van het kritische punt is zelfs nog niet duidelijk. Of het
kritische gedrag op het kritische punt van de ABPs wel of niet tot de Ising universality
klasse behoort, wordt bovendien nog steeds bediscussieerd [137, 138]. Wij vermoeden
dat de dynamische eigenschappen meer overtuigend bewijs aanleveren om dit debat
op te lossen. Dit idee zal later worden getest.
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