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Chapter 1

Prediction research
Prediction models are an important asset in modern medicine. [1, 2] They are
commonly developed, validated and used for the prediction of a patient’s current
(diagnostic prediction models) or future (prognostic prediction models) health sta-
tus, and may thereby aid in medical decision making and to inform patients on
their health. [3, 4, 1, 5] Risk predictions can be used to make decisions regarding
the need for additional diagnostic tests, initiating life-style changes or other pre-
ventive strategies, identifying the most effective treatment for an individual and for
benchmarking the quality of medical centers. Well known examples are QRISK 3,
which was developed to facilitate prevention of future heart disease and stroke [6],
EuroSCORE II for predicting mortality after cardiac surgery in order to facilitate
better decision-making and which may be used as a benchmark in the assessment
of the quality of cardiac surgery, [7] and the APRI for predicting the risk of fibrosis
and cirrhosis in chronic hepatitis C patients. [8]

As prediction models are developed using data from real persons, they allow for
an objective assessment of current or future disease status and quantification of the
uncertainty regarding that assessment. This requires a high quality of measuring the
predictors in a prediction model. These predictors may include individual partic-
ipants’ characteristics, signs, symptoms, biomarker or imaging test values, genetic
test results, biopsy results, etc. A prediction model uses a weighted combination of
these predictors to assign a probability to a patient that a health status is present
or will be present within a certain time frame.

Prediction models are commonly developed on the data from observational stud-
ies or health care records, though data from randomized controlled clinical trials
are also sometimes used. Once developed, a prediction model’s performance needs
to be estimated in other individuals than from which the prediction model was de-
veloped. [3, 9] More specifically, it needs to be shown that the model has adequate
discrimination and calibration. [10, 9] Discrimination refers to the model’s ability
to separate individuals with the outcome (health status) from those without that
outcome. Calibration refers to the agreement between the outcome probabilities
predicted by the model and the true probabilities of the outcome. That is the abso-
lute values of the predicted probabilities need to agree with the observed frequencies
of the outcome.

Although these prediction model performance measures can be estimated di-
rectly in the development data, this approach yields performance measures that
tend to be over-optimistic. The general trend is that model performance decreases
when a model is applied to new participants and this decrease can be substantial.
[11] A primary cause of this is overfitting, which means that the model’s predictor
weights (called predictor coefficients) are adapted to idiosyncrasies in the develop-
ment data at hand rather than the true underlying patterns. An overfitted model
yields predicted outcome risks or values for new individuals that are too extreme
and are expressed with too much certainty. Besides invalid predictor coefficients,
model performance may also be affected by differences in the measurement method
of predictor or outcome variables and by differences in patient characteristics (case-
mix). [12, 13, 14, 15, 16]

In order to ascertain whether a developed prediction model is sufficiently robust
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against aforementioned issues, it has been recommended to assess its performance
in data from new individuals not used to develop the prediction model in so-called
external validation data sets. [3, 9] These prediction model validation studies are
preferably conducted on data from a different population, setting or time period,
to assess the model’s geographic and temporal accuracy. [17] This may also high-
light the need for tailoring the model to these populations and settings, to update
the model or re-estimate the prediction model entirely. [18, 19, 20, 21] The tai-
lored or updated model then needs further validation to ensure that predictions are
sufficiently accurate in new individuals.

It has become increasingly common that developed prediction models are exter-
nally validated before publication. [22, 9] Obviously there is merit to this practice,
yet it also has drawbacks. First, separation of development and validation data
implies that a smaller than necessary sample is used for both the development and
the validation of the prediction model, which reduces the precision of the estimates.
Second, when data sets from multiple studies are available for model development,
as in an individual participant data meta-analysis (IPD-MA) setting, the choice for
which data sets are to be used for development and which for validation can be arbi-
trary. Third, adequate performance in a single validation study does not necessarily
imply that performance will be adequate in practice; for this the validation study
needs to reflect the target population and setting. Accordingly, poor performance in
a validation study may be a consequence of a sample from a non-target population
or setting being used for validation.

Individual participant data meta-analysis
Prediction models should ideally be developed and validated in large samples from
multiple populations and settings. [17, 23, 20, 24, 25] This requires research groups
to join efforts by sharing their individual participant data and subsequently apply-
ing adequate statistical methods to synthesize the data across studies or research
centers. To account for heterogeneity between settings and populations (random-
effects) meta-analysis can be used, which appropriately weights the evidence from
each study. When applied to the combined data of individuals from multiple stud-
ies, this is referred to as individual participant data meta-analysis (IPD-MA). In
this thesis we address several of the aforementioned issues in prediction research
and how these can be resolved in IPD-MA or other large clustered data sets where
IPD are available from multiple settings or populations, such as electronic health-
care records. Two prime examples of this are electronic health care records and
IPD meta-analysis, where the IPD from multiple centers or studies are combined
into a single data set. Notably, the use of these large clustered data sets has several
advantages. [26]

1. It improves model development, by enabling the evaluation of the prediction
model’s heterogeneity across populations and settings during the model devel-
opment. Commonly, the predictive performance of developed models varies
across populations and settings. Having this data already available during
model development allows one to adapt the model during model development
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so that it performs adequately in each setting. As the variety of participant
characteristics (case-mix) is larger in clustered data sets, this also allows one
to better account for non-linear effects of patient characteristics.

2. It allows for more informative prediction model validation. As estimates of
discrimination and calibration are readily available in each of the samples in
the combined data set, the variation in this performance can be explored,
its causes can be investigated, the model’s generalizability to other popula-
tions and settings can be quantified and the need updating the model can
immediately be investigated.

3. The observed data can be used more efficiently, as it does not require the split-
ting of samples into development and validation sets and thereby increases the
sample sizes available for both these tasks. This reduces the danger of overfit-
ting in prediction model development, which implies that the resulting models
will be more robust. In turn, increased sample sizes for validation imply that
the estimates of discrimination and calibration are more precise. It also al-
lows for borrowing information across studies. Apart from borrowing across
studies to reduce the variance of estimates, it also allows for the borrowing
of information on the quality of measurements. This may enable the estimat-
ing of a predictor-outcome association in multiple populations and settings
even when a high quality measurement of a certain predictor may be entirely
unavailable in some studies.

Outline of this thesis
In chapter 2 we provide a review of methods for performing an IPD-MA of ther-
apeutic intervention studies where the time to an event is the outcome of primary
interest. This is the case when the event is certain to occur but the time until the
event is unknown, such as death. Time-to-event analysis, commonly named sur-
vival analysis, allows one to estimate the effectiveness of therapeutic interventions
and to predict (average) survival times. We provide guidance on the analysis of
individual participant data with time-to-event outcomes from multiple therapeutic
intervention studies. We illustrate the methods in a real IPD-MA of randomized
clinical trials on the effectiveness of Carbamazepine and Valproate to increase the
time to epileptic seizures in epilepsy patients.

In chapter 3 we discuss Stepwise Internal-External Cross-Validation (SIECV)
for the development of more generalizable prediction models when multiple indi-
vidual participant data sets are available. We show how this method can be used
to assess and improve the generalizability of prediction models during prediction
model development. We illustrate our methodology on two motivating examples:
the diagnosis of deep vein thrombosis and the prediction of atrial fibrillation.

In chapter 4 we develop methods for the standardization of different data sets
in an IPD-MA of prediction model validation studies. We show how propensity
score methods can be applied to use data from a non-target population or setting in
prediction model validation. This effectively increases the sample size available for
model validation and thereby improve the reproducibility of performance estimates.
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It facilitates the interpretation of (heterogeneity in) prediction model performance
in these data sets in terms of the intended population and setting.

It is common in research that a variable of interest is measured with error,
that is the preferred measurement method is not available for some participants.
For categorical predictors this implies that misclassification may occur, which will
result in a biased predictor-outcome relation (or exposure-outcome relation) [27, 28,
29, 30, 31, 32, 33, 34, 35] So far, methods for handling predictor misclassification
have been restricted to single studies and aggregate data meta-analysis (that is,
based on estimates reported in the literature). In chapter 5 we discuss methods
for restoring the predictor-outcome association in individual participant data meta-
analyses where the ideal measurement method of a predictor is unavailable for
some of the participants in the IPD-MA or even for all participants in some studies
included in the IPD-MA.

In chapter 6 we provide recommendations for the minimum sample size for the
development of prediction models for multinomial outcomes using penalized and
unpenalized estimation methods. We base these recommendations on a full factorial
simulation study and a motivating example on predicting the correct diagnosis in
patients suspected of ovarian cancer.

Finally, in chapter 7 we provide an overview of meta-analysis methods for
prognosis research, when (possibly a combination of) individual participant data
as well as aggregate prediction model study data are available from the literature.
We finish with providing general recommendations for performing an IPD-MA in
prediction modeling research.

11





Chapter 2

Individual participant data
meta-analysis of intervention
studies with time-to-event
outcomes: A review of the
methodology and an applied
example

Valentijn M.T. de Jong, Karel G.M. Moons, Richard D. Riley, Catrin Tudur Smith,
Anthony G. Marson, Marinus J.C. Eijkemans, Thomas P.A. Debray. Individual
participant data meta-analysis of intervention studies with time-to-event outcomes:
A review of the methodology and an applied example. Research Synthesis Methods,
2020; 1–21. DOI: 10.1002/jrsm.1384
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Abstract
Many randomized trials evaluate an intervention effect on time-to-event outcomes.
Individual participant data (IPD) from such trials can be obtained and combined
in a so-called IPD meta-analysis (IPD-MA), to summarize the overall intervention
effect.

We performed a narrative literature review to provide an overview of methods
for conducting an IPD-MA of randomized intervention studies with a time-to-event
outcome. We focused on identifying good methodological practice for modeling
frailty of trial participants across trials, modeling heterogeneity of intervention ef-
fects, choosing appropriate association measures, dealing with (trial differences in)
censoring and follow-up times, and addressing time-varying intervention effects and
effect modification (interactions).

We discuss how to achieve this using parametric and semi-parametric methods,
and describe how to implement these in a one-stage or two-stage IPD-MA frame-
work. We recommend exploring heterogeneity of the effect(s) through interaction
and non-linear effects. Random effects should be applied to account for residual het-
erogeneity of the intervention effect. We provide further recommendations, many of
which specific to IPD-MA of time-to-event data from randomized trials examining
an intervention effect.

We illustrate several key methods in a real IPD-MA, where IPD of 1225 par-
ticipants from 5 randomized clinical trials were combined to compare the effects of
Carbamazepine and Valproate on the incidence of epileptic seizures.
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2.1 Introduction
Relative intervention effects (e.g. hazard ratios) are most reliably evaluated in ran-
domized clinical trials (RCT). However, multiple RCTs of the same intervention
may provide inconclusive or conflicting evidence on efficacy or safety. Discrepancies
between evidence from different RCTs may arise due to chance, or in particular due
to heterogeneity in the true intervention effect. This heterogeneity is commonly
caused by across-trial differences in, for example, study design (e.g. recruitment
strategy, length of follow-up, or analysis methods), case-mix of participants, defini-
tion of the studied outcome(s), the implementation (e.g. dosage or intensity) of the
intervention. This motivates the need to systematically integrate and summarize
evidence across trials, to facilitate evidence-based-medicine.

This can be achieved using a systematic review with meta-analysis (MA). Where-
as most meta-analyses are based on aggregated data (AD) from available literature,
individual participant (or patient) data meta-analyses (IPD-MA) of multiple inter-
vention studies are considered the gold standard. [36, 37, 38] IPD-MA offers several
advantages, as the meta-analyst has full control of the data analysis and uses the
data at the individual participant level. [39] Key advantages are the standardis-
ation of outcome and follow-up definitions, checking of data and quality, proper
modelling of time-to-event outcomes, and the exploration of intervention-covariate
interactions at the participant level. [39, 40] It may thus come to no surprise that
IPD-MA are increasingly common. [41, 42]

Extensive guidance has previously been provided for conducting an IPD-MA of
intervention effects, for various types of outcome data, such as binary, [43, 42, 44]
continuous, [41, 42, 45, 46] ordinal [42] and count outcomes. [42] Yet, IPD-MA are
especially useful when analyzing time-to-event outcomes in intervention studies, as
censored outcomes can be reassessed for the meta-analysis, survival measures (e.g.
hazard ratios, median survival) can be calculated directly and independent to trial
reporting, follow-up length can often be increased, time-varying hazard ratios can be
examined, and effect modifiers (intervention-covariate interactions) can be assessed.
[47, 48]

Whereas a wealth of methods have been developed for analyzing and predicting
time-to-event outcomes in single studies, [49, 50, 51, 52] limited guidance exists on
their application in IPD-MA settings. In this article, we aim to provide readers with
this guidance, by means of our systematic search of databases, narrative review and
explanation, and an applied example. Although we focus IPD-MA of trials, the
methods we describe are also applicable to multi-center trials.

In the next section, we provide the principles as well as several major issues of
time-to-event analyses, that are common in not only IPD-MA but also in single
studies. In section 2.3 we provide details of our systematic literature search of
methodology for IPD-MA of time-to-event outcomes, and then a narrative review
thereof follows in section 2.4 where we discuss the one- and two-stage approaches to
meta-analysis, and in section 2.5 where we discuss issues in more detail. Then, in
section 2.6 we apply several key methods of the review to a real IPD meta-analysis
of clinical trials. Finally, we give provide a discussion in section 2.7 and concluding
remarks in section 2.8.
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2.2 Principles of time-to-event analysis
The analysis of trials with a survival outcome (e.g. death) typically involves statis-
tical models that account for the time Tsurv,i elapsed until subject i, i = 1, .., n de-
veloped the event of interest. We here denote the probability for subject i to remain
event-free for at least t time by the survival function S(t) = Pr(Tsurv,i > t). A key
challenge in time-to-event (TTE) data is that for many participants Tsurv,i is cen-
sored to Tcens,i, for instance due to dropout or the end of the study. This implies that
for those participants Tsurv,i > Tcens,i. Hence, the outcome for subject i is typically
summarized by the observed event-free or survival time Ti = min(Tsurv,i, Tcens,i)
and the event status Di (where D = 0 when censored, and D = 1 when the event
of interest was observed to have occured). We can compare the survival times of
intervention groups and control, while accounting for censoring, with a variety of
regression methods.

A commonly used method for analyzing right-censored TTE data is the Cox
proportional hazards (PH) model. [53] In this semi-parametric model the effect of
the covariates is modeled parametrically, whereas the baseline is left unspecified.
It is typically assumed that the ratio of the hazards for any two individuals is
constant, irrespective of t. The hazard h(t|X) for an individual with covariate
vector X′ = (X1, . . . , Xk) is given by equation 2.1.1 (Table 2.1),
where βT = (β1, ..., βk) is a vector of regression parameters. The function h0(t)
represents the baseline hazard, which is left unspecified. [49, 50] The hazard ratio
for two individuals i = 1, 2 is then given by exp{β′(X1 −X2)}. For the analysis
of randomized trials, X typically just contains a single covariate representing the
intervention indicator (e.g. Xi = 0 for subjects in the control arm and Xi = 1 for
subjects in the intervention arm) such that exp (β) can directly be interpreted as
the relative intervention effect.

An important consideration is whether to include other (prognostic) covariates
in the Cox PH model alongside treatment. In many time-to-event models, includ-
ing the Cox PH model, the observed unadjusted intervention effect of a protective
intervention may change over time due to covariates (i.e. frailty), even if these
covariates are perfectly balanced between the intervention groups. [54, 55] Frail
participants will have a higher incidence rate than less frail participants. If the
intervention is protective, frail participants in the intervention group will have a
lower incidence rate than frail participants in a control (or an ineffective interven-
tion) group and participants that are not frail. Over time, the proportion in the
control group that is still at risk will increasingly consist of participants that are
not frail, whereas this will take longer for the intervention group, thereby resulting
in an imbalance in frailty. For trials with a high event rate and most frailty distri-
butions, the unadjusted intervention effect will attenuate towards the null (hazard
ratio of 1) as time progresses, which violates the proportional hazards assumption.
[56] The unadjusted intervention effect is then the marginal intervention effect, [57]
i.e. the average intervention effect for the population as a whole, averaged across
all time-points. Hence, it is dependent on the length of the follow-up.
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Table 2.1: Models for two-stage time-to-event meta-analysis

Type Model Hazard function Survival function Ref. No.

Proportional
Hazards

General
model1 h0(t) exp(β′X) S(t|X) = S0(t)exp(β

′X) [49, 47, 58] 2.1.1

Exponential λ exp(β′X) S(t|X) = exp(−λt exp(β′X)) [49, 51, 58] 2.1.2

Weibull2 λνtν−1 exp(β′X) S(t|X) = exp(−λtν exp(β′X)) [49, 59, 51, 58] 2.1.3

Gompertz3 λ exp(ψt) exp(β′X) S(t|X) = exp(− λ
ψ (exp(ψt)−1) exp(β′X)) [49, 60, 51] 2.1.4

Accelerated
Failure
Time

General model h0(t exp{β′X}) exp(β′X) S(t|X) = S0(t exp(β′X)) [49, 51, 61] 2.1.5

Weibull λνtν−1(exp(β′X))ν S(t|X) = exp(−λtν exp(νβ′X)) [51, 49] 2.1.6

Log-logistic4 ϕ
t{1+t−ϕexp(−β′X)} log 1−S(t|X)

S(t|X) = ϕlog(t) + β′X [61, 62, 63] 2.1.7

1 In the Cox Proportional Hazards model, the baseline hazard h0(t) is left unspecified.
2 ν is a shape parameter, λ is a scale parameter.
3 The Gompertz distribution can be generalized to the Gompertz-Makeham distribution by adding a constant to the
hazard function. [64]
4 The log-logistic model is a proportional odds model, where the β parameters can be interpreted as log-odds ratios.
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If the intention is to measure a conditional intervention effect, i.e. the interven-
tion effect for a participant with given covariate values, the observed unadjusted
intervention effect is often not valid. Instead, covariates should be included in the
model, to obtain a conditional intervention effect. [65, 66] Further, the adjustment
for a prognostic covariate often increases the power for finding an intervention ef-
fect. [67] Alternatively, an AFT model could be used (sections 2.5.1 and 2.5.2),
for which the effect of missing covariates is absorbed into the baseline parameters,
leaving the unadjusted intervention effect unaffected. [56]

The Cox PH model has numerous appealing properties, in particular allowing
the estimation of hazard ratios for included covariates without requiring the shape
of the baseline hazard to be specified. However, its implementation is not always
justified. For instance, difficulties may arise when hazards are non-proportional.
Although effects to model non-PH can be included (e.g. with splines, interactions or
time-varying effects) in a Cox PH model, this usually complicates the interpretation
of the estimated intervention effect.

For these reasons it is often recommended to adopt a model where proportion-
ality occurs on another scale when proportionality of hazards is violated, which
is discussed in section 2.5.2. When absolute survival probabilities for individual
participants are of primary interest, it can be useful to define a parametric func-
tion for h0(t), and thus to abandon Cox PH models altogether, [68, 69] which is
discussed in section 2.5.1. Indeed, even when the focus is mainly on an interven-
tion effect, translation of its hazard ratio to the absolute risk scale is important,
which requires the baseline survival to be modelled, either parametrically or non-
parametrically. For a full overview of R packages on time-to-event analysis, see
cran.r-project.org/web/views/Survival.html.

2.3 IPD meta-analysis methods: review
Increasingly often, IPD from multiple studies are available for analysis. This in-
troduces new challenges and allows for different approaches for analysis, which we
set out to identify. We conducted a literature review to identify scientific articles
concerning statistical methods for IPD-MA of time-to-event data.

2.3.1 Methods
We systematically searched through Pubmed and Web of Science using the search
filters supplied in Supporting Information 1 (https://doi.org/10.1002/jrsm.1384),
from conception until December 31st, 2018. In addition, we added suggestions and
performed cross-reference checks of the obtained articles. Articles were considered
eligible for inclusion if they described statistical methods for analyzing multiple or
clustered individual participant data sets with a time-to-event outcome. Publica-
tions that met at least one of the following criteria were excluded from our review:

• Full text of the manuscript not available,
• Not published in English,
• Not a peer reviewed article,
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• Application of methods without methodological focus,
• No focus on at least one of the following topics:

- time-to-event outcomes,
- IPD,
- estimation of intervention effects,
- meta-analysis or analysis of clustered data.

2.3.2 Results
A total of 1887 unique records were identified through our search strategy, and
were deemed eligible for title and abstract screening (Figure 2.1). Of these, 1713
were removed during screening because the titles did not have a methodological
focus. The remaining 174 records were assessed on the full-text, of which 58 met
the inclusion criteria and 116 did not. Further, a total of 159 unique records were
assessed after being suggested or found through cross-referencing. Of these, 16
suggestions and 54 cross-references met the inclusion criteria and were included in
the review. A total of 128 articles were included in the review, of which a complete
list can be found in Supporting Information 3 (https://doi.org/10.1002/jrsm.1384).

The core methods for analyzing TTE outcomes in IPD-MA are described in sec-
tion 2.4. The structure of this section was defined independent of the review, yet the
description of methods therein has resulted from the review. Further, extensions to
these methods, such as relaxing the proportionality of hazards assumption, model-
ing multiple interventions or outcomes, and methods for missing data are described
in section 2.5.1, which was grouped according to the topics identified in the review.
The review has resulted in ten key recommendations backed by references, which
are summarized in Table 2.2.

Figure 2.1: Flowchart of inclusion and exclusion of papers for review.
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Table 2.2: Ten Recommendations for the IPD-MA of TTE data from Randomized Trials Examining an Intervention Effect

Recommendation Reference
The Cox model may be the default model of choice, but proportionality of hazards [70, 71]
should be tested, e.g. with interaction or time-varying effects for the intervention.
Consider non-PH models. [72, 73, 74, 61, 75]
Account for clustering in one-stage models, preferably by stratification of the baseline. [54, 76, 77, 78, 79, 80]
Adjust for covariates measured before randomization. [59, 81, 67]
Apply one-stage models if trials are very small or the outcome very rare. [51, 82]
In one-stage models, center covariates within trials. [83]
Model participant-level interactions on the participant-level. [84]
For the intervention effect (& its interaction effects), apply random effects & investigate heterogeneity. [47, 40, 85, 86]
If competing risks are present & absolute risks are of interest, apply competing risks models. [87, 88, 89, 90, 91]
Multiple imputation of missing covariates must account for clustering & time-to-event, [92, 93, 94, 95, 96]
using the event indicator and the Nelson-Aalen cumulative hazard.
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2.4 Description of methods

2.4.1 Time-to-event analysis in individual participant data
meta-analysis

When IPD from multiple trials are available, summary estimates for relative in-
tervention effects can be obtained using the so-called one-stage or two-stage ap-
proaches. [82] In the conceptually simpler two-stage approach (section 2.4.2), the
IPD from each trial is analyzed separately to produce trial-specific estimates of rel-
ative intervention effect (e.g. hazard ratios), using the same methodology in each
trial (e.g. Cox regression). In the second stage, estimates of intervention effect
are combined into a weighted average using traditional meta-analysis methods that
ideally account for possible between-trial heterogeneity. In the one-stage approach
(section 2.4.3), data from all studies are analyzed in one analysis, and a variety
of methods can be used to account for clustering of participants within studies.
[51, 80, 49, 97, 42] In both the one- and two-stage approaches, methods to ac-
count for heterogeneity in intervention effects across studies are available (Table
2.3). [36, 97, 42] In the one-stage approach, one must also decide how to model or
account for heterogeneity in other parameters (such as adjustment factors or terms
defining the baseline hazard). For a discussion on the choice between the one-stage
and two-stage approaches see section 2.8.

Table 2.3: Methods for Modeling Heterogeneity

Baseline Coefficients Modeled difference between trials

Common Common No difference, same for every trial
Frailty Random Effects Proportional differences, difference between

trials follows distribution
Fixed a Fixed b Proportional differences, estimated per trial.

Same shape between trials.
Stratified Non-proportional differences. Estimated per

trial, with different shapes.

These methods are possible in one-stage meta-analysis. In a two-stage meta-analysis the
baseline is stratified and the given options for the coefficients can be used.
a By adding trial indicators to the model.
b By adding trial indicators ∗ variable interaction to the model.

2.4.2 Two-stage approach
The two-stage approach is often considered the most convenient approach for IPD
meta-analysis, as it does not necessarily require IPD to be exchanged. For instance,
each trial can be analyzed separately, and only their summary statistics are com-
bined. The approach is particularly appealing when not all trials provide IPD, as it
allows reported intervention effects and their respective standard errors from non-
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IPD trials to be analyzed in the second stage, together with the estimates from the
IPD trials.

In the first stage, common methods for TTE analysis can be used to obtain
estimates of relative intervention effect for each trial (so-called aggregate data).
For instance, when applying Cox regression (equation 2.1.1), this yields the log
hazard ratio estimates β̂j and their corresponding error variance V (β̂j), for trial
j = 1, ..., J . Afterwards, the estimated intervention effects can be summarized by
calculating a weighted average. For instance, in a so-called common (or fixed) effect
meta-analysis it is assumed that all trials share a common intervention effect βIV,
which can be derived as follows:

βIV =

∑J
j=1

β̂j

V (β̂j)∑J
j=1

1
V β̂j)

V (βIV) =
1∑J

j=1
1

V (β̂j)

(2.1)

where V is the variance. Hereby, it is assumed that the within-trial variances V (β̂j)
are known (i.e. estimated without uncertainty). The common effect meta-analysis
model can also be formulated as follows:

β̂j ∼ N
(
βIV, V (β̂j)

)
(2.2)

If certain trials provide no IPD, but the intervention effect and its variance are
available in the literature, these can be included in the second stage of the two-
stage framework, [98] provided that the models in the first stage are specified the
same. If a trial has a small sample size, the Maximum Likelihood estimator of the
intervention effect can be affected by small sample bias. [99] Worse still, if con-
siderable censoring is present, the likelihood may be monotone and the Maximum
Likelihood may be inestimable, depending on the intervention and covariate distri-
butions. [100] This can be resolved by applying Firth’s correction to the likelihood
in the first stage, [99, 100] or by opting for a one-stage model instead.

The assumption that an intervention effect is common across trials is often
unrealistic, as trials are often affected by between-trial heterogeneity. [101, 102] This
heterogeneity may, for instance, appear when participant-level covariates interact
with the intervention effect (i.e. effect modification), when small sample bias is
present in some estimates of the intervention effect, or when aggregate data are
based on invalid modeling assumptions (e.g. in the presence of non-proportional
hazards, non-PH). For time-to-event analysis, between-trial heterogeneity may also
arise due to selection effects. In particular, participants who are more frail and
therefore more susceptible to the outcome, are no longer at risk after having an
event. Therefore, over time, the most frail participants are removed from the risk
set, whereas the less frail participants remain at risk (see section 2.2). [54, 65,
103, 49] This, in turn, may lead to different intervention effects across trials if the
follow-up length differs across trials. For these reasons, in the two-stage approach
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it is generally recommended to adopt a random effects meta-analysis model, which
is typically specified as:

β̂j ∼ N
(
βj , V (β̂j)

)
βj ∼ N

(
βRE, τ

2
) (2.3)

In contrast to common effect models, random effects models allow for differ-
ences in β̂j due to sampling error within studies (reflected by V (β̂j)) and due
to heterogeneity in the true intervention effects βj across studies (reflected by
τ2). Estimates for βRE can thus be interpreted as the average intervention ef-
fect across studies. A confidence interval for β̂RE is traditionally constructed as

β̂RE ± z1−α/2
√
V (β̂RE), where z1−α/2 is the upper α/2 quantile of the standard

normal distribution. [104] To account for the uncertainty in τ2 and thereby improve
the coverage of the interval, the Hartung-Knapp approach to confidence intervals is

given by β̂RE ± tJ−1,1−α/2
√
VHK(β̂RE), where tJ−1,1−α/2 is the upper α/2 quan-

tile of a t-distribution with J − 1 degrees of freedom, and VHK(β̂RE) is a modified
variance estimate. [105, 106, 107, 108, 109]

Heterogeneity of the intervention effect in the two-stage approach

Statistical heterogeneity in the intervention effect can be recognized by τ̂ > 0. The
influence of heterogeneity on intervention effects may be explored by constructing
a prediction interval, which estimates the interval of the likely intervention effect in
a (new) individual trial and can be calculated approximately as follows[110, 85]:

β̂RE ± tJ−k,1−α/2
√
τ̂2 + V (β̂RE), (2.4)

where β̂RE is an estimate of βRE and V (β̂RE) its variance. Typically the tJ−2,1−α/2
quantile is used here, although similar to the confidence interval there is no consen-
sus on the distribution and its degrees of freedom. [110, 85] When random effects
models indicate the presence of important statistical heterogeneity (i.e. τ̂ > 0, or a
wide prediction interval) of the intervention effect, the interpretation of the overall
summary estimate, β̂RE, may become difficult or meaningless. Therefore, it is often
helpful to identify sources of heterogeneity in intervention effect (see Table 2.4).
[47] This can, for instance, be achieved by assessing the relation between relevant
trial-level covariates (e.g. level of blinding, or dosage) and the trial effect estimates,
also known as meta-regression. [84]

23



C
hapter

2

Table 2.4: Potential sources of Heterogeneity in Time-to-event Meta-Analysis

Source Solutions Reference

Non PH + Differences in follow-up time Interaction terms [84, 111, 83]
Model effect(s) as time-varying, use splines [112, 113]
Use a different model (e.g. AFT) [72, 69, 73, 74, 114, 113]

Difference in case-mix Include covariates / prognostic factors [103, 59]
AFT model [59, 73, 74]

Selective dropout or competing risk Model dropout or competing risk [87, 89, 115, 91]

Small sample bias in some studies Bias correction [99]
One-stage MA [116, 115, 42, 82]
Arcsine transform (for two-stage MA) [115]

PH: Proportional Hazards; AFT: Accelerated Failure Time; MA: Meta-Analysis. Hetero-
geneity can be diagnosed by applying frailty and/or random effects terms.[80, 86, 48] If
heterogeneity remains, e.g. due to differences in study protocols, stratification of baseline
hazard/frailty and/or random effects terms must be applied.[103, 66]

24



22

Chapter 2

When patient-level associations with treatment effect are of interest, it is bet-
ter to model interactions between participant-level characteristics (e.g. participant
age) on the participant level. In the two-stage approach, the statistical interaction
between the relevant covariate and intervention are first estimated separately in
each trial, and then the resulting coefficients are meta-analyzed using traditional
meta-analysis models. [101, 71] When the intervention effect changes over time,
differences in follow-up time between trials will lead to heterogeneous estimates
of intervention effect across trials, if unaccounted for. This heterogeneity of in-
tervention effects can be quantified with random-effects meta-analysis, but would
preferably be modeled directly (section 2.5.2).

Estimation

A commonly used approach to estimate the heterogeneity from the random effects
model (equation 2.3), is to use the method of moments by DerSimonian and Laird
(DL). [117] This estimator is biased downwards when the true heterogeneity is
moderate or high and sample sizes are low, as the variance estimates are assumed
to be known and fixed, [118] leading many researchers to suggest alternatives, the
most important of which are mentioned here. The two-step Paule-Mandel method is
similar to DL, but iteratively estimates the study weights, and has reduced bias for
high values of τ . Another alternative is the Maximum Likelihood (ML) estimator.
Although the MSE of the ML estimator for τ is small, it is very biased when τ is
large and the included studies are small. [119] The Restricted Maximum Likelihood
(REML) estimator yields less biased estimates of τ and has relatively low MSE.
[120, 121, 122] Therefore, REML and the two-step Paule-Mandel method are the
recommended estimators for τ . [118, 122]

As there may be considerable uncertainty in the heterogeneity estimate regard-
less of which estimator is used, [122] it is recommended to report a confidence in-
terval for the heterogeneity as well. [123] This may be estimated with the Q-profile
method [108, 124] or the generalised Cochran between-study variance method. [119]
Further, it should be noted that when fewer than 10 trials are included in the meta-
analysis, or when trials are small or the outcome rare, no currently available method
can reliably estimate the heterogeneity. [122]

Even though estimates for heterogeneity in meta-analysis tend to be biased
in many situations, this barely biases the summary effect estimate, unless there
are very few events. [122] The confidence intervals of the summary effect can be
constructed by applying the Hartung-Knapp-Sidik-Jonkman HKSJ method for con-
fidence intervals, [125, 126] which had good coverage in simulations for a minimum
of two studies, unless the number of events was very low. [127, 122] This may be
corrected by applying a modification that ensures that the confidence intervals are
at least as wide as a fixed-effects meta-analysis confidence interval. [122] Hence, it
is currently recommended to apply a random effects model estimated with REML
or two-step Paule-Mandel, and to use the HKSJ method for confidence intervals.
[122] Alternatively, Bayesian random-effects models may be used. However, in the
simulation studies discussed here either aggregate data or non time-to-event IPD
were generated, which is a concern considering that it has been suggested that the
performance of the estimators may be related to the type of outcome. [119] For a
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comprehensive overview of meta-analysis estimators see [128, 119, 129], for a com-
parison of their performance see [118, 122], for an overview of software see [119] as
well as the two recent packages admetan and ipdmetan, [130] and for an up-to-date
overview of R packages see cran.r-project.org/web/views/MetaAnalysis.html.

2.4.3 One-stage approach
Accounting for clustering

When applying the one-stage approach, within-trial and between-trial relationships
are estimated simultaneously, which can give a more complete understanding of the
data. [48] As is the case for two-stage meta-analysis, a one-stage meta-analysis must
account for clustering (Table 2.3). [80, 97] Participants in different studies may differ
on unmeasured covariates, which will lead to a biased estimate of the conditional
(i.e. for a participant with given covariate values) intervention effect regardless of
balance of these covariates between intervention groups, if not adjusted for (section
2.2). [55] Whereas the two-stage approach naturally deals with this by estimating
separate baseline hazards for the different studies, in the one-stage approach we can
use stratification (section 2.4.3), frailty models (section 2.4.3) or marginal models
(section 2.4.3).

Stratified models

A commonly used approach is to apply a Cox model with stratified baseline hazards
but a common intervention effect (equation 2.5.1, Table 2.5). [47, 131, 51, 132] This
allows the shapes of the baseline hazards to vary between trials, whereas the hazards
of the different intervention groups are assumed to be proportional within trials,
and gives a single estimate of overall intervention effect. When the sample sizes per
trial are very small and many trials are included, the stratification of baselines is less
efficient than the use of frailty terms, [51] though it also requires fewer assumptions
as it fully accounts for any differences in baselines between trials. For the meta-
analysis of trials that are each powered to detect a clinically significant intervention
effect this should not be an issue, thereby making the stratification of the baseline
the preferred model specification.

Frailty models

Rather than stratifying the baseline hazard across the trials, it is possible to model
their distribution through frailty terms. A frailty term is a random parameter (i.e.
random intercept) within the baseline hazard function that is assumed to follow
a specified distribution and thereby allows for differences in baseline rate between
(groups of) participants that are a result of unmeasured covariates. Shared frailty
models (equation 2.5.2, table 2.5) are designed to account for these differences in
unmeasured covariates between trials. Therefore, the assumption in a frailty model
is that the baseline hazards in each study have the same shape but a different
magnitude. The estimated intervention effect is then to be interpreted relative to
other participants in the same trial with the same frailty and covariates. If the
baseline hazard of this model is left unspecified, this leads to the Cox PH model
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Table 2.5: Models for one-stage time-to-event meta-analysis

Type Model Hazard function Survival function Ref. No.

Proportional
Hazards

Stratified
baseline h0j(t) exp(β

′Xj) Sj(t|Xj) = S0j(t)
exp(β′Xj) [53, 133, 49, 47,

51] 2.5.1

Shared
frailty

h0(t)ηj exp(β
′Xj)

where ηj ∼ Gamma(θ)
or log(ηj) ∼ Normal(0, τ2)

Sj(t|Xj) = S0(t)
ηj exp(β′Xj) [54, 133, 51, 49,

47] 2.5.2

Random
effects

h0(t) exp(β
′Xj + b

′
jZj)

where bj ∼ MVN(0,Σ)
Sj(t|Xj) = S0(t)

exp(β′Xj+b
′
jZj)

[134, 135, 133, 48,
80, 113, 136] 2.5.3

Accelerated
Failure Time

Stratified
baseline h0j(t exp{β′X}) exp(β′X) Sj(t|Xj) = S0j(t exp(β

′X)) [51] 2.5.4

Shared
frailty

h0(t ηj exp{β′X}) ηj exp(β′X)
where ηj ∼ Gamma(θ)
or log(ηj) ∼ Normal(0, τ2)

Sj(t|Xj) = S0(t ηj exp(β
′X)) [137, 74, 51, 113] 2.5.5

Random
effects h0(t exp{β′Xj +b

′
jZj}) exp(β′Xj +b

′
jZj)

where bj ∼ MVN(0,Σ)
Sj(t|Xj ,Zj) = S0(t exp(β

′Xj+b
′
jZj)) [137, 74, 51, 113] 2.5.6

In the Cox Proportional Hazards model, the baseline hazard h0(t) is left unspecified. For
the baseline hazard of the parametric models, see Table 2.1.
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with random trial intercept. [47, 49] When data from multiple multi-center studies
are combined, nested frailty models can be applied. [138]

It is common to assume a gamma distribution for the frailty, for mathematical
or computational reasons, [66, 49] or a normal distribution for the log-frailty, as this
bears similarity to the generalized linear mixed effects model, [49, 139] though many
other distributions including the inverse Gaussian, positive stable, and compound
Poisson are possible. [51, 49, 52] Previous studies have demonstrated that the
gamma frailty model appears to be fairly robust against misspecification of the
frailty distribution, [78, 140] that it describes the frailty of survivors for a large
class of hazard models, [66] and that it can have more power than a stratified model.
[77, 51, 140] Therefore, frailty models are generally recommended when the number
of participants per trial is very low. Yet, when the number of participants per trial
is large, as is often the case in meta-analysis when individual trials are designed to
have sufficient power to test for an intervention effect, the frailty and stratification
approaches will usually yield similar results, given that the assumptions are met.

When a frailty is applied to the baseline hazard, the median hazard ratio (MHR)
can be used to evaluate the meaning of this frailty in the context of the different
studies. [141, 142, 143] The MHR is the median relative difference in the hazard
of the occurrence of the outcome when comparing identical participants from two
randomly selected studies ordered by hazard. When a log-normal distribution is
assumed for the frailty, the Median Hazard Ratio (MHR) can be computed as
exp{
√

2σ2Φ−1(0.75)}, where Φ−1 is the inverse of the standard normal distribution.
[142, 143]

Marginal models

In the analysis of clustered data, such as IPD from different studies, where the
interest lies in the average intervention effect for the target population as a whole, we
may use marginal models. In such models the dependence between participants from
the same trial is not modeled explicitly but standard errors are adjusted for it. [144,
145] Intervention effects are interpreted as relative to participants drawn randomly
from the entire target population from which the participants are considered to be
sampled. [76] When the interest lies in the intervention effect of participants in
the individual studies or in the causes of heterogeneity of intervention effects across
studies or subgroups, as in an IPD-MA often is the case, conditional models are
needed. [79]

Estimation

Maximum Likelihood (ML) estimates of the mixed effects Cox model may be ob-
tained with a Newton-Raphson procedure, [146] with penalization methods by con-
straining the frailty terms with a penalty, [147, 148, 86] by expectation-maximisation,
[135] or by expectation-maximisation and penalization. [136]

Further, residual maximum likelihood (REML) estimates of the mixed effects
Cox model can be obtained with a Newton-Raphson procedure, [146, 47, 48] or with
penalization methods by constraining the frailty terms with a penalty. [147, 148]
As the penalized method does not take uncertainty of τ2 into account, it has been
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suggested that it produces less precise estimates of the intervention effect. [132]
However, comparative evidence is currently lacking.

Alternatively, the mixed effects Cox model can be estimated with a poisson
model, [137] where the time-scale is split into intervals defined by event times. [149]
Mixed effects parametric models can be estimated with Maximum Likelihood by
adaptive Gauss-Hermite quadrature. [113] Mixed effects Weibull models can also
be estimated with REML. [137]

The Bayesian framework allows for the estimation of a wide range of time-to-
event models. For instance, the Cox random effects model can be estimated using
Bayesian methods. [150, 134, 51] A random trial effect and an intervention by trial
interaction may be evaluated simultaneously in a Bayesian Cox PH model. [151]
For a discussion of commensurate priors for incorporating between-trial variability
in a Bayesian meta-analysis, see [152]. Finally, an overview of software for the
estimation of one-stage time-to-event models is given in Table 2.6.

Heterogeneity of the intervention effect in the one-stage approach

Similar to the two-stage approach, we may expect heterogeneity of the intervention
effect in the one-stage approach, which makes the common effects assumption un-
tenable. As such, it is also recommended for one-stage models to assume random
effects (equation 2.5.3, Table 2.5), [135] and to investigate the causes of this het-
erogeneity, if present. [47] One possible cause of heterogeneity of the intervention
effect is effect modification (i.e. interaction) at the individual level, which can be
investigated by adding an interaction term in the one-stage model. [80] Crucially,
when including such an interaction term (e.g. an intervention-covariate interaction)
in the one-stage approach, special care must be taken to avoid the amalgamation
of within- and across-trial information, as this may lead to ecological bias. This
can be achieved by centering the covariates by their mean values within trials, such
that the interaction estimate is then only based on within-trial information. [83] To
improve the estimation of between-study variance and the coverage of confidence
intervals, the intervention variable can be centered within studies as well. To further
prevent the borrowing of information across studies that may affect the estimate of
the intervention effect in the one-stage approach, a covariate by trial indicator in-
teraction can be included. This stratifies the covariates effects as it allows covariate
effects to be estimated separately for each study (see Table 2.3).

When there are differences in follow-up time between trials and the intervention
effect changes over time, the estimated intervention effects (as quantified by ran-
dom effects) will be different per trial. If this is unaccounted for, this will lead to
heterogeneity of the intervention effect. This can then be investigated by modeling
the effect as time-dependent (section 2.5.2).

In the two-stage approach the influence of trial-level characteristics on the in-
tervention effect can be estimated with meta-regression in the second stage. In
the one-stage approach it is possible to simultaneously estimate the heterogeneity
of baseline rate of the participants within different studies, the heterogeneity of
intervention effects and their correlation. [86]
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Table 2.6: Software for One-stage Time-to-event Models

Program Package/method Description Code in Mentioned in

R, S-Plus - Random effects Cox model [136]
survival Cox and parametric time-to-event models. [148, 153, 140]

Stratified, frailty and marginal specifications [154]
coxme Mixed effects Cox models
frailtypack Cox and parametric random effects and stratified models. [138, 86, 91]

Correlated random effects. Competing events. Joint nested frailty models.
SemiCompRisks Bayesian and frequentist random effects parametric and [91]

semi-parametric models for competing events.
parfm Parametric frailty models
PenCoxFrail Regularized Cox frailty models
mexhaz Flexible (excess) hazard regression models,

non-proportional effects, and random effects
dynfrail Semiparametric dynamic frailty models
frailtyEM Frailty models with semi-parametric baseline hazard, recurrent events
joineR Joint random effects models of repeated measurements & time-to-event
joint.Cox Joint frailty-copula models with smoothing splines
JointModel Joint model for longitudinal and time-to-event outcomes
joineRML Joint time-to-event and multiple continuous longitudinal outcomes
rstanarm Joint model for hierarchical longitudinal and time-to-event data [155]
surrosurv Time-to-event surrogate endpoints models [156]

SAS PHREG Cox models, including stratification or frailty [153, 140] [157]
NLMIXED Mixed effects parametric survival models [158]

Joint model for recurrent events and semi-competing risk [159]
GENMOD Poisson regression, marginal models [157]

Stata stcox Cox model, stratified and frailty specifications.
stmixed Flexible parametric time-to-event models with mixed effects [113, 42]
xtmepoisson Mixed effects Poisson regression [149]

JAGS, OpenBUGS, - Bayesian mixed effects models, [77, 149, 153]
WinBUGS - IPD network meta-analysis [160, 75]

MLwiN - Mixed effects time-to-event models [161, 42]

The Survival Kit - Bayesian mixed effect time-to-event models [151]
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2.5 Extensions

2.5.1 Modeling the baseline hazard function
Whereas the Cox PH model leaves the baseline hazard unspecified, we may apply
a parametric model by specifying a baseline hazard (Table 2.1), either in the first
stage of the two-stage approach, or within the one-stage approach. To allow for
flexible shapes of the baseline hazard, we can apply spline functions. Particularly
the approach of Royston and Parmar is useful, where the baseline cumulative hazard
is modelled using restricted cubic splines, [61] and which has been extended to allow
for random effects. [113]

Parametric models are especially suitable when absolute (rather than relative)
risks for individual subjects (rather than for subpopulations) are of primary inter-
est. It leads to smooth predicted survival curves and is well suited to deal with
non-proportionality of hazards. For instance, researchers increasingly often aim
to develop prediction models that can assess individual intervention benefits (or
harms). [162] Most simply, one can specify an exponential (eq. 2.1.2) or a Weibull
(eq. 2.1.3) distribution within the proportional hazards framework. The exponen-
tial distribution assumes a constant rate over time, whereas the Weibull distribution
(a generalization of the exponential distribution) allows for accelerated failure times
(AFT). [49] Other (but less common) generalizations of the exponential distribu-
tion that can be used for modeling the baseline hazard are the Gompertz, gamma,
and piecewise constant distributions. [49, 113] Further, the log-logistic, log-normal
and generalized gamma distributions may be used. [61, 113] Unlike PH models,
the estimate of an intervention effect in AFT models is unaffected by unmeasured
prognostic covariates. [56] Also in one-stage models a wide range of distributions
for parametric PH and AFT models is available. [113]

2.5.2 Modeling non-proportional hazards
For short trials with a low event rate the proportionality of hazards across time
may be reasonable (i.e. the hazard ratio for the intervention effect may be assumed
constant over time), but as the number of events in different intervention groups
diverges a selection of participants remains in the trial for whom proportionality in
the unadjusted intervention effect is not realistic. [112, 73] If an intervention is pro-
tective, frail participants in the intervention group will be better protected against
the outcome than frail participants in the control group. Hence, the proportion
of frail participants at risk will decrease more quickly in the control group than
in the intervention group. To account for this issue within studies we can include
covariates in the model, whereas we can use a frailty model to account for this issue
between studies.

Non-proportionality of hazards may also be present due to the intervention effect
truly being dependent on time. For instance, an intervention (such as surgery or
chemo-therapy) may cause an increased risk of a negative outcome at first, but have
a protective effect in the long run. This can be modeled by an interaction effect
between the intervention (or a covariate) and time [53] in the one-stage approach or
in the first stage of the two-stage approach. To allow for flexible shapes of this time-
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Table 2.7: Effect Measures for Time-to-Event Analysis

Measure Definition Ref. No.

Hazard ratio
λ(t|X1)
λ(t|X0)

,

λ(t|Xk) = −d ln(S(t|Xk))
dt = f(t|Xk)

S(t|Xk)

[50, 49] 2.7.1

Odds ratio
O(t|X1)
O(t|X0)

,

O(t|Xk) = 1−S(t|Xk)
S(t|Xk)

[69] 2.7.2

RMSTD(t∗) RMST1(t∗)− RMST0(t∗),

RMST(t∗) =
∫ t∗
0
Sk(t)dt

[168, 170] 2.7.3

Percentile Ratio qk = kth percentile of dist for group A
kth percentile of dist for group B

[114] 2.7.4

RMST = Restricted Mean Survival Time, D = Difference.

dependent effect, fractional polynomials or splines can be applied. [163, 164, 165]
Two methods have been developed for combining fractional polynomials or

splines in the two-stage approach. The meta curve method directly meta-analyzes
the curves estimated in the first stage. Though, this requires setting a reference
level which may have an impact on the results. Alternatively, by using multivariate
meta-analysis (section 2.5.3) the coefficients can be combined. This method only
works when the same polynomials or splines have been fitted in each study, but
that is not an issue when IPD are available. [166]

Alternatively, non-PH can sometimes be handled more naturally with models
that assume proportionality on another scale. [73, 61] For instance, an intervention
might temporarily reduce the hazards, but as time progresses and the effect wears
off, hazards converge and thereby violate the proportional hazards assumption. This
can be modeled with a proportional odds regression model such as the log-logistic
(equation 2.1.7, Table 2.1), which assumes that covariates have a constant additive
effect on the log odds of survival. [167, 62, 63, 69] In this model, the modeled hazard
ratio naturally approaches 1 over time, whereas the odds remain proportional. [62]

As the implementation of TTE models with non-proportional hazards (e.g. with
splines) may complicate the interpretation of regression parameters, alternate effect
measures have been proposed to summarize intervention effects (Table 2.7). For
instance, the restricted mean survival time (RMST, equation 2.7.3) until time t∗
represents the area under the survival curve until time t∗. [168, 169, 170] The
RMST can thus be calculated for different intervention groups, and subsequently be
subtracted to assess the intervention effect. This difference represents the expected
gain (or loss) in survival until time t∗ for the intervention group, as compared to the
control group. An advantage is that it provides a clinically meaningful summary of
the survival differences between intervention groups.

The percentile ratio, an effect measure alternative to the more common haz-
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ard ratio, was suggested by to make the interpretation of survival models more
straightforward. [114] Briefly, the percentile ratio for an intervention is defined as
the expected ratio for the time at which a certain fraction (given as ’k’) of the
participants will have an event in the intervention group as compared to the con-
trol group (equation 2.7.4). The percentile ratio is easiest to interpret for AFT
models, as the percentile ratio does not depend on the percentile chosen in such
models and always equals the acceleration factor. Two-stage MA methods for the
percentile-ratio have also been developed. [171]

2.5.3 Modeling multiple outcomes
Throughout this manuscript, we have assumed that each patient in each trail is at
risk of having a single type of event (i.e. the outcome of interest, e.g. all-cause
mortality), until censoring takes place. Alternatively, patients may be at risk for
different events, where one event (e.g. death) prevents the patient from having
another event (e.g. liver failure or stroke). Unlike the survival function, relative
intervention effects can then still be assessed by modeling cause-specific hazards,
which involves the modeling of the time to each type of event in a separate model,
where all alternative types of event are coded as censoring. [88, 172] It is vital to do
this for every type of event, to gain a full understanding of the relative intervention
effect with respect to competing events. [88] Whereas for all-cause-mortality there
is a direct relation between the hazard and the survival curve, when modeling
cause-specific hazards this is not the case, [173] meaning that this approach does
not have a direct interpretation in terms of absolute survival probabilities for the
outcome of interest. [87] Only when independence of the event of interest and the
competing event can be assumed, the survival function can be estimated by recoding
the competing outcome as censoring, though this assumption is often not realistic.
[90]

Therefore, when prediction of the average time-to-event per intervention group is
wanted, competing events must be modeled using more complex survival models (for
an introduction see [88, 174]). In the two-stage approach, this can be analyzed with
competing risk models in the first stage, whereas Bayesian hierarchical competing
risk models have been developed for the one-stage approach, [91] which may also
model recurrent events jointly with the competing risk. [159] Further, multi-state
models can be used to model transitions to intermediate events. [175]

When multiple outcomes that do not compete are available across trials, these
can be assessed jointly in the two-stage framework to improve the efficiency of the
analyses. [176, 177] For instance, outcomes may have been assessed at multiple
follow-up times, or be defined for multiple endpoints. In the first stage, estimates
of the intervention effects and variances are obtained for each outcome in each
trial. Bootstrapping is used to obtain the covariance between intervention effects
for each pair of outcomes in the same trial. [177] In the second stage, the vectors
of estimates (and matrices of variances and covariances) are synthesised using a
multivariate meta-analysis model in the second stage. Hence, multivariate meta-
analysis is particularly relevant to address outcomes or time-points in the IPD from
some trials.

33



Chapter 2

2.5.4 Modeling multiple interventions
The concepts of multivariate meta-analysis can also be used to compare more than
two interventions. In a so-called network meta-analysis (NMA), direct and indi-
rect evidence about the difference in effect of two or more treatments is combined
across trials, to summarize the relative effects of all available interventions. This
may improve precision of the intervention estimates and allows for comparison of
interventions that have not been compared head-to-head. This method uses di-
rect evidence (intervention effects estimated within trials) and indirect evidence
(intervention effects estimated across trials), by assuming that both sources of ev-
idence are exchangeable. [178, 179]. When direct and indirect evidence disagree,
the network is said to be inconsistent and may be prone to bias or may cause het-
erogeneity of the estimated intervention effects. Such inconsistency can be caused
by effect modification, which can be addressed by modelling interactions between
the intervention and patient-level covariates. [160]

In the two-stage approach, an appropriate (e.g. Cox) survival model is first
estimated in each trial, possibly adjusting for relevant prognostic factors and effect
modifiers. Corresponding effect estimates (e.g.log hazard ratios) can then be pooled
using traditional NMA methods. [178] In the one-stage approach, time-to-event
NMA models can be estimated using Bayesian hierarchical models. [180, 181] Also,
Bayesian one-stage IPD-NMA Royston-Parmar models have been implemented. [75]

2.5.5 Surrogate endpoints
Trials for measuring intervention efficacy tend to be expensive and require a lengthy
follow-up to observe the clinical outcome. The cost and duration of a trial may be
reduced if a more readily available outcome can be used. Validated surrogate end-
points can be used instead when the surrogate is well known or likely to predict
clinical outcome. [182] These surrogate endpoints are to be validated on the trial
and the participant level, where IPD form multiple trials are preferred. [183, 184]
When response to intervention is used to predict survival, response must be mod-
eled as a time-dependent covariate or a landmarking method must be used. [185]
Alternatively, a joint model with the survival outcome and a continuous surrogate
or a dichotomous surrogate can be used. [186, 187] For an overview and compar-
ison of the performance of measures of surrogacy, see [188, 189].When few trials
are available, the trial level surrogacy cannot reliably be estimated using AD alone.
However, surrogacy can sometimes be estimated on the center level by splitting
multi-center data by center. [184, 190] This requires IPD when center specific pa-
rameter estimates are not available. For a recent overview of methods for estimating
surrogacy, see [190]. To include a surrogate directly in the modeling of the outcome,
a joint model can be used. [186, 187] For the one-stage approach, joint models with
up to three levels have also been developed. [155]

2.5.6 Missing data
In a meta-analysis of survival data, several types of missing data may occur. It is
possible, for instance, that not all studies provide IPD and thus that only AD are
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available for some of the studies. In such cases, it is recommended to combine the
available IPD and AD, as otherwise estimated intervention effects may be prone
to (data availability) bias and overly large standard errors. [191] Including AD
in a two-stage meta-analysis approach is fairly straightforward, provided that the
model used for generating the AD is compatible with the models for analyzing
the available IPD. It is also possible to directly combine IPD and AD using a one-
stage meta-analysis, although this requires more advanced models, such as Bayesian
hierarchical regression. [192]

Another common type of missing data occurs when events of individual subjects
are censored, e.g. due to loss of follow-up. Survival models such as the Cox PH
model and the AFT model readily account for this censoring, provided that it is
not related to the outcome, conditional on any participant-level characteristics in
the model (i.e. non-informative). When the assumption of independent censoring
is challenged, its implications can be evaluated by adopting multiple imputation
methods. [193]

Finally, it is possible that subject-level covariates are missing for one or more
studies. Although participant covariates are not commonly used when estimating
relative intervention effects from RCTs, they are crucial in IPD-MA of time-to-event
data because of selection differences across trials (see section 2.2). When relevant
participant-level covariates are missing for some trial participants, it is generally
recommended to apply multiple imputation. [194] Hereby, researchers should adjust
for the event indicator and the Nelson-Aalen estimator of the cumulative hazard,
[93, 95] and also account for the presence of clustering. The latter can be achieved by
adopting imputation models with mixed effects, which also facilitates imputation of
covariates that have not been measured in one or more studies. [94, 195, 96, 196, 197]

Although the assumptions needed for multiple imputation cannot always be
tested or may not always be met, several simulation studies have shown that its use is
usually superior to complete-case analysis or the use of missing data indicators. [92]
However, caution is still warranted when analyzing imputed data sets from IPD-MA,
as in the presence of between-trial heterogeneity these are inherently prone to some
degree of incompatibility with the data generation mechanism. [198, 196] Further,
because IPD-MA can only adjust for measured covariates and may therefore still
be affected by unmeasured covariates, clustering of participants within trials should
still be accounted for (section 2.4.3). [49]

2.6 Applied example
The efficacy of carbamazepine (CBZ) and valproate (VP) as interventions for epilep-
tic seizures was compared in a systematic review and IPD-MA of RCTs. [199] IPD
were obtained for a total of 1225 participants from five trials. In all these trials,
one of the outcomes of interest was time to first epileptic seizure since randomiza-
tion. Also, measured covariates were age at randomization, sex, type of epilepsy
(partial-onset or generalized-onset), and the number of epileptic seizures before ran-
domization. For illustrative purposes, we only consider the type of epilepsy. We use
the coxme package of the R software,[200, 201] to fit the mixed effects Cox PH model.
Our code is given in Supporting Information 2 (https://doi.org/10.1002/jrsm.1384).
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As the two-stage method has been described extensively (see [171, 202]) we shall
restrict our analyses to illustrate some key one-stage methods. First, to evaluate the
relative effects of CBZ and VP, we adopted a Cox model, as this leaves the baseline
hazard unspecified. We apply a one-stage model (eq. 2.5.2) with a log-normal
frailty and random effects for the intervention estimated with penalized partial
likelihood to account for the clustering of participants within trials and to allow for
heterogeneous intervention effects across trials, respectively. We find no evidence
against the hypothesis that the interventions are equally effective, with a summary
hazard ratio of 1.08 for valproate (95% Confidence Interval (CI): 0.92 to 1.27, p =
.37), versus the referent, carbamazepine.

Figure 2.2: Kaplan-Meier plot of Generalized and Partial Epileptic Seizure Pa-
tients Treated with Carbamazapine (CBZ) or Valproate (VP)
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In the analysis of the effect of the intervention on the time to first epileptic
seizure, we observed some statistical heterogeneity of the intervention effect. The
standard deviations of the random intercept (i.e. frailty) and drug effect (i.e. ran-
dom effect) equaled 0.139 and 0.099, respectively. In other words, the log hazard
ratio of valproate versus carbamazapine varied with a standard deviation of .099
between trials. This random effect of the interventions translated to a Median Haz-
ard Ratio (MHR) of 1.10, meaning that the median relative change in the effect on
time-to first epileptic seizure when comparing two identical participants from two
randomly selected different trials that were ordered by intervention effect was 1.10,
calculated as exp{

√
2 0.099 Φ−1(0.75)} (see section 2.4.3). In order to explain this

heterogeneity in intervention effect, we added covariates and intervention-covariate
interactions to the model (Figure 2.2). Partial epilepsy (vs generalized) was associ-
ated with a higher hazard rate (β = 1.63, 95% CI: 1.38 to 1.92, Table 2.8), meaning
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that we have found evidence that epilepsy type is a prognostic factor of time to first
epileptic seizure. However, we were unable to find evidence that epilepsy type in-
teracted with the intervention (β = 1.36, 95% CI: 0.97 to 1.89), though it should be
noted that the upper bound of the CI did not exclude clinically significant effects.
We note that we obtained somewhat different results than the Cochrane review,
[203] as we have used a different method for analysis. Further, the low power for
tests for interaction effects is a notorious issue.

A recent investigation of the intervention-covariate interaction on the time to re-
mission of epilepsy demonstrated that bias occurs when within-trial and across-trial
information is not separated. [83] Such separation can be performed by centering
the covariates, hence we have centered the covariates in in our analysis (Table 2.8).
The possible bias that may occur when within-trial and across-trial information are
amalgamated can be quantified by including the trial-mean in the model, [83] as we
have done here (Table 2.8).

2.7 Discussion
Our search has identified a wide range of articles on topics regarding TTE IPD-MA,
and is the first comprehensive review on this topic to our knowledge. However,
the basics of the methodology regarding TTE data was excluded from our search
as it did not concern MA or clustered data. Covering all methodological works
regarding TTE data would have been an immense task. As such, we were forced
to include relevant literature based on our own opinion to introduce this topic, and
restrict our systematic search through Pubmed and Web of Science to works that
simultaneously concerned IPD, meta-analysis and time-to-event data. We did not
cover every article that covers these three topics, as this was not our aim. Instead,
we our purpose was to achieve theoretical saturation, i.e. that an extended search
would be unlikely to add important information.

The general consensus in the reviewed works was that the Cox model should be
the default model of choice for TTE IPD-MA. Though, it is also criticized for not
yielding a valid estimate of intervention effect when not all (un-)measured predic-
tive covariates are accounted for, mostly on theoretical grounds. The literature is
currently missing information on the impact of this issue in real life data, leading
us to suggest that further research should focus thereon. As such, we have provided
a comprehensive review of current methods for IPD-MA of TTE data.

Although the statistical properties of the meta-analysis estimators for the two-
stage approach have been well studied and simulation studies have investigated
the performance for meta-analysis of dichotomous and continuous outcome data,
this is not the case for time-to-event data. Further, although aggregate data (i.e.
estimates from the literature) can readily be included in the two-stage approach
(provided that the models are specified the same), as well as in Bayesian one-stage
models, there appears to be no method yet for doing so in a Frequentist model.
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Table 2.8: Intervention, Covariates and Intervention-Covariate Interactions in a Multivariable Mixed Effects Cox Model

Variable Variable Type HR 95 % CI p
VP (vs CBZ) Intervention 1.05 0.86 to 1.28 0.65
Partial epilepsy (vs generalized), centered Individual-level covariate 1.63 1.38 to 1.92 < .001
Partial epilepsy (vs generalized), trial mean Trial-level covariate 1.47 0.99 to 2.19 0.06
Partial epilepsy (vs generalized), centered * VP (vs CBZ) Intervention-covariate interaction 1.36 0.97 to 1.89 0.07

VP: Valproate, CBZ: Carbamazepine, HR: Hazard ratio, given by exp(β), CI: Confidence
interval. Standard deviations of random intercept (i.e. frailty) and random effect of VP
(vs CBZ) equal 0.126 and 0.164, respectively. p-values are for Wald type tests of the null
hypothesis that the log HR equals zero.
Covariates are centered within trials, to avoid ecological bias (see[83]).
Trial mean value for the covariate is entered in the analysis, to quantify the bias that would
occur if centering of the covariate were not performed.
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Another issue is to what extend one should try to borrow information across
trials in the one-approach. In the two-stage approach, no information is borrowed
(apart from the intervention effect and its uncertainty), as all parameters are nat-
urally estimated per trial. To what extend one should account for this in the
one-stage approach, by stratifying the baseline and covariate effects or by apply-
ing random effects and a frailty, deserves extra attention in the literature. For the
meta-analysis of trials with adequate sample sizes, the safest choice is to stratify all
included parameters as this accounts for all differences in baselines between trials.
In a simulation study where IPD from a total of 600 participants from 3-20 trials
were generated, both the frailty and the stratified baseline method worked well, [80]
though exactly what sample sizes are necessary for this strategy, and especially for
the stratification of covariates as well, has apparently not yet been identified.

2.8 Concluding remarks
We have discussed numerous models in this manuscript, the choice between which
is not always straightforward. For this reason, we provide some recommendations
below. First, intervention effect conditional on covariates and/or frailties have dif-
ferent interpretations from marginal ones (i.e. averaged over the entire sample and
follow-up time), and yield different estimates. Before embarking on an IPD-MA,
researchers should decide whether a conditional or a marginal effect is of interest.
As assumptions may be satisfied on one scale but not the other, this may lead to a
different choice of model.

Additionally, one can choose between one-stage and two-stage models. In the
two-stage method participants within trials are compared, which inherently yields
a conditional intervention effect and stratified baselines. The one-stage approach
offers more possibilities as it allows for conditional intervention effects as well as
marginal ones, and frailties for the baseline. When the same (or similar) model
assumptions are made for these models and the same estimation methods are used,
these two approaches generally lead to the same estimates of intervention effect.
[48, 82] Though, the one-stage approach can have better convergence properties
when the included studies are very small, [204, 82] or at least one of the studies has
zero events.

Further, when a conditional effect is desired (in contrast to a marginal one), we
recommend to apply random effects instead of common effects, as common effects
models are only valid when no heterogeneity is present, which is unlikely in our
experience. When a marginal effect is desired, only a correction for the variance is
necessary. As described in section 2.2, when an intervention effect is present the
estimated intervention effect in PH models may be time-dependent, depending on
the distribution of prognostic factors that are not accounted for (even if balanced
across intervention groups). This may lead to heterogeneity in intervention effects
across trials that have different follow-up lengths. Further, differences in trial design
and methodology and clinical procedures may contribute to the heterogeneity of the
intervention effect. [47] Random effects models can account for heterogeneity of the
intervention effect and lead to the same solution as common effect models when
no heterogeneity is present. However, if a formal test of heterogeneity is desired, a
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variety of tests can be used. For one-stage meta-analysis, the common effect model
(without trial effects) is nested in the frailty model, and therefore a comparison of
these models can be made using the log-likelihood ratio test. [49] Alternatively, a
score test, [205, 206, 207] or a small sample test can be used. [208] A permutation
test for testing of the presence of heterogeneity in time-to-event data was recently
proposed, and a simulation showed that the method is more powerful and has a
better type I error rate than likelihood ratio tests of a random effect. [209]

Finally, when comparing non-nested (e.g. PH versus AFT) models, more general
methods are needed. In such cases, one may select the model with lowest value
for Akaike’s Information Criterion (AIC)[210, 211] or the Bayesian Information
Criterion (BIC)[212, 210, 211]. Though, due to the correlated nature of participants
within trials a correction for clustering should be made, which is not straightforward
in the frequentist estimation framework as quantification of the number of degrees
of freedom is difficult. For subject-specific inferences, the conditional (cAIC) can
be used, whereas for inferences on the population level the marginal AIC can be
used. [213, 79, 139, 214]

Further, one should be cautious regarding model selection. If one model is
rejected, bias will appear in the estimated intervention effect and significance in
a second model if the second model is not independent of the test that was used
to reject the first, such as when a non-PH effect is included in the model after a
statistical test indicated non-proportionality. [215] This bias can be alleviated by
bootstrapping the model selection procedure. On the other hand, this bias does
not occur when the second model is independent of the test used to reject the first
model. [215]

Highlights

What is known?
• Time-to-event (survival) data can be analyzed with Cox Proportional Hazards

regression, but proportionality of hazards should be tested.
• Individual participant data (IPD) from multiple randomized trials can be

summarized by meta-analyzing the trial-specific estimates of the individual
trials (studies) or by analyzing the pooled data with a mixed-effects model
that accounts for between-trial heterogeneity in intervention effect and frailty
of participants.

What is new?
• We summarize published guidance, statistical methods and software for sur-

vival analysis using IPD from multiple randomized clinical trials.
• We discuss how between-trial heterogeneity of intervention effects may appear

and how its sources can be investigated.
• We illustrate the methods on real epilepsy data and provide R code.
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Potential impact for other fields
• Meta-analysis is not only relevant in medical research, but also in other re-
search areas.

• The methods naturally extend to meta-analysis of non-randomized studies,
where treatment effect estimates need to be adjusted for confounding.
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Abstract
Prediction models often yield inaccurate predictions for new individuals. Although
large data sets from individual participant data meta-analysis or electronic health-
care records may alleviate this, prevailing strategies for prediction model develop-
ment generally do not account for heterogeneity between settings and populations.
This limits the generalizability of developed models (even from large, combined,
clustered data sets) and necessitates local revisions. We aim to develop methodol-
ogy for producing more robust prediction models that require less tailoring when
applied to different settings and populations.

We adopt Internal-External Cross-Validation to assess and reduce heterogeneity
in a model’s predictive performance during its development. We propose a predic-
tor selection algorithm that optimizes the (weighted) average performance whilst
minimizing its variability across the hold-out clusters (or studies). Predictors are
added iteratively until the estimated generalizability is optimized. We illustrate this
methodology by developing a new model for predicting the risk of atrial fibrillation
and updating an existing one for diagnosing deep vein thrombosis. We used indi-
vidual participant data from 20 cohorts (N = 10873) and 11 diagnostic studies (N =
10014), respectively. Meta-analysis of calibration and discrimination in each hold-
out cluster shows that trade-offs between average performance and heterogeneity
occurred.

Our methodology allows for the assessment of heterogeneity of prediction model
performance during model development in multiple or clustered data sets, thereby
informing researchers on predictor selection to minimize heterogeneity. This may
improve the generalizability to different settings and populations, and reduce the
need for tailoring the model. Our methodology has been implemented in the R
package metamisc.
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3.1 Background
Large combined clustered data sets are increasingly available, for example in so-
called individual participant data meta-analyses (IPD-MA) projects (where the data
are clustered by study) and in studies using large scale electronic healthcare records
(where the data are clustered by region, hospital, practice, etc). [216] Such data sets
are frequently used to develop prediction models, to predict a current health status
to aid in diagnosis or a future health outcome to provide a prognosis which may
inform clinical decision making. [3, 4, 5] Well known examples are PHASES, [217]
INTERCHEST, [218] S2TOP-BLEED, [219] and EuroSCORE, [220] all of which
were developed using data from multiple centers or studies. Unfortunately, pre-
diction model studies that are based on IPD-MA or electronic healthcare records
(EHR) rarely account for the potential of between-cluster heterogeneity (e.g. Eu-
roSCORE [220]). [221, 15] Sometimes, parameters that capture the baseline risk
are stratified by cluster (e.g. INTERCHEST[218]), but then usually no guidance is
provided on how to use the prediction model in new patients.

Although random effects models are generally recommended for dealing with
the presence of clustering and heterogeneity, their implementation during predic-
tion model development hampers the applicability of the estimated regression coef-
ficients. In particular, random effects modelling does not indicate which parameter
values (for the random intercept and predictor coefficients) should be used when
the model is applied in new settings and populations. Typically, a single value (e.g.
the mean) is used for these parameters when making predictions.

In general, a developed prediction model cannot generate accurate predictions in
new patients when the true value for its parameters (e.g. the intercept term) varies
across the targeted settings and populations, especially when the true value of cer-
tain parameters is zero or has a reversed sign in some clusters. This heterogeneity
may arise from differences in observed and unobserved patient characteristics, dif-
ferences in patients’ treatment and management strategies, differences in predictor
and outcome definitions and differences in measurement methods across clusters.

The impact of heterogeneity in predictive associations (i.e. the effects of predic-
tors in the included model) has been well documented in the literature. [116, 25]
Many developed prediction models perform poorer than anticipated and require
local revisions prior to implementation. [11] These revisions may involve a simple
intercept update, a recalibration of the linear predictor (i.e. rescale all regression
coefficients by a single value), the re-estimation of all the individual regression co-
efficients, or even the inclusion of new predictors. [222, 223, 17, 224] Unfortunately,
revisions are rarely generalizable to other settings and populations; several reviews
have found that prediction model performance substantially varies across validation
studies. [225, 19] Therefore, such revisions, including recalibration and predictor
selection, are preferably performed during prediction model development.

The identification of heterogeneity is not possible when data are available from
only a single setting or (sub)population. For this reason, the use of clustered data
during prediction model development and its subsequent validation offers a critical
opportunity to inspect whether this heterogeneity would actually be a concern when
the model would be implemented in clinical practice. [226, 116, 221, 15, 26, 23,
20, 21, 227, 25] However, actually resolving the presence of heterogeneity (and
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thus ensuring model predictions are accurate for all clusters) remains a difficult
challenge for which limited guidance is available. [228] For this reason, we here
explore an alternative approach that aims to reduce this heterogeneity and minimize
the need for estimating setting-specific model parameters, to thereby improve its
generalizability.

Recently, internal-external cross-validation (IECV) has been introduced to assess
the presence of heterogeneity of a model’s performance during its development.
[226, 15, 23] IECV is a special case of cross-validation; available data are split non-
randomly in a natural manner by iteratively taking each cluster (or study) as a
hold-out sample. In each iteration, a model is developed on the retained clusters,
and then the model is tested in the hold-out cluster. A key advantage of this is
that it allows the transportability (i.e. the generalizability to other populations and
settings) of the model to be assessed multiple times.

In this paper, we will first revisit the IECV framework for assessment of model
performance in large clustered data sets (section 3.2). We then extend the IECV
framework to inform predictor selection during prediction model development in
section 3.3, in order to identify and reduce their impact on the model’s performance
within and across clusters in the large combined dataset. We then apply the methods
in our motivating examples in section 3.4 and 3.5. Finally, we provide a discussion
in section 3.6. Our methodology can be applied using the R package metamisc.
[229]

3.2 Internal-External Cross-Validation for Model
Validation

Resampling procedures allow the optimal use of the available data, as all data
can be used for model development and subsequent evaluation. Traditionally in
cross-validation procedures, the data is iteratively split into a development and val-
idation set by randomly sampling without replacement. In each iteration, a model
is estimated on the development sample and predictions are made for the random
validation sample. The performance of these predictions in the validation samples
is then averaged across iterations, thereby giving an estimate of the reproducibility
of model performance.

When data are clustered across different studies or settings, traditional resam-
pling procedures that do not account for clustering cannot directly be applied. [230]
For this reason several extensions have been proposed that preserve the clustering
within and the heterogeneity across the generated samples. In the so-called Internal-
External Cross-Validation approach, the data is split by cluster, which may repre-
sent the studies from an IPD-MA or the centers in data from EHR. [226, 20, 23]
A model is then iteratively fit in K-1 clusters (section 3.2.1) and its correspond-
ing performance model performance is calculated in the remaining cluster (section
3.2.2). This is repeated K times, so that, provided that sufficient data are available
in the development and validation clusters, a performance estimate and its standard
error is available for each of the clusters. Thus, IECV is cross-validation where the
hold-out samples are non-random, in the presence of between-cluster heterogeneity.
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IECV therefore allows the study of a developed model’s potential transportability
multiple times. Note that if all patients are exchangeable across clusters, IECV
corresponds to the traditional cross-validation and assesses model reproducibility
(rather than transportability). [15]

In contrast to traditional cross-validation, estimates of the performance in the
hold-out samples cannot simply be averaged, as the variation within and across
clusters needs to be taken into account. This can be achieved by adopting a (fixed-
or random-effects) meta-analysis of the performance estimates (section 3.2.2), [231]
or by weighting the performance estimates by the number of events in each cluster.
[232] As the data is split non-randomly, this allows the transportability (i.e. the
generalizability to other populations and settings) of the model to be assessed.

3.2.1 Model fitting
The development phase of IECV may involve a one-stage or a two-stage IPD-MA
approach. In the two-stage approach, the prediction model is fitted separately in
each cluster. The model coefficients estimated in each of the development K-1
clusters are then combined using standard meta-analysis techniques. In the one-
stage approach, a Generalized Linear Model (GLM) is estimated in each of the
K development samples consisting of K − 1 clusters. This model may account
for clustering by including random intercepts and/or predictor effects. [25, 116,
232, 228] A disadvantage of the one-stage approach in IECV is that the data from
each cluster needs to be used K-1 times to fit a model in the one-stage approach.
On the other hand, in the two-stage IECV approach the data from each cluster
only needs to be used for model fitting once, as the second stage comprises meta-
analysis of different combinations of coefficients and their standard errors. The
two-stage approach may therefore substantially reduce the necessary computational
performance time. However, the two-stage approach may not be feasible when
clusters are relatively small, as parameters then become difficult to estimate. For
this reason, the two-stage approach appears beneficial when most clusters (studies)
in the meta-analysis are not small, and we adopt this approach in our article.

Let xp,k,j be the value of a pre-specified predictor p, p = 1,...,P (or function
thereof) measured in individual patients j, j = 1, ..., N in cluster k, k = 1, ...,K.
Then their outcomes yk,j may be modeled as follows:

yk,j = f(αk +

P∑
p=1

βp,kxp,k,j), (3.1)

where f(...) is a link function, αk is a cluster-specific intercept and βp,k is a cluster-
specific coefficient. Here, we propose to estimate αk and βp,k in each cluster sep-
arately. Subsequently, the estimates can be summarized using traditional meta-
analytic methods. We here use univariate random effects meta-analysis, where each
of the estimated coefficients are summarized separately:

β̂MA
p,(h) =

∑
k 6=h wp,kβ̂p,k∑
k 6=h wp,k

, (3.2)
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where wp,k is the weight attributed to β̂p,k estimated in cluster k, and β̂MA
p,(h) is the

meta-analytic estimate of the coefficient estimated on data from all clusters except
hold-out cluster h. In the random-effects model the wp,k are given by 1

var(β̂p,k)+τ2
,

where τ2 is the statistical heterogeneity estimate of the coefficient across clusters:

β̂p,k ∼ N
(
βp,k, var

(
β̂p,k

))
βp,k ∼ N

(
βMA
p,(h), τ

2
p,(h)

) (3.3)

A confidence interval (CI) for β̂MA
p,(h) is preferably constructed with the Hartung-

Knapp approach: β̂MA
p,(h)±tQ−1,1−α/2

√
varHK(β̂MA

p,(h)), where tQ−1,1−α/2 is the upper

α/2 quantile of a t-distribution with Q − 1 degrees of freedom, varHK(β̂MA
p,(h)) is a

modified variance estimate and Q = K − 1 as one cluster is held out for valida-
tion. [105, 106, 107, 108, 109] The extent of heterogeneity of a predictor effect can
be explored by quantifying a prediction interval (PI), which estimates the inter-
val of probable predictor effects in a new individual cluster, and can be calculated
approximately as β̂MA

p,(h)± tQ−2,1−α/2
√
τ̂2p,(h) + var(β̂MA

p,(h)). [110, 85] A wide predic-
tion interval for the predictor effect indicates that the predictor effect may be very
different in a new cluster, which makes it unlikely that the predictor will improve
the model’s predictions for individuals in a new cluster.

The random effects meta-analysis model is preferably estimated with REML or
the Paule-Mandel method. [120, 121, 118, 122] When fewer than 10 clusters are
included in the meta-analysis, or when some clusters are small or the outcome is rare,
the heterogeneity cannot be reliably estimated by any currently available method.
[122] The estimated coefficients could also be summarized using multivariate meta-
analysis methods, [233, 231] which may be helpful in the presence of collinearity
and missing parameter estimates. The necessary within-cluster covariances can
then directly be estimated from the IPD set at hand. However, usually univariate
and multivariate meta-analysis methods give very similar results when all of the
parameter estimates of interest are available for all clusters, even when correlations
are large. [179] In IECV, all parameters can be estimated from the data hand,
meaning that univariate meta-analysis will usually suffice.

3.2.2 Assessing external model validity
In each iteration of the IECV, the developed model is validated in individuals from
the hold-out cluster by applying the model (as developed in the other clusters)
using the observed predictor values of individuals. If the developed model contains
random (or stratified) intercept terms or predictor effects, this also requires choices
about which parameter values are to be used when applying the developed model.

When comparing the risk predictions for the hold-out cluster with the observed
outcomes, several performance measures such as the c-statistic, calibration slope,
calibration intercept and/or mean square error can be calculated. [15, 21, 234]
This process is repeated until each cluster has been used as a hold-out cluster once,
yielding a set of performance statistics for each IECV iteration. The corresponding
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estimates can then be pooled across the hold-out clusters using random effects meta-
analysis methods, though some statistics and their standard errors may require
transformation first. [231, 235, 228] Similar to the predictor effects, a prediction
interval can then be constructed for the performance estimates, which provides an
interval of likely values that the performance statistic will have in a new cluster.

Besides allowing one to obtain an average estimate of performance, meta-analysis
is particularly helpful for investigating the presence of heterogeneity and any pos-
sible causes thereof. [13, 15, 231] Prediction model performance may vary across
clusters due to imprecision or bias of the regression coefficients or performance es-
timates, or due to the variation in population characteristics. Disentangling these
various sources of variation is necessary when inferring on the model’s potential
generalizability to different settings and populations.

Finally, if the average performance and heterogeneity of the performance of the
prediction model are deemed adequate, that is it is considered likely that perfor-
mance will be adequate in a new cluster, a so called global model may be developed
by estimating the coefficients for the predictors on the data of all available clusters.
In this final step no clusters are left out, in order to minimize the variability of the
estimates of the coefficients. [23]

3.2.3 Motivating example: diagnosis of deep vein thrombosis
Patients with a deep vein thrombosis (DVT) have an increased risk of post-throm-
botic syndrome and pulmonary embolism, which can be fatal. [236] In the majority
of patients in whom DVT is suspected, no DVT is present on advanced (reference)
testing. [237] For illustrative purposes, we here consider the diagnosis of DVT in
patients that are suspected of having DVT and use the IPD of 10014 patients from
eleven studies, [238] where each study is considered one cluster (Table 3.1 and 3.2).
In each cluster separately, we estimated a binary logistic regression model with three
pre-specified predictors: history of malignancy (yes/no), calf difference (difference
in circumference of the calves ≥ 3 cm), recent surgery (yes/no). Preferably, a
continuous predictor such as calf difference should not be dichotomized, as this
leads to a loss of information. However, the continuous predictor was not available
in the data at hand. As some clusters were small, we applied Firth’s correction,
[99] which yields unbiased Maximum Likelihood estimates for the coefficients and
standard errors in small samples [239] and adjusted the intercept post-hoc by re-
estimating it with an unpenalized GLM. [240] We then applied IECV and adopted
a two-stage approach for prediction model development. The pooled regression
coefficients (including the intercept term) from the development clusters were used
for generating predictions in the hold-out cluster. Although Firth’s correction still
yielded estimates with high variance for the predictor coefficients in some clusters,
this was mitigated by performing a meta-analysis of the regression coefficients.
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Table 3.1: Clinical Characteristics of DVT Data

Outcome: DVT No Yes Total

Sex Female 5174 (83.8) 1001 (16.2) 6175
Male 2943 (76.7) 896 (23.3) 3839

Malignancy No 7600 (82.8) 1581 (17.2) 9181
Yes 517 (62.1) 316 (37.9) 833

Recent surgery No 7333 (82.4) 1569 (17.6) 8902
Yes 784 (70.5) 328 (29.5) 1112

Leg trauma No 5210 (77.1) 1544 (22.9) 6754
Yes 2907 (89.2) 353 (10.8) 3260

Vein distension No 7257 (82.5) 1538 (17.5) 8795
Yes 860 (70.5) 359 (29.5) 1219

Calf difference > 3 cm No 6160 (88.0) 843 (12.0) 7003
Yes 1957 (65.0) 1054 (35.0) 3011

D-dimer abnormal No 4392 (97.0) 137 (3.0) 4529
Yes 3725 (67.9) 1760 (32.1) 5485

Age Mean (SD) 58.8 (17.4) 61.1 (17.1) 10014
Duration of symptoms Mean (SD) 22.8 (45.5) 27.0 (60.5) 10014

Results in Table 3.2 reveal that estimates for the predictor effects were very het-
erogeneous across the included clusters. For example, the coefficient for malignancy
was 0.90 (standard error, SE: 0.33) in cluster 1 and 1.69 (SE: 0.22) in cluster 7.
Similarly, the coefficient for calf difference was 0.98 (SE: 0.15) in cluster 2 and 1.68
(SE: 0.13) in cluster 4. As indicated in Table 3.3 this also resulted in heterogeneous
model performance estimates across hold-out clusters. Although calibration was
good on average, it was highly variable in individual clusters. For instance, whereas
the summary calibration intercept equaled 0.03 (95% CI: -0.33 to 0.39), meaning
that calibration in the large was very good on average, the calibration intercept’s
approximate 95% prediction interval (PI) ranged from -1.22 to 1.27, thereby indicat-
ing heterogeneity. Similarly, the calibration of the linear predictors was very good
on average, as the calibration slope (also estimated with Firth’s correction) equaled
1.00 (95% CI: 0.83 to 1.16), whereas the approximate 95% PI for the calibration
slope ranged from 0.53 to 1.46. Further, the c-statistic equaled 0.68 (95% CI: 0.65
to 0.71) and was also substantially heterogeneous across clusters (approximate 95%
PI: 0.60 to 0.75).
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Table 3.2: Estimated Regression Coefficients for Predicting DVT in each of
Eleven Clusters

Cluster Intercept Malignancy Calf difference Surgery

1 −2.46(0.14) 0.90(0.33) 1.17(0.19) 0.04(0.35)
2 −0.95(0.11) 0.31(0.24) 0.98(0.15) 0.17(0.25)
3 −2.92(0.44) 1.57(0.87) 1.59(0.50) 1.73(0.54)
4 −1.92(0.09) 0.63(0.16) 1.68(0.13) 0.83(0.17)
5 −2.27(0.16) 0.24(0.42) 1.03(0.20) 0.52(0.26)
6 −2.25(0.12) 1.23(0.30) 1.40(0.17) 0.51(0.21)
7 −3.18(0.13) 1.69(0.22) 1.41(0.19) 0.26(0.31)
8 −1.72(0.18) 1.02(0.58) 1.24(0.27) 0.78(0.51)
9 −2.01(0.11) 0.80(0.25) 1.25(0.14) 0.37(0.19)
10 −2.16(0.18) 1.04(0.46) 0.65(0.34) 0.79(0.35)
11 −2.30(0.19) 1.65(0.26) 1.32(0.23) 0.82(0.27)

Summary estimate −2.17(0.18) 0.98(0.17) 1.27(0.08) 0.55(0.09)
Approximate 95% −3.33 : −1.01 0.08 : 1.88 0.86 : 1.67 0.20 : 0.90
prediction interval
Malignancy: history of malignancy, Calf difference: difference in circumference of calves
≥ 3 cm, Surgery: recent surgery. Summary estimates and prediction intervals for global model.

On overall, the IECV showed that the modeling strategy was unlikely to yield a
prediction model with good generalizability. Substantial revision would be necessary
to improve the model’s average discrimination performance and to reduce the het-
erogeneity of its calibration and discrimination performance. A possible approach
would be to refine the original modeling strategy by altering the set of included
predictors and by considering interaction effects and/or non-linear terms. Subse-
quently, the revised model should be validated again, after which other revisions
may be decided and so forth. It may be clear that this strategy is very time consum-
ing and may lead to arbitrary choices in predictor selection. For these reasons we
propose a formal framework for predictor selection in the context of heterogeneity
of performance across clusters in the next section. We address methods that aim
to reduce heterogeneity of performance, improve the average performance and a
combination thereof. The code used to apply our methodology as presented in this
manuscript is available on Github (https://github.com/VMTdeJong/SIECV-DVT).
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Table 3.3: Internal-External Cross-Validation Performance Estimates and Stan-
dard Errors for the Predefined Model for Predicting DVT

Hold-out cluster for validation Slope (SE) Intercept (SE) c-statistic (SE)

1 0.86(0.15) −0.44(0.10) 0.65(0.02)
2 0.63(0.11) 1.06(0.08) 0.63(0.02)
3 1.49(0.35) −0.24(0.22) 0.78(0.05)
4 1.18(0.10) 0.43(0.06) 0.72(0.01)
5 0.73(0.15) −0.33(0.10) 0.65(0.02)
6 1.12(0.14) −0.00(0.08) 0.70(0.02)
7 1.24(0.14) −0.93(0.09) 0.71(0.02)
8 1.02(0.24) 0.51(0.13) 0.67(0.03)
9 0.92(0.11) 0.12(0.07) 0.68(0.02)
10 0.71(0.27) −0.09(0.14) 0.62(0.04)
11 1.27(0.17) 0.15(0.11) 0.74(0.03)

Summary estimates 1.00(0.08) 0.03(0.16) 0.68(0.06)
Approximate 95% 0.53 : 1.46 −1.22 : 1.27 0.60 : 0.75
prediction interval
Slope: Calibration Slope, SE: Standard Error, Intercept: Calibration Intercept.

3.3 Stepwise Internal-External Cross-Validation for
Model Development

In the previous section, we described the purpose of IECV to assess the generaliz-
ability of a prediction model that is generated by a predefined modeling strategy.
Here, we propose to extend IECV to optimize model generalizability during its de-
velopment. We consider the situation that IECV will be used to expand an empty
(intercept only) model by iteratively adding predictors, functions of predictors and
interaction effects. The approach also readily generalizes to the expansion or re-
duction of a given model. In this Stepwise IECV (SIECV) for prediction model
development models are estimated, validated in external data sets and updated in
an iterative process, as follows.

Denote the data from the kth cluster by Sk, and the data from a set of clusters
excluding cluster h by S(h). Let p, p = 0, 1, ..., P be indicators to denote the candi-
date predictors (or functions thereof), where p = 0 indicates none. The algorithm
consists of up to I model adaptation cycles, where I generally equals P , the number
of predictors available for inclusion in the model. Then, let Pr(i) denote the set of
candidate predictors for inclusion, where Pr(1) = {1, 2, ..., P} and Pr(0) = {0}.

Further, let Mi,p denote the models in cycle i with added predictor p in the
stepwise process. Let Mi,p,(h) denote a model estimated on data from all clusters
excluding Sh. Let Ẑi,p,h be an estimate of performance (i.e. a loss function) of model
Mi,p,(h) in cluster h, such as the mean squared error. Let Âi,p be the estimate of
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a loss function (i.e. an aggregated loss function or an estimate of heterogeneity,
further described in section 3.3.2) in cycle i for a model extended with predictor p,
and let c indicate a predictor p that has minimal Âi,p, such that Mi,c is the model
with best generalizability in cycle i. Then, the algorithm is defined as follows and
starts at cycle i = 0:

1. For all p in Pr(i):

(a) Extend model Mi−1,c with predictor p to generate new model Mi,p.

(b) For h, h = 1, ...,K:

i. Estimate the model Mi,p,(h) on S(h), preferably while taking cluster-
ing within clusters into account.

ii. Predict ŷi,p,h,j for individual participants in hold-out sample Sk.
iii. Estimate performance measure Ẑi,p,h and its standard error

ŜE(Ẑi,p,h) for predictions ŷi,p,h,j in Sh.

(c) Estimate aggregated loss function Âi,p on Ẑi,p,1, ..., Ẑi,p,K and
ŜE(Ẑi,p,1), ..., ŜE(Ẑi,p,K).

2. Find the minimal Âi,p in this cycle. Denote this by Âi,c and its corresponding
model by Mi,c.

3. The first condition that is satisfied:

(a) If i = 0, continue to step 1.

(b) Else, if Âi,c ≥ Âi−1,c, the algorithm stops and Mi−1,c is returned as the
final model.

(c) Else, if i = I, the algorithm stops andMi,c is returned as the final model.

(d) Else, remove predictor c from the candidate predictor set Pr(i), incre-
ment i by 1 and continue to step 1.

Finally, if the performance of model Mi,c is deemed satisfactory, a so called global
model is generated by estimating the coefficients for the predictors in Mi,c on all
available data. No clusters are left out in this final cycle, to reduce the variance of
the estimates of the coefficients. [23]

This global model however, is at risk of overfitting as a result of small sample
bias, unless the sample is sufficiently large and the event rate sufficiently high, even
if no selection of predictors were applied. [241, 242, 243] To account for this, the
prediction model could be fitted with penalized regression, such as Firth’s regression.
To reduce the variance of the estimated regression coefficients, the ridge penalty
could be applied instead, or one could opt for a fully Bayesian approach.

By considering the candidate predictors for inclusion, however, the prediction
model is at further risk of overfitting. [3, 58] A straightforward adjustment for
overfitting could be achieved with the calibration slope and intercept. [244] In
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step 1 (b) iii of the final cycle these could be estimated and then summary meta-
analyses estimates could be computed. The final model coefficients (excluding the
intercept) would then be multiplied by the summary calibration slope, whereas
the summary calibration intercept would be added to the global model’s intercept,
thereby yielding a final model. Ideally, however, the entire model selection procedure
is to be performed within an additional bootstrap or cross-validation procedure,
[245] as this would account for any overfitting introduced by the SIECV itself.
Alternatively, heuristic shrinkage, that shrinks the coefficients by a function of the
number of predictors considered, may be applied. [246, 3, 58]

3.3.1 Extensions
Throughout this manuscript, we work from the perspective that an entirely new
prediction model is to be developed. However, our proposed framework readily
encompasses model redevelopment including the adding and removal of predictor
terms. Selection of predictor effects may then also be performed with a backwards
procedure starting with all candidate predictors and their transformations or inter-
actions, rather than forwards. Though, this may yield issues in the estimation when
many predictor effects are considered, especially when random effects are applied.
Further, similar to IECV for model validation we may adopt a one- or two-stage
approach (section 3.2.1) for model estimation.

3.3.2 Quantifying model generalizability
The SIECV algorithm requires specification of an aggregated loss function (Ai,p)
that is to be minimized, in order to optimize generalizability of performance across
clusters. Here, we consider parametric and non-parametric aggregated loss func-
tions, that vary with respect to the importance they place on the average and
heterogeneity of performance.

Ignoring heterogeneity

As a first step, we consider a naive estimator of predictive performance across
hold-out data sets from different clusters, that ignores variation within and across
clusters. This approach may be reasonable when the clusters are very large and of
similar size, and when the clustering is negligible. The overall performance is then
given by the mean performance across clusters. For instance, when optimizing the
mean square error (MSE, or Brier score for categorical outcomes), we can apply the
following aggregated loss function:

ÂM
i,p =

1

K

K∑
h=1

Ẑi,p,h (3.4)

Weighted meta-analysis

To incorporate the uncertainty of the predictive performance estimates into an ag-
gregated loss function, it may be more appropriate to adopt a weighting procedure.
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The meta-analysis framework (see section 3.2.1) therefore appears an appealing
choice. A straightforward extension to equation 3.4 would be to apply the weight-
ing procedure in described in equations 3.2 and 3.3. This allows to minimize the
prediction error in an "average" cluster, but still does not attempt to optimize their
stability across clusters. As a result, it is possible that developed models perform
well on average, but require substantial local revisions before implementation. To
reduce the need for local revisions, the aggregated loss function should account not
only for the average performance, but also for its variation across clusters. For this
reason, we propose an extension that combines both sources of error:

ÂREλ
i,p = λẐRE

i,p + (1− λ)τ̂i,p (3.5)

where λ is a hyperparameter that defines the impact of random effects meta-analysis
summary estimate of performance ẐRE

i,p and heterogeneity estimate τ̂i,p on aggre-

gated loss function ÂREλ
i,p . This is a parameter that is to be chosen on beforehand,

where its value should depend on the relative importance of average and hetero-
geneity of performance. In the simplest case we let λ = 1, such that the esti-
mate for generalizability is given by the mean of the distribution of performance,
ÂRE1
i,p = ẐRE

i,p . Alternatively, if desired, we can set λ to 0, such that we can inform
the selection of predictors solely based on the reduction in heterogeneity of per-
formance, yielding ÂRE0

i,p = τ̂i,p. Finally, we consider the case where heterogeneity
and average performance are given equal weighting by setting λ = 1

2 , such that̂
A

RE1/2

i,p = 1
2 Ẑ

RE
i,p + 1

2 τ̂i,p.
This equation can be seen as an extension of the bias-variance decomposition of

the MSE where we now have a summation of squared bias, within-cluster variance
and between-cluster variance. If p are considered estimators for y, then the MSE
for p can be shown to be: MSE(p) = var(p) + Bias(p,y)2. As τ̂2 is the estimate of

the between cluster variance of MSE(p), i.e. varbs, the estimator
̂

A
RE1/2

i,p estimator
can be interpreted as the mean of:

1

2
λ
(

var(p) + Bias(p,y)2
)

+
1

2

(
1− λ

)(
varbc

(
var(p) + Bias(p,y)2

))
(3.6)

Variability of performance across data sets

In the meta-analysis approach, the evidence from small clusters is downweighted
to attain an estimate of the mean of the distribution of performance. Yet this
distribution might not be of central importance. Instead, all clusters might be
considered of equal importance. Then we may instead apply a measure of variability
directly to the performance estimates, for instance the standard deviation ÂSD

i,p =

SD(Ẑi,p,1, ..., Ẑi,p,K).
Alternatively, if no assumptions can be made on the distribution of the predictive

performance statistics, we may apply a non-parametric measure. For example, when
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using Gini’s Mean Difference we have [247, 248]:

ÂGini
i,p =

2

K(K − 1)

∑
1≤h≤v≤K

| Ẑi,p,v − Ẑi,p,h | (3.7)

3.4 Motivating example 2: Updating a model for
diagnosing DVT

The prediction model developed in section 3.2.3 had a rather heterogeneous perfor-
mance across validation clusters and was lacking in average discrimination perfor-
mance. This heterogeneity of performance implies that although the outcome may
be predicted well in individuals in some clusters, which may be helpful in diagnosis,
it may be unsatisfactory for individuals in other clusters. The heterogeneity across
the 11 clusters may be explained by differences in (measured and unmeasured) pre-
dictor distributions and true predictor effects. Therefore we here consider whether
additional predictors and interaction effects might explain such differences. Whereas
individual clusters may lack the sample size to detect nonlinear effects or may lead
to highly variable predictor effects, this is more feasible in IPD-MA (and in large
healthcare data bases).

Briefly, we considered the following ten additional candidate predictors to extend
the model from section 3.2.3: sex, absence of leg trauma, absence of leg trauma x re-
cent surgery (i.e. an interaction effect), vein distension, log of duration of symptoms,
age/25 (i.e. divided by 25, to increase the absolute value of its coefficient), age/25
squared, age/25 x malignancy, abnormal d-dimer value and abnormal d-dimer x
sex. As we developed this model for illustrative purposes only, we applied single
imputation for missing data using a joint model with random effects. [249, 229]

We recommend that the inclusion of each candidate predictor (or transformation
thereof) be carefully considered with respect to the improvements in generalizability
of the model performance on the one hand, and the cost of measuring the predictor
on the other. Here, we apply our methodology to illustrate how each of the strate-
gies regarding heterogeneity of performance leads to different model specifications,
and thereby to differing average and heterogeneity of performance. To assess the
generalizability of prediction models that use these predictor functions, we follow
the SIECV strategy for model development that we developed in section 3.3, apply
the MSE (i.e. Brier score) to the predicted probabilities in the hold-out clusters
and apply the aggregated loss functions (measures of heterogeneity) on the MSE
estimates and standard errors thereof, to select predictors as outlined in section
3.3.2.

The six applied aggregated loss functions lead to models with four different
predictor function specifications (Table 3.4), as the strategy that ignored cluster-
ing (AM) when estimating generalizability of performance lead to the same model
specification as the strategy that optimized the meta-analytic mean of performance
(ARE1), and the meta-analysis strategy that placed equal importance on heterogene-
ity and average performance (ARE1/2) lead to the same model specification as the
ASD strategy. As the SIECV allows for the estimation of any performance statistic,
we assessed discriminatory performance with the c-statistic, and calibration with
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the calibration slope and intercept, for the final model for each aggregated loss
function. Subsequently, we summarized the performance and heterogeneity thereof
with univariate random effects meta-analyses.

Table 3.4: Estimated Regression Coefficients of Seven Models for Predicting
DVT Estimated with (S)IECV

Predictor None AM ARE1 ARE1/2 ARE0 ASD ASD

Intercept −2.17 −3.54 −3.54 −5.13 −5.00 −5.13 −3.99
Malignancy 0.98 0.76 0.76 1.64 1.68 1.64 2.05
Calf difference 1.26 1.13 1.13 1.38 1.34 1.38 1.07
Surgery 0.55 −0.04 −0.04 0.25 0.25 0.25 0.34
D-dimer positive 2.76 2.76 2.99 2.94 2.99 2.81
Age/25 −0.22 −0.22
Vein distension 0.46 0.46
Surgery x No leg trauma 0.68 0.68
No leg trauma 0.95 0.96 0.95
(Age/25)2 −0.02 −0.02
Male 0.32 0.36 0.32 0.52
D-dimer positive x Male −0.20 −0.24 −0.20 −0.28
Malignancy x Age/25 −0.32 −0.35 −0.32 −0.50
None: Model with no predictor selection, AM: Mean performance; ARE1 : Random effects
meta-analytic estimate of mean of distribution of performance; ARE0 : Random effects meta-
analytic estimate of heterogeneity of distribution of performance; ARE1/2 : Sum of random
effects meta-analytic estimates of mean and heterogeneity of distribution of performance; ASD:
Standard Deviation; AGini: Gini’s mean difference.
Malignancy: history of malignancy, Calf difference: difference in circumference of calves ≥ 3
cm, Surgery: recent surgery, Age/25: Age divided by 25, Duration: duration of symptoms.
Empty cells indicate the predictor was not selected for inclusion in the corresponding model.
Summary predictor effects were estimated by the Dersimonian and Laird method, as REML
did not converge for the estimation of some models. Although REML has better theoretical
properties for the heterogeneity estimate, the difference for the summary effects (presented
here) is limited.

In terms of calibration slopes (also estimated with Firth’s correction), all strate-
gies showed some overfit (summary calibration slope < 1), though to varying de-
grees (Table 3.5, Figure 3.1). Slopes < 1 imply that the estimated slopes were too
large (the log odds ratios deviated too far from 0), which yielded predictions for
individuals that were too extreme. The linear predictors in the ASD strategy and
the meta-analytic strategy that combined heterogeneity and average performance
(ARE1/2) were the worst calibrated (calibration slope of 0.85), and the AGini strategy
the best (0.94).
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Table 3.5: Meta-Analysis Summary Estimates of SIECV
Performance of Six Strategies for Predicting DVT

Measure Strategy ARE1 95% CI 95% PI

Calibration None 1.00 0.83 : 1.16 0.53 : 1.46
slope AM 0.92 0.80 : 1.04 0.59 : 1.26

ARE1 0.92 0.80 : 1.04 0.59 : 1.26
ARE1/2 0.85 0.73 : 0.97 0.48 : 1.22
ARE0 0.87 0.73 : 1.00 0.46 : 1.27
ASD 0.85 0.73 : 0.97 0.48 : 1.22
AGini 0.94 0.82 : 1.07 0.57 : 1.32

Calibration None 0.03 −0.33 : 0.39 −1.22 : 1.27
intercept AM −0.06 −0.46 : 0.35 −1.47 : 1.35

ARE1 −0.06 −0.46 : 0.35 −1.47 : 1.35
ARE1/2 0.16 −0.25 : 0.58 −1.27 : 1.60
ARE0 −0.04 −0.47 : 0.39 −1.51 : 1.43
ASD 0.16 −0.25 : 0.58 −1.27 : 1.60
AGini −0.20 −0.61 : 0.21 −1.63 : 1.23

c-statistic None 0.68 0.65 : 0.71 0.60 : 0.75
AM 0.81 0.78 : 0.84 0.70 : 0.89
ARE1 0.81 0.78 : 0.84 0.70 : 0.89
ARE1/2 0.81 0.79 : 0.84 0.73 : 0.88
ARE0 0.81 0.79 : 0.84 0.71 : 0.89
ASD 0.81 0.79 : 0.84 0.73 : 0.88
AGini 0.81 0.77 : 0.84 0.68 : 0.90

None: Model with no predictor selection, AM: Mean performance; ARE1 :
Random effects meta-analytic estimate of mean of distribution of perfor-
mance; ARE0 : Random effects meta-analytic estimate of heterogeneity
of distribution of performance; ARE1/2 : Sum of random effects meta-
analytic estimates of mean and heterogeneity of distribution of perfor-
mance; ASD: Standard Deviation; AGini: Gini’s mean difference. 95%
CI: 95% confidence interval; 95% PI: the random effects meta-analysis
approximate 95% prediction intervals lower and upper bound.

There was substantial heterogeneity in the estimated calibration slopes, espe-
cially for the predefined model with no predictor selection. For all strategies, the
prediction interval for the calibration slope also included values > 1, which implies
that for some (future) clusters the log odds ratios will probably not deviate from 0
enough and that predictions for individuals will probably be not extreme enough.
The heterogeneity of the calibration slope decreased for all strategies, as compared
to the predefined model with no added predictors. This means that for the resulting
models there was a decreased need for extensive local updating.

In terms of average calibration intercepts, all strategies achieved a reasonable
calibration in the large, that is close to zero (Table 3.5, Figure 3.2). This means that
on average the incidence was predicted accurately. On the other hand, the meta-
analysis of the calibration intercepts showed that the heterogeneity of calibration in
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Figure 3.1: Forest Plots of SIECV Estimates of Calibration Slopes of Six Strategies
for Predicting DVT
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A: Mean performance, AM; B: Random effects meta-analytic estimate of mean of
distribution of performance, ARE1 ; C: Random effects meta-analytic estimate of
heterogeneity of distribution of performance, ARE0 ; D: Sum of random effects meta-
analytic estimates of mean and heterogeneity of distribution of performance, ARE1/2 ;
E: Standard Deviation, ASD; F: Gini’s mean difference, AGini.
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Figure 3.2: Forest Plots of SIECV Estimates of Calibration Intercepts of Six
Strategies for Predicting DVT
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A: Mean performance, AM; B: Random effects meta-analytic estimate of mean of
distribution of performance, ARE1 ; C: Random effects meta-analytic estimate of
heterogeneity of distribution of performance, ARE0 ; D: Sum of random effects meta-
analytic estimates of mean and heterogeneity of distribution of performance, ARE1/2 ;
E: Standard Deviation, ASD; F: Gini’s mean difference, AGini.
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Figure 3.3: Forest Plots of SIECV Estimates of c-statistics of Six Strategies for
Predicting DVT
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A: Mean performance, AM; B: Random effects meta-analytic estimate of mean of
distribution of performance, ARE1 ; C: Random effects meta-analytic estimate of
heterogeneity of distribution of performance, ARE0 ; D: Sum of random effects meta-
analytic estimates of mean and heterogeneity of distribution of performance, ARE1/2 ;
E: Standard Deviation, ASD; F: Gini’s mean difference, AGini.
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the large had increased for all modeling strategies, as compared to the predefined
model with no added predictors. Hence, a trade-off occurred between (heterogeneity
of) calibration slopes and intercepts, and local updating of the intercept will remain
necessary.

All strategies that applied SIECV achieved an internally-externally validated
c-statistic value of 0.81 (Table 3.5 and Figure 3.3). There were small differences in
heterogeneity of discrimination performance. The ASD strategy and the strategies
that included the meta-analytic estimate of heterogeneity had smaller values for the
heterogeneity of the internally-externally validated c-statistic, than the strategies
that focused on the mean performance alone (AM and ARE1). Further, the AGini

strategy, a non-meta-analytic strategy that focuses on heterogeneity of performance,
yielded larger heterogeneity of discrimination performance.

As a final step, one must choose which modelling strategy is most likely to
yield adequate performance when applied to individuals in a new cluster, if any.
Although heterogeneity in the slopes had decreased substantially for all strategies,
the prediction intervals still indicated that updating may be necessary. Further, the
models resulting from all strategies are likely to need an intercept update. In terms
of calibration, it may therefore not be advisable to develop a global model, that
is a model developed on all available clusters (without leaving any out). Finally,
although the discrimination for all models improved substantially, the diagnostic
utility would have to be put into a clinical perspective.

3.5 Motivating example 3: Predicting atrial fibril-
lation

Patients with atrial fibrillation (AF) are at an increased risk for stroke. [250] Al-
though stroke is usually not fatal, it often results in neurological deficiencies. [251]
In patients with AF the incidence of stroke as well as the incidence of death from
stroke can be greatly reduced by oral anticoagulation. [252]

For illustrative purposes, we here consider the development and validation of a
binary logistic prediction model to estimate the probability that atrial fibrillation
is present in an individual patient. Previously, Audigier et al prepared a simulated
dataset to mimic the patients from 28 cohorts (clusters, from hereon) of the GREAT
consortium. [253, 254] This dataset comprises a total of 11685 patients of which
3335 have AF.

Because some of the clusters are very small and may thereby cause estimation
issues during model development or validation, we removed a total of 8 clusters in
which fewer than 50 patients had the outcome or did not have the outcome. Missing
values were imputed once using a joint model with random effects. [255, 229] We
subsequently modeled the probability of the presence of atrial fibrillation in 10873
patients from the remaining 20 clusters (Table 3.6). To further prevent overfitting,
we applied Firth’s correction, [99] and re-estimated the intercepts with unpenalized
maximum likelihood. [240]
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Table 3.6: Clinical Characteristics of AF Data

Outcome: AF No Yes Total

Gender 0 4583 (71.3) 1844 (28.7) 6427
1 3059 (68.8) 1387 (31.2) 4446

BMI Mean (SD) 27.3 (5.7) 27.4 (5.8) 27.4 (5.7)
Age Mean (SD) 67.7 (14.1) 73.1 (13.1) 69.3 (14.0)
SBP Mean (SD) 135.6 (32.2) 135.3 (32.1) 135.5 (32.2)
DBP Mean (SD) 78.6 (18.3) 79.1 (18.4) 78.7 (18.3)
HR Mean (SD) 88.0 (25.0) 96.4 (29.0) 90.5 (26.5)
BNP Mean (SD) 3.0 (0.9) 2.9 (1.0) 2.9 (0.9)

We considered 7 candidate predictors, consisting of gender (binary) and 6 con-
tinuous predictors : body mass index (BMI), age, systolic blood pressure (SBP), di-
astolic blood pressure (DBP), heart rate (HR) and brain natriuretic peptide (BNP).
BMI, age, and HR were divided by 25, and SBP and DBP by 100 to increase the
absolute values of their coefficients. For the continuous predictors, we considered
linear and quadratic terms and applied centering (within clusters) before applica-
tion of the quadratic function. This was necessary to ensure that the coefficients
are stabilized and positive coefficients for quadratic terms represent an increased
probability of presence of AF for values that deviate from the mean value.

Here, we implement the proposed predictor selection procedures to illustrate
their impact on average performance as well as on generalizability across the differ-
ent clusters. We follow the SIECV strategy for model development as described in
section 3.3, apply the MSE to the predicted probabilities in the hold-out clusters
and apply the aggregated loss functions on the MSE estimates and standard errors
thereof, to select predictors functions as we outlined in section 3.3.2.

The six applied aggregated loss functions lead to three different model specifi-
cations (Table 3.7), as the strategy that ignores clustering when quantifying gener-
alizability (AM) and the strategy that optimized the meta-analytic mean of perfor-
mance (ARE1) lead to the same model specification. Further, both meta-analytic
strategies that included heterogeneity of performance (ARE1/2 and ARE0) lead to
the same model, as well as the strategies that directly quantified heterogeneity of
performance (ASD and AGini). Again, we assessed performance with the calibration
slope, calibration intercept and c-statistic, and summarized these and the hetero-
geneity thereof with univariate random effects meta-analyses.
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Table 3.7: Estimated Regression Coefficients of Seven Models for Pre-
dicting AF Estimated with SIECV

Predictor AM ARE1 ARE1/2 ARE0 ASD AGini

Intercept −0.87 −0.87 −0.84 −0.84 −0.81 −0.81
Gender −0.08 −0.08
Age/25 0.75 0.75 0.59 0.59 0.62 0.62
(Age/25)2 −0.17 −0.17
HR/25 0.29 0.29
SBP/100 −0.59 −0.59
(SBP/100)2 0.28 0.28
(BMI/25)2 0.37 0.37 0.32 0.32 0.32 0.32
BNP2 0.03 0.03 0.03 0.03

AM: Mean performance; ARE1 : Random effects meta-analytic estimate of mean of
distribution of performance; ARE0 : Random effects meta-analytic estimate of hetero-
geneity of distribution of performance; ARE1/2 : Sum of random effects meta-analytic
estimates of mean and heterogeneity of distribution of performance; ASD: Standard
Deviation; AGini: Gini’s mean difference.
HR: heart rate, SBP: systolic blood pressure, BMI: Body mass index, BNP: brain
natriuretic peptide.
Empty cells indicate the predictor was not selected for inclusion in the corresponding
model.
Summary predictor effects were estimated by the Dersimonian and Laird method,
as REML did not converge for the estimation of some models. Although REML has
better theoretical properties for the heterogeneity estimate, the difference for the
summary effects (presented here) is limited.

In terms of summary calibration slopes (estimated with Firth’s correction and
then pooled in a meta-analysis), all strategies were rather well calibrated, showing
only minor overfit (Table 3.8, Figure 3.4). However, there was substantial hetero-
geneity of the calibration slopes. The approximate 95% prediction interval of the
calibration slopes of the models for the AM and ARE1 were the widest, as the upper
bound reached 2.20 and the lower bound was estimated at a -0.24. This negative
value for the lower bound implies that the predictive effect for the models might be
reversed in some clusters: individuals with AF received lower probabilities of AF
than individuals without AF in these clusters. This means that for each of these
models, there was still a need for extensive updating or model redevelopment.
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Table 3.8: Meta-Analysis Summary Estimates of SIECV
Performance of Six Strategies for Predicting AF

Measure Strategy ARE1 95% CI 95% PI

Calibration AM 0.98 0.70 : 1.27 −0.24 : 2.20
slope ARE1 0.98 0.70 : 1.27 −0.24 : 2.20

ARE1/2 0.98 0.74 : 1.23 0.03 : 1.94
ARE0 0.98 0.74 : 1.23 0.03 : 1.94
ASD 0.95 0.70 : 1.20 −0.02 : 1.91
AGini 0.95 0.70 : 1.20 −0.02 : 1.91

Calibration AM 0.04 −0.24 : 0.33 −1.25 : 1.34
intercept ARE1 0.04 −0.24 : 0.33 −1.25 : 1.34

ARE1/2 0.00 −0.28 : 0.29 −1.28 : 1.28
ARE0 0.00 −0.28 : 0.29 −1.28 : 1.28
ASD 0.00 −0.28 : 0.29 −1.28 : 1.28
AGini 0.00 −0.28 : 0.29 −1.28 : 1.28

c-statistic AM 0.62 0.58 : 0.65 0.46 : 0.75
ARE1 0.62 0.58 : 0.65 0.46 : 0.75
ARE1/2 0.58 0.56 : 0.60 0.51 : 0.65
ARE0 0.58 0.56 : 0.60 0.51 : 0.65
ASD 0.58 0.56 : 0.60 0.49 : 0.66
AGini 0.58 0.56 : 0.60 0.49 : 0.66

AM: Mean performance; ARE1 : Random effects meta-analytic estimate
of mean of distribution of performance; ARE0 : Random effects meta-
analytic estimate of heterogeneity of distribution of performance; ARE1/2 :
Sum of random effects meta-analytic estimates of mean and heterogeneity
of distribution of performance; ASD: Standard Deviation; AGini: Gini’s
mean difference. 95% CI: 95% confidence interval; 95% PI: the random
effects meta-analysis approximate 95% prediction intervals lower and up-
per bound.

In terms of average calibration intercepts, the calibration in the large was (near)
perfect (Table 3.8 and Figure 3.5). The ARE1/2 , ARE0 , ASD and AGini strategies all
achieved a calibration intercept of 0.00 (95% CI: -0.28 to 0.29), whereas those of
AM and ARE1 were hardly different with 0.04 (95% CI: -0.24 to 0.33). Again, there
was large heterogeneity in calibration in the large, as shown by the approximate
95% prediction intervals of the calibration intercepts. This means that for each of
these models there was still a need for intercept updating they may be used.

The AM and ARE1 strategies attained a somewhat better discrimination with
c-statistics of 0.62 (95% CI: 0.58 to 0.65) than the other strategies, that all attained
c-statistics of 0.58 (95% CI: 0.56 to 0.60), respectively (Table 3.8 and Figure 3.6).
There was considerable heterogeneity in the c-statistics for all strategies. The dis-
crimination was worse than random (c-statistic < .50) in at least one cluster for
each of the strategies. Indeed, the approximate 95% prediction interval shows it is
most likely that this will occur in a new cluster for the AM and ARE1 strategies.
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Figure 3.4: Forest Plots of SIECV Estimates of Calibration Slopes of Six Strategies
for Modeling AF
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A: Mean performance, AM; B: Random effects meta-analytic estimate of mean of
distribution of performance, ARE1 ; C: Random effects meta-analytic estimate of
heterogeneity of distribution of performance, ARE0 ; D: Sum of random effects meta-
analytic estimates of mean and heterogeneity of distribution of performance, ARE1/2 ;
E: Standard Deviation, ASD; F: Gini’s mean difference, AGini.
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Figure 3.5: Forest Plots of SIECV Estimates of Calibration Intercepts of Six
Strategies for Modeling AF
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A: Mean performance, AM; B: Random effects meta-analytic estimate of mean of
distribution of performance, ARE1 ; C: Random effects meta-analytic estimate of
heterogeneity of distribution of performance, ARE0 ; D: Sum of random effects meta-
analytic estimates of mean and heterogeneity of distribution of performance, ARE1/2 ;
E: Standard Deviation, ASD; F: Gini’s mean difference, AGini.
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Figure 3.6: Forest Plots of SIECV Estimates of c-statistics of Six Strategies for
Modeling AF
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A: Mean performance, AM; B: Random effects meta-analytic estimate of mean of
distribution of performance, ARE1 ; C: Random effects meta-analytic estimate of
heterogeneity of distribution of performance, ARE0 ; D: Sum of random effects meta-
analytic estimates of mean and heterogeneity of distribution of performance, ARE1/2 ;
E: Standard Deviation, ASD; F: Gini’s mean difference, AGini.
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For all of the considered strategies the SIECV shows that although calibration
was adequate on average and that overall discrimination was modest, it is not
very likely that any of the developed models will perform well at predicting AF in
new clusters without local updating. The effects of the included predictors vary
substantially across clusters and heterogeneity could not be resolved by considering
non-linear terms.

3.6 Discussion
We proposed a methodology for improving the generalizabilty of prediction models
developed across different settings and populations when data from IPD MA or
electronic health record data sets are available. This methodology leverages the
information from multiple clusters by iteratively using all but one cluster for model
development and assessing performance in the remainder.

The overall predictive performance and its variation across clusters can then
be used to quantify a model’s generalizability across clusters, and to inform the
selection of predictors. As we have demonstrated in our motivating examples, se-
lection of predictors based on the proposed aggregated loss functions can lead to
differing model specifications. Each model specification may perform differently
in predicting the outcome for individuals in differing clusters, leading to differing
average and heterogeneity of calibration and discrimination. Trade-offs may occur
between discrimination and calibration as well as between average and heterogene-
ity of performance. These may be quantified in the SIECV algorithm during model
development, by which the need for extensive or local model updating may be as-
sessed immediately. For instance, before validation in the hold-out cluster, the
intercept may be updated, which will inform the researcher on the generalizability
of performance of the model after local updates.

Although it remains unlikely that SIECV can completely resolve the need for
an intercept update, it may reduce the necessity of the local tailoring of prediction
models (particularly with respect to the calibration slope), which is highly prevalent
in the implementation of today’s prediction models. In particular, we aimed to
reduce the need for re-estimation of individual predictor effects. Evidently, the
potential impact of SIECV strongly depends on the availability of patient-level
covariates that may explain heterogeneity in predictive associations.

We discussed a variety of aggregated loss functions for quantifying the generaliz-
ability of a developed model. These ranged from producing an average performance
estimate to quantifying its dispersion across clusters. Our framework also allows
for assessing average and heterogeneity of performance across data sets (clusters)
through meta-analysis, and formalizes the predictor function selection by both of
these simultaneously. This requires specifying the relative importance of average
performance and the heterogeneity thereof on beforehand. For the meta-analysis
strategy, this either requires the prespecification of λ, or the finding of an optimal
value for λ through a resampling method. When applied in the SIECV model devel-
opment process, these measures lead to different model specifications with different
average performance and heterogeneity, as each places different importance thereon.
Therefore, the researcher will have to choose whether to optimize average calibration
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(intercept close to 0, slope close to 1) and discrimination (high c-statistic, positive
and/or negative predictive value for its clinical issue), or the heterogeneity of one
or both of these across clusters.

3.6.1 Limitations and future directions
Our main focus was on informing the selection of predictors in an IPD-MA or
the analysis of EHR, and not on the estimation of corresponding predictor effects.
Hence, the impact of our methodology may be limited in cases where the num-
ber of available predictors is low or when available predictors are not related to
heterogeneity in predictor-outcome associations. Though, even in cases where we
have few predictors, it may still prove worthwhile to consider non-linear terms and
interaction effects by the use of SIECV.

Improvements in one prediction model performance measure may come at a
cost of those in another measure. For instance, an improvement in calibration
may result in a deterioration in discrimination. In our motivating example, the
predictor D-Dimer had a large predictive effect, and substantially contributed to
discrimination performance. However, D-Dimer was a dichotomized predictor and
was measured using different methods across clusters. [237, 256] This resulted in
substantial heterogeneity in its regression coefficients and in heterogeneity of its
diagnostic accuracy (see [257]).

In this manuscript, we have focused on improving the generalizability of a
model’s predictive performance through the addition or removal of predictors or
functions of predictors. However, this may lead to instability in the estimation
process and overfitting of the predictor coefficients if not enough data are available
or the outcome is too rare. A future step may be to incorporate heterogeneity of
performance into the estimation process. For instance, in penalized Maximum Like-
lihood estimation a penalty for heterogeneity of predictor coefficients or predictive
performance across clusters could be applied. Such a penalty could readily produce
more generalizable models, without the need for a stepwise selection process.

We have not performed a simulation study to assess the proposed methods.
Such an endeavour might not be fruitful, as it should be obvious that each of the
measures for predictor selection would lead to different estimates of both average
and heterogeneity of performance, i.e. there is no gold standard. As each of the
proposed methods serve a different goal, it is unclear what the evaluation criteria
in such a simulation study would be. Nevertheless, it may still be helpful to assess
under what circumstances certain generalizability measures may be preferred.

Whereas methodology has been developed on dealing with missing data in model
validation in general (e.g. see [258]), it remains unclear how this would affect SIECV.
In general, the use of multilevel imputation methods have been recommended in
IPD-MA and other types of clustered data. [94, 195, 253, 96] These methods can
account for variables that are sporadically missing within one or more clusters, but
also impute variables that are not measured in certain clusters. [195] The adoption
of multilevel imputation methods therefore seems paramount when adopting SIECV
in datasets with missing values. Further, in multiple imputation it is imperative
that the imputation model includes the all of the variables used in the analysis
model, including the outcome, as well as any other predictive variables. [259] For
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this reason, we recommend to include all candidate predictors of SIECV in the
imputation model, and to allow for random effects for all of these.

3.6.2 Conclusion
The IECV methodology for model validation can inform the researcher on the need
for updating a prediction model to adapt it to particular populations and settings,
when IPD from multiple clusters or studies are available. Our SIECV methodology
extends this framework to quantify and reduce the impact of any heterogeneity on
prediction model performance. This can inform the researcher and may reduce the
need for tailoring the prediction model to specific populations and settings.
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Abstract
Many prediction models perform worse when applied to new individuals, which may
be due to a (lack of) representativeness of the validation sample for the prediction
model. If the validation sample does not fully represent the model’s intended target
population, estimates of model performance in the validation set are misleading.

We consider the use of propensity score weighting methods to standardize pre-
dictive performance measures estimated in multiple validation samples that are
obtained from different but related populations and settings, by weighting with re-
spect to the covariate distribution of the target population and setting. We show
how standardized measures for a model’s discrimination and calibration can be de-
rived. We illustrate our methods in a motivating example on the validation of eight
different diagnostic prediction models for the detectiong of deep vein thrombosis
(DVT) that may aid in the diagnosis of patients suspected of DVT in 12 external
validation data sets. We applied random effects meta-analysis to analyze the esti-
mates of prediction models’ performance across these 12 external validation data
sets.

The summary meta-analysis estimates of standardized and unstandardized dis-
crimination performance indicate that, on average, discrimination was not substan-
tially affected by differences in case-mix between the development and validation
samples. The between-study heterogeneity estimates, however, indicate that dif-
ferences between discriminatory performance in the individual validation studies
can partially be attributed to differences in case-mix, rather than the use of invalid
model coefficients. Further, the meta-analysis showed that the between-study het-
erogeneity for the calibration slopes was increased by standardization for all models.
This demonstrates that there were differences in case-mix between the development
and validation samples, and that the case-mix differences partially masked the differ-
ences in optimal coefficients between these samples. When standardization filtered
out these differences in case-mix, heterogeneity in the calibration slopes became
more apparent.

Propensity score-based standardization may help to facilitate the interpretation
of (heterogeneity in) prediction model performance across multiple external valida-
tion studies and to guide model updating strategies or to accept that the validation
sample does not reflect the target population of the developed model.
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4.1 Introduction
Prediction models provide estimates of absolute risk that a particular health sta-
tus is present (diagnosis) or will occur in the future (prognosis). The development
of prediction models has seen a rapid growth in medicine. Unfortunately, many
prediction models perform worse when tested in or applied to new individuals.
[11, 15, 13, 260] Common reasons for inaccurate predictions are the violation of
model assumptions, omission of important predictors, poor handling of missing
data in the development or validation data and, in particular, overfitting of the
developed model. [261, 242, 241, 243] However, the validity of model predictions
may also be affected by the (lack of) representativeness of the validation sample in
view of the development sample, differences in predictor and outcome definitions
and measurements, and the presence of measurement error both. [262, 263, 16]
Also, performance measures may provide misleading results as they are sensitive
to variation in case-mix (i.e. being sensitive to differences in covariate distribu-
tions) between development and validation samples. [12] The latter implies that
the measured deterioration in the prediction model performance measure should be
attributed to the choice of validation sample and measure. Hence, model revision
efforts can be rather futile.

It is widely advocated that when researchers develop a new prediction model,
they explore whether its predictions are sufficiently accurate across different set-
tings and (sub)populations (i.e. different validation samples). [20, 5] The model’s
predictive performance is then assessed in new samples that have not been used
during its development (so-called external validation). [22, 3, 264, 9, 262, 263] To
facilitate investigation of model performance, researchers developing a novel predic-
tion model ideally collect individual participant data (IPD) sets from two or more
settings, institutes or even predesigned studies. One is then used for model devel-
opment and the other for external validation. Results from the validation study
are then used to confirm whether the model is adequate or to recommend certain
revisions prior to its implementation in practice. It may be clear that choosing
which data set should be used for validation is not a trivial task. Arguments for
choosing one or another may focus on sample size, availability of predictors and
outcome, or representativeness of the study population. If the validation sample
does not fully represent the target population, estimates of model performance may
be misleading.

When pursuing an external validation study, changes in model performance with
respect to the development study should be interpreted with caution. Decline in a
prediction model performance measure does not necessarily imply that the model co-
efficients (e.g. predictor weights) are invalid. Likewise, adequate performance upon
external validation does not necessarily imply that the model transports well to
different settings and populations, as this requires some degree of consistent model
performance across multiple validation samples with different case-mix. [263, 262]
To disentangle the possible sources of variability in prediction model performance
across multiple validation studies, it has been recommended to quantify the relat-
edness between the development and validation samples. [15] This allows for the
isolation of changes in performance that can only be attributed to the use of invalid
regression coefficients and thus to establish which type of model revisions may be
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necessary.
Previously, Debray et al. proposed to develop a so-called membership model,

[15] which calculates the probability that an individual belongs to a certain (devel-
opment or validation) sample. The concordance index of this model then indicates
their relatedness and can be used to identify whether the evaluation of a partic-
ular model’s performance is likely to be affected by case-mix differences. [13, 15]
In this article, we build on their framework and consider the use of propensity
score weighting methods to standardize prediction model performance measures es-
timated in multiple samples validation that are obtained from different but related
settings and populations, by weighting with respect to the covariate distributions.
[265, 266]

Such standardization may help during the external validation of an existing
model to improve the interpretation of performance differences with respect to the
development sample and to identify the usefulness of specific model updating or re-
vision strategies. This usage of propensity-based standardization can be conducted
when individual participant data (IPD) from multiple samples are readily avail-
able, which appears particularly useful in an IPD meta-analysis or large electronic
healthcare database context.

To our best knowledge, propensity scores are not yet used to assist external
validation of clinical prediction models. This article explores the untapped value
of propensity-based standardization in clinical prediction model studies that are
based on large data sets with IPD from multiple studies or sources. In section
4.2 we present propensity-based standardization methods in the context of clinical
prediction models as well as propensity-standardized validation measures, in section
4.3 we describe a motivating example with illustrative data on the diagnosis of DVT
and finally section 4.4 provides a discussion of our results.

4.2 Propensity score standardization and clinical
prediction models

Propensity score methods were initially proposed for the estimation of causal (e.g.
treatment) effects in non-randomized data. [267] Clinical prediction models typi-
cally do not aim to provide a causal explanation [268, 269] and therefore do not
(strictly) require the incorporation of treatment propensity scores. [270] Although
it is possible to account for received treatments during the development and valida-
tion of prediction models, [271, 272] we propose a different use of propensity score
methods. In particular, when IPD from multiple settings or populations (and thus
at least one development and one validation sample) are available to the researcher,
one can estimate the probability that a certain individual is a member of a certain
sample. These propensities can then be used to standardize the available samples
with respect to a specific target population. The advantage of this approach is that
it facilitates interpretation of a particular model’s performance estimates across
different validation samples.
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4.2.1 Standardization to membership propensity scores
For individual i, we define the membership propensity score, mSi(j), as the condi-
tional probability of being member of study sample j, j = 1, ..., J,:

mSi(j) = Pr (Si = j|Xi, Yi) (4.1)
where Si is a random variable denoting the study sample of individual i, Xi

contains the individual’s predictor values, and Yi the observed outcome. In an
IPD-MA of J study samples, we have Si ∈ (1, 2, . . . , J). Additionally, let si denote
the study to which individual i actually belongs, such that the propensity score
mSi(Si = si) quantifies the conditional probability of individual i being member of
its originating sample. Further, in all cases, by definition,

∑
jmSi(j) = 1, for each

i. As a result, the propensity score mSi(j) can be estimated by a (multinomial)
logistic regression model. The propensity score msi(j) can subsequently be used to
construct the standardization weight with respect to sample j:

wi(j, Si) =
mSi(j)

mSi(Si)
(4.2)

For instance, consider we have 2 study samples: one validation sample obtained
from a randomized trial (sample a) and one development obtained from an observa-
tional study (sample b). Although both samples may contain individuals from the
model’s target population, it may occur that the inclusion criteria for trial partici-
pants are too restrictive and therefore do not fully capture the (case-mix) diversity
of the target population as reflected by the original development sample. Estimates
of prediction model performance from sample a may therefore be misleading if no
account is made for the case-mix differences with respect to sample b. For this rea-
son, we can standardize individuals from sample a with respect to sample b, such
that the weighted sample a better represents the target population. For individuals
from sample a, we then assign the following weights:

wi(b, ai) =
mai(b)

mai(ai)
(4.3)

Conversely, for individuals from sample b, the weights are defined as:

wi(b, bi) =
mbi(b)

mbi(bi)
= 1 (4.4)

These weights are derived from the standardization weighting methods described
in the causal inference literature, commonly referred to as ‘inverse probability
weighting’ or ‘standardized mortality ratio’ weighting. [265, 266] (In inverse prob-
ability weighting, the numerator is the propensity of belonging to the entire popu-
lation, including all samples; that is,

∑
jmSi(j) instead of mSi(j).)

4.2.2 Validation of prediction models in standardized sam-
ples

Propensity score methods can then be used to standardize the predictive perfor-
mance estimates in external validation samples with respect to the original devel-
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opment sample. By removing the difference in case-mix, this approach may help to
interpret performance estimates of prediction models in external validation studies
with respect to the original development sample. Prediction model performance
measure differences are then adjusted for differences in case-mix, which may help
to identify causes of poor transportability that cannot directly be attributed to
case-mix differences(e.g. invalid model coefficients). For instance, when data from
an RCT are available for validating an existing model that was developed in a data
from an observational study, it may be more difficult to discriminate between trial
patients with and without the outcome due to the stricter inclusion criteria and thus
reduced case-mix variability. [14, 273] The estimated discriminative performance in
the RCT data would then be a biased estimate of the discriminative performance
of the model in the model’s intended target population. Propensity score methods
may help to appreciate and even alleviate this issue by standardizing the validation
samples according to the case-mix distribution of the development sample.

Below, we describe how measures of prediction model performance can be stan-
dardized with respect to differences in case-mix between samples. For all perfor-
mance measures, we use the original development sample as target of standardiza-
tion, such that any performance differences between the development and validation
sample can be interpreted as a consequence of invalid model parameters in the latter
(and therefore a lack of model transportability).

Standardized calibration-in-the-large

Calibration-in-the-large is preferably assessed with the calibration intercept, which
can be estimated by fitting a logistic regression model (in case of binary outcome)
to the validation sample and fixing the coefficient for the linear predictor of the
prediction model under study at 1. [244] The resulting calibration intercept then
corresponds to an overall correction that is to be applied to the prediction model.
The standardized calibration intercept can be estimated based on weighted logistic
regression. When externally validating a model previously developed on sample d in
external validation sample vi, the weights are then given by wi = mvi(d)/mvi(vi).

Standardized calibration slope

Calibration of the linear predictor is preferably assessed with the calibration slope.
It can be estimated by fitting a logistic regression model to the validation sample,
where a single coefficient is estimated for the linear predictor of the prediction model.
The resulting calibration slope then corresponds to a correction factor for the pre-
dictor coefficients of the prediction model. Similar to the standardized calibration
intercept, the standardized calibration slope can be estimated by first weighting the
observations according to the aforementioned weights wi.

Standardized concordance statistic

Discrimination can be assessed with the concordance (c)-statistic (AUC). For a
randomly selected patient i, i ∈ (1, . . . , N+), with the outcome and a randomly
selected patient q, q ∈ (1, . . . , N−), without the outcome, the c-statistic estimates
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the probability that patient i has the highest predicted probability pi of the outcome.
The c-statistic can be described as:

c =
1

N+N−

N+∑
i=1

N−∑
q=1

I(pi > pq), (4.5)

where I(pi > pq) is an indicator function that takes the value 1 if pi > pq is true
and 0 in all other cases. Optionally, it may take the value of 0.5 if pi = pq, such
that no excessive penalty is given to ties.

We propose to apply a weighting procedure to the c-statistic, similar to prece-
dents. [274, 275] We propose to define weights of concordant pairs according to
the propensity scores of the pairs. Assuming independence between members of a
same pair, the propensity score of a pair is equal to the product of the propensity
scores of the members of the pair. Accordingly, the weight of the pair is equal to
the product of the weights of the members of the pair. Then, the standardized
c-statistic is given by:

cs =
1

N+N−

1

W

N+∑
i=1

N−∑
q=1

I(pi > pq)wiwq, (4.6)

where
∑N+

i=1

∑N−
q=1 wiwq = W denotes the sum of all weights such that the stan-

dardized c-statistic is bounded from 0 to 1.
Alternatively, the standardized c-statistic may be obtained by the bootstrap.

The individuals of the validation sample are then sampled with replacement with
probability equal to their respective weights (rescaled to range from 0 to 1) and
the (unstandardized) c-statistic is estimated on the resulting sample. The center
and percentiles of the resulting propensity weighted distribution of c-statistics then
estimate the standardized c-statistic and its confidence interval, respectively, sim-
ilar to the percentile method for the bootstrap estimation of the unstandardized
confidence interval. [276]

In the next section we present a motivating example, in which we estimate
these standardized predictive performance metrics for an existing model at multiple
external validations.

4.3 Motivating example: external validation of pre-
viously developed model

Deep vein thrombosis (DVT) increases a patient’s risk of post-thrombotic syndrome
and pulmonary embolism, which can be fatal. [236] In DVT suspected patients,
often no DVT is present on advanced reference testing. [237] We here consider for
illustrative purposes the development and validation of 8 different prediction models
that could help in the diagnosis of DVT in patients that are suspected of having
DVT and use the IPD of 10002 patients, of which 1864 have DVT, from thirteen
different cross-sectional diagnostic studies across multiple countries. [238]
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4.3.1 Methods
The data from one study (the development study, Table 4.1) were used to develop
eight logistic regression prediction models for the probability that DVT is present.
Coefficients for eight prespecified predictors were estimated: positive d-dimer test,
calf difference > 3cm, oral contraceptive usage, male sex, no presence of leg trauma,
vein distension, active malignancy, and recent surgery (Table 4.2). Prediction model
1 consisted of only the first predictor and prediction model 2 consisted of the first
two, etc. Our aim is to investigate to what extent these 8 models generalize well
across the 12 remaining validation samples and to what extent variability in their
performance can be attributed to lack of transportability or rather to case-mix
heterogeneity.

Table 4.1: Clinical characteristics of development data for a model for
diagnosing DVT

Variable Value Count

Sex female 828
male 467

Oral contraceptive (OC) not used 1167
used 128

Presence of malignancy no active malignancy 1214
active malignancy 81

Recent surgery no recent surgery (or bedridden) 1114
recent surgery (or bedridden) 181

Absence of leg trauma leg trauma present 197
no leg trauma present 1098

Vein distension no vein distension 1038
vein distension 257

Calf difference calf difference < 3 cm 739
calf difference > 3 cm 556

D-dimer abnormal D-dimer negative 398
D-dimer positive 897

DVT no DVT 1006
DVT 289

We externally validated the 8 prediction models in the remaining 12 studies.
We estimated for each prediction model the traditional unstandardized c-statistic,
calibration slope and intercept as well as the standardized measures described in
Section 4.2.2 in each external validation study, to disentangle invalid coefficients
from differences in case-mix as causes of heterogeneity in prediction model perfor-
mance.
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Table 4.2: Coefficients of eight prediction models for diagnosing DVT

Model Intercept D-dimer Calf OC Male No trauma Vein Malig. Surg.

1 -3.39 2.58
2 -4.95 2.42 1.11
3 -5.04 2.44 1.13 0.40
4 -6.12 2.46 1.15 0.72 0.72
5 -6.77 2.49 1.17 0.72 0.73 0.68
6 -7.35 2.47 1.16 0.70 0.72 0.66 0.52
7 -7.82 2.44 1.14 0.72 0.70 0.64 0.52 0.53
8 -8.33 2.43 1.15 0.76 0.71 0.67 0.53 0.50 0.42

Empty cells indicate the coefficient for the respective predictor is assumed zero.
For predictor definitions see Table 4.1.

We then applied random-effects meta-analysis to summarize these models’ es-
timated performance measures across the 12 validation studies and to investigate
their generalizability across the different settings and populations. [21, 234] The
meta-analyses were performed with REML and 95% confidence intervals were esti-
mated by the method of Knapp and Hartung. [107] Approximate 95% prediction
intervals were constructed with the t-distribution with 10 degrees of freedom. [110]
The confidence intervals for the propensity-weighted c-statistic were obtained with
5000 resamples with replacement, with probability equal to the weights as defined
in Section 4.2.

4.3.2 Results
Discrimination performance

The meta-analysis summary estimates indicate that, as expected, discrimination
performance greatly improved as more predictors were added to the models. In
particular, the pooled c-statistic for the prediction model only adjusting for d-dimer
results was 0.67 (95% CI from 0.63 to 0.71), whereas the prediction model with 8
predictors yielded a pooled c-statistic of 0.77 (95% CI from 0.74 to 0.80). Further,
we found that summary estimates for the c-statistic that were obtained via propen-
sity standardization did not much differ from the crude (i.e. non-standardized)
summary estimates (Table 4.3). This implies that on average, the discrimination of
the developed prediction models is no different in the target population as compared
to non-target populations. In other words, on average it is not affected by case-mix
differences.

In terms of between-study heterogeneity, however, we observed substantial dif-
ferences. For instance, for prediction model 1 (which only accounts for D-dimer
results) the heterogeneity estimate τ for the unstandardized (logit) c-statistic was
0.30. The approximate 95% PI for the pooled c-statistic ranged from 0.51 to 0.80.
These results appear to suggest that predictions from model 1 have limited trans-
portability across the included validation studies and that the model may require
local updating. However, when standardizing the validation studies, the hetero-
geneity estimate τ for model 1 decreased to 0.11 and the 95% PI become much
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more narrow (0.59 to 0.71). These additional results reveal that between-study het-
erogeneity in the discriminatory performance of prediction model 1 can partially be
attributed to differences in case-mix, rather than the use of invalid model coefficients
(i.e. predictor weights).

The difference in τ values between the unstandardized and standardized c-
statistic declines as the number of predictors is increased. For instance, for pre-
diction model 8, we found τ̂ = 0.27 for both the standardized and unstandardized
c-statistic. Hence, it appears that models with more predictors are less sensitive
to heterogeneity in case-mix and their variation in discrimination performance can
mostly be attributed to the use of invalid model coefficients. This implies that
these prediction models with more predictors may benefit from the re-estimation of
regression coefficients, to improve predictions in local settings and populations.

Calibration performance (calibration slope)

Standardization increased the summary calibration slope from 1.12 (unstandard-
ized) to 1.18 (standardized) for prediction model 1, which also indicates there was
a case-mix difference between the development and validation samples. The value
greater than 1 for the standardized slope indicates that on average larger prediction
coefficients were necessary in the validation data. This finding became more appar-
ent after standardisation, indicating that case-mix differences partially masked the
slope differences in the unstandardized evaluation. Overall, the unstandardized and
standardized summary calibration slopes approached 1 as the number of predictors
increased. This implies that the added predictors accounted for the differences in co-
efficients between the development and validation samples. Though, the traditional
calibration slope was closer to 1 than the standardized calibration slope, meaning
that the differences in predictor coefficients and case-mix had counteracted each
other.

There was greater heterogeneity across validation studies in the standardized
calibration slopes than in the unstandardized ones. For instance, the unstandardized
and standardized estimates of τ for the calibration slope for prediction model 8
were 0.06 and 0.21, respectively. Again, this indicates that there were differences
in case-mix between the development and validation samples, and that the case-
mix differences partially masked the differences in optimal coefficients between the
development and validation samples. When the differences in case-mix were filtered
out by means of standardization, heterogeneity in the calibration slopes became
more apparent.

Calibration performance (Calibration-in-the-large)

Finally, the models were slightly miscalibrated-in-the-large. For instance, for predic-
tion model 1 the summary calibration intercept equaled −0.30 and this was reduced
(in absolute terms) to −0.08 for prediction model 8. Standardization reduced the
calibration intercept to nearly zero, which means that poor summary calibration-in-
the-large can entirely be attributed to case-mix differences. This was expected, since
calibration-in-the-large mostly captures case-mix differences in outcome prevalence.

82



4444

C
hapter

4

Table 4.3: Unstandardized and propensity-standardized random effects meta-analysis estimates of performance of eight
prediction models in 12 external validation studies

Measure Standardized Statistic 1 2 3 4 5 6 7 8

c No Est 0.67 0.74 0.74 0.75 0.75 0.75 0.76 0.77
CI 0.63 : 0.71 0.70 : 0.77 0.71 : 0.77 0.72 : 0.78 0.71 : 0.79 0.72 : 0.79 0.73 : 0.79 0.74 : 0.80
PI 0.51 : 0.80 0.59 : 0.84 0.61 : 0.84 0.63 : 0.85 0.60 : 0.86 0.61 : 0.86 0.64 : 0.86 0.66 : 0.85
τ 0.30 0.29 0.26 0.25 0.30 0.29 0.26 0.24

Yes Est 0.65 0.73 0.74 0.75 0.74 0.75 0.76 0.77
CI 0.63 : 0.67 0.70 : 0.76 0.71 : 0.77 0.72 : 0.77 0.71 : 0.77 0.72 : 0.78 0.73 : 0.79 0.74 : 0.80
PI 0.59 : 0.71 0.61 : 0.82 0.63 : 0.83 0.63 : 0.83 0.62 : 0.83 0.62 : 0.85 0.64 : 0.85 0.64 : 0.86
τ 0.11 0.23 0.22 0.23 0.24 0.26 0.25 0.27

Intercept No Est −0.30 −0.15 −0.13 −0.16 −0.13 −0.08 −0.09 −0.08
CI −0.78 : 0.18 −0.60 : 0.30 −0.59 : 0.33 −0.63 : 0.31 −0.61 : 0.35 −0.55 : 0.40 −0.55 : 0.37 −0.54 : 0.38
PI −2.03 : 1.42 −1.76 : 1.47 −1.79 : 1.52 −1.86 : 1.54 −1.85 : 1.59 −1.78 : 1.62 −1.76 : 1.57 −1.73 : 1.57
τ 0.74 0.70 0.71 0.73 0.74 0.73 0.72 0.71

Yes Est 0.01 0.02 0.01 −0.01 −0.01 0.00 −0.01 −0.01
CI −0.15 : 0.16 −0.13 : 0.16 −0.13 : 0.16 −0.17 : 0.15 −0.18 : 0.15 −0.17 : 0.16 −0.17 : 0.16 −0.18 : 0.15
PI −0.52 : 0.53 −0.45 : 0.49 −0.47 : 0.49 −0.56 : 0.54 −0.58 : 0.55 −0.57 : 0.57 −0.57 : 0.56 −0.58 : 0.55
τ 0.23 0.20 0.20 0.23 0.24 0.24 0.24 0.24

Slope No Est 1.12 1.10 1.09 1.02 1.02 1.02 1.03 1.02
CI 1.01 : 1.24 1.01 : 1.18 1.01 : 1.18 0.95 : 1.10 0.95 : 1.10 0.94 : 1.10 0.95 : 1.11 0.95 : 1.10
PI 0.86 : 1.39 0.90 : 1.30 0.89 : 1.30 0.83 : 1.21 0.86 : 1.19 0.85 : 1.19 0.88 : 1.18 0.87 : 1.17
τ 0.11 0.08 0.08 0.08 0.06 0.07 0.06 0.06

Yes Est 1.18 1.14 1.15 1.03 1.04 1.04 1.06 1.06
CI 1.00 : 1.36 0.97 : 1.31 0.99 : 1.31 0.89 : 1.16 0.91 : 1.18 0.89 : 1.19 0.91 : 1.21 0.89 : 1.22
PI 0.71 : 1.66 0.63 : 1.64 0.70 : 1.61 0.61 : 1.44 0.61 : 1.48 0.57 : 1.51 0.59 : 1.53 0.55 : 1.56
τ 0.20 0.21 0.19 0.18 0.18 0.20 0.20 0.21

Est: Summary estimate;
CI: 95% Confidence interval;
PI: Approximate 95% Prediction interval;
τ : Estimate of heterogeneity.83
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Heterogeneity in calibration intercepts across the 12 validation studies was also
reduced by standardization for all eight prediction models. For instance, for pre-
diction model 8 the unstandardized estimate for τ for the calibration intercepts
equaled 0.71, whereas the standardized estimate equaled 0.24.

4.3.3 Summary
In conclusion, the standardized prediction model performance measures have pro-
vided greater insight into the differences in case-mix and optimal regression coef-
ficients between the development and validation samples. Standardization disen-
tangles the effects of (differences in) case-mix and regression coefficients, allowing
one to assess a prediction model on the appropriateness of its originally estimated
regression coefficients across different settings and populations, and thus to assess
its (genuine) reproducibility at multiple occasions. Standardization may provide
estimates of prediction model performance in external validation studies that are
improved or worsened compared to unstandardized estimates, that may be due to
any differences in case-mix between development and validation samples.

4.4 Discussion
We proposed a method for standardizing samples in which prediction models are to
be validated. When combining the IPD from multiple studies, settings, institutes
or populations, differences will often exist in their respective case-mix distribu-
tions, as well as their predictor-outcome associations. This, in turn, may lead to
excessive heterogeneity in a prediction model’s performance across the evaluated
samples and thereby distort any inferences about the model’s reproducibility. For
instance, it may occur that the estimated coefficients of a prediction model remain
valid when applied to new settings and populations, but that variation in case-mix
distributions affect discrimination and calibration performance. In such cases, the
prediction model may not benefit much from local tailoring or updating strategies.
Conversely, prediction models with regression coefficients that do not generalize to
other populations and settings are most likely to benefit from local revisions.

Standardization methods as shown in this study facilitate the interpretation of
prediction model performance differences found in validation samples with respect to
the (original) development sample. In particular, by standardizing validation sam-
ples with respect to the original development sample, it becomes possible to remove
the impact of case-mix effects on prediction model performance estimates found
in the validation sample. In other words, standardization allows one to interpret
validation study results as if the case-mix distributions would remain unchanged
as compared to the development sample. Any heterogeneity in prediction model
performance estimates can then only be attributed to the use of invalid regression
coefficients and thus to a lack of transportability of the original model.

Since case-mix differences can be found with regard to many variables (predic-
tors and/or outcome), we propose a multivariable standardization approach, which
has originally been described in the causal inference literature to balance covariate
distributions across patient settings under different ’exposures’. [265, 266] Transpos-
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ing this framework to clinical prediction model development and validation research,
one can consider the memberships to the development or external validation set-
tings as ’exposures’. A similar approach has been suggested recently to anticipate
the external validity of results from RCTs [277] and to use a larger sample size by
including propensity weighted external data to assess the intervention effect in a
(single) trial. [278]

Although we observed considerable differences in heterogeneity of the prediction
models’ predictive performance between the standardized and unstandardized mea-
sures of performance in the motivating example of 12 external validation studies,
the absolute differences in the summary estimates were minor. Overall, the vali-
dation samples were not very distinct from the development sample. Specifically,
standardization of the external validation sets indicated that the summary discrimi-
nation estimates were virtually the same, the estimates for the summary calibration
slopes of the prediction models were slightly worse and the estimated calibration-
in-the-large was slightly better for a population and setting that was similar to the
development sample, compared to the validation samples. Hence, standardization
allowed us to interpret the summary estimates of the prediction models’ perfor-
mance in the 12 external validation studies in light of the target population and
setting of the development sample. It showed that the calibration slopes of the
prediction models were not optimal, indicating that recalibration of the slope may
somewhat improve the prediction models’ performance in the target population and
setting.

In terms of heterogeneity of the prediction models’ performance, we did observe
considerable differences after standardization. There was less heterogeneity of dis-
crimination after standardization, though, as the number of predictors increased
this difference disappeared. As the number of predictors was increased, hetero-
geneity in discrimination performance resulting from differences in case-mix was
partially resolved.

The heterogeneity for the calibration-in-the-large was reduced by standardiza-
tion for all models. This was expected, since calibration-in-the-large mostly captures
case-mix differences in outcome occurence. Conversely, the heterogeneity for the cal-
ibration slopes was increased by standardization for all models. This demonstrates
that there were differences in case-mix between the development and 12 validation
samples, and that the case-mix differences partially masked the differences in op-
timal regression coefficients between these samples. When standardization filtered
out these differences in case-mix, heterogeneity in the calibration slopes became
more apparent. Hence, standardization allowed us to interpret the external valida-
tion results for both summary measures and heterogeneity measures in the light of
a different setting or population.

4.4.1 Limitations and future directions
Standardization using propensity score weighting methods can be performed in dif-
ferent ways. [265, 266] Though, each requires that IPD for the development and
validation samples are available, such that the propensity score model can be esti-
mated and applied. This propensity score model may also contain predictors that
are not included in the prediction model. In our motivating example, we chose
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weights that allowed the validation samples to resemble the (single) development
sample in terms of case-mix. Another strategy could be to define weights such
that the sample to be standardized approximates all available studies or settings
taken together (i.e. ’entire population’), akin to the ‘inverse probability weight-
ing’ described in the causal inference literature. [265] In fact, the choice between
standardization weights should be made according to the target population, that
is depending on whether the prediction model aims for a specific clinical setting or
to a larger scale. Further studies are needed to compare these weighting methods.
Further studies should also take into account other issues that may compromise
model transportability, such as measurement error (for this, also see Chapter 5).
[260]

Further, propensity scores might also be used to standardize samples for a spe-
cific target population during model development on a data set that consists of
multiple, combined, data sets. In contrast to the here studied standard dichotomy
between development and validation data sets, re-weighting the development data
to match a specific target population increases the sample size available for model
development in the target population.

For instance, in an IPD-MA with the aim to develop a prediction model, data
from RTCs may be included. Due to strict eligibility criteria, data from these
RCTs might not fully match the intended target population. Simply stacking every
such available data set for model development purposes would then bias model
parameters and deteriorate its predictive performance. Standardization may then
help to estimate model parameters with respect to the target population and to
assess its reproducibility in the targeted population.

4.4.2 Conclusion
Propensity score-based standardization helps to facilitate the interpretation of (het-
erogeneity in) prediction model performancem observed in (multiple) validation
studies and to guide the need for prediction model updating strategies or to accept
that the validation sample does not reflect the target population of the developed
model. Further research may focus on the use of propensity score weighting during
model development on heterogeneous data sets to enhance the reproducibility of
prediction models.
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Abstract
A common problem in the retrieval and analysis of multiple data sources, such
as individual-participant-data meta-analysis (IPD-MA) is the presence of measure-
ment error. Misclassification of binary predictors arises when these study variables
are not accurately measured. The presence of misclassification may introduce bias
in estimates of parameters (including predictor effects), even when the error is en-
tirely random. Although several methods for addressing misclassification during the
development of a prediction model have been proposed, these do not account for
the heterogeneity that is often present in individual participant data meta-analysis
(IPD-MA).

We aim to develop statistical methods for addressing predictor misclassification
in an IPD-MA, where the extent and nature of measurement error may vary across
studies. With these methods we aim to facilitate unbiased estimation of adjusted
and unadjusted predictor-outcome associations, as well as unbiased estimates of
between-study heterogeneity.

We adopt a Bayesian estimation framework and present statistical methods that
allow misclassification rates to be dependent on study-level and participant-level
characteristics. We illustrate our methodology in a motivating example of the di-
agnosis of the dengue virus using two predictor variables. In this example, the gold
standard measurement for one predictor variable is unavailable for half of the stud-
ies. Instead, these studies only measured a surrogate that is prone to misclassifica-
tion. We evaluate our methodology in a simulation study and assess it for bias, root
mean square error (RMSE), coverage and power in estimating a predictor-outcome
association.

In the motivating example, our methods reduced the error in the estimates for
the predictor-outcome association. In general, our methods yielded estimates with
less error than an analysis that was naive with regard to measurement error and an
analysis based on gold standard measurements alone. Estimates for heterogeneity
of the predictor-outcome association were similar across all investigated methods.

Our simulations show that our framework can appropriately account for mis-
classification that is dependent on study- and participant-level information. By im-
plementing a proposed misclassification model that models participant-level effects
and heterogeneity between studies in the outcome and gold standard and surrogate
measurement of the predictor, we obtained valid estimates of the predictor-outcome
association, with less RMSE, greater power and similar coverage compared to an
analysis that was restricted to observations for which gold standard measurements
were available. Heterogeneity estimates were adequate for all studied models.

Our proposed framework can be used to address the presence of misclassification
of a predictor variable in an IPD-MA. This framework requires that 1) some studies
supply IPD for the surrogate predictor and the gold standard predictor and 2) mis-
classification is exchangeable across studies conditional on the observed covariates
(and outcome). Further work is needed to address other types of misclassification.
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5.1 Introduction
Individual participant data meta-analysis (IPD-MA) comprises the pooling and sub-
sequent analysis of the individuals’ raw data from multiple studies. As an IPD-MA
synthesizes the evidence of all data available to answer a specific research ques-
tion, it is generally seen as the highest standard of scientific evidence [279]. It may
therefore come to no surprise that IPD-MA have become increasingly common to
summarize the evidence from experimental and observational studies, and that their
results can substantially impact clinical practice. Although IPD-MA are frequently
conducted to study the efficacy of therapeutic interventions, they can also be used
to investigate etiologic, diagnostic, and prognostic variables. For an IPD-MA to
yield valid inference or optimal predictions, however, it is vital that the data is of
the highest quality. In all fields, though mostly in observational ones, data may
have been gathered with methods or instruments that are inaccurate (i.e. prone to
measurement error).

Measurement error is any difference between the value that is observed for a
variable and its true value. Measurement error may arise due to a variety of random
or systematic causes, such as errors in measurement instruments, the reading of such
instruments, poor recall memory, misunderstanding items on questionnaires and
data entry and management. The presence of measurement error may introduce
(upward or downward) bias in estimates of parameters, even when the error is
entirely random and independent of other variables. [28, 34, 35]

Measurement error in categorical variables is referred to as misclassification.
It is commonly believed that misclassification, if present, leads to attenuation of
predictor-outcome (or exposure-outcome) associations.[280] As a result, researchers
often interpret estimates as conservative and dismiss the need for more advanced
analyses that account for ME. [281] However, attenuation only occurs when the
misclassification is non-differential (that is, misclassification is independent of the
outcome given the measured covariates), [27, 28, 30, 33, 35] the predictor has no
more than two categories [31, 32] and all covariates are measured without error.
[34] When a covariate is also measured with error, the bias that is introduced by
including them in a multivariable regression analysis becomes much more difficult to
quantify. [34] Further, extreme misclassification can reverse the sign of the observed
association. [29]

In an individual participant data meta-analysis (IPD-MA), misclassification may
be present in one or more studies. For instance, when the IPD from previously pub-
lished studies are combined, a different (e.g. less accurate) measurement instrument
for a certain predictor variable may have been used in some studies. If one of these
instruments is prone to misclassification, this will result in a biased estimate for the
corresponding predictor’s effect. Therefore, in IPD-MA it is generally recommended
to standardize measurements, and where possible to adjust for misclassification to
reduce bias. [228]

In meta-analysis, methods must also account for the effects of clustering in indi-
vidual studies [97] and should allow for heterogeneity of the effect of interest. Hence,
methods that account for misclassification must do so as well. Further, it may occur
that different measurements methods are used across studies. This directly implies
that a gold standard measurement may be missing for entire studies. Applying a
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traditional method that accounts for misclassification in IPD-MA therefore requires
that the misclassification rate is transportable to other studies. This may be ten-
able when the measurement instruments, protocol, population and setting are the
same in the included studies, but this would be a rare occasion in the context of
IPD-MA. Hence, a method that accounts for possible heterogeneity across stud-
ies in misclassification as well as outcome prevalence and the predictor-outcome
association should then be applied.

In this article, we consider a binary predictor in an IPD-MA that is prone to
misclassification error. We distinguish between measurements that are obtained (or
defined) according to the gold standard, and measurements that are made using an
instrument that is prone to error (further referred to as the surrogate predictor).
We subsequently discuss how valid inferences (at least to a certain degree) can
be made while the gold standard measurements for the predictor are missing in
some studies, using information on the surrogate predictor and the observed patient
characteristics. We adopt a Bayesian estimation framework that extends previously
proposed methods [282, 283, 284] for addressing misclassification in single studies
and in aggregate data meta-analysis (AD-MA).

In section 5.2 we provide our motivating example of the diagnosis of the dengue
virus. In section 5.3 we discuss existing methods for dealing with misclassification,
and provide our extensions thereof. We apply these methods in section 5.4 and
provide a discussion in section 5.6.

5.2 Motivating example: Diagnosing dengue
An estimated 100 million infections of dengue occur globally each year. [285] Al-
though dengue infection is often asymptomatic, patients can present with various
clinical symptoms ranging from mild febrile illness to hemorrhagic fever, organ im-
pairment and hypovolaemic shock, and can be fatal. [286, 285] In its early phase,
dengue can be difficult to distinguish from other febrile illnesses (OFI) such as
influenza, measles, leptospirosis and typhoid due to the similarity of clinical symp-
toms, which include headache and rash. Therefore, the identification of laboratory
and other clinical variables that aid in the differential diagnosis of dengue is imper-
ative. [285] In this motivating example we focus on the strength of the association
between muscle pain and dengue vs OFI. To assess the added diagnostic value of
muscle pain in the differential diagnosis of dengue vs OFI, a multivariable logistic
prediction model can be developed.

Here we show how potentially misclassifying the presence of muscle pain in
some studies will affect its apparent association with presence of dengue vs OFI, in
patients suspected of Dengue. We use simulated IPD for 10 studies (Table 5.1), that
are based on real data gathered in three studies of the IDAMS consortium (Appendix
5.1, page 109). [285] The IPD were generated according to three scenarios with
varying heterogeneity in the outcome model. In the first scenario we defined the
heterogeneity parameters such that all studies have the same (true) prevalence of
dengue conditional on the predictor and covariate and the same (true) predictor-
outcome association of muscle pain, conditional on the covariate. In the second
scenario we allowed for heterogeneity in the true prevalence of dengue conditional
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on the predictor and covariate but not in the true predictor-outcome association,
conditional on the covariate. In the third scenario we allowed for the presence of
heterogeneity in both the true prevalence of dengue conditional on the predictor
and covariate as well as the true predictor-outcome association of muscle pain,
conditional on the covariate. In all scenarios we allowed the true prevalence of
muscle pain and the true misclassification rates to vary across studies. The challenge
is to account for this rate of misclassification that is heterogeneous across studies and
depends on patient covariates, while simultaneously accounting for heterogeneity of
the prevalence of dengue and heterogeneity in the muscle pain-dengue association.
In the following sections we first provide a short overview of methods for accounting
for misclassification in single studies and in AD-MA before we move on to accounting
for these sources of heterogeneity in IPD, such in this IPD-MA of the muscle pain-
dengue association.

Table 5.1: Characteristics of dengue data in scenarios 1, 2 & 3

Scenario Outcome: dengue Absent Present Total

1 Muscle paina Absent 1997 (55.6) 1597 (44.4) 3594
Present 1267 (37.2) 2139 (62.8) 3406

Muscle painb Absent 968 (54.5) 808 (45.5) 1776
Present 655 (38.0) 1069 (62.0) 1724

Muscle painc Absent 2029 (52.0) 1870 (48.0) 3899
Present 1235 (39.8) 1866 (60.2) 3101

Joint pain Absent 2096 (52.2) 1920 (47.8) 4016
Present 1168 (39.1) 1816 (60.9) 2984

2 Muscle paina Absent 2024 (53.7) 1742 (46.3) 3766
Present 1187 (36.7) 2047 (63.3) 3234

Muscle painb Absent 931 (51.0) 896 (49.0) 1827
Present 611 (36.5) 1062 (63.5) 1673

Muscle painc Absent 2195 (50.9) 2117 (49.1) 4312
Present 1016 (37.8) 1672 (62.2) 2688

Joint pain Absent 2123 (50.7) 2067 (49.3) 4190
Present 1088 (38.7) 1722 (61.3) 2810

3 Muscle paina Absent 2056 (56.3) 1593 (43.7) 3649
Present 1231 (36.7) 2120 (63.3) 3351

Muscle painb Absent 1076 (58.6) 760 (41.4) 1836
Present 572 (34.4) 1092 (65.6) 1664

Muscle painc Absent 2185 (52.5) 1975 (47.5) 4160
Present 1102 (38.8) 1738 (61.2) 2840

Joint pain Absent 2184 (53.2) 1921 (46.8) 4105
Present 1103 (38.1) 1792 (61.9) 2895

Data shown as counts (percentages).
a As if it were fully observed in all studies.
b As observed in five studies. Missing in the other five.
c Potentially misclassified measurement.
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5.3 Methods
Many methods have been developed to adjust for misclassification of predictors in
the analysis of a single study. These include regression calibration and multiple
imputation based methods. Methods for adjusting meta-analyses of aggregate data
for misclassification have also been proposed. We start by briefly summarizing
these methods and their characteristics. More detailed information is available
from Keogh et al. [287]

5.3.1 Adjusting for misclassification in single studies
Regression calibration

In regression calibration, the outcome is regressed on the expected value of the
predictor, given the surrogate predictor and covariates. The expected value of the
predictor can be estimated by regressing the predictor on the surrogate predictor
and covariates for participants for whom all these variables have been measured.
When modeling a continuous outcome with linear regression this approach may yield
unbiased estimates of the predictor-outcome association. [34] However, regression
calibration has been demonstrated to yield (somewhat) biased results when applied
to logistic regression [34, 288, 287]. As regression calibration does not use the
observed outcome for estimating the expected value of the predictor, it cannot
account for differential misclassification.

Multiple imputation

In the multiple imputation approach, gold standard and surrogate measurements
of the predictor are treated as separate covariates. Participants for whom the gold
standard or surrogate measurement has not been applied are then considered to
have missing values for the corresponding covariate(s). If there are sufficient par-
ticipants for whom the surrogate and gold standard predictor are available, the
missing predictors can be imputed.

Multiple imputation for measurement error (MIME) is an implementation of
multiple imputation (MI), which was designed to deal with missing data. In MI
using chained equations, each variable (or a transformation thereof) is iteratively
regressed on all other variables. The estimated regression models are then used
to impute missing values. In MIME, the estimated regression models are used to
impute the missing gold standard measurement of the predictor for participants for
whom only the surrogate is observed. MIME models typically include the outcome
as covariate, which naturally accounts for differential error if the imputation model
is correctly specified. However, it overestimates the uncertainty in the imputation
of the true predictor. [288]

5.3.2 Adjustment for misclassification in a meta-analysis of
contingency tables

Most meta-analyses are based on aggregate data. When the predictors are binary,
the aggregate data for the predictor-outcome associations are often presented as

92



55555

Chapter 5

counts in contingency tables. Provided that contingency tables for the surrogate-
gold standard predictor association are also available, one can adjust for the mis-
classificication in the surrogate predictor-outcome association that is unadjusted for
covariates. [284]

Exchangeability in meta-analysis

As the rate of misclassification may differ across studies, Lian et al recently de-
veloped a model that accounts for clustering and heterogeneity and relaxed the
assumption of transportability to exchangeability. [284] That is, the degree of mis-
classification is allowed to vary across studies by applying a random effect. The
resulting coefficients for the misclassification model and for the predictor-outcome
model need not come from the same studies if exchangeability can be assumed.
This is advantageous, as it implies that studies in which misclassification was not
investigated can be included in the analysis.

Although Lian et al’s model does not assume that misclassification in the mea-
sured predictor is common across studies, the exchangeability assumption never-
theless requires that misclassification is independent of any patient-level covariates,
given the value of the gold standard measurement of the predictor. [284] In par-
ticular, the exchangeability assumption implies that misclassification is assumed to
depend solely on study-level variables. This is an important distinction, as misclas-
sification that is non-differential given covariates, may be differential when these
covariates are not taken into account. [35] Thus, if misclassification rates are dif-
ferent for the levels of the outcome and patient-level covariates can explain those
differences, then these covariates must be taken into account.

However, extending these methods that rely on stratified contingency tables to
the analysis of covariate-adjusted predictor-outcome associations may be imprac-
tical. It would require that studies provide contingency tables that are stratified
for the outcome, gold standard measurement of the predictor, surrogate predictor
and every adjustment variable. Clearly, this may be infeasible for a large number
of variables.

5.3.3 Adjustment for misclassification in AD-MA
Alternatively, one may opt to adjust for misclassification in a meta-analysis of ag-
gregate data, that is, using predictor-outcome associations (and standard errors)
reported in the form of regression coefficients such as (log) risk or odds ratios that
have been adjusted for covariates. If all of these reported estimates (including the
standard errors) were appropriately adjusted for misclassification in their respective
studies, one could analyze these with traditional meta-analysis methods. On the
other hand, if the estimation of these covariate adjusted predictor-outcome associa-
tions did not include accounting for misclassification, then this would have to occur
in the meta-analysis.

If IPD are available for the gold standard and surrogate measurements of the ex-
posure, one might apply a misclassification model to adjust the reported predictor-
outcome associations for misclassification, but in this would require the assumption
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of exchangeability of misclassification across the included studies. [284] This as-
sumption would clearly be violated in case the misclassification is dependent on
participant-level covariates. For instance, in our motivating example the misclas-
sification of muscle pain was associated with the participant-specific value of joint
pain. If the measurement for joint pain is missing for a participant, then the infor-
mation to estimate the expected value of the missing measurement of muscle pain
is missing for that participant. In the case of AD-MA, this implies that the covari-
ate joint pain would be missing for the entire study. Thus, any participant-specific
misclassification would not be accounted for. In the next section we describe how
the exchangeability assumption in meta-analysis models for misclassification can be
relaxed IPD are available.

5.3.4 Adjustment for misclassification in a meta-analysis of
individual participant data

We extend the methods of Nelson et al [283] and Lian et al [284] to incorporate
participant level covariates in a one-stage IPD-MA for potentially misclassified bi-
nary predictors. As such, we allow the probability of misclassification to depend on
study-level variables and on individual participant level covariates that are observed
without error. Further, modeling of IPD allows us to estimate the adjusted (i.e.
multivariable) predictor-outcome associations.

Let xij denote the gold standard measurement of the binary predictor for par-
ticipant i, i = 1, ..., I in study j, j = 1, ..., J . The surrogate predictor is given as x∗ij
and represents a possibly misclassified measurement of the predictor. We assume
that x∗ij has been observed for all participants in all studies, whereas xij has only
been observed for some participants in some studies. Further, we assume that zij
is a covariate without measurement error and that yij is a binary outcome.

Following the approach described by Richardson and Gilks [289], we specify
three submodels to account for misclassification: a measurement model, a predictor
model and an outcome model. In the measurement model, the surrogate predic-
tor (i.e. the measurement of the predictor that is prone to misclassification) is
predicted, conditional on the latent gold standard measurement of the predictor,
to determine the extent of misclassification. The measurement model models the
relation x∗ij ∼ xij , zij . In the predictor model, the latent gold standard measure-
ment of the predictor is regressed on covariates that are measured without error,
in order to predict the gold standard measurement of the predictor in participants
for whom it is missing. Hence, the predictor models the relation xij ∼ zij . Note
that the predictor model is commonly referred to as the exposure model in etio-
logical studies where the gold standard measurement of the exposure is missing.
In the outcome model, the outcome is regressed on the latent gold standard mea-
surement of the predictor and on covariates that are measured without error, to
determine the predictor-outcome relationship. The outcome model models the re-
lation yij ∼ xij , zij . Although our model generalizes to multiple covariates, we
restrict our notation to a single covariate for simplicity.

94



55555

Chapter 5

Common effects IPD-MA

We start with describing an IPD-MA misclassification model containing three sub-
models that assumes common effects across studies. Hence, all data are analysed
as if they were measured in a single study. In this first model, the probability of
misclassification only depends on the value of the gold standard measurement of
the predictor. The measurement (sub)model is then given by:

x∗ij ∼ Bernoulli(p∗ij),

g(p∗ij) = λ if xij = 1,

g(p∗ij) = φ if xij = 0,

(5.1)

where λ ∼ N(0, σ2
λ), φ ∼ N(0, σ2

φ) and g(.) is a link function. For instance, one
could choose the logit for g(.), such that intercept parameters represent log odds
and (predictor) coefficient parameters represent log odds ratios. This is equivalent
to a measurement model proposed by Nelson et al, [283] as λ and φ are parameters
that determine the estimated g(sensitivity) and g(1− specificity), respectively. The
above parametrization allows us to introduce covariates to the measurement model
in subsequent steps. We leave the variance parameters unspecified, as fixed values
may be supplied for these. One may also supply prior distributions for the variance
parameters.

The predictor model aims to estimate the relationship between the gold standard
measurement of the predictor and covariate(s). It is simultaneously applied to
predict the probability that the predictor is present in participants for whom the
gold standard measurement of the predictor status is missing. For participants
for whom the gold standard measurement of the predictor status is missing, the
expected value given covariates is imputed following this model. It is given by:

xij ∼ Bernoulli(pij),
g(pij) = γ0 + γ1zij ,

(5.2)

where γ0 ∼ N(0, σ2
γ0) and γ1 ∼ N(0, σ2

γ1). Thirdly, of course, we describe the
model that is designed to assess the (adjusted) predictor-outcome association. This
outcome model is given by:

yij ∼ Bernoulli(πij),
g(πij) = β0 + β1zij + β2xij ,

(5.3)

where β0 ∼ N(0, σ2
β0

), β1 ∼ N(0, σ2
β1

), β2 ∼ N(0, σ2
β2

), β0 is an intercept, β1 is
the coefficient for the covariate and β2 is the coefficient (log odds ratio) for the
predictor of interest. Equations 5.1, 5.2 and 5.3 together make up the least complex
misclassification model that we consider here and are illustrated in Figure 5.1. The
likelihood of this model is given by the product of the likelihoods of the three
submodels, including their priors:
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)
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γ0, γ1

)
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β0, β1, β2

)∏
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x∗ij |xij , λ, φ

)∏
j

∏
i

p
(
xij |zij , γ0, γ1

)
∏
j

∏
i

p
(
yij |xij , zij , β0, β1, β2

) (5.4)

Although the implementation of aforementioned misclassification models is fairly
straightforward in an IPD-MA, their justification becomes problematic when stud-
ies differ with respect to case-mix, baseline risk, predictor-outcome associations or
the extent of misclassification. We therefore discuss how to adjust the submodels
accordingly.

Figure 5.1: Diagrams of model equations 5.1, 5.2 and 5.3 (left) and 5.5, 5.8 and
5.11 (right)
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γ00γ0j β00

β0j

Green squares: fully observed data, blue circles: at least partially observed data, not in boxes:
parameters. Variance parameters omitted.

Accounting for between-study heterogeneity in the distribution of the
predictor

A common situation in IPD-MA is the presence of heterogeneity in case-mix distri-
butions. [97] In particular, when the distribution of the gold standard measurement
of the predictor variable varies across studies and the predictor submodel does not
account for this, then inadequate predictions will be be made for the unobserved
gold standard measurements. We may model the varying prevalence of the gold
standard measurement of the predictor x by applying random intercepts to the
predictor model, replacing equation 5.2 with:

xij ∼ Bernoulli(pij),
g(pij) = γ00 + γ0j + γ1zij ,

(5.5)
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where γ00 ∼ N(0, σ2
γ00), γ1 ∼ N(0, σ2

γ1), γ0j ∼ N(0, τ2γ0j ). The predictor model’s
contribution to the likelihood is then given by:

p
(
γ00, γ1, τ

2
γ0j

)∏
j

∏
i

p
(
xij |zij , γ00, γ1, τ2γ0j

)
(5.6)

Adjusting for between-study heterogeneity in misclassification

For various reasons, the extent of error in the measurement of the predictor may
vary by study in an IPD-MA. This may be modeled by applying random intercepts
in the measurement model, which can be interpreted as that the log-odds sensitivity
and 1 - specificity vary by study. The measurement model is then given by:

x∗ij ∼ Bernoulli(p∗ij),

g(p∗ij) = λ00 + λ0j if xij = 1,

g(p∗ij) = φ00 + φ0j if xij = 0,

(5.7)

where λ00 ∼ N(0, σ2
λ00

), φ00 ∼ N(0, σ2
φ00

), λ0j ∼ N(0, τ2λ0j
), and φ0j ∼ N(0, τ2φ0j

).
Although it is common to assume a Normal prior distribution for regression coef-
ficients, [33] the choice for a prior distribution for the variance parameters is less
straightforward. A prior with too heavy tails will give too much prior weight a
on high variance, whereas a prior with thin tails will put to much prior weight
on a low variance. [290] We here consider τ2λ0j

∼ inverse-gamma(χλ, ξλ) and
τ2λ0j
∼ inverse-gamma(χφ, ξφ), but would like to highlight that several alternatives

have been proposed, such as the half-Cauchy and half-t distribution. [291]

Adjusting for participant-specific misclassification

A more complex situation arises when misclassification is related to participant-level
covariates. For instance, recall of predictor values may be poorer in the elderly, the
answering of questionnaires may be hampered by poor literacy and measurement
instruments might be designed for specific subgroups of participants. Participant-
specific misclassification is particularly problematic if the case-mix distributions
vary across studies, as estimates of predictor-outcome associations will then be
affected differently across studies. For this reason, the presence of such error can be
accounted for by incorporating patient-level covariate effects in the measurement
model:

x∗ij ∼ Bernoulli(p∗ij),

g(p∗ij) = λ00 + λ0j + λ1zij if xij = 1,

g(p∗ij) = φ00 + φ0j + φ1zij if xij = 0,

(5.8)

where λ00 ∼ N(0, σ2
λ00

), λ1 ∼ N(0, σ2
λ1

), φ00 ∼ N(0, σ2
φ00

) and φ1 ∼ N(0, σ2
φ1

). The
contribution of the measurement model to the likelihood is then given by:

p
(
λ00, λ1, φ00, φ1, τ

2
λ0j
, τ2φ0j

)∏
j

∏
i

p
(
x∗ij |xij , λ00, λ1, τ2λ0j

, φ00, φ1, τ
2
φ0j

)
(5.9)
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Accounting for between-study heterogeneity in outcome prevalence

Commonly, in data from an IPD-MA and other clustered data sets the prevalence of
the outcome varies by study. To account for this effect of clustering within studies,
it is generally considered vital that random intercepts for the outcome are applied
in an IPD-MA. [97] We can add these to the outcome model as follows:

yij ∼ Bernoulli(πij),
g(πij) = β00 + β0j + β1zij + β2xij ,

(5.10)

where β0j ∼ N(0, τ2β0j
) and τ2β0j

∼ inverse-gamma(χβ , ξβ).

Accounting for between-study heterogeneity in predictor-outcome asso-
ciations

Further, the strength of the true predictor-outcome association might also vary by
study. To model this, one may adopt a random effects model for the outcome, which
does not assume there is a single predictor-outcome association. [117] Instead, it
assumes there is a distribution of predictor-outcome associations and it estimates
the center and variance of that distribution.

yij ∼ Bernoulli(πij),
g(πij) = β00 + β0j + β1zij + β20xij + β2jxij ,

(5.11)

where β00 ∼ N(0, σ2
β00

), β2 ∼ N(0, σ2
β2

), β20 ∼ N(0, σ2
β20

), β0j ∼ N(0, τ2β0j
), β2j ∼

N(0, τ2β2j
), β20 is the center of the predictor-outcome association distribution and

represents the overall association, β2j is the study-specific predictor-outcome associ-
ation and τ2β2j

is the variance of the distribution of predictor-outcome associations.
The random effects assumption is commonly adopted in meta-analysis where sources
of between-study heterogeneity cannot (fully) be explained using participant-specific
information but need to be accounted for. It is also considered a rather safe assump-
tion, as a random effects model will estimate the variance of the predictor-outcome
association at near zero when that association does not vary in the sample. Con-
versely, a common effects model will lead to inadequate estimates when the common
effects assumption does not hold. Equations 5.5 , 5.8 and 5.11 together are illus-
trated in Figure 5.1, and the contribution of the outcome model to the likelihood is
then given by:

p
(
β00, β1, β2, τ

2
β0j
, τ2β2j

)∏
j

∏
i

p
(
yij |xij , zij , β00, β1, β2, τ2β0j

, τ2β2j

)
(5.12)

The models considered here are identifiable only if sufficient information is
present in the data. [292, 33] For instance, to estimate equation 5.2 and 5.5 re-
quires that the gold standard measurement of the predictor xij is observed for suffi-
cient individuals. Strictly speaking, a single (large) study where the gold standard
and surrogate measurements have been observed should be sufficient to estimate
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the participant-level effects, though more studies would be necessary to estimate
the study-level effects. For instance, in our motivating example xij is available for
participants in half of the included studies.

Here we have assumed that the outcome y is available for every participant in
every study of the IPD-MA. Though, if unavailable, it could be imputed following
equation 5.3, 5.10 or 5.11. To ensure congeniality this imputation model must at
least contain the predictor and covariates of the outcome model. [293]

Accounting for differential error

So far we have assumed the error in the measurement of the predictor is non-
differential, that is that conditional on the gold standard measurement of the value
of the predictor and on the perfectly measured covariates, the error in the mea-
surement is unrelated to the outcome. In any other case the error is differential.
An example of differential error is recall bias in a case-control (or case-referent)
study, where individuals may overestimate (or underestimate) their predictor, as a
result of a known outcome. The methods we described can be extended to allow
for differential misclassification, by replacing equation 5.8 with:

x∗ij ∼ Bernoulli(p∗ij),

g(p∗ij) = λ00 + λ0j + λ1zij + λ2yij if xij = 1,

g(p∗ij) = φ00 + φ0j + φ1zij + φ2yij if xij = 0,

(5.13)

where λ00 ∼ N(0, σ2
λ00

), λ1 ∼ N(0, σ2
λ1

), λ2 ∼ N(0, σ2
λ2

), φ00 ∼ N(0, σ2
φ00

), φ1 ∼
N(0, σ2

φ1
), φ2 ∼ N(0, σ2

φ2
), λ0j ∼ N(0, τ2λ0j

), φ0j ∼ N(0, τ2φ0j
),

τ2λ0j
∼ inverse-gamma(χλ, ξλ) and τ2φ0j

∼ inverse-gamma(χφ, ξφ). This model bears
much resemblance to (Bayesian) MI. The difference is that in MI no measurement
model is specified and the surrogate measurement instead appears on the right hand
side of the predictor model. That is, in the MI approach the surrogate is treated
as just another variable, whereas in our approach it is treated as a surrogate of the
gold standard. Although this model this model accounts for a form of differential
error, it still assumes that the influence of covariates is the same for each level of
the outcome and that the random intercept across studies is common for the levels
of the outcome. Alternatively, it may be considered more likely that the nature of
the misclassification differs entirely for participants with and without the outcome.
Similar to differential misclassification in a single study, [294] this may be accounted
for by stratifying the measurement model for the outcome of interest.

x∗ij ∼ Bernoulli(p∗ij),
g(p∗ij) = η00 + η0j + η1zij if xij = 1, yij = 1,
g(p∗ij) = θ00 + θ0j + θ1zij if xij = 0, yij = 1,
g(p∗ij) = ψ00 + ψ0j + ψ1zij if xij = 1, yij = 0,
g(p∗ij) = ω00 + ω0j + ω1zij if xij = 0, yij = 0,

(5.14)

where η00 ∼ N(0, σ2
η00), η1 ∼ N(0, σ2

η1), θ00 ∼ N(0, σ2
θ00

), θ1 ∼ N(0, σ2
θ1

), ψ00 ∼
N(0, σ2

ψ00
), ψ1 ∼ N(0, σ2

ψ1
), ω00 ∼ N(0, σ2

ω00
), ω1 ∼ N(0, σ2

ω1
), η0j ∼ N(0, τ2η0j ),
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θ0j ∼ N(0, τ2θ0j ), ψ0j ∼ N(0, τ2ψ0j
), ω0j ∼ N(0, τ2ω0j

), τ2η0j ∼ inverse-gamma(χη, ξη),

τ2θ0j ∼ inverse-gamma(χθ, ξθ), τ
2
ψ0j
∼ inverse-gamma(χψ, ξψ) and τ2ω0j

∼
inverse-gamma(χω, ξω). In case the error is assumed to be restricted to participants
with (or without) the outcome, equation 5.14 could easily be simplified by letting
x∗ij = xij for these cases.

5.4 Motivating example: application of methods to
dengue IPD-MA

To illustrate the impact of misclassification on observed predictor-outcome associ-
ations in an IPD-MA, we apply several modeling strategies to estimate the muscle
pain-dengue association in patients suspected of dengue. Hereto, we generated
three scenarios for a dengue IPD-MA using real data on dengue as described in
section 5.2. In all scenarios we allowed the true prevalence of muscle pain and the
true misclassification rates to vary across studies. In the first scenario we defined
the heterogeneity parameters such that all studies have the same (true) preva-
lence of dengue conditional on the predictor and the covariate and the same (true)
predictor-outcome association of muscle pain, conditional on the covariate. In the
second scenario we allowed for heterogeneity in the true prevalence of dengue con-
ditional on the predictor and the covariate but not in the true predictor-outcome
association, conditional on the covariate. In the third scenario we allowed for the
presence of heterogeneity in both the true prevalence of dengue conditional on the
predictor and covariate as well as the true predictor-outcome association of muscle
pain, conditional on the covariate.

We aim to highlight the ability of the methodology we have presented here to
restore this association and its uncertainty, while simultaneously accounting for the
clustering of participants within studies and allowing for heterogeneity in the muscle
pain-dengue association.

5.4.1 Methods
We apply eleven Bayesian binary logistic modeling strategies to estimate the muscle
pain-dengue association and its heterogeneity across studies. First, we model the
full data with a mixed effects model as if the gold standard measurement was
observed for all participants in all studies. In reality, this would not be possible as
the gold standard would not be observed for some participants, but here it serves as
a comparison with the models that are restricted to the observed data. Second, we
apply a mixed effects model on the subset of the data for which the gold standard
measurement of the exposure was observed, that is, we apply a so-called complete
case analysis. Third, we apply a naive mixed effects modeling strategy, in which we
take the surrogate measurement as a proxy for any participant for whom the gold
standard measurement is not observed. Finally, we apply the 8 models described
in section 5.3.4. These models range from not accounting for heterogeneity and
accounting for the simplest form of misclassification to accounting for heterogeneity
in all submodels and for a differing extent and nature of misclassification. Although
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many more combinations of the submodels exist, for brevity we chose to apply
them in the order as outlined, which results in eight full models for accounting
for misclassification. We note that some alternative specifications would not be
sensible, as the predictor model needs to contain at least the variables that are
included in the outcome model.

We estimated all the models with a Gibbs sampler with two independent chains.
After 1000 adaptation and 1000 warm up samples, 25000 samples for the estima-
tion of the parameters were performed in each chain. To reduce autocorrelation,
we thinned the samples by a factor 5. The presented estimates are based on the
remaining 2 * 5000 samples.

5.4.2 Results
In each of the scenarios (see Section 5.2), all models yielded positive estimates
with 95% credibility intervals that excluded zero, which in each case may lead to
the conclusion that muscle pain is positively associated with dengue. However, we
observed considerable differences between the point estimates and estimated 95%
credibility intervals of the different models, especially for the common muscle pain-
dengue association.

Scenario 1: homogeneous conditional baseline prevalence and predictor-
outcome associations across studies

In the first scenario, the estimated association (log-odds ratio) between muscle
pain and dengue in the full data was 0.82 (95% CI: 0.67 : 0.98, Table 5.2). The
complete case analysis (0.64, 95% Credibility Interval: 0.41 : 0.87) and especially
the naive analysis (0.47, 95% CI: 0.34 : 0.60) underestimated this association. The
misclassification methods were able to restore the muscle pain-dengue association
to various degrees. The model comprising equations 5.8, 5.5 & 5.3, which was the
correctly specified model, estimated the log odds ratio for the association at 0.72
(95% CI: 0.54 : 0.90). Surprisingly, the underspecified misclassification models
estimated the association with similar or even less error. The overspecified (i.e.
models with excess parameters) misclassification errors estimated the association
with a larger error, though the errors were still smaller than the naive and complete
case analyses.
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Table 5.2: Multivariable log odds ratio and heterogeneity estimates
(95% Credibility Interval) for presence of muscle pain for diagnosing
dengue in scenario 1

Model β20(95%CI) τβ2j
(95%CI)

Full data 0.82 (0.67 : 0.98) 0.05 (0.02 : 0.14)
Complete cases 0.64 (0.41 : 0.87) 0.06 (0.02 : 0.23)
Naive 0.47 (0.34 : 0.60) 0.06 (0.02 : 0.16)
Equations 5.1, 5.2 & 5.3 0.74 (0.55 : 0.93)
Equations 5.1, 5.5 & 5.3 0.72 (0.53 : 0.91)
Equations 5.7, 5.5 & 5.3 0.75 (0.56 : 0.93)
Equations 5.8, 5.5 & 5.3 0.72 (0.54 : 0.90)
Equations 5.8, 5.5 & 5.10 0.71 (0.54 : 0.90)
Equations 5.8, 5.5 & 5.11 0.71 (0.53 : 0.91) 0.05 (0.02 : 0.16)
Equations 5.13, 5.5 & 5.11 0.70 (0.52 : 0.90) 0.05 (0.02 : 0.16)
Equations 5.14, 5.5 & 5.11 0.66 (0.45 : 0.88) 0.05 (0.02 : 0.15)
The center of the distribution was estimated by the median of the posterior dis-
tribution. Empty cells for τβ2j (95%CI) indicate it is assumed to equal zero in the
respective model.

All models estimated the between-study heterogeneity of the muscle pain-dengue
association very well, as the estimates were very similar to the reference estimate
of 0.05 (95% CI: 0.02 : 0.14) in the full data. The exception was the 95% CI of the
complete case analysis, which was wider (0.02 : 0.23) than the 95% CI for the other
models. This is unsurprising as it uses only a subset of the available data.

Scenario 2: heterogeneous baseline prevalence across studies

In this second scenario, the estimated association (log-odds ratio) between muscle
pain and dengue in the full data was 0.76 (95% CI: 0.61 : 0.92, Table 5.3). Again,
the complete case analysis (0.66, 95% CI: 0.42 : 0.89) and naive analysis (0.56,
95% CI: 0.42: 0.70) underestimated this association. The misclassification models
all estimated the common muscle pain-dengue association with less error than the
naive and complete case analysis. The model comprising equations 5.8, 5.5 & 5.10
(i.e. the correctly specified model) estimated the association at 0.74 (95% CI: 0.58
: 0.91), which was nearly identical to the estimates by the analysis on the full data.
Also, all misclassification models had narrower 95% Credibility Intervals than the
complete case analysis.

All considered models estimated the (lack of) between-study heterogeneity in
the muscle pain-dengue association adequately. In the analysis on the full data this
heterogeneity was estimated at 0.07 (95% CI: 0.02 : 0.22). Again, the 95% CI for
the complete case analysis was the widest (95% CI: 0.02 : 0.33).
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Table 5.3: Multivariable log odds ratio and heterogeneity estimates
(95% Credibility Interval) for presence of muscle pain for diagnosing
dengue in scenario 2

Model β20(95%CI) τβ2j
(95%CI)

Full data 0.76 (0.61 : 0.92) 0.07 (0.02 : 0.22)
Complete cases 0.66 (0.42 : 0.89) 0.08 (0.02 : 0.33)
Naive 0.56 (0.42 : 0.70) 0.06 (0.02 : 0.19)
Equations 5.1, 5.2 & 5.3 0.75 (0.58 : 0.92)
Equations 5.1, 5.5 & 5.3 0.69 (0.53 : 0.86)
Equations 5.7, 5.5 & 5.3 0.76 (0.59 : 0.93)
Equations 5.8, 5.5 & 5.3 0.73 (0.57 : 0.90)
Equations 5.8, 5.5 & 5.10 0.74 (0.58 : 0.91)
Equations 5.8, 5.5 & 5.11 0.75 (0.57 : 0.94) 0.09 (0.02 : 0.27)
Equations 5.13, 5.5 & 5.11 0.72 (0.54 : 0.91) 0.08 (0.02 : 0.25)
Equations 5.14, 5.5 & 5.11 0.67 (0.48 : 0.88) 0.07 (0.02 : 0.23)
The center of the distribution was estimated by the median of the posterior dis-
tribution. Empty cells for τβ2j (95%CI) indicate it is assumed to equal zero in the
respective model.

Scenario 3: heterogeneous baseline prevalence and predictor effects across
studies

In this final scenario, the analysis on the full data yielded a muscle pain-dengue as-
sociation of 0.87 (95% CI: 0.60 : 1:14), whereas the complete case analysis estimated
it at 1.02 (95% CI: 0.67 : 1.38, Table 5.4) This neatly illustrates that the error in the
muscle pain-dengue association estimated by complete case analysis is caused by an
increased variance rather than bias, as the estimate by the complete case analysis
is now increased with respect to the analysis on the full data, whereas in the other
scenarios it was underestimated. As expected, the naive analysis underestimated
the association yet again, at 0.60 (95% CI: 0.31 : 0.89).

Three of the misclassification models’ point estimates were further away from
the point estimate by the full data than the complete case analysis’ point estimate,
which highlights that applying a misclassification model is not guaranteed to reduce
the error in the point estimate. Yet, these were all underspecified models that did
not account for the various forms of heterogeneity. The correctly specified model,
comprising equations 5.8, 5.5 & 5.11 estimated the muscle pain-dengue association
at 0.79 (95% CI: 0.48 : 1.11), which was close to the estimate on the full data. The
overspecified models yielded similar estimates.

Except for the complete case analysis, all models that estimated the between-
study heterogeneity for the muscle pain-dengue association yielded adequate esti-
mates for this variance. The complete case analysis underestimated the amount of
between-study heterogeneity, whereas the underspecified misclassification models
(wrongly) assumed it to be equal to 0.
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Table 5.4: Multivariable log odds ratio and heterogeneity estimates
(95% Credibility Interval) for presence of muscle pain for diagnosing
dengue in scenario 3

Model β20(95%CI) τβ2j
(95%CI)

Full data 0.87 (0.60 : 1.14) 0.32 (0.18 : 0.61)
Complete cases 1.02 (0.67 : 1.38) 0.23 (0.05 : 0.73)
Naive 0.60 (0.31 : 0.89) 0.37 (0.21 : 0.69)
Equations 5.1, 5.2 & 5.3 0.81 (0.63 : 0.99)
Equations 5.1, 5.5 & 5.3 0.58 (0.41 : 0.75)
Equations 5.7, 5.5 & 5.3 1.09 (0.92 : 1.28)
Equations 5.8, 5.5 & 5.3 1.04 (0.88 : 1.22)
Equations 5.8, 5.5 & 5.10 0.97 (0.73 : 1.20)
Equations 5.8, 5.5 & 5.11 0.79 (0.48 : 1.11) 0.35 (0.19 : 0.67)
Equations 5.13, 5.5 & 5.11 0.80 (0.48 : 1.10) 0.35 (0.18 : 0.68)
Equations 5.14, 5.5 & 5.11 0.82 (0.48 : 1.14) 0.34 (0.17 : 0.67)
The center of the distribution was estimated by the median of the posterior dis-
tribution. Empty cells for τβ2j (95%CI) indicate it is assumed to equal zero in the
respective model.

5.4.3 Summary
Overall, the results of this motivating example on the association between muscle
pain and dengue highlight the impact of misclassification on a predictor-outcome
association. The misclassification models estimated the predictor-outcome asso-
ciation with less error (where the full data is taken as reference) than both the
complete-case and naive approaches, with the exception for some models that were
underspecified in scenario 3. This suggests that even in these scenarios for relatively
small IPD-MAs, the more complex (possibly overspecified) models seem more suit-
able than the simpler (possibly underspecified) models.

In general, the models provided adequate estimates of the heterogeneity of the
muscle pain-dengue association. The exception was the complete case analysis,
which yielded different point estimates due the fact that these estimates were based
on different data and which yielded wider credibility intervals due to the fact that
these interval estimates were based on less data. In conclusion, the misclassification
methods that accounted for heterogeneity in the various submodels gave the best
available estimates of the muscle pain-dengue association and its heterogeneity.

5.5 Simulation study
We performed a simulation study to assess the impact of misclassification on esti-
mated predictor-outcome associations and the heterogeneity thereof in an IPD-MA
and to assess the validity of our methodology. We aim to highlight the bias that oc-
curs in a predictor-outcome association when misclassification is not accounted for
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and the ability of the methodology we have presented here to provide (possibly) un-
biased estimates of these associations while propagating the uncertainty induced by
misclassification and the various forms of heterogeneity, to facilitate valid inference.

5.5.1 Simulation methods
In each repetition of the simulation we applied four models on the simulated data.
First, we performed analyses on the full data as if the gold standard predictor was
observed for all (simulated) participants, which may serve as a comparison in the
interpretation of the results. Second, we applied a model on the complete cases,
that is only on the participants for whom the gold standard predictor was observed.
Third, we applied a naive model in which the surrogate measurement of the muscle
pain was used for participants for whom the gold standard measurement was not
available. Finally, we applied the misclassification model given by equations 5.8,
5.5 & 5.11.

The data were simulated with the same data generating mechanism as in sce-
nario 1 of the motivating example considering the diagnosis of dengue: there was
heterogeneity in the distribution of the predictor of interest (muscle pain), but not
in the true prevalence of dengue conditional on the predictor and covariate and not
in the true predictor-outcome association, conditional on the covariate. We ana-
lyzed the estimates for the common predictor-outcome association for each model
in terms of percentage bias and root mean square error (RMSE) relative to the
true association, (statistical) power and coverage probability of the 95% Credibility
Interval. We performed one thousand replications of the simulation in R 3.5.2. [229]

We estimated all the models with a Gibbs sampler with two independent chains
using JAGS 4.3.0. After 1000 adaptation and 1000 warm up samples, 25000 samples
for the estimation of the parameters were performed in each chain. To reduce
autocorrelation, we thinned the samples by a factor 5. The presented estimates are
based on the remaining 2 * 5000 samples.

5.5.2 Simulation results
As expected, the analyses on the full (observed and unobserved) data yielded prac-
tically unbiased estimates of the muscle pain-dengue association, had a nominal
coverage rate and had the lowest RMSE and highest power of the compared analy-
ses (Table 5.5). In practice, of course, the unobserved data will be unavailable. The
naive method of substituting the surrogate predictors for the missing gold standard
predictors yielded biased estimates. This increased the RMSE and reduced the
power and coverage, giving it the worst performance of the compared methods in
terms of all the assessed measures except for power.
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Table 5.5: Simulation results for the estimated common predictor-outcome
association

Model Mean RMSE % Bias Power Coverage

Full data 0.80 0.21 2.49 0.97 0.94
Complete cases 0.80 0.29 2.98 0.75 0.96
Naive 0.48 0.34 -37.98 0.80 0.62
Equations 5.8, 5.5 & 5.11 0.79 0.24 1.66 0.92 0.96
RMSE: Root mean square error.
Coverage: Coverage probability of the 95% Credibility Interval.

The complete case analyses fared much better. By restricting the analyses to
data measured without error, practically unbiased estimates were produced and the
nominal coverage rate was retained. Due to the reduced sample size, however, the
variance of the estimates increased, which increased the RMSE and reduced the
power. Finally, the misclassification model was able to restore the muscle pain-
dengue association, yielding practically unbiased estimates and retaining nominal
coverage rates. As this model uses all observed data, the variance of the estimates
was the lowest of the three feasible models, which resulted in the lowest RMSE
and highest power. In conclusion, the misclassification model provided the best
estimates of the muscle pain-dengue association.

5.6 Discussion
As measurement error or misclassification may cause bias in estimated predictor-
outcome associations, standard errors and between-study heterogeneity in IPD-MA,
it is essential to account for this. We have unified methods for misclassification in
meta-analysis in a one-stage Bayesian meta-analysis framework. Our methodology
allows for incorporation of covariates on the individual participant level to facilitate
valid inference regarding therapeutic and etiologic effects, and added diagnostic and
prognostic value. This modeling of the individual participant outcome, predictor
and covariate values occurs via three submodels: one for modeling the measure-
ments, one for modeling the (gold standard) predictor and one for modeling the
outcome of interest. By doing so, individual level effects are accounted for in each
part of the analysis. This, in turn, restores the association between the predictor
and the outcome.

In our motivating example data sets, the association between muscle pain and
dengue could be estimated with less error by applying the proposed misclassifica-
tion models with individual participant covariate effects. These models account for
the potential between-study heterogeneity in the prevalence of dengue and yielded
adequate estimates of between-study heterogeneity of the muscle pain-dengue asso-
ciation.

In our simulations, we considered that baseline outcome prevalence conditional
on covariates and predictor effects are homogeneous across studies, and compared
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the performance of several models. We found that complete case analysis performed
reasonably well, as it yielded unbiased estimates and adequate coverage of the true
association. Though its estimates had increased variance, leading to considerably
reduced statistical power. In practice, the feasibility of restricting the analysis to
patients with complete data for the (gold standard) predictor will depend on the
remaining sample size. If this number is low, the variance of the resulting estimates
will be large and power negligible. In the extreme case, gold standard measurements
are entirely unavailable for participants for whom the outcome is available, making
this method impossible. In addition, the validity of a complete case analysis may
become challenging when patients (or studies) for which only surrogate predictors
are available differ with respect to covariates that are not part of the outcome model.

The simulations also demonstrated that our proposed methodology for misclas-
sification models was able to provide (approximately) unbiased estimates of the
muscle pain-dengue association. This is because the misclassification in the predic-
tor was correctly specified and because sufficient data were available to estimate all
model parameters. Note, however, that all of the applied models were overspecified
in terms of heterogeneity parameters, as the true baseline prevalence of dengue and
the true muscle pain-dengue association were, in fact, homogeneous across studies
conditional on the predictor and covariate. By treating the presence of between-
study heterogeneity as unknown (i.e. allowing for estimates greater than 0), the
variance was increased for all models, which increased the RMSE and reduced the
statistical power. As this affected all the models in the simulation equally, it had
no impact on the validity of the comparison between model performance in the
simulation.

In general, overspecification should not induce bias in the estimates, provided
that the sample contains enough information to estimate all parameters. Nor should
it affect the coverage as the models appropriately account for the uncertainty. How-
ever, we stress that if we had applied an underspecified misclassification model, we
would expect to have observed (some) bias in the estimates for the muscle pain
dengue-association, as well as less favourable statistical properties in terms of RMSE
and coverage and depending on the nature of the misspecification also in terms of
statistical power. After all, although the misclassification was non-differential given
covariates, once those covariates are removed from the model the misclassification
may become differential. [34] Therefore, it may be a sensible approach to apply
a misclassification model that accounts for differential misclassification whenever
sufficient data are available to reliably estimate such a model.

5.6.1 Limitations and future directions
Although we recommend the implementation of misclassification models, an alter-
native strategy is to implement models that require fewer assumptions. Two such
methods, RC and MIME, do not specify measurement models and require fewer
distributional assumptions and are therefore described as functional methods [33]
or reclassification methods [295] In contrast, in structural methods such as ours, a
predictor model is specified, which when analyzed with Bayesian method allows for
the appropriate propagation of uncertainty. Though, this requires assumptions on
the distribution of the gold standard measurement of the predictor and its surrogate
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measurement. [33] However, we focused on the scenario where the predictor is a
binary variable that is potentially misclassified, which is common in epidemiology.
This binary variable is assumed to follow a Bernoulli distribution, so specification
of a predictor model does not add a major assumption [34] aside from congeniality,
which is also required for RC and MIME. Although both of these methods have
been applied to account for misclassification in single studies, neither has yet been
adapted to the heterogeneous setting that is IPD-MA. This would require the spec-
ification of multiple heterogeneity parameters. We suggest that further research
may focus on integrating these into the IPD-MA framework.

In case the predictor is a continuous variable which has been transformed into
a binary variable at a specific cut-off point, alternative assumptions are needed for
modeling the distribution of the predictor and its measurement error (see e.g. [33]).
Our method could be further extended in case multiple surrogate predictor mea-
surements are available for some or each participant, by specifying a measurement
model for each surrogate measurement.

In the simulation study, we generated the data from only a single data gener-
ating mechanism and applied only one misclassification model as this simulation
was intended as a proof of concept, not to assess the relative performance of all
the described models in a variety of scenarios. All of the methods discussed here
require covariates that predict the value of the gold standard measurement of the
predictor to be fruitful. If the available covariates are not predictive of the missing
gold standard predictor or the surrogate predictor, only noise would be added by
including individual participant covariate effects in the predictor and measurement
models, respectively.

Due to the influence of misclassification on predictor-outcome associations and
the presence of between-study heterogeneity, and the increase in parameters that
are required to account for this, a larger amount of data are necessary than in an
IPD-MA where misclassification is absent. This should be especially the case for
the more complex misclassification models. In our simulation study however, we
simulated data from one thousand individual participants spread over 10 studies and
the results show that this was enough to obtain approximately unbiased estimates
of the predictor-outcome association, with slightly reduced accuracy compared to
the model on the full data. In a typical IPD-MA, where the sample size is often
much larger, there should be enough information to estimate the more complex
misclassification models.

5.6.2 Conclusion
In an IPD-MA, the gold standard measurement of a predictor may be entirely
unavailable for all participants in some studies, or unavailable for some participants
in all studies, leaving the researcher with only surrogate measurements for these
participants. If ignored, this induces bias in the estimated parameters for predictor-
outcome associations and other parameters of interest, which must be accounted for.
Our Bayesian methodology can be applied to participant level data to reduce the
error in the estimate of the predictor-outcome association compared to a analyses
restricted to participants for whom the gold standard measurement is observed,
while appropriately propagating uncertainty for all parameters. This may provide
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unbiased estimates of the predictor-outcome association, its coverage of the true
effect and its heterogeneity across studies, provided that the model is specified
correctly.
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Appendix 5.1: Dengue data
The IDAMS consortium [285] provided aggregate data on muscle pain, joint pain
and dengue vs other febrile illness (OFI) stratified by three sites (n = 700, 700
and 500), as well as a common association between muscle and joint pain. The
IDAMS consortium has collected other clinically important variables, which we do
not consider here.

From this data point estimates for the intercept and log odds ratio for the pre-
dictor model (equation 5.5) and subsequently the intercept for the outcome model
(equation 5.11) were estimated with optim in R. [229] As heterogeneity estimates
are unreliable in only three sites/studies, we chose suitable values for these for three
different scenarios. In the first scenario we set the heterogeneity parameters such
that the studies all had identical true incidences of dengue conditional on muscle
and joint pain and identical true predictor-outcome (muscle pain-dengue) associa-
tions conditional on the covariate, joint pain. In the second scenario we allowed
for heterogeneity in the true incidence of dengue conditional on muscle and joint
pain but not in the true predictor-outcome association conditional on the covariate,
joint pain. In the third scenario we allowed there to be heterogeneity in both the
true incidence of dengue conditional on muscle and joint pain as well as the true
predictor-outcome association conditional on the covariate, joint pain. We gener-
ated the three scenarios with different simulation seeds, so that unique data sets
were generated.

5.7.1 Parameters
The overall prevalence of joint pain was 0.414. We set the standard deviation for
the prevalence of joint pain to 0.1 on the logit scale. The fixed effects for the
predictor model were estimated at γ00 = −1.70, γ1 = 4.26. We set σγ0j to 0.25. The
fixed effects for the outcome model were β00 = −0.26, β1 = −0.06, β2 = 0.78. We
generated data sets for three different scenarios with differing heterogeneity in the
outcome model. In scenario 1: σβ0j

= 0 and σβ2j
= 0. In scenario 2: σβ0j

= 0.25
and σβ2j = 0. And in scenario 3: σβ0j = 0.25 and σβ2j = 0.15.

The study specific parameters used to generate the data that was used in the
analyses reported in this paper were then generated as follows. We set the number

109



Chapter 5

of studies to 10. Study-specific parameters for intercepts and log odds ratios were
sampled from normal distributions with their corresponding point and heterogeneity
estimates. Prevalences were sampled on the inverse logit scale and then converted
to prevalences using the logit function.

5.7.2 Individual participant data
Sampling of individual observations was performed using the parameter estimates
as follows. We set the sample size to a value similar to the those of the IDAMS
consortium: 700 per study, giving a total of 7000 patients. Data for the covariate
joint pain were sampled first according to the study-specific prevalences. Then the
predictor model (equation 5.5) was applied to sample the muscle pain status. Then
the outcome model (equation 5.11) was applied to sample dengue status.

The misclassified predictor was generated by equation 5.8, with the following
parameter values: λ00 = 3, σ2

λ0j
= 1, λ1 = −2, φ00 = −3, σ2

φ0j
= 1 and φ1 = 2. The

resulting sensitivity and specificity for the sampled true and misclassified muscle
pain variables were respectively 0.81 and 0.90 in the full sampled data in scenario
1, 0.78 and 0.96 in scenario 2 and 0.76 and 0.92 in scenario 3. Finally, for the naive
and the misclassification methods, for the first five studies the true values for muscle
pain were removed, so that only the potentially misclassified values were available
for those studies.
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Abstract
Multinomial Logistic Regression (MLR) has been advocated for developing clinical
prediction models that distinguish between three or more unordered outcomes. We
present a full-factorial simulation study to examine the predictive performance of
MLR models in relation to the relative size of outcome categories, number of pre-
dictors and the number of events per variable. It is shown that MLR estimated by
maximum likelihood yields overfitted prediction models in small to medium sized
data. In most cases, the calibration and overall predictive performance of the multi-
nomial prediction model is improved by using penalized MLR. Our simulation study
also highlights the importance of events per variable in the multinomial context as
well as the total sample size. As expected, our study demonstrates the need for
optimism correction of the predictive performance measures when developing the
multinomial logistic prediction model. We recommend the use of penalized MLR
when prediction models are developed in small data sets, or in medium sized data
sets with a small total sample size (i.e. when the sizes of the outcome categories
are balanced). Finally, we present a case study in which we illustrate the develop-
ment and validation of penalized and unpenalized multinomial prediction models
for predicting malignancy of ovarian cancer.
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6.1 Introduction
Prediction models are developed to estimate probabilities that conditions or diseases
are present (diagnostic prediction) or will occur in the future (prognostic prediction).
[296, 297] Most prediction models are developed to estimate the probability for two
mutually exclusive diagnostic or prognostic outcomes (events versus non-events).
[3, 298] However, for real diagnostic and prognostic questions there are often more
than two diseases or conditions that need to be assessed. For instance, the presence
of various alternative diseases must be considered when dealing with real patients
(i.e., the so-called differential diagnosis). [299, 4] Similarly, there are often also
more than two possible prognostic outcomes considered in patients diagnosed with
a certain disease (e.g., progression free survival, disease free survival and death as
outcome categories). Biesheuvel et al. [298] recognized that the polytomous nature
of prediction questions should be taken into account more often in the development
of prediction models, suggesting the use of multinomial logistic regression (MLR).
While the use of MLR is still relatively rare, applications of MLR for risk prediction
are found in a variety of medical fields, such as in predicting the risk of several modes
of operative delivery, [300] predicting the risk of three prognostic outcomes of elderly
after hospitalization, [301] the differential diagnosis of four types of ovarian tumors
[302] and the differential diagnosis of three bacterial infections in children. [303]

So far, the operational characteristics of MLR models in relation to development
data characteristics have not been evaluated. In contrast, the relevance of data
characteristics for prediction models’ out-of-sample performance has been clearly
demonstrated for prediction models with binary and time-to-event outcomes. [304,
305] For these models, minimal sample size criteria have been suggested, supported
by simulation studies, and a minimum of roughly 10 events per predictor variable
(EPV ) has been advocated for the development of these binary or time-to-event
prediction models. [306, 245, 305, 3, 307, 308, 309, 297] For situations where EPV <
20, "shrinkage" of the regression coefficients has been recommended to reduce the
chances of overfitting. [246, 304, 3] It is unclear to what extent these rules-of-thumb
also apply to the polytomous case of MLR.

In this study we focus on the predictive performance of MLR models that are
developed in small to medium sized data sets (multinomial EPV ≤ 50). We study
the effects of the number of multinomial events per variable (EPVm), relative out-
come sizes (frequencies) and number of predictors. In a sensitivity analysis we assess
the effects of correlations between the predictors and the type of predictors. We
compare the performance of MLR estimated by Maximum Likelihood (ML) and
two popular penalized estimation methods that perform shrinkage of the regression
coefficients (lasso and ridge regression [310, 311]). This article is structured as fol-
lows. In the next section, we describe the estimation methods and we provide a
brief overview of predictive performance measures for multinomial logistic regres-
sion models. In section 6.3 and 6.4 we present our simulation study, and in section
6.5 we present our case study of predicting malignancy of ovarian cancer. Finally,
a discussion is provided in section 6.6.
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6.2 Multinomial logistic regression model

6.2.1 MLR Model
Let yij denote the presence (yij = 1) or absence (yij = 0) of multinomial outcomes
j, j = 1, . . . , J , for observation i, i = 1, . . . , N . Let xi denote observation i′s R-
dimensional vector of the predictor variables, r = 1, ... . . . , R. We further assume
that

∑
j yij = 1. Taking J as the reference outcome, the MLR for predicting the

probabilities πij(xi) for outcomes j = 1, . . . , J − 1 can then be defined by the
multinomial logit [312]:

πij(xi) =
exp(αj + β′jxi)

1 +
∑J−1
h=1 exp(αh + β′hxi)

, (6.1)

where βj = (βj1, . . . , βjR)′ denotes the coefficients for the jth linear predictor, ex-
cept its intercept αj . For the reference outcome, πiJ(xi) =

1/
(

1 +
∑J−1
h=1 exp(αh + β′hxi)

)
. Hereafter, we refer to πij(xi) simply as the risk of

outcome j. ML estimation of model 6.1 proceeds by maximizing the log-likelihood
l(α,β) =

∑J
j=1

∑N
i=1 yij log πij(xi).

Penalized MLR

ML is known to produce parameter estimates β̂ that yield too extreme predictions
in new samples, when estimated in small samples. [3] In this paper we therefore
also apply lasso [310] (least absolute shrinkage and selection operator) and ridge
estimation[313, 314, 311, 315]. Both of these approaches to shrinkage work via a
penalty function and are directly applicable to MLR models. By shrinking the ML
estimates β̂ towards the null-effect (β = 0), both lasso and ridge produce prob-
ability estimates that tend to be less extreme (further away from the boundaries
of 0 and 1) than the probabilities one would obtain with ML MLR. A slightly
modified multinomial logit function is convenient for penalization, as the penal-
ization removes the necessity to put restrictions on the reference category [316]:
πij(xi) = exp(α∗j + β∗′j xi)/

∑J
h=1 exp(α∗h + β∗′h xi).

The penalized MLR models are estimated by maximizing the penalized
log-likelihoods l(α∗,β∗) =

∑J
j=1

∑N
i=1{yij log π∗ij(xi)} − λ1

∑J
j=1

∑R
r=1 |β∗jr| and

l(α∗,β∗) =
∑J
j=1

∑N
i=1{yij log π∗ij(xi)} − λ2

∑J
j=1

∑R
r=1 β

∗2
jr , for lasso and ridge,

respectively. A consequence of the lasso’s penalty is that coefficients can be shrunk
to (exactly) zero, thereby removing a predictor variable from the equation. Estima-
tion occurs via pathwise coordinate descent, which starts at large λ1 and λ2 values,
such that all of the β∗ are zero. The λ1 and λ2 values are then iteratively decre-
mented, allowing the β∗ vectors to increasingly deviate from zero. Maximization of
the penalized log-likelihood proceeds by performing partial Newton steps, leading
to a path of solutions. For every value of both λ1 and λ2 a β∗ vector is attained.
[316] In this study, the optimal λ1 and λ2 parameters (i.e., tuning parameters), for
lasso and ridge respectively, are estimated by a search over a grid of possible values,
selecting the values for λ1 and λ2 that minimize Deviance in 10-fold cross-validation.
[316]
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6.2.2 Predictive performance measures
As not all predictive performance measures for binary outcomes directly generalize
to multinomial outcomes, we provide details of the multinomial predictive perfor-
mance measures that were used in our study in this section, and an overview in
Table 6.1.

Table 6.1: Multinomial Prediction Performance Measures.

Aspect Measure Interpretation

Discrimination PDI PDI = 1/J : no discriminative performance.
PDI = 1: perfect discrimination.

Calibration Calibration Calibration slope < 1: overfitting.
slope Calibration slope > 1: underfitting.

Overall Brier score Brier score = 0: Perfect predictive performance.
performance Brier score = 2: completely imperfect predictive

performance.
Nagelkerke R2 Nagelkerke R2 = 0: 0% explained variation.

Nagelkerke R2 = 1: 100% explained variation.

Discrimination

The discriminative ability of prediction models with a binary outcome is commonly
expressed by the concordance probability or c-statistic, [317] and by the c-index
for time-to-event models. [318] We consider a generalization of the c-statistic to
multinomial outcomes: the polytomous discrimination index (PDI). [319] The PDI
is an estimator for the probability of correctly identifying a randomly selected case
in a set of cases consisting of one case from each outcome category. [319] The PDI
takes on the value 1 for perfect discrimination and 1/J for random discrimination.
The PDI can be interpreted as the probability that the outcome of a randomly
selected individual in a set of J different cases is correctly identified. [319]

The PDI is defined as follows. Let qh, qh = 1, . . . , nh, denote the observations
with outcome h, and πij∈qh(xi) denote the predicted risk of outcome j for indi-
viduals with outcome h. First, the outcome specific components of the PDI are
computed, denoted by PDIh. For each possible set of J cases with a different ob-
served outcome, determine whether the predicted risk for outcome h is highest for a
case with observed outcome h. The value on an outcome specific component PDIh
equals the proportion of sets for which this is true, and can be interpreted as the
probability that a randomly selected individual with outcome h is correctly identi-
fied as such in a set of J randomly selected cases. Second, the PDI is given by the
average of the outcome specific PDIh components. Formally, [319]

PDIh =
1

n1 · · ·nJ

n1∑
q1=1

. . .

nJ∑
qJ=1

Ch (πij∈q1(xi), . . . , πij∈qJ (xi)) , (6.2)

where Ch is an indicator function taking on the value 1 if πij∈qh(xi) > πij∈qj (xi),
for all qj 6= qh, or 1/t in case of ties, where t is the number of ties in
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πij∈q1(xi), . . . , πij∈qJ (xi), or else 0. By taking the mean of outcome specific com-
ponents, the PDI is obtained: PDI = 1

J

∑J
h=1 PDIh.

Calibration slope

Calibration slopes are a measure of the calibration of a prediction model’s linear
predictors lpij , lpij = αj + β′jxi. For computation of the calibration slopes, we
followed the approach of Van Hoorde et al., [320] who extended the recalibration
framework of the binary logistic model [244, 321] to multinomial outcomes:

log
(
P (yi = j)

P (yi = Q)

)
= γj + θj lpi,j (6.3)

where γj is the calibration intercept for outcome category j, lpi,j is the linear
predictor of outcome category j versus the referent Q (which need not be the same
as the referent in equation 6.1) for observation i, and θj is the calibration slope
for outcome category j versus the referent Q. Estimates of θj 6=Q are obtained with
unpenalized MLR, whereas θQ naturally equals zero and is disregarded.

As ML perfectly calibrates the coefficients to the development sample, it will
always attain a calibration slope of 1 there. We assess out-of-sample calibration,
where a slope < 1 is evidence of overfitting, and a slope > 1 is evidence of underfit-
ting. [321] As the value of the multinomial calibration slopes depend slightly on the
choice of the reference category, [320] we computed all possible calibration slopes
with each category as the reference once.

6.2.3 Overall performance
The overall performance measures quantify the distance between the predicted and
observed outcomes and thus capture both the discrimination and calibration of the
model. [3] The Brier score quantifies the squared distance between the observed
outcomes and the predicted probabilities. [322] It can take values from 0 for perfect
predictions to 2 for completely inaccurate predictions. The Brier score for a MLR
model is defined by:

Brier score =
1

N

J∑
j=1

N∑
i=1

(πij(xi)− yij)2. (6.4)

The Nagelkerke R2 estimates the proportion of explained variation in a discrete
outcome variable [323]: it equals 0 for no explained variation and 1 for a complete
explanation of the variation. [323] Let l(0) and l(β̂) be the log-likelihood for an
intercept-only MLR model and the MLR model under scrutiny, respectively. Then:

R2
Nagelkerke =

1− exp( 2
N [l(β̂)− l(0)])

1− exp( 2
N l(0))

. (6.5)
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6.3 Simulation study - methods

6.3.1 Main simulation settings
For ease of presentation we focused our simulations on the simplest extension of the
binary logistic regression model by studying the MLR for J = 3 outcome categories.
Sixty-three Monte Carlo simulation scenarios were investigated by fully crossing the
following simulation factors:

• Multinomial EPV : 3, 5, 10, 15, 20, 30 and 50 events per predictor.
• Relative frequencies of the 3 outcome categories. Levels: 1 : ( 1

3 ,
1
3 ,

1
3 );

2 : ( 2
20 ,

9
20 ,

9
20 ); 3 : ( 8

10 ,
1
10 ,

1
10 ).

• Number of predictors (R): 4, 8 and 16.

In binary logistic regression, the number of events per variable (EPV ) is defined by
the ratio of the number of observations in the smallest of two outcome categories
divided by the number of estimated regression coefficients, excluding the intercept.
[324] In parallel, we define EPVm by ratio of the smallest number of observations
in the multinomial outcome categories divided by the effective number of regression
coefficients excluding the intercepts. The number of effective regression coefficients
excluding the intercept is given by: (J − 1)R. Further, for categorical predictors
with G categories the number of effective regression coefficients per predictor is
(J − 1)(G− 1).

Predictor covariate vectors were drawn from multivariate normal distributions
with the covariance matrix an identity matrix. For the development of clinical
prediction models, predictor variables may be selected based on expert knowledge,
[3, 58] in which case variables with varying predictive impact may be present, and
true noise variables predictors (regression coefficient of data generation mechanism
of exactly zero) may be infrequent. This simulation was designed to mimic this
situation and therefore did not include noise predictors. For the scenario with
R = 4, β1 = {−0.2,−0.2,−0.5,−0.8} and β2 = {0.2, 0.2, 0.5, 0.8}, corresponding
to small (±0.2), medium (±0.5) and large (±0.8) predictor effects of category 1
and 2 versus the referent category. [325] For simulation scenarios with 8 and 16
predictors, predictor effects were similarly distributed, i.e. 1

2 small, 1
4 medium and

1
4 large effects. The true intercepts for each linear predictor were approximated
numerically (Appendix A, https://doi.org/10.1002/sim.8063). Outcome data were
sampled from a multinomial distribution, where the probability of drawing each
outcome was computed by applying the multinomial logit function (equation 6.1)
on the generated covariate vectors.

6.3.2 Sensitivity analyses
In the sensitivity analyses, we studied the effect of additional factors on the pre-
dictive performance of MLR. In each of these scenarios, EPVm in the development
data sets was fixed to 10, frequencies of outcome categories were equal and the
number of predictors was set to 4. The factors that were varied were:

• Correlations between predictors. Levels: 0; 0.2; 0.3; 0.5; 0.7 and 0.9.
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• Type of predictors. Levels: Continuous (standard normal) and binary (with
relative frequency 1/2).

6.3.3 Development and validation data sampling procedure
Two-thousand replications per simulation scenario were performed. For each repli-
cation a development data set was generated (total sample size per scenario is given
in Tables 6.2 - 6.4), as well as an independent (external) validation data set of
size N = 30, 000. On each development data set, MLR models were estimated by
ML (section 6.2.1), lasso and ridge (section 6.2.1). For these models, the apparent
discrimination predictive performance and apparent overall predictive performance
(Table 6.1) were calculated on the development data. Further, the out-of-sample
predictive performance (all measures in Table 6.1) of the fitted models were evalu-
ated on the validation data sets. Similar to earlier EPV studies, [326] EPVm and
N were fixed for each simulation data set by sampling covariate and outcome data
until these criteria were met, while disregarding oversampled data.

6.3.4 Software
Simulations and analyses were carried out in R 3.2.2. [201] For the fitting of
ML the mlogit [327] and maxLik [328] packages were used. For the fitting of
ridge and lasso the glmnet package was used. [316] In a pilot study (data not
shown), the sequence of default λ values generated for ridge MLR showed to be
insufficient. This issue was alleviated by extending the sequence with smaller values.
The models rarely failed to converge in general. On overall, in < 0.01% of the
main analyses at least one of the models did not converge, whereas in the scenario
with highest non-convergence this was 0.3%. In the sensitivity analyses all models
converged. Our simulation code and aggregated data are available via GitHub
(https://github.com/VMTdeJong/Multinomial-Predictive-Performance).

6.4 Results

6.4.1 Calibration
Calibration slopes could not be computed for the lasso in 0.04% of the simulations,
when all predictor coefficients were shrunk to exactly zero. We report the results
of the two multinomial calibration slopes where category 3 was taken as reference
for simplicity of interpretation (Figure 6.1and Table 6.2). The distribution of cal-
ibration slopes estimated on the validation data sets was right skewed for some
simulation scenarios. This was especially the case for the penalization methods,
due to extensive shrinkage of coefficients to values very close to zero in a few sim-
ulation replications. Therefore, we report the medians of the calibration slopes as
an overall measure of calibration.

As expected, the calibration slopes estimated on the validation data approached
1 (perfect calibration) as EPVm increased for all methods (Figure 6.1and Table
6.2). Calibration slopes for ML were consistently smaller than 1 for all scenarios
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with low EPVm, demonstrating overfit. For penalized MLR, we observed a different
calibration pattern than for ML. In scenarios where both EPVm and total sample
size were low, the calibration tended to be in the opposite direction for the two cal-
ibration slopes for the same model. That is, one of the two multinomial calibration
slopes tended to be larger than 1 (indicating underfit) while the other tended to be
smaller than 1 (indicating overfit). However, both lasso and ridge were on overall
better calibrated than ML, as the calibration slopes approached the value of 1 more
quickly than for ML. Further, in most scenarios the calibration slopes of ridge MLR
approached the perfect value of 1 more quickly than those of lasso MLR.

Median calibration slopes for all methods tended to be closer to 1 when there
was one large or one small outcome than when the outcome categories were equal
in size, when EPVm was kept constant. Further, the median calibration slopes
for one pair of outcomes (categories 3 and 2) improved, when only the remaining
outcome category (category 1) increased in size. Additionally, calibration slopes
for all methods were closer to optimal as the number of predictors increased, while
EPVm was kept constant. As the number of predictors and the relative frequencies
of the outcome categories modify the total sample size, calibration slopes tended
to be closer to 1 as the total sample size increased. Finally, calibration slopes were
closer to 1 as the model strength of the data generating mechanism increased, as
quantified by the reference PDI and Brier scores.
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Table 6.2: Median Multinomial Calibration Slopes for ML, Lasso and Ridge.

Maximum Likelihood Lasso Ridge
RF R EPVm N Slope 3 vs 1 3 vs 2 3 vs 1 3 vs 2 3 vs 1 3 vs 2
1
3 ,

1
3 ,

1
3 . 4 3 72 0.556’ 0.707’ 0.823* 1.097* 0.836* 1.150*

5 120 0.686* 0.799’ 0.867* 1.037* 0.892* 1.075*
10 240 0.823’ 0.891’ 0.919* 1.006’ 0.951* 1.042’
15 360 0.873’ 0.924’ 0.937* 0.995’ 0.965’ 1.028’
20 480 0.901’ 0.943 0.946’ 0.994’ 0.974’ 1.023’
30 720 0.933’ 0.965 0.959’ 0.994 0.982’ 1.019
50 1200 0.958 0.973 0.972 0.987 0.989’ 1.006

8 3 144 0.609’ 0.728’ 0.801’ 1.001’ 0.819* 1.049*
5 240 0.734’ 0.825’ 0.860’ 0.987* 0.885’ 1.026’
10 480 0.845’ 0.900’ 0.912’ 0.976 0.937’ 1.006’
15 720 0.888 0.927 0.930’ 0.975 0.955’ 1.000
20 960 0.924 0.949 0.954 0.984 0.976 1.006
30 1440 0.945 0.966 0.964 0.985 0.981 1.003
50 2400 0.963 0.977 0.976 0.990 0.985 1.000

16 3 288 0.644’ 0.738 0.811’ 0.971’ 0.830’ 1.000’
5 480 0.758’ 0.827 0.868’ 0.964 0.888’ 0.991’
10 960 0.865 0.908 0.921 0.972 0.943 0.996
15 1440 0.905 0.936 0.943 0.976 0.962 0.995
20 1920 0.926 0.951 0.954 0.980 0.968 0.997
30 2880 0.949 0.967 0.967 0.987 0.979 0.998
50 4800 0.970 0.980 0.983 0.993 0.988 0.998

2
20 ,

9
20 ,

9
20 . 4 3 240 0.737* 0.900’ 0.860* 1.033’ 0.901* 1.084*

5 400 0.822* 0.934 0.899* 1.013’ 0.929* 1.046’
10 800 0.905’ 0.966 0.942’ 1.004 0.965’ 1.026
15 1200 0.935’ 0.979 0.956’ 1.000 0.975’ 1.020
20 1600 0.948’ 0.983 0.962’ 0.996 0.978’ 1.013
30 2400 0.970’ 0.990 0.978’ 0.999 0.989 1.010
50 4000 0.981 0.994 0.986 0.999 0.994 1.006

8 3 480 0.774’ 0.905 0.857’ 1.006’ 0.884’ 1.036’
5 800 0.855’ 0.939 0.906’ 0.998 0.927’ 1.021
10 1600 0.921’ 0.966 0.944 0.991 0.959’ 1.009
15 2400 0.948 0.979 0.962 0.994 0.975 1.007
20 3200 0.961 0.984 0.971 0.995 0.981 1.006
30 4800 0.972 0.989 0.979 0.997 0.985 1.003
50 8000 0.983 0.993 0.988 0.998 0.992 1.002

16 3 960 0.796 0.898 0.861 0.983 0.876 1.003
5 1600 0.866 0.934 0.904 0.980 0.921 1.000
10 3200 0.930 0.966 0.948 0.987 0.960 1.000
15 4800 0.951 0.976 0.966 0.991 0.972 0.997
20 6400 0.964 0.982 0.974 0.993 0.979 0.998
30 9600 0.974 0.987 0.981 0.994 0.986 0.999
50 16000 0.985 0.993 0.990 0.997 0.992 1.000

8
10 ,

1
10 ,

1
10 . 4 3 240 0.745* 0.818’ 0.896* 0.993* 0.923* 1.048*

5 400 0.840* 0.878’ 0.932* 0.982’ 0.964* 1.017*
10 800 0.914’ 0.940’ 0.954’ 0.980’ 0.984’ 1.014’
15 1200 0.943’ 0.960’ 0.964’ 0.985 0.993’ 1.012’
20 1600 0.953’ 0.967 0.970’ 0.984 0.992’ 1.005’
30 2400 0.965 0.976 0.974 0.986 0.990 1.002
50 4000 0.980 0.988 0.985 0.994 0.995 1.004

8 3 480 0.801’ 0.851 0.909’ 0.976’ 0.938’ 1.007’
5 800 0.867’ 0.905 0.927’ 0.970 0.958’ 1.004’
10 1600 0.932 0.954 0.958 0.980 0.982 1.007
15 2400 0.952 0.967 0.967 0.981 0.987 1.002
20 3200 0.964 0.976 0.976 0.988 0.990 1.002
30 4800 0.976 0.984 0.984 0.992 0.992 0.999
50 8000 0.984 0.990 0.990 0.995 0.996 1.002

16 3 960 0.822 0.874 0.913 0.973 0.944 1.009
5 1600 0.891 0.921 0.941 0.975 0.968 1.004
10 3200 0.943 0.959 0.966 0.984 0.984 1.002
15 4800 0.959 0.973 0.975 0.988 0.988 1.002
20 6400 0.972 0.981 0.983 0.992 0.993 1.003
30 9600 0.980 0.987 0.989 0.995 0.993 1.000
50 16000 0.988 0.993 0.993 0.998 0.997 1.002

Each multinomial calibration slope consisted of 2 slopes, where category 3 was taken as reference. RF:
relative frequencies of the outcome categories. R: Number of predictors. EPVm: multinomial events per
variable. N: total sample size. SE are obtained by taking the SD of 105 bootstraps. SE are indicated as
follows: omitted < .0025 ≤ ’ < 0.005 ≤ * ≤ 0.012.
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Figure 6.1: Median calibration slopes for ML, lasso and ridge.
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Perfect calibration (1) has been included as reference. Horizontal axis: number of predictors
varied. Vertical axis: relative frequency varied. Solid lines: category 3 vs 2. Dashed lines:
category 3 vs 1.
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6.4.2 Discrimination
The values of all out-of-sample PDI (i.e. estimated on validation data) were con-
sistently lower than the within-sample PDI (i.e. estimated on development data),
reflecting over-optimism of the within-sample PDI statistic, due to overfitted predic-
tion models (Figure 6.2and Table 6.3). As EPVm increased, both the within- and
out-of-sample PDI approached the true values of the data generating mechanism.
In situations where the outcome categories were unequally sized, out-of-sample PDI
was better than where outcome categories were equally sized, while EPVm was kept
constant. The PDI of all models improved slightly as the number of predictors in-
creased, while EPVm was kept constant. Out-of-sample discrimination, as well as
within-sample discrimination, were nearly equivalent for ML, ridge and lasso.

6.4.3 Overall performance
The results of the Brier score (Figure 6.3 and Table 6.4) were similar to the results
of Nagelkerke R2 (Figure 1 and Table 1 of Appendix B, https://doi.org/10.1002/
sim.8063). The out-of-sample Brier scores were consistently higher than the within-
sample Brier scores, again reflecting over-optimism of the within-sample statistics.
As EPVm increased, both the within-sample and out-of-sample Brier score ap-
proached that of the data generating mechanism. In situations where the outcome
categories were unequally sized, out-of-sample Brier scores were better than where
outcome categories were equally sized. Though, the Brier scores were marginally
worse as the number of predictors increased.

Out-of-sample Brier scores were slightly better for ridge and lasso than for ML
in situations with low EPVm (Figure 6.3 and Table 6.4). Within-sample Brier
scores were closer to out-of-sample Brier scores for lasso and ridge than for ML in
situations with low EPVm, reflecting a decrease in optimism of the within-sample
statistics, by the application of penalization.
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Table 6.3: Percentage Difference between PDI of ML, Lasso and Ridge and the
Reference.

Within-sample Out-of-sample
RF R Ref. EPVm N ML Lasso Ridge ML Lasso Ridge
1
3 ,

1
3 ,

1
3 . 4 0.59 3 72 9.28* 7.21* 8.98* -5.72’ -7.36’ -6.47’

5 120 6.00* 5.37* 5.88* -3.86 -4.70’ -4.38
10 240 3.21* 3.07* 3.16* -2.29 -2.58 -2.53
15 360 2.18’ 2.13’ 2.16’ -1.65 -1.82 -1.79
20 480 1.65’ 1.63’ 1.64’ -1.32 -1.43 -1.42
30 720 1.15’ 1.14’ 1.15’ -0.91 -0.96 -0.96
50 1200 0.85’ 0.85’ 0.85’ -0.61 -0.63 -0.63

8 0.65 3 144 8.00* 7.36* 7.73* -5.18 -6.22 -6.01
5 240 4.88* 4.69* 4.80’ -3.51 -4.05 -3.97
10 480 2.75’ 2.72’ 2.74’ -1.95 -2.15 -2.13
15 720 2.00’ 1.99’ 1.99’ -1.41 -1.51 -1.51
20 960 1.34’ 1.34’ 1.34’ -1.10 -1.16 -1.16
30 1440 0.96 0.96 0.96 -0.78 -0.81 -0.81
50 2400 0.64 0.64 0.64 -0.50 -0.51 -0.51

16 0.72 3 288 6.41’ 6.09’ 6.20’ -4.65 -5.56 -5.43
5 480 4.04’ 3.96’ 3.99’ -3.01 -3.43 -3.38
10 960 2.06 2.05 2.05 -1.68 -1.82 -1.81
15 1440 1.44 1.44 1.44 -1.18 -1.24 -1.24
20 1920 1.11 1.11 1.11 -0.92 -0.96 -0.97
30 2880 0.76 0.76 0.76 -0.64 -0.66 -0.66
50 4800 0.47 0.47 0.47 -0.40 -0.41 -0.41

2
20 ,

9
20 ,

9
20 . 4 0.58 3 240 5.20* 4.92* 5.15* -2.79 -3.03 -2.76

5 400 3.51* 3.41* 3.50* -1.98 -2.10 -1.99
10 800 1.95’ 1.93’ 1.95’ -1.25 -1.30 -1.26
15 1200 1.47’ 1.46’ 1.47’ -0.93 -0.96 -0.94
20 1600 1.18’ 1.18’ 1.18’ -0.74 -0.76 -0.75
30 2400 0.75 0.75 0.75 -0.55 -0.56 -0.56
50 4000 0.46 0.46 0.46 -0.37 -0.38 -0.38

8 0.64 3 480 4.42’ 4.33’ 4.38’ -2.47 -2.66 -2.60
5 800 2.86’ 2.83’ 2.85’ -1.75 -1.86 -1.84
10 1600 1.69’ 1.69’ 1.69’ -1.05 -1.09 -1.09
15 2400 1.14 1.13 1.13 -0.77 -0.79 -0.79
20 3200 0.92 0.92 0.92 -0.62 -0.63 -0.63
30 4800 0.64 0.64 0.64 -0.44 -0.45 -0.45
50 8000 0.45 0.45 0.45 -0.29 -0.29 -0.30

16 0.70 3 960 3.73’ 3.70’ 3.70’ -2.27 -2.48 -2.46
5 1600 2.42 2.41 2.41 -1.52 -1.62 -1.62
10 3200 1.34 1.34 1.34 -0.88 -0.91 -0.92
15 4800 0.97 0.97 0.97 -0.64 -0.66 -0.66
20 6400 0.72 0.72 0.71 -0.50 -0.51 -0.51
30 9600 0.56 0.56 0.56 -0.35 -0.35 -0.36
50 16000 0.35 0.35 0.35 -0.23 -0.23 -0.23

8
10 ,

1
10 ,

1
10 . 4 0.62 3 240 4.38* 3.75* 4.05* -4.08’ -5.11’ -5.05’

5 400 2.72* 2.54* 2.63* -2.60 -3.03 -2.98
10 800 1.45’ 1.41’ 1.42’ -1.42 -1.53 -1.53
15 1200 0.91’ 0.90’ 0.90’ -0.98 -1.03 -1.04
20 1600 0.76’ 0.76’ 0.76’ -0.76 -0.79 -0.79
30 2400 0.63’ 0.63’ 0.63’ -0.52 -0.54 -0.54
50 4000 0.33 0.33 0.33 -0.33 -0.34 -0.34

8 0.70 3 480 3.30’ 3.13’ 3.22’ -3.06 -3.53 -3.46
5 800 2.06’ 2.01’ 2.03’ -1.93 -2.12 -2.10
10 1600 1.00’ 0.99’ 0.99’ -1.03 -1.08 -1.08
15 2400 0.74 0.74 0.74 -0.69 -0.71 -0.71
20 3200 0.53 0.53 0.53 -0.55 -0.57 -0.57
30 4800 0.39 0.39 0.39 -0.37 -0.38 -0.38
50 8000 0.26 0.26 0.26 -0.23 -0.23 -0.23

16 0.79 3 960 2.27’ 2.22’ 2.25’ -2.18 -2.41 -2.36
5 1600 1.37 1.36 1.37 -1.34 -1.43 -1.41
10 3200 0.73 0.73 0.73 -0.71 -0.73 -0.73
15 4800 0.48 0.48 0.48 -0.48 -0.49 -0.49
20 6400 0.34 0.34 0.34 -0.36 -0.36 -0.36
30 9600 0.24 0.24 0.24 -0.24 -0.25 -0.25
50 16000 0.12 0.12 0.12 -0.15 -0.15 -0.15

Reference values obtained with the data generating mechanism. All SE of reference < 10−4. RF:
relative frequencies of the outcome categories. R: Number of predictors. EPVm: multinomial events
per variable. ML: Maximum Likelihood. N: total sample size. PDI: polytomous discrimination
index. SE are indicated as follows: omitted < 0.05 ≤ ’ < 0.10 ≤ * ≤ 0.22. 123
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Figure 6.2: Percent difference in PDI between reference and ML, lasso and ridge.
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Zero (i.e. no difference with the data generating mechanism) has been included as reference.
Left: stratified by number of predictors, frequency marginalized out. Right: stratified by
frequency, number of predictors marginalized out. Dotted lines: within-sample PDI. Solid lines:
out-of-sample PDI.
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Table 6.4: Percentage Difference between Brier scores of ML, Lasso and Ridge
and the Reference.

Within-sample Out-of-sample
RF R Ref. EPVm N ML Lasso Ridge ML Lasso Ridge
1
3 ,

1
3 ,

1
3 . 4 0.55 3 72 -6.89* -3.99* -4.58* 7.01’ 6.14’ 5.70’

5 120 -4.14* -3.14* -3.26* 4.00’ 3.76 3.56
10 240 -1.96’ -1.75’ -1.73’ 1.94 1.90 1.84
15 360 -1.26’ -1.18’ -1.16’ 1.29 1.29 1.25
20 480 -0.92’ -0.88’ -0.86’ 0.97 0.97 0.94
30 720 -0.59 -0.58 -0.57 0.62 0.62 0.61
50 1200 -0.43 -0.43 -0.42 0.38 0.38 0.38

8 0.50 3 144 -7.62* -5.84* -5.97* 7.72’ 6.75’ 6.52’
5 240 -4.30* -3.74* -3.72* 4.47 4.24 4.10
10 480 -2.28’ -2.16’ -2.13’ 2.15 2.12 2.06
15 720 -1.60’ -1.56’ -1.53’ 1.45 1.44 1.40
20 960 -0.99’ -0.97’ -0.96’ 1.06 1.07 1.04
30 1440 -0.69 -0.68 -0.67 0.72 0.72 0.71
50 2400 -0.45 -0.45 -0.44 0.43 0.43 0.43

16 0.44 3 288 -8.70* -7.29* -7.29* 9.01’ 8.16 7.87
5 480 -5.19’ -4.75’ -4.69’ 5.15 4.92 4.76
10 960 -2.47’ -2.39’ -2.34’ 2.53 2.50 2.45
15 1440 -1.66’ -1.62’ -1.60’ 1.68 1.67 1.64
20 1920 -1.25 -1.23 -1.21 1.27 1.26 1.25
30 2880 -0.82 -0.81 -0.81 0.84 0.83 0.83
50 4800 -0.49 -0.49 -0.49 0.50 0.50 0.50

2
20 ,

9
20 ,

9
20 . 4 0.42 3 240 -2.07* -1.74* -1.66* 1.95 1.96 1.87

5 400 -1.30’ -1.18’ -1.13’ 1.16 1.17 1.14
10 800 -0.61’ -0.58’ -0.56’ 0.57 0.58 0.57
15 1200 -0.37’ -0.36’ -0.35’ 0.37 0.38 0.37
20 1600 -0.34’ -0.34’ -0.33’ 0.28 0.29 0.28
30 2400 -0.15 -0.15 -0.15 0.19 0.19 0.19
50 4000 -0.08 -0.08 -0.07 0.11 0.11 0.11

8 0.36 3 480 -2.28* -2.09* -2.03* 2.23 2.19 2.11
5 800 -1.26’ -1.20’ -1.17’ 1.35 1.34 1.31
10 1600 -0.68’ -0.67’ -0.66’ 0.67 0.67 0.66
15 2400 -0.39 -0.39 -0.38 0.44 0.44 0.44
20 3200 -0.29 -0.29 -0.28 0.33 0.33 0.33
30 4800 -0.18 -0.18 -0.18 0.22 0.22 0.22
50 8000 -0.14 -0.14 -0.14 0.13 0.13 0.13

16 0.31 3 960 -2.70’ -2.56’ -2.52’ 2.77 2.70 2.62
5 1600 -1.60’ -1.56’ -1.54’ 1.63 1.62 1.58
10 3200 -0.81 -0.80 -0.79 0.81 0.80 0.79
15 4800 -0.56 -0.55 -0.55 0.54 0.53 0.53
20 6400 -0.41 -0.41 -0.40 0.40 0.40 0.40
30 9600 -0.34 -0.34 -0.34 0.26 0.26 0.26
50 16000 -0.16 -0.16 -0.16 0.16 0.16 0.16

8
10 ,

1
10 ,

1
10 . 4 0.32 3 240 -2.61’ -2.06’ -2.06’ 2.73 2.51 2.42

5 400 -1.56’ -1.38’ -1.36’ 1.59 1.54 1.48
10 800 -0.76 -0.73 -0.71 0.80 0.80 0.77
15 1200 -0.48 -0.47 -0.46 0.52 0.53 0.52
20 1600 -0.39 -0.38 -0.37 0.40 0.40 0.39
30 2400 -0.28 -0.28 -0.27 0.26 0.26 0.26
50 4000 -0.18 -0.18 -0.18 0.15 0.15 0.15

8 0.29 3 480 -3.11’ -2.69’ -2.64’ 3.21 3.08 2.97
5 800 -1.81’ -1.69’ -1.64’ 1.90 1.87 1.81
10 1600 -0.86’ -0.84’ -0.81’ 0.93 0.93 0.92
15 2400 -0.63 -0.63 -0.61 0.61 0.61 0.60
20 3200 -0.45 -0.45 -0.44 0.47 0.47 0.47
30 4800 -0.26 -0.26 -0.26 0.31 0.31 0.31
50 8000 -0.19 -0.19 -0.19 0.19 0.19 0.19

16 0.26 3 960 -3.80’ -3.45’ -3.35’ 3.98 3.87 3.73
5 1600 -2.25’ -2.15’ -2.08’ 2.33 2.30 2.24
10 3200 -1.14’ -1.12’ -1.10’ 1.17 1.17 1.15
15 4800 -0.74 -0.73 -0.72 0.78 0.77 0.77
20 6400 -0.55 -0.55 -0.54 0.57 0.57 0.57
30 9600 -0.38 -0.38 -0.37 0.38 0.38 0.38
50 16000 -0.19 -0.19 -0.19 0.23 0.23 0.23

Reference values obtained with the data generating mechanism. All SE of reference < 5 ∗ 10−5. R:
Number of predictors. EPVm: multinomial events per variable. ML: Maximum Likelihood. N: total
sample size. SE are indicated as follows: omitted < 0.05 ≤ ’ < 0.10 ≤ * ≤ 0.18. 125
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Figure 6.3: Percent difference in Brier scores between reference and ML, lasso and
ridge.

Events per variable

Method

ML

Lasso

Ridge

Reference

Within-sample

Out-of-sample

3 10 20 30 50

-8.0

-5.3

-2.7

0.0

2.7

5.3

8.0

B
ri

er
 s

co
re

, 
%

 d
if

fe
re

n
ce

 o
f 

re
fe

re
n

ce

4 predictors

184 920 1840 3067

Total sample size

Events per variable

Method

ML

Lasso

Ridge

Reference

Within-sample

Out-of-sample

3 10 20 30 50

-8.0

-5.3

-2.7

0.0

2.7

5.3

8.0

B
ri

er
 s

co
re

, 
%

 d
if

fe
re

n
ce

 o
f 

re
fe

re
n
ce

8 predictors

368 1840 3680 6133

Total sample size

Events per variable

Method

ML

Lasso

Ridge

Reference

Within-sample

Out-of-sample

3 10 20 30 50

-8.0

-5.3

-2.7

0.0

2.7

5.3

8.0

B
ri

er
 s

co
re

, 
%

 d
if

fe
re

n
ce

 o
f 

re
fe

re
n

ce

16 predictors

736 3680 7360 12267

Total sample size

Events per variable

Method

ML

Lasso

Ridge

Reference

Within-sample

Out-of-sample

3 10 20 30 50

-8.0

-5.3

-2.7

0.0

2.7

5.3

8.0

B
ri

er
 s

co
re

, 
%

 d
if

fe
re

n
ce

 o
f 

re
fe

re
n

ce

Equal frequencies

168 840 1680 2800

Total sample size

Events per variable

Method

ML

Lasso

Ridge

Reference

Within-sample

Out-of-sample

3 10 20 30 50

-8.0

-5.3

-2.7

0.0

2.7

5.3

8.0

B
ri

er
 s

co
re

, 
%

 d
if

fe
re

n
ce

 o
f 

re
fe

re
n
ce

One small category

560 2800 5600 9333

Total sample size

Events per variable

Method

ML

Lasso

Ridge

Reference

Within-sample

Out-of-sample

3 10 20 30 50

-8.0

-5.3

-2.7

0.0

2.7

5.3

8.0

B
ri

er
 s

co
re

, 
%

 d
if

fe
re

n
ce

 o
f 

re
fe

re
n

ce

One large category

560 2800 5600 9333

Total sample size

Zero (i.e. no difference with the data generating mechanism) has been included as reference.
Left: stratified by number of predictors, frequency marginalized out. Right: stratified by fre-
quency, number of predictors marginalized out. Dotted lines: within-sample Brier scores. Solid
lines: out-of-sample Brier scores.
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6.4.4 Sensitivity Analyses
Correlations between predictors

The results of the calibration slopes, PDI and Brier score are shown in Figure 6.4for
different values of the correlations between the predictors. For ML, as the corre-
lations between the predictors was increased a small improvement was observed in
the calibration slopes and PDI, while the Brier score deteriorated. The calibration
slopes increased as the correlations between the predictors increased, for both pe-
nalized methods. When the correlations between predictors were very high, both
penalization methods yielded underfitted models. The PDI improved for both pe-
nalization methods as the correlations between the predictors increased, contrasting
with ML, where little difference could be observed. For both penalization methods,
the Brier score was better when the correlations between the predictors were very
high, as compared to when the correlations were moderate or low. The Brier scores
for both penalization methods were superior or equivalent to those for ML, for all
values of the correlations between the predictors.

Type of predictors

The results of the calibration slopes, PDI and Brier score are shown for a scenario
with continuous and with binary predictors in Figure 6.5. For ML, the calibration
slopes were smaller when the predictors were binary, indicating more overfit. Also,
the out-of-sample PDI was further from the reference, and the difference with the
within-sample PDI was also larger (larger optimism), when the predictors were
binary than when they were continuous. We observed barely any difference in the
Brier scores between binary and continuous predictors.

For the penalization methods, the calibration slopes were further away from 1
when the predictors were binary, indicating both more underfit and overfit, than
when they were continuous (Figure 6.5). This contrasts with the calibrations slopes
for ML, which consistently showed more overfit when the predictors were binary.
Similar to ML, the difference between the PDI for the penalization methods and the
reference was slightly larger when the predictors were binary. Finally, we observed
little difference in the out-of-sample Brier scores for the penalization methods when
the type of predictor was varied, similar to ML.
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Figure 6.4: Predictive performance for various values of correlations between
predictors, for ML, lasso and ridge.
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EPVm = 10, the number of predictors = 4, and the frequencies of the outcome categories are
equal, giving a total sample size of 240. Top: median calibration slopes, where 1 is included
as reference. Middle: Percent difference in PDI compared with reference. Bottom: Percent
difference in Brier score compared with reference. For the PDI and Brier score, zero (i.e. no
difference with the data generating mechanism) has been included as reference. Solid and dashed
lines: out-of-sample. Dotted lines: within-sample.
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Figure 6.5: Predictive performance for ML, lasso and ridge for normal and binary
predictors.
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EPVm = 10, the number of predictors = 4, and the frequencies of the outcome categories are
equal, giving a total sample size of 240. Top: Calibration slopes, where perfect calibration (1)
has been included as reference. Middle: Percent difference in PDI compared with reference.
Bottom: percent difference in Brier score compared with reference. For the PDI and Brier score,
zero (i.e. no difference with the data generating mechanism) has been included as reference.
Some extreme values are not shown.
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Table 6.5: Prediction Models for Ovarian Tumors

ML Lasso (% shrinkage) Ridge (% shrinkage)
EPVm N Predictor Borderline Invasive Borderline Invasive Borderline Invasive

3 614 Intercept −3.96 −5.97 −3.74(5%) −5.55(7%) −3.89(2%) −5.51(8%)
Age 0.00 0.04 0.00(61%) 0.04(11%) 0.00(−18%) 0.04(9%)
Solid diameter 0.04 0.10 0.04(3%) 0.09(5%) 0.04(6%) 0.09(8%)
Papillations flow 1.27 0.52 1.23(3%) 0.47(10%) 1.31(−3%) 0.51(3%)
Irregular 1.37 0.50 1.21(12%) 0.47(4%) 1.26(8%) 0.49(2%)
Shadows −17.95 −4.28 −3.77(79%) −3.77(12%) −3.07(83%) −3.63(15%)
Ascites 1.77 3.23 1.54(13%) 2.92(10%) 1.51(15%) 2.90(10%)

5 1024 Intercept −3.87 −5.40 −3.74(3%) −5.16(4%) −3.84(1%) −5.11(5%)
Age 0.01 0.04 0.01(11%) 0.03(8%) 0.01(−1%) 0.03(6%)
Solid diameter 0.03 0.09 0.03(2%) 0.09(3%) 0.03(2%) 0.08(6%)
Papillations flow 1.74 0.88 1.71(2%) 0.83(5%) 1.74(0%) 0.85(4%)
Irregular 1.02 0.47 0.91(11%) 0.46(2%) 0.96(6%) 0.46(1%)
Shadows −2.53 −3.24 −2.53(0%) −2.96(9%) −2.18(14%) −2.91(10%)
Ascites 1.72 3.20 1.55(10%) 2.99(7%) 1.51(12%) 2.95(8%)

10 2049 Intercept −3.80 −5.40 −3.70(3%) −5.22(3%) −3.78(1%) −5.15(5%)
Age 0.00 0.03 0.00(14%) 0.03(6%) 0.00(−9%) 0.03(5%)
Solid diameter 0.03 0.09 0.03(1%) 0.09(3%) 0.03(0%) 0.08(6%)
Papillations flow 1.92 1.13 1.89(2%) 1.09(4%) 1.90(1%) 1.09(4%)
Irregular 1.21 0.56 1.11(8%) 0.55(1%) 1.14(6%) 0.55(1%)
Shadows −2.15 −2.87 −2.14(0%) −2.66(7%) −1.93(10%) −2.62(9%)
Ascites 1.45 2.85 1.31(10%) 2.68(6%) 1.28(12%) 2.66(6%)

The reference category is benign tumors. The models estimated by lasso and ridge have been
reparametrized into the reference-category model of equation 6.1. The shrinkage by lasso and
ridge is calculated relative to Maximum Likelihood (ML). EPVm: multinomial events per vari-
able. N: total size of development sample. Age: age in years. Diameter: maximum diameter of
solid component (continuous, but no increase > 50 mm). Papillations flow: presence of papilla-
tions with blood flow. Irregular: irregular cyst walls. Shadows: presence of acoustic shadows on
the echo. Ascites: presence of ascites in the Pouch of Douglas.
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6.5 Case study of ovarian cancer
We here present a case study applying penalized and unpenalized MLR to data
from a clinical study with the objective to produce a clinical prediction model to
predict whether an ovarian tumor is benign (n = 3183 or 66%), borderline ma-
lignant (n = 284 or 6%) or invasive (n = 1381 or 28%). The appropriateness of
treatment strategies for ovarian tumors depends on the assessment of the tumor
using noninvasive procedures, and choosing the most suitable treatment is impor-
tant as invasive treatments may worsen the prognosis. [329] Candidate predictors
were: age (years), presence of papillations with blood flow (yes/no), irregular cyst
walls (yes/no), presence of acoustic shadows on the echo (yes/no), presence of as-
cites in the Pouch of Douglas (yes/no), and maximum diameter of solid component
(continuous, but no increase > 50 mm).

For illustrative purposes, we partitioned the data set into disjoint development
(N = 2049, EPVm = 10) and validation sets (N = 2799). The relative frequencies
of the outcome categories were kept constant between development and validation
data. Further, we sampled from the development set to obtain two smaller develop-
ment data sets, sized N = 1024 (EPVm = 5) and N = 616 (EPVm = 3). We used
ML, lasso and ridge to estimate the multinomial logistic regression (MLR) models
in the development data sets (Table 6.5). In the EPVm = 10 and EPVm = 5 devel-
opment sets, the largest shrinkage by penalization we observed was 14%, compared
to the model estimated by ML. We observed up to 83% shrinkage in the EPVm = 3
sample.

The developed prediction models were tested in the validation set, thereby quan-
tifying the out-of-sample performance (Table 6.6). We observed that the PDI and
Brier scores of the penalized and unpenalized models improved as EPVm and the
total sample size increased, in accordance with the results of our simulations. For
EPVm = 3 the model estimated by ML showed overfit, as quantified by the multi-
nomial calibration slopes, whereas the penalized models were close to perfectly cal-
ibrated. For EPVm ≥ 5 we observed minor miscalibration for all models. Finally,
we observed negligible differences in values of the PDI and Brier score between the
three models, for each size of the development data, also in accordance with the
results of our simulations.

Table 6.6: Performance of Prediction Models for Ovarian Tumors

EPVm N Estimator slope 3 vs 1 slope 3 vs 2 PDI Brier score
3 614 ML 0.85 0.71 0.762 0.0759

Lasso 0.95 0.99 0.762 0.0756
Ridge 0.97 1.02 0.763 0.0753

5 1024 ML 0.98 0.94 0.767 0.0745
Lasso 1.03 0.99 0.768 0.0744
Ridge 1.05 1.01 0.767 0.0743

10 2049 ML 1.01 0.91 0.769 0.0741
Lasso 1.05 0.95 0.769 0.0740
Ridge 1.07 0.97 0.768 0.0740

EPVm: multinomial events per variable. N: total size of development sample. PDI:
polytomous discrimination index. ML: Maximum Likelihood. Performance was calcu-
lated on an independent sample.
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6.6 Discussion
We conducted an extensive simulation study to examine the predictive performance
of MLR models that are developed in samples with a ratio of 3 to 50 observations
in the smallest outcome category relative to the number of parameters estimated,
excluding intercepts. This ratio, which we here call ’multinomial EPV ’ (EPVm),
is closely related to EPV as known from the binary logistic regression literature.
[324, 304] In agreement with earlier studies focusing on binary models, [326, 306, 3]
we found that sufficient size of the smallest multinomial category is a factor for the
predictive performance of the MLR model. In this study, we have used the defini-
tion for EPVm that most closely matches the EPV definition for binary outcomes.
Further research could be focused on other possible EPV definitions. This study
has implications for the development of diagnostic and prognostic multinomial pre-
diction models, as it draws the basic outlines of what affects predictive performance
in multinomial logistic prediction models in practice.

Our results show that MLR models estimated with ML (i.e. unpenalized) tend
to be overfit even in samples with a relatively high number of EPVm. Overall
sample size and the method of analysis, i.e. whether or not shrinkage techniques
are applied, are clearly also important factors. The extent of overfit (i.e. model
miscalibration) was further affected by the relative sizes of the outcome categories.
We observed that calibration was worst when all outcome categories were of equal
size, EPVm was small and the number of predictors was low. When EPVm is
kept constant, model calibration improves as at least one of the outcome categories
grows in size, and as the number of predictors increases. In both scenarios, the total
sample size also increases. Total sample size is therefore likely an underlying factor
affecting model calibration.

Although MLR estimated with ridge and lasso tended to be slightly overfit or
underfit (or a combination thereof when one linear predictor was overfit while the
other was underfit), these penalized models generally showed better calibration than
ML, which in many scenarios showed overfit. Penalization reduces overfit of the
estimates by inducing a small bias in the coefficients, which reduces the variance
of the estimated probabilities. [313, 330] As overall performance is composed of
discrimination and calibration, [3] the improvement in calibration improves the
overall performance. Our results indeed showed that the overall performance was
slightly better for penalized than for unpenalized MLR, which is in agreement with
earlier simulation studies on binary logistic regression. [330, 240]

As noted earlier, in some scenarios lasso and ridge MLR produced models for
which one calibration slope was underfit while the other was overfit. This may be
a consequence of the (default) parametrization of penalized MLR, which applied
only one tuning parameter to two linear predictors. Possibly, J − 1 tuning parame-
ters are necessary for calibrating penalized models for J categories, such that each
slope has its own tuning parameter. Further research is necessary to elucidate this
phenomenon.

The conducted sensitivity analyses revealed that the discriminatory performance
of unpenalized MLR improved slightly by increased correlations between predictors,
though the reference PDI improved as well. Thus, the performance improved as the
model strength of the data generating mechanism (the reference) improved. Fur-
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ther, the model strength of the data generating mechanism was also affected by the
number of predictors and the relative frequencies of the outcome categories. Here
we also observe that the calibration and discrimination relative to the reference im-
proved as the model strength of the data generating mechanism increased. Though,
note that the Brier scores did not improve compared to the reference as the number
of predictors increased.

As the correlations between the predictors increased, the predictive performance
of both lasso and ridge improve considerably, though both became underfit when
the correlations were very high. When lasso MLR is applied to highly correlated
predictors, predictors may be selected randomly and the coefficients of the other
predictors may be set to zero.[331] For lasso MLR the effective number of used
degrees of freedom is decreased by shrinkage, which can be estimated unbiasedly by
the number of predictors retained. [332] Thus, the number of events per effective
degrees of freedom for the lasso increases as the correlations between the predic-
tors increase, as the effective number of used degrees of freedom is reduced due to
the correlations. This may explain why the predictive performance of lasso MLR
improved considerably with increasing correlations.

For ridge MLR, correlations between predictors cause the estimated coefficients
to be drawn towards each other by the squared penalty. [310] This stabilizes the
estimates, reduces the number of effective degrees of freedom as the coefficients
are shrunk [315] and improves the predictive performance. For unpenalized MLR,
with predictors specified a priori, the number of effective degrees of freedom equals
the number of estimated parameters, regardless of the correlations between the
predictors. [315] Hence, for unpenalized MLR the ratio of events per effective
degrees of freedom used did not change when the correlation changed, which may
explain that little change in predictive performance occurred.

Our sensitivity analyses also show that predictive performance is worse with bi-
nary predictors than with continuous predictors, for all methods. This particularly
seems to affect calibration. For binary predictors, it is more likely that situations
arise where the predictors can (almost) perfectly predict the outcome in the devel-
opment set, a phenomenon described as ’separation’. [333, 334] In such cases, the
unpenalized MLR estimates may attain extreme values, hence the calibration slope
of these models will be close to zero in the validation set.

Our simulation study also has some limitations. First, we limited our study to
situations where all predictors had non-zero effects (i.e. no noise variables). Our
results may therefore not generalize to situations with a large number of noise vari-
ables. In a recent simulation study, Pavlou et al. [330] found that penalization im-
proves discrimination for binary logistic prediction models when noise variables are
considered. Our results showed little difference in discriminatory performance be-
tween penalized and unpenalized MLR. Perhaps, if noise predictors or more weakly
predictive variables are considered for MLR, penalized methods could also have
better discrimination than unpenalized methods. In our simulation without noise
predictors, ridge MLR tended to yield models with better calibration and overall
performance than lasso MLR. Though, the relative predictive performance of lasso
MLR compared to ridge MLR may improve when the number of noise variables
increases, as has recently been shown for binary logistic regression. [242]
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Table 6.7: Guidance and recommendations

• Predictive performance gradually improves as the number of multino-
mial EPV (EPVm) increases, at least until 50 EPVm.

• Higher EPVm may be necessary when the event rates are equal, than
when the smallest category is rare.

• Interpret (penalized and unpenalized) models with caution when esti-
mated with EPVm < 10.

• Use penalized methods for best predictive performance.

• Correct for optimism, as within-sample performance measures are
overly optimistic.

Additionally, we only considered MLR for three outcome categories in our study,
which is the simplest extension of the binary logistic model. When the number of
outcome categories is increased and the number of EPVm is kept constant, the total
sample size increases. As our study showed that predictive performance tends to
improve with increasing total sample size, we anticipate that a larger number of out-
come categories will yield better overall predictive performance for the same number
of multinomial EPV. Furthermore, future research on the interaction between the
number of outcome categories and their distribution on predictive performance is
warranted.

Our results are in agreement with other reports that the adequate sample size
for a prediction model is not simply given by the number of EPV . [239, 335, 242]
Instead, prediction model performance is related to both EPV and total sample
size. Thus both should be considered when developing a prediction model. However,
based on our findings, some general recommendations for MLR prediction model
development can be given, which are summarized in Table 6.7. We believe that
the penalization methods (lasso and ridge) are applicable for MLR even for large
samples, albeit the added value of penalization in terms of predictive performance
decreases with increasing EPVm and total sample size. For samples with EPVm 30
or lower we advise that the total sample size be taken into consideration. When the
total sample size is large, reasonable predictive performance may be attained with
10 EPVm. Conversely, when the total sample size is low, predictive performance
can be poor if EPVm is 10. Below 10 EPVm a MLR model is at risk of being
seriously miscalibrated. Penalization and optimism corrections for ≤ 10 EPVm are
highly recommended.
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In this thesis, we have investigated methods for performing an individual partic-
ipant data meta-analysis (IPD-MA) in prediction model research. We aimed to
develop and evaluate methods that allow for enhanced development and validation
of prediction models that are more reproducible and better transportable to other
settings and populations. The main findings of this thesis are:

• Chapter 2 summarizes available methods for conducting an IPD-MA of ran-
domized intervention studies with time-to-event outcomes. We focused on
modeling frailty of trial participants across trials, modeling heterogeneity
of intervention effects, choosing appropriate association measures, dealing
with (trial differences in) censoring and follow-up times, and addressing time-
varying intervention effects and effect modification (interactions). We discuss
how to do this using either parametric or semi-parametric methods and how
to implement these approaches in a one-stage or two-stage IPD-MA frame-
work. These methods form the foundation of modeling to predict the survival
time in new participants and to predict the intervention effect for individual
participants.

• Chapter 3 illustrates the use of Stepwise Internal-External Cross-Validation
(SIECV) to assess and reduce heterogeneity in a model’s predictive perfor-
mance. This method allows for the development of prediction models that are
more robust and require less tailoring when applied to different settings and
populations. We propose a predictor selection algorithm that optimizes the
(weighted) average performance whilst minimizing its variability across the
hold-out clusters (or studies). Our methodology may improve the generaliz-
ability of developed models to different settings and populations and reduce
the need for tailoring the model to local circumstances.

• Chapter 4 describes propensity-score methods for standardizing IPD from
multiple data sets for prediction model validation purposes. The performance
of a developed prediction model may deteriorate in a model validation study
due to differences in patient characteristics or regression coefficients between
the development and validation samples. By weighting samples towards a
specific target population, we can provide more precise estimates of repro-
ducibility and enhance the interpretation of validation study results. We il-
lustrate how samples that are poorly representative (e.g. due to the choice of
eligibility criteria, as is commonly the case in RCT data) can be standardized
with respect to a specific target population.

• Chapter 5 describes the impact of misclassification of predictors in an IPD-
MA. The presence of misclassification may introduce bias in estimates of pre-
diction model parameters, even when the error is entirely random. We devel-
oped Bayesian statistical methods for addressing such misclassification, where
the extent and nature of measurement error may vary across studies and may
depend on participant characteristics. With these methods one can facilitate
unbiased estimation of unadjusted and adjusted predictor effects, as well as
approximately unbiased estimates of between-study heterogeneity, as is shown
in our simulation and motivating example on the diagnosis of dengue.
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• Chapter 6 addresses the predictive performance and necessary sample sizes for
Multinomial Logistic regression (MLR) prediction models. The use of these
models has been advocated when three or more unordered outcomes need to
be predicted. Unlike Binary Logistic Regression, the sample size necessary
for developing an MLR prediction model had not yet been investigated. We
highlight the importance of both the number of outcome events per candidate
predictor and the total sample size when determining the necessary sample
size in the multinomial prediction modeling context. We recommend the use
of penalized MLR when prediction models are developed in small data sets,
or in medium sized data sets with a small total sample size (i.e. when the
sizes of the outcome categories are balanced).

We continue this final chapter with an overview and discussion on evidence
synthesis methods in prognostic prediction research and finish with summary points
on prediction research in general.

7.1 Evidence synthesis in prognosis research
Thorough and systematic appraisal of the existing evidence has become mainstream
in medical research and practice [336, 337]. Over the past few decades, meta-
analysis has become the de facto statistical method for summarizing the results
from a systematic review and appraisal of existing data on a certain topic. In meta-
analysis, estimates of interest (e.g. for a specific treatment effect [42] or diagnostic
test-outcome association) are obtained from individual studies and then combined
into a weighted average. Such quantitative data synthesis potentially increases
statistical power to detect genuine associations or effects, to investigate sources of
variation within and across studies, and to answer questions that were not posed
by individual studies [338, 339].

Meta-analysis is commonly applied in the domain of randomized therapeu-
tic intervention studies [42] and, more recently, in that of diagnostic test accu-
racy studies. In the current era of personalized or precision medicine, the use of
prognostic information is considered increasingly important to predict outcomes
of individuals (off or on treatment) in order to make tailored treatment decisions
[5, 340, 341, 264, 342, 343]. It therefore seems timely to apply meta-analytic ap-
proaches that allow the quantitative synthesis of prognostic evidence [344].

Key barriers of quantitative synthesis of data from prognosis studies are, among
others, the lack of high quality data often due to poor reporting, lack of uniformity in
statistical analysis across studies, lack of agreement on relevant statistical measures,
and lack of meta-analytical guidance for synthesis of prognosis study data. Recently
much guidance has been written on how to define a review question [345], define
the PICOTS (Patients, Index prognostic factor or model, Comparator factor or
model, Outcomes, Timing of prognostication, Setting of prognostication), define the
search strategy, design the data extraction list [346], and do risk of bias assessments
[346, 347]. However, there is relatively little guidance on how to do the actual
meta-analysis of results from prognosis studies.

In this paper, we discuss how the data or prognostic results from individual
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studies, routine care sources (e.g. hospital records or registries), and biobanks can
be combined quantitatively. Hereto, we describe statistical methods for the meta-
analysis of aggregate data (AD), individual participant data (IPD), or a combination
thereof. The aim of this gentle overview is to inform researchers of available methods
for synthesis of data of prognostic factor and prognostic model studies, and to
encourage their use when individual studies fail to provide generalizable evidence,
as we wish to highlight recent advances in these fields.

7.2 Quantitative synthesis in prognostic factor re-
search

Estimates of overall prognosis (e.g. population outcome risk) are rarely sufficient to
inform treatment recommendations and individual patient management. For this
reason, it is often helpful to distinguish groups of people with a different average
prognosis [5, 340]. A common approach is to identify specific factors that, among
people with a given starting point (such as diagnosis of disease), are associated with
a subsequent endpoint [341]. This generally requires estimation of a factor-outcome
association which can, for instance, be quantified using a hazard ratio or an odds
ratio [341].

Several meta-analysis methods can be used to generate summary estimates of
the association between a prognostic factor and a certain outcome. Although it is
fairly straightforward to summarize crude (i.e. unadjusted) estimates of a particular
factor-outcome association, this practice is generally discouraged because in practice
hardly any prognostication is done based on a single factor only [4, 348]. For this
reason, we here focus on meta-analysis methods to summarize the adjusted estimates
of a certain prognostic factor and outcome. An overview of the presented methods
is provided in Table 7.1.

7.2.1 Meta-analysis of prognostic factor estimates using ag-
gregate data (AD)

A relatively simple situation arises when the prognostic factor of interest is un-
adjusted in all studies or has been adjusted for the same other prognostic factors
(co-variates) in all studies. Traditional meta-analysis methods – as used in meta-
analysis of intervention studies – can then be used to summarize the corresponding
AD [349]. The most well known approach, also from other types of meta-analysis, is
the so-called fixed effect meta-analysis approach, which can be formulated as follows
[350, 351]:

θ̂i ∼ N
(
µ, ŝ2i

)
(7.1)

where θ̂i is the estimated factor-outcome association (e.g. log hazard ratio) from
the ith study, with an estimated standard error ŝi. This approach yields a summary
estimate of the prognostic effect (µ), which simply represents a weighted average of
the θ̂is.
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A common interpretation of fixed effect meta-analysis is that the true factor-
outcome association is identical for all studies (i.e. θi = µ). In practice, however,
true values for factor-outcome associations are likely to vary across studies due to
differences in, e.g., study design, follow-up, variable definitions, adjustment factors,
settings and health care standards. It may therefore be more reasonable to assume
that the factor-outcome associations θi are unrelated, and to adopt a fixed effects
meta-analysis [352]. In this approach, the weight for each study is proportional to
both the number of study participants, and to how much information is contributed
per subject. The meta-analysis then produces an average effect applicable to an
amalgamation of the contributing study populations.

Finally, a third option is to adopt a so-called random effects meta-analysis ap-
proach, which assumes that the factor-outcome associations θi are different but
related across studies. A major advantage of this approach is that the presence of
between-study heterogeneity can directly be quantified [350, 351]:

θ̂i ∼ N
(
µ, τ2 + ŝ2i

)
(7.2)

The random effects model includes an additional parameter τ representing the
(unknown) between-study standard deviation. The overall summary result (µ) now
represents the average (mean) prognostic effect of the factor across the studies.

Several methods exist for estimating the weighted average µ and the between-
study standard deviation τ [118, 119]. One approach is to estimate µ and τ si-
multaneously, e.g. by adopting (restricted) maximum likelihood estimation. Alter-
natively, it is possible to first estimate τ and then use the corresponding value to
obtain an estimate for µ. When this strategy does not take the uncertainty of τ into
account, confidence intervals for µ may become too narrow [109]. For this reason,
it is generally recommended to adjust these intervals using the methods proposed
by Hartung and Knapp [126], and Sidik and Jonkman [125].

As an example, investigated the prognostic effect of progesterone receptor status
in cancer-specific survival in endometrial cancer [353]. Aggregate data from 6 studies
were pooled using a random effects meta-analysis (Der Simonian and Laird method),
yielding a summary hazard ratio of 0.62 and a corresponding 95% confidence interval
(95% CI) ranging from 0.42 to 0.93. When adopting restricted maximum likelihood
estimation, the summary estimate changed to 0.61 with a 95% CI from 0.38 to 1.00
(Figure 7.1). The wider CI is due to a larger estimate of τ when using restricted
maximum likelihood estimation rather than DerSimonian and Laird.

Multivariate meta-analysis

Whereas traditional meta-analysis methods are applied to summarize multiple es-
timates of a single parameter, it is also possible to jointly summarize multiple
estimates of two (or more) parameters using so-called bivariate (or multivariate)
meta-analysis methods [179, 354, 351]. These methods are well known in the meta-
analysis of diagnostic test accuracy, where one jointly estimates the sensitivity and
specificity of the test under review [355]. Multivariate meta-analysis methods aim
to account for the correlation between the different parameter estimates and can
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Figure 7.1: Forest plot for prognostic effect of progesterone on cancer specific
survival in endometrial cancer, with summary results for univariate and multivariate
meta-analysis

The multivariate meta-analysis of cancer specific survival and progression-free survival used the
approach of Riley et al. to handle missing within study correlations, through restricted maximum
likelihood estimation [176]. Heterogeneity was similar in both univariate and multivariate meta-
analyses (I2 = 70%).

therefore be used to deal with situations where two or more correlated param-
eters/statistics are to be synthesized per study. The (bivariate) random effects
model for jointly summarizing the AD for two parameters of interest is given as
follows:

(
θ̂1i
θ̂2i

)
∼ N

((
µ1

µ2

)
,

(
τ21 ρτ1τ2
ρτ1τ2 τ22

)
+

(
ŝ2i1 r̂iŝi1ŝi2

r̂iŝi1ŝi2 ŝ2i2

))
(7.3)

where r̂i and ρ represent the (estimated) within-study and, respectively, the
(unknown) between-study correlation coefficients. For example, θ̂1 and θ̂2 may be
the prognostic effect on outcome 1 and outcome 2, respectively.

A common application of multivariate meta-analysis arises when researchers are
interested in a prognostic factor’s association with multiple outcomes [179]. For in-
stance, in the endometrial cancer example, the unadjusted hazard ratio (HR) of pro-
gesterone was estimated for cancer specific survival (6 studies) and for progression-
free survival (11 studies). The corresponding hazard ratios of the 17 studies were
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then jointly pooled using a bivariate random effects meta-analysis [179]. As illus-
trated in Figure 7.1, this strategy yielded a different and more precise summary
estimate of cancer-specific survival (unadjusted HR=0.48, 95% CI: 0.29 to 0.79) as
compared to the univariate meta-analysis approach above (unadjusted HR=0.61,
95% CI: 0.38 to 1.00).

Multivariate meta-analysis can also be used to jointly summarize prognostic
factor-outcome associations that have been adjusted for different sets of prognostic
factors (covariates). Researchers then need to distinguish between estimates that
are adjusted for all relevant covariates and estimates that are only adjusted for some
(but not all) of the relevant covariates.

Unfortunately, the within-study correlations r̂i are rarely reported, thereby com-
plicating the multivariate meta-analysis approach. Riley previously demonstrated
that simply ignoring these correlations can lead to meta-analysis results with inferior
statistical properties [356]. Researchers may therefore assume a common within-
study correlation (e.g. r̂i = 0 for all studies), recover its magnitude from reported
summary statistics [357], or replace all within- and between-study correlations by
an overall correlation parameter that is estimated from the AD at hand [176].

Other meta-analysis approaches

Several extensions for AD meta-analysis of prognostic factor studies have been pro-
posed and can be used to explore sources of between-study heterogeneity [36, 351],
to combine studies with different methods of measurement [358], or to combine
studies that categorized continuous factors [358, 359, 360].

7.2.2 Meta-analysis using individual participant data (IPD)
When IPD are available from multiple prognostic factor studies, various random
effects meta-analysis models are possible that employ a one-stage or two-stage ap-
proach [361, 42, 82].

Two-stage meta-analysis

In the two-stage approach, each study is first summarized by its factor-outcome
association estimate and standard error. These AD are then appropriately combined
across studies into a summary effect using traditional meta-analysis methods. For
instance, Trivella et al. performed a two-stage IPD-MA to investigate the role of
angiogenesis as a prognostic factor in patients with non-small-cell lung carcinoma
[362]. They estimated the log hazard ratio of microvessel-density counts for each
participating study center, adjusted for age and cancer stage. These estimates were
then pooled using random effects inverse-variance meta-analysis (Figure 7.2).

The two-stage IPD-MA approach can also be used to summarize the association
of non-linear prognostic factors [363, 364]. In the first stage, the factor-outcome
association of interest is modeled separately for each study with a certain functional
form (e.g. cubic spline) and parameterization (e.g. location of knots). An overall
function can then be obtained in the second stage by meta-analysing the study-
specific function values for distinct factor values [363, 364].
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Figure 7.2: Meta-analysis of multivariable predictor effects
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Association between risk of death and increase of one microvessel count, as measured by the
Chalkley method. Estimates represent multivariable hazard ratios, adjusted for age and cancer
stage. [362]

For instance, Sauerbrei et al. combined IPD from nine population-based reg-
istries to study the prognostic effect of age in T1-2 breast cancer patients [363].
They estimated a Cox regression model separately in each registry and adjusted
for 5 to 10 other prognostic factors such as the type of surgery and radiotherapy.
Studywise selected fractional polynomials (FP) were used to model the adjusted ef-
fect of age. The resulting FP functions were then averaged pointwise, with weights
for each registry depending on the variance of the the log relative hazard at distinct
age values. Results indicated that the mortality risk is low for women between
about 40 and 65 years, and increases outside this range.

Multivariate (two-stage) meta-analysis

Also for IPD meta-analysis, it is possible to simultaneously analyze multiple out-
comes by adopting multivariate meta-analysis methods. This typically involves a
two-stage approach where the IPD of each study is first reduced to AD (including
estimates of the within-study correlation) and subsequently pooled across studies.
Multivariate meta-analysis methods have, for instance, been proposed to summa-
rize the association of (non-linear) continuous markers [365]. In the first stage, a
common function (e.g. spline with a common location and number of knots for all
studies) is estimated separately in each study. The resulting AD (e.g. multivariable
regression coefficients) are then pooled across studies in the second stage. In con-
trast to univariate pooling of estimated effects on a grid of exposure values [363], a
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major advantage of this approach is that it better accounts for correlations, thereby
decreasing bias and improving precision.

One-stage meta-analysis

An alternative approach for IPD meta-analysis (IPD-MA) of prognostic factor stud-
ies is a one-stage approach which synthesises the IPD from all studies in a single
step, whilst accounting for clustering of patients within studies [366, 97]. The esti-
mation of a pooled factor-outcome association then involves the fitting of a mixed
effect model, where each parameter (e.g. regression coefficient) can be specified as
common, random or independent (fixed) across studies. One-stage methods appear
particularly advantageous when few studies or few patients per study are available
[361], or when studies involve time-to-event outcomes [48, 114].

For instance, Den Ruijter et al. performed a one-stage meta-analysis using
IPD from 14 cohorts to estimate the association between (log-transformed) carotid
intima-media thickness (CIMT) and the incidence of first-time myocardial infarc-
tion or stroke [367]. They first assessed between-study heterogeneity by estimating
statistical interaction between cohort and CIMT measurements. Subsequently, a
multivariable Cox proportional-hazards model was fitted with random effects for
the baseline hazard and common effects for the regression coefficients.

When adopting a one-stage approach, it is generally recommended to account
for potential ecological bias [36]. This bias may, for instance, arise when patient
outcomes are associated with the mean value of the prognostic factor, rather than
the individual covariate values. Ecological bias can be mitigated by separating the
within-study and across-study associations, as described elsewhere [98].

7.2.3 Meta-analysis using IPD and AD
Although IPD meta-analyses are generally considered as the gold standard, IPD
cannot always be obtained from all relevant studies. To avoid (data availability)
bias, it is often helpful to supplement the available IPD with AD for those studies
where IPD are not available [192]. This strategy can be implemented using the
approaches described below, assuming suitable AD can be obtained from the non-
IPD studies.

Two-stage meta-analysis

A simple approach is to generate AD from each available IPD set, and to jointly
summarize the newly derived (from IPD studies) and previously published AD (from
non-IPD studies) using aforementioned meta-analysis methods for AD [192]. When
critical information from the non-IPD studies is missing (e.g. within-study cor-
relations), the IPD studies can be used to derive the relevant statistics, thereby
reducing the risk of bias in summary estimates [368, 233, 356, 358].

A specific situation arises when the non-IPD studies provide factor-outcome
associations that are not adjusted for all relevant covariates. A two-stage bivariate
meta-analysis can then be used to combine these partially adjusted estimates with
the (fully and partially adjusted) factor-outcome associations from the IPD studies.
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The adaptation method

As mentioned earlier, it is common that AD studies do not adjust for all relevant co-
variates, and only provide factor-outcome associations that are partially adjusted.
An alternative method to combine fully adjusted associations with the partially
adjusted ones is to use the difference in value between the corresponding regres-
sion coefficient(s) [369, 245]. This difference is first estimated in the IPD at hand,
and then applied to the summary estimate of the partially adjusted factor-outcome
association. The adaptation method has, for instance, been applied in a study inves-
tigating risk factors for Methicillin-resistant Staphylococcus aureus acute bacterial
skin and skin structure infections [370]. The study authors conducted a literature
review to retrieve unadjusted odds ratios for 7 potential risk factors. These odds ra-
tios were then summarized for each risk factor using a random effects meta-analysis,
and adapted into an adjusted odds ratio using the IPD at hand.

The adaptation method is strongly related, and in some situations even equiv-
alent, to the aforementioned two-stage meta-analysis approach [371]. Although
formal comparisons are lacking, it has been argued that the adaptation method
may be less statistically and computationally efficient.

Hierarchical-related regression

This one-stage approach directly combines the available IPD and AD by specifying
a distinct likelihood for each data source [98, 36]. This enables the IPD studies
to contribute in all parameter estimates, whereas the AD studies are only used to
estimate the study-level parameters and across-study relationships. For example,
Riley and Steyerberg adopted hierarchical-related regression to investigate the rela-
tionship between age and the risk of 6-month mortality in patients with traumatic
brain injury (TBI) [36]. They used a Bernoulli distribution to model the binary
outcomes from 4 IPD studies, and a Binomial distribution for the observed event
counts in 10 AD studies. To account for potential ecological bias, the within-study
and across-study effects for participant age were separated when jointly analyzing
the 14 studies. It was found that an individual’s probability of death by 6 months
increases as their individual age increases and also as the mean age in their study
(or population) increases. A possible explanation for this is that studies with a
higher mean age involved clinicians with less experience of treating TBI patients.
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Table 7.1: Available methods for quantitative synthesis in prognostic factor research

Available data Estimate of interest Possible methods for evidence synthesis

AD Baseline characteristics Linear FOA Meta-regression [36]
Similarly adjusted FOAs Linear FOA Univariate meta-analysis [350], Multivariate

meta-analysis [351, 176, 372]
Non-linear FOA Univariate meta-analysis [360, 359], Multivariate

meta-analysis [358]
Not similarly adjusted FOAs Linear FOA Multivariate meta-analysis [371, 176, 372]

IPD Linear FOA One-stage meta-analysis [361, 36], Two-stage
meta-analysis [361], Multivariate meta-analysis
[371, 361], Graphical meta-analysis [373]

Non-linear FOA One-stage meta-analysis [363, 36], Two-stage
meta-analysis [363, 360], Multivariate meta-analysis
[365]

IPD + AD Baseline characteristiscs Linear FOA Hierarchical-related regression [36]
Non-linear FOA Hierarchical-related regression [36]

Similarly adjusted FOAs Linear FOA Two-stage meta-analysis, Hierarchical-related
regression [98]

Non-linear FOA Two-stage meta-analysis [360], Hierarchical-related
regression [36]

Not similarly adjusted FOAs Linear FOA Multivariate meta-analysis [371, 368], Adaptation
method [369, 245]

FOA = factor-outcome association.
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7.2.4 Summary points
Evidence synthesis in prognostic factor research may help to identify factors that
are associated with a certain clinical outcome, to explore their functional form and
to quantify their incremental value over established prognostic factors [341]. When
IPD are unavailable, traditional meta-analysis methods can be used to summarize
published prognostic factor estimates in order to identify genuine prognostic factors
[349]. Although IPD are not strictly required to assess the incremental value of
a prognostic factor or to explore its functional form, this may often be unfeasible
using published AD only [366]. For this reason, when IPD are available for a few
studies, corresponding information can be used to restore unreported AD (e.g. miss-
ing within-study correlations) or to adapt unadjusted factor-outcome associations.
Evidence synthesis in prognostic factor research is, however, most appealing when
multiple sources of IPD are available, as this allows to derive desired prognostic
factor results directly, and to analyze continuous factors more appropriately [341].
Meta-analysis of IPD is preferably initiated using a two-stage approach, as corre-
sponding methods are relatively straightforward to implement and guard against
ecological bias. One-stage meta-analysis methods may, however, be more appealing
when few studies or few subjects per study are available, as they are more flexible,
resistant against small sample bias, and avoid the need for estimating correlations
between random effects [361].

7.3 Quantitative synthesis in prognostic model re-
search

Prognostic model research aims to examine multiple prognostic factors in combina-
tion [5], in order to predict the absolute risk of future outcomes in single individuals.
Corresponding studies may derive new prognostic models (so-called development
studies), evaluate the performance of existing models in new individuals (so-called
validation studies) and if necessary tailor their predictions, or examine the model’s
impact on health-related outcomes.

Currently, most prognostic models are developed based on relatively small stud-
ies. Hence, many of these models do not perform adequately when applied to other
individuals [11, 264, 9, 22]. To investigate and improve the performance of prognos-
tic models across different settings and populations, researchers may consider meta-
analysis methods during their development and validation [25, 374, 5, 20, 26, 221].
Several strategies for this purpose are described below and summarized in Fig-
ures 7.3 and 7.4. As before, we distinguish between situations where the available
data sources comprise of aggregate data, individual participant data, or a combina-
tion of both.
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Figure 7.3: Available methods for quantitative synthesis during prognostic model development
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Figure 7.4: Available methods for quantitative synthesis during prognostic model validation
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7.3.1 Meta-analysis using aggregate data (AD)
Validation of an existing prognostic model

A common source of AD are so-called external validation studies assessing the
(discrimination and calibration) performance of a certain prognostic model when
tested in other individuals than from which the model was developed. By sum-
marizing these performance estimates, it becomes possible to identify whether the
model’s predictions are sufficiently accurate across different settings and popula-
tions. This typically requires the retrieval of multiple performance statistics (e.g.
concordance statistic, calibration-in-the-large, calibration slope) and corresponding
standard errors [21, 234]. The resulting estimates can then be pooled using tra-
ditional meta-analysis methods, provided that an appropriate scale [235] or link
function [375, 234] is used. Although different study weights can be used [232, 352],
it is generally recommended to allow for between-study heterogeneity as validation
studies are likely to differ in their design and execution [234, 21, 235]. As is the
case in meta-analysis of prognostic factor research, meta-regression can be used to
explore potential sources of between-study heterogeneity.

For instance, van Doorn et al. reviewed 19 published validations of CHA2DS2-
VASc, a prediction model for estimating stroke risk in patients with atrial fibrillation
[376]. A random effects meta-analysis was applied to summarize estimates of model
discrimination (logit c-statistic) and annual risk per score (square root risks). The
summary c-statistic was 0.64 (95% CI 0.56 – 0.71), which increased to 0.71 (95%
CI 0.62 – 0.79) for studies recruiting patients from a hospital care setting. Fur-
ther, stroke risks were found to vary substantially within the different scores and
were notably elevated in hospital patients as compared to patients from the general
population.

Development of a new prognostic model

It is also possible to summarize AD from multiple but similar prognostic model de-
velopment studies and to combine their regression coefficients into a new prediction
model (for example, via a multivariate meta-analysis) [357, 372]. This strategy is,
however, often complicated by the poor reporting of key model parameters (and
their standard errors and within-study correlations), by inconsistent covariate ad-
justment across studies, and by the presence of between-study heterogeneity. For
this reason, meta-analysis of previously developed prognostic models only seems
reasonable when the corresponding studies are fairly homogeneous and when the
required AD are reported in sufficient detail (see also Figure 7.3).

7.3.2 Meta-analysis using IPD
When IPD are available, it becomes possible to assess and optimize the prognostic
model’s performance across different settings and populations using a one-stage or
a two-stage meta-analysis approach.
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Validation of an existing prognostic model

In the two-stage approach, the model is first validated separately in each IPD,
yielding study-specific estimates of model discrimination and calibration. These
estimates are then pooled across studies in the second stage, using univariate [21,
377, 232] or multivariate [231] meta-analysis methods (Figure 7.4). For instance,
Snell et al. adopted multivariate IPD meta-analysis to summarize the calibration
slope and concordance statistic of a prognostic model for breast cancer incidence.
The summary estimates were then used in combination with estimates of between-
study heterogeneity to calculate the probability that model performance would be
adequate (i.e. within certain ranges) in new populations [231].

Model validation can also be performed through a one-stage approach. For
instance, the summary calibration slope can be derived by fitting a mixed effect
model with study-specific intercept terms and a random effect for the prognostic
index.

Finally, several extensions of one-stage and two-stage meta-analysis are possible.
For instance, network meta-analysis (NMA) can be used to assess the (relative)
performance of multiple prognostic models [378], which is particularly helpful when
direct comparisons are not feasible for some studies. As an example, Haile et al.
compared the performance of 10 prognostic models for calculating mortality risk
in patients with chronic obstructive pulmonary disease [378]. Although IPD were
available for 24 cohort studies (N = 15 762), information on important variables was
often missing such that some models could not be validated in one or more studies
(Figure 7.5). A two-stage NMA was therefore adopted to summarize all available
evidence on the models’ comparative performance, and to allow the inclusion of
studies where only few models could be validated.

Development of a new prognostic model

Meta-analysis of IPD is used increasingly often to develop new prognostic models,
with improved generalizability across different settings and populations. Meta-
analysis approaches are similar to prognostic factor research, and may involve a
one-stage or a two-stage approach (see also Figure 7.3) [232]. In the two-stage
approach, the parameters of the prognostic model (e.g. intercept term and regres-
sion coefficients) are estimated separately in each study and subsequently combined
across studies using either a fixed or random effects meta-analysis. Conversely, in
the one-stage approach, all IPD are simultaneously analysed by assuming a com-
mon, fixed, or random effect for each model parameter. Both approaches then yield
a set of study-specific and/or “pooled” regression coefficients that can be used for
making absolute risk predictions in a variety of populations. One-stage approaches
are particularly helpful when studies are relatively small, or contain few events, as
they use a more exact statistical approach and do not require continuity correc-
tions when (partial) separation occurs [361]. Conversely, two-stage approaches are
generally preferred when modeling interactions or non-linear terms, as they guard
against over-parameterization and ecological bias [365].

As an example, Westeneng et al. recently performed a meta-analysis with IPD
from 14 European cohorts to develop the ESCALC model for predicting survival
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Figure 7.5: Validation of 10 prognostic models for 3-year mortality in patients
with chronic obstructive pulmonary disease.
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SAFE

Depiction of network structure with lines weighted by the total number of participants available
for each model comparison. [378] Abbreviations: GOLD, Global initiative for chronic Obstructive
Lung Disease; BODE, Body mass index, airflow Obstruction, Dyspnoea and severe Exacerbations;
BODE upd., BODE updated; ADO, Age, Dyspnoea, airflow Obstruction (we use the updated
version of the ADO score in our analysis); e-BODE, severe acute exacerbation of COPD plus
BODE; BODEx, Body mass index, airflow Obstruction, Dyspnoea, severe acute Exacerbation
of COPD; DOSE, Dyspnoea, Obstruction, Smoking and Exacerbation frequency; SAFE, Saint
George’s Respiratory Questionnaire (SGRQ) score, Air-Flow limitation and Exercise capacity;
B-AE-D, Body-mass index, Acute Exacerbations, Dyspnoea.
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in patients with amyotrophic lateral sclerosis [379]. They fitted a Royston-Parmar
survival model in the entire set of N = 11 475 patients, and assumed a common
baseline hazard and regression coefficients across cohorts. Because the resulting
model showed some extent of mis-calibration upon validation, cohort-specific base-
line hazard functions were reported to enable researchers to tailor model predictions
to their population.

A particular advantage of IPD meta-analysis is that it enables the direct eval-
uation and optimization of a model’s generalizability across different settings and
populations through internal-external cross-validation (see chapter 3). [23, 26, 116,
221, 226] Briefly, this method iteratively omits one study from the meta-analysis to
externally validate a model that is developed on the remaining studies. This process
is repeated several times, leading to multiple estimates of model performance, which
in turn can be summarized using aforementioned meta-analysis methods [235, 231].
If performance appears adequate across the available studies, the pooled data is
used to develop a final model. Otherwise, it flags heterogeneous study populations
where a developed model might not perform well and signals that additional pre-
dictors or more advanced modeling approaches (such as the inclusion of non-linear
terms) or updating strategies (such as recalibration) might be needed.

Internal-external cross-validation has, for instance, been adopted during the
development of ESCALC, a prognostic model for predicting survival in patients with
amyotrophic lateral sclerosis. A one-stage approach was used to estimate a Royston-
Parmar model using IPD from all but one study, after which its external validity was
evaluated in the omitted study. The process was repeated for all studies, providing
14 estimates of discrimination and calibration performance. These estimates were
then pooled using a random effects meta-analysis, yielding a summary c-statistic
and calibration slope of, respectively, 0.78 (95% PI 0.74 to 0.82) and 1.01 (95% PI
0.83 to 1.18). These results suggest that the model is likely to perform well across
different settings and populations.

7.3.3 Meta-analysis using IPD and AD
Validation of an existing prognostic model

Because IPD is commonly unavailable for one or more relevant validation studies,
researchers may consider a two-stage meta-analysis to combine published estimates
of prediction model performance with those derived from the IPD at hand. This
approach has, however, not extensively been studied yet and further research is also
warranted to explore alternative strategies such as hierarchical-related regression.

Development of a new prognostic model

For many disease areas, there is an abundance of competing models that predict
similar outcomes in related populations. Hence, rather than developing a new prog-
nostic model from scratch, it can be advantageous to combine the (AD of the)
existing models with the available IPD [380, 381, 18, 382]. One approach is to sum-
marize the models’ regression coefficients together with the associations from the
IPD [233, 368]. This is particularly useful if the data are reasonably homogeneous,
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as synthesis then yields a prognostic model that is applicable to the “average” pop-
ulation. Conversely, when studies have different baseline risk or predictor-outcome
associations, some tailoring will often be necessary to ensure that the new model
remains sufficiently accurate in local settings. In these situations, the IPD can be
used to adjust the existing models to specific populations by adopting Bayesian in-
ference [233], model averaging [18], regression analysis [380, 18, 222, 383] or mixture
models [222].

For example, model averaging was recently applied to combine the logistic Eu-
roSCORE and EuroSCORE II models for predicting short-term mortality in pa-
tients undergoing coronary artery bypass graft surgery [382]. These models showed
substantial mis-calibration in contemporary registry data and were therefore com-
bined into a single model that was tailored to the contemporary population.

7.3.4 Summary points
Many prognostic model studies are based on relatively small samples, leading to
overfitting, poor generalizability and over-optimism [384, 11]. Evidence synthesis
allows to increase the effective sample size, and to study more diverse settings and
populations [374, 26]. Although synthesis is ideally based on IPD, a systematic
review and meta-analysis of published data can initially be performed to study
the (discrimination and calibration) performance of a previously developed model.
Estimates of between-study heterogeneity can then help to reveal the extent of nec-
essary improvements (e.g., local tailoring), and to calculate the probability that
the model(s) will be clinically useful in certain settings [227, 231]. In general, a
good model will have satisfactory performance across different settings and pop-
ulations. However, if prediction model performance is poor overall or prone to
substantial between-study heterogeneity, retrieval of IPD may help to study causes
of detrimental performance [21, 234, 24], and to establish whether distinct models
are needed for different settings and populations [25].

When developing new or updating existing models, it is important to consider
heterogeneity in baseline risk, predictor effects, the linear predictor and the absolute
risk predictions [25]. Risk predictions should be reasonably similar across studies for
a prediction model to be labeled ‘generalizable’, and therefore it is helpful to limit
any heterogeneity in baseline risk and predictor effects whilst keeping the model’s
overall performance sufficiently high. In chapter 3 we described a statistical frame-
work for developing and validating models on IPD from multiple studies. These
methods can be applied to ascertain already during model development whether
certain predictor effects are generalizable across populations and settings.

Finally, for newly developed prediction models from IPD-MA, it is helpful to
provide any information that allows for tailored predictions. For instance, appro-
priate intercept terms can often be derived from the outcome incidence, particularly
if predictor variables have been centered around their local means [116]. Similarly,
predictor effects can sometimes be tailored using information about their particular
measurement [385]. When it remains unclear which parameter values (e.g., intercept
term) are most appropriate for predictions in new populations, researchers may use
the pooled estimates or, preferably, integrate over the distribution of the random
effects [386].
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7.4 Concluding Remarks
In this paper, we have summarized and sign-posted various methods for meta-
analysis of prognostic factor and prognostic model studies. Because these primary
prognosis studies may address very different types of research questions and are of-
ten poorly reported, advanced meta-analysis methods are usually needed to provide
(meaningful) summary estimates and understand sources of between-study hetero-
geneity. Regardless, researchers should not be daunted by their complexity, as we
have shown that many of these methods have been implemented in traditional soft-
ware packages and lead to an improved understanding of prognosis-related research
questions.

For researchers embarking on a meta-analysis, the following issues should be
taken into account. First, it is important to ensure that available data are of
sufficient relevance and quality. It is recommended to conduct a systematic review
of the literature and to harmonize available IPD sets. For instance, the methods we
describe in chapter 4 can be applied to standardize from a non-target population
or setting in model validation. Similarity of data sets can also be improved by
standardizing related measurement scales [387], by adopting measurement error
correction methods [287, 388, 389], or by treating bias arising from measurement
error as a missing data problem [288, 387, 388]. For instance, the methods we
described in chapter 5 can be applied to account for measurement error of binary
predictor variables in an IPD-MA. Second, when data sets are affected by missing
data, advanced imputation methods are needed to ensure valid inferences [253, 390,
391]. Finally, it is important to realize that not all meta-analysis methods have yet
been rigorously assessed, and that further research is still needed to explore their
potential areas of application.
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Summary
Prediction models are developed, validated and used for the prediction of a pa-
tient’s current (diagnostic prediction models) or future (prognostic prediction mod-
els) health status, and may thereby aid in medical decision making and to inform
patients on their health. Risk predictions can be used to make decisions regarding
the need for additional diagnostic tests, initiating life-style changes or other pre-
ventive strategies, identifying the most effective treatment for an individual and for
benchmarking the quality of medical centers. Prediction models should be devel-
oped and validated in large samples from multiple populations and settings. This
requires research groups to join efforts by sharing their individual participant data
(IPD) and subsequently applying adequate statistical methods to synthesize the
data across studies or research centers.

Many randomized trials evaluate an intervention effect on time-to-event out-
comes. IPD from such trials can be obtained and combined in a so-called IPD
meta-analysis (IPD-MA), to summarize the overall intervention effect. In chapter
2 we present a narrative literature review to provide an overview of methods for
conducting an IPD-MA of randomized intervention studies with a time-to-event
outcome. We focused on identifying good methodological practice for modeling
frailty of trial participants across trials, modeling heterogeneity of intervention ef-
fects, choosing appropriate association measures, dealing with (trial differences in)
censoring and follow-up times, and addressing time-varying intervention effects and
effect modification (interactions). We discuss how to achieve this using parametric
and semi-parametric methods, and describe how to implement these in a one-stage
or two-stage IPD-MA framework. We recommend exploring heterogeneity of the
effect(s) through interaction and non-linear effects. Random effects should be ap-
plied to account for residual heterogeneity of the intervention effect. We provide
further recommendations, many of which specific to IPD-MA of time-to-event data
from randomized trials examining an intervention effect. We illustrate several key
methods in a real IPD-MA, where IPD of 1225 participants from 5 randomized clin-
ical trials were combined to compare the effects of Carbamazepine and Valproate
on the incidence of epileptic seizures.

Prediction models often yield inaccurate predictions for new individuals. Al-
though large data sets from individual participant data meta-analysis or electronic
healthcare records may alleviate this, prevailing strategies for prediction model de-
velopment generally do not account for heterogeneity between settings and pop-
ulations. This limits the generalizability of developed models (even from large,
combined, clustered data sets) and necessitates local revisions. In chapter 3 we
develop methodology for producing prediction models that are more robust and
require less tailoring when applied to different settings and populations. We adopt
Internal-External Cross-Validation to assess and reduce heterogeneity in a model’s
predictive performance during its development. We propose a predictor selection
algorithm that optimizes the (weighted) average performance whilst minimizing its
variability across the hold-out clusters (or studies). Predictors are added iteratively
until the estimated generalizability is optimized. We illustrate this methodology by
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developing a new model for predicting the risk of atrial fibrillation and updating
an existing one for diagnosing deep vein thrombosis. We used individual partic-
ipant data from 20 cohorts (N = 10873) and 11 diagnostic studies (N = 10014),
respectively. Meta-analysis of calibration and discrimination in each hold-out clus-
ter shows that trade-offs between average performance and heterogeneity occurred.
Our methodology allows for the assessment of heterogeneity of prediction model
performance during model development in multiple or clustered data sets, thereby
informing researchers on predictor selection to minimize heterogeneity. This may
improve the generalizability to different settings and populations, and reduce the
need for tailoring the model.

Many prediction models perform worse when applied to new individuals, which
may be due to a (lack of) representativeness of the validation sample for the predic-
tion model. If the validation sample does not fully represent the model’s intended
target population, estimates of model performance in the validation set are mis-
leading. In chapter 4 we consider the use of propensity score weighting methods
to standardize predictive performance measures estimated in multiple validation
samples that are obtained from different but related populations and settings, by
weighting with respect to the covariate distribution of the target population and
setting. We show how standardized measures for a model’s discrimination and
calibration can be derived.

We illustrate our methods in a motivating example on the validation of eight dif-
ferent diagnostic prediction models for the detection of deep vein thrombosis (DVT)
that may aid in the diagnosis of patients suspected of DVT in 12 external valida-
tion data sets. We applied random effects meta-analysis to analyze the estimates of
prediction models’ performance across these 12 external validation data sets. The
between-study heterogeneity estimates of the random effects meta-analysis indicate
that differences between discriminatory performance in the individual validation
studies can partially be attributed to differences in case-mix, rather than the use
of invalid model coefficients. Further, the meta-analysis showed that the between-
study heterogeneity for the calibration slopes was increased by standardization for
all models. This demonstrates that there were differences in case-mix between the
development and validation samples, and that the case-mix differences partially
masked the differences in optimal coefficients between these samples. When stan-
dardization filtered out these differences in case-mix, heterogeneity in the calibration
slopes became more apparent. Propensity score-based standardization may help
to facilitate the interpretation of (heterogeneity in) prediction model performance
across multiple external validation studies and to guide model updating strategies
or to accept that the validation sample does not reflect the target population of a
developed model.

A common problem in the retrieval and analysis of multiple data sources, such
as IPD-MA, is the presence of measurement error. Misclassification of binary pre-
dictors arises when these study variables are not accurately measured. The presence
of misclassification may introduce bias in estimates of parameters (including pre-
dictor effects), even when the error is entirely random. Although several methods

179



Summary

for addressing misclassification during the development of a prediction model have
been proposed, these do not account for the heterogeneity that is often present in
IPD-MA. In chapter 5 we develop a Bayesian framework for addressing predictor
misclassification in an IPD-MA, where the extent and nature of measurement error
may vary across studies and may be dependent on participant-level characteristics.
This facilitates unbiased estimation of adjusted and unadjusted predictor-outcome
associations, as well as unbiased estimates of between-study heterogeneity.

We illustrate our methodology in a motivating example of the diagnosis of dengue
using two predictor variables. In this example, the gold standard measurement for
one predictor variable is unavailable for half of the studies. Instead, these studies
only measured a surrogate that is prone to misclassification. Our methods reduced
the error in the estimates for the predictor-outcome association. In general, our
methods yielded estimates with less error than an analysis that was naive with re-
gard to measurement error and an analysis based on gold standard measurements
alone. Estimates for heterogeneity of the predictor-outcome association were similar
across all investigated methods. Further, our simulations show that our framework
can appropriately accounted for misclassification that is dependent on study- and
participant-level information. By implementing a proposed misclassification model
that models participant-level effects and heterogeneity between studies in the out-
come and gold standard and surrogate measurement of the predictor, we obtained
valid estimates of the predictor-outcome association, with less RMSE, greater power
and similar coverage compared to an analysis that was restricted to observations
for which gold standard measurements were available. Heterogeneity estimates were
adequate for all studied models. Our proposed framework can be used to address
the presence of misclassification of a predictor variable in an IPD-MA. This frame-
work requires that some studies supply IPD for the surrogate predictor and the gold
standard predictor and misclassification is exchangeable across studies conditional
on the observed covariates (and outcome).

Multinomial Logistic Regression (MLR) has been advocated for developing clin-
ical prediction models that distinguish between three or more unordered outcomes.
In chapter 6 we present a full-factorial simulation study to examine the predic-
tive performance of MLR models in relation to the relative size of outcome cate-
gories, number of predictors and the number of events per variable. It is shown
that MLR estimated by maximum likelihood yields overfitted prediction models in
small to medium sized data. In most cases, the calibration and overall predictive
performance of the multinomial prediction model is improved by using penalized
MLR. Our simulation study also highlights the importance of events per variable
in the multinomial context as well as the total sample size. As expected, our study
demonstrates the need for optimism correction of the predictive performance mea-
sures when developing the multinomial logistic prediction model. We recommend
the use of penalized MLR when prediction models are developed in small data sets,
or in medium sized data sets with a small total sample size (i.e. when the sizes of
the outcome categories are balanced). Finally, we present a motivating example in
which we illustrate the development and validation of penalized and unpenalized
multinomial prediction models for predicting malignancy of ovarian cancer.
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Finally, in chapter 7 we provide an overview of meta-analysis methods for
prognosis research. Over the past few years, evidence synthesis has become essential
to investigate and improve the generalizability of medical research findings. This
strategy often involves a meta-analysis to formally summarize quantities of interest,
such as relative treatment effect estimates. The use of meta-analysis methods is,
however, less straightforward in prognosis research because substantial variation
exists in research objectives, analysis methods and in the level of reported evidence.
We present a gentle overview of statistical methods that can be used to summarize
data of prognostic factor and prognostic model studies. We discuss how aggregate
data, individual participant data or a combination thereof can be combined through
meta-analysis methods. Recent examples are provided throughout to illustrate the
various methods. We finish with providing general recommendations for performing
an IPD-MA in prediction modeling research.
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Samenvatting
Voorspellingsmodellen worden gebruikt om de huidige (diagnostische voorspellings-
modellen) of toekomstige (prognostische voorspellingsmodellen) gezondheidsstatus
van een patiënt te berekenen. Ze kunnen daardoor helpen bij het nemen van medi-
sche beslissingen en het informeren van patiënten over hun gezondheid. Op basis van
voorspellingen van risico’s kunnen beslissingen worden genomen over de noodzaak
van het afnemen van extra diagnostische tests, het veranderen van de levensstijl
van de patiënt, het kiezen voor andere preventieve strategieën, het identificeren van
de meest effectieve behandeling voor een patiënt en voor het beoordelen van de
kwaliteit van medische centra. Voorspellingsmodellen dienen ontwikkeld en getest
te worden met behulp van data die voldoende representatief is. Dit vereist vaak het
combineren van individuele patiëntdata (IPD) uit meerdere populaties en studies en
het bundelen van de krachten van verschillende onderzoeksgroepen. Voor het ana-
lyseren van gecombineerde datasets zijn geavanceerde statistische methoden nodig.
Tot op heden zijn zulke methoden voor diagnostische en prognostische toepassingen
nog onvoldoende onderzocht. In dit proefschrift heb ik onderzocht welke statistis-
che methoden beschikbaar zijn voor het analyseren van gecombineerde datasets bij
wetenschappelijke vraagstukken die zich richten op interventie, diagnose en prog-
nose. Daarnaast heb ik hiervoor nieuwe statistische methoden ontwikkeld voor
diagnostisch en prognostisch onderzoek. Ook in interventieonderzoek is heteroge-
niteit aanwezig in gecombineerde en geclusterde datasets. Op dat gebied zijn al
vele methoden beschikbaar die daarmee rekening houden. Daarom begint dit proef-
schrift met een overzicht daarvan.

IPD-meta-analyse in interventieonderzoek
In vele gerandomiseerde experimentele onderzoeken wordt het longitudinale effect
(het effect door de tijd heen) van een interventie onderzocht. Wanneer data uit
meerdere studies beschikbaar zijn en samengevoegd worden in een zogenaamde
IPD-meta-analyse (IPD-MA), zijn geavanceerde methoden nodig om om te gaan
met verschillen tussen studies. In hoofdstuk 2 presenteren we een literatuuron-
derzoek waar we een overzicht van methoden weergeven voor het uitvoeren van
een IPD-MA van gerandomiseerde interventieonderzoeken die als uitkomst een tijd
tot een gebeurtenis hebben. We hebben ons hierbij gericht op een aantal punten:
het identificeren van correcte werkwijzen voor het modeleren van de verschillen
in frailty (ongemeten onderliggende gezondheid) van onderzoeksdeelnemers tussen
onderzoeken, het modelleren van heterogeniteit van effecten van interventies, het
kiezen van geschikte associatiematen, het omgaan met (verschillen tussen onder-
zoeken in) censoring (de gebeurtenis is voor een onderzoeksdeelnemer tijdens het
onderzoek niet voorgekomen, maar mogelijk wel daarna) en opvolgingstijden en tot
slot het modeleren van tijdsafhankelijke effecten van interventies en effectmodificatie
(interacties). We bediscussiëren hoe dit bereikt kan worden met parametrische en
semi-parametrische methoden en beschrijven hoe dit geïmplementeerd kan worden
in een één-staps- en twee-staps-IPD-MA-raamwerk. We raden aan om heterogeni-
teit van het effect van een interventie uit te zoeken door middel van interactietermen
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en niet-lineaire effecten. Random effects (effecten die een gegeven verdeling volgen)
moeten gebruikt worden om rekening te houden met residuele heterogeniteit van
het effect van de interventie. We geven verdere aanbevelingen die veelal specifiek
zijn voor IPD-MA van gerandomiseerd experimenteel onderzoek waarin het effect
van een interventie op de tijd tot een gebeurtenis wordt onderzocht. We illustreren
enkele belangrijke methoden in een klinische IPD-MA. In deze IPD-MA zijn IPD
van 1.225 deelnemers van vijf gerandomiseerde experimentele klinische onderzoeken
samengevoegd om de effecten van Carbamazepine en Valproaat op de incidentie van
epileptische aanvallen te vergelijken.
Na een overzicht en discussie van statistische methoden voor het analyseren van
geclusterde en gecombineerde datasets in interventieonderzoek te hebben gegeven,
behandelen we voorspellingsmethoden hiervoor in het kader van diagnostisch en
prognostisch onderzoek.

IPD-meta-analyse in voorspellingsonderzoek
Voorspellingsmodellen leveren vaak onnauwkeurige voorspellingen op voor nieuwe
individuen. Hoewel het gebruik van grote datasets zoals IPD-MA of elektronische
patiëntendossiers de nauwkeurigheid van voorspellingen kan verbeteren, wordt er
tot zover weinig of zelfs geen rekening gehouden met heterogeniteit tussen popu-
laties, datasets en/of studies bij het ontwikkelen en testen van voorspellingsmo-
dellen. Dit beperkt de generaliseerbaarheid van reeds ontwikkelde modellen (zelfs
van grote, samengevoegde, geclusterde datasets) en zorgt ervoor dat lokale aanpas-
singen vaak noodzakelijk zijn. In hoofdstuk 3 ontwikkelen we een methode voor
het ontwikkelen van voorspellingsmodellen die robuuster zijn en waarvoor minder
lokale aanpassingen nodig zijn. We passen Interne-Externe Kruisvalidatie toe om
de heterogeniteit van het voorspellend vermogen van een model te beoordelen en
te verminderen tijdens de ontwikkeling van het model. We stellen een algoritme
voor dat een selectie van voorspellende variabelen maakt en vervolgens combineert
in een voorspellingsmodel. Hierbij wordt getracht het voorspellend vermogen in de
geïncludeerde populaties te optimaliseren en de variabiliteit daarvan tussen deze
populaties te minimaliseren. Voorspellende variabelen worden iteratief toegevoegd
totdat de geschatte generaliseerbaarheid is geoptimaliseerd.

We illustreren deze methode door een nieuw model te ontwikkelen dat het risico
op boezemfibrilleren voorspelt. Ook updaten we een model voor de diagnose van
diepe veneuze trombose (DVT). We hebben hiervoor IPD van respectievelijk twintig
cohortonderzoeken (N = 10.873) en elf diagnostische onderzoeken (N = 10.014) ge-
bruikt. Uit meta-analyse van de schattingen van de kalibratie van voorspellingen en
het vermogen om te discrimineren tussen zieke en niet zieke onderzoeksdeelnemers
in iedere dataset die niet voor ontwikkeling werd gebruikt blijkt dat er een wissel-
werking is opgetreden tussen het gemiddelde voorspellende vermogen en de hetero-
geniteit daarvan. Onze methodologie neemt de heterogeniteit van het voorspellend
vermogen van modellen in aanmerking tijdens de ontwikkeling daarvan in meerdere
of geclusterde datasets. Onderzoekers kunnen onze methodologie gebruiken om
variabelen te selecteren die de heterogeniteit van het voorspellend vermogen ver-
minderen. Dit kan de generaliseerbaarheid naar andere omgevingen en populaties

183



Samenvatting

verbeteren, wat de noodzaak voor het aanpassen van het model vermindert.

Het voorspellend vermogen van veel voorspellingsmodellen verslechtert wanneer
deze worden toegepast op nieuwe individuen. Dit kan veroorzaakt worden door
(een gebrek aan) de representativiteit van de steekproef die gebruik wordt in een
onderzoek om een voorspellingsmodel te valideren. Als de teststeekproef (validation
sample) de beoogde populatie niet volledig representeert, dan zullen schattingen
van het voorspellend vermogen misleidend zijn. In hoofdstuk 4 stellen wij voor
om weegmethoden d.m.v. propensity scores (geneigdheidscores) te gebruiken om
schattingen van voorspellend vermogen in andere maar gerelateerde populaties en
omgevingen te standaardiseren. Dit kan door de contributie van individuen te wegen
naar hun gelijkenis tot een bepaalde doelpopulatie of -omgeving. We laten zien hoe
gestandaardiseerde maten voor discriminatie en kalibratie kunnen worden afgeleid.

We illustreren onze methoden in een toegepast voorbeeld van het testen van het
voorspellend vermogen van acht diagnostische voorspellingsmodellen voor de detec-
tie van diepe veneuze trombose (DVT), die van behulp kunnen zijn bij de diagnose
van patiënten bij wie DVT wordt vermoed. We hebben random effects meta-analyse
toegepast op de schattingen van het voorspellingsvermogen van de acht modellen in
twaalf externe testdatasets. Dit leverde schattingen van de heterogeniteit van het
voorspellingsvermogen tussen datasets. Deze waarden laten zien dat verschillen in
discriminerend vermogen in de individuele testonderzoeken deels verklaard kunnen
worden door verschillen in de verdelingen van patiëntkarakteristieken in de verschil-
lende onderzoeken. Dit laat zien dat de verschillen in voorspellend vermogen niet
volledig te verklaren zijn door het gebruik van verkeerd geschatte modelcoëfficiën-
ten (d.w.z. de weging van voorspellende variabelen). Verder laat de meta-analyse
zien dat voor alle methoden de heterogeniteit van de kalibratie van de coëfficiënten
werd vergroot door standaardisatie. Dit geeft aan dat er verschillen waren in de
patiëntkarakteristieken van de ontwikkelings- en testpopulaties, maar ook dat deze
verschillen deels de verschillen in optimale coëfficiënten gemaskeerd hebben. Na
het filteren van deze verschillen door middel van standaardisatie, werd het duidelijk
dat er heterogeniteit aanwezig was bij de hellingscoëfficiënt van de kalibratie. Het
toepassen van standaardisatie door middel van propensity scores kan de interpre-
tatie van (de heterogeniteit van) het voorspellingsvermogen in (meerdere) externe
testonderzoeken gemakkelijker maken en kan gebruikt worden om het updaten van
voorspellingsmodellen te leiden. Dit kan soms tot de conclusie leiden dat de test-
steekproef de doelpopulatie niet voldoende representeert.

Een veelvoorkomend probleem in het verzamelen en analyseren van data uit
meerdere bronnen, zoals in een IPD-MA, is de aanwezigheid van meetfouten. Wan-
neer meetfouten optreden bij een binaire variabele spreekt men van misclassifi-
catie. De aanwezigheid van misclassificatie kan leiden tot onjuiste onderzoeksresul-
taten en onbetrouwbare voorspellingsmodellen, zelfs wanneer de meetfout volledig
willekeurig is. Hoewel er verschillende methodes beschikbaar zijn om om te gaan
met misclassificatie, houden deze geen rekening met de veelvoorkomende heteroge-
niteit tussen studies van een IPD-MA. In hoofdstuk 5 ontwikkelen we een Bayesi-
aans statistisch raamwerk dat rekening houdt met misclassificatie in voorspellende
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variabelen in een IPD-MA waar de aard en de omvang van de meetfout tussen on-
derzoeken kan variëren en afhankelijk kan zijn van eigenschappen van individuele
onderzoeksdeelnemers. Dit maakt het mogelijk om zuivere schattingen van gecor-
rigeerde (als covariaten gemeten zijn) en ongecorrigeerde associaties tussen voor-
speller en uitkomst te verkrijgen, alsmede zuivere schattingen van heterogeniteit
tussen onderzoeken.

We illustreren onze methodologie in een toegepast voorbeeld van de diagnose van
dengue (knokkelkoorts) met gebruik van twee (mogelijk) voorspellende variabelen.
In dit voorbeeld is de gouden standaard (d.w.z. een foutloze meetmethode) voor
één voorspellende variabele in de helft van de onderzoeken van de IPD-MA niet
toegepast. In die onderzoeken is enkel een surrogaatmeting met mogelijke fouten
gedaan. Onze methoden corrigeerden voor deze mogelijke meetfouten en vermin-
derden de fout in de schattingen van de associatie tussen de voorspeller en dengue.
Over het geheel genomen leverden onze methoden schattingen met kleinere fouten
dan een analyse die geen rekening hield met de mogelijke misclassificatie en ook in
vergelijking met een analyse waarin enkel de gouden standaard gebruikt werd. De
schattingen van de heterogeniteit van de associatie tussen de voorspeller en dengue
waren vergelijkbaar voor alle geanalyseerde methoden.

Daarnaast lieten onze simulaties zien dat er binnen ons raamwerk adequaat
omgegaan kan worden met misclassificatie die afhankelijk is van eigenschappen van
onderzoeken en individuen. Het geïmplementeerde misclassificatiemodel dat ef-
fecten en misclassificatie van de voorspellende variabele modelleert op het niveau
van individuen en onderzoeken, leverde zuivere schattingen van de voorspeller-
uitkomstassociatie op. De gemiddelde gekwadrateerde fout was kleiner, het on-
derscheidend vermogen (power) groter en de dekkingswaarschijnlijkheid (coverage
probability) was vergelijkbaar met een analyse die beperkt was tot observaties waar-
van de gouden standaard gemeten was. De schattingen van de heterogeniteit waren
adequaat voor alle in de simulatie bestudeerde modellen. Het door ons voorgestelde
raamwerk kan worden gebruikt om om te gaan met de mogelijke aanwezigheid
van misclassificatie van een voorspellende variabele in een IPD-MA. Ons raamwerk
vereist dat ten minste enkele onderzoeken IPD leveren voor metingen van de voor-
speller d.m.v. beide de surrogaat en de gouden standaard en dat misclassificatie
uitwisselbaar is tussen onderzoeken, gegeven de geobserveerde covariaten (en mo-
gelijk de uitkomst).

Het gebruik van Multinomiale Logistische Regressie (MLR) wordt aangeraden
bij de ontwikkeling van klinische voorspellingsmodellen waarbij onderscheid gemaakt
moet worden tussen drie of meer ongeordende uitkomsten. In hoofdstuk 6 presen-
teren we een simulatieonderzoek, waarin we het voorspellend vermogen van MLR-
modellen in relatie tot de relatieve grootte van de uitkomstcategorieën, het aantal
voorspellende variabelen en het aantal gebeurtenissen per variabele hebben onder-
zocht. Hieruit blijkt dat het schatten van een MLR-model met de methode maxi-
mum likelihood modellen oplevert die overfitted zijn, wanneer de dataset klein tot
middelgroot is. In de meeste gevallen worden de kalibratie en het voorspellend
vermogen over het algemeen verbeterd door het gebruik van de methode penalized
maximum likelihood. Ons simulatieonderzoek laat zien dat in de multinomiale con-
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text naast het aantal gebeurtenissen per variabele ook de totale steekproefgrootte
van belang is voor het voorspellend vermogen. Zoals verwacht toont ons onderzoek
de noodzaak van correctie voor optimism van het geschatte voorspellend vermogen
wanneer een MLR-model ontwikkeld wordt. We raden het gebruik van de methode
penalized maximum likelihood aan wanneer een model ontwikkeld wordt in een kleine
dataset of in een middelgrote data set met een kleine totale steekproefgrootte (bij-
voorbeeld wanneer de uitkomstcategorieën even vaak voorkomen). We presenteren
ook een toegepast voorbeeld, waar we de ontwikkeling en validatie van penalized en
unpenalized MLR-modellen voor het voorspellen van kwaadaardige eierstokkanker
illustreren.

Discussie
Ten slotte geven we in hoofdstuk 7 een overzicht van methoden voor meta-analyse
in prognostisch onderzoek. De laatste jaren is het reviewen van onderzoeksresul-
taten essentieel geworden voor de generaliseerbaarheid van medisch wetenschap-
pelijk onderzoek. Vaak worden de kwantitieve bevindingen uit gereviewde artike-
len rekenkundig samengevat door middel van een meta-analyse. Een voorbeeld
hiervan is het kwantitatief samenvatten van de effecten van twee medische behan-
delingen. Het gebruik van meta-analyse is echter minder voor de hand liggend
in prognostisch onderzoek vanwege substantiële variatie in onderzoeksdoelstellin-
gen, in analysemethoden en in het niveau van gerapporteerde onderzoeksresultaten
in dat onderzoeksgebied. We geven een overzicht van statistische methoden die
gebruikt kunnen worden om data van onderzoeken van prognostische factoren en
prognostische modellen samen te vatten. We bespreken hoe gerapporteerde statis-
tische gegevens, IPD of een combinatie daarvan samengevat kunnen worden met
methoden voor meta-analyse. Aan de hand van recente voorbeelden illustreren we
het gebruik van verschillende methoden. We sluiten af met enkele aanbevelingen
voor het uitvoeren van een IPD-MA in onderzoek naar voorspellingsmodellen in het
algemeen.
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Software
I have implemented various newly developed methods, evaluations and applications
that are presented in this thesis in software that is publicly available online in
software repositories. Note that although these repositories retain the software as
used for or presented in this thesis, they may contain more recent updates and/or
additions. Here I give an overview thereof:

Chapter What Where

2 Epilepsy motivating example GitHub
3 R package: SIECV methods CRAN

R-Forge
DVT motivating example GitHub
AF motivating example GitHub

4 R package: methods for validation GitHub
6 Simulation and data GitHub

Ovarian cancer case study GitHub
R package: Performance measures GitHub

Github: https://github.com/VMTdeJong/
CRAN & R-Forge: implemented in R package metamisc.

Supporting information
To save some trees, I omitted the five supporting information documents for chapters
2 and 6 from this thesis. Since these are part of Open Access publications, anyone
can view them through the links below. To avoid dead links, I link to the DOI of
the manuscripts, as the supporting information documents do not have their own
DOI.

Chapter Where

2 10.1002/jrsm.1384
5 page 109
6 10.1002/sim.8063
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Prof. dr. Moons, beste Carl, Je optimisme is erg motiverend en inspirerend. Je
weet er altijd een positieve draai aan te geven als een hoofdstuk nog wat extra werk
nodig heeft. Jouw inzicht heeft me geholpen om de vertaalslag naar de epidemiolo-
gie te maken. Vanaf de eerste dag van dit promotietraject maakte je duidelijk dat
mijn leertraject voorop stond. We begonnen dus geen projecten waar ik alle kennis
al voor had; het doel was steeds om nieuwe kennis en vaardigheden op te doen. Dit
heeft dan ook geleid tot een zeer gevarieerd proefschrift.

Prof. dr. ir. Eijkemans, beste René, ik heb veel plezier gehad van onze dis-
cussies. Op elk wiskundig probleem weet je een oplossing. Je vertelde me niet wat
ik moest doen, maar stelde de juiste vragen, waardoor ik enorme vrijheid heb gehad
om dit proefschrift naar eigen inzicht in te vullen.

Dr. Debray, beste Thomas, ik heb enorm genoten van onze discussies. Ik heb
heel veel van je geleerd over o.a. meta-analyse en missing data, en af en toe hadden
we nog de nodige discussie over machine learning. Je hebt je ingezet om nieuwe
mogelijkheden voor mij te creëren. Dat heeft er toe geleid dat we verder samen
kunnen werken onder de vlag van ReCoDID. Daarvoor en voor al je hulp tijdens
mijn promotie ben ik je eeuwig dankbaar. Het was en is een waar genoegen om met
je samen te werken.

Beste leden van de beoordelingscommissie en de promotiecommissie, prof. dr.
Scholten, prof. dr. Houwing-Duistermaat, prof. dr. Hoijtink, prof. dr. Bots, prof.
dr. Nielen, dr. van Calster, dr. Oberski, ik dank u voor de bereidheid mijn proef-
schrift te lezen en beoordelen.

To all the coauthors who have contributed to this thesis, I would like say thank
you: Richard, Catrin, Jeroen, Long, Paul, Harlan, Thomas, Ben & Ewout. Your
worthy contributions are highly appreciated. Richard, your thoughtful comments
have significantly improved not one, not two, but three chapters of this thesis.

Beste Maarten, jij hebt me geïnspireerd om onderzoek naar voorspellingsmodel-
len te gaan doen, en daar ben ik je nog steeds dankbaar voor. Én dat heeft tot een
hoofdstuk van dit proefschrift geleid! Ik kijk er naar uit om weer met je samen te
werken wanneer je weer naar Utrecht komt.

Colleagues from ReCoDID, Paul, Harlan, Lauren, Thomas, Kerstin, Frank,
Heather, Till, I have enjoyed working with you, even if it has (mostly) been from
far away. Paul and Harlan, I cannot stress enough how much your knowledge of
misclassification, measurement error and Bayesian statistics have contributed to the
respective chapter.

Beste kamergenoten, dr. Jenniskens, Kevin, Saskia, Carline, Nicole, Giske,
Chris, Pauline, Anne-Karien, Romin, Anna-Maria, Suzanne, Anouk, Marjolein,
Lenja, bedankt voor de leuke tijd samen. Ik heb genoten van alle wandelingen
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en lunches. Kevin, en Saskia, eerst in het Stratenum, daarna in het van Geuns, met
jullie was het altijd gezellig werken. Buiten het werk hebben we veel lol gehad bij
o.a. het klimmen, tafelvoetbal en de estafette. Kevin, het was een eer om je para-
nimf te zijn, en bedankt dat je mijn paranimf wilde zijn! Ik kijk er naar uit om weer
samen met je te kunnen werken "aan de overkant". Anouk, Marjolein, Lenja, toen
ik vertelde dat ik mijn kamer moest verlaten hebben jullie mij direct geadopteerd
en vervolgens mentaal gesteund bij het verrichten van de laatste loodjes van dit
proefschrift.

Marian, ik weet dat je stiekem al heel goed bent in het Nederlands, dus schrijf
ik ook voor jou dit dankwoord in het Nederlands. Met jouw humor en altijd aan-
wezige glimlach wist je me altijd weer op te vrolijken wanneer ik een PhD-dipje
had. Hoewel onze proefschriften over totaal andere onderwerpen gaan, heb je me
ook inhoudelijk kunnen helpen en op nieuwe ideeën kunnen brengen. Ten slotte
bedankt dat je mijn paranimf wilde zijn!

Ik wil graag de hele epi-methoden- en biostatistiekteams en de vele anderen
die zich aansloten bij de methoden- en predictievergaderingen bedanken voor de
waardevolle discussies tijdens die vergaderingen. Ik heb veel van jullie presentaties
geleerd, en het presenteren van mijn eigen onderzoek heeft enorm geholpen om
enkele stukken van dit proefschrift te verduidelijken. Cas, Rebecca, Caroline en
Paul, ik vond het leuk om met jullie les te geven en ik heb er veel van geleerd over
statistiek en het overbrengen van kennis.

Medepromovendi, ik heb genoten van de vele borrels en uitjes en natuurlijk de
promovenski’s. Het was fijn om met jullie in hetzelfde schuitje te zitten. Josan en
Anouk, het was een plezier om met jullie de JOB voor te zitten.

39-ers, we hebben veel lol gehad samen: vele feestjes thuis of in de doos, samen
eten, koppen koffie tijdens het samen studeren (of juist niet). Joost, het samen
programmeren in R & Python, de discussies over statistische methoden en juist de
theorie daarachter hebben me extra gemotiveerd om onderzoek hiernaar te gaan
doen.

IBBejaarden en medeadoptiebejaarden, ik heb veel lol gehad tijdens de spel-
letjesavonden, feestjes en natuurlijk de frankantie. Bedankt dat jullie me in de
groep geadopteerd hebben.

Sebastiaan en Rens, de spelletjesavonden met uiteenlopende discussies over
economie, politiek, statistiek, programmeren en vele andere zaken zijn een goede
afleiding van dit proefschrift geweest. Sebastiaan, ik vind het leuk dat hoewel we
totaal verschillende werk- en studiepaden hebben gevolgd, we toch beide in de data-
wereld terecht zijn gekomen en hier nu diepgaande discussies over kunnen hebben.

Lieve familie de Jong, van Woudenbergh en Verstegen, het is altijd fijn jullie weer
te zien. we hebben zware tijden gehad en jullie steun heeft daarbij veel geholpen.
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De Saas, lieve Saskia, ik ben tijdens dit promotietraject vaak in de avond of in
het weekend druk geweest, vooral tijdens de laatste maanden. Dank je wel voor je
liefde, steun en begrip. Ik kan niet in woorden uitdrukken hoeveel dit geholpen heeft.

Ineke, lieve mama, jij hebt me al die tijd gesteund. Ook al heb je me meermaals
moeten vragen waar ik nou toch mee bezig was, had je er altijd vertrouwen in dat
het goed ging komen met dit proefschrift.

En natuurlijk Marcel, lieve papa. Ik heb je natuurlijk voor het einde bewaard,
omdat ik er nog steeds grote moeite mee heb dit op papier te zetten. Je hebt sinds
ik klein was mijn nieuwsgierigheid aangemoedigd. Hoewel mijn eerste studiejaren
niet zo vlot gingen, had je er het volste vertrouwen in dat het goed zou komen met
mijn studie. Ik vind het heel jammer dat je mijn promotietraject en proefschrift
niet hebt mogen meemaken.
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