
Multi-Criteria Decision-Making in
Software Production

Siamak Farshidi

SIKS Dissertation Serious No. 2020-35
The research reported in this thesis has been carried out under auspices of SIKS, the
Dutch Research School for Information and Knowledge Systems.

© 2020, Siamak Farshidi
Multi-Criteria Decision-Making in Software Production
ISBN: 978-90-393-7350-7

Multi-Criteria Decision-Making in
Software Production

Multi-criteria Besluitvorming in
Softwareproductie

(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor aan de Universiteit Utrecht
op gezag van de rector magnificus, prof.dr. H.R.B.M. Kummeling,
ingevolge het besluit van het college voor promoties in het openbaar
te verdedigen op woensdag 2 december 2020 des morgens te 11.00
uur door

Siamak Farshidi

geboren op 8 augustus 1988,
te Teheran, Iran

Promotoren: Prof. dr. S. Brinkkemper
Prof. dr. ir. H.A. Reijers

Copromotor: Dr. S.R.L. Jansen

This thesis was accomplished with financial support from NWO in the
AMUSE project [project code 628.006.001].

Acknowledgments

Undertaking this Ph.D. has been a truly life-changing experience for me, and it would
not have been possible to do without the support and guidance that I received from
many people. The entire list of people who encouraged me during my Ph.D. is pro-
longed, whether within the research itself, forming a suitable environment, or even
giving personal support. Probably, I will have forgotten to recall all names.

First and foremost, I would like to thank Slinger Jansen. To me, Slinger was more
than a supervisor. He was an inspiring and enthusiastic co-promoter who showed me
the right course of action in all situations. His encouragements and optimism were
indispensable to keep me motivated. Slinger taught me how to do research and then
report findings correctly to scientific communities.

I would like to express my sincere gratitude to Sjaak Brinkkemper. He actively sup-
ported my research and encouraged me to write down high-quality scientific papers.
With a few questions, he always helped me to focus on contributions and structure
my findings. Most of his remarks will be with me for my entire career as a researcher.

I would like to say a special thank you to Rolf de Jong. His support, guidance, and
comprehensive insights into the software engineering field have made an inspiring
experience for me. And special thanks to Michiel Overeem, whose support as an
experienced software engineer and an eager researcher allowed my studies to go the
extra mile (sorry for all the additional work, Michiel!).

Doing research and writing papers in collaboration with others was a pleasant ex-
perience as it allowed me to gain more insight and knowledge regarding what I was
working on. I am profoundly grateful for my co-authors’ hard work, who have not
been mentioned above, and their substantial contribution to uplift the studies pre-
sented in this dissertation. Thanks, Sergio España, Jan Martijn van der Werf, Rolf de
Jong, and Jacco Verkleij. I am also thankful to my motivated students who assisted
me in the research projects, especially Elena Baninemeh, Andrey Krupskiy, Baharak
Bakhtiari, and Mahdi Deldar. I am delighted to have worked with you, and I look
forward to working with you again.

My research would have been impossible without the feedback from domain ex-
perts and case study participants from various software producing organizations that
participated in the research projects’ evaluation phases in this dissertation.

The work presented in this dissertation has been critically assessed and approved by
an outstanding reading committee to whom I am more than grateful: Patricia Lago,
Krzysztof Wnuk, Gabriele Keller, Bedir Tekinerdogan, and Diomidis Spinellis. I also

vi ∣ Acknowledgments

want to thank the numerous anonymous reviewers of the journals and conferences.
Often I received constructive feedback that helped me to improve the quality of my
publications.

To conclude, I cannot forget to thank my parents, beloved sister, and friends for all
the unconditional love and support during my Ph.D. journey.

Siamak Farshidi,
November 2020

Contents

Acknowledgments v
Page

1 Introduction 1
1.1 Decision-Making in Software Production 2
1.2 Multi-Criteria Decision-Making Problems 3
1.3 Multi-Criteria Decision-Making Techniques 4
1.4 Decision Support Systems 5
1.5 MCDM Problems in Software Production 8
1.6 Problem investigation 13
1.7 Research Approach 16
1.8 Theory Development in Design Science Research 21
1.9 The MCDM Framework. 24
1.10 Dissertation Outline 28

COTS Component Selection Problems
2 Database Management Systems 33

2.1 Introduction . 35
2.2 Research Method 36
2.3 Related work . 36
2.4 Multi-Criteria Decision-Making 38
2.5 DBMS Selection 40
2.6 Results and Analysis 43
2.7 Discussion . 44
2.8 Conclusion . 45

3 Cloud Service Providers 47
3.1 Introduction . 49
3.2 Research Method 50
3.3 Related Work . 51
3.4 Multi-Criteria Decision-Making 53
3.5 Cloud Service Provider Selection. 59
3.6 Results and Analysis 63
3.7 Discussion . 65

ii ∣

3.8 Conclusion . 66

4 Blockchain Platforms 67
4.1 Introduction . 69
4.2 Research Approach 70
4.3 Related Work . 72
4.4 Multi-Criteria Decision-Making for Blockchain Platform Selection . . . 76
4.5 Empirical Evidence: The Case Studies 84
4.6 Results and Analysis 87
4.7 Discussion . 91
4.8 Conclusion . 92

Software development technology selection problems
5 Programming Language Ecosystems 95

5.1 Introduction . 97
5.2 Research Method 99
5.3 Multi-Criteria Decision-Making for Programming Language Selection . . 103
5.4 Empirical Evidence: The Case Studies 110
5.5 Analysis of the Results 121
5.6 Discussion . 123
5.7 Related Work . 129
5.8 Conclusion . 132

6 Model-Driven Development Platforms 133
6.1 Introduction . 135
6.2 Background . 136
6.3 Research Approach 138
6.4 MCDM for MDD Platform Selection 143
6.5 Empirical Evidence: the Case Studies 149
6.6 Discussion . 157
6.7 Related Work . 161
6.8 Conclusion . 166

Decision-Making in Pattern-Driven Design
7 Capturing Software Architecture Knowledge 169

7.1 Introduction . 171
7.2 Background . 173
7.3 Systematic Literature Review 178
7.4 Practitioner Evaluation 196
7.5 Conclusion . 199

8 Decision Support for Pattern-Driven Architecture 201
8.1 Introduction . 203
8.2 Decision Support System 204
8.3 A Practical Running Example 206

∣ iii

8.4 Related Work . 211
8.5 Evaluation . 212
8.6 Conclusion . 214

9 Design Decisions in Pattern-Driven Architecture 215
9.1 Introduction . 217
9.2 Research method 218
9.3 Architectural pattern selection as an MCDM 220
9.4 Empirical Evidence 223
9.5 Discussion and Analysis 230
9.6 Related work . 231
9.7 Conclusions . 232

Concluding the Research
10 Conclusion 235

10.1 Contributions and observations 236
10.2 Threats to Validity 249
10.3 Reflections . 252
10.4 Limitations and Future Work 257

Backmatter
Bibliography 259

Summary 281

Samenvatting 283

Publication List 285

Curriculum Vitae 287

SIKS Dissertation Series 289

CHAPTER 1

Introduction

2 ∣ Introduction

1.1 Decision-Making in Software Production
Decision-making is a continuous problem-solving process in our daily lives. Some
people consider decision-making as an art, while others view it as practice. Decisions
can be personal or professional, but, in each case, alternative solutions typically have
permanent consequences. In other words, decision-making is one of the underlying
cognitive processes of human behaviors by which a preferred alternative or a course
of action is selected from among a set of options according to particular criteria (Wang
et al., 2004). The decisions we make have the potential to affect ourselves and others
in the short and long term.

Decision theories are widely applied in many disciplines. One example is software
engineering (Rus et al., 2003), which has been defined as a continuous decision-
making process (Fitzgerald & Stol, 2014). For instance, software producing organiza-
tions need to decide whether using their internal development resources (in-house),
buying Commercial off-the-shelf (COTS) components, do subcontracting (outsourc-
ing), or whether to use open-source software (Badampudi et al., 2018). In literature,
decision-making is typically defined as a process or a set of ordered activities con-
cerning stages of problem identifying, data collection, defining alternatives, selecting
a shortlist of alternatives as feasible solutions with the ranked preferences. Fitzgerald
et al. (2017) define decision-making as a process that consolidates critical assess-
ment of evidence and a structured process that requires time and conscious effort.
Kaufmann et al. (2012) states that the decision-making process encourages decision-
makers to establish relevant decision criteria, recognize a comprehensive collection
of alternatives, and assess the alternatives accurately.

Software engineers make a sequence of design decisions while developing a soft-
ware product (Ruhe, 2002). Each design decision can be analyzed as an episode of
complex problem-solving (Pressman, 2005) that relies on a substantial amount of
knowledge and rationale. Design decisions in the software development lifecycle are
significantly constrained by former decisions and lead to additional constraints on
future decisions (Burge et al., 2008). Making informed design decisions in different
phases of the software development lifecycle has critical impacts on the success of a
software product.

Software producing organizations, private and public, are under pressure that
forces them to react instantly to evolving conditions in business environments. They
need to be innovative in how they operate and be agile in making strategic, tactical,
and operational decisions. Such decisions require significant amounts of knowledge
regarding decision domains. As software engineers who are working at such orga-
nizations are not experts in every field, they need to invest a considerable portion
of their time in acquiring knowledge regarding each decision domain (Meyer et al.,
2019). Additionally, they need to keep their knowledge up-to-date because of the
provisional and volatile nature of knowledge in the software engineering field.

Software engineers as decision-makers, are biased to their prior knowledge, called
familiarity bias (Tversky & Kahneman, 2000), to rapidly frame a solution to a problem
they do not yet fully understand, called solution-first bias (Cross, 1999), or to inad-
equate or misleading knowledge, called confirmation bias (Phillips Brooks, 1995).
Hence, such biases undermine decision-making outcomes (Burge et al., 2008). In the

Section 1.2 – Multi-Criteria Decision-Making Problems ∣ 3

software production domain, unbiased decision support is required to mitigate the
impacts of tacit expert knowledge, domain interpretation, over-learned professional
practices, and evaluate decisions made by software engineers.

Software architecture is a subclass of software engineering that focuses on devel-
oping high-quality and successful software products based on fundamental design
decisions (Medvidovic & Taylor, 2010). Accordingly, decision-making has been exten-
sively studied in that domain. It is essential to highlight that well-known authors such
as Jansen & Bosch (2005), Garlan & Shaw (1993), and Clements et al. (2003) have
explained the decision-making process in software architecture and introduced a set
of design decisions.

Nowadays, the development of software products, systems, and services typically
results in complex decision models and decision-making processes (Badampudi et al.,
2018). Decision support software has evolved in various disciplines, such as software
engineering (Rus et al., 2003), to facilitate the decision-making process. Since the
emergence of the concepts of decision support systems, in the mid-1960s, a consider-
able number of research articles regarding decision support has been published in the
literature (Morton, 1971), moreover, a significant number of tools, including plugins
in Eclipse, have been introduced to support software engineers with their decision-
making problems. However, the complexity of the software engineering process and
its socio-technical nature as the main barriers to the adoption of decision support sys-
tems (Donzelli, 2006). As decision support systems are traditionally designed for
other equally complex application domains, such as clinical decision support sys-
tems (Bright et al., 2012; Musen et al., 2014), we need to identify an approach to
overcome these challenges and support software engineers with their decision mak-
ing processes.

1.2 Multi-Criteria Decision-Making Problems
A decision problem in software production is not addressed in the same way by all
software engineers. Each software engineer has her priorities, tacit knowledge, and
decision-making policy (Doumpos & Grigoroudis, 2013); consequently, one software
engineer’s judgment is expected to differ. Addressing such issues in building decision
models in software production forms the focal point of interest in multiple-criteria
decision making (MCDM).

MCDM is both an approach and a set of techniques, to provide an overall ranking of
alternative solutions, from the most preferred to the least preferred solution (Dodg-
son et al., 2009). Alternative solutions may differ in the extent to which they achieve
several objectives, and no one alternative solution will be best in achieving all objec-
tives. Besides, some conflict or trade-off is usually evident amongst the objectives;
alternative solutions that are more beneficial are usually more costly. Costs and bene-
fits typically conflict, but so can short-term benefits compared to long-term ones, and
risks may be higher for the otherwise more beneficial options.

MCDM problems consist of a finite set of alternative solutions, explicitly known at
the beginning of the solution process Floudas & Pardalos, 2008. In multi-criteria de-
sign problems (multiple objective mathematical programming problems), alternative
solutions are unknown. An alternative solution can be found by solving a mathe-

4 ∣ Introduction

matical decision model. Typically, the number of alternatives is either infinite or not
countable, when variables are continuous, or typically very large if countable, when
variables are discrete. However, both kinds of problems are considered as sub-classes
of MCDM problems. The basic working principle of any MCDM technique is the same
and known as six-step of the decision-making process (Majumder, 2015): (1) identi-
fying the objective, (2) selection of the criteria, (3) selection of the alternatives, (4)
selection of the weighing method, (5) applying the method of aggregation, and (6)
decision-making based on the aggregation results.

Each decision-making problem in software production can be modeled as an MCDM
problem that deals with evaluating a set of alternatives and considering a set of de-
cision criteria (See Section 1.5). The challenge consists of evaluating and selecting
the most suitable alternatives for software engineers (decision-makers) according to
their preferences and requirements (Majumder, 2015).

In this dissertation, we focus on a set of decision-making problems pragmatically
that software engineers face in software production (See Section 1.5). The follow-
ing categories of decisions in software production are discussed: (1) decision-making
regarding components for inclusion into software products (Chapters 2, 3, 4). (2)
decision problems related to software development technologies that deal with find-
ing the best fitting technologies for developing a software product (Chapters 5, 6).
(3) architectural design decisions concerning pattern-driven software design (Chap-
ters 7, 8, 9).

1.3 Multi-Criteria Decision-Making Techniques
The tools and techniques based on MCDM are mathematical decision models aggre-
gating criteria, points of view, or features Floudas & Pardalos, 2008. Support is a
fundamental concept in MCDM, indicating decision models are not developed fol-
lowing a process where the decision maker’s role is passive (Dvořák et al., 2018).
Alternatively, an iterative process is applied to analyze decision-makers’ priorities and
describe them as consistently as possible in a suitable decision model. This iterative
and interactive modeling procedure forms the underlying principle of decision sup-
port tendency of MCDM, and it is one of the main distinguishing characteristics of the
MCDM as opposed to statistical and optimization decision-making approaches (Gil-
Aluja, 2013).

In literature, a wide range of MCDM techniques has been introduced to address
MCDM problems in software production, such as the analytic hierarchy process
(AHP) (Garg et al., 2011; Jusoh et al., 2014), Technique for Order Preference by
Similarity to Ideal Solution(TOPSIS) (Oztaysi, 2014; Tang et al., 2019), analytic net-
work process (ANP) (Lee & Kim, 2000; Yazgan et al., 2009), case-based reasoning
(CBR) (Jadhav & Sonar, 2011; Li et al., 2009), fuzzy set theory (Rodriguez et al.,
2017; Rouhani & Ravasan, 2015), Boolean Decision Tree (BDT) (Pahl et al., 2018;
Staderini et al., 2018), weighted scoring method (WSM) (Davies & Reeves, 2010;
Delgado et al., 2015), genetic algorithm (GA) (Doval et al., 1999; Guo et al., 2011),
mathematical programming (Karsak & Özogul, 2009; Sahay & Gupta, 2003), and
their hybrids.

The majority of the MCDM techniques in literature define domain-specific quality

Section 1.4 – Decision Support Systems ∣ 5

attributes to evaluate alternative solutions. Such techniques are mainly appropriate
for specific case studies. Furthermore, MCDM approaches are valid for a specified
period; therefore, the results of such studies, by technology advances, should be out-
dated. Additionally, a pairwise comparison is typically considered as the main method
to assess the weight of criteria in MCDM techniques. For a problem with n number
of criteria n(n−1)

2 number of comparisons are needed (Saaty, 1990). It means that
the pairwise comparison is a time-consuming process, and gets exponentially more
complicated as the number of criteria increases (Ribeiro et al., 2011). A subset of
MCDM approaches, such as TOPSIS and AHP, are not scalable (Ibriwesh et al., 2018;
Khari & Kumar, 2013), so in modifying the list of alternatives or criteria, the whole
process of evaluation should be redone. Therefore, these methods are costly and
applicable to only a small number of criteria and alternatives.

In this dissertation, we developed a theoretical framework to assist software engi-
neers with a set of MCDM problems in software production. The framework provides
a guideline for software engineers to capture knowledge systematically from differ-
ent sources of knowledge to build decision models for MCDM problems in software
production. Knowledge has to be collected and organized when it is needed to be
employed. We designed, implemented, and evaluated a decision support system for
software production, called SoProDSS, that utilizes such decision models to facilitate
decision-making and support software engineers with their daily MCDM problems. A
broad study has been carried out based on qualitative and quantitative research to
evaluate the efficiency and effectiveness of the SoProDSS and the decision models
inside its knowledge base to support software engineers with their decision-making
process in software production.

1.4 Decision Support Systems
A DSS is an information system that comprises domain-specific knowledge and deci-
sion models to assist decision-makers by offering knowledge and the interpretation of
several alternatives (Wang, 1997).

Researchers from different disciplines have been studying DSSs for more than five
decades. The history of introducing such systems backed to the mid-1960s when
Scott Morton published the concept of DSSs in February 1964. Scott Morton and
his colleague Andrew McCosh carried out a study on decision models used to as-
sist marketing and production managers with a recurring decision-making process in
coordinating production planning for laundry equipment (Morton, 1971).

Since the 1970s, business publications have started to publish an extensive list of
research articles on management decision systems, strategic planning systems, and
DSSs (Sprague Jr & Watson, 1979). For instance, Little (1970) identified a set of
numerical procedures for processing data and decision models to assist in
managerial decision-making. Patrick Gerrity also presented a DSS for supporting
investment managers in their daily administration of a client’s stock
portfolio (Gerrity, 1971). Afterward, countless research activities regarding
designing, implementing, and investigating DSSs have occurred in academia and
industry that resulted in expanding the scope of their applications. These research

6 ∣ Introduction

activities also expanded the field of DSSs beyond the initial business and
management application domain. Nowadays, DSSs can be categorized into the
following five broad categories (Power, 2008a):

(1) Model-Driven DSSs employ a single or a combination of multiple quantitative
decision models with a fundamental level of functionality in their knowledge base.
Typically, such DSSs are not data-intensive and receive a limited set of parameters
from decision-makers to assist them in analyzing a complex decision
problem (Power & Sharda, 2007). For instance, Interactive Financial Planning
Systems can be categorized as Model-Driven DSSs (Sharda et al., 1988).

(2) Data-driven DSSs assist decision-makers by analyzing and mining big data
existing in organizational systems. So that such systems ease the access to a large
amount of accurate, well-organized multidimensional data (Power, 2008b).
Management reporting systems, data warehousing, executive information systems,
and business intelligence systems are a few examples of data-driven
DSSs (Power & Sharda, 2007).

(3) Document-Driven DSSs manage, retrieve, and manipulate unstructured data in
a variety of digital documents, such as textual policies and procedures, product
specifications, catalogs, and corporate historical documents, including recorded
meetings, corporate reports, and relevant correspondence (Power, 2000). For
instance, a web-based search engine can be categorized as a Document-Driven
DSS (Fedorowicz, 1993).

(4) Knowledge-Driven DSSs provide information, comprehension,
recommendation, and suggestion to decision-makers based on the knowledge that
has been captured using Artificial Intelligence or statistical tools like case-based
reasoning, rules, frames, and Bayesian networks (Power & Sharda, 2007).
Knowledge-Driven DSSs, sometimes called Intelligent Decision Support
methods (Dhar & Stein, 1997), use problem-solving approaches to derive
appropriate actions for particular problems (Baumeister & Striffler, 2015). Expert
systems and recommender systems follow the knowledge-driven approach (Melle
et al., 1984).

(5) Communication-Driven DSSs facilitate collaborative decision-making by using
communication technologies (Power & Sharda, 2007). A Communication-Driven
DSS shares its knowledge base among multiple decision-makers in geographically
dispersed locations via interactive communication to support group decision-making
on a specific decision making problem (Mohemad et al., 2010). For instance, voting
mechanisms, and anonymous input of ideas and preferences are
communications-driven DSSs (Desanctis & Gallupe, 1987).

Note, an information system may integrate multiple types of DSSs to develop thor-
oughly unique decision support (Power & Sharda, 2007); for example, an information
system can be a model-driven DSS with a knowledge-driven DSS module for pre- or

Section 1.4 – Decision Support Systems ∣ 7

post-processing. Similarly, a DSS may incorporate both a data-driven and a model-
driven subsystem.

1.4.1 Decision Support in Software Production
To make informed decisions, the decision-makers around a software product should
either acquire knowledge themselves or hire external experts to support them with
their decision-making process. The decision-making process becomes more compli-
cated as the number of decision-makers, alternatives, and criteria increases. There-
fore, software production is a suitable domain to deploy DSSs that intelligently sup-
port these decision-makers with the decision-making process.

In the history of software engineering, since the 1980s (Sommerville, 1985), aca-
demic researchers carried out a significant number of studies on decision support
systems and their applications in the software engineers process. A subset of selected
studies is presented as follows.

Holsapple et al. (1982) proposed a Document-Driven DSS for automated database
design based on a set of managerial reports. They introduced a notion of report
schemata, specified in terms of record types and binary relations, as a framework for
analyzing report structures and interactions among reports. Next, four Knowledge-
Driven DSSs were built using two approaches to knowledge acquisition, to facilitate
early detection of potential problems that software engineers might face while coding
and testing software development project(Ramsey & Basili, 1989). Carando (1989)
presented a DSS that used hypertext systems and artificial intelligence techniques,
as knowledge acquisition, to support software engineers in the software development
process. She studied potential challenges in using the DSS in software engineering, in-
cluding the difficulties of search versus browsing, user (dis)orientation, and the extra
complexity that such tools add to the software development process. Afterward, a DSS
was introduced to assist novice project managers in designing and tailoring the soft-
ware development process to their specific projects for achieving required software re-
liability values (Rus & Collofello, 1999). The DSS had two subsystems: a knowledge-
based component for reliability engineering strategy selection and a process simulator
for strategy assessment. Ruhe (2002) described fundamental principles and expecta-
tions on the paradigm of software engineering decision support and then conducted
two case studies of employing DSSs in the area of requirements negotiations. Then,
a DSS was presented to model the software development process (Donzelli, 2006).
The author conducted a study on the effects of requirements instability on software
development projects. The DSS supported Project managers with simulating differ-
ent possible unstable scenarios (e.g., different kinds of requirements behavior over
time) to estimate the corresponding project trajectories. Therefore, managers could
predict unpredictable environments and manage potential changes in conditions over
time (e.g., to decide when and how to feed requirements to the project). Becker et
al. (2013) introduced a multi-criteria decision support system (MCDSS) for software
component selection. The MCDSS evaluates a total of 51 Commercial-Off-The-Shelf
components against a total of 631 decision criteria. The authors specified metrics,
such as the key decision factors and efficient criteria sets, for the quantitative evalua-
tion of decision criteria and sets of criteria, and illustrated their application to a set of
real-world decision cases. İmamoğlu & Çetinkaya (2017) designed and implemented

8 ∣ Introduction

a DSS to support software engineers with programming language selection in soft-
ware production. A Knowledge-Driven DSS was introduced that supported software
engineers with the risk estimation process in employing software components based
on their prioritized requirements (Hettiarachchi & Do, 2019).

Perkusich et al. (2020) carried out an SLR to identify the application of intelligent
techniques in software engineering. They defined an intelligent technique as a “tech-
nique that explores data (from digital artifacts or domain experts) for knowledge
discovery, reasoning, learning, planning, natural language processing, perception, or
supporting decision-making”. They selected 104 unique primary studies and realized
that less than half of them performed an empirical approach to evaluate their pro-
posed solutions. The key findings of their SLR showed that (1) the number of studies
employing intelligent techniques in software engineering is increasing, (2) reasoning
under uncertainty, search-based solutions, and machine learning are the most used
intelligent techniques in the field; (3) the main objectives of the selected studies were
effort estimation, requirements prioritization, resource allocation, and requirements
selection for a release or sprint; and requirements management; (4) the risks of ap-
plying such intelligent techniques in the software engineering field is considerably
high, so (5) more empirical evaluation and validation for such methods are required.

1.4.2 A DSS for MCDM Problems in Software Production
As aforementioned, we develop a theoretical framework for building decision models
for MCDM problems in software production. The decision-making process becomes
more complicated as the number of decision-makers, alternatives, and criteria in-
crease (Majumder, 2015). Therefore, software production is a suitable domain to de-
ploy DSSs that intelligently support these decision-makers with the decision-making
process.

In this dissertation, we designed and implemented the SoProDSS that integrates
key aspects of Knowledge-Driven and Model-Driven DSSs to store and organize
the extracted knowledge regarding decision models systematically, to facilitate the
decision-making process, and to support software engineers with their design deci-
sions in software production (see Figure 1.4).

Decision-makers define and prioritize their domain feature requirements based on
MoSCoW prioritization technique (DSDM consortium and others, 2014), and then
send them to the Inference Engine of the SoProDSS. The Inference Engine infers
candidate solutions using the rules and facts of the decision models that it has in its
knowledge base. In other words, the Inference Engine excludes infeasible solutions
and assigns scores to the feasible ones, and then offers a ranked shortlist of feasible
solutions to the decision-makers.

1.5 MCDM Problems in Software Production
Decision-making is the process in which a decision-maker explains the decision prob-
lems in their context, the results to be achieved, and the actions that can be taken.
In this process, the decision-maker “must make sense of an uncertain situation that
initially makes no sense” (Schon, 1984). So that we need first to identify the de-

Section 1.5 – MCDM Problems in Software Production ∣ 9

cision problems that we want to address and explain the uncertain situations that
software engineers face during the software engineering process. This section identi-
fies three diverse categories of decision problems in software production to evaluate
the proposed theoretical framework in this dissertation from separate perspectives.

1.5.1 COTS-Based Software Engineering
A software component is a unit of composition with contractually specified interfaces
and explicit context dependencies only. A software component can be deployed in-
dependently and is subject to composition by third parties (Szyperski et al., 2002).
The primary goals of Component-based Software Engineering (CBSE) are the pro-
vision of support for the development of systems as assemblies of components, the
development of components as reusable entities, and the maintenance and upgrad-
ing of systems by customizing and replacing their components (Heineman & Councill,
2001). CBSE can significantly reduce development cost and time-to-market, and im-
prove maintainability, reliability, and overall quality of software systems (Cai et al.,
2000; Pour et al., 1999).

Over the last few decades, a significant number of product software firms have re-
alized that they can no longer develop an entire software product themselves and still
meet all customers’ requirements (Van Den Berk et al., 2010). Customers frequently
demand new and more specific functionality, forcing product software firms to look
for third parties, such as COTS software vendors, to add customers’ needs as black
boxes to their software products (Graaf et al., 2003). COTS software is developed for
an entire market instead of a set of specific customers (Xu & Brinkkemper, 2007).

COTS software is either employed as is or slightly customized within the bounds
of an application’s ability to be easily modified without changing its primary func-
tionality. A COTS product, such as an application or a component, is sold, leased, or
licensed to the general public; offered by a vendor trying to profit from it; developed
by the vendor, who retains the intellectual property rights; available in multiple, iden-
tical copies and utilized without source code modification (Brownsword et al., 2000).

Nowadays, almost all product software firms are involved in these networks
of third-party vendors gathered around a single platform called software ecosys-
tems (Jansen et al., 2013b). A software ecosystem is a collection of actors performing
as a unit and interacting with a shared market for software products and services,
together with the relationships among them (Jansen et al., 2019).

In CBSE, requirements statements should be more adaptable and less particular.
Software engineers should define requirements intrinsically as desirable needs rather
than as hard constraints (Cechich et al., 2003). Afterward, they need to select the best
fitting component according to the requirements, and then they have to assemble the
selected solution with a well-defined software architecture (Pour, 1998).

The selection process becomes more complicated as the number of potential alter-
native components, such as COTS software, and services that vendors offer (decision
criteria) increases in their Software Ecosystems (Majumder, 2015). For instance, The
DBMS selection problem is a subclass of the COTS selection problem, and both prob-
lems are a subclass of MCDM problems. Becker et al. (2013) presented a multi-criteria
decision support system for software component selection. The SoProDSS evaluates
a total of 51 COTS components against a total of 631 decision criteria.

10 ∣ Introduction

1.5.2 Software Development Technologies
Software engineers have a broad knowledge of software development technologies,
including programming languages, and they apply software engineering principles to
develop software products. By employing such engineering principles in the software
development lifecycle, from requirements elicitation to software implementation and
then deployment, they can build customized software products for individual stake-
holders.

The demand for highly skilled and qualified software engineers seems to have no
end. This demand is growing by a changing economic landscape and fueled by the
necessity of software development technologies. On the one hand, billions of dol-
lars are spent annually on software products (Bhattacharya & Neamtiu, 2011) that
are produced and maintained by software engineers. On the other hand, business
processes are introduced and managed by stakeholders and top-level managers who
principally understand businesses (Olariu et al., 2016).

Software development is not an independent activity: it typically requires inter-
actions with stakeholders, which necessitate a level of agreement in the description
of the technical phases of development. Moreover, software products are getting
more complicated, so that they need to be discussed at different abstraction levels
depending on the technical background of the involved domain experts, phase of the
development process, and business objectives (Brambilla et al., 2017). Modeling is
a handy tool for addressing such issues in software production as it simplifies the
technical complexities and improves system understanding through visual analysis.

Over the last two decades, tools to support model-driven software development,
such as low-code/no-code platforms and business process management systems, have
gained more attention, and a significant number of them with a wide range of fea-
tures and services have been introduced (Hutchinson et al., 2014). The primary
aspiration of such tools is to boost productivity and decrease time-to-market by fa-
cilitating development at a higher level of abstraction and by employing concepts
closer to the problem domain at hand, rather than the ones given by programming
languages (Sendall & Kozaczynski, 2003).

Software production based on a model-driven software development platform is
not initiated by programming but modeled using visual modeling or declarative devel-
opment tools and pre-built templates and components that can be understood by the
business. The business model transforms into an application, such as web-based or
wearable apps, by generating code or model interpretation. The simplified interface
leads many to believe that building applications using model-driven software devel-
opment platforms require little or no coding knowledge. However, sometimes these
predefined components should be customized, by using programming languages, to
fulfill the required functionality.

Judging the suitability of a set of programming languages for a software product,
as an application or a customized component, is a non-trivial task. For instance, a
purely functional language like Haskell is the best-fit for writing parallel programs
that can, in principle, efficiently exploit huge parallel machines working on large
data sets (Peyton Jones et al., 2008). However, while developing a dynamic website,
a software engineer might consider ASP.net as the best alternative, and others might

Section 1.5 – MCDM Problems in Software Production ∣ 11

prefer using PHP or a similar scripting language. It is interesting to highlight that suc-
cessful projects have been built with both: StackOverflow is built in ASP.net, whereas
Wikipedia is built in PHP. Furthermore, a software engineer might prefer particular
criteria, such as scalability in enterprise applications, whereas other criteria, such as
technology maturity level, might have lower priorities.

Acquiring and expanding knowledge about programming languages is a highly
complex process, as significant numbers of criteria and alternatives exist in the mar-
ket (Bhattacharya & Neamtiu, 2011). Various factors need to be taken into account,
of which, not all are obvious. Simultaneously, the choice of programming languages
can have repercussions on the implementation cost, quality of the result, and mainte-
nance cost of the application (Holtz & Rasdorf, 1988).

For instance, Meyerovich & Rabkin (2013) conducted survey research to identify
the factors that lead to language adoption. They evaluated 26 programming lan-
guages against 33 decision criteria (programming concepts). Moreover, Rymer et al.
(2019) researched a list of low-code platforms, including 13 vendors, to consider for
the evaluation. From that initial pool of vendors, they narrowed the final list based
on several inclusion criteria, such as low-cost-of-entry commercial models, support of
building many business use cases, and primarily targets large enterprises. Then, they
collected data from products and strategies through a detailed questionnaire, demos
and briefings, and a reference-customer survey. They used those inputs, along with
the analyst’s experience and expertise in the marketplace, to score the platforms, ap-
plying a relative rating system that compares each platform against the others in the
evaluation.

Accordingly, it is essential to build decision models to support software engineers
and citizen developers, such as non-professional developers with limited technical
knowledge, with technology selection problems that they might face during the soft-
ware development lifecycle.

1.5.3 Software Architecture Design
Software architecture is fundamental for developing a software product and plays
an indispensable role in its success or failure as software architecture deals with the
base structure, subsystems, and interactions among these subsystems (Clements et al.,
2003). Software architecture comprises a set of architectural design decisions, con-
cerns, variation points, features, and usage scenarios that address various system re-
quirements, including functional and quality requirements (Bosch, 2004). The archi-
tecture on which a software product is built must adapt quickly to new requirements,
not only to new user requirements but also to the always-changing environment,
such as changes in the underlying database management system (Xu & Brinkkemper,
2007).

The software architecture field has evolved over the last four
decades (Clements & Shaw, 2009; Shaw & Clements, 2006) from the early
fundamental concepts from the mid-80s to the ubiquitous proliferation of roles of
software architects in contemporary industrial practice (Capilla et al., 2016). In
literature, different authors such as Clements et al. (2007), Farenhorst & Van Vliet
(2009), De Boer & Farenhorst (2008), and Razavian et al., 2016 have highlighted
the role of decision-making in the architecting process. In other words, software

12 ∣ Introduction

architecture design can be viewed as a decision-making process: software engineers
consider a set of alternative solutions that could solve a system design problem and
select the set that is evaluated as an optimal solution (Lago & Avgeriou, 2006;
Razavian et al., 2016). Software engineers’ duties in this decision-making process is
a frequently recurring topic of discussion. Additionally, researchers and practitioners
deliberated on the proper set of duties, skills, and knowledge of architects (Clements
et al., 2007).

Design decisions are concerned with the system’s application domain, architectural
patterns employed in the system, COTS components, other infrastructure selections,
and other aspects needed to satisfy all requirements (Bosch, 2004). Avgeriou et al.
(2007) stated that lack of architectural design decisions in software production leads
to well-known consequences, including expensive system evolution, poor stakeholder
communication, limited reusability of architectural assets, and poor traceability be-
tween requirements and implementation.

Each architectural design decision is made with a design rationale (Dutoit et al.,
2007), which represents the knowledge that provides the answers to questions about
the design decision or the process followed to make that decision. In literature, var-
ious researchers such as Babar & Lago (2009) and Avgeriou et al. (2007) have high-
lighted the necessity of document design rationale to maintain and evolve software
products and avoid violating rules of design decisions underpinning the original archi-
tecture. Design rationale is an essential part of an architecture description according
to the IEEE 1471 recommended practices (IEEE-SA, 2000).

Architectural knowledge needs to be documented and codified in some way so that
it can be searched and retrieved at different times (Tang et al., 2011a). An architec-
tural pattern describes high-level structures and behaviors of software systems and
addresses a particular recurring problem within a given context in software architec-
ture design (Buschmann et al., 1996). Architectural patterns aim to satisfy several
functional and quality attribute requirements and document the architectural design
decisions (Avgeriou & Zdun, 2005). In this dissertation, we model the decision-
making process and offer a solution to document software engineers’ design decisions
and design rationales in pattern-driven architecture design.

Software product audits should not be regarded as isolated projects (De Boer & Van
Vliet, 2009). Instead, individual audits affect each other even if they target unrelated
software products. For instance, lessons learned in one project might apply to an-
other. Furthermore, the applicability of specific quality criteria is not limited to a
single project alone. Similar projects might use similar quality criteria, and some gen-
eral quality criteria might even apply to virtually all software products. For example,
in high-security systems, some form of user authentication will always be needed.
Accordingly, making informed design decisions is an acquired skill. No matter how
relatively skilled they are, novice software engineers would not have enough collec-
tion of known and experienced situations, design problems, or practical solutions to
pattern match current situations or problems (Razavian et al., 2016).

Additionally, architectural knowledge, specifically about architectural patterns,
such as their application domains and their interactions with quality attributes, has
been widely addressed in the literature. For instance, Avgeriou & Zdun (2005) pro-
posed a pattern language, which was mainly focused on the relationships among

Section 1.6 – Problem investigation ∣ 13

24 patterns and performed a categorization based on the concept of “architectural
views”. Garlan & Shaw (1993) outlined six architectural patterns and showed how
they could be applied and adapted to specific software systems. As the knowledge is
fragmented over a wide range of heterogeneous studies (Buchgeher et al., 2016; Me
et al., 2016; Tang et al., 2011b), a decision model is required to capture and aggregate
this knowledge systematically and support software engineers with the architectural
pattern selection problem (Babar et al., 2009; Falessi et al., 2011; Jansen & Bosch,
2005).

Kruchten (2006) stated that software architecting involves consensus decision-
making in which software engineers balance between stakeholder concerns and re-
quirements, including functional and quality requirements. Clements et al. (2007)
explained that architecting is far more complicated than just making technical deci-
sions. In a large-scale study in practice, they found that software engineers regularly
interact with stakeholders and are involved in the organization and business-related
issues but typically lead the architecting process.

Moreover, it is essential to note that lack of time or trust in a tool for storing or
sharing knowledge is a well-known issue in architectural knowledge management
literature (Babar et al., 2007a; Farenhorst & Van Vliet, 2009). To deal with such is-
sues, incentives for sharing architectural knowledge should be created (Ghosh, 2004).
One way to do this is by making the codification of architectural knowledge easier.
Although some knowledge is inherently tacit in nature and therefore impossible to
codify, i.e., detach from its owner (Nonaka & Takeuchi, 1995), researchers stress that
a group’s or community’s performance increases significantly if everyone is informed
of each other’s expertise or when more explicit knowledge is available to internal-
ize (Cummings, 2003). Accordingly, a trustable knowledge management and decision
support tool should be employed to support software engineers with their daily tasks
in architectural design decisions.

1.6 Problem investigation
Research begins with inquiries or attempts to find solutions to a particular prob-
lem (Gregor, 2006). The developed theory should depend on the nature of the prob-
lem and the questions that are addressed. Whether the questions themselves are
worth asking should be considered against the state of knowledge in the domain at
the time. In other words, problem investigation is a knowledge question that asks for
information and understanding of the given problem, without yet changing it. The
problem investigation aims to formulate the problem, explain it, and possibly predict
what would happen if nothing is done about it (Wieringa, 2009).

An essential step in the process of Design Science Research (DSR) is showing that
existing theories, in the shared knowledge base of design scientists, are or are not
adequate for addressing a particular problem (March & Storey, 2008). Before taking
any further steps, an extensive literature study should be conducted to identify the
potential solutions (theories) that might address the problem. The main objective
of the problem investigation is to define the problem in its context, and possibly to
indicate what would happen if nothing is done about it. Furthermore, it tries to
consider the designers’ tacit knowledge regarding the problem as a part of the initial

14 ∣ Introduction

hypotheses and inputs of the theory development process. Note, research activities
(see Section 1.7.2), such as expert interviews and case studies, define the primary
sources of knowledge in the knowledge acquisition phase of the theory development
process (Meredith et al., 1989). Figure 1.1 shows the problem investigation and the
development process that we have followed to develop the MCDM framework.

The MCDM Framework Development Process in Design Science ResearchProblem Investigation

Tacit knowledge
 - Observations
 - Opinions
 - Prejudices
 - Ideas
 - etc.

Problem definition
 - Stakeholders
 - Goals
 - Criteria
 - Constraints
 - Priorities
 - Context
 - etc.

Knowledge acquisition
 - Discourse
 - Expert interview
 - Case study
 - Literature study
 - Survey
 - etc.

Description Explanation Validation

Design Science Research Knowledge Base

Design
Decisions

The MCDM
Framework

Design
Rationales

DR
T

T

Framework

n-1

MCDM

n
T

Framework

n

MCDM

Figure 1.1: The design process of the MCDM framework.

In the problem investigation phase of the framework, the decision-making problem
should be defined accurately, tacit knowledge should be converted to explicit knowl-
edge properly that ca be used as an input to the development process, and different
knowledge acquisition techniques can be employed to acquire knowledge from the
decision-making problem domain.
Problem definition: Most real-world decision-making problems are ill-defined to
some degree (Fortus et al., 2005), lacking required information and not having a
well-defined ending state and, therefore, with neither a known correct nor best so-
lution (Frederiksen, 1986; Nickerson, 1994). Accordingly, MCDM problems in each
category of MCDM problems (see Section 1.5) should be defined precisely in their
context. Furthermore, the evaluation criteria for solutions to the problem should be
found by analyzing the problem, namely by identifying solution criteria, often called
requirements, based on stakeholder goals, constraints, and priorities (Wieringa,
2009).

In this dissertation, we formulate each decision-making problem in software pro-
duction as an MCDM problem: Let Alternatives = {a1, a2, . . . a∣Alternatives∣} be a set
of alternatives for an MCDM problem in software production. Moreover, Features =
{ f1, f2, . . . t∣Features∣} be a set of domain features, including the most prominent tech-
nical and non-technical domain features of the alternatives. Each a ∈ Alternatives
supports a subset of the set Features. The goal is to find the best fitting solutions,

Section 1.6 – Problem investigation ∣ 15

where Solutions ⊂ Alternatives, that support a set of domain feature requirements,
called Requirements, where Requirements ⊆ Features.

For example, in the database selection problem (See Chapter 2) we consider 73
database technologies (Oracle Enterprise Edition 12.1, MongoDB Enterprise Server
3.4.3, etc.) as alternative solutions (Set Alternatives). Moreover, we identify 307
decision criteria, such as database model (relational, graph, etc.), required function-
ality (transaction, backup, etc.), cost (license, support, etc.), as database features (Set
Features). Next, the case study participants define their feature requirements based
on the MoSCoW prioritization technique (DSDM consortium and others, 2014).

An MCDM technique receives Alternatives and their Features as its input, then
applies a weighting method to prioritize the Features based on the decision-makers’
preferences to define the Requirements, and finally employs a method of aggregation
to rank the Alternatives and suggests Solutions. Accordingly, an MCDM technique
can be formulated as follows:

MCDMtechnique ∶ Alternatives × Features × Requirements → Solutions

Typically, a unique optimal solution for an MCDM problem does not exist, and
it is necessary to employ decision-makers’ preferences to differentiate between so-
lutions (Majumder, 2015). Figure 1.2 visualises MCDM in a 3-dimensional space. It
shows that the degree of satisfaction of the decision-makers with a suggested solution
is fuzzy, which means that the satisfaction degree from a decision-maker (software en-
gineer) perspective may range between completely true (best fit) and completely false
(worst fit) (Dvořák et al., 2018), which is represented by a range of colors from red
to dark green.

Software Engineers
(Decision-Makers)

Requirements

(Functional requirements
and quality concerns)

.

.

.

Best Fit

Worst Fit

Figure 1.2: This figure shows MCDM in software production in a 3-dimensional space. Note, the degree of the decision-
makers’ satisfaction with a solution according to their priorities and preferences (requirements) ranges between the best
and worst fit alternative solutions, which is represented by a range of colors from red to dark green.

Tacit knowledge: Polanyi (1966) defines tacit knowledge as "an individual’s actions"

16 ∣ Introduction

rather than "what that individual knows". Tacit knowledge has a significant effect
on the outcome of the development process of a theory (Wong & Radcliffe, 2000).
In other words, tacit knowledge is something typically derived from experience and
difficult to express. In the theory development process, tacit knowledge of design-
ers (such as observations, opinions, prejudices, and ideas) is highly valuable and has
a significant influence on interpreting and making design decisions, which may re-
sult from a rich understanding and knowledge, but cannot be explained by explicit
reasoning (design rationales).
Knowledge acquisition: Knowledge acquisition is the process of capturing, struc-
turing, and organizing knowledge from multiple sources (Gruber, 1989). Human
experts, discourse, internal meetings, case studies, literature studies, or other re-
search activities are the primary sources of knowledge. The knowledge acquisition
process can be divided into four phases (Chen, 2004): (1) Planning: In this phase,
we gain knowledge regarding the problem domain, define domain experts, evalu-
ate different knowledge acquisition techniques, and outline proper procedures. (2)
Knowledge extraction: The main objective in this phase is to extract knowledge from
sources of knowledge, including domain experts and literature study, by employing
various knowledge acquisition techniques. (3) Knowledge analysis: The outcomes of
the knowledge extraction phase, including concepts and heuristics, are interpreted
in formal forms, such as facts, rules, ontologies, or fuzzy logic sets. (4) Knowledge
verification: Typically, domain experts verify the formal forms of the heuristics and
concepts. If the captured knowledge is insufficient to address the problem, alterna-
tive knowledge acquisition techniques, such as machine learning techniques, can be
employed.

1.7 Research Approach
In this section, we elaborate on the research methods and relate them to individual
research questions to which they apply (see Table 1.1). Apart from the methods
discussed below, a literature study is carried out for each research question to reflect
our work’s objective and results.

Table 1.1: The mapping between the Research Questions (RQ) and Research Methods that have been employed in each
chapter (Ch.). Note, ticks (3) in black show the main research methods in the chapters.

Ch. RQ Research Methods
Design
Science

Conceptual
Modeling

Case
Study

Expert
Interview

Document
Analysis

Systematic
Literature Review

2 1,2,3,4,5,6 3 3 3 3 3
3 1,2,3,4,5,6 3 3 3 3 3
4 1,2,3,4,5,6 3 3 3 3 3
5 1,2,3,4,5,6 3 3 3 3 3
6 1,2,3,4,5,6 3 3 3 3 3
7 1,4 3 3 3 3
8 5 3 3
9 1,2,3,4,6 3 3 3 3

Section 1.7 – Research Approach ∣ 17

1.7.1 Research Questions
Software engineering is a knowledge-intensive field that can be viewed as a
decision-making process (Pressman, 2005). Software engineers spend a significant
portion of their time collecting data regarding their daily tasks (Meyer et al., 2019).
Moreover, they are, like most intelligent professionals, opinionated, moody, and
convinced of their tacit knowledge. In order to mitigate the impacts of tacit expert
knowledge, domain interpretation, and of overlearned professional practices,
software engineering knowledge needs to be systematically captured and organized
when it is required. Thus, the Main Research Question (MRQ) of this dissertation is
stated as follows:

MRQ — How can software engineering knowledge be captured and organized
systematically to support software engineers with software production
decision-making?

To answer the main question, we formulated the following Research Questions
(RQs). First, we need to focus on the traditional decision-making process to
understand how software engineers typically make decisions and tackle
decision-making problems in software production. Second, we have to investigate
potential decision-making problems that software engineers might face during
software production. In order to address such decision-making problems, we need to
identify sources of knowledge that can be used to capture knowledge regarding the
domains of decision problems. Then, we need to determine the knowledge
acquisition techniques that can be used to extract knowledge from the sources of
knowledge systematically. Moreover, we should categorize and organize the
extracted knowledge effectively when they are required. Lastly, we have to assess
knowledge acquisition and organization techniques from software engineers’
perspectives.

RQ1 — How do software engineers make decisions in software production?

We first need to know how software engineers typically make decisions and tackle
decision-making problems in software production. Hence, we should identify
potential challenges that software engineers face during the decision-making
process. Then, we need to find out whether a framework can support them with
systematically capturing knowledge regarding the decision-making problems,
overcoming the challenges, and facilitating the decision-making process. RQ1 is
answered in Chapters 2, 3, 4, 5, 6, 7, and 9.

RQ2 — How can a framework be developed that serves as a reference framework
for decision problems in software production?

The usability and suitability of the framework for addressing decision-making
problems in software production should be investigated. To do so, we need to build
several decision models based on the framework and evaluate them in their problem

18 ∣ Introduction

domain. The evaluation of each decision model leads to partial validation of the
framework as a reference guideline that can be employed to address decision-making
problems in software production. RQ2 is addressed in Chapters 2, 3, 4, 5, 6, and 9.

RQ3 — Which sources of knowledge should be used to build decision models in
software production?

After selecting the decision problems that we want to address, the fundamental
sources of knowledge should be identified that can be used to build decision models
for the problems. For instance, according to the problem definition (see Section 1.6),
the right sets of decision alternatives, features, and their relationships should be
identified. Tacit knowledge of the domain experts, scientific research papers, wikis,
webinars, and white papers can be considered different sources of knowledge. Based
on the nature of the decision-making problem, reliable and unbiased sources of
knowledge should be identified. RQ3 is answered in Chapters 2, 3, 4, 5, 6, and 9.

RQ4 — How should domain knowledge for building a decision model be
extracted and categorized?

In order to build decision models, it is essential to follow a systematic approach to
capture knowledge and then identify the concepts that should be used to build a
decision model. In other words, we need to employ the right knowledge acquisition
techniques according to the essence of a decision problem, then categorize and
organize the extracted knowledge effectively. For instance, sometimes, domain
features and quality attributes are conceptually intertwined. Similarly, domain
features of a decision problem can be at different levels of abstraction. RQ4 is
answered in Chapters 2, 3, 4, 5, 6, and 9.

RQ5 — How should the extracted knowledge for building a decision model be
organized for facilitating the decision-making process?

The decision-making process becomes more complicated as the number of
decision-makers, alternatives, and criteria increases. Software production, therefore,
is a suitable domain to deploy DSSs that intelligently support these decision-makers
with the decision-making process. We need to design and implement a DSS to
organize the extracted knowledge regarding decision models. We need to evaluate
the DSS’s efficiency and effectiveness in supporting software engineers with the
decision problem. RQ5 is addressed in Chapters 2, 3, 4, 5, 6, and 8.

RQ6 — Will software engineers be willing to use the decision models within the
decision support system to perform their tasks?

Finally, we need to investigate the liabilities and strengths of employing the deci-
sion models within the knowledge base of the SoProDSS in addressing the decision
problems. Additionally, we have to carry out a study concerning the willingness of

Section 1.7 – Research Approach ∣ 19

software engineers to use the SoProDSS as tool support to perform their daily tasks
and make design decisions. RQ6 is answered in Chapters 2, 3, 4, 5, 6, 7, and 9.

1.7.2 Research methods
Research methods are classified based on their data collection techniques (interview,
observation, literature, etc.), inference techniques (taxonomy, protocol analysis,
statistics, etc.), research purpose (evaluation, exploration, description, etc.), units of
analysis (individuals, groups, process, etc.), and so forth (Meredith et al., 1989).
Multiple research methods can be combined to achieve a fuller picture and a more
in-depth understanding of the studied phenomenon by connecting complementary
findings that conclude from the use of methods from the different methodological
traditions of qualitative and quantitative investigation (Johnson & Onwuegbuzie,
2004). In this dissertation, different research methods are combined and applied to
answer the research questions. Table 1.1 gives an overview of the research questions
and research methods that we have used in each chapter.

Design science (employed in Chapters 2, 3, 4, 5, 6, 8, and 9) is an iterative
process (Simon, 1996), has its roots in engineering (Hevner et al., 2004), is broadly
considered a problem-solving process (Fortus et al., 2005), and attempts to produce
generalizable knowledge about design processes and design decisions. The design
process, similar to a theory, is a set of hypotheses that eventually can be proven only
by the creation of the artifact it describes (Walls et al., 1992). The feasibility of a
design can, however, be supported by a scientific theory to the extent that the design
comprises principles of the theory. Research investigations involve a continuous,
repetitive cycle of description, explanation, and testing (Meredith et al., 1989).
Accordingly, in most cases, theory development is a process of gradual
change (Baxter, 2004). The research approach for creating decision models for
MCDM problems is Design Science, which addresses research through the building
and evaluation of artifacts to meet identified business needs (Hevner et al., 2008).

Conceptual modeling (used in Chapters 2, 3, 4, 5, 6, and 9) leads to a mental
model of possible relationships and concepts. For example, taxonomies, ontologies,
and categorizations are all conceptual models. A concept is a bundle of meanings or
characteristics connected with particular events, objects, or conditions and used for
representation, identification, communication, or understanding (Meredith, 1993).
Concepts are linked to each other through relationships, by verbal or mathematical
statements, called propositions. A conceptual model is a composition of concepts,
with or without propositions, and used knowledge representation formalisms, such
as mathematical formulation and a graphical representation, to describe (but not
explain) an event, object, or process.

Case Study (conducted in Chapters 2, 3, 4, 5, and 6) is an empirical research
method (Jansen, 2009) that investigates a phenomenon within a particular context
in the domain of interest (Yin, 2017). Case studies can describe, explain, and
evaluate a hypothesis. Researchers are free to carry out an empirical study in any
way, as long as it takes place within a realistic context. A case study can be employed

20 ∣ Introduction

to collect data regarding a particular phenomenon, apply a tool, and evaluate its
efficiency and effectiveness using interviews. Yin (2017) distinguishes four types of
case study designs according to holistic versus embedded and single versus multiple.
In this dissertation, we mainly employ holistic multiple case designs: examining
multiple real-world companies’ cases within their context to learn more about one
specific unit of analysis, evaluating the decision models, and partially validating the
MCDM framework. In deductive case study research, such as the studies that we
have done within this dissertation, designers often employ qualitative research
design (such as Conceptual Modeling) to build theories. The primary purpose of a
qualitative research project is to carry out an in-depth analysis of the links among
the concepts of the theory.

Expert Interview (applied in Chapters 2, 3, 4, 5, 6, 7, 8, and 9) is an essential
knowledge acquisition technique (Chen, 2004) in qualitative research. We followed
Myers and Newman guidelines (Myers & Newman, 2007) to conduct a series of
qualitative semi-structured interviews with senior software engineers to explore
expert knowledge regarding the decision-making problems and evaluate the
outcomes of our study. We developed a role description for each decision-making
problem before contacting potential experts to ensure the right target group. Then,
we contacted the experts through email using the role description and information
about our research topic. The experts were pragmatically and conveniently selected
according to their expertise and experience that they mentioned on their LinkedIn
profile. We considered a set of expert evaluation criteria (including “Years of
experience”, “Expertise”, “Skills”, “Education”, and “Level of expertise”) to select the
experts. Each of the interviews followed a semi-structured interview protocol and
lasted between 60 and 90 minutes. We used open questions to elicit as much
information as possible from the experts minimizing prior bias. All interviews were
done in person and recorded with the interviewees’ permission, and then coded for
further analysis.

Document analysis (employed in Chapters 2, 3, 4, 5, and 6) is a systematic
procedure for reviewing or evaluating documents, including text and images that
have been recorded without a researcher’s intervention (Bowen et al., 2009).
Document analysis is one of the analytical methods in qualitative research that
requires data investigation and interpretation to elicit meaning, gain understanding,
and develop empirical knowledge (Corbin & Strauss, 2014). In order to build a
decision model for an MCDM problem, we reviewed webpages, whitepapers,
scientific articles, fact sheets, technical reports, product wikis, product forums,
product videos, and webinars to collect data and map domain features to
alternatives of the MCDM problem. Afterward, a structured coding procedure was
employed to extract knowledge from the selected sources of knowledge. Structured
coding captures a conceptual area of the research interest (Saldaña, 2015). Next,
the extracted knowledge has been classified into several categories such as quality
attributes, domain features, and alternatives.

Systematic Literature Review (applied in Chapters 7 and 9) is one of the most

Section 1.8 – Theory Development in Design Science Research ∣ 21

broadly accepted research methods of evidence-based software
engineering (Kitchenham et al., 2004). An SLR provides a prescribed process for
identifying, evaluating, and interpreting all available evidence relevant to a
particular research question or topic (Petersen et al., 2008). In this dissertation, the
SLR functioned as a knowledge acquisition process to capture knowledge about
patterns and ultimately making it available in forms of reusable knowledge. The SLR
has been carried out following the steps and guidelines of Kitchenham (2004):
reasoning the necessity of the SLR, defining research questions, searching relevant
studies, applying inclusion/exclusion criteria, assessing the quality of studies,
extracting knowledge, analyzing the results.

1.8 Theory Development in Design Science Research
Research investigations involve a continuous, repetitive cycle of description, explana-
tion, and testing (Cooper & Emory, 1995; Meredith et al., 1989). Thus, proposing
knowledge (explanation) and validating knowledge (testing) simply are two stages
in the ongoing cycle of research. The design process is a Generate/Test Cycle (Simon,
1996) that begins with an investigation of a practical problem, then determines a set
of possible solutions, validates them, and selects one of them, and implements the
solution chosen. The outcome of each evaluation can be the start of a new cycle in
the design process (Van Strien, 1997).

Theory development is a process of gradual change (Baxter, 2004). In other words,
the development process of theories in DSR is an act of iterative interpretation. In a
theory development process, designers make comparable design decisions in a partic-
ular domain. Such design decisions and their corresponding design rationales should
be grouped and considered as repeatable design decisions for building similar theo-
ries in a particular domain. The captured knowledge from the development process
of a theory provides an overview of the theory’s design decisions and rationales. With
such overviews, scientists can systematically develop and report their theories in DSR.

A theory is a coherent group of interrelated concepts and propositions accepted as
principles of explanation and understanding (Meredith, 1993). In this dissertation,
we develop a theoretical framework, called the MCDM framework (see Figure 1.4),
in an iterative process. Figure 1.1 shows the design process that we have followed
to develop the MCDM framework for building decision models for MCDM problems
in software production. The applicability and validity of the framework have been
tested by conducting multiple deductive case studies in each iteration of the theory
development process.

1.8.1 Design Science Research Knowledge Base
The knowledge base is used to analyze, document, and track the MCDM framework
revisions besides its design decisions and rationales. Moreover, the mapping among
the design decisions, design rationales, and the framework revisions is recorded in the
knowledge base for further reuse in the theory development process. In other words,
the knowledge base captures the acquired knowledge during the theory development

22 ∣ Introduction

process and makes it available in forms of reusable knowledge (context, cause, and
result).
Design decisions are made during the MCDM framework design process. Some de-
sign decisions are unique and involve situations that designers have not experienced
before. However, some design decisions are repeatable during the development pro-
cess of the framework. For instance, each decision-making problem in software pro-
duction deals with evaluating a set of technology alternatives and taking into account
a set of domain features. We considered alternatives and f eatures as two primary
constructs of the MCDM framework.
Design rationales indicate reasoning underlying the design process that explains,
derive, and justify design decisions (Fischer et al., 1991). In other words, a design
rationale is clear documentation of the reasons behind design decisions. The main
goal of recording design rationale is to document the incremental changes and design
decisions that designers make during the framework development process.

In the development process of the MCDM framework, a design decision is made ac-
cording to a particular design rationale, and each design decision leads to a revision
of the theory. In other words, we made multiple revisions to the framework during
its development process. Suppose DT

n is the set of all made design decisions of the
framework until its nth revision, then ∆T

n denotes the made design decisions of the
framework in its nth revision, where ∆T

n = DT
n ∖DT

n−1.

1.8.2 The MCDM Framework Development Process in DSR
Developing a theory is an incremental process (Simon, 1996) and requires making
correct design decisions. Moreover, the development process involves a continu-
ous and repetitive cycle consist of description, explanation, and validation of the
theory (Cooper & Emory, 1995). The description must be preceded by explana-
tion and validation. Therefore, the development process starts with the description
stage. A theory may involve only one of the stages in the development process at a
time (Meredith et al., 1989). In each cycle of the development process, (new) con-
structs and relationships are defined or revised accurately to keep consistency among
components of the theory.

The description stage of the development process led to a level of understand-
ing regarding the constructs and provided a well-documented characterization of the
MCDM framework. This characterization is then used for building or testing the
framework. Based on a description, an initial set of constructs and relationships of
the framework is proposed. The description stage involved the initial explication of
tacit knowledge in the textual description based on our understanding or prediction.
Moreover, the improvement of the appearance of a knowledge representation formal-
ism, such as intuitive naming and coloring, led to a higher level of understanding.

Hospers (1956) presents the explanation stage of the development process as the
following three common interpretations: (1) Stating the scope of the framework, (2)
Showing the framework is an instance of a familiar phenomenon, and (3) Bringing the
framework under a law. In other words, the explanation stage translated interpreted
observations, ideas, etc. into new constructs of the framework. This stage elaborated
the understanding from the description stage into more detail by making concep-

Section 1.8 – Theory Development in Design Science Research ∣ 23

tual design decisions. In this stage, constructs and relationships are (re)defined or
(re)categorized.

The validation stage of the development process validated the identified constructs
in the earlier stages. This stage involved a prediction based on the explanation con-
structed in the previous stage, and then observation to determine if the prediction
was correct. Alternatively, a prediction could be proposed and then checked against
observations already made or included in the description. In this stage, the concep-
tualization design decision was made for empirical evaluation and validation of the
framework.

Figure 1.1 shows the development process of the MCDM framework. In each cy-
cle of the MCDM framework development process, we instantiated the framework
to build a decision model for a particular MCDM problem in software production.
Next, we conducted a set of real-world case studies and expert interviews to evaluate
the decision model and partially validate the framework. Each case study participant
had several alternative solutions for the MCDM problem before participating in the
research, and then, it defined a set of feature requirements based on the MoSCoW pri-
oritization technique (DSDM consortium and others, 2014). Afterward, the SoProDSS
generated a shortlist of ranked feasible solutions.

Decision-Making Domain

Software Production Domain

Description Explanation

Validation

MCDM Theory

Description Explanation

Validation

MCDM Framework

Description Explanation

Validation

Decision Models

Description Explanation

Validation

Decisions

Generaliztion Generaliztion Generaliztion

Specialization Specialization Specialization

Figure 1.3: The MCDM framework, based on MCDM theory, is instantiated to build decision models to support software
engineers with MCDM problems in software production.

We defined the results’ success when they, in part, aligned with the case study par-
ticipants’ shortlist and when they provided new suggestions that were identified as
being of interest to the case study participants. Note, using the case study partici-
pants’ opinion as a measurement instrument was risky, as they may not have suffi-
cient knowledge to make a valid judgment. We countered this risk by conducting
more than one case study, assuming that the case study participants were handling
in their interest and applying the SoProDSS to other problem domains in software
production.

Software engineers make a sequence of design decisions while developing a soft-
ware product (Ruhe, 2002). Each design decision can be analyzed as an episode
of complex problem-solving (Pressman, 2005) that relies on a substantial amount
of knowledge and rationale. Figure 1.3 shows that the MCDM framework, based
on MCDM theory, is instantiated to build decision models to support software engi-
neers with their decision-making process in software production. In this dissertation,

24 ∣ Introduction

we build six decision models for the following MCDM problems in software produc-
tion: (1) Database Management System, (2) Cloud Service Provider, (3) Blockchain
Platform, (4) Programming Language Ecosystem, (5) Model-Driven Software Devel-
opment Platform, and (6) Architectural Pattern selection problems.

1.9 The MCDM Framework
The proposed theoretical framework, MCDM framework (see Figure 1.4), follows
the six-step decision-making process (Majumder, 2015) to build decision models for
MCDM problems in software production.

Decision Meta-Model

Qualities

Features

Decision Model

Software Quality Model

ISO/IEC 25010 & Ext. ISO/IEC 9126
Software Quality

Experts

Meta-Model
Designers

Knowledge Acquisition

Domain Experts

Documentation,
Literature, etc.

Domain-Description

Domain-Features

(1) (2)

Feature-Values

Domain-Alternatives

(3)

Knowledge Base

Domain

Qualities

Features

Alternatives

Inference Engine

Score Calculation

Exclude infeasible
Solutions

(5)

Ranked Feasible
Solutions

Decision

(6)

Decision-Maker
(MoSCoW)

Case Definition

Case-Definition

Domain Feature Requirements

(4)

Case Owner

Figure 1.4: The MCDM framework that we follow to build decision models for MCDM problems in software production.

Gregor (2006) sets forth a taxonomy of five different types of theory in use within
the field of information science: (1) A theory for analyzing does not extend beyond
analysis and description. No causal relationships among phenomena are specified,
and no predictions are made. (2) A theory for explaining provides explanations; how-
ever, it does not predict with any precision. Moreover, no testable propositions are
offered by theory. (3) A theory for predicting provides predictions and has testable
propositions; however, it does not have well-developed causal explanations. (4) A
theory for explaining and predicting provides prediction and has both testable propo-
sitions and causal explanations. (5) A theory for design and action gives explicit pre-
scriptions (such as models and techniques) for building an artifact in information
science.

There is no complete agreement about the characteristics and components of
theories in DSR (Baskerville & Pries-Heje, 2010). Gregor (2006) carefully delineated
structures of theories and finally proposed seven components of a theory. We use
Gregor’s suggested components to formulate the MCDM framework in DSR as

Section 1.9 – The MCDM Framework ∣ 25

follows:

representations: is a subset of means of representation of theories in DSR. Different
knowledge representation formalisms (Sloman, 1985), such as mathematical
formulations and graphical representations, can be applied to represent a theory.
Sometimes, multiple knowledge representation formalisms are utilized to represent
a specific theory and improve the theory’s depth of understanding. Note, we
considered a graphical representation, mathematical formalization, and ontological
modeling as three knowledge representation formalisms of the MCDM framework.

constructs: is a subset of primary constructs of theories in DSR. A construct is a
collection of meanings or characteristics connected with particular phenomena of
interest in a theory. All the other components of a theory depend on these primary
constructs. The MCDM framework contains the following constructs: (1) Domain of
the problem, (2) Domain Features, (3) Alternatives, (4) Software Quality Model to
indicate the impacts of domain features on alternatives, (5) Decision-Maker, (6)
MoSCoW prioritization technique as the weighing method, (7) Domain Feature
Requirements, (8) the Weighting Sum Model (WSM) as the method of aggregation,
(9) the Inference Engine of the decision support system to suggest feasible solutions,
(10) Ranked Feasible Solutions.

relationships: is a subset of statements of relationship of theories in DSR. Constructs
are linked to each other through relationships, by verbal or mathematical statements.
A relationship can be associative, compositional, unidirectional, bidirectional, condi-
tional, or causal. Table 1.2 shows verbal statements of the relationships in the MCDM
framework. As we considered a mathematical formalization as one of the knowl-
edge representation formalisms in this dissertation, so mathematical statements of
relationships are defined to indicate the mapping among the sets of Software Qual-
ity Model, Domain Features, and Alternatives. For instance, the mapping between
the sets of Software Quality Model and Domain Features is formulated as follows:
Qualities × Features → Boolean.

For example, consensus-mechanisms as a blockchain feature influences the
Fault-tolerance quality aspect. The framework does not enforce a blockchain feature
to present in a single quality aspect; Blockchain features can be part of many quality
aspects. For example, Spam-attack resistant as a blockchain feature might connect to
multiple quality aspects such as Recoverability and Availability.

scope: is a member of all possible scopes of theories in DSR. The scope of a theory
specifies the degree of generality of the statements of relationships. Moreover, the
scope of a theory determines its boundaries and limitations.

causes: is a subset of causal explanation of theories in DSR. Causal explanations are
revealing and explaining the causes of specific phenomena in theory. In other words,
the theory gives statements of the relationship among phenomena that show causal
reasoning. As aforementioned, the MCDM framework is based on the six-step of the
decision-making process; therefore, all of the constructs and their relationships are

26 ∣ Introduction

implicitly inherited from this process.

propositions: is a subset of testable propositions of theories in DSR. Statements of
relationships among constructs are asserted in such a form that they can be
validated empirically.

prescriptions: is a subset of prescriptive statements of theories in DSR. Statements of
relationships among constructs are expressed in a way to show how software
engineers can perform something in practice (e.g., building an artifact).

A theory in DSR is formulated as a composition of primary constructs and state-
ments of relationships, and used knowledge representation formalisms to describe
(but not explain) particular phenomena. The causal explanation leads to go be-
yond the description and explain particular phenomena in a theory. Note, means
of representation, primary constructs, statements of relationship, and scope are manda-
tory components to define a theory in DSR, however, causal explanations, testable
propositions, prescriptive statements are optional and included in a theory based on
the theory type. Therefore, the design space of the proposed theoretical Framework
(f rameworkMCDM) in this dissertation is defined as follows:

FrameworkMCDM ∶ representations × constructs×
relationships × scope × causes×

propositions × prescriptions

The MCDM framework is a theory for design and action (Gregor, 2006) for building
decision models in the context of MCDM problems in software production. In other
words, this theoretical framework shows HOW decision-makers can efficiently make
decisions to select the best fitting alternative solutions based on their requirements
and priorities. Table 1.2 outlines the MCDM framework as a theory for design and
action in DSR.

Section 1.9 – The MCDM Framework ∣ 27

Table 1.2: This table outlines the components of the proposed theoretical framework in this dissertation, called the
MCDM framework. Note, The framework is a theory for design and action (Gregor, 2006) for building decision models in
the context of MCDM problems in software production.

Theory
components Realization
Means of
representation

graphical representation, mathematical formalization, and ontological modeling

Primary
constructs

(1) Domain; (2) Domain Features; (3) Alternatives; (4) Software Quality Model; (5) Decision-
Maker; (6) MoSCoW; (7) Domain Feature Requirements; (8) Weighting Sum Method; (9)
Inference Engine; (10) Ranked Feasible Solutions.

Statements of
relationship

(1) Each decision model is built for the domain of an MCDM problem in software produc-
tion. (2) Each alternative in the problem domain supports several domain features. (3) The
mapping between domain features and alternatives is based on the documentation of the
alternatives. (4) Software Quality Model indicates the impacts of domain features on alterna-
tives. (5) The Software Quality Model is defined based on ISO/IEC 25010 and ISO/IEC 9126.
(6) The relationship between quality aspects and domain features is based on domain experts’
knowledge. (7) Each decision-maker has a set of prioritized domain feature requirements. (8)
Decision-Makers assign priorities to their feature requirements base on the MoSCoW prioriti-
zation technique. (9) So that the set of domain feature requirements is a subset of features.
(10) Each decision model should be uploaded to the knowledge-based of the decision support
system. (11) The Inference Engine receives the prioritized domain feature requirements as its
input. (12) The Inference Engine calculates the scores of the alternatives based on the Weight-
ing Sum Method and the prioritized domain feature requirements. (13) The Inference Engine
excludes infeasible solutions and ranks feasible solutions according to their scores. (14) A
shortlist of ranked feasible solutions will be the outcome of the decision-making process. (15)
A feasible solution is an alternative that supports the prioritized domain feature requirements.

Scope MCDM problems in software production.

Causal
explanations

The decision-making process, based on the MCDM theory, contains the following phases: (1)
identifying the objective, (2) selection of the features, (3) selection of the alternatives, (4)
selection of the weighing method, (5) applying the method of aggregation, and (6) decision
making based on the aggregation results.

Testable
propositions

(1) It is impossible to make a software production decision alone, so that decision sup-
port is required to make informed decisions. (2) Complex production processes require
decision support, so software engineering processes need decision support. (3) Software
engineers are, like most intelligent professionals, opinionated, moody, and convinced of
their truths, so the framework can support them with making unbiased decisions. (4) The
framework can be employed as a guideline to build decision models for MCDM problems
in software production. (5) The decision support system facilitates the decision-making
process and supports software engineers with their MCDM problems in software production.
(6) Following the framework to build decision models leads to effective and efficient decisions.

Prescriptive
statements

(1) the framework should be used to identify practical alternatives and the right set of domain
features for each MCDM problem in software production. (2) the decision support system
offers a short ranked list of feasible solutions; therefore, decision-makers should perform
further investigations, such as performance testing, to find the best-fit alternatives for their
software products. (3) the MoSCoW prioritization technique can be used in the feature
requirements elicitation phase without employing the decision support system. (4) different
Software Quality Models can be used to build decision models.

28 ∣ Introduction

1.10 Dissertation Outline
This dissertation is structured into four separate parts to address the research
questions. Chapters 2 to 9 are classified according to the three categories of decision
problems in software production. The last chapter, Part IV, concludes the dissertation
and provides an answer to the main research question.

Chapter 1 — The Introduction explains the motivation and highlights its relevance
to software engineering. Additionally, it defines the multi-criteria decision-making
problem in software production and positions the research in context through the
research questions. Next, it describes the research methods that we have used as
knowledge acquisition techniques to address the research questions. Moreover, it
elaborates on the theory development process in this dissertation. Furthermore, it
discusses the rationale behind the conducted research in each chapter of this
dissertation. Finally, it outlines the SoProDSS that we have implemented as tool
support for software engineers to facilitate their decision-making process.

COTS selection problems

Chapter 2 — Database Management System Selection is a crucial challenge for
software producing organizations. Several decision factors come into play, such as
database model (relational, graph, etc.), required functionality (transaction, backup,
etc.), cost (license, support, etc.). Decision-makers are faced with an MCDM
problem to find their suitable database technology because a large number of
decisions of a similar kind have to make. Besides, the number of potential solutions
and decision factors is significantly large. This chapter defines the selection problem
as an MCDM problem and then build a decision model for it according to the MCDM
framework. Finally, it reports how we have evaluated the decision model through
three industry case studies.

Chapter 3 — Cloud Service Provider Selection is a significant challenge for
businesses. Typically, cloud vendors’ service portfolios are heterogeneous and
combined with complicated service features and pricing models. The evaluation and
selection process for an infrastructure-as-a-service provider requires collaboration,
budgeting, and future-proofing of resources. Additionally, offered services are
characterized using multiple criteria, such as their popularity, geographic location,
and deployment model, so it is essential to have a reliable method to select desirable
cloud vendors based on decision-makers’ requirements. This chapter explains a
decision model for the selection problem and explains the evaluation process
through four industry case studies.

Chapter 4 — Blockchain Platform Selection is complicated because many criteria,
such as security, interoperability, consensus mechanisms, and platform transaction
speed, have to be considered. The selection process refers to the steps involved in
choosing and evaluating the best fitting blockchain platforms for software-producing

Section 1.10 – Dissertation Outline ∣ 29

organizations according to their preferences and requirements. As the number of
blockchain platforms in the market is increasing rapidly, the selection problem is
becoming a significant challenge for software-producing organizations. Hence,
knowledge regarding blockchain platforms has to be collected and organized when it
needs to be applied. In this chapter, we build a decision model for the decision
problem and then explain the evaluation results of conducting three real-world case
studies.

Software development technology selection problems

Chapter 5 — Programming Language Ecosystem Selection is a highly complex
process, as various factors need to be taken into account, of which, not all, are
apparent. Third-party libraries play an essential role as many software applications
are built by gluing together plenty of existing libraries in the market, so such
libraries increase language growth. Additionally, communities generate wikis,
forums, and tutorials to improve the learnability and understandability of languages.
So that judging the suitability of programming languages for a software product is a
non-trivial task. In this chapter, we build a decision model for this selection problem
and evaluate it based on four industry case studies.

Chapter 6 — Model-Driven Software Development Platform Selection is challenging
for enterprises to select the best fitting platforms that address their requirements and
priorities. Model-driven software development platforms emphasize visual interfaces
to enable citizen developers to build and deploy business applications with relative
ease. Nowadays, a significant number of such platforms with a wide range of
features and services are available on the market. Accordingly, a decision model for
this selection problem is required to facilitate the decision-making process. In this
chapter, we build a decision model for the decision problem and evaluate it based on
four real-world case studies.

Decision-Making in Pattern-Driven Design

Chapter 7 — Capturing Software Architecture Knowledge is required for supporting
software engineers with their design decisions in pattern-driven architecture.
Selecting architectural patterns is a challenging task for software engineers, as
knowledge about these patterns is scattered among a wide range of literature.
Having this knowledge readily available supports software architects in making more
efficient and effective design decisions that meet their quality concerns. In this
chapter, we report on a systematic literature review, intending to build a decision
model for the architectural pattern selection problem. Moreover, twelve experienced
practitioners at software-producing organizations evaluated the usability and
usefulness of the extracted knowledge.

Chapter 8 — Decision Support for Pattern-Driven Architecture is needed to support

30 ∣ Introduction

software engineers with their daily decision-making process with designing a
pattern-driven architecture. In this chapter, we introduce a DSS that uses a decision
model for supporting software architects with the pattern selection problem
according to their requirements, including functional and quality requirements.
Finally, a practical running example is presented to explain the usefulness and
efficiency of the DSS to support software engineers with the pattern selection
problem.

Chapter 9 — Design Decisions in Pattern-Driven Architecture are made continuously,
based on design rationales and tacit knowledge of software engineers, while
designing software architectures. A subclass of design decisions is selecting
architectural patterns, which is a challenging process, as knowledge about them is
fragmented over a wide range of heterogeneous studies. In this chapter, we
introduce a decision model for the selection problem. Moreover, a study has been
carried out with 24 software practitioners in the Netherlands to assess the user
acceptance of the decision model based on qualitative analysis of the Technology
Acceptance Model. They used the decision model in the knowledge base of the DSS
that we introduce in Chapter 8.

Concluding the Research

Chapter 10 — The Conclusion chapter of this dissertation answers the research
questions based on the results presented in the previous chapters. We provide an
overview of our findings and explain our contributions to the software engineering
field. Moreover, it discusses the limitations and threats to the validity of the
research. Finally, we reflect on this dissertation research and describe future
research perspectives.

Part I: Commercial Off-The-Shelf
Components

CHAPTER 2

Database Management Systems

Software producing organizations face the challenge of including
new technology in their products, such as cloud technologies and
database management systems. As software architects and senior
developers are not experts in this domain, they need to consult
external experts or acquire the knowledge themselves. Therefore,
software production is a suitable domain to deploy decision support
systems that intelligently support these decision-makers in selecting
the desirable technology for their product. We present a decision
support system that supports decision-makers in choosing the most
suitable database technology. The case studies and experts confirm
that the approach increases insight into the selection process,
provides a richer prioritized option list than if they had done their
research independently, besides reduces the time and cost of the
decision-making process.

keywords- multi-criteria decision-making; decision support sys-
tem; technology selection; database management system

This chapter is based on the following publication:

Farshidi, S., S. Jansen, R. de Jong & S. Brinkkemper (2018c), “A decision support system for
software technology selection”, Journal of Decision Systems.

Section 2.1 – Introduction ∣ 35

2.1 Introduction
Technology selection is the process of assessing the potential value of technologies
and their contribution to the competitiveness and profitability of Software Producing
Organizations (SPOs). Moreover, technology selection is one of the essential pro-
cesses in evaluating innovation, popularity, and suitability of technologies for SPOs.
Therefore, technology selection is an essential decision-making process for SPOs. The
challenge consists of evaluating and selecting the most suitable technologies for SPOs
according to their preferences and requirements. The selection process is complicated
because too many factors, such as suitability and cost, should be considered. There-
fore, the technology selection process can be modeled as a multi-criteria decision-
making (MCDM) problem that deals with the evaluation of a set of alternatives, and
taking into account a set of decision criteria (Triantaphyllou et al., 1998).

In recent years researchers introduced a significant variety of techniques, methods,
and tools to solve different technology selection problems for SPOs. Many variations
exist, but all share the vital phases of the decision-making process. The majority of
MCDM approaches use pairwise comparison as the weighting method, which typically
is not scalable. Thus, in the case of modifying the list of alternatives or criteria, the
whole process of evaluation must be repeated. These methods are costly and only ap-
plicable to a small number of criteria and alternatives. Technology selection decisions
are often made ad hoc, without reference to reliable models or sound methodologies.
Furthermore, the results of technology selection solutions in the literature are valid
for a specified period, so by technology advances, they should be performed again.
Hence, a reusable, evolvable, and expandable decision-making approach is needed to
make the right decision based on the characteristics of the environment.

This study introduces a Decision Support System (DSS) to help decision-makers
with MCDM problems, such as DBMS selection. The DSS is a tool that can be used
over the full life-cycle and can co-evolve its advice based on evolving requirements.
The DSS applies the six-step decision-making process (Majumder, 2015) to build
maintainable and evolvable decision models for MCDM problems, and makes the
knowledge acquisition more reliable and trustful. The sets of criteria and alterna-
tives, plus the relationship among them for an MCDM problem can be up-to-date
and regularly manipulated without having impacts on the validity of its decision
model. The novelty of the DSS lies in utilizing the MoSCoW prioritization tech-
nique (MoSCoW) (DSDM consortium and others, 2014) to assess criteria weights
and reduce uncertainty, in introducing assessment models to measure the values of
non-boolean criteria, and in using ISO/IEC quality aspects to indicate the relationship
among criteria according to domain experts’ knowledge.

This paper is structured as follows. Section 2.2 describes the design science method
followed, and the exploratory theory-testing case studies that have been performed.
Section 2.3 gives a window into the literature of software technology selection and
the multiple approaches to solving decision-making problems, such as ours. Section
2.4 formulates the technology selection problem in SPOs and describes the proposed
DSS. Then, section 2.5 illustrates an application of the DSS to address the Database
Management System (DBMS) selection problem, using multiple case studies to evalu-
ate and emphasize the significance of the approach. Afterward, section 2.6 interprets

36 ∣ Chapter 2 – Database Management Systems

the results of the case studies according to expert interviews and opinions. Next, sec-
tion 2.7 highlights and overcomes barriers to the knowledge acquisition and decision-
making process. Finally, section 2.8 summarizes the proposed approach and offers
directions for future studies.

2.2 Research Method
The problem we are trying to solve is that software-producing organizations typically
are not knowledgeable in the domains in which they need to make technology se-
lections for integration into their products. The technology selection process can be
modeled as an MCDM problem that deals with structuring, planning, and solving the
problem concerning a set of criteria: 1) Identifying the objective, 2) Selection of the
features, 3) Selection of the alternatives, 4) Selection of the weighing method, 5)
Applying the method of aggregation, 6) Decision making based on the aggregation
results.

To support these organizations, we propose a DSS, created using design science,
based on the six-step decision-making process. The DSS has the goal of finding suit-
able alternatives that support a set of domain feature requirements. The traditional
design science cycle is followed, and the DSS is inspired by expert knowledge, which
is gathered through three series of interviews. Fourteen experts (three DSS experts,
two academics, five Software Developers, and four Software Architects) participated
in this research to evaluate the DSS in interviews that lasted between 45 and 90 min-
utes. The domain experts were pragmatically selected according to their expertise
and experience that they mentioned in their professional profile.

Secondly, the efficiency and usefulness of the DSS are evaluated through three ex-
ploratory theory-testing case studies. The unit of analysis is a unique technology
selection decision in a software product. We performed three such case studies at
two SPOs to evaluate the DSS. The case studies typically lasted one day and con-
sisted of (1) defining the domain feature requirements, (2) prioritizing them, and (3)
comparing the DSS feasible solutions with their solutions.

2.3 Related work
In recent years, researchers introduced a variety of MCMD methods to address tech-
nology selection problems for SPOs. The Analytic Hierarchy Process(AHP) is a struc-
tured method for organizing and analyzing MCDM problems. This method has been
extensively applied and combined with other techniques to solve MCDM problems.
The Technique for Order Preference by Similarity to Ideal Solution(TOPSIS) suggests
that the selected alternative should have the shortest distance from an ideal solution
and the farthest distance from the negative ideal solution. The FAHP and FTOPSIS
are the combinations of Fuzzy logic with the AHP and TOPSIS methods. The Fuzzy
MCDM(FMCDM) assesses the ratings of alternatives versus criteria and the importance
weights of criteria based on semantic values represented by fuzzy numbers. The Ma-
chine Learning(ML) explores the study and construction of algorithms that can learn
from and make predictions on data.

Section 2.3 – Related work ∣ 37

Table 2.1: This table compares selected MCDM methods from literature to address technology selection problems. The
first column (Domain) points out the problem domain. The second column (MCDM) denotes the MCDM approach. The
third column (PC) indicates whether the approach applies the pairwise comparison(PC) as a weight calculation method
or not. The fourth column (QA) determines the type of quality attributes. The seventh and eighth columns (#F and #A)
signify the number of criteria and alternatives that were considered in the problem domain.

Author(s) Domain MCDM PC QA #F #A

This paper DBMS DSS No ISO/IEC 25010
EX. ISO/IEC 9126 307 73

Jusoh et al. (2014) DBMS AHP Yes Domain specific 12 3
Brahimi et al. (2016) DBMS ML No Domain specific 20 3
Garg et al. (2017) DBMS FMCDM Yes Domain specific 14 5
Lin et al. (2007) Data warehouse system FAHP Yes Domain specific 16 6
Onut & Efendigil
(2010)

ERP software FAHP Yes ISO/IEC 9126 13 3

Kohli & Sehra (2014) Software Quality Model FMCDM Yes Domain specific 3 3
Rodriguez et al. (2017) Risk management approach FAHP Yes Domain specific 5 5

Fu et al. (2010) Project management software
FAHP
FMCDM Yes Domain specific 14 4

Büyüközkan & Güleryüz
(2016)

Product development partner FAHP
FTOPSIS Yes Domain specific 16 6

Becker et al. (2013) COTS DSS No ISO/IEC 25010
Domain specific 631 51

Table 2.1 illustrates selected MCDM approaches from literature. The majority of
the MCDM techniques use pairwise comparison to assess the weight of criteria. For
a problem with n number of criteria, n(n−1)

2 comparisons are needed (Saaty, 1990).
Pairwise comparison is a time-consuming process and gets more complicated as the
number of criteria increases. Some of the methods, such as AHP and FAHP, are not
scalable. For instance, when the list of alternatives or criteria is modified, the eval-
uation process should be conducted again. These methods are costly and applicable
to a small number of criteria and alternatives. The MCMD techniques in literature
mainly define domain-specific quality attributes to evaluate alternatives. Such stud-
ies are typically appropriate for specific case studies. Furthermore, the results of these
MCDM approaches are valid for a specified period, so by technology advances, new
updates and releases, they will be out-of-date.

The DBMS selection problem is a subclass of the COTS selection problem, and
both problems are a subclass of MCDM problems. Becker et al. (2013) present a
multi-criteria decision support system (MCDSS) for software component selection.
The MCDSS evaluates a total of 51 COTS components against a total of 631 decision
criteria. The authors specified metrics, such as the key decision factors and efficient
criteria sets, for the quantitative evaluation of decision criteria and sets of criteria,
and illustrated their application to a set of real-world decision cases. The proposed
DSS and MCDSS provide a substantial number of criteria to support decision-makers
in the technology selection problem. Furthermore, they use the ISO/IEC 25010 (ISO,
2011) as a standard set of quality attributes. The main difference between our and
the MCDSS is their weighting methods. Our DSS utilizes the MoSCoW to assess the
significance of criteria. Moreover, it introduces assessment models to measure the
values of non-boolean criteria, such as the cost of alternatives.

38 ∣ Chapter 2 – Database Management Systems

2.4 Multi-Criteria Decision-Making
This study introduces a DSS that applies the six-step decision-making process (Ma-
jumder, 2015) to build maintainable and evolvable decision models for MCDM
problems and makes the knowledge acquisition more reliable and trustful. Let
Alternatives = {a1, a2, . . . a∣Alternatives∣} be a set of alternatives (technologies) in the
market. Moreover, Features = { f1, f2, . . . t∣Features∣} be a set of domain features, which
includes the most prominent technical and non-technical domain features of the al-
ternatives, so each a ∈ Alternatives supports a subset of the set Features. The goal
is finding the suitable alternative a, which supports a set of essential domain fea-
tures (set Requirements), where Requirements ⊆ Features. In other words, an alter-
native a is the suitable one that supports domain feature requirements and satisfies
the decision-makers’ preferences. Typically, a unique optimal solution for an MCDM
problem does not exist, and it is necessary to use a decision-maker preference to
differentiate between solutions (Majumder, 2015).

The fundamental components of a typical DSS (Sage, 1991) are the DataBase man-
agement system, the Model-Base management system, and the Dialog Generation
management system. The DataBase management system is a set of domain features
facts related to an MCDM problem. The Model-Base management system is a collec-
tion of rules, heuristics, and knowledge related to the MCDM problem. The Dialog
Generation management system is a user interface to interact with decision-makers.

The Inference Engine of a standard DSS infers solutions and does not rely on knowl-
edge base facts and rules, so it works independently from the other components. The
Inference Engine receives domain feature requirements and their priorities according
to MoSCoW from the Dialog Generation management system as its input. Next, it finds
the most relevant rules from a collection of models in the Model-Base management
system. Then, the Inference Engine, by using facts about the DataBase management
system, deduces decisions. Eventually, it sends ranked feasible solutions to the Dialog
Generation management system. The DSS1 comprises of the standard DSS components
and is illustrated in Figure 2.1.

2.4.1 Decision Model
A decision model for an MCDM problem contains criteria, alternatives, and relation-
ships among them (facts and rules). This section introduces the primary sources of
knowledge and constituent parts of a decision model based on the six-step decision-
making process.
Decision Meta-Model - The Decision Meta-Model defines the base structure of a de-
cision model in the knowledge base. It includes two primary sets (Qualities and Fea-
tures). The set Qualities is a set that contains software quality attributes, and the set
Features is a set that consists of domain features of an MCDM problem.
Software Quality Model The Software Quality Model defines the software qual-
ity attributes and relationships among elements of the set Qualities. The DSS uti-
lizes the ISO/IEC 25010 standard (ISO, 2011) and extended ISO/IEC 9126 stan-

1We implemented an online Decision Model Studio (https://dss-mcdm.com/) to build decision models
for technology selection problems in SPOs.

Section 2.4 – Multi-Criteria Decision-Making ∣ 39

Figure 2.1: A model-based decision support system for technology selection problems.

Decision Meta-Model

Qualities

Features

Decision Model

Software Quality Model

ISO/IEC 25010 & Ext. ISO/IEC 9126
Software Quality

Experts

Meta-Model
Designers

Knowledge Acquisition

Domain Experts

Documentation,
Literature, etc.

Domain-Description

Domain-Features

(1) (2)

Feature-Values

Domain-Alternatives

(3)

Knowledge Base

Domain

Qualities

Features

Alternatives

Inference Engine

Score Calculation

Exclude infeasible
Solutions

(5)

Ranked Feasible
Solutions

Decision

(6)

Decision-Maker
(MoSCoW)

Case Definition

Case-Definition

Domain Feature Requirements

(4)

Case Owner

dard (Carvallo & Franch, 2006) in order to define the set Qualities. They are domain-
independent software quality models and provide reference points by defining a top-
down standard quality model for software systems. The elements of the Software
Quality Model apply to classify domain features of an MCDM problem based on their
impact on quality attributes of software technology alternatives.
Domain Description The Domain Description defines the first and second steps, de-
noted by Identifying the objective and Selection of the features, of the decision-making
process. It specifies the domain features of an MCDM problem and maps the set
Qualities to the set Features, where Qualities × Features → Boolean, based on domain
experts’ knowledge. Each domain feature has a data type, such as Boolean and Nu-
meric. For example, the data types of domain features like the popularity and Firewall
of a DBMS could be considered as Numeric and Boolean respectively.
Feature-Values The Feature-Values defines the third step, indicated by Selection of the
alternatives, of the decision-making process. It determines a set of alternatives and
maps them to the domain features set, where Alternatives× Features → Boolean. The
primary source of knowledge in this phase could be documentation of alternatives,
literature studies, social networks, alternative experts, etc.

2.4.2 Case Definition
The Case Definition defines the fourth step, denoted by Selection of the weighing
method, of the decision-making process. The DSS employs MoSCoW to define
decision-makers’ domain feature requirements and assess the importance of required
domain features. Domain feature requirements with Must Have or Won’t Have prior-
ities act as hard constraints and domain feature requirements with Should Have and
Could Have priorities act as soft constraints. In other words, a case definition, based

40 ∣ Chapter 2 – Database Management Systems

on the preferences of a decision-maker (MoSCoW), is a way to select domain feature
requirements and assign priorities to them. Decision-makers specify desirable values
for numeric domain feature requirements. For example, a decision-maker could be
interested in prioritizing the DBMSs with TCOs lower than $5000 USD as more im-
portant than others. Therefore, the TCO lower than $5000 USD could be considered
as a should have domain feature.

2.4.3 Inference Engine
The Knowledge Base is a collection of decision models, which are groups of rules
and facts. The Inference Engine defines the fifth and Sixth steps, indicated by Apply-
ing the method of aggregation and Decision making based on the aggregation results,
of the decision-making process. A feasible solution must support all domain feature
requirements with Must Have priorities, and must not support all domain feature
requirements with Won’t Have priorities. The Inference Engine ranks the feasible al-
ternatives based on their calculated scores. The score calculation process is based
on the well-known Weighted Sum Model. Thus, by sorting the feasible solutions in
descending order of their scores, the final ranked feasible solutions will be given as
the result of the DSS.

2.5 DBMS Selection
The selection of efficient and cost-effective database technology is a crucial challenge
for SPOs. A number of decision factors come into play, such as database model (re-
lational, graph, etc.), required functionality (transaction, backup, etc.), cost (license,
support, etc.). Decision-makers have to follow a trustworthy and iterative process to
choose the DBMS, which best fulfills their requirements. Thus, SPOs are faced with
an MCDM problem to find their suitable DBMS(s) because a large number of deci-
sions of a similar kind have to make. Besides, the number of potential solutions and
decision factors is significantly large.

As mentioned in section 2.4.1, Constituent parts of a decision model are Decision
Meta-Model, Software Quality Model, Domain Description, and Feature-Values. The
Decision Meta-Model defines the base structure of a decision model in the knowledge
base, and it has two sets namely Qualities and Features. A decision model utilizes the
ISO/IEC 25010 standard and extended ISO/IEC 9126 standard in order to define the
set Qualities. The Decision Meta-Model and Software Quality Model are immutable for
decision models based on the DSS approach. However, the Domain Description and
Feature-Values should be define to structure a decision model for an MCDM problem.

This section presents a decision model according to the DSS approach to address
the DBMS technology selection problem. Moreover, three case studies have been
conducted to evaluate the efficiency and effectiveness of the DSS to solve the DBMS
selection problem for SPOs.

2.5.1 Domain Description for DBMS Selection
As mention in section 2.4.1, a list of domain features of technology alternatives within
the domain of interest should be specified. Domain experts are the main source of

Section 2.5 – DBMS Selection ∣ 41

knowledge to identify the right set of domain features, although documentation and
literature study regarding technology alternatives could be utilized to pinpoint an
initial list of domain features. In order to define the domain of DBMS selection prob-
lem more than 250 features2 (such as Auditing, Backup) have collected according to
domain experts’ suggestions. The Software Quality Model provides a general view of
the software quality model. The decision model decomposes abstract concepts into
more concrete ones, the domain features. Domain features have to define precisely to
clarify the underlying quality concepts that they represent and to link them with the
relevant quality aspects in the set Qualities. The Domain Description does not enforce
a domain feature to present in a single quality aspect; Domain features can be part of
many quality aspects. For example, Immediate Consistency as a DBMS feature might
connect to multiple quality aspects such as Recoverability and User error protection.

In this study, domain features and the mapping between the sets Qualities and
Features for the DBMS selection problem are defined by nine domain experts, includ-
ing two university professors, five Software Developers, and two Software Architects
in the Netherlands. The domain features identified by six semi-structured interviews,
then three experts participated in the research to map the considered domain fea-
tures to the set Qualities based on a boolean adjacency matrix (Qualities× Features →
Boolean).

2.5.2 Feature-Values for DBMS Selection
As mentioned in section 2.4.1, a list of technology alternatives of the domain of in-
terest should be defined. Well-known technology solutions, websites, related forums,
and domain experts are the primary source of knowledge to specify the list of tech-
nology alternatives. In this study, 73 DBMS technologies (Oracle Enterprise Edition
12.1, MongoDB Enterprise Server 3.4.3, etc.) from 10 data storage models (Rela-
tional, Document, etc.) have been considered. Next, the supportability of boolean
domain features by the DBMS technologies investigated. The relationship between
the sets Features and Alternatives defined based on the documentation and websites
of the considered DBMS technologies. One of the principal challenges is the lack of
standard terminology among documentation of DBMS technologies. Different ven-
dors refer to the same concept by different names, or even worse, the same name
might stand for different concepts in different DBMS technologies. Discovering con-
flicts in the Feature-Values is essential to prevent semantic mismatches throughout
the DBMS selection process. Manufacturers tend to provide a partial view of their
products. They emphasize their product’s benefits, without mentioning weaknesses
or provide only part of the truth. Some non-commercial articles compare DBMS tech-
nologies and features but are often based on the evaluators’ limited knowledge of
the technologies and their particular tastes (Franch & Carvallo, 2003). The next step
in building a decision model for the DBMS selection problem is defining assessment
models for each non-boolean domain features, such as Popularity in the market and
Total Cost of Ownership.

2The entire list of the domain features and supportability of considered database technologies are avail-
able and accessible on the "DBMS Selection Model" website: https://dss-mcdm.com/

42 ∣ Chapter 2 – Database Management Systems

Popularity in the Market - In this study, the results of DB-Engines Ranking3 is used to
provide a metric on the popularity of DBMS technologies in the market. DB-Engines
measures the popularity of a database system by using some parameters, such as the
number of mentions of the system on websites and general interest in the system.
Popularity in the market is a numeric domain feature of the DBMS selection problem
that finds the most popular technologies in the market based on decision-makers’
domain feature requirements.
Total Cost of Ownership - The cost of DBMS technologies varies widely, from en-
tirely free to staggeringly expensive, and many factors and options should be consid-
ered. Database licensing can sometimes appear confusing, especially when it comes
to well-known vendors, such as Oracle and Microsoft. A considerable variety of pric-
ing methods and models, such as per core and server, for calculating the database
licensing costs are available.

We defined four reference configurations4, including the PC (1, 1, 4, 16, 25, 256,
N, 5), Basic server (1, 1, 8, 64, 2×256, N, 25), Intermediate server (2, 2, 2×6, 2×256,
8 × 960, A/P, 15000), and Advanced server (2, 2, 2 × 24, 3000, 24 × 960, A/P, ∞), to
get a rough estimate of the Total Cost of Ownership (TCO) of DBMS technologies.

The TCO of each alternative was asked directly from its vendor/maintainer or cal-
culated via offered TCO calculators on websites of DBMS vendors. Many options,
offers, and add-ons were not included in the TCO calculations because they were
vendor-specific. The TCO is a domain feature of the DBMS selections problem that
attempts to clear the fog somewhat regarding database licensing. However, the esti-
mated values of the TCO cannot possibly provide a full and precise insight into the
complex pricing and licensing schemes that DBMS providers use.

2.5.3 Empirical Evidence: The Case Studies
Three case studies have been conducted in the context of two SPOs to evaluate and
signify the usefulness and efficiency of the DSS to address MCDM problems, precisely
the DBMS selection problem. The case study companies considered a number of
feasible DBMS technologies for their organizations through multiple internal expert
meetings and extensive investigation into DBMS alternations before participating in
this research.
AFAS Software - AFAS Software is an ERP vendor in the Netherlands with approx-
imately 350 employees. One of AFAS’ current challenges is validating whether they
have chosen the right DBMS(s) for the new version of their main product. The new
product requires two primary data storage, namely AFAS QS and AFAS SS.
ProcureComp - ProcureComp is an SPO that produces procurement software. Pro-
cureComp’s product is based on Microsoft technology. Presently, the ProcureComp
product is being renewed and rebuilt using new Microsoft platforms, and this is a
suitable time to rethink the data storage strategy for the new version of the Procure-
Comp product (NX1).

3The db-engines.com ranks database management systems according to their popularity. The ranking is
updated monthly.

4Each reference configuration is indicated by a 7-tuple (CPU, Socket, Core, RAM, SSD, Failover,
Max.DB), consisting of the number of CPUs, number of sockets, number of cores, amount of RAM (GB),
SDD capacity (GB), failover type (None and Active/Passive), and maximum database file size (GB).

Section 2.6 – Results and Analysis ∣ 43

Table 2.2 demonstrates the number of domain feature requirements, which the case
study participants indicated, of the AFAS QS, AFAS SS, and NX1 based on MoSCoW.

Table 2.2: The number of domain feature requirements of the case studies based on the MoSCoW priorities.

MoSCoW AFAS QS AFAS SS NX1
Must Have 7 6 50
Should Have 8 4 5
Could Have 7 2 17

Table 2.3: The feasible solutions of the DSS for AFAS software and ProcureComp based on their domain feature
requirements and MoSCOW priorities. The columns Desirable and Undesirable suggestions demonstrate which DSS feasible
solutions already considered in the shortlist of case study participants based on their internal meetings and investigations.
Moreover, the Columns CP Rank and DSS score of the table show the score calculation results of the DSS and the short
ranked list of the feasible solutions based on the case study participants’ opinions respectively.

Case Study Feasible solutions
Desirable sug-
gestion

Undesirable
suggestion DSS Score CP Rank

AFAS QS

MySQL
DB2
Oracle Database
Postgres
SQL Server

✓

✓
✓

✓
✓

100 %
100 %
100 %
99.80 %
99.77 %

2
-
-
1
3

AFAS SS

Postgres
MySQL
MongoDB
DB2
Oracle Database
SQL Server

✓
✓
✓

✓

✓
✓

100 %
100 %
100 %
100 %
100 %
99.45 %

1
2
4
-
-
3

NX1 SQL Server ✓ 99.74 % 1

2.6 Results and Analysis
Table 2.3 illustrates the feasible solutions of the DSS for AFAS QS, AFAS SS, and NX1.
The DSS deduced just one feasible solution for NX1 because ProcureComp experts
restricted the search space by assigning 50 domain features as Must Haves, i.e., hard
constraints. The reason is that the software architecture of NX1 depends heavily
on the relational data storage model and Microsoft technology. Thus, ProcureComp
experts were primarily interested in finding the edition of SQL Server (Enterprise
edition 2016) that best covers their requirements and priorities. The AFAS software
architecture is not dependent on a specific data storage model or vendor. Moreover,
most of the domain feature requirements of AFAS QS and AFAS SS do not require
specific DBMS technology.

The amount of annual TCO was a Should Have domain feature for AFAS. Hence, the
DSS did not exclude any alternatives based on their TCO values. Table 2.3 shows that
Oracle and IBM DB2 database technologies are not desirable suggestions for AFAS.
Because the case participants find that the annual TCO of these DBMS technologies,
including extra options, end up being much higher than the other feasible solutions.
In other words, they perceive that MySQL, SQL Server, and Postgres DBMS technolo-
gies are interesting suggestions because of their relatively low TCO for an intermedi-
ate server configuration, including extra options. Moreover, AFAS experts mentioned
IBM DB2 is undesirable, because they do not have enough experience with its perfor-
mance, support, and licensing.

44 ∣ Chapter 2 – Database Management Systems

The case study participants at both companies confirm that the DSS provides practi-
cal solutions to help SPOs in their initial decisions for selecting DBMS technologies. In
other words, the DSS recommended the same solutions as the case participants sug-
gested to their companies after extensive analysis and discussions. However, the DSS
offers a short ranked list of feasible solutions; therefore, SPOs should perform further
investigations, such as performance testing and actual TCO calculation, to find the
optimum DBMS technology for their software products. The case study participants
state that their companies continuously improve and reevaluate their technologies,
including the used DBMS technologies.

The case study participants entered a limited set of domain feature requirements.
We were surprised to find that the experts have a limited view of what the domain
feature requirements of the technology are. Furthermore, the case participants them-
selves were surprised to find what their primary concerns seem to be, especially when
the opinions of different experts are combined. The DSS enables decision-makers to
meet more complex requirements that they might have. More importantly, the case
study participants confirm that the updated and validated version of the DSS is useful
and valuable in finding the shortlist of feasible solutions. Finally, it reduces the time
and cost of the decision-making process.

The consulted experts confirm that the DSS contains the main components of a
standard DSS. Furthermore, they state that the DSS is a useful tool that provides
more knowledge than they could have collected independently. The experts believe
that experience in using a specific technology provides invaluable knowledge when
selecting suitable technology. We, therefore, recommend that the DSS should use in
combination with benchmarks where applicable.

2.7 Discussion
SPOs have different perspectives on their domain feature requirements in different
phases of the Software Development Life-Cycle. Decision-makers typically consider
generic domain features in the early phases of the life-cycle, whereas they are in-
terested in more detailed and specific domain features as their development process
matures. For instance, Access Control could be prioritized as a Should Have domain
feature in the design phase, but in the implementation phase, one of its sub-features,
e.g., Label Based Access Control, might be selected instead. Furthermore, domain fea-
tures’ priorities could be changed in different phases. Therefore, the DSS might come
up with various solutions for an SPO in different phases of its software development
life-cycle. The proposed DSS is a tool that can be used over the full life-cycle and
can co-evolve its advice based on evolving requirements. As the choices of the par-
ticipants are stored in the DSS, it does not cost a significant amount of time to rerun
the decision-making process. Presently, we are designing solutions that enable "the
crowd" to participate in contributing knowledge, without letting anyone commercial
party influence the knowledge base. Furthermore, we are looking at methods to
automatically extract domain features from manuals and documentation, using text
mining techniques.

Decision-makers could bias the determination of domain feature requirements and
their priorities. Biases, such as motivational and cognitive (Montibeller & Winter-

Section 2.8 – Conclusion ∣ 45

feldt, 2015), arise because of shortcuts or heuristics that decision-makers use to solve
problems and perform tasks. The Hawthorne effect, which is the tendency of decision-
makers to change their behavior when observed, is a form of cognitive bias. The case
study participants (AFAS and NX1 decision-makers) might have been more careful in
the experimental setting than they would be in the real setting because they are being
observed by scientists judging their selected domain feature requirements and prior-
ities. Moreover, the Bandwagon effect, which is the tendency to do or believe things
because many other decision-makers do or believe the same, is another form of cog-
nitive bias. The Bandwagon effect typically shows up in group decisions. To mitigate
the Hawthorne and Bandwagon effects, individual and group interviews conducted
to collect the domain feature requirements for each case study.

2.8 Conclusion
Software producing organizations are faced with an MCDM problem when finding
suitable COTS. The number of potential solutions (alternatives) and decision factors
are significantly high. This paper is the first attempt at supporting architects in making
complex decisions, where we ventured into the domain of DBMS technologies.

In recent years a variety of studies has been conducted to benchmark, compare,
and evaluate database technologies. However, according to expert analysis, selecting
a suitable DBMS technology for a software product is not utterly subjective. Finding
a feasible solution for this problem based on decision-makers’ priorities and require-
ments requires an in-depth investigation into the documentation of database tech-
nologies and extensive expert analysis. This study introduces a DSS to accelerate the
process of finding the right DBMS technologies and suitable data storage models for
SPOs. The novelty of the proposed DSS lies in utilizing MoSCoW to assess criteria
weights and reduce uncertainty, in introducing assessment models to measure the
values of non-boolean criteria, and in using ISO/IEC quality aspects to indicate the
relationship among criteria according to domain experts’ knowledge.

To keep the knowledge base of the DSS up-to-date and valid, a website5 has cre-
ated. We plan to create a community around the platform that will regularly update
the curated knowledge base with new DBMS technologies and features. It could be
imagined that the DSS implementation is used as a discussion platform that highlights
conflicts and priorities to emphasize these and lead the decision process. Probing
deeper, the decision model presented in this paper also provides a foundation for fu-
ture work in technology selection problems. We intend to build trustworthy decision
models to addresssoftware architectural pattern, could service provider, and blockchain
platform selection as our (near) future work.

5https://dss-mcdm.com/

CHAPTER 3

Cloud Service Providers

Cloud computing enables software producing organizations to
replace in-house IT infrastructure and provide them with scalable
and flexible computing and flexible low cost. As cloud vendors and
services on offer increase rapidly, cloud service provider selection
is becoming a significant challenge for businesses. Cloud service
providers and their offered services are characterized using multiple
criteria, such as their popularity, geographic location, and deploy-
ment model, so it is essential to have a reliable method to select
desirable cloud vendors based on decision-makers’ requirements.
In this study, we present a decision support system that supports
decision-makers in choosing the most suitable Infrastructure-as-a-
Service cloud providers. The case studies and experts confirm that
the approach increases insight into the selection process, provides
a richer prioritized option list than if they had done their research
independently, and reduces the time and cost of the decision-making
process.

keywords- multi-criteria decision-making, decision support sys-
tem, knowledge management, cloud service provider selection,
infrastructure-as-a-service

This chapter is based on the following publication:

Farshidi, S., S. Jansen, R. De Jong & S. Brinkkemper (2018a), “A decision support system for
cloud service provider selection problems in software producing organizations”, in: 2018 IEEE
20th Conference on Business Informatics (CBI), vol. 1, IEEE, pp. 139–148.

Section 3.1 – Introduction ∣ 49

3.1 Introduction
Nowadays, cloud computing is influencing the IT landscape and becoming a signif-
icant economic factor for software producing organizations. Cloud computing is a
fast-growing technology in a non-transparent market with diverse vendors, each of
them having their specific services and deployment models. Typically, the service
portfolios are heterogeneous and combined with complicated service features and
pricing models. The challenge consists of evaluating and selecting the most suitable
Infrastructure-as-a-Service Cloud Providers for software producing organizations ac-
cording to their preferences and requirements.

The selection process is complicated because many factors, such as security and
cost, have to be considered. In this study, the Infrastructure-as-a-Service Cloud
Provider, in short, Cloud Service Provider (CSP) selection process is modeled as a
multi-criteria decision-making (MCDM) problem that deals with the evaluation of a
set of alternatives, and taking into account a set of decision criteria (Triantaphyllou
et al., 1998).

In most cases, a unique optimal solution for an MCDM problem does not exist, and
it is necessary to use the preferences of a decision-maker to differentiate between and
prioritize solutions (Majumder, 2015). In recent years researchers introduced a con-
siderable variety of techniques, methods, and tools to address MCDM problems. The
majority of MCDM approaches in the literature use pairwise comparison techniques
to calculate the weight of each decision criterion based on decision-makers’ opin-
ion. Pairwise comparison is a time-consuming process that gets more complex as the
number of criteria increases(Saaty & Vargas, 2006). Moreover, most MCDM methods
are not scalable, so in the case of modifying the list of alternatives or criteria, the
whole process of evaluation has to be repeated. Traditional methods are costly and
applicable to a small number of criteria and alternatives. A reusable, evolvable, and
expandable decision-making approach is needed to make the right decision based on
the decision-makers’ requirements and preferences.

This study introduces a Decision Support System (DSS) to help decision-makers
with MCDM problems, such as CSP selection. The DSS is a tool that can be used over
the full life-cycle and can co-evolve its advice based on evolving requirements. The
DSS applies the six-step decision-making process (Majumder, 2015) to build main-
tainable and evolvable decision models for MCDM problems, making the knowledge
acquisition more reliable and trustful. In our previous work, we built a decision
model for database technology selection problem (Farshidi et al., 2018c), then con-
ducted three case studies to evaluate the DSS. The final results showed that the DSS
performed well to address the database selection problem for the software-producing
organizations. The novelty of the DSS lies in utilizing the MoSCoW prioritization
technique (MoSCoW) (DSDM consortium and others, 2014) to assess criteria weights
and reduce uncertainty, in introducing assessment models to measure the values of
non-boolean criteria, and in using ISO/IEC quality aspects to indicate the relationship
among criteria according to domain experts’ knowledge.

This paper is structured as follows. Section 3.2 describes the design science method
followed, and the exploratory theory-testing case studies that have been performed.
Section 3.3 gives a window into the literature of software technology selection and

50 ∣ Chapter 3 – Cloud Service Providers

the traditional approaches to solving decision-making problems such as ours. Sec-
tion 3.4 outlines the details of the proposed decision support system and emphasizes
the usage of novel techniques such as ISO qualities and the MoSCoW. Section 3.5 il-
lustrates an application of the DSS to address the CSP selection problem, using four
case studies to evaluate and emphasize the significance of the approach. Afterward,
section 3.6 interprets the results of the case studies according to expert interviews
and opinions. Section 3.7 highlights and overcomes barriers, such as motivational
and cognitive biases, to the knowledge acquisition and decision-making process. Fi-
nally, section 3.8 summarizes the proposed approach, defends its novelty, and offers
directions for future studies.

3.2 Research Method
Software-producing organizations typically are not knowledgeable in the problem
domain, which is finding the most suitable CSPs for their businesses based on their
requirements and priorities. The knowledge regarding the problem domain does not
make any difference in the selection process, because the right selection requires
regular studying and tracking available technologies and vendors in the market.

The selection process can be modeled as an MCDM problem that deals with struc-
turing, planning, and solving the problem concerning a set of criteria: 1) Identifying
the objective, 2) Selection of the features, 3) Selection of the alternatives, 4) Selection
of the weighing method, 5) Applying the method of aggregation, 6) Decision making
based on the aggregation results.

Knowledge acquisition and keeping the acquired knowledge up-to-date are time-
consuming and costly processes for Software-producing organizations. To support
these organizations, we propose a DSS, created using design science, based on the six-
step decision-making process. The DSS has the goal of finding suitable alternatives
that support a set of domain feature requirements.

The traditional design science cycle is followed, and the DSS is infused with expert
knowledge gathered through three interviews. Twelve experts (three DSS experts, six
cloud consultants, and three cloud architects) participated in this research to evaluate
the DSS in interviews that lasted between 45 and 90 minutes. The domain experts
were pragmatically selected according to their expertise and experience that they
mentioned in their professional profile. Each of the interview series followed a semi-
structured interview protocol. Data collected during one interview would typically be
propagated to the next to build and validate the knowledge base incrementally. The
knowledge base was sent to the interview participants afterward for final confirma-
tion.

Secondly, the efficiency and usefulness of the DSS are evaluated through four ex-
ploratory theory-testing case studies. The unit of analysis is a unique CSP selection for
a Software Producing Organization. We performed four such case studies at four soft-
ware producing organizations to evaluate the DSS. The case studies typically lasted
one day and consisted of (1) defining the domain feature requirements, (2) prioritiz-
ing them, and (3) comparing the DSS feasible solutions with their solutions.

Section 3.3 – Related Work ∣ 51

3.3 Related Work
The proposed DSS applies the six-step decision-making process (Majumder, 2015)
to build decision models for MCDM problems and distinguishes itself from the cur-
rently existing DSSs in the following ways: 1) the DSS utilizes the MoSCoW (DSDM
consortium and others, 2014) to assess criteria weights and reduce uncertainty, 2)
employs assessment models to measure the values of non-boolean criteria, and 3)
uses the ISO/IEC quality aspects to indicate the relationship among criteria according
to domain experts’ knowledge.

Snowballing was employed as the principal method to investigate the existing
literature related to the techniques which address MCDM problems for Software-
producing organizations. Some MCDM methods can be listed as follows: The Analytic
Hierarchy Process (AHP) is a structured method for organizing and analyzing MCDM
problems. This method has been extensively applied and combined with other tech-
niques to solve MCDM problems. The Technique for Order Preference by Similarity to
Ideal Solution (TOPSIS) suggests that the selected alternative should have the short-
est distance from an ideal solution and the farthest distance from the negative ideal
solution.

The Fuzzy Delphi Method (FDM) is a more advanced version of the Delphi Method
in that it utilizes triangulation statistics to determine the distance between the levels
of consensus within the expert panel. The FAHP and FTOPSIS are the combinations of
Fuzzy logic with the AHP and TOPSIS methods. The FMCDM assesses the ratings of
alternatives versus criteria and the importance weights of criteria based on semantic
values represented by fuzzy numbers.

Table 3.1 illustrates selected MCDM approaches from literature. The majority of
the techniques in literature use pairwise comparison as the main method to assess
the weight of criteria. For a problem with n number of criteria n(n−1)

2 number of
comparison is needed (Saaty, 1990). It means that the pairwise comparison is a time-
consuming process, and gets more complicated as the number of criteria increases.
Some of the methods, such as AHP and FAHP, are not scalable, so in the case of
modifying the list of alternatives or criteria, the whole process of evaluation should
be conducted repeatedly. Therefore, these methods are costly and applicable to a
small number of criteria and alternatives. The majority of the MCMD techniques in
literature define domain-specific quality attributes to evaluate the alternatives. Such
studies are mainly appropriate for specific case studies. Furthermore, the results of
these MCDM approaches are valid for a specified period, so technology advances and
new service offerings will be out-of-date.

Franch & Carvallo (2003) introduced a six-step method to solve the Commercial-
Off-The-Shelf selection problem. The six-step method considers the ISO/IEC 9126-1
standard as for quality attributes and decomposes it into the domain features of the
Commercial-Off-The-Shelf packages. Moreover, decision-makers should define spe-
cific metrics for each domain feature to assign a value to it. Finally, the results of con-
sidered Commercial-Off-The-Shelf packages will be compared. Becker et al. (2013)
present a multi-criteria decision support system (MCDSS) for software component
selection. The MCDSS evaluates a total of 51 Commercial-Off-The-Shelf components
against a total of 631 decision criteria. The authors specified metrics, such as the

52
∣

C
hapter3

–
C
loud

Service
Providers

Table 3.1: This table compares selected MCDM methods from literature to address technology selection problems. The second column (Problem domain) points out the problem
domain. The third column (MCDM) denotes the MCDM approach. The fourth column (Pairwise Comparison) indicates whether the approach applies pairwise comparison as a weight
calculation method or not. The fourth column (Quality Attributes) determines the type of quality attributes. The seventh and eighth columns (Criteria and Alternatives) signify the
number of criteria and alternatives that were considered in the problem domain.

Author(s) Problem domain MCDM Pairwise Comparison Quality Attributes Criteria Alternatives

This paper Cloud service provider selection DSS NO ISO/IEC 25010
EX. ISO/IEC 9126 300 40

Liu et al. (2016) Cloud vendor selection TOPSIS
FDM NO Domain specific 4 4

Repschlaeger et al. (2014) Software-as-a-Service product selection AHP YES Domain specific 57 3
Garg et al. (2011) Cloud service ranking AHP YES ISO/IEC SMI 29 3
Halabi & Bellaiche (2017) Cloud security service selection AHP YES Domain specific 16 5

Lee & Seo (2016) Cloud service selection FAHP
FDM YES Domain specific 18 5

Godse & Mulik (2009) Software-as-a-Service product seletion AHP YES Domain specific 21 4
Rouhani & Ravasan (2015) ERP software FMCDM YES Domain specific 23 4
Rodriguez et al. (2017) Risk management approach FAHP YES Domain specific 5 5

Büyüközkan & Güleryüz (2016) Product development partner FAHP
FTOPSIS YES Domain specific 16 6

Oztaysi (2014) Content Management System selection AHP
TOPSIS YES Domain specific 7 4

Becker et al. (2013) Commercial Off-The-Shelf selection DSS NO ISO/IEC 25010
Domain specific 631 51

Farshidi et al. (2018c) Database technology selection DSS NO ISO/IEC 25010
EX. ISO/IEC 9126 307 73

Section 3.4 – Multi-Criteria Decision-Making ∣ 53

key decision factors and efficient criteria sets, for the quantitative evaluation of deci-
sion criteria and sets of criteria, and illustrated their application to a set of real-world
decision cases.

One of the weaknesses of the six-step method (Franch & Carvallo, 2003) is that
when the number of alternatives and domain features is high, measuring the qual-
ities of domain features for each alternative is not possible a very time-consuming
process. Furthermore, the assigned values for the domain features will be changed
by technological advances. The proposed DSS is superior to the six-step method be-
cause it is an evolvable and expandable model-based approach that splits down the
decision-making process into four maintainable phases (Section 3.4). The DSS and
MCDSS both provide a substantial number set of criteria to support decision-makers.
Furthermore, they use the ISO/IEC 25010 as a standard set of quality attributes. The
main difference between the DSS and MCDSS is their weighting methods. We built
a decision model for database technology selection problem (Farshidi et al., 2018c),
then conducted three case studies to evaluate the DSS. The final results showed that
the DSS performed well to address the database selection problem for the software-
producing organizations. The DSS utilizes the MoSCoW to assess the importance of
criteria and reduce the uncertainty. Moreover, it introduces assessment models to
measure the values of non-boolean criteria, such as the cost and popularity of the
alternatives.

3.4 Multi-Criteria Decision-Making
The fundamental components of a typical DSS (Sage, 1991) are the Database man-
agement system, the Model-Base management system, and the Dialog Generation
management system. The Database management system is a set of domain features
related to an MCDM problem. The Model-Base management system is a collection of
rules, heuristics, and knowledge related to the MCDM problem. The Dialog Genera-
tion management system is a user interface to interact with decision-makers.

The Inference Engine of a standard DSS infers solutions and does not rely on
knowledge-based facts and rules, so it works independently from the other compo-
nents. The Inference Engine receives domain feature requirements and their priori-
ties according to MoSCoW from the Dialog Generation management system as its input.
Next, it finds the most relevant rules from a collection of models in the Model-Base
management system. Then, the Inference Engine, by using facts about the DataBase
management system, deduces decisions. Eventually, it sends ranked feasible solutions
to the Dialog Generation management system. The DSS1 comprises the standard DSS
components. The proposed DSS (Farshidi et al., 2018b) applies the six-step decision-
making process (Majumder, 2015) to build decision models for MCDM problems.
Furthermore, it makes knowledge acquisition more reliable and trustworthy. A deci-
sion model defines a decision structure to solve a specific MCDM problem. Figure 3.1
depicts the structure of the DSS.

1We implemented an online Decision Model Studio (https://dss-mcdm.com/) to build decision models
for MCDM problems in Software-producing organizations.

54 ∣ Chapter 3 – Cloud Service Providers

Figure 3.1: A model-based decision support system for MCDM problems.

Decision Meta-Model

Qualities

Features

Decision Model

Software Quality Model

ISO/IEC 25010

Ext. ISO/IEC 9126

Software Quality
Experts

Meta-Model Designers

Knowledge Acquisition

Domain Experts

Documentation,
Literature, etc.

Domain-Description

Domain-Features

Mapping: SF

(1) (2)

Feature-Values

Domain-Alternatives

Mapping: FA, ,

(3)

Knowledge Base

Domain

Qualities

Features

Alternatives

Inference Engine

Score Calculation

Exclude infeasible Solutions

(5)

Ranked Feasible
Solutions

Decision

(6)

Decision-Maker
(MoSCoW)

Case Definition

Case-Definition

Domain Feature Requirements

Mapping: RW, V,

(4)

Case Owner

3.4.1 Decision Model
Knowledge acquisition is the process of extracting, structuring, and organizing knowl-
edge from different sources of knowledge, including human experts, documentation,
and literature. This process applies to define knowledge base facts and rules. This sec-
tion elaborates on the knowledge acquisition process, the primary sources of knowl-
edge, and constituent parts of a decision model based on the six-step decision-making
process for building a decision model to address an MCDM problem.

Decision Meta-Model
The Decision Meta-Model defines the base structure (abstraction) of a decision model
in the knowledge base. The Decision Meta-Model includes two primary sets (Qualities
and Features). The set Qualities, denoted by Q, is a set that keeps software quality
attributes, and the set Features, denoted by F, is a set that retains domain features of
an MCDM problem.

Software Quality-Model
The Software Quality-Model determines the software quality attributes (Q), and de-
fines relationships, based on a hierarchical structure, among elements of the set Q,
thus, the Q is a nested set of quality attributes. The DSS utilizes the ISO/IEC 25010
standard (ISO, 2011) and extended ISO/IEC 9126 standard (Carvallo & Franch, 2006)
in order to define the set Q. These quality standards are domain-independent soft-
ware quality models and provide reference points by defining a top-down standard
quality model for software systems. The ISO/IEC standard quality models have two
hierarchical levels, being Characteristics and Sub-characteristics. The mappings be-

Section 3.4 – Multi-Criteria Decision-Making ∣ 55

tween these levels are defined as follows. Suppose C and S are the sets of the Char-
acteristics and Sub-characteristics of the ISO/IEC quality models. Then, the mapping
between these two sets, CS ∶ C × S → {0, 1}, are defined according to the ISO/IEC
quality models. So that, CS(c, s), where c ∈ C and s ∈ S, is equal to one when c is con-
nected to s, otherwise it is equal to zero. The elements of the Software Quality-Model
apply to classify domain features (F) of an MCDM problem based on their impact
on Sub-characteristics of the ISO/IEC quality models (SF); Moreover, they use to cal-
culate the impact factor of domain feature requirements based on decision-makers’
preferences and domain experts’ knowledge (equation 3.3).

Domain Description
The Domain Description defines the first and second steps, denoted by Identifying the
objective and Selection of the features, of the decision-making process. In other words,
the Domain Description specifies the domain features (F) of an MCDM problem. Each
domain feature has a data type, which could be Boolean, denoted by FB, or Numeric,
denoted by FN, where FB ∩ FN = ∅ and F = FB ∪ FN. For example, the data type of a
domain feature like the popularity of alternatives is Numeric. The mapping between
sets Q and F is based on the domain experts’ knowledge. As aforementioned, the DSS
uses the ISO/IEC quality models to define the set Q, which is a nested set. The last
level of the hierarchal structure in the set Q is the Sub-characteristics of the ISO/IEC
quality models, denoted by S. Therefore, the mapping, SF ∶ S× F → {0, 1}, defines the
relationship between the Sub-characteristics (S) and domain features (F). So that,
SF(s, f), where s ∈ S and f ∈ F, is equal to one when s is connected to f , other-
wise it is equal to zero. Domain features could organize into conceptual hierarchical
structures. So that, generic domain features split down into more specific domain
features (sub-features). For instance, in the CSP selection problem, Automation and
orchestration is a generic domain feature, moreover Kubernetes, Docker Swarm, and
Ansible are considered as its sub-features. When an alternative supports a generic do-
main feature, it means that it supports at least one of the sub-features of the generic
feature. The domain features were identified through interviews with the domain
experts. The main aim of the interviews was to establish the prominent domain fea-
tures and identify which domain features could be left out. Note that conceptual
hierarchical structures of domain features help decision-makers prioritize the domain
features based on their expertise and knowledge of the project requirements. Again,
these hierarchies were established through domain expert interviews. Moreover, no
difference exists between generic domain features and sub-features from the decision
model perspective. Thus, the set F contains generic domain features and sub-features,
and SF maps them to the set S.

Feature-Values
The Feature-Values defines the third step, indicated by Selection of the alternatives,
of the decision-making process. The Feature-Values determines a set of alternatives,
denoted by A, and maps them to the domain features set (F). The main source of
knowledge in this phase is the documentation of alternatives, literature studies, social
networks, domain experts, etc. The data type of domain features could be either
Boolean or Numeric. The mapping, FB A ∶ FB × A → {0, 1}, maps the boolean domain
features (FB), and the mapping, FN A ∶ FN × A → R≥0, maps the numeric domain

56 ∣ Chapter 3 – Cloud Service Providers

features (FN) to alternatives (A). So that, FB A(f , a), where f ∈ FB and a ∈ A, is
equal to one when f is connected to a (boolean domain feature f is supported by
alternative a), otherwise it is equal to zero. Moreover, FN A(f , a), where f ∈ FN

and a ∈ A, specifies the value of domain feature f regarding alternative a. In other
words, the mapping FN A assigns the values of assessment models to numeric domain
features, such as cost and popularity.

3.4.2 Case Definition
The Case Definition defines the fourth step, denoted by Selection of the weighing meth-
ods to indicate the importance of the features, of the decision-making process. The
DSS utilizes MoSCoW to define decision-makers’ domain feature requirements and
assess the importance of required domain features. Note that domain feature re-
quirements set (R) is a subset of domain features, where R ⊆ F and RB = R ∩ FB

and RN = R ∩ FN. Suppose WMoSCoW = {wMust, wShould, wCould, wWon′t} is the set of
priority weights according to the definition of the MoSCoW (DSDM consortium and
others, 2014), where ∀w ∈ WMoSCoW ; 1 ≥ w ≥ 0. In other words, a case definition,
based on a decision maker’s preferences (MoSCoW), is a way to select domain feature
requirements and assign priorities to them, RW ∶ R →WMoSCoW .

The importance of a domain feature with Must Have priority must be greater than
all domain features with Should Have priority, where ∑∀r∈R;RW(r)=wShould

RW(r) <
wMust. Furthermore, the importance of a domain feature with Should Have pri-
ority must be greater than all domain features with Could Have priority, where
∑∀r∈R;RW(r)=wCould

RW(r) < wShould.
Decision-makers specify desirable values for numeric domain feature requirements,

RNV ∶ RN → R≥0. For example, a decision-maker could be interested in prioritizing
the CSPs with Total Cost of Ownership (TCO) less than 500 USD as more important
than others. Therefore, the TCO less than 500 USD could be considered as a should
have domain feature. Consequently, a mapping, RN A ∶ RN × A × R≥0 → {0, 1}, is
considered to define these types of numerical criteria by decision-makers. The Case
Definition receives mappings RW and RNV as its input from the user interface of the
DSS. Indeed, a decision-maker is the main source of knowledge in this phase. Domain
feature requirements with Must Have or Won’t Have priorities act as hard constraints
(H) and domain feature requirements with Should Have and Could Have priorities act
as soft constraints.

3.4.3 Inference Engine
Each decision model defines a decision structure for an MCDM problem systemati-
cally. Moreover, the mappings define rules and facts. Therefore, the Knowledge Base
is a collection of decision-models, which are groups of rules and facts. The Inference
Engine defines the fifth step, indicated by Applying the method of aggregation, of the
decision-making process. The Inference Engine ranks the alternatives based on their
calculated scores. The score calculation process begins with computing the weight
of each aspect of a decision model. As mentioned prior the relationship between as-
pects are defined based on the mappings (CS, SF, FB A, FN A, RW, RNV, and RN A).
The summary of the sets and mapping of a decision model and a case definition for an

Section
3.4

–
M
ulti-C

riteria
D
ecision-M

aking
∣57

Table 3.2: The summary of the sets and mapping of a decision model and a case definition for an MCDM problem.

Notation Definition Description Source of Knowledge
C - The set of Characteristics. ISO/IEC standards
S - The set of Sub-characteristics. ISO/IEC standards
A - The set of alternatives. Documentation
F = FB ∪ FN The set of domain features. Domain Experts

FB - The set of boolean domain features. Domain Experts
FN - The set of numeric domain features. Domain Experts

R = R ⊆ F The set of domain feature requirements. Decision-Makers
RB = R ∩ FB The set of boolean domain feature requirements. Decision-Makers
RN = R ∩ FN The set of numeric domain feature requirements. Decision-Makers

WMoSCoW = {wMust , wShould , wCould , wWon′ t} The set of priority weights. MoSCoW Priorities
CS : C × S → {0, 1} The mapping between the sets C and S. ISO/IEC standards
SF : S × F → {0, 1} The mapping between the sets S and F. Domain Experts

FB A : FB × A → {0, 1} The mapping between the sets FB and A. Documentation
FN A : FN × A → R≥0 The mapping between the sets FN and A. Documentation
RW : R →WMoSCoW The mapping between the sets R and WMoSCoW . Decision-Makers

RNV : RN → R≥0 Desirable values for the set RN . Decision-Makers
RN A : RN × A ×R≥0 → {0, 1} Numerical criteria. Decision-Makers

H = ⋃
∀r∈R

RW(r)=wMust ∨ RW(r)=wWon′ t

r Hard constraints Decision-Makers

58 ∣ Chapter 3 – Cloud Service Providers

MCDM problem is shown in table 3.2. Note that the weight of domain feature require-
ments (RW(r), where r ∈ R) assign by the decision-maker via the MoSCoW. Moreover,
the weights Sub-characteristics (Ws) and Characteristics (Wc) of the ISO/IEC quality
models in the set Q are the sum of the weights of their children.

Ws∈S = ∑
∀r∈R;r∉H

SF(s, r).RW(r) (3.1)

Wc∈C = ∑
∀s∈S

CS(c, s).W̄s (3.2)

W̄s is the normalized to unity weights of the Sub-characteristics. Next, the impact
factor, denotes by Ir, of each domain feature requirement (r ∈ R) is equal to the sum
of products of its parents’ weights plus the weight of the domain feature requirement.
The reason behind this impact factor calculation is finding the importance of domain
feature requirements based on the decision-maker preferences and the relationship
among domain feature requirements according to domain experts’ knowledge. More-
over, it assures that the MoSCoW priorities of the domain feature requirements never
change. In other words, if the decision-maker assigned the Could Have priority to a
domain feature requirement, its importance would not become greater than a domain
feature requirement with the Should Have priority.

Ir∈R = RW(r)+ ∑
∀s∈S

SF(s, r).W̄s ∑
∀c∈C

CS(c, s).W̄c (3.3)

W̄c is the normalized to unity weights of the Characteristics. A feasible alternative
a (feasible solution) must support all domain feature requirements with Must Have
priorities, and must not support all domain feature requirements with Won’t Have
priorities. Equation 3.4 through mappings FB A, RN A, and RNV indicate whether
all boolean domain feature requirements (H ∩ RB) and numeric domain feature re-
quirements (H ∩ RN) with Must Haveand Won’t Have priorities (hard constraints) are
supported by the alternative a or not. Note, hard constraint numeric domain fea-
tures contain numerical criteria which indicate by decision-makers. For example, a
decision-maker could be interested in considering only CSPs which their TCO values
are less than 500 USD, so TCO < 500 is a numeric domain feature with Must Have
priority.

Sum =
∑

∀r∈(H∩RB)
FB A(r, a)+ ∑

∀r∈(H∩RN)
RN A(r, a, RNV(r))

Feasiblea∈A =
⎧⎪⎪⎨⎪⎪⎩

1, if Sum = ∣H∣
0, otherwise.

(3.4)

Section 3.5 – Cloud Service Provider Selection ∣ 59

The score calculation process (equation 3.5) involves the sum of products of impact
factors of domain feature requirements with Should Have and Could Have priorities.

Scorea∈A = Feasiblea.

⎛
⎝

1+ ∑
∀r∈(RB∖H)

Īr.FB A(r, a)+

∑
∀r∈(RN∖H)

Īr.RN A(r, a, RNV(r))
⎞
⎠

(3.5)

If in the score calculation process RW(r) is equal to wCould then Īr is normalized to
[wCould, wShould), otherwise, Īr is normalized to [wShould, 1).

Equation 3.5 and equation 3.6 define the sixth step, denoted by Decision making
based on the aggregation results, of the decision-making process. Note, the scores of
feasible solutions are more than zero.

Solutions = A ∖ ⋃
∀a∈A

Scorea=0

a (3.6)

The final ranked feasible solutions will be given as the result of the DSS by sorting
the feasible solutions in descending order of their scores.

3.5 Cloud Service Provider Selection
The main building blocks of a decision model are Decision Meta-Model, Software Qual-
ity Model, Domain Description, and Feature-Values. The Decision Meta-Model defines
the base structure of a decision model in the knowledge base, and it has two sets,
namely Qualities and Features. A decision model utilizes the ISO/IEC 25010 standard
and extended ISO/IEC 9126 standard in order to define the set Qualities. The Decision
Meta-Model and Software Quality Model are immutable for decision models based on
the DSS approach. However, the Domain Description and Feature-Values should be
define to structure a decision model for an MCDM problem.

This section presents a decision model based on the DSS approach to address the
CSP selection problem. Moreover, four case studies have been conducted to evalu-
ate the efficiency and effectiveness of the DSS to address CSP selection problem for
software producing organizations.

3.5.1 Domain Description for CSP selection
A list of domain features (F) of the domain of interest should be specified in a de-
cision model. Domain experts are the primary source of knowledge to identify do-
main features. In order to define the domain of CSP selection problem more than
250 features2 (such as Automation and orchestration, Application Server, Certifica-
tions/Attestations, and Cost) have been collected according to domain experts’ sug-
gestions. The sub-characteristics of the Software Quality-Model provides a general

2The entire list of the domain features and supportability of considered cloud service providers are
available and accessible on the "Cloud Service Provider Selection" website (https://dss-mcdm.com/)

60 ∣ Chapter 3 – Cloud Service Providers

view of the software quality model. The decision model decomposes abstract con-
cepts into more concrete ones, the domain features. Domain features have to define
precisely to clarify the underlying quality concepts that they represent and to link
them with the appropriate sub-characteristics. Some domain features are related to
more than one sub-characteristic. For example, Automation and orchestration as a CSP
feature might include Availability, Reusability, and Installability. The DD does not en-
force a domain feature to present in a single sub-characteristic; Domain features can
be part of many quality aspects. The relationship between sets S and F is defined by
the mapping SF according to domain experts’ opinion. In this study, CSP features and
the mapping SF defined by nine domain experts, including six cloud consultants and
three cloud architects in the Netherlands.

Table 3.3: The reference configurations for calculating the Total Cost of Ownership of CSPs. Each reference configura-
tion is indicated by its number of CPU cores, amount of RAM (GB), and SDD capacity (GB).

Server Configurations CPU(Cores) Memory SSD
Basic Server 4 8 GB 100 GB
Intermediate Server 8 32 GB 100 GB
Memory-intensive Server 16 512 GB 200 GB
CPU-intensive Server 24 64 GB 500 GB

3.5.2 Feature-Values for CSP Selection
The decision model requires a list of CSP alternatives. Well-known CSPs, websites,
related forums, and domain experts are the primary source of knowledge to specify
the alternatives. In this study, 40 infrastructure-as-a-service CSPs (Leaseweb, Google
Cloud, etc.) as the alternatives have been considered. The list of CSP alternatives
collected from recent reports of the Gartner, Glassdoor, and Forrester websites.

Next, the supportability of boolean domain features (FB) by the CSP alternatives
(A) should be investigated. The relationship between sets FB and A defined by the
mapping FB A based on the documentation and websites of the considered CSPs. One
of the principal problems is the lack of standard terminology among documentation
of CSPs. Different CSPs refer to the same concept (cloud service) by different names,
or even worse, the same name might stand for different concepts in different CSPs.
Discovering conflicts in the Feature-Values is essential to prevent semantic mismatches
throughout the CSP selection process.

CSPs tend to provide a partial view of their cloud services. They emphasize their
services’ benefits without mentioning weaknesses, or they provide only part of the
truth. Some non-commercial articles compare CSPs and features but are often based
on the evaluators’ limited knowledge and their particular tastes (Franch & Carvallo,
2003). The next step in building a decision model for the CSP selection problem
is defining assessment models for each numeric domain features, such as cost and
popularity. After defining suitable assessment models for numeric domain features
(FN), the mapping FN A maps them to the corresponding CSP alternatives (A). For
example, Total Cost of Ownership, Popularity in the market, Company Maturity, and
and Innovation are non-boolean domain features in the decision model of the CSP
selection problem.

Non-boolean domain features could be grouped into a number of categories

Section 3.5 – Cloud Service Provider Selection ∣ 61

(ranges) based on their values. Categories facilitate the usage of relational criteria.
For example, a decision-maker could be interested in prioritizing the CSPs with Total
Cost of Ownership values less than $500 USD as more critical than others. Therefore,
the Total Cost of Ownership values of less than $500 USD could be considered as a
should have domain feature.

Total Cost of Ownership
The cost of CSPs varies widely, and many factors and options should be considered.
The Total Cost of Ownership (TCO) sometimes appear confusing, especially when it
comes to well-known service providers (such as Oracle, Microsoft, Google), where a
large variety of parameters (such as Operating System Licenses, Storage per GB/TB
prices) for calculating the CSP costs are available. Thus, to get a rough estimate of the
TCO of CSPs, four reference configurations for three cloud deployment models and
server types (including Physical private cloud, virtual private cloud, and Virtual public
cloud) are provided. Table 3.3 demonstrates the considered reference configurations.

The TCO value of each CSP alternative was asked directly from the CSP or calcu-
lated via the offered TCO calculator on the website of the CSP. Note that TCO values
should be computed in the same currency (e.g., USD) and period (e.g., monthly) to
provide a correct comparison. Many options, offers, and add-ons were not included
in the TCO calculations because they were CSP specific. The TCO is a domain fea-
ture of CSP selection that attempts to clear the fog somewhat regarding CSP prices.
However, estimation of TCO values cannot provide a full and precise insight into the
complex pricing models that CSPs use.

Popularity in the Market
This non-boolean feature is one of the assessment models in the CSP selection prob-
lem. It ranks CSPs based on their popularity in the market by using the following
parameters: a. The number of mentions of CSPs on websites, b. The frequency of
technical discussions about CSPs on websites, c. The number of job offers on the
leading job search engines, and d. Relevance in social networks.

Company Maturity
This assessment model measures the company maturity of CSPs based on three main
factors, including company size (number of employees), company revenue, and date
of establishment. In other words, a mature CSP company is well-established in the
market, with well-known services and loyal customer following with average growth.
Mature companies are categorized according to the business stage it is currently in.
We considered a three-stage maturity level (high, middle, and low) for the CSPs.

Innovation
Innovation is often viewed as the application of better solutions that meet new re-
quirements, unarticulated needs, or existing market needs (Maranville, 1992). This
is accomplished through more effective products, processes, services, technologies, or
business models that are readily available to the market. This assessment model mea-
sures the innovation of CSPs based on supportability of following factors: a. Internet
of Things Cloud, b. Big Data Analytics, c. Business Intelligence, d. Enterprise report-
ing, e. Dynamically scale to meet capacity demands, and f. Multiple data centers.

62
∣

C
hapter3

–
C
loud

Service
Providers

Table 3.4: A part of AFAS, Negometrix, KPMG, and Health Diaries domain feature requirements based on the MoSCoW. Note that the numbers in the table indicate the number of
domain feature requirements in a particular MoSCoW priority for each case study. For example, AFAS has nine domain feature requirements with Could Have priority.

MoSCoW AFAS Negometrix KPMG Health Diaries

Must Have
Service Fabric,
Disaster recovery,
etc.

7
.Net,
ISO 27001,
etc.

21
Node.js,
SOC2,
etc.

22
Java,
MySQL,
etc.

13

Should Have
High Company Maturity,
Memory-intensive server,
etc.

9
Encryption,
Packet Filtering,
etc.

11
DevOps,
GitLab,
etc.

12
HL7,
Auto Scaling,
etc.

4

Could Have
Kubernetes,
Windows Server Container,
etc.

9
Free private transfer,
Network IDS,
etc.

17 Automation and orchestration 1
Big data analytics,
Database Backup-as-a-service 2

Section 3.6 – Results and Analysis ∣ 63

3.5.3 Empirical Evidence: The Case Studies
Four case studies in the context of four software producing organizations have been
conducted to evaluate and signify the usefulness and efficiency of the DSS. The case
study companies considered a number of feasible CSPs for their organizations through
multiple internal expert meetings and extensive investigation into CSP alternations
before participating in this research.

AFAS Software - AFAS Software is an ERP vendor in the Netherlands with approx-
imately 350 employees. One of AFAS’ current challenges is validating whether they
have chosen the right CSP for the new version of their product.

KPMG - KPMG is a professional service company with more than 189,000 employ-
ees and located in the Netherlands. KPMG has three lines of services: financial audit,
tax, and advisory. KPMG participated in this research to select a well qualified CSP
for one of its customers.

Health Diaries - Health Diaries is a small Software Producing Organization with
ten employees and located in the Netherlands. Health Diaries is developing digital
healthcare diaries based on expertise from healthcare professionals and medical sci-
ence, which makes them useful for healthcare institutions. Health Diaries experts are
interested in evaluating different CSPs in the market and selecting the suitable one
that fulfills their requirements and priorities.

Negometrix - Negometrix produces procurement software. Its customers are one-
third government, one-third non-profits, and one-third commercial organizations.
Presently, the Negometrix product is being renewed and rebuilt using new Microsoft
platforms, and this is a suitable time to rethink the CSP for the new version of the
Negometrix product.

Table 3.4 demonstrates parts of the domain feature requirements of the case studies
based on the MoSCoW priorities.

3.6 Results and Analysis
The feasible solutions of the DSS for the case studies are shown in Table 3.5. The
KPMG domain feature requirements are mainly generic domain features, such as
Automation and orchestration and Auditing/Logging, or standard features, which are
supported by most of the CSP alternatives. Therefore, the DSS deduced eight feasible
solutions for KPMG despite 22 domain feature requirements with Must Have priority
(Hard constraints). Health Diaries domain feature requirements target specific CSPs,
which support health care companies. Thus, the DSS suggested only four feasible
solutions for Health Diaries. Negometrix domain feature requirements are mostly
technical domain features. Moreover, Geo-locations of the data-centers are one of
the feature requirements with Must Have. Consequently, the DSS inferred four feasi-
ble solutions for Negometrix. AFAS domain feature requirements are generic domain
features. The number of hard constraints in the AFAS requirements is lower than the
other case studies. As a result, the DSS recommended ten feasible solutions for AFAS.

The annual TCO was a Should Have domain feature requirement for AFAS and
KPMG. Hence, the DSS did not exclude any alternatives based on their TCO values.
Some of the feasible solutions proposed by the DSS were not on the shortlist of case

64 ∣ Chapter 3 – Cloud Service Providers

Table 3.5: The feasible solutions of the DSS for AFAS, Negometrix, KPMG, and Health Diaries based on their domain
feature requirements and MoSCOW priorities. The column CP (Case Participant) Shortlist demonstrates which DSS feasible
solutions already considered in the shortlist of case study participants based on their internal meetings and investigations.
Moreover, the Columns CP Rank and DSS score of the table show the score calculation results of the DSS and the ranked
shortlist of the feasible solutions based on the case study participants’ opinions respectively.

Case Study DSS Feasible solutions CP Shortlist DSS Score CP Rank

AFAS

Microsoft Azure
IBM Cloud
OVH
DataPipe
KPN (iS)
Google Cloud
Leaseweb
Interoute
Amazon (AWS)
1and1

✓

✓
✓
✓

93.34
92.41
91.67
86.12
84.81
84.59
83.05
77.22
76.23
75.15

3
-
-
-
4
2
1
-
-
-

Negometrix

Microsoft Azure
Leaseweb
Google Cloud
KPN (iS)

✓

✓
✓

99.86
99.69
99.57
99.54

1
-
2
3

KPMG

Google Cloud
Rackspace
Amazon (AWS)
Microsoft Azure
Fujitsu
Oracle Cloud
IBM Cloud
Alibaba Cloud

✓

✓
✓
✓

✓

100.00
100.00
94.42
94.42
76.16
51.00
51.00
32.75

3
-
2
1
5
-
4
-

Health Diaries

Microsoft Azure
Amazon (AWS)
Leaseweb
Fujitsu

✓
✓
✓
✓

100.00
100.00
82.24
82.24

1
2
3
4

participants because they found that the annual TCO of these CSPs, including extra
options, end up being much higher than the other feasible solutions. Also, the case
participants stated that a lack of experience with the performance and Service-Level-
Agreement of such CSPs is another reason for ignoring them. Columns CP Rank
and DSS score of table 3.5 show the score calculation results of the DSS and the
short ranked list of the feasible solutions based on the case participants’ opinions
respectively.

The case study participants confirm that the DSS provides practical solutions to
help software producing organizations in their initial decisions for selecting CSPs.
The DSS recommended the same solutions as the case participants suggested to their
companies after extensive analysis and discussions. However, the DSS offers a short
ranked list of feasible solutions; therefore software producing organizations should
perform further investigations, such as performance testing and actual TCO calcula-
tion, to find the optimum CSPs for their software products. Twelve experts (three
DSS experts, six cloud consultants, and three cloud architects) participated in this
research to evaluate the DSS.

The consulted experts confirm that the DSS contains the main components of a
standard DSS. Moreover, they asserted that the score calculation process in the Infer-
ence Engine of the DSS is not dependent on the knowledge-base facts and rules (i.e.,

Section 3.7 – Discussion ∣ 65

the decision model). Therefore, if another replaces a decision model for an MCDM
problem, the Inference Engine would not generate invalid solutions.

The experts believe that experience in using a specific technology provides invalu-
able knowledge when selecting suitable technology. Consequently, we recommend
that our DSS is used in combination with benchmarks where applicable. Furthermore,
the experts indicate that CSPs’ supported domain features play a significant role in
the CSP selection process. Specific CSPs support some domain features; for instance,
NEN 7510 is the standard for information security in health care. Also, the supported
domain features are going to change due to technological advances. As such, the
knowledge-base must be updated regularly. The experts state that their companies
continuously improve and reevaluate their technologies, including the used CSPs.

The case study participants enter a limited set of domain feature requirements. We
were surprised to find that the experts have a limited view of the technology’s domain
feature requirements. The case participants themselves were surprised to find what
their primary concerns seem to be, especially when the opinions of different experts
are combined. The fact that the DSS has led to discussions that determine decision-
making for the technology illustrates that the DSS is a useful tool for software pro-
ducing organizations and MCDM problems. More importantly, the case participants
confirm that the updated and validated version of the DSS is useful and valuable in
finding the shortlist of feasible solutions. Finally, it reduces the time and cost of the
decision-making process.

3.7 Discussion
Software producing organizations have different perspectives on their domain feature
requirements in different phases of the Software Development Life-Cycle. Decision-
makers might want to consider generic domain features in the early phases of the
life-cycle, whereas they are interested in more technical domain features as their
development process matures. For instance, Automation and orchestration could be
prioritized as a Should Have domain feature in the design phase, but in the implemen-
tation phase, one of its sub-features (more technical domain feature), e.g., Service
Fabric, might be selected instead. Furthermore, domain features’ priorities could be
changed in different phases. Therefore, the DSS might come up with various solutions
for a software producing organization in different phases of its software development
life-cycle. As the participants’ choices are stored in the DSS, it does not cost a signifi-
cant amount of time to rerun the decision-making process.

Biases, such as motivational and cognitive (Montibeller & Winterfeldt, 2015), arise
because of shortcuts or heuristics that decision-makers use to solve problems and
perform tasks. The Hawthorne effect, which is the tendency for decision-makers to
change their behavior when they are being observed, is a form of cognitive bias. The
case study participants might have been more careful in the experimental setting than
they would be in the real setting because they are being observed by scientists judging
their selected domain feature requirements and priorities. Moreover, the Bandwagon
effect, which is the tendency to do or believe things because many other decision-
makers do or believe the same, is another form of cognitive bias. The Bandwagon

66 ∣ Chapter 3 – Cloud Service Providers

effect typically shows up in group decisions. To mitigate the Hawthorne and Band-
wagon effects, individual and group interviews have been conducted.

We define DSS success when it, in part, aligns with the CP’s shortlist and when it
provides new suggestions that are identified as being of interest to the CP. Using the
CP experts’ opinion as a measurement instrument is risky, as the CP may not have suf-
ficient knowledge to make a valid judgment. We counter this risk by conducting more
than one case study, by assuming that the CP expert is handling in its interest and
applying the DSS to other problem domains, where we find similar results (Farshidi
et al., 2018b; Farshidi et al., 2018c).

3.8 Conclusion
Finding a feasible solution for the Infrastructure-as-a-Service Cloud Provider selection
problem based on decision-makers’ priorities and requirements requires an in-depth
investigation into the documentation of cloud vendors and extensive expert analysis.
This study introduces a Decision Support System (DSS) to accelerate the process of
finding the right Infrastructure-as-a-Service Cloud Provider for software producing
organizations. The DSS comprises all of the fundamental components of a standard
DSS. A decision model in the knowledge base of the DSS contains all facts and rules
of an MCDM problem. In other words, a decision model defines a decision structure
to solve a specific MCDM problem.

The novelty of the proposed DSS lies in utilizing the MoSCoW to assess criteria
weights and reduce uncertainty, in introducing assessment models to measure the
values of non-boolean criteria, and in using ISO/IEC quality aspects to indicate the
relationship among criteria according to domain experts’ knowledge. Our website3 is
up and running to keep the knowledge base of the DSS up-to-date and valid. We plan
to create a community around the platform that will regularly update the curated
knowledge base with new Infrastructure-as-a-Service Cloud Provider features.

Probing more in-depth, the decision model presented in this paper also provides a
foundation for future work in MCDM problems. We intend to build trustworthy deci-
sion models to address software architecture pattern and blockchain solution selection
problems as our (near) future work.

3https://dss-mcdm.com/

CHAPTER 4

Blockchain Platforms

Blockchain technology has received significant attention recently, as it
offers a reliable decentralized infrastructure for all kinds of business
transactions. Software-producing organizations are increasingly con-
sidering blockchain technology for inclusion in their software prod-
ucts. Selecting the best fitting blockchain platform requires the as-
sessment of its functionality, adaptability, and compatibility with the
existing software product. Novice software developers and architects
are not experts in every domain, so they should either consult exter-
nal experts or acquire knowledge themselves. The decision-making
process gets more complicated as the number of decision-makers, al-
ternatives, and criteria increases. Hence, a decision model is required
to externalize and organize knowledge regarding the blockchain plat-
form selection context.
Recently, we designed a decision support system to use such decision
models to support decision-makers with their technology selection
problems in software production. In this study, we introduce a
decision model for the blockchain platform selection problem. The
decision model has been evaluated through three real-world case
studies at three software-producing organizations. The case-study
participants asserted that the approach provides significantly more
insight into the blockchain platform selection process, provides a
richer prioritized option list than if they had done their research
independently, and reduces the time and cost of the decision-making
process.

keywords- blockchain platform selection; blockchain decision
model; technology selection; multi-criteria decision making; decision
support system;

This chapter is based on the following publication:

Farshidi, S., S. Jansen, S. España & J. Verkleij (2020c), “Decision support for blockchain
platform selection: three industry case studies”, IEEE Transactions on Engineering Management.

Section 4.1 – Introduction ∣ 69

4.1 Introduction
Blockchain technology offers a reliable decentralized infrastructure, which means that
it does not have to be controlled by one central authority for business applications.
Blockchain technology can be employed as an application platform to build the under-
lying trust infrastructure of any distributed system. Since public blockchain platforms
are open to the world, they can rapidly draw the attention of software development
companies and communities to blockchain technology’s strengths.

Software-producing organizations are increasingly considering distributed ledger
and blockchain technology for inclusion into their software products. The selec-
tion process refers to the steps involved in choosing and evaluating the best fitting
blockchain platforms for software-producing organizations according to their prefer-
ences and requirements. The selection process is complicated because many criteria,
such as security, interoperability, consensus mechanisms, and platform transaction
speed, have to be considered and fitted to the needs of the project at hand. Addition-
ally, as a software product is typically a long-living system, such decisions determine
the future of the product and the costs associated with its development.

Numerous public blockchain platforms have emerged recently and utilized in di-
verse business applications. For instance, Hyperledger1 and Ethereum2 offer pub-
lic blockchain platforms. The fundamental difference between Hyperledger and
Ethereum is the goal they are designed for. Hyperledger is an open-source develop-
ment project that offers multiple blockchain platforms and supports the collaborative
development of blockchain-based distributed ledgers. On the other hand, Ethereum
is an open-source distributed public blockchain platform whose smart contracts en-
able decentralized applications to be implemented and deployed. As the number of
blockchain platforms in the market is increasing rapidly, blockchain platform selec-
tion is becoming a significant challenge for software-producing organizations. Hence,
knowledge regarding blockchain platforms has to be collected, organized, stored and
quickly retrieved when it needs to be applied.

In literature, a variety of multi-criteria decision-making (MCDM) techniques have
been introduced to address different technology selection problems for software-
producing organizations. An MCDM problem deals with evaluating a set of alter-
natives and considers a set of decision criteria (Triantaphyllou et al., 1998). In our
recent study (Farshidi et al., 2018a), we introduced a technology selection framework
that is used to build decision models for MCDM problems and assist decision-makers
at software-producing organizations with the decision-making process. Furthermore,
we have instantiated the framework to build two decision models for the Database
Management System (Farshidi et al., 2018c) and Cloud Service Provider (Farshidi et
al., 2018a) selection problem. In this study, the blockchain platform selection pro-
cess is modeled as an MCDM problem, and the technology selection framework is
employed to build a decision model for this MCDM problem.

Recently, we designed and implemented a Decision Support System (DSS) (Farshidi
et al., 2018b) for supporting decision-makers with their MCDM problems in software

1https://www.hyperledger.org
2https://www.ethereum.org

70 ∣ Chapter 4 – Blockchain Platforms

production. The DSS provides a decision model studio3 for building decision models
based on the technology selection framework. Moreover, such decision models can
be uploaded to the knowledge base of the DSS to facilitate the decision-making pro-
cess for software-producing organizations according to their requirements and pref-
erences. The DSS provides a discussion and negotiation platform to enable decision-
makers at software-producing organizations to make group decisions. Furthermore,
the DSS can be used over the full life-cycle and can co-evolve its advice based on
evolving requirements. During this research, we have built a decision model based
on the technology selection framework for the blockchain platform selection problem,
and then we have uploaded the decision model to the knowledge base of the DSS;
finally, the outcomes of the DSS have employed in the case studies.

Please note that this study’s proposed decision model contains reusable knowledge
regarding potential blockchain platforms and features. Such knowledge can educate
and support the decision-makers to understand: 1) which blockchain platforms are
available at the moment, 2) the capabilities of the blockchain systems, and 3) which
features are fulfilled by which blockchain platforms.

The rest of this study is structured as follows: Section 4.2 describes our research
method, which is based on design science and exploratory theory-testing case studies.
Section 4.3 positions the proposed approach in this study among the other blockchain
platform selection techniques in the literature. Section 4.4 outlines a brief description
of the DSS and the technology selection framework. This study has the following
contributions:

˛ Section 4.4 introduces a decision model, in the form of reusable knowledge, for
the blockchain platform selection problem based on the technology selection
framework (Farshidi et al., 2018a).

˛ Section 4.5 describes the three conducted case studies that evaluate the ef-
fectiveness and usefulness of the approach to address the blockchain selection
problem.

˛ Section 4.6 analyzes the final results of the DSS and compares the outcomes of
the DSS with the case-study participants’ shortlist of feasible blockchain plat-
forms. The results show that the DSS recommended nearly the same solutions
as the case-study participants suggested to their companies after extensive anal-
ysis and discussions, and does so more efficiently.

Section 4.7 highlights barriers to the knowledge acquisition and decision-making
process, such as motivational and cognitive biases, and argues how we have mini-
mized these threats to the validity of the results. Finally, section 4.8 summarizes the
proposed approach, defends its novelty, and offers directions for future studies.

4.2 Research Approach
Rationality is the extent to which a decision-making process entails the compilation of
information related to the domain of the problem and the degree of confidence upon
analysis of this information in making the decision (Dean Jr & Sharfman, 1993).
The decision-making process consolidates critical assessment of evidence and a struc-

3The decision model studio is available online on the DSS website: https://dss-mcdm.com

Section 4.2 – Research Approach ∣ 71

tured process that requires time and conscious effort (Fitzgerald et al., 2017). The
decision-making process encourages decision-makers to establish relevant decision
criteria, recognize a comprehensive collection of alternatives, and assess the alterna-
tives accurately (Kaufmann et al., 2012). In other words, knowledge acquisition in
the decision-making process is a time-consuming process in which the problem (deci-
sion context) should be interpreted accurately, and potential criteria and alternatives
should be identified and compared precisely.

The decision-making process gets more complicated as the number of decision al-
ternatives and criteria increases. Decision-makers at software-producing organiza-
tions are not experts in every domain, so they should either consult external experts
or acquire knowledge themselves. In both cases, there is an investment of time (and
eventually, money) that must be factored into the decision making process.

Recently, we introduced the technology selection framework (Farshidi et al., 2018a)
to build decision models for technology selection problems in software produc-
tion. Besides, we designed and implemented a decision support system to employ
such decision models to facilitate the decision-making process for decision-makers at
software-producing organizations. The framework provides a guideline for decision-
makers to model their technology selection problems as MCDM problems. The frame-
work incorporates the following six-step decision-making process (Majumder, 2015):
1) Identifying the objective, 2) Selection of the features, 3) Selection of the alterna-
tives, 4) Selection of the weighing method, 5) Applying the method of aggregation,
and 6) Decision making based on the aggregation results. In other words, the frame-
work is employed to build decision models for MCDM problems and find suitable
alternatives for software-producing organizations based on their requirements and
priorities.

The research approach for creating decision models for MCDM problems is De-
sign Science, which addresses research through the building and evaluation of arti-
facts to meet identified business needs (Hevner et al., 2008). Knowledge engineer-
ing theories have been employed to design and implement the DSS and the tech-
nology selection framework. Thirteen experts (three DSS experts, four blockchain
researchers from Dutch research institutes, two blockchain-developers, and four
blockchain consultants/public-speakers) participated in this research to evaluate the
DSS and the decision model for the blockchain platform selection problem. The ex-
perts were pragmatically selected according to their expertise and experience that
they mentioned on their LinkedIn profile. Each of the interview series followed a
semi-structured interview protocol and lasted between 45 and 90 minutes.

The DSS experts confirm that the DSS contains the main components of a standard
DSS. Moreover, they asserted that the DSS score calculation process is not dependent
on the knowledge-based facts and rules (i.e., the decision model). Therefore, the
DSS would not generate invalid solutions if the decision models in the knowledge-
base change or evolve during the time.

In this study, the primary source of knowledge to build a valid decision model is
blockchain experts. Acquired knowledge during each interview typically propagated
to the next to build and validate the decision model incrementally. Finally, the deci-
sion model was sent to the interview participants afterward for final confirmation.

The efficacy and effectiveness of the decision model have been evaluated through

72 ∣ Chapter 4 – Blockchain Platforms

three exploratory theory-testing case studies. The unit of analysis is a unique
blockchain platform selection for software-producing organizations. We performed
three industry case studies at three blockchain-based software development compa-
nies to evaluate the decision model. The case studies typically consisted of (1) defin-
ing the blockchain feature requirements, (2) prioritizing them, and (3) comparing
the DSS feasible solutions with the solutions that the experts had suggested. None of
the interviewed experts mentioned above were in any way involved in the subsequent
case studies.

4.3 Related Work
In this research, Snowballing was employed as the primary method to investigate
the existing literature related to the techniques that address the blockchain platform
selection problem for software-producing organizations.

In literature, some studies point out that benchmarking and performance testing
can be employed to evaluate and compare a collection of blockchain platforms against
each other. A subset of such studies is presented as follows:

Dinh et al. (2017) present a benchmarking framework for evaluating private
blockchain systems. The benchmark contains workloads for measuring the data pro-
cessing performance and workloads for understanding the performance at different
layers of the blockchain.

Hileman & Rauchs (2017) provide an empirical overview of both enterprise and
public sector use of blockchain and distributed ledger technology. They report the
emergence and evolution of the distributed ledger technology ecosystem, explore
actors and their business models and examine the current state of the industry in
terms of use cases, network/application deployments, and fundamental challenges to
broadly distributed ledger technology adoption.

Maple & Jackson (2018) present the anatomy of blockchain platforms and analyze
their essential technological features. Furthermore, the authors introduce a format for
outlining generic blockchain building blocks. The anatomy ranges from permissions
to consensus and can be referenced when evaluating blockchain platforms. Moreover,
they represent a comparison among multiple blockchain platforms.

Kuo et al. (2019) conducted a systematic literature study to identify healthcare
applications of blockchain technology, besides the blockchain platforms that have
been proposed or implemented by the healthcare blockchain studies. The authors
considered ten blockchain platforms and 21 blockchain features, then compared the
blockchain platforms based on their features.

Yabo (2016) described the features of multiple blockchain platforms and compared
them against each other. Macdonald et al. (2017) discussed how the blockchain is
employed in Bitcoin cryptocurrency, besides some potential applications in other do-
mains. Furthermore, the authors presented a comparison of five general-purpose
blockchain platforms based on eight criteria related to usability, flexibility, and per-
formance.

A variety of MCDM approaches have introduced by researchers recently. A subset
of selected MCDM methods is presented as follows:

The Weighted Sum Model (WSM) is an aggregation function that transforms mul-

Section 4.3 – Related Work ∣ 73

tiple criteria into a single value by multiplying each criterion by a weighting factor
and summing up all weighted criteria. Frauenthaler et al. (Frauenthaler et al., 2019)
introduce a WSM-based framework to monitor and evaluate several blockchain plat-
forms according to user-defined settings.

The Analytic Hierarchy Process (AHP) is a structured and well-known method for
organizing and analyzing MCDM problems based on mathematics and psychology.
This MCDM approach considers a hierarchical structure of objectives, criteria, and al-
ternatives to make complex decisions. Maček & Alagić (2017) present an AHP-based
approach to evaluate the Bitcoin cryptocurrency system’s security characteristics com-
pared to other widely used online transaction systems.

The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is an
MCDM approach that employs information entropy to assess alternatives. The pur-
pose of this approach is to come up with an ideal solution and a negative ideal solu-
tion and then identify a scenario nearest to the ideal solution and the furthest from
the negative ideal solution. Tang et al. (2019) present a TOPSIS-based evaluation
model to rank public blockchain platforms according to three dimensions, including
technology, recognition, and activity.

The Boolean Decision Tree (BDT) is an MCDM method to chose one of the avail-
able and feasible decision alternatives. Staderini et al. (2018) propose a BDT-
based requirements-driven methodology to support decision-makers to select suit-
able blockchain platform category (i.e., public or private, and permissionless or per-
missioned). Moreover, their proposed method assists the decision-makers with the
configuration of selected blockchain platforms. Pahl et al. (2018) introduce a BDT-
based framework to guide decision-makers to use blockchain technology. Further-
more, they categorize blockchain platforms into three categories (public permission-
less, public permissioned, and private) and compare them against each other based
on a set of decision criteria. Wüst & Gervais (2018) present a BDT approach to as-
sist decision-makers on whether to select one of blockchain platforms or centralized
databases. Additionally, they provide a comparison between permissionless, permis-
sioned blockchain platforms, and centralized databases. Koens & Poll (2018) suggest
three questions to find out if blockchain is the best fitting technology (Should you
use a blockchain? If so, which blockchain variant is best? If not, which alternative is
best?) and if so which type of blockchain platforms should be employed. Moreover,
they introduce a BDT-based scheme for determining which type of database is ap-
propriate such as public permissionless blockchain, distributed database, and central
database.

Table 4.1 summarizes the selected studies that discuss the blockchain platform se-
lection problem. Performance testing methods (Dinh et al., 2017) are time-consuming
approaches and mainly applicable to a limited set of alternatives (blockchain plat-
forms), as their implementation requires in-depth knowledge of blockchain platforms
(such as APIs).

Blockchain is a relatively new and fast-evolving technology, so documentation is
often out of date or not available; therefore, studies are based on documentation,
and reports (Kuo et al., 2019; Macdonald et al., 2017; Maple & Jackson, 2018; Yabo,
2016) are likely to become outdated soon and should be kept up to date continuously.

The majority of the MCDM techniques in literature define domain-specific quality

74
∣

C
hapter4

–
Blockchain

Platform
s

Table 4.1: this table compares selected studies from the literature that address the blockchain platform selection problem. The first and second columns (Studies and Years) refer to
the considered studies and their publication years. The third column (Decision-making technique) indicates the decision-making approach that the studies have employed to address
the blockchain platform selection problem. The fourth column (MCDM) denotes whether the corresponding decision-making technique is an MCDM approach. The fifth column
(Pairwise comparison) indicates whether the MCDM approach applied pairwise comparison as a weight calculation method or not. The sixth column (Quality Attributes) determines
the type of quality attributes. The seventh and eighth columns (Criteria and Alternatives) signify the number of criteria and alternatives that were considered in the selected studies.

Studies Years Decision-making technique MCDM Pairwise comparison Quality Attributes Criteria Alternatives

This study DSS Yes No ISO/IEC 25010
EX. ISO/IEC 9216 121 28

Dinh et al. (2017) 2017 Benchmarking No N/A Domain specific 4 3
Maple & Jackson (2018) 2018 Benchmarking No N/A Not Defined 3 6
Kuo et al. (2019) 2019 Benchmarking No N/A Not Defined 21 10
Yabo (2016) 2016 Benchmarking No N/A Not Defined 28 25
Macdonald et al. (2017) 2017 Benchmarking No N/A Domain specific 8 5
Frauenthaler et al. (2019) 2019 WSM Yes No Domain specific 8 4
Maček & Alagić (2017) 2017 AHP Yes Yes Domain specific 6 4
Tang et al. (2019) 2019 TOPSIS Yes Yes Domain specific 14 30
Staderini et al. (2018) 2018 BDT Yes No Domain specific 8 4
Pahl et al. (2018) 2018 BDT Yes No Domain specific 6 6
Wüst & Gervais (2018) 2018 BDT Yes No Domain specific 6 4
Koens & Poll (2018) 2018 BDT Yes No Domain specific 9 8

Section 4.3 – Related Work ∣ 75

attributes to evaluate the alternatives. Such studies are mainly appropriate for specific
case studies. Furthermore, the results of MCDM approaches are valid for a specified
period; therefore, the results of such studies, by blockchain technology advances, will
be outdated. Note that, in our proposal, this is also a challenge, and we propose a
solution for keeping the knowledge base up to date, in section 4.7.

The number of criteria of BDT-based approaches (Koens & Poll, 2018; Pahl et al.,
2018; Staderini et al., 2018; Wüst & Gervais, 2018) is limited, i.e., under 10, as
processing the large decision-trees is time-consuming and complicated. BDT-based
approaches suggest only one solution at the end of each evaluation. Furthermore,
decision-makers cannot prioritize decision criteria based on their preferences. Some
of the MCDM techniques in the literature use pairwise comparison as the main
method to assess the weight of criteria. For a problem with n number of criteria
n(n−1)

2 number of comparisons are needed (Saaty, 1990). It means that the pairwise
comparison is a time-consuming process, and gets exponentially more complicated
as the number of criteria increases. Some of the methods, such as AHP and TOPSIS,
are not scalable, so in the case of modifying the list of alternatives or criteria, the
whole process of evaluation should be redone. Therefore, these methods are costly
and applicable to only a small number of criteria and alternatives. Please note that, in
this study, we have considered 121 criteria and 28 alternatives to building a decision
model for the blockchain platform selection problem.

In contrast to the mentioned MCDM approaches in the literature, the cost of cre-
ating, evaluating, and applying the proposed decision model is not penalized expo-
nentially by the number of criteria and alternatives, because it is an evolvable and
expandable approach that splits down the decision-making process into four main-
tainable phases (Farshidi et al., 2018c). Moreover, we introduce several parameters
to measure the values of non-Boolean criteria, such as the cost and popularity of the
blockchain platforms. The proposed decision model addresses main knowledge man-
agement issues, including capturing, sharing, and maintaining knowledge. Further-
more, it uses the ISO/IEC 25010 (ISO, 2011) as a standard set of quality attributes.
This quality standard is a domain-independent software quality model and provides
reference points by defining a top-down standard quality model for software systems.

Recently, we built two decision models based on the technology selection frame-
work (Farshidi et al., 2018a) to address the Database Management System (Farshidi
et al., 2018c) and Cloud-Service Provider (Farshidi et al., 2018a) selection problems.
In both studies, several case studies were conducted to evaluate the effectiveness
and usefulness of the DSS to address MCDM problems. The results showed that the
DSS performed well to solve the Database Management System and Cloud-Service
Provider selection problems for software-producing organizations. We believe that
the technology selection framework can be considered a reference framework for
building decision models for MCDM problems in software-producing organizations.

76 ∣ Chapter 4 – Blockchain Platforms

Figure 4.1: This figure is adapted from our previous study (Farshidi et al., 2018a) and shows the main building blocks
of the decision support system beside the proposed decision model for the blockchain platform selection problem.

Decision Meta-Model

Qualities

Features

Decision Model for Blockchain Platform Selection

Software Quality Model

ISO/IEC 25010 & Ext. ISO/IEC 9126
Software Quality

Experts

Meta-Model
Designers

Knowledge Acquisition

Blockchain Experts

Documentation,
Literature, etc.

Domain-Description

Blockchain Features [Mapping: QF]

(1) (2)

Feature-Value

Blockchain Platforms [Mapping: FP]

(3)

Knowledge Base

Blockchain
Platform
Selection

ISO/IEC 25010 &
Ext. ISO/IEC 9126

Blockchain Features

Blockchain Platforms

Inference Engine

Score Calculation

Exclude Infeasible
Blockchain Platforms

(5)

Ranked Feasible
Blockchain Platforms

Decision

(6)
Decision-Maker

(MoSCoW)

Case Definition

Case-Definition

Blockchain Feature Requirements

(4)

Case Owner

4.4 Multi-Criteria Decision-Making for Blockchain Plat-
form Selection

We formulate the blockchain selection problem as an MCDM problem. Let
Plat f orms = {p1, p2, . . . p∣Plat f orms∣} be a set of blockchain platforms in the market
(i.e., Hyperledger and Ethereum). Moreover, Features = { f1, f2, . . . t∣Features∣} be a
set of blockchain features (i.e., supporting JavaScript, Spam-attack resistant, and
Sybil-resistant) of the blockchain platforms, and each p ∈ Plat f orms supports a
subset of the set Features. The goal is finding the suitable blockchain platform
p, which supports a set of required blockchain features (set Requirements), where
Requirements ⊆ Features. In other words, a blockchain platform p is the suitable
one that supports blockchain feature requirements and satisfies the preferences of
the decision-maker. Typically, a unique optimal solution for an MCDM problem does
not exist, and it is necessary to employ decision-makers’ preferences to differentiate
between solutions (Majumder, 2015). The MCDM proposed in this article, therefore,
provides a prioritized list of options for decision-makers.

4.4.1 Decision Model for Blockchain Platform Selection
In a previous study, we designed and implemented a DSS4 (Farshidi et al., 2018b)
that comprised of standard DSS components (Sage, 1991) and introduced the

4We implemented an online Decision Model Studio (https://dss-mcdm.com) to build decision models
for MCDM problems in software-producing organizations.

Section 4.4 – Multi-Criteria Decision-Making for Blockchain Platform Selection ∣ 77

technology selection framework (Farshidi et al., 2018a) that applies the six-step
decision-making process (Majumder, 2015) to build maintainable and evolvable
decision models for MCDM problems in software production. In this study, we follow
the technology selection framework as modeled in Fig. 4.1 to build a decision model
for the blockchain platform selection problem. Generally speaking, a decision model
for an MCDM problem contains decision criteria, alternatives, and relationships
among them. Fig. 4.1 illustrates the main building blocks of the decision support
system besides the proposed decision model for the blockchain platform selection
problem.

Decision Meta-Model:
As introduced in (Farshidi et al., 2018b), the Decision Meta-Model is a simplified view
of decision models and highlights the fundamental structure of decision models.
Furthermore, it provides ontological descriptions of MCDM problems. The Decision
Meta-Model has two sets, namely, Qualities and Features. Software quality attributes
such as interoperability, maturity, and performance of blockchain platforms are kept
in the set Qualities. Additionally, Blockchain features such as Smart-contracts and
on-chain transactions are listed in the set Features.

Software Quality Model:
The Software Quality Model is a set of characteristics, and relationships between
them, which provides a structure for specifying quality requirements and assessing
them (Farshidi et al., 2018b). The Software Quality Model supports the specification
of quality requirements, assess blockchain features, or predict the quality of a
blockchain platform. The decision model for the blockchain platform selection
problem employs the ISO/IEC 25010 standard (ISO, 2011) and extended ISO/IEC
9126 standard (Carvallo & Franch, 2006) in order to define the set Qualities. Such
domain-independent quality models suggest standard hierarchical quality models for
software systems. The elements of the Software Quality Model are used to analyze
blockchain features based on their impact on quality attributes of blockchain
platforms.

Domain-Description:
As aforementioned in (Farshidi et al., 2018b), the Domain-Description determines
the first and second steps, indicated by Identifying the objective and Selection of the
features, of the decision-making process. As it is clear, the objective of the
decision-making process in this study is Blockchain Platform Selection. Blockchain
experts are the primary source of knowledge to identify the best fitting set of
blockchain features, even though documentation and literature study of blockchain
platforms can be employed to come up with an initial hypothesis about the
blockchain feature set. Each blockchain feature has a data type, such as Boolean and
non-Boolean. For example, the data types of blockchain features like the popularity
in the market and supportability of Smart-contracts of a Blockchain Platform can be
considered as non-Boolean and Boolean, respectively.
In this study, the initial set of blockchain features is extracted from online

78 ∣ Chapter 4 – Blockchain Platforms

Table 4.2: this table shows the considered blockchain features by the interviewees. Checkmarks (3) denote the
blockchain features suggested by the corresponding blockchain experts, and cross marks (7) signify that the blockchain
experts did not express a need for the blockchain features in the decision model. The Agreement columns denote the
agreements among the blockchain experts regarding considering blockchain features. Note, this is not the final list of
blockchain features. The full list of the blockchain features besides their definitions are available in the appendix section
of this study. (https://dss-mcdm.com)

Blockchain features A
g

re
e

m
e

n
t

In
te

rv
ie

w
 1

In
te

rv
ie

w
 2

In
te

rv
ie

w
 3

In
te

rv
ie

w
 4

In
te

rv
ie

w
 5

In
te

rv
ie

w
 6

In
te

rv
ie

w
 7

In
te

rv
ie

w
 8

In
te

rv
ie

w
 9

Blockchain features A
g

re
e

m
e

n
t

In
te

rv
ie

w
 1

In
te

rv
ie

w
 2

In
te

rv
ie

w
 3

In
te

rv
ie

w
 4

In
te

rv
ie

w
 5

In
te

rv
ie

w
 6

In
te

rv
ie

w
 7

In
te

rv
ie

w
 8

In
te

rv
ie

w
 9

Proof-of-Work 100.00% ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Solidity 88.89% ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Proof-of-Stake 100.00% ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ C# 22.22% ✓ ✓

delegated Proof-of-Stake 55.56% ✓ ✓ ✓ ✓ ✓ Golang 55.56% ✓ ✓ ✓ ✓ ✓

practical Byzantine Fault Tolerance 77.78% ✓ ✓ ✓ ✓ ✓ ✓ ✓ JavaScript 55.56% ✓ ✓ ✓ ✓ ✓

federated Byzantine Agreement 77.78% ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java 77.78% ✓ ✓ ✓ ✓ ✓ ✓ ✓

delegated Byzantine Fault Tolerance 77.78% ✓ ✓ ✓ ✓ ✓ ✓ ✓ C++ 55.56% ✓ ✓ ✓ ✓ ✓

Proof-of-Authority 55.56% ✓ ✓ ✓ ✓ ✓ Python 55.56% ✓ ✓ ✓ ✓ ✓

Proof-of-Elapsed Time 55.56% ✓ ✓ ✓ ✓ ✓ Haskell 22.22% ✓ ✓

Proof-of-Burn 11.11% ✓ Tokenization 100.00% ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Proof-of-Luck 11.11% ✓ Native 55.56% ✓ ✓ ✓ ✓ ✓

Directed Acyclic Graph (variants) 55.56% ✓ ✓ ✓ ✓ ✓ Non-native 55.56% ✓ ✓ ✓ ✓ ✓

SHA-256 44.44% ✓ ✓ ✓ ✓ Cryptocurrency 77.78% ✓ ✓ ✓ ✓ ✓ ✓ ✓

SHA-3 44.44% ✓ ✓ ✓ ✓ Utility 66.67% ✓ ✓ ✓ ✓ ✓ ✓

md-5 22.22% ✓ ✓ Security 55.56% ✓ ✓ ✓ ✓ ✓

SHA-512 33.33% ✓ ✓ ✓ Usage 55.56% ✓ ✓ ✓ ✓ ✓

ASIC-algorithm 33.33% ✓ ✓ ✓ Asset 66.67% ✓ ✓ ✓ ✓ ✓ ✓

Cryptonight 22.22% ✓ ✓ Work 33.33% ✓ ✓ ✓

Protocol Layer 77.78% ✓ ✓ ✓ ✓ ✓ ✓ ✓ Hybrid 33.33% ✓ ✓ ✓

Network Layer 77.78% ✓ ✓ ✓ ✓ ✓ ✓ ✓ On-chain transactions 100.00% ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Application Layer 88.89% ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Off-chain transactions 100.00% ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Public 100.00% ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Side-chains 88.89% ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Private 100.00% ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Sharding 88.89% ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Permissioned 100.00% ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Plasma-chains 66.67% ✓ ✓ ✓ ✓ ✓ ✓

Permissionless 100.00% ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Atomic-swaps 66.67% ✓ ✓ ✓ ✓ ✓ ✓

Smart-Contracts 100.00% ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Cross-chain interoperable 66.67% ✓ ✓ ✓ ✓ ✓ ✓

Virtual Machine 66.67% ✓ ✓ ✓ ✓ ✓ ✓ Enterprise system integration 77.78% ✓ ✓ ✓ ✓ ✓ ✓ ✓

Docker 11.11% ✓ Zero-knowledge Proof 100.00% ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Turing-Complete 66.67% ✓ ✓ ✓ ✓ ✓ ✓ Ring-signatures 55.56% ✓ ✓ ✓ ✓ ✓

Transaction Speed 100.00% ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Hard-fork resistant 55.56% ✓ ✓ ✓ ✓ ✓

Block-Size 44.44% ✓ ✓ ✓ ✓ Spam-attack resistant 77.78% ✓ ✓ ✓ ✓ ✓ ✓ ✓

Maturity 100.00% ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Sybil attack resistant 88.89% ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Platform Transaction Speed 100.00% ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Quantum resistant 55.56% ✓ ✓ ✓ ✓ ✓

Popularity in the market 100.00% ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Transaction Irreversibility 55.56% ✓ ✓ ✓ ✓ ✓

Innovation 100.00% ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Wallet 22.22% ✓ ✓

documentation of blockchain platforms. A list of prominent blockchain features was
identified during nine blockchain expert interviews (three researchers from Dutch
research institutes, two blockchain developers, and four blockchain
consultants/public-speakers). Finally, 71 Boolean and four non-Boolean blockchain
features5 identified and validated by the blockchain experts. Table 4.2 shows the
identified blockchain features based on blockchain experts’ opinions. Checkmarks
(3) denote the blockchain features suggested by the corresponding blockchain
experts, and cross marks (7) signify that the blockchain experts did not express the
blockchain features. Note, we excluded the blockchain features that were not
considered at least by two blockchain experts.

The mapping (QF) between the sets Qualities and Features is identified based on
blockchain experts’ knowledge. Four blockchain experts participated in this phase of
the research to map the considered blockchain features to the set Qualities based on
a Boolean adjacency matrix (Qualities × Features → Boolean). For instance,
consensus-mechanisms as a blockchain feature influences the Fault-tolerance quality

5The entire list of the blockchain features and supportability of considered blockchain platforms are
available and accessible on the "Blockchain Platform Selection" website (https://dss-mcdm.com)

Section 4.4 – Multi-Criteria Decision-Making for Blockchain Platform Selection ∣ 79

aspect. The Domain Description does not enforce a blockchain feature to present in a
single quality aspect; Blockchain features can be part of many quality aspects. For
example, Spam-attack resistant as a blockchain feature might connect to multiple
quality aspects such as Recoverability and Availability.

Feature-Value:
As we discussed in our previous study (Farshidi et al., 2018b), the Feature-Value rep-
resents the third step, shown by Selection of the alternatives, of the decision-making
process. Accordingly, a list of blockchain platforms (set Platforms) should be defined.
Well-known blockchain platforms, websites, related forums, and blockchain experts
are the primary source of knowledge to specify the list of blockchain platforms. In this
study, 28 blockchain platforms (i.e., Hyperledger, Ethereum, and Chain) have been
considered.

Blockchain features can be either Boolean or non-Boolean. A Boolean blockchain
feature (FeatureB) is a feature that its supportability by the blockchain platforms is
investigated. Moreover, a non-Boolean blockchain feature (FeatureN) assigns a non-
Boolean value to a particular blockchain platform, for example, the maturity level of
a blockchain platform. Therefore, the blockchain features in this study is a collection
of Boolean and non-Boolean features, where Features = FeatureB ∪ FeatureN.

The mapping BFP ∶ FeatureB × Plat f orms → {0, 1} defines the supportability of
the Boolean blockchain features by the blockchain platforms. So that BFP(f , p) = 0
means that the blockchain platform p does not support the blockchain feature f and
BFP(f , a) = 1 signifies that the platform supports the feature.

The mapping BFP is defined based on documentation of the blockchain platforms
and expert interviews. One of the principal challenges is the lack of standard
terminology among blockchain platforms. Different blockchain platforms refer to the
same concept by different names, or even worse, the same name might stand for
different concepts in different blockchain platforms. Discovering conflicts in the
Feature-Value is essential to prevent semantic mismatches throughout the blockchain
platform selection process. Table 4.3 shows a sample of the BFP mapping between
the Boolean blockchain Features and Platforms in the knowledge base of the DSS.

In this study, the non-Boolean blockchain features are Blockchain Platform Maturity,
Popularity in the Market, Transaction Speed, and Innovation. The assigned values to
these non-Boolean blockchain features for a specific blockchain platform is a 3-point
Likert scale, where NFP ∶ FeaturesN × Plat f orms → {High, Medium, Low}, based on
several predefined parameters.

Table 4.4 illustrates the non-Boolean blockchain features besides their parameters.
The blockchain experts assigned the 3-point Likert scale values to these non-Boolean
blockchain features according to the corresponding values of the parameters.

4.4.2 Knowledge Base
Each decision model defines a decision structure for an MCDM problem systematically
based on the technology selection framework (Farshidi et al., 2018a). The Knowledge
Base is a collection of decision models, which are groups of rules and facts. The
blockchain decision model has been uploaded to the DSS knowledge base to facilitate

80 ∣ Chapter 4 – Blockchain Platforms

Table 4.3: this table lists a sample of the BFP mapping between the Boolean blockchain Features and Platforms. The
first row and column of the table designate the blockchain features and platforms, respectively. Furthermore, 1s on each
row indicates that the corresponding platforms support the blockchain feature of that row. Conversely, 0s mean that the
corresponding platforms do not support that blockchain feature. Note, the Coverage column denotes the percentage of
blockchain platforms that support each feature. The complete list of the blockchain features and platforms are available
in the appendix. We plan to keep the list up-to-date, so the list is available on the following website as well: https://dss-
mcdm.com

BFP
Boolean blockchain Features and

Platforms

C
o

v
e

ra
g

e

Et
h

er
eu

m

R
3

 C
o

rd
a

JP
M

o
rg

an
 Q

u
o

ru
m

H
yp

e
rl

e
d

ge
r

B
ig

C
h

ai
n

D
B

M
u

lt
iC

h
ai

n

H
yd

ra
C

h
ai

n

C
h

ai
n

Sy
m

b
io

n
t

St
ra

ti
s

(A
zu

re
 B

aa
S)

O
p

en
C

h
ai

n

N
EO

C
ar

d
an

o

St
e

lla
r

R
ip

p
le

B
it

sh
ar

e
s

Q
TU

M

IC
O

N

V
eC

h
ai

n

IO
TA

Fa
ct

o
m

C
o

sm
o

s
N

et
w

o
rk

Li
sk

W
av

e
s

P
la

tf
o

rm

W
an

ch
ai

n

N
e

b
lio

Zi
lli

q
a

K
o

m
o

d
o

Consensus

Consensus Mechanism 96.43% 1 0 1 1 1 1 1 1 1

Proof-of-Work 25.00% 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1

Proof-of-Stake 28.57% 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 1 1 1 0 0

Delegated Proof-of-Stake 14.29% 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0

practical Byzantine Fault Tolerance 28.57% 0 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0

delegated Byzantine Fault Tolerance 14.29% 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

Proof-of-Authority 14.29% 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0

Federated Byzantine Agreement 17.86% 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0

Proof-of-Elapsed Time 7.14% 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

SIEVE 3.57% 0 0 0 1 0

Cross-Fault Tolerance 3.57% 0 0 0 1 0

Directed Acyclic graph 3.57% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Layers

Protocol Layer 96.43% 1 0 1 1 1 1 1 1 1

Network Layer 100.00% 1

Application Layer 82.14% 1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1

Authorization and Authentication

Public 64.29% 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Private 35.71% 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Permissioned 53.57% 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 1 1 0 0

Permissionless 57.14% 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1

Contracts

Smart-contracts 71.43% 1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 1 1

Virtual Machine 39.29% 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 1 0 1 0

Turing Complete 35.71% 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0 0

Programming

Programming Language Support 89.29% 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1

Solidity 28.57% 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0

Python 46.43% 1 0 0 1 1 1 1 0 1 0 1 1 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 1

Golang 32.14% 1 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 1

Java 42.86% 1 1 0 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 1

JavaScript 35.71% 1 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0 1 1 0 1 0 1

the decision-making process for software-producing organizations for any blockchain
platform selection.

4.4.3 Case-Definition
As discussed in (Farshidi et al., 2018b), the Case-Definition defines the fourth step,
denoted by Selection of the weighing method, of the decision-making process. Decision-
makers prioritize the blockchain feature requirements using the MoSCoW technique.

Suppose WMoSCoW = {wMust, wShould, wCould, wWon′t} is the set of priority weights
according to the definition of the MoSCoW (DSDM consortium and others, 2014).
Blockchain feature requirements with Must Have or Won’t Have priorities act as hard
constraints and blockchain feature requirements with Should Have and Could Have
priorities act as soft constraints. In other words, a case definition, based on the
decision-maker preferences, is a way to define blockchain feature requirements and

Section 4.4 – Multi-Criteria Decision-Making for Blockchain Platform Selection ∣ 81

Table 4.4: this table shows the NFP mapping between the Non-Boolean blockchain Features and Platforms. Note, the
Platform Transaction Speed, Popularity in the market, Innovation, and Blockchain Platform Maturity are the Non-Boolean
blockchain features that were considered in this study. The parameters of these features are listed below each features,
for example, Founded, Revenue, Size, and Consensus-mechanism are the parameters of the Blockchain Platform Maturity.

NFP
Non-Boolean blockchain Features and

Platforms

E
th

e
re

u
m

R
3
 C

o
rd

a

J
P

M
o

rg
a

n
 Q

u
o

ru
m

H
y
p

e
rl

e
d

g
e

r

B
ig

C
h

a
in

D
B

M
u

lt
iC

h
a

in

H
y
d

ra
C

h
a

in

C
h

a
in

S
y

m
b

io
n

t

S
tr

a
ti

s
 (

A
z
u

re
 B

a
a

S
)

O
p

e
n

C
h

a
in

N
E

O

C
a
rd

a
n

o

S
te

ll
a

r

R
ip

p
le

B
it

s
h

a
re

s

Q
T

U
M

IC
O

N

V
e

C
h

a
in

IO
T

A

F
a

c
to

m

C
o

s
m

o
s

 N
e

tw
o

rk

L
is

k

W
a

v
e

s
 P

la
tf

o
rm

W
a

n
c

h
a

in

N
e
b

li
o

Z
il

li
q

a

K
o

m
o

d
o

Source of Knowledge

Transaction Speed

L
o

w

H
ig

h
ig

h

H
ig

h
ig

h

H
ig

h
ig

h

H
ig

h
ig

h

M
e

d
iu

m

M
e

d
iu

m

H
ig

h
ig

h

H
ig

h
ig

h

H
ig

h
ig

h

H
ig

h
ig

h

M
e

d
iu

m

M
e

d
iu

m

M
e

d
iu

m

H
ig

h
ig

h

M
e

d
iu

m

L
o

w

H
ig

h
ig

h

M
e

d
iu

m

L
o

w

L
o

w

H
ig

h
ig

h

M
e

d
iu

m

M
e

d
iu

m

L
o

w

L
o

w

H
ig

h
ig

h

L
o

w

Domain Experts

Confirmation Time (sec) 1
5 1 1 1 1 1 1 1 1 1 1

1
5

1
0 4

3
.5 3

1
2

0 2 5

1
2

0

3
0

0 1

1
0 3

1
5

1
2

0

1
2

0

6
0

The platform website

Speed of consensus mechanism

(transactions/second)

1
5

1
7

0

1
4

0

3
5

0
0

1
E

+
0

6

1
0

0
0 0

1
5

0
0

0

8
0

0
0

0

2
0

0
0

0

2
5

0
0

1
0

0
0

2
5

7

1
0

0
0

1
5

0
0

3
3

0
0

7
0

3
0

0
0

5
0

5
0

0

4
5

3
0

0
0

2
8

1
0

0
0

1
5

2
7

2
0

0
0

8
0

The platform website

Scalability technologies implemented

2 2 2 2 0 0 1 0 0 2 0 2 0 2 2 0 0 3 2 0 0 3 2 0 0 0 2 0

The platform website

Popularity in the market

H
ig

h
ig

h

H
ig

h
ig

h

M
e

d
iu

m

H
ig

h
ig

h

L
o

w

M
e

d
iu

m

L
o

w

L
o

w

L
o

w

M
e

d
iu

m

L
o

w

M
e

d
iu

m

M
e

d
iu

m

M
e

d
iu

m

H
ig

h
ig

h

M
e

d
iu

m

M
e

d
iu

m

M
e

d
iu

m

L
o

w

M
e

d
iu

m

L
o

w

L
o

w

M
e

d
iu

m

M
e

d
iu

m

L
o

w

L
o

w

L
o

w

L
o

w

Domain Experts

Market Capitalization (x 1.000.000 dollar)

5
8

6
7

6

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

3
4

5
8

5
3

2
7

5
2

1
4

2
3

5
6

2

5
0

8

1
2

0
0

1
0

4
9

1
8

9
5

4
0

4
9

N
/A

N
/A

9
3

2

4
5

5

4
7

0

1
0

8

8
7

0

2
7

5

https://coinmarketcap.com

Google monthly searches

2
2

4
0

0
0

0

4
0

5
0

0
0

2
0

1
0

0
0

4
0

5
0

0
0

3
6

0
0

4
4

0
0

3
0

0

1
0

0
0

9
9

0
0

5
0

0
0

1
9

0
0

3
6

8
0

0
0

2
0

1
0

0
0

2
0

1
0

0
0

1
8

3
0

0
0

0

6
0

5
0

0

1
4

8
0

0

4
0

5
0

0

9
9

0
0

6
7

3
0

0
0

2
7

1
0

0

4
8

0

9
0

5
0

0

5
4

0
0

4
4

0
0

2
9

0
0

1
6

0
0

6
6

0
0

https://keywordseverywhere.com

Twitter Followers

3
9

6
4

9
1

2
0

9
5

4

4
3

2

4
5

4
5

4

7
5

6
0

3
5

8
1 0

2
6

5
2

7

2
3

5
9

1
3

8
7

7
4

3
3

6

3
1

8
9

3
9

1
3

5
9

3
8

2
3

6
5

6
5

8
7

3
5

8
3

8
5

1
7

7

1
6

2
9

2
0

1
0

1
2

7
2

9
2

8
2

8

1
1

2
1

9
9

7
6

9
1

3

1
0

9
1

2

1
8

9
2

6
1

1
2

5
0

9
4

1
0

2
0

8

7
4

6
3

5

3
9

9
2

5

8
8

1
7

8

https://twitter.com

Reddit subscribers

3
6

2
0

0
0

N
/A

N
/A

N
/A

N
/A 5
3

N
/A

N
/A

N
/A

1
0

8
0

0

N
/A

9
2

9
0

0

6
4

5
0

0

7
9

2
0

0

1
8

7
0

0
0

7
0

0
0

1
4

3
0

0

2
2

6
0

0

4
7

8
0

0

1
1

0
0

0
0

8
4

0
0

2
2

0
0

2
9

8
0

0

1
2

6
0

0

1
7

1
0

0

5
9

0
0

7
4

0
0

6
6

0
0

https://www.reddit.com

Transactions+Operations per day

8
3

3
3

7
7

1
2

2
4

0
0

0

1
0

0
0

0

2
.4

E
+

0
7

N
/A

N
/A

N
/A

N
/A

N
/A

1
2

0
0

0
0

0

N
/A

7
6

3
3

4

2
4

2
0

1
5

0
0

0
0

9
5

5
0

0
0

1
5

5
0

0
0

3
0

0
0

1
0

0
0

N
/A

1
4

6
8

8
0

4
0

0
0

0

N
/A

3
4

7
0

2
2

0
0

0

2
5

0

8
0

0

8
0

0

1
0

0
0

0
https://bitinfocharts.com

Linkedin followers 6
0

9
3

1

1
0

3
0

8

1
0

2
6

7
8

4

1
5

8
0

9

1
2

2
0

1
6 4

2
8

3
5

1
4

4
6

7
8

3

4
6

2
7

6
1

3
0

0
1

2
1

4
1

2
0

4
3

4
8

1

1
7

0

1
2

7

8
1

0

2
9

6
1

1
9

6
2

1
7

2
4

1
8

6
5

8
8

2

7
5

6 0

6
4

1

2
9

1

https://www.linkedin.com

Innovation

H
ig

h
ig

h

H
ig

h
ig

h

M
e

d
iu

m

H
ig

h
ig

h

M
e

d
iu

m

M
e

d
iu

m

L
o

w

M
e

d
iu

m

L
o

w

H
ig

h
ig

h

L
o

w

M
e

d
iu

m

M
e

d
iu

m

M
e

d
iu

m

M
e

d
iu

m

L
o

w

L
o

w

M
e

d
iu

m

M
e

d
iu

m

M
e

d
iu

m

L
o

w

M
e

d
iu

m

L
o

w

L
o

w

M
e

d
iu

m

L
o

w

L
o

w

L
o

w

Domain Experts

Internet of Things 1 1 1 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 0 The platform website

Artificial Intelligence 1 1 1 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 1 1 0 1 0 1 0 0 1 0 The platform website

Plasma Technology 1 0 The platform website

Sharding 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 The platform website

Supply-Chain Management 1 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 The platform website

Financial Sector 1 1 1 1 0 1 0 1 1 1 1 0 0 1 1 1 0 1 1 0 0 1 1 1 1 0 1 1 The platform website

Zero-knowledge proofs technology 1 1 1 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 The platform website

Consortium-Research Support 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 1 0 0 0 0 1 1 0 0 The platform website

Cross-chain interoperability 1 1 0 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 0 1 1 0 1 1 0 0 1 The platform website

Blockchain Platform Maturity

H
ig

h

H
ig

h

H
ig

h

H
ig

h

H
ig

h

M
e

d
iu

m

L
o

w

M
e

d
iu

m

H
ig

h

H
ig

h

L
o

w

L
o

w

L
o

w

M
e

d
iu

m

H
ig

h

L
o

w

L
o

w

L
o

w

H
ig

h

L
o

w

M
e

d
iu

m

L
o

w

L
o

w

M
e

d
iu

m

L
o

w

L
o

w

L
o

w

L
o

w

Domain Experts

Founded

2
0

1
3

2
0

1
4

2
0

1
7

2
0

1
4

2
0

1
4

2
0

1
4

2
0

1
5

2
0

1
4

2
0

1
5

2
0

1
7

2
0

1
5

2
0

1
7

2
0

1
7

2
0

1
4

2
0

1
2

2
0

1
4

2
0

1
7

2
0

1
5

2
0

1
5

2
0

1
5

2
0

1
5

2
0

1
6

2
0

1
6

2
0

1
6

2
0

1
7

2
0

1
7

2
0

1
7

2
0

1
4

The platform website

Revenue

B
e

tw
e

e
n

 1
 a

n
d

 5
 m

ill
io

n

B
e

tw
e

e
n

 1
 a

n
d

 5
 m

ill
io

n

M
o

re
 t

h
a

n
 5

 m
ill

io
n

M
o

re
 t

h
a

n
 5

 m
ill

io
n

M
o

re
 t

h
a

n
 5

 m
ill

io
n

L
e

s
s
 t

h
a

n
 1

 m
ill

io
n

L
e

s
s
 t

h
a

n
 1

 m
ill

io
n

B
e

tw
e

e
n

 1
 a

n
d

 5
 m

ill
io

n

B
e

tw
e

e
n

 1
 a

n
d

 5
 m

ill
io

n

M
o

re
 t

h
a

n
 5

 m
ill

io
n

L
e

s
s
 t

h
a

n
 1

 m
ill

io
n

L
e

s
s
 t

h
a

n
 1

 m
ill

io
n

L
e

s
s
 t

h
a

n
 1

 m
ill

io
n

L
e

s
s
 t

h
a

n
 1

 m
ill

io
n

M
o

re
 t

h
a

n
 5

 m
ill

io
n

L
e

s
s
 t

h
a

n
 1

 m
ill

io
n

L
e

s
s
 t

h
a

n
 1

 m
ill

io
n

L
e

s
s
 t

h
a

n
 1

 m
ill

io
n

M
o

re
 t

h
a

n
 5

 m
ill

io
n

L
e

s
s
 t

h
a

n
 1

 m
ill

io
n

B
e

tw
e

e
n

 1
 a

n
d

 5
 m

ill
io

n

L
e

s
s
 t

h
a

n
 1

 m
ill

io
n

L
e

s
s
 t

h
a

n
 1

 m
ill

io
n

B
e

tw
e

e
n

 1
 a

n
d

 5
 m

ill
io

n

L
e

s
s
 t

h
a

n
 1

 m
ill

io
n

L
e

s
s
 t

h
a

n
 1

 m
ill

io
n

L
e

s
s
 t

h
a

n
 1

 m
ill

io
n

L
e

s
s
 t

h
a

n
 1

 m
ill

io
n

https://www.owler.com

Size (employees+github devs)

3
5

0
0

0

2
0

0
0

1
5

7

7
3

5
1

2
1

4

5
7

3

1
0

2
5

5
0

4

3
3

7

6
6

3
1

1
3

2
5

0

2
7

4

4
4

3
3

3
3

1
2

9

5
5

4
4

3
1

4
6

3
5

4
7 9

2
5

1
6

https://www.owler.com

https://github.com

Consensus-mechanism

P
ro

o
f-

o
f-

W
o

rk

B
y
z
a

n
ti
n

e
 F

a
u

lt
 T

o
le

ra
n

c
e

B
y
z
a

n
ti
n

e
 F

a
u

lt
 T

o
le

ra
n

c
e

B
y
z
a

n
ti
n

e
 F

a
u

lt
 T

o
le

ra
n

c
e

B
y
z
a

n
ti
n

e
 F

a
u

lt
 T

o
le

ra
n

c
e

P
ro

o
f-

o
f-

W
o

rk

B
y
z
a

n
ti
n

e
 F

a
u

lt
 T

o
le

ra
n

c
e

B
y
z
a

n
ti
n

e
 F

a
u

lt
 T

o
le

ra
n

c
e

B
y
z
a

n
ti
n

e
 F

a
u

lt
 T

o
le

ra
n

c
e

P
ro

o
f-

o
f-

S
ta

k
e

P
ro

o
f-

o
f-

A
u

th
o

ri
ty

B
y
z
a

n
ti
n

e
 F

a
u

lt
 T

o
le

ra
n

c
e

P
ro

o
f-

o
f-

S
ta

k
e

B
y
z
a

n
ti
n

e
 F

a
u

lt
 T

o
le

ra
n

c
e

B
y
z
a

n
ti
n

e
 F

a
u

lt
 T

o
le

ra
n

c
e

D
e
le

g
a

te
d

 P
ro

o
f-

o
f-

S
ta

k
e

P
ro

o
f-

o
f-

S
ta

k
e

B
y
z
a

n
ti
n

e
 F

a
u

lt
 T

o
le

ra
n

c
e

P
ro

o
f-

o
f-

A
u

th
o

ri
ty

D
ir

e
c
te

d
 A

c
y
c
lic

 G
ra

p
h

P
ro

o
f-

o
f-

W
o

rk

B
y
z
a

n
ti
n

e
 F

a
u

lt
 T

o
le

ra
n

c
e

D
e
le

g
a

te
d

 P
ro

o
f-

o
f-

S
ta

k
e

P
ro

o
f-

o
f-

S
ta

k
e

P
ro

o
f-

o
f-

S
ta

k
e

P
ro

o
f-

o
f-

S
ta

k
e

B
y
z
a

n
ti
n

e
 F

a
u

lt
 T

o
le

ra
n

c
e

P
ro

o
f-

o
f-

W
o

rk The platform website

82 ∣ Chapter 4 – Blockchain Platforms

assign priorities to them. Note, we could have used other prioritization techniques,
but we purposely wanted to keep it simple.

Decision-makers specify desirable values for numeric blockchain feature require-
ments. For example, a decision-maker could be interested in prioritizing blockchain
platforms with the Blockchain Platform Maturity above average. Therefore, the
Blockchain Platform Maturity above average is considered as a should have blockchain
feature.

Fig. 4.2 shows a decision structure from a case definition. The DSS generated the
decision structure and inferred the solutions based on the proposed decision model
for the blockchain platform selection problem. At the top of the figure (Domain), the
domain of the decision structure is shown (ShareCompany BIQH Blockchain Platform
(BP) Selection). The next level of decision structure (Qualities) illustrates the char-
acteristics and sub-characteristics of the ISO/IEC 25010 (ISO, 2011) plus ISO/IEC
9126 (Carvallo & Franch, 2006) standards, respectively. The relationship among the
quality attributes is based on the definitions of these two quality models. The third
part of the decision structure (Features) presents the blockchain feature requirements
based on decision-makers’ priorities and preferences. As we mentioned earlier, the de-
cision model utilizes the MoSCoW prioritization technique to assign blockchain fea-
tures weights. In this figure, the colors identify the blockchain features priorities.
Finally, the lowest segment of the decision structure (Platforms) shows the final re-
sults for the specific case definition according to the decision-makers’ blockchain fea-
tures requirements and priorities. The mapping QF, which is based on the knowledge
of blockchain experts (tacit knowledge), demonstrates the relationship between sub-
characteristics of the ISO/IEC standards and blockchain Features. Moreover, the map-
ping FP partially illustrates the mapping between the blockchain features and plat-
forms. The mapping between the sets of Boolean blockchain features and platforms
is denoted by BFP, and the mapping between the sets of non-Boolean blockchain fea-
tures and platforms is signified by NFP. The mappings NFP and BFP are two subsets
of the mapping FP, where FP = NFP ∪ BFP.

4.4.4 Inference Engine
The Inference Engine comprises two steps: the fifth step, i.e., Applying the method of
aggregation and the sixth step, i.e., Decision making based on the aggregation results, of
the decision-making process (Farshidi et al., 2018b). The Inference Engine makes log-
ical deductions about knowledge assets, intending to find the best fitting blockchain
platforms.

A feasible blockchain platform must support all blockchain feature requirements
with Must-Have priorities, and must not support all blockchain feature requirements
with Won’t-Have priorities.

The Inference Engine excludes infeasible blockchain platforms, calculates the scores
of the feasible blockchain platforms, and finally suggests a sorted shortlist of them.
The score calculation process is based on the Weighted Sum Model, as described in our
previous work (Farshidi et al., 2018a). The scores of feasible blockchain platforms are
non-negative integers, so by sorting the feasible blockchain platforms in descending
order of their scores, the final ranked list of feasible blockchain platforms will be
provided as the result of the DSS.

Section 4.4 – Multi-Criteria Decision-Making for Blockchain Platform Selection ∣ 83

Figure 4.2: this figure illustrates a decision structure based on a case definition (ShareCompany BIQH Blockchain
Platform Selection). The DSS has automatically generated the decision structure. The first level of the decision structure
(Domain) indicates the goal of the decision structure. The second level (Qualities) denotes the relevant quality attributes
that impact the prioritized blockchain platform feature requirements, signified in the third level (Features). The last level
(Platforms) shows the list of feasible blockchain platforms. Note, the mapping FP and QF define the relationship between
the qualities, features, and platforms.

Domain

Qualities

Features

Platforms

Mapping: QF

Mapping: FP

Qualities

Features

Platforms

84 ∣ Chapter 4 – Blockchain Platforms

4.4.5 Group Decision-Making
The DSS provides a discussion and negotiation platform to enable decision-makers to
make group decisions. The DSS asks decision-makers to define individual blockchain
feature requirements based on the MoSCoW. Next, it collects the individual prioritized
blockchain feature requirements of decision-makers and considers the maximum the
MoSCoW priority for each blockchain feature requirement (Farshidi et al., 2018b). It
detects and highlights the conflicts in the assigned priorities to the blockchain feature
requirements by decision-makers, and asks them to resolve disagreements.

4.5 Empirical Evidence: The Case Studies
Three industry case studies at three software development companies are conducted
to evaluate and signify the decision model’s usefulness and effectiveness. The case-
study participants have identified a number of potentially feasible blockchain plat-
forms for their organizations through multiple internal expert meetings and investi-
gation into blockchain platforms before participating in this research. Moreover, the
case-study participants have employed the DSS to analyze, document, track, and pri-
oritize their blockchain feature requirements. The remaining sections describe the
case studies and discuss the outcome of the DSS.

4.5.1 Case Study 1: ShareCompany BIQH
ShareCompany BIQH, a FinTech company in the Netherlands, supports two well-
known Dutch banks with accommodating the requirements put forth by the Eu-
ropean Union regarding packaged retail investment and insurance-based products
(PRIIP/KID regulation). ShareCompany BIQH is now interested in investigating de-
ploying its current centralized financial system on a blockchain platform. Some of the
envisioned system requirements and corresponding blockchain feature requirements
asserted by the case study participants are listed as follows.

˛ The envisioned system requires extensive integration with the current system
(e.g., APIs), so Enterprise System Integration is considered as a Must-Have fea-
ture. Since only a limited number of end-users are authorized to make changes
in the system, Permissioned is a Must-Have feature.

˛ The current system and its data are already publicly accessible, so a private
platform is not a necessary blockchain feature and considered as a Should-Have
feature. The Protocol Layer, Network Layer, and the Application Layer are all
prioritized as Must-Have features. The protocol layer supports reaching consen-
sus on the accuracy of the data; the network layer defines the communication
among system end-users, and the application layer employs to build the re-
quired infrastructure to connect with current enterprise systems.

˛ The clients of the system should remain anonymous. So, the envisioned system
should follow the General Data Protection Regulation and force its employed
technologies to support data privacy regulation. Therefore, supporting Smart
Contracts in the Java programming language have been prioritized as a Must-
Have feature.

Section 4.5 – Empirical Evidence: The Case Studies ∣ 85

˛ The selected blockchain platform must be Sybil-attack resistant to prevent such
attacks in peer-to-peer networks.

˛ ShareCompany BIQH is operating in a financial data environment with ma-
jor internationally-operating banks, so the selected blockchain platform Should-
Have both a High Maturity and a High Popularity in the market to reduce poten-
tial risks.

˛ The envisioned system should provide anonymous and secure transactions.
Thus, Zero-knowledge Proof feature is prioritized as a Should-Have feature.

˛ The speed of transactions in the envisioned system is not a crucial issue; there-
fore, High Transaction speed can be considered as a Should-Have blockchain fea-
ture.

˛ ShareCompany BIQH has professional Golang and JavaScript developers, how-
ever, coding in other programming languages is not a major obstacle. Thus,
supporting Golang and JavaScript programming language are two Should-Have
blockchain features.

˛ ShareCompany BIQH does not decide on a consensus mechanism. As they are
not working with cryptocurrency and not interested in the consensus mech-
anisms designed for a cryptocurrency, they prioritized Proof-of-Work or Proof-
of-Stake as two Won’t-Have blockchain features. Three remaining considered
consensus-mechanisms in the decision model are Practical Byzantine Fault Tol-
erance, Federated Byzantine Fault Tolerance, and Delegated Byzantine Fault Toler-
ance prioritized as Could-Have blockchain features.

˛ The case-study participants mentioned that Directed-Acyclic-Graph is too ex-
perimental and immature yet, so they considered it as another Won’t-Have
blockchain feature.

Finally, the case-study participants themselves concluded that Hyperledger and JPMor-
gan Quorum are two potential blockchain platforms that meet all their requirements.

4.5.2 Case Study 2: DUO
DUO is the administrative and executive agency of the Dutch government for manag-
ing the educational system. DUO operates in the name of the Ministry of Education,
Culture, and Science and the Ministry of Social Affairs and Employment. DUO has
eight different main functions, with several activities as their core focus. This case
study will merely focus on the process of student financing in the form of granting
loans. DUO is interested in building a decentralized application based on blockchain
technology to address the requirements of the student financing activities. Some of
the envisioned system requirements and corresponding blockchain feature require-
ments that were asserted by the case-study participants are listed as follows.

˛ The DUO financing system requires the three layers of a blockchain platform (in-
cluding the protocol, network, and application layers). Therefore, these three
layers are considered as three Must-Have blockchain features.

˛ The system has no strict requirement for a specific consensus-mechanism.
Therefore, all considered consensus-mechanisms in the decision model are pri-
oritized as Could-Have blockchain features.

˛ Supporting Smart Contracts is a Must-Have blockchain feature, as it mainly influ-
ences the functionality of the system. For example, the Smart Contracts handle

86 ∣ Chapter 4 – Blockchain Platforms

paying out the loans each month if a specific date has passed, grant conven-
tional loans to students if they meet the specified conditions, or deny additional
loans to students who try deceiving the system.

˛ The payout of credits can be either done by the system in fiat currency (Euro) or
in the form of Cryptocurrency, which acts as Native token to the system. Thus,
the Cryptocurrency is a Should-Have blockchain feature.

˛ The DUO financial system executes transactions as On-chain transactions, more-
over, it utilizes Cryptographic Tokens. Therefore, both of them are prioritized as
Must-Have blockchain features.

˛ The DUO financial system has to be deployed on a public, private, permission,
or permissionless blockchain platform. The Dutch government prefers not to
utilize public blockchain platforms. However, selecting a public blockchain plat-
form that follows privacy regulations dramatically increases transparency and
possibly credibility, as Cyber Capital indicates. Therefore, Permission and Per-
missionless are considered as two Could-Have blockchain features.

˛ Currently, Solidity is the most common programming language to create smart
contracts and specifically designed for it. Thus, Solidity prioritized as a Must-
Have blockchain feature.

˛ Spam-attack resistant and Sybil attack resistant are Must-Have blockchain fea-
tures from the case-study participants to guarantee a base level of security and
resilience.

˛ Supporting JavaScript, being Turing-complete are two Should-Have blockchain
features.

˛ Selecting a blockchain platform with High Maturity decreases potential unnec-
essary risks as much as possible, so it as a Should-Have blockchain feature in
this case study.

˛ The case-study participants asserted that they would not utilize a Directed
Acyclic Graph for now since it is still too immature; therefore, they prioritized it
as a Won’t-Have blockchain feature.

Finally, the case-study participants selected three blockchain platforms as their main
potential solutions, namely Ethereum, NEO, and Hyperledger.

4.5.3 Case Study 3: Veris Foundation
The Veris Foundation is an organization focusing on the American healthcare system.
The Veris Foundation addresses the problem of bringing healthcare service providers,
insurers, and banks together to authorize the provisioning and payment for healthcare
services. The Foundation is a nonprofit whose core objective is to establish a platform
to reduce the cost of healthcare and make it more affordable to patients. Traditional,
centralized healthcare systems are slow, redundant, and expensive, because, service
providers and payers employ their staff and separate software stacks to facilitate their
medical claims processes. These isolated systems make the sharing of necessary in-
formation complicated, costly, and prone to errors and fraud. The Veris Foundation
is interested in finding the best fitting blockchain platform, as they believe that cre-
ating decentralized databases enables all parties to securely access and share data
within and across organizations, eliminating the need to hire and maintain expen-
sive third-party information systems. Some of the requirements and corresponding

Section 4.6 – Results and Analysis ∣ 87

blockchain feature requirements that were stated by the case-study participants are
listed as follows.

˛ case-study participants prioritized supportability of smart contracts as a Must-
Have blockchain feature, because smart contracts define the rules and penalties
related to agreements among parties and automatically enforce those obliga-
tions.

˛ the Veris platform is currently a forked version of the NEO blockchain platform,
so the Protocol Layer, Network Layer, and the Application Layer are all prioritized
as Must-Have features. Note, the NEO blockchain platform already supports
most of the Veris blockchain feature requirements.

˛ case-study participants stated that the delegated Byzantine Fault Tolerance and
Proof-of-Stake are two consensus mechanisms that can be employed inter-
changeably, so that they are two Should-Have blockchain features.

˛ The Veris platform provides different Graphical User Interfaces for its stakehold-
ers; moreover, their authority is required to provide the validation of blocks of
transactions. Therefore, case-study participants prioritized Permissioned as a
Must-Have blockchain feature.

˛ The platform interacts with other parties, such as banks, so it requires a specific
type of interoperability, and in particular Enterprise system integration. Thus, the
case-study participants have considered it as a Must-Have blockchain feature.

˛ The dual-currency structure of the Veris platform gives rise to discuss the Cryp-
tographic tokens as a Must-Have blockchain feature.

˛ The Veris platform has not decided on a special type of token. Therefore, Share-
like token, Security token, Network token, Network value token, Work token, and
Usage token are considered as Should-Have blockchain features.

In this study, the case-study participants selected Ethereum and NEO as two potential
blockchain platforms for their system.

4.6 Results and Analysis
The case-study participants specified their blockchain features requirements accord-
ing to the MoSCoW priorities (table 4.5), so three industry cases are defined and
stored in the knowledge base of the DSS. Next, the Inference Engine of the DSS gen-
erated feasible solutions for each case definition.

4.6.1 The DSS Results
Table 4.6 shows the deduced feasible blockchain platforms along with their calcu-
lated scores by the DSS. Moreover, it compares the case-study participants’ shortlists
and their ranks, which results from internal meetings and investigations, with the
outcomes of the DSS.

ShareCompany BIQH
The case-study participants at ShareCompany BIQH considered Hyperledger and JP-
Morgan Quorum as the first and second potential solutions in their shortlist. Hy-
perledger supports all the Must-have and most of the Should-have and Could-have
blockchain feature requirements (such as JavaScript programming language, Zero-

88
∣

C
hapter4

–
Blockchain

Platform
s

Table 4.5: this table presents a subset of blockchain feature requirements of the considered three industry case studies. The blockchain feature requirements are defined based on
the MoSCoW prioritization technique.

MoSCoW ShareCompany BIQH DUO Veris Foundation

Must-Have

Permissioned Platform
Interoperability technologies
Smart Contract
Java
Sybil-attack resistant
Privacy Technologies
Enterprise System Integration
Network Layer
Application Layer
Protocol Layer

Protocol Layer
Network Layer
Application Layer
Smart contracts
On-chain transactions
Cryptographic Tokens
Sybil attack resistant
Spam-attack resistant

Permissioned Blockchain
Smart Contracts
Cryptographic Token
Protocol Layer
Network Layer
Application Layer
Interoperability technologies
Enterprise system integration
On-chain transactions

Should-Have

Golang
Private Platform
JavaScript
Resilience technologies
Instant Transaction Finality
High Transaction Speed
Zero-knowledge Proof
High Maturity
High Popularity

Turing-complete
JavaScript
High Maturity
Native token
Cryptocurrency (purpose)
Solidity

Private Blockchain
delegated Byzantine Fault Tolerance
Delegated Proof-of-Stake
Share-like token
Security token
Network token
Network value token
Work token
Usage token

Could-Have

zk-SNARKS
Spam-attack resistant
Virtual Machine
Turing-complete
On-chain transactions
Practical Byzantine Fault Tolerance
Federated Byzantine Fault Tolerance
Delegated Byzantine Fault Tolerance

Proof-of-Work
Proof-of-Stake
delegated Proof-of-Stake
practical Byzantine Fault Tolerance
federated Byzantine Agreement
delegated Byzantine Fault Tolerance
Proof-of-Authority
Proof-of-Elapsed Time
Public Platform
Private Platform
Permissioned Platform
Permissionless Platform
Zero-knowledge Proof
zk-SNARKS
Hard-fork and Quantum resistant
Instant transaction finality
Medium Popularity and Innovation
High Transaction speed

Privacy Technologies,
Virtual Machine,
Turing Complete

Won’t-Have
Proof-of-Work
Proof-of-Stake
Directed Acyclic Graph

Directed Acyclic Graph (None)

Section 4.6 – Results and Analysis ∣ 89

knowledge Proofs, and Golang), therefore, the DSS assigned the highest score to this
blockchain platform. However, the second DSS feasible blockchain platform is R3
Corda, which has higher values for the non-Boolean blockchain feature requirements,
such as Popularity in the market and technology maturity, compared to JPMorgan Quo-
rum.

DUO
The case-study participants at DUO ranked Ethereum, NEO, Hyperledger as their three
potential blockchain platform solutions. Ethereum has gained the highest score among
the top-10 DSS feasible blockchain platforms for DUO according to their blockchain
feature requirements. Wanchain was not on the case-study participant shortlist, but
since it is an Ethereum-based blockchain platform, its high score is not surprising. De-
spite Hyperledger reaching the second place in the DSS feasible blockchain platforms,
it forces DUO to make intensive use of cryptographic tokens, so it is not as suitable
as the previous two platforms. Moreover, Hyperledger does not support native-tokens,
so it is not a suitable blockchain platform for token-based applications. Also, sev-
eral blockchain feature requirements with Should-have priority are token-based. The
case-study participants at DUO considered 23 blockchain feature requirements with
Could-have priority, and Hyperledger supports all of them, so Hyperledger received
the second-highest score among the DSS feasible blockchain platforms.NEO does not
support all of the blockchain feature requirements with Should-have and Could-have
priories. However, the gap between the calculated scores of NEO and Hyperledger is
not too much.

Veris Foundation
The case-study participants at the Veris Foundation considered NEO and Ethereum as
the first and second potential blockchain platform in their shortlist. Cosmos Network
has gained the highest score among the DSS feasible blockchain platforms for the
Veris Foundation, because Cosmos Network is flexible regarding different pluggable
consensus mechanisms and supports any combinations of permission/permission-less
and public/private blockchain platforms compared to both NEO and Ethereum. Hy-
perledger is a feasible solution once again. However, the same possible difficulties,
as in the DUO case study, could arise with a heavy reliance on different token-types,
which are harder to implement in practice.

4.6.2 Analysis of the results
Table 4.6 states that Chain is a feasible blockchain platform for all three case stud-
ies, which means that this blockchain platform at least supports all of the blockchain
feature requirements with Must-have priority and does not support the blockchain
feature requirements with Won’t-Have priority. None of the case-study participants
considered Chain as a potentially feasible blockchain platform for their company,
demonstrating that the DSS can potentially come up with more feasible blockchain
platforms than human experts.

Another interesting observation is that the main decision that has to be made is
the choice between permission or permission-less blockchain platforms and whether
cryptographic tokens are required or not.

90 ∣ Chapter 4 – Blockchain Platforms

Table 4.6: this table presents the outcomes of the DSS for ShareCompany BIQH, DUO, and Veris Foundation based
on their blockchain feature requirements’ priorities. The columns DSS Feasible Solutions and CP Shortlist demonstrate the
deduced feasible solutions by the DSS and the shortlist of potential solutions by the case-study participants. Moreover,
the Columns CP Rank and DSS score show the order of potential feasible solutions based on the case-study participants’
opinions and the calculated scores of the feasible solutions by the DSS.

Case Study DSS Feasible Solutions CP Shortlist DSS Score CP Rank

ShareCompany BIQH

Hyperledger ✓ 99.39 1
R3 Corda 68.13 -
JPMorgan Quorum ✓ 61.92 2
Chain 40.05 -

DUO

Ethereum ✓ 98.25 1
Hyperledger ✓ 73.22 3
Wanchain 64.68 -
NEO ✓ 62.10 2
Cosmos Network 51.10 -
Stellar 37.91 -
Komodo 37.65 -
Waves Platform 37.25 -
Chain 34.30 -
VeChain 31.31 -

Veris Foundation

Cosmos Network 99.64 -
NEO ✓ 69.42 1
Ethereum ✓ 54.52 2
Stellar 53.33 -
Hyperledger 44.48 -
Chain 44.48 -
VeChain 30.27 -
ICON 28.63 -
Symbiont 28.16 -
Neblio 21.37 -

Concerning effectiveness, the case-study participants asserted that the updated and
validated version of the decision model is useful and valuable in finding the short-
list of feasible blockchain platforms. Moreover, the DSS reduces the time and cost
of the decision-making process. The case-study participants expressed that the DSS
enabled them to meet more detailed blockchain feature requirements. Furthermore,
they were surprised to find what their primary concerns seem to be, especially when
the opinions of different experts are combined.

The validity metric defined as the degree to which an artifact works correctly. There
are two ways to measure validity: 1) the results of the DSS compared to the prede-
fined case-study participant shortlist of potentially feasible blockchain platforms, and
2) according to the blockchain experts’ opinion.

The case-study participants confirm that the DSS provides effective blockchain plat-
forms to help software-producing organizations in their initial decisions for select-
ing blockchain platforms. In other words, the DSS recommended nearly the same
blockchain platforms as the case-study participants suggested to their companies af-
ter extensive analysis and discussions. However, the DSS offers a short ranked list
of feasible blockchain platforms; therefore, software-producing organizations should
perform further investigations, such as performance testing, to find the best fitting
blockchain platform for their software products.

Section 4.7 – Discussion ∣ 91

4.7 Discussion
The DSS assists requirements engineers in the requirements elicitation activity by of-
fering a list of prominent blockchain features. Software-producing organizations have
different perspectives on their blockchain feature requirements in different phases of
the software development life-cycle. Requirement engineers (decision-makers) might
want to consider generic blockchain features in the early phases of the life-cycle,
whereas they are interested in more technical blockchain features as their develop-
ment process matures. For instance, Consensus Mechanism could be prioritized as a
Should Have blockchain feature in the design phase, but in the implementation phase,
one of its sub-features (more technical blockchain feature), e.g., Proof-of-Work, might
be selected instead. Furthermore, blockchain features’ priorities could be changed in
different phases. Therefore, the DSS might come up with various blockchain plat-
forms for a software-producing organization in phases of its software development
life-cycle. As the blockchain feature requirements for each Case Definition are stored
in the knowledge base of the DSS, it does not cost a significant amount of time to
rerun the decision-making process. Therefore, the DSS, as a requirements manage-
ment tool, provides a platform to enable decision-makers to analyze, document, track
collaboratively, and prioritize their blockchain features requirements.

Biases, such as motivational and cognitive (Montibeller & Winterfeldt, 2015), arise
because of shortcuts or heuristics that decision-makers use to solve problems and
perform tasks. The Hawthorne effect, which is the tendency for decision-makers to
change their behavior when they are being observed, is a form of cognitive bias. The
case-study participants might have been more careful in the observational setting
than in the real setting because they are being observed by scientists judging their
selected blockchain feature requirements and priorities. Moreover, the Bandwagon
effect, which is the tendency to do or believe things because many other decision-
makers do or believe the same, is another form of cognitive bias. The Bandwagon
effect typically shows up in group decisions. To mitigate the Hawthorne and Band-
wagon effects, individual and group interviews have been conducted. The DSS pro-
vides a discussion and negotiation platform to enable requirement engineers to make
group decisions. It detects and highlights the conflicts in the assigned priorities to
the blockchain feature requirements by decision-makers and asks them to resolve dis-
agreements. Thus, the DSS supports requirements engineers in the Requirements
verification and validation activity by avoiding conflict between blockchain feature
requirements and generating feasible solutions according to the blockchain feature
requirements. Moreover, the DSS is a communication tool among the decision-makers
to facilitate the requirements specification activity.

We define DSS success when it, in part, aligns with the case-study participants
shortlist and when it provides new suggestions that are identified as being of interest
to the case-study participants. Using the case-study participants’ opinion as a mea-
surement instrument is risky, as the case-study participants may not have sufficient
knowledge to make a valid judgment. We counter this risk by conducting more than
one case study, by assuming that the case-study participants are handling in their
interest, and by applying the DSS to other problem domains, where we find similar
results (Farshidi et al., 2018a; Farshidi et al., 2018b; Farshidi et al., 2018c).

92 ∣ Chapter 4 – Blockchain Platforms

4.8 Conclusion
Blockchain technology is evolving rapidly, and the number of blockchain platforms
in the market is proliferating. Furthermore, software-producing organizations are in-
creasingly considering blockchain technology for inclusion in their products. There-
fore, a decision model is required to externalize and organize knowledge regarding
the current state of blockchain technology, and assist decision-makers at software-
producing organizations with selecting right blockchain platforms based on their pref-
erences and requirements.

In this study, the blockchain platform selection process is modeled as a multi-
criteria decision-making problem that deals with the evaluation of a set of alterna-
tives, and taking into account a set of decision criteria (Triantaphyllou et al., 1998).
Moreover, we introduced a decision model for the blockchain selection problem based
on the technology selection framework (Farshidi et al., 2018a). We have designed
and implemented a decision support system for supporting decision-makers with their
technology selection problems in software production. The decision support system
provides a modeling studio to build such decision models for technology selection
problems. The decision models can be uploaded to the knowledge base of the deci-
sion support system to facilitate the decision-making process for software-producing
organizations. The proposed decision support system addresses common knowledge
management issues, including capturing, sharing, and maintaining knowledge.

The novelty of the approach provides knowledge about blockchain platforms to
support uninformed decision-makers while contributing a sound decision model to
knowledgeable decision-makers. Furthermore, it incorporates deeply embedded re-
quirements engineering concepts, such as the ISO software quality standards and
the MoSCoW prioritization technique, besides knowledge engineering theories, to
develop the decision support system. We conducted three case studies to evaluate
the decision support system’s usefulness and effectiveness to address multi-criteria
decision-making problems. Our website6 is up and running to keep the knowledge
base of the decision support system up-to-date and valid. We aim to create a commu-
nity around the platform that will regularly update the curated knowledge base with
new blockchain platform features.

Probing more in-depth, the decision model presented in this paper also provides a
foundation for future work in multi-criteria decision-making problems. We intend to
build trustworthy decision models to address Software Architecture Pattern and Model-
Driven Development Platform selection problems as our (near) future work.

6https://dss-mcdm.com

Part II: Software development technology
selection problems

CHAPTER 5

Programming Language
Ecosystems

Abstract - Software development is a continuous decision-making
process that mainly relies on the software engineer’s experience
and intuition. One of the essential decisions in the early stages
of the process is selecting the best fitting programming language
based on the project requirements. A significant number of crite-
ria, such as developer availability and consistent documentation,
besides potential programming languages in the market, lead to a
challenging decision-making process. A decision model is required
to analyze the selection problem using systematic identification
and evaluation of potential alternatives for a development project.
Method: Recently, we introduced a framework to build decision
models for technology selection problems in software production.
Furthermore, we designed and implemented a decision support
system that uses such decision models to support software engineers
with their decision-making problems. This study presents a decision
model based on the framework for the programming language
selection problem. Results: The decision model has been evaluated
through seven real-world case studies at seven software development
companies. The case study participants declared that the approach
provides significantly more insight into the programming language
selection process and decreases the decision-making process’s time
and cost. Conclusion: With the knowledge available through the
decision model, software engineers can more rapidly evaluate
programming languages. Having this knowledge readily available
supports software engineers in making more efficient and effective
decisions that meet their requirements and priorities.

keywords- programming language selection; decision model;
industry case study; software production; multi-criteria decision-
making; decision support system;

This chapter is based on the following publication:

Farshidi, S., S. Jansen & M. Deldar (2020a), “A decision model for programming language
ecosystem selection”, (Submitted).

Section 5.1 – Introduction ∣ 97

5.1 Introduction
Software engineers make a sequence of design decisions while developing a software
product (Ruhe, 2002). Each design decision can be analyzed as an episode of complex
problem solving (Pressman, 2005) that relies on a substantial amount of knowledge
and rationale. Design decisions in the software development lifecycle are signifi-
cantly constrained by former decisions and lead to additional constraints on future
decisions (Burge et al., 2008). Making informed design decisions in different phases
of the software development lifecycle has critical impacts on the success of a software
product.

Over the last decades, thousands of programming languages belonging to several
programming paradigms have been introduced. Despite the significant number of
programming languages, only a few fundamental programming concepts and lan-
guages have survived for more than ten years (Vujošević-Janičić & Tošić, 2008).
Some languages have grown into extensive software ecosystems (Jansen et al.,
2013a), while others have failed to grow beyond their niche or disappeared alto-
gether (Meyerovich & Rabkin, 2013).

No unique programming language is the best option for all potential scenarios.
Judging the suitability of a programming language for a software product, as an ap-
plication or a customized component, is a non-trivial task. For instance, a purely func-
tional language like Haskell is the best-fit for writing parallel programs that can, in
principle, efficiently exploit huge parallel machines working on large data sets (Pey-
ton Jones et al., 2008). However, while developing a dynamic website, a software
engineer might consider ASP.net as the best alternative, and others might prefer us-
ing PHP or a similar scripting language. It is interesting to highlight that success-
ful projects have been built with both: StackOverflow is built-in ASP.net, whereas
Wikipedia is built-in PHP. Furthermore, a software engineer might prefer particular
criteria, such as scalability in enterprise applications, whereas other criteria, such as
technology maturity level, might have lower priorities.

Selecting and employing multiple programming languages in one development
project is quite common (Kochhar et al., 2016). For example, a software engineer
might code the back-end of a website using PHP or C# and then use the combination
of HTML, CSS, and JavaScript to design layouts and styles of the front-end. Further-
more, leading popular software available in the market are developed in multiple lan-
guages. For example, some essential components of the Linux operating system1 are
designed and implemented in C; however, the majority of its utilities and applications
are built-in C++, Perl, and Python. Comparably, OpenCV42, an open-source computer
vision and machine learning software library, is developed utilizing an assemblage of
programming languages such as C++, C, Python, Java, and JavaScript.

Acquiring and expanding knowledge about programming languages is a highly
complex process, as significant numbers of criteria and alternatives exist in the mar-
ket (Bhattacharya & Neamtiu, 2011). Various factors need to be taken into account,
of which not all are obvious. Simultaneously, the choice of programming languages

1https://www.linux.com/
2https://opencv.org/opencv-4-0/

98 ∣ Chapter 5 – Programming Language Ecosystems

can have repercussions on the implementation cost, quality of the result, and mainte-
nance cost of the application (Holtz & Rasdorf, 1988). Some of these consequences
may not be felt for years after the initial programming language choice decision has
been made.

Each programming language has different characteristics, communities, and
ecosystems that should be considered. The selection process is mainly based on sur-
rounding ecosystems and communities. Third-party libraries play an essential role as
many software applications are built by gluing together plenty of existing libraries in
the market, so such libraries increase language growth. Additionally, communities
generate wikis, forums, and tutorials to improve the learnability and understandabil-
ity of languages.

Nowadays, the development of software products, systems, and services typically
results in complex decision models and decision-making processes (Badampudi et al.,
2018). Selecting the best fitting programming language(s) for a software project can
be modeled as a multi-criteria decision-making (MCDM) problem that deals with the
evaluation of a set of alternatives and takes into account a set of decision criteria (Tri-
antaphyllou et al., 1998) (e.g., features of the programming languages).

Knowledge about programming languages is scattered among a wide range of liter-
ature, documentation, and software engineers’ experience. This study’s main motive
is to build a decision model to capture knowledge about programming languages and
concepts systematically and make it available in a reusable and extendable format.
Accordingly, we have followed our framework (Farshidi et al., 2018a) to build such
a decision model for the programming language selection problem. The framework
and a Decision Support System (DSS) (Farshidi & Jansen, 2020a; Farshidi et al.,
2018b) were introduced in our previous studies for building MCDM decision models
in software production. The DSS is a platform3 for capturing MCDM decision models
based on the framework. Decision models can be uploaded to the DSS’s knowledge
base to facilitate software-producing organizations’ decision-making process accord-
ing to their requirements and preferences. The DSS provides a discussion and ne-
gotiation platform to enable decision-makers at software-producing organizations to
make group decisions. Furthermore, the DSS can be used over the full lifecycle and
co-evolve its advice based on evolving requirements.

The rest of this study is outlined as follows: Section 5.2 describes our research
method, which is based on design science and exploratory theory-testing case studies.
This study has the following contributions:

˛ Section 5.3 explains the integration of the captured tacit knowledge of software
engineers through interviews and the explicit knowledge that is scattered in an
extensive list of websites, articles, and reports. Acquired knowledge is presented
in forms of reusable knowledge that can be used by software engineers in their
decision-making process.

˛ Section 5.4 describes seven conducted case studies, performed in the Nether-
lands and Iran, to evaluate the effectiveness and usefulness of the decision
model.

˛ Section 5.5 analyzes the results of the DSS and compares them with the case

3The decision studio is available online on the DSS website: https://dss-mcdm.com

Section 5.2 – Research Method ∣ 99

study participants’ ranked shortlists of feasible programming languages. The
results show that the DSS recommended nearly the same solutions as the case
study participants suggested to their companies after extensive analysis and
discussions and do so more efficiently.

Section 5.6 highlights barriers to the knowledge acquisition and decision-making
process, such as motivational and cognitive biases, and argues how we have mini-
mized these threats to the validity of the results. Section 5.7 positions the proposed
approach in this study among the other programming language selection techniques
in the literature. Finally, Section 5.8 summarizes the proposed approach, defends its
novelty, and offers directions for future studies.

Figure 5.1: The main building blocks of the framework, adapted from our previous
study (Farshidi et al., 2018a), is shown in this figure. On the left, the sources of knowledge,
in the middle, the proposed decision model for the programming language selection problem,
and on the right, the decision support system is modeled.

Source of Knowledge Decision Model for Programming Language Selection Decision Support System

Alternatives

Domain

Features

ISO/IEC 25010
Ext. ISO/IEC 9126

Exclude Infeasible Solutions

Score Calculation

Feasible
Programming
Languages

Feature
Requirements

(MoSCoW)

 Domain Experts
- Senior Developers
- Software Architects

Software Quality
Experts

has
1..*

1..*

impacts on
1..*

1..*

Programming Language

C++

Python Java

Haskell ...

RQ1

Scala

Kotlin

Programming Language Feature

Programming Paradigm

Development Tool

Application Domain

Development Stack

Software Quality Attribute

ISO/IEC 25010 Ext. ISO/IEC 9126

Inference Engine

Knowledge Base

Decision-Maker
Documentation,
Literature, etc.

...

RQ2

RQ3

RQ4

RQ5

5.2 Research Method
Research methods are classified based on their data collection techniques (inter-
view, observation, literature, etc.), inference techniques (taxonomy, protocol analysis,
statistics, etc.), research purpose (evaluation, exploration, description, etc.), units of
analysis (individuals, groups, process, etc.), and so forth (Meredith et al., 1989).
Multiple research methods can be combined to achieve a fuller picture and a more
in-depth understanding of the studied phenomenon by connecting complementary
findings that conclude from the methods from the different methodological traditions
of qualitative and quantitative investigation (Johnson & Onwuegbuzie, 2004).

Knowledge acquisition is the process of capturing, structuring, and organizing
knowledge from multiple sources (Gruber, 1989). Human experts, discourse, in-

100 ∣ Chapter 5 – Programming Language Ecosystems

ternal meetings, case studies, literature studies, or other research methods are the
primary sources of knowledge. The rest of this section outlines the research questions
and elaborates on a mixed research method based on design science research, expert
interviews, documentation analysis, and case study research to capture knowledge re-
garding the programming languages, to answer the research questions, and to build
a decision model for the programming language selection problem.

5.2.1 Research Questions
We formulated the following research questions to capture the required knowledge
based on the framework (Farshidi et al., 2018a):

RQ1: Which programming languages should be considered in the decision
model?
RQ2: Which programming concepts should be considered as the programming
language features in the decision model?
RQ3: Which software quality attributes can be utilized to evaluate the program-
ming languages?
RQ4: What are the impacts of the programming language features on the qual-
ity attributes of the programming languages?
RQ5: Which programming languages currently support the programming lan-
guage features?

5.2.2 Design science
Design Science is an iterative process (Simon, 1996), has its roots in engineer-
ing (Hevner et al., 2004), is broadly considered a problem-solving process (Fortus et
al., 2005), and attempts to produce generalizable knowledge about design processes
and design decisions. Similar to a theory, the design process is a set of hypotheses
that can eventually be proven only by creating the artifact it describes (Walls et al.,
1992). However, a design’s feasibility can be supported by a scientific theory to the
extent that the design comprises principles of the theory.

Recently, we designed a framework (Farshidi et al., 2018a) and implemented a
DSS (Farshidi & Jansen, 2020a; Farshidi et al., 2018b) for supporting software engi-
neers (decision-makers) with their MCDM problems in software production. Knowl-
edge engineering theories have been employed to design and implement the DSS and
the framework. The framework provides a guideline for decision-makers to build de-
cision models for MCDM problems in software production following the six-step of
the decision-making process (Majumder, 2015): (1) identifying the objective, (2) se-
lection of the features, (3) selection of the alternatives, (4) selection of the weighing
method, (5) applying the method of aggregation, and (6) decision making based on
the aggregation results.

In this study, we applied the framework to build a decision model for the program-
ming language selection problem. The research approach for creating the decision
model is Design Science, which addresses research through the building and evalua-
tion of artifacts to meet identified business needs (Hevner et al., 2004). We carried
out seven industry case studies in the context of seven software development compa-
nies to evaluate the decision model.

Section 5.2 – Research Method ∣ 101

5.2.3 Expert Interviews
The primary source of knowledge to build a valid decision model for this work is
domain experts. We followed Myers & Newman (2007) to conduct a series of qual-
itative semi-structured interviews with senior software engineers to explore expert
knowledge regarding the programming language selection problem. We developed a
role description before contacting potential experts to ensure the right target group.
We contacted the experts through email using the role description and information
about our research topic. The experts were pragmatically and conveniently selected
according to their expertise and experience mentioned on their LinkedIn profile. We
considered a set of expert evaluation criteria (including Years of experience, Expertise,
Skills, Education, and Level of expertise) to select the experts.

Each of the interviews followed a semi-structured interview protocol and lasted
between 60 and 90 minutes. We used open questions to elicit as much information as
possible from the experts minimizing prior bias. All interviews were done in person,
recorded with the interviewees’ permission, and then coded for further analysis.

Fifteen experts (fourteen senior software engineers and one business consultant)
participated in this research to answer the research questions and build a decision
model for the programming language selection problem. Acquired knowledge during
each interview is typically propagated to the next to validate the captured knowledge
incrementally. Finally, the findings were sent to the interview participants afterward
for final confirmation. Note, for the validity of the results, the research’s data collec-
tion phases were not affected by the case study participants; moreover, none of the
researchers were involved in the case studies.

5.2.4 Documentation analysis
Document analysis is one of the analytical methods in qualitative research that re-
quires data investigation and interpretation to elicit meaning, gain understanding,
and develop empirical knowledge (Corbin & Strauss, 2014). To build a decision
model for the programming language selection problem, we reviewed webpages,
whitepapers, scientific articles, fact sheets, technical reports, product wikis, product
forums, product videos, and webinars to collect data. Accordingly, we reviewed 489
unique resources (including webpages, whitepapers, and scientific articles) to map
the programming language features to the programming language.

A structured coding procedure is employed to extract knowledge from the selected
sources of knowledge. Structured coding captures a conceptual area of the research
interest (Saldaña, 2015). The extracted knowledge has been classified into five cat-
egories: quality attributes, programming languages, programming language features,
impacts of the programming language features on the quality attributes, and supporta-
bility of the programming language features by the programming languages. Afterward,
the extracted knowledge was employed to build a decision model for the program-
ming language selection problem. Then, the decision model was uploaded to the
knowledge base of the DSS.

102 ∣ Chapter 5 – Programming Language Ecosystems

5.2.5 Case Study
Case study research is an empirical research method (Jansen, 2009) that investigates
a phenomenon within a particular context in the domain of interest (Yin, 2017). Case
studies can describe, explain, and evaluate a hypothesis. A case study can be em-
ployed to collect data regarding a particular phenomenon, apply a tool, and evaluate
its efficiency and effectiveness using interviews. Note, we followed the guidelines
outlined by Yin (1981) to conduct and plan the case studies.
Objective: Building a valid decision model for the programming language selection
problem, was the main goal of this research.
The cases: The analysis units were seven industry case studies, performed in the
Netherlands and Iran, in the context of seven software development.
Methods: We conducted multiple expert interviews with the case study participants
to collect data and identify their requirements and preferences regarding the pro-
gramming language selection problem.
Selection strategy: In this study, we selected multiple case study (Yin, 1981) to an-
alyze the data both within each situation and across situations, to more extensive
exploring the research questions and theoretical evolution, and to create a more con-
vincing theory.
Theory: The proposed decision model is a valid reference model to support software
engineers with the programming language selection problem.
Protocol: To conduct the case studies and evaluate the proposed decision model, we
followed the following protocol:

Step 1. Requirements elicitation: The participants defined their program-
ming language feature requirements and prioritized them based on the MoSCoW
prioritization technique (DSDM consortium and others, 2014). Furthermore,
they identified a set of programming languages as potential solutions for their
software projects.
Step 2. Results and recommendations: We defined seven separate cases on
the DSS portal according to the case studies’ requirements and priorities. Next,
the DSS suggested a set of feasible solutions per case individually. Then, the
outcomes were discussed with the case study participants.
Step 3. Analysis: We compared the DSS feasible solutions with the experts’
solutions at the case study companies had suggested. Moreover, we analyzed
the outcomes and our observations and then reported them to the case study
participants.

Note, based on the framework, we built decision models for database management
systems (Farshidi et al., 2018c), cloud service providers (Farshidi et al., 2018a), soft-
ware architecture patterns (Farshidi & Jansen, 2020a; Farshidi et al., 2020e), and
blockchain platforms (Farshidi et al., 2020c)4. Several case studies were conducted
to evaluate the DSS’s effectiveness and usefulness to address these MCDM problems.
The results showed that the decision models could reduce the decision-making time
and support the decision-makers with the decision-making process.

4The decision models and modeling studio are available on the DSS website: https://dss-mcdm.com.

Section 5.3 – Multi-Criteria Decision-Making for Programming Language Selection ∣ 103

Figure 5.2: This figure an MCDM approach for the programming language selection problem in
a 3-dimensional space. The degree of the decision-makers’ satisfaction with solutions (potential
programming languages) according to their priorities and preferences (requirements) ranges
between the best and worst fit solutions, which is represented by a range of colors from red to
dark green.

Software Engineers
(Decision-Makers)

Requirements

(Feature requirements
and quality concerns)

.

.

.

Best Fit

Worst Fit

5.3 Multi-Criteria Decision-Making for Programming
Language Selection

Decision theories are widely applied in many disciplines. One example is software en-
gineering (Rus et al., 2003), which has been defined as a continuous decision-making
process (Fitzgerald & Stol, 2014). Software producing organizations need to decide
whether using their internal development resources (in-house), buying commercial
off-the-shelf components, do subcontracting (outsourcing), or whether to use open-
source software (Badampudi et al., 2018). A decision problem in software production
is not addressed in the same way by all software engineers. Each software engineer
has her priorities, tacit knowledge, and decision-making policy (Doumpos & Grigor-
oudis, 2013); consequently, one software engineer’s judgment is expected to differ.
Addressing such issues in building decision models in software production forms the
focal point of interest in multiple-criteria decision making (MCDM). In this study,
we formulate the programming language selection problem as an MCDM problem in
software production:

Let Languages = {l1, l2, . . . l∣Languages∣} be a set of programming languages in the
market (i.e., C++, Ruby, and Python), and Features = { f1, f2, . . . t∣Features∣} be a set
of programming language features (i.e., Supporting threading and Multi-platform) of
the programming languages. Each language l, where l ∈ Languages, supports a subset
of the set Features. The goal is finding the best fitting programming languages as
solutions, where Solutions ⊂ Languages, that support a set of programming language
feature requirements, called Requirements, where Requirements ⊆ Features.

104 ∣ Chapter 5 – Programming Language Ecosystems

MCDM is both an approach and a set of techniques to provide an overall ranking of
alternative solutions, from the most preferred to the least preferred solution (Dodgson
et al., 2009). Alternative solutions may differ in how they achieve several objectives,
and no one alternative solution will be best in achieving all objectives. Besides, some
conflict or trade-off is usually evident amongst the objectives; alternative solutions
that are more beneficial are usually more costly. Costs and benefits typically conflict,
but so can short-term benefits compared to long-term ones, and risks may be higher
for the otherwise more beneficial options.

An MCDM approach for the selection problem receives Languages and their
Features as its input, then applies a weighting method to prioritize the Features based
on the decision-makers’ preferences to define the Requirements, and finally employs
a method of aggregation to rank the Languages and suggests Solutions. Accordingly,
an MCDM approach can be formulated as follows:

MCDM ∶ Languages × Features × Requirements → Solutions

Typically, a unique optimal solution for an MCDM problem does not exist, and it
is necessary to employ decision-makers’ preferences to differentiate between solu-
tions (Majumder, 2015). Figure 5.2 visualises MCDM approach for the programming
language selection problem in a 3D space. It shows that the degree of satisfaction of
the decision-makers with a suggested solution is fuzzy, which means that the satisfac-
tion degree from a decision-maker perspective may range between completely true
(best fit) and completely false (worst fit) (Dvořák et al., 2018), which is represented
by a range of colors from red to dark green.

As aforementioned, we follow the framework (Farshidi et al., 2018a) as modeled
in Figure 5.1 to build a decision model for the programming language selection prob-
lem. Generally speaking, a decision model for an MCDM problem contains decision
criteria, alternatives, and relationships among them. Figure 5.1 represents the main
building blocks of the framework, including the source of knowledge, the proposed
decision model, and the decision support system.

5.3.1 Programming Language Alternatives (RQ1)
This study only focuses on programming languages used in computer programming to
develop software-intensive applications or implement algorithms. Accordingly, we are
not interested in domain-specific programming languages such as Arduino5, DOT6, or
CFML7.

To answer the first research question, we identified a set of alternatives, including
594 programming languages, based on a variety of programming language websites
and related forums as our initial hypothesis. Next, we reviewed the published sur-
veys and reports from well-known knowledge bases, including Small place to discover
languages in GitHub (2014), Developer Survey Results (2019), Visualizing Language Mi-
gration Over Time (2017), Dear Developers: Coding Languages That Will Set You Apart

5Arduino is mainly used to program micro-controllers.
6DOT is a development tool that is optimized for the processing of graph-structured data.
7The ColdFusion Markup Language (CFML) is a set of tags used in ColdFusion pages to interact with

data sources, manipulate data, and display output.

Section 5.3 – Multi-Criteria Decision-Making for Programming Language Selection ∣ 105

Table 5.1: This table shows the programming languages that were mentioned on at least three
sources of knowledge, including experts and well-known websites. This list has been consid-
ered as the programming language alternatives in the decision model.

A
g

re
e

m
e
n

t

In
it
ia

l
H

y
p

o
th

e
s
is

G
it
H

u
t
R

a
n

k
s

s
ta

c
k
o

v
e

rf
lo

w
 R

a
n
k
s

L
a
n
g
u
a
g
e
 M

ig
ra

ti
o
n

h
ir
e

d
.c

o
m

in
fo

q
.c

o
m

c
o

d
in

g
a

m
e

.c
o

m

je
tb

ra
in

s
.c

o
m

T
IO

B
E

 I
n
d

e
x

P
Y

P
L

h
a
c
k
e

rn
o

o
n

C
o

d
in

g
 i
n

fi
n

it
e

s
ta

ti
s
ta

s
ta

c
k
if
y

d
z
o

n
e

R
e

d
m

o
n
k

IE
E

E

D
o

m
a
in

 E
x
p

e
rt

 1

D
o

m
a
in

 E
x
p

e
rt

 2

D
o

m
a
in

 E
x
p

e
rt

 3

D
o

m
a
in

 E
x
p

e
rt

 4

D
o

m
a
in

 E
x
p

e
rt

 5

D
o

m
a
in

 E
x
p

e
rt

 6

D
o

m
a
in

 E
x
p

e
rt

 7

D
o

m
a
in

 E
x
p

e
rt

 8

D
o

m
a
in

 E
x
p

e
rt

 9

D
o

m
a
in

 E
x
p

e
rt

 1
0

D
o

m
a
in

 E
x
p

e
rt

 1
1

D
o

m
a
in

 E
x
p

e
rt

 1
2

Python 100.00% ✓

C 100.00% ✓

C# 100.00% ✓

Java 100.00% ✓

C++ 96.55% ✓ ✓ ✓ ✓ ✓ ✓

JavaScript 96.55% ✓ ✓ ✓ ✓

PHP 96.55% ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Visual Basic .NET 72.41% ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ruby 68.97% ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

R 65.52% ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Swift 65.52% ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Go 62.07% ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

HTML / CSS 58.62% ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Objective-C 58.62% ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SQL 55.17% ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Matlab 48.28% ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Kotlin 44.83% ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Scala 44.83% ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

TypeScript 41.38% ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Rust 37.93% ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Assembly language 37.93% ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Perl 34.48% ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Clojure 31.03% ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Visual-Basic 31.03% ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Haskell 31.03% ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

shell 27.59% ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Dart 27.59% ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

F# 27.59% ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

PowerShell 24.14% ✓ ✓ ✓ ✓ ✓ ✓ ✓

Lua 24.14% ✓ ✓ ✓ ✓ ✓ ✓ ✓

Julia 20.69% ✓ ✓ ✓ ✓ ✓ ✓

Groovy 20.69% ✓ ✓ ✓ ✓ ✓ ✓

Elixir 17.24% ✓ ✓ ✓ ✓ ✓

Bash 17.24% ✓ ✓ ✓ ✓ ✓

ASP.net 17.24% ✓ ✓ ✓ ✓ ✓

Delphi 13.79% ✓ ✓ ✓ ✓

Fortran 13.79% ✓ ✓ ✓ ✓

Erlang 13.79% ✓ ✓ ✓ ✓

D 10.34% ✓ ✓ ✓

CoffeeScript 10.34% ✓ ✓ ✓

ActionScript 10.34% ✓ ✓ ✓

WebAssembly 10.34% ✓ ✓ ✓

Common Lisp 10.34% ✓ ✓ ✓

COBOL 10.34% ✓ ✓ ✓

Logo 10.34% ✓ ✓ ✓

Scheme 10.34% ✓ ✓ ✓

OCaml 10.34% ✓ ✓ ✓

Object Pascal 10.34% ✓ ✓ ✓

(2019), Programming Languages InfoQ Trends Report (2019), Top Programming Lan-
guages Rankings (2019), Do You Speak Code? (2019), The State of Developer Ecosystem
(2019), TIOBE Index (2020), PYPL PopularitY of Programming Language (2019), Eight
Top Programming Languages and Frameworks of (2019), What Stats & Surveys Are
Saying About Top Programming Languages (2019), Most used programming languages
among developers worldwide (2019), Look At 5 of the Most Popular Programming Lan-
guages (2019), The RedMonk Programming Language Rankings (2019), and The Top
Programming Languages (2019). Afterward, we conducted a set of expert interviews
with twelve experts to gain more insight into the popular and applicable programming
languages and to evaluate our findings. It is interesting to highlight that most of the
domain experts were familiar with a limited number of the list’s programming lan-
guages (See the twelve Domain Experts’ columns on Table 5.1). To prevent potential
biases, we only considered the programming languages mentioned on at least three
resources. Finally, we analyzed the data and ended with 47 alternative programming

106 ∣ Chapter 5 – Programming Language Ecosystems

languages mentioned on at least three resources. Table 5.1 shows the complete list of
the programming languages that we have selected in the decision model.

Table 5.2: This table shows a subset of the Boolean Features (FeatureB), the programming lan-
guages (Languages), and the BFL mapping, where BFL ∶ FeatureB

× Languages → {0, 1}. Note,
we reviewed 489 unique resources (including webpages, whitepapers, and scientific articles)
to map the programming language features to the programming language. The entire list of
the features and mappings is available on Mendeley Data (Farshidi et al., 2020b).

Boolean Features

Programming Languages

C
o

v
e
ra

g
e

J
a
v
a

P
y
th

o
n

C
+

+

C
#

C S
c
a
la

S
w

if
t

P
e
rl

D O
b
je

c
t
P

a
s
c
a
l

R
u

b
y

C
o

m
m

o
n
 L

is
p

F
#

P
H

P

O
C

a
m

l

L
u
a

J
a
v
a
S

c
ri
p

t

E
rl
a

n
g

G
o

F
o
rt

ra
n

V
is

u
a
l
B

a
s
ic

 .
N

E
T

C
lo

ju
re

H
T

M
L
 /
 C

S
S

O
b
je

c
ti
v
e

-C

T
y
p
e
S

c
ri
p

t

E
lix

ir

V
is

u
a
l-
B

a
s
ic

K
o
tl
in

A
S

P
.n

e
t

D
e

lp
h
i

R
u

s
t

A
c
ti
o
n
S

c
ri
p

t

G
ro

o
v
y

D
a

rt

R H
a

s
k
e
ll

J
u
lia

A
s
s
e
m

b
ly

 l
a

n
g
u
a
g
e

S
c
h
e
m

e

M
a
tl
a
b

B
a
s
h
 /
 S

h
e
ll

C
o

ff
e
e
S

c
ri
p

t

S
Q

L

C
O

B
O

L

P
o
w

e
rS

h
e
ll

L
o
g
o

W
e
b
A

s
s
e
m

b
ly

Application Domain

Interactive System 80.85% 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0 1 1 1 0

Compiler Design 31.91% 1 1 1 1 1 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0

Commercial-Off-The-Shelf (COTS) 8.51% 1 0 1 1 1 0

Data Base Systems 27.66% 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 1 0

Distributed Systems 29.79% 1 0 1 1 1 1 0 1 1 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Cloud Computing Applications 36.17% 1 1 1 1 1 0 0 0 1 1 0 0 1 1 1 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

Mobile Applications 65.96% 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0

Web-Based Systems 70.21% 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0

Web Services 48.94% 1 1 1 1 1 0 1 1 0 0 1 0 1 1 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0

Service-Based Systems 70.21% 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 1 0 0 0 0 0

Plug-and-Play Environment 17.02% 1 1 1 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Real-Time Systems 23.40% 1 1 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1

File-Sharing Applications 31.91% 1 1 1 1 1 0 1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

Exchange Data And Information 27.66% 0 1 1 0 1 1 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0

Banking System 44.68% 1 1 1 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0

Platforms

Cross platform 89.36% 1 0 1 0 0 0 0

Windows 89.36% 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0

Linux 82.98% 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0

macOS 68.09% 1 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 0 0 0 0

Docker 72.34% 1 0 1 1 1 1 1 0 1 0 1 1 0 1 0 0 1 0 0 0 1 0 0 0 0

AWS 61.70% 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Microsoft Azure 55.32% 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0

IBM Cloud or Watson 34.04% 1 0 0 1 0 0 1 0 0 0 1 1 0 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Kubernetes 38.30% 0 0 0 0 0 1 1 1 1 0 0 1 1 0 1 1 0 1 0 1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Android 57.45% 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

iOS 57.45% 1 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Web-based 72.34% 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 1 0 0 0 0 0

5.3.2 programming language features (RQ2)
Domain experts were the primary source of knowledge to identify the right set of
programming language features, even though documentation and literature study of
programming languages can be employed to develop an initial hypothesis about the
programming language feature set. Each programming language feature has a data
type, such as Boolean and non-Boolean. For example, the data types of programming
language features, such as the popularity in the market and supportability of Object-
oriented programming, can be considered as non-Boolean and Boolean, respectively.

The initial set of programming language features was extracted from online docu-
mentation of programming languages. Then, a list of essential programming language
features was identified during twelve domain expert interviews. Finally, 94 Boolean
and 13 non-Boolean programming language features8 were identified and confirmed
by the domain experts.

8The entire lists of the programming language features and their mapping with the considered program-
ming languages are available and accessible on the Programming Language Selection website (https://dss-
mcdm.com)

Section 5.3 – Multi-Criteria Decision-Making for Programming Language Selection ∣ 107

5.3.3 Software Quality Attributes (RQ3)
Quality attributes are characteristics of a software product that are intrinsically non-
functional. One of the primary concerns of software engineers in the implementation
phase of a software product is to satisfy the quality requirements. In other words,
the quality of a system is the degree to which the system meets its requirements
(functionality, performance, security, maintainability, etc.). It is necessary to find
quality attributes widely recommended by other researchers to measure the system’s
characteristics.

The literature study results confirmed that researchers do not agree upon a set of
standard criteria, including quality attributes and features, to evaluate the program-
ming languages (See Table 5.6). Additionally, we realized that the suggested criteria
were mainly applied to specific domains to address different research questions. Thus,
a set of generic and domain-independent criteria is required to assess programming
languages.

The ISO/IEC 25010 (ISO, 2011) provides best practice recommendations on the
foundation of a quality evaluation model. The quality model determines which
quality characteristics should be taken into account when evaluating a software
product’s properties. A set of quality attributes should be defined in the decision
model (Farshidi et al., 2018a). In this study, we employed the ISO/IEC 25010 stan-
dard (ISO, 2011) and extended ISO/IEC 9126 standard (Carvallo & Franch, 2006) as
two domain-independent quality models to analyze programming language features
based on their impact on quality attributes of programming languages. The key ratio-
nale behind using these software quality models is that they are a standardized way
of measuring a software product. Moreover, they describe how easily and reliably a
software product can be used.

The last four columns of Table 5.6 show the results of our analysis regarding the
common criteria and alternatives of this study with the selected publications. Let us
define the coverage of the i-th selected study as follows:

Coveragei =
CQi +CFi

Ci
× 100

Where, CQi and CFi denote the numbers of common quality attributes (column
#CQ) and features (column #CF) of the i-th selected study with this study, respec-
tively. Furthermore, Ci signifies its number of suggested criteria. The last column
(Cov.) of Table 5.6 indicates the percentage of the coverage of the considered criteria
within the selected studies. On average, 80% of those criteria are already considered
in this study.

5.3.4 Impacts of the programming language features on the Soft-
ware Quality Attributes (RQ4)

The mapping between the sets software quality attributes and programming language
features has been determined based on domain experts’ knowledge. Three domain
experts participated in this phase of the research to map the programming language
features (Features) to the quality attributes (Qualities) based on a Boolean

108 ∣ Chapter 5 – Programming Language Ecosystems

Table 5.3: This table shows the Non-Boolean Features (FeatureN), the programming languages
(Languages), and the NFL mapping, where NFL ∶ FeaturesN

× Languages → {H, M, L}. Note,
this table is mainly the result of the expert interviews and reviewing the sources of knowledge
indicated in the source of knowledge column.

Non Boolean Features

Programming Languages

J
a
v
a

P
y
th

o
n

C
+

+

C
#

C S
c
a
la

S
w

if
t

P
e
rl

D O
b

je
c
t

P
a
s
c
a
l

R
u

b
y

C
o

m
m

o
n

 L
is

p

F
#

P
H

P

O
C

a
m

l

L
u

a

J
a
v
a
S

c
ri

p
t

E
rl

a
n

g

G
o

F
o

rt
ra

n

V
is

u
a

l
B

a
s
ic

 .
N

E
T

C
lo

ju
re

H
T

M
L

 /
 C

S
S

O
b

je
c
ti

v
e
-C

T
y

p
e
S

c
ri

p
t

E
li

x
ir

V
is

u
a

l-
B

a
s
ic

K
o

tl
in

A
S

P
.n

e
t

D
e
lp

h
i

R
u

s
t

A
c
ti

o
n

S
c
ri

p
t

G
ro

o
v
y

D
a
rt

R H
a
s
k
e
ll

J
u

li
a

A
s
s
e
m

b
ly

 l
a
n

g
u

a
g

e

S
c
h

e
m

e

M
a

tl
a
b

B
a
s
h

 /
 S

h
e

ll

C
o

ff
e
e
S

c
ri

p
t

S
Q

L

C
O

B
O

L

P
o

w
e
rS

h
e

ll

L
o

g
o

W
e
b

A
s
s
e
m

b
ly

Source of Knowledge

Popularity in the market H H H H H H H L L L M L L H L L H L H L M L H M M L L L H L H L M L H L L M M H L L H L M L L Domain Experts

TIOBE Index (January 2020)

1
6
.9

0
%

9
.7

0
%

5
.5

7
%

5
.3

4
%

1
5
.7

7
%

0
.3

7
%

1
.8

0
%

0
.7

4
%

0
.8

2
%

0
.9

9
%

1
.0

6
%

0
.0

0
%

0
.2

3
%

2
.4

0
%

0
.0

0
%

0
.2

3
%

2
.4

5
%

0
.0

0
%

0
.9

0
%

0
.3

1
%

5
.2

8
%

0
.0

0
%

0
.0

0
%

0
.9

2
%

0
.1

8
%

0
.0

0
%

0
.8

3
%

0
.2

9
%

0
.0

0
%

0
.9

9
%

0
.4

0
%

0
.0

0
%

0
,6

1
%

0
.6

3
%

0
.8

0
%

0
.1

9
%

0
.1

8
%

0
.8

7
%

0
.2

0
%

0
.7

3
%

0
.0

0
%

0
.0

0
%

1
.5

0
%

0
.3

8
%

0
.0

0
%

0
.0

0
%

0
.0

0
%

https://www.tiobe.com

LinkedIn (Jobs)

 1
2
K

+

 9
K

+

 4
K

+

 1
1
K

+

 3
K

+

 8
K

+

 7

8
1

 5

4
3

-

-

 1
K

+

-

 6

 1
0
K

+

 2

 4

5

 1
7
K

+

 5

0

 1
1
K

+

 9

7

 4

6

 6

5

 7
K

+

 4

5
9

 2
K

+

 1

2
3

 2

9
9

 6

2
5

 5
K

+

 3

1
6

 6
K

+

 1

8

 4

7
3

 1

0
0

 5
K

+

 9

0

 5

2
9

 1
K

+

 2
K

+

 1
K

+

 1

0
3

 7

5

 2
0
K

+

 5

6

 2
K

+

-

 4

https://www.linkedin.com/

GitHub (Repositories)

 8
0
8
K

+

 8
3
3
K

+

 1
7
1
K

+

 1
2
1
K

+

 1
1
4
K

+

 5
9
K

+

 1
2
6
K

+

 2
7
K

+

 8

3
8

 1

4

 2
4
0
K

+

 4
K

+

 4
K

+

 3
4
8
K

+

 7
K

+

 1
9
K

+

 3
6
2
K

+

 1
1
K

+

 2
2
4
K

+

 3
K

+

 4

5
4

 2
5
K

+

 2
1
8
K

+

 1
6
K

+

 7
2
K

+

 2
6
K

+

 1

5
6

 6
6
K

+

 3
K

+

 6
K

+

 6
2
K

+

 1
K

+

 6
K

+

 1
4
K

+

 1
1
2
K

+

 3
9
K

+

 9
K

+

 2
K

+

 3
K

+

 4
2
K

+

 4
9
K

+

 3
K

+

 5
K

+

 7

7
7

 2
5
K

+

 3

6
5

 1

8
9

https://github.com/

Google Trends (mean of the last 5 years)

5
8
.1

5

6
6
.0

2

7
9
.4

8

8
3
.7

3

7
8
.5

8

7
6
.2

4

7
6
.4

4

6
2
.5

7

3
0
.6

7

5
4
.4

4

7
5
.8

5

4
7
.9

7

3
1
.2

5

7
5
.0

6

5
6
.6

4

7
4
.0

3

8
4
.1

8

6
6
.6

9

6
4
.8

9

7
0
.3

0

6
3
.1

6

6
9
.9

3

7
3
.4

7

6
7
.1

9

5
5
.5

3

6
0
.4

6

6
0
.7

6

3
9
.5

7

6
5
.4

7

3
4
.2

7

4
3
.8

2

3
2
.3

1

8
2
.1

6

3
1
.5

3

8
1
.5

6

6
5
.8

4

3
1
.1

6

7
4
.8

7

6
7
.6

6

7
1
.4

4

1
6
.7

6

4
0
.1

1

8
0
.0

8

6
8
.3

4

8
1
.4

8

1
4
.3

5

1
1
.4

2

https://trends.google.com/

Reusability H H H H H H H H H H H H M H M M H M M M M M H M M M M M M M M M M L M M L M M L L M L L M L L Domain Experts

Application domains 3
4

3
3

3
4

3
3

3
0

1
9

1
9

1
8

2
0

2
3

1
9

2
0

1
6

2
2

1
6

1
5

1
8

1
6

1
6

1
1

1
2

1
1

2
1

1
7

1
4

1
3

1
5

1
3 8

1
0

1
0

1
3 7 7

1
3 9 6

1
1

1
2 4 9

1
0 9 4 9 2 3 BFL mapping

Modular paradigms 5 5 4 4 3 3 3 5 3 3 5 5 3 4 3 4 4 2 3 2 2 2 0 3 2 2 1 2 3 2 3 4 5 2 4 2 4 0 1 4 1 1 0 3 2 1 0 BFL mapping

Maturity level H H H H H H H H H H H H H H H H H M M M H M H M H M M M H M M M M M H M M L M H L L L L L L L Domain Experts

Boolean Features' coverage

9
6
%

9
2
%

8
8
%

9
1
%

8
0
%

7
0
%

6
9
%

6
9
%

7
1
%

7
0
%

6
7
%

6
7
%

6
7
%

7
8
%

6
4
%

6
4
%

6
9
%

5
9
%

5
9
%

5
8
%

6
5
%

5
9
%

6
0
%

5
8
%

6
4
%

5
6
%

5
9
%

5
6
%

5
9
%

5
6
%

5
5
%

5
4
%

5
2
%

5
1
%

5
1
%

5
1
%

4
5
%

4
0
%

4
2
%

4
0
%

4
0
%

3
9
%

3
3
%

3
5
%

2
8
%

2
5
%

1
1
%

BFL mapping

Comprehensive documentation H H H H H M H M L L L M M H L L H M H H H M H H L L H H H M H M M H H M M M M H M L H M L M L Domain Experts

Google hits 3
M

+

 7
M

+

 1
M

+

 5
0
0
K

+

 4
M

 1
0
0
K

+

 4
0
0
K

+

 2
5
5
K

 2
7
2
K

 1
2
K

+

 3
1
3
K

 2
1
K

 1
6
K

+

 3
7
1
K

 8
K

+

 7
9
K

+

 2
8
3
K

 3
5
K

+

 5
2
7
K

 7
6
K

+

 1
M

+

 2
3
K

+

 4
5
8
K

 2
0
8
K

 1
0
K

+

 1
8
K

+

 3
2
3
K

 1
0
8
K

 1
0
4
K

 6
3
K

+

 1
7
9
K

 5
9
K

+

 2
4
K

+

 1
8
0
K

 7
5
0
K

 7
6
K

+

 4
5
K

+

 6
9
K

+

 5
4
K

+

 1
4
1
K

 2
0
K

+

 1
K

+

 2
0
5
K

+

 6
1
K

+

 5
K

+

 6
1
K

+

 1

9
9

https://www.google.com/

GitHub (Topics) 3
K

 2
K

 2

5

 2

5

 2

5

 4
1
1

 7
1
5

 1
8
1

 1

 3

 6
1
1

 6

 3

 3
K

 4

7

 4
0
2

 1
K

 1
4
1

 5
K

 6

0

 1

 1
0
3

 1
K

 2

 3
9
3

 1
6
0

 1

6

 5
0
1

 2

 8

0

 3
9
2

 8

 3

1

 1
2
2

 2

 1
6
5

 7

5

 2

0

 1
9
2

 1
5
6

 2
1
2

 1

2

 9
8
9

 1

3

 1
5
5

 2

 1

2

https://github.com/

GitHub (Wikis)

 2
5
2
K

 2
4
1
K

 5
1
1
K

 5
1
1
K

 5
1
1
K

 2
3
K

 1
3
K

 2
4
K

 1
3
K

 2
K

 8
0
K

 2
K

 2
1
0
K

 1
8
9
K

 3
K

 2
3
K

 2
3
8
K

 7
K

 5
1
0
K

 6
K

 4
K

 1
3
K

 4
0
8
K

 1
5
K

 1
3
K

 3
K

 2
1
K

 4
K

 1
2
K

 1
K

 1
5
K

 2
K

 1
2
K

 3
K

 2
4
0
K

 9
K

 3
K

 6
K

 4
6
K

 1
5
K

 6
5
K

 9
K

 9
1
K

9
7
6

 1
2
K

 1
K

6
5
1

https://github.com/

Active community H H H H H H H H M M H L H H H H H M H M L M M H H M L M M L H L H H H H H M H M H L H L L L L Domain Experts

stackoverflow 5
0
0

 5
0
0

 5
0
0

 5
0
0

 5
0
0

 5
0
0

 5
0
0

 5
0
0

 4
5
0

 4
7
1

 5
0
0

 5
0
0

 5
0
0

 5
0
0

 5
0
0

 5
0
0

 5
0
0

 5
0
0

 5
0
0

 5
0
0

 5
0
0

 5
0
0

 5
0
0

 5
0
0

 5
0
0

 5
0
0

 5
0
0

 5
0
0

 5
0
0

 5
0
0

 5
0
0

 5
0
0

 5
0
0

 5
0
0

 5
0
0

 5
0
0

 5
0
0

 5
0
0

 5
0
0

 5
0
0

 5
0
0

 5
0
0

 5
0
0

 5
0
0

 5
0
0

 5
0
0

 5
0
0

https://stackoverflow.com/

GitHub (Commits) 2
2
M

 1
9
M

 3
3
6
M

+

 3
6
2
M

+

 3
6
2
M

+

 1
M

 1
M

 6
M

 4
7
K

 4
0
K

 4
M

 5
3
K

 7
6
M

+

 1
8
M

 7
2
7
K

 3
M

 3
M

 2
5
2
K

 1
5
0
M

+

 9
5
5
K

 4
K

 1
8
9
K

 4
8
M

+

 9
8
2
K

+

 7
0
9
K

 2
0
2
K

 3
4
K

 3
8
0
K

 2
4
2
K

 6
7
K

 9
6
4
K

 3
3
K

 7
2
3
K

 1
M

 2
4
4
M

+

 1
M

 2
3
M

 1
6
5
K

+

 1
7
M

 3
7
3
K

 6
M

+

 1
3
0
K

 6
M

 1
5
K

 2
7
8
K

4
7
6

 3
2
7
K

https://github.com/

GitHub (Issues) 2
M

 2
M

 2
7
2
K

 3
7
7
K

 1
M

 2
2
1
K

 1
4
6
K

 2
2
7
K

 3
K

 1
0
K

 7
6
1
K

 2
K

 1
2
K

 1
M

 3
3
K

 8
4
K

 1
M

 6
1
K

 1
M

 6
K

 5

9

 3
3
K

 6
1
3
K

 3
0
K

 3
7
4
K

 4
6
K

 2

3
8

 4
8
K

 9

8

 1
4
K

 2
1
0
K

 6
K

 2
4
K

 1
0
2
K

 1
3
8
K

 5
1
K

 9
6
K

 3

0
5

 3
K

 1
7
K

 7
6
K

 1
1
K

 9
1
3
+

 1

5
5

 3
9
K

 1
K

 2
K

https://github.com/

Github (Marketplace)
 2

8

 4

9

 6
0
3

 6
0
3

 6
0
3

 5

 2

1

 1

-

-

 2

6

-

 2
7
0

 5

3

 3

 5

 3

1

 1

 5

8

 1

-

 4

 1

3

 2

 7

 7

-

 3

-

-

 1

5

-

 1

 3

 3
8
2

 1

 2

-

 1

-

 7

 1

 3

-

-

-

-

https://github.com/

GitHub (Packages) 2
1
9

 1
1
7

 5
K

 5
K

 5
K

 2

1

 1

0

 8

 5
K

-

 1
0
3

-

 1
K

 1
5
6

 1

 1

2

 8
8
4

 3

 4
8
8

-

 1

1

 2

 7
5
1

 6

 1
3
K

 3

 1

5

 5

0

 4

7

 1

 2

3

-

 3

 7

 3
K

 4

-

 6

 1

6

-

 4
9
2

 4

 9

4

 1

 1

6

 3

 1

5

https://github.com/

Availability of developers H H H H H M M M M L H L L H L L H L H M M L H M M L H L H M L M L M M L L M M H M L H M M L L Domain Experts

GitHub (Users) 2
7
K

2
2
K 0

7
K

3
K

8
6
6

2
K

3
K 7

4
6

5
K 4
2 0

1
2
K 5
7

3
7
5

4
7
K

8
0
4

3
K 3
9 0

3
6
8

4
K 8

4
8
6

3
1
0 0

3
8
2

2
5

2
2
1

6
8
9

1
3

7
5

2
0
9

2
K

3
9
5

2
0
9

1
0

1
2

2
4
8

3
5
3 9

1
3
K 1
2

6
5
2 2 0

LinkedIn (People) 9
M

+

5
M

+

5
M

+

3
M

+

1
1
M

+

2
4
1
K

+

5
7
4
K

+

7
6
1
K

+

4
3
0
K

+

2
4
K

+

6
8
2
K

+

9
K

+

1
3
K

+

3
M

+

1
8
K

+

8
5
K

+

6
M

+

2
4
K

+

4
M

+

2
0
5
K

+

3
6
5
K

+

2
0
K

+

4
M

+

5
1
7
K

+

2
5
8
K

+

3
9
K

+

1
M

+

9
9
K

+

1
M

+

3
3
4
K

+

9
5
K

+

1
3
4
K

+

9
0
K

+

2
3
5
K

+

7
6
3
K

+

6
9
K

+

2
4
K

+

3
2
0
K

+

1
2
0
K

+

3
M

+

1
2
4
K

+

3
0
K

+

1
0
M

+

3
4
1
K

+

2
9
5
K

+

9
4
K

+

2
K

+
https://www.linkedin.com/

Scalability H H M H M M L L L M H L L H L L H L H L L M H L H L L L L L L L L L L L L L L L H L L L L L L Domain Experts

Distributed Systems 5
K

 1
K

+

 8
9
1

 3
2
4

 8
0
5

 2
1
4

-

-

-

-

 1
7
3

-

-

-

-

-

 8
1
3

-

 1
K

+

-

-

-

 3
0
4

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

https://github.com/

Cloud native systems 6
5
2

 1
2
3

-

 5

1

-

-

-

-

-

 4

9

-

-

-

-

-

-

 2
K

+

-

 3
1
2

-

-

-

 2
5
0

-

 5

8

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

 1
7
6

-

-

-

-

-

-

https://github.com/

Service based systems 2
0
2

 6

9

 3

4

 3

4

-

-

-

-

-

-

 1

8

-

-

 7

7

-

-

 7

1

-

-

-

-

-

 4

5

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

 2

5

-

-

-

-

-

-

https://github.com/

Microservices

 1
5
K

 3
K

 -

 2
K

 -

 -

 -

 -

 -

 -

 1
K

+

 -

 -

 1
K

+

 -

 -

 1
1
K

 -

 3
K

 -

 -

 -

 2
K

 -

 1
K

+

 -

 -

 -

 -

 -

 -

 -

 -

 -

 -

 -

 -

 -

 -

 -

 1
K

 -

 -

 -

 -

 -

 -

https://github.com/

Component based systems 6
7

 3
3

 7
1

 4
1

 2
3

-

-

-

-

-

-

-

-

 3
6

-

-

 7
9

-

-

-

-

 1
2

 2
0

-

 1
9

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

https://github.com/

adjacency matrix9 (Qualities × Features → Boolean). For instance, support threading
as a programming language feature influences the Time behavior quality attribute.
The experts believed that about 68% percent of the programming language features
have impacts on the following quality aspects of the programming languages:

˛ Usability defines the degree to which a programming language can be used to
achieve specified goals with effectiveness, efficiency, and satisfaction in a speci-
fied context of use. Moreover, it embraces quality attributes such as Learnability,
Operability, User error protection.

˛ Cost denotes the amount of money that a company spends on implementing a

9The final Boolean adjacency matrix is available on Mendeley Data (Farshidi et al., 2020b). It is made
publicly available to enable other researchers to use it for their research purposes.

Section 5.3 – Multi-Criteria Decision-Making for Programming Language Selection ∣ 109

software product using a programming language. It includes quality attributes
such as Implementation Cost, Platform Cost, and Licensing Costs.

˛ Product defines a set of quality attributes regarding the state or fact of exclusive
rights and control over the property. For instance, Stability, Ownership, and
Guarantees are part of this characteristic.

˛ Supplier includes a set of quality attributes such as Reputation and Support of
the programming languages.

˛ Maintainability is the degree to which a programming language can be effec-
tively and efficiently modified without introducing defects or degrading existing
product quality. It can be supported by a programming paradigm, such as object-
oriented programming, that encourages Modularity, Reusability, Analyzability,
Modifiability, and Testability.

The acquired knowledge regarding the impacts of the programming language fea-
tures on the quality attributes was used to calculate the Impact Factors (Farshidi et
al., 2018a) that apply in the score calculation of the DSS. The framework does not
enforce a programming language feature to present in a single quality attribute; pro-
gramming language features can be part of many quality attributes. For example,
object-oriented programming as a feature might connect to multiple quality attributes
such as Functional completeness and Interoperability.

In this study’s knowledge extraction phase, we realized some inconsistencies re-
garding the programming language features’ impacts on the quality aspects. For
example, one of the experts asserted that when a programming language supports
object-oriented programming as one of its paradigms, the programming language’s
operability and User error protection will be increased. However, the other asserted
that object-oriented programming does not have any impact on these two quality as-
pects. Thus, we used the fuzzy Delphi technique to reach a consensus among experts
regarding the impacts of the programming language features on the quality aspects.

5.3.5 Supportability of the programming language features by the
Programming Languages (RQ5)

A Programming language has a set of programming language features that can be
either Boolean (FeatureB) or non-Boolean (FeatureN). A Boolean programming lan-
guage feature is a feature that is supported by the programming language; for exam-
ple, supporting the socket programming. Additionally, a non-Boolean programming
language feature assigns a non-Boolean value to a particular programming language;
for example, the maturity level of a programming language can be high, medium, or
low. Therefore, the programming language features in this study are a collection of
Boolean and non-Boolean features, where Features = FeatureB ∪ FeatureN.

The mapping BFL ∶ FeatureB × Languages → {0, 1} defines the supportability of
the Boolean programming language features by the programming languages. So that
BFL(f , l) = 0 means that the programming language l does not support the pro-
gramming language feature f and BFL(f , l) = 1 signifies that the language supports
the feature. The mapping BFL is defined based on documentation of the program-
ming languages and expert interviews. One of the principal challenges is the lack
of standard terminology among programming languages. Sometimes different pro-

110 ∣ Chapter 5 – Programming Language Ecosystems

gramming languages refer to the same concept by different names, or even worse, the
same name might stand for different concepts in different programming languages.
Discovering conflicts is essential to prevent semantic mismatches throughout the pro-
gramming language selection process.

A structured coding procedure is employed to extract knowledge from the selected
sources of knowledge.

Table 5.2 shows a subset of the Boolean Features that we have considered in the
decision model.

We defined thirteen non-Boolean programming language features, such as Scal-
ability and Popularity in the market, and developer availability. The assigned val-
ues to these non-Boolean programming language features for a specific program-
ming language is a 3-point Likert scale (High, Medium, and Low), where NFL ∶
FeaturesN × Languages → {H, M, L}, based on several predefined parameters. For in-
stance, the popularity in the market of programming languages was defined based on
the following four parameters: TIOBE Index (2020), LinkedIn (Jobs), Github (Reposi-
tories), and the mean of the last five years of Google Trends. Table 5.3 shows a subset
of the non-Boolean programming language features, their parameters, and sources of
knowledge.

5.3.6 Programming language feature Requirements:
The DSS (Farshidi & Jansen, 2020a; Farshidi et al., 2018b) receives the programming
language feature requirements based on the MoSCoW prioritization technique (DSDM
consortium and others, 2014). Decision-makers should prioritize their feature re-
quirements using a set of weights (WMoSCoW = {wMust, wShould, wCould, wWon′t}) ac-
cording to the definition of the MoSCoW prioritization technique. programming
language feature requirements with Must-Have or Won’t-Have priorities act as hard
constraints and programming language feature requirements with Should-Have and
Could-Have priorities act as soft constraints. The DSS excludes all infeasible program-
ming languages which do not support programming language features with Must-
Have and support programming language features with Won’t-Have priorities. Then,
it assigns non-negative scores to feasible programming languages according to the
number of programming language features with Should-Have and Could-Have priori-
tizes (Farshidi et al., 2018a).

Decision-makers specify desirable values, from their perspectives, for non-Boolean
programming language feature requirements. For example, a decision-maker could
be interested in prioritizing programming languages with the Maturity level above
average. Therefore, the Maturity level above average is considered as a Should-Have
feature.

5.4 Empirical Evidence: The Case Studies
Seven industry case studies at seven software development companies have been con-
ducted to evaluate and signify the decision model’s usefulness and effectiveness to
address the programming language selection problem. We selected the case study
companies from seven different application domains for increasing diversity in our

Section
5.4

–
Em

piricalEvidence:The
C
ase

Studies
∣111

Table 5.4: This table shows the feature requirements, based on the MoSCoW prioritization technique (Must-Have (M), Should-Have (S), and
Could-Have (C)). Note, The entire list of the features requirements is available on Mendeley Data (Farshidi et al., 2020b).

O
ce

an
ee

rin
g

D
oo

m
an

 lt
d.

Saa
na

a
D

P
A

SC

Fi
na

nc
eC

om
p

Sec
ur

eS
EC

O
EN

VR
I-F

A
IR

O
ce

an
ee

rin
g

D
oo

m
an

 lt
d.

Saa
na

a
D

P
A

SC

Fi
na

nc
eC

om
p

Sec
ur

eS
EC

O
EN

VR
I-F

A
IR

Debugger M M M M M M M R01 Reflective programming C M S S R48

Object-oriented programming (OOP) S M M M M M M R02 Network and Communication Systems M S R49

Testing tools M C M M M M M R03 Banking System S M R50

Socket programming M M C M M M M R04 Amazon Web Services (AWS) C C M C C R51

Support threading M S M M S M M R05 Declarative programming C M R52

Scalability M M M M S M S R06 Licensed M R53

Popularity in the market M S M M M M R07 Operating Systems M R54

Maturity level M M M S M M R08 ORM C S C S S S S R55

Open source compiler or Interpreter M M C C M M M R09 Self-documenting (or self-describing) syntax S S C S S S R56

Web-based M M M M C M R10 Simple and concise syntax S S S S S R57

General-Purpose PL M M S M M S S R11 Procedural programming C S S S S R58

Web-Based Systems S M M M M S S R12 Distributed Systems S C S S R59

Web Services S M C M M S M R13 Mobile Applications C S S S R60

Windows S M M M M R14 Cloud Computing Applications C S C C S C R61

Free implementation of the core libraries M C C C M M M R15 Aspect-Oriented Programming (AOP) C S S R62

Cross platform / Multiplatform M M C M M R16 Data-Dominant Software S S R63

Open source M M C M M R17 Data-driven programming C C S R64

Back-end M C M M M R18 Commercial-Off-The-Shelf (Cots) C C S R65

Full-stack M C M M M R19 GUI builder C C C C C C R66

Event-driven programming M M M S S S S R20 Interpreter C C C C C C R67

Comprehensive consistent documentation M M M S S S R21 Dynamic programming C S R68

Software Architecture Patterns M M M S C S C R22 macOS S C R69

Package Manager S S M C M M R23 Information Management and DSSs C S R70

Database Systems S M M M S C R24 Pattern Recognition C S R71

Toolchain M M C S M C R25 Bytecode C C C C C R72

Reusability M S M M R26 Array programming S R73

Compiler M M M C C C R27 Embedded Systems S R74

Code coverage M C M M R28 Real-Time Systems S R75

Front-end M C M M R29 Microsoft Azure C C C C R76

Imperative programming M M M S R30 IBM Cloud or Watson C C C C R77

Maintainability M S S S M S R31 Kubernetes C C C C R78

Software Architecture Design Patterns M M S S C S C R32 Constraint programming C C C R79

Static code analysis M C M S S C R33 Google Cloud Platform C C C R80

Generic programming S M M S R34 Android C C C R81

Human Resource Availability (Developers) M M S S R35 iOS C C C R82

Profiler M C C M S C R36 Flow-Based Programming (FBP) C C R83

Compiler Design M M S R37 Heroku C C R84

Linux M M C C R38 Plug-and-Play Environment C C R85

Interactive System M M C C S R39 File-Sharing Applications C C R86

Easy to write new code S S M S S S R40 Exchange Data And Information C C C R87

Easy to read existing code S M S S S S R41 Metaprogramming C R88

Easy to reuse existing code S M S S S S R42 Non-structured programming C R89

Service-Based Systems C C S M S S R43 Arduino C R90

Functional programming M C S S S R44 Multi-Processors Environment C R91

Accessible and friendly community M C S S S R45 Expert System C R92

Docker M C C S C R46 Management Information Systems C R93

Code refactoring C C M S R47 Internet Of Things (Iots) C R94

112 ∣ Chapter 5 – Programming Language Ecosystems

evaluation, including control systems, content management systems (CMS), helpdesk
systems, booking systems, financial systems, distributed ledgers, and search engines.
Moreover, the selected case study companies were located in two different countries,
namely Iran and the Netherlands.

The case study participants have identified a shortlist of ranked feasible program-
ming languages (Table 5.5), as their potential solutions, for the back-end of their
projects through multiple internal expert meetings and investigation into program-
ming languages before participating in this research. The experts at the case study
companies specified their programming language feature requirements based on the
MoSCoW prioritization technique (Table 5.4), so seven industry cases were defined
and stored in the knowledge base of the DSS 10. Next, the Inference Engine of the
DSS generated feasible solutions for each case. The rest of the section describes the
case study companies’ ranked shortlists and analyzes the DSS outcomes.

5.4.1 Case Study 1: Oceaneering
Oceaneering AGV Systems work on logistics and Automated Guided Vehicle (AGV)
technology, widely used for transporting materials in industry and commerce. An
AGV system is a portable robot that follows along marked long lines or wires on the
floor or uses radio waves, vision cameras, magnets, or lasers for navigation.

One of the Oceaneering’s branches is located in the Netherlands and is mainly
active in developing, implementing, and marketing AGV Systems. They specialize
in providing mission-critical mobile robotics solutions for material handling applica-
tions involving mixed fleets deployed globally in the automotive and manufacturing
sectors.

The Oceaneering experts designed a centralized control system that collects data
from several field devices and transmits control instructions. The system is responsi-
ble for fleet and traffic management and various logistics functions, including order
fulfillment. The system is customized to meet specific requirements related to defining
vehicle traffic rules, presenting performance data, and optimizing battery consump-
tion.

Requirements
The case study participants defined the following subset of requirements of the control
system (for more detail, see Table 5.4):

˛ The system is expected to coordinate multiple AGVs to guarantee that no colli-
sions occur while tasks are performed. The system must dispatch AGVs so that
the quickest cycle time is achieved. Accordingly, Socket programming (R04) and
support threading (R05) are two Must-Have features from their perspective.

˛ The system’s main architecture design is based on a centralized management
system to coordinate AGVs from a single point. Thus, the potential program-
ming languages must have support predefined Software Architecture Patterns
(R22) and Design Patterns (R32). Moreover, supporting functional program-
ming (R44), free implementations of the core libraries (R15), and a wide range
of Package Managers (R23) facilitate the development phase of a centralized
management system.

10The industry cases are available on the DSS website: https://dss-mcdm.com

https://dss-mcdm.com

Section 5.4 – Empirical Evidence: The Case Studies ∣ 113

˛ A real-time or semi-real-time data processing unit is required for data streams,
such as collection, classification, storage, and analysis of various event messages
output from multiple sources (R20, R74, R94, and R75).

˛ A mobile app. can be used for real-time handling of on-site tasks related to
composition, opening, malfunction, and tests for home site response (R39, R60,
R81, and R82).

˛ The system architecture supports security monitoring and behavioral analysis.
Additionally, it supports the development of data-driven systems based on col-
lecting and processing security-related data to assess risks, identify and visualize
threats, and produce alerts, among other security services (R13, R64, R43, and
R61).

˛ As maintainability (R31), reusability (R26), and scalability (R06) were part of
the quality concerns of the experts, they were looking for highly popular (R07)
and mature programming languages (R08).

Results
The case study participants at Oceaneering have considered four potential program-
ming languages (including C++, C, Java, and Python) to implement the centralized
control system based on 77 programming language feature requirements (see Ta-
ble 5.5). Although more than 60% of the feature requirements for this case study
were Could-Have and Should-Have features (soft constraints), a significant portion of
their features prioritized as Must-Have features (almost 39%). Accordingly, the DSS
excluded 41 infeasible solutions and ranked the rest of the programming languages
(including Java, C#, C++, Python, C, and PHP) based on the soft constraints.

The experts were looking for programming languages that can be used in Web Ser-
vices and Web-Based Systems, so they prioritized these features as Should-Have. The
DSS suggested Java and C# as two better alternative solutions for these application
domains. The experts at Oceaneering were looking for programming languages that
can be employed in Embedded Systems, so they considered C and C++ as two alterna-
tives. As it was a Should-Have feature for them, the DSS did not exclude PHP as an
infeasible solution but scored it lower than the other potential solutions (64%).

5.4.2 Case Study 2: Author-it Software Corporation (ASC)
Author-it Software Corporation (ASC) is enterprise software for authoring, content
management, publishing, and localization. ASC centralizes the content creation pro-
cess, writing in components, and storing the pure content information in a database.
Author-it supports the assembly and generation of this information into various docu-
ments to be published to an array of outputs. Author-it can be used for documenting
Pharma & Biotech, Medtech, Technical Publications and Training & eLearning. One
of the branches of ASC is located in the Netherlands.

The experts at this case study design and implement cloud-based component au-
thoring solutions for collaborative content development and multi-channel publish-
ing. The platform enables organizations to author, share, and reuse information
across multiple forms of content for critical business needs. Author-it Honeycomb
is the latest version of ASC’s responsive HTML5 output for delivering eLearning, mo-
bile learning, and assessments on desktops, tablets, and smartphones.

114 ∣ Chapter 5 – Programming Language Ecosystems

Requirements
The experts at ASC specified the following subset of requirements of their system (for
more detail, see Table 5.4):

˛ The system architecture is designed based on the service-oriented and archi-
tecture (R43) and object-oriented design (R02), so potential programming lan-
guages should support software architecture design patterns (R32) and prede-
fined software architecture patterns (R22).

˛ The system is a Software-as-a-Service solution and enables content creation in
a web browser (R61, R10, and R12).

˛ Author-it enables users to publish single-source content to other content for-
mats, such as PDF, Word, and PPT (R86, and R87).

˛ Author-it supports translations with its Localization Manager (R67 and R70).
˛ The content manager has various editors, such as image and text editors (R65).
˛ The system supports permission management and version control (R93 and

R24).
˛ Declarative programming (R52), Dynamic programming (R68), Imperative pro-

gramming (R30), and Functional programming (R44) are essential program-
ming paradigms for implementing the system.

˛ The case study participants were looking for languages that can be used to code,
build, run, test, and debug software for cloud platforms, such as Amazon Web
Services (R51).

˛ The system requires a highly integrated and consumerized user experience with
consistency across all devices that can be provided by a web-based user interface
(R12, R39, and R66).

˛ The popularity in the market (R07), Reusability (R26), Maturity level (R08),
and Scalability (R06) are the main quality concerns of the experts at ASC when
they want to select potential programming languages.

Results
The case study participants at ASC came up with C#, VB.Net, TypeScript, and
JavaScript as four main programming language alternatives to building the content
management system. The experts defined 65 programming language feature require-
ments and assigned Must-Have priority to almost 45% percent of them. The DSS
results were similar to the case study participants and suggested Java and Python as
two equal alternatives to C#.

The “popularity in the market”, “Reusability”, “Maturity level”, and “Scalability”
of the suggested solutions had differed from each other, so the DSS scored them
differently. The experts were looking for programming languages that were employed
mainly in Cloud computing applications. Accordingly, the DSS ranked C#, Java, and
Python higher than JavaScript, Visual Basic.net, and TypeScript.

5.4.3 Case Study 3: Dooman ltd.
Dooman ltd. is an Iranian software development company implementing and main-
taining a help desk system called Gamma. Gamma is a suite of tools that enables or-
ganizations to provide information and support customers with concerns, complaints,
or inquiries about their products or services. Gamma unifies queries from various

Section 5.4 – Empirical Evidence: The Case Studies ∣ 115

customer-facing support channels, such as live chat, email integration, web contact
forms, phone, mobile, and social media.

The experts at this case study company designed and implemented the system
based on the Multitier and Model–View–Controller (MVC) software architecture pat-
terns. Additionally, the system is deployed and maintained on a private cloud. The
experts are mainly interested in the Microsoft ecosystem, so currently, Gamma is de-
veloped based on Microsoft technologies, such as .NET Framework and SQL Server.

Requirements
The experts at this company indicated the following subset of requirements of their
system (for more detail, see Table 5.4):

˛ It should be possible for a user to log an incident by sending an email which will
generate a new incident reference and be added to the queue. This will ensure
that all questions sent by email to the Help Desk inbox, no matter how small,
will be logged and tracked, and no-one will have to monitor the Service Desk
inbox manually (R13, R39, and R49).

˛ Gamma converts all emails from customers to tickets and facilitates ticket man-
agement (R37).

˛ Gamma automates the ticket assignment process and guarantees all customer
requests will be replied to within one business day (R20).

˛ The system needs a reporting system to track team performance, customer sat-
isfaction, and identify potential bottlenecks (R65).

˛ Gamma must quickly generate ad hoc reports, reporting on any fields, including
text strings (R24).

˛ The system should be able to differentiate between (1) a new incident and (2)
an update to an existing incident (e.g., by auto-detecting the incident reference
number in the subject line/body of the email). If the latter, it should be added
as a note to the relevant incident (R48).

˛ It must be possible for end-users to submit suggestions via the portal, which can
then be reviewed and added to the frequently asked questions’ list if appropriate
(R12).

˛ The experts modeled their system based on object-oriented design, so Object-
oriented programming is an essential paradigm for them (R02).

˛ Gamma needs to link an article in the knowledgebase to an incident (e.g., to in-
dicate that all actions in that article were attempted, possibly with a method
to indicate with a single-click (e.g., tick/cross) which actions were success-
ful/unsuccessful (R67 and R39).

˛ The system must be accessible through a dedicated web client (i.e., with no
client software installed on the PC, even behind the scenes) (R10).

˛ Gamma must be integrated with Change Management software (for generating
Change Requests, etc.) (R04).

˛ In order to implement their web-based solution, the experts preferred to employ
popular and mature enough programming languages (R07 and R08).

˛ The experts believed that such programming languages have consistent, com-
prehensive documentation, and typically their communities are more friendly
and accessible (R21 and R45).

116 ∣ Chapter 5 – Programming Language Ecosystems

˛ The experts mentioned that simplicity in writing, reading, and reusing codes
are vital factors (R40, R41, R42).

Results
The case study participants selected C#, PHP, and Python as their potential solutions
before participating in this research. Next, they identified 65 feature requirements
based on the MoSCoW prioritization technique. More than half of those features
have been prioritized as Must-Have features, so the DSS excluded 43 alternatives and
suggested top-4 alternative solutions.

Table 5.5 shows that the DSS offered Java as an alternative that was scored equal
to C# and Python. According to our research documenting analysis phase, we real-
ized that PHP was not used as a tool to implement Commercial-Off-The-Shelf (COTS)
components, and it cannot be used to develop MacOS-based applications. As both of
these features prioritized as Could-Have, the DSS did not exclude PHP from the set
of feasible solutions; however, PHP gained the lowest score among the other feasible
solutions.

5.4.4 Case Study 4: Saanaa DP
Saanaa DP is specialized in designing and building web-based systems for a variety of
customers in Iran. The experts at Saanaa DP mainly determine their clients’ require-
ments and goals and then provide an estimate of the cost to create web applications.
They are also active in hosting their websites and debugging any problems. They re-
design websites for pre-existing clients, as well as new clients. One of their customers
requested an online ticket reservation and hotel booking system, so they looked for
the best fitting programming language to implement a web-based solution.

The backbone of the booking system architecture is designed based on the MVC
and Client-Server software architecture patterns. Typically, the experts at Saanaa
DP deploy their web applications on public cloud providers. The majority of their
websites are currently developed based on Microsoft technology, so their initial choice
for selecting a programming language ecosystem is C#.net.

Requirements
The experts at Saanaa DP defined the following subset of requirements for the book-
ing system (for more detail, see Table 5.4):

˛ The booking system needs to have a user-friendly interface (R66 and R39).
˛ The system should show up-to-date availability and immediate price quotations,

request any information on the booking form, handle cancellations, modifica-
tions, and set up automatic confirmations (R24 and R20).

˛ The system should be able to handle the creation and delivery of invoices
to clients. Additionally, the system should accept deposits or full payments,
whether optional or obligatory, processed securely by one of the partner pay-
ment gateways (R43 and R50).

˛ The system must send a booking confirmation email after successful payment
(R13).

˛ The case study participants stated that object-oriented programming (OOP) and
data-driven programming are mainly considered as programming paradigms at
their company to model ticket reservation systems (R02 and R64).

Section 5.4 – Empirical Evidence: The Case Studies ∣ 117

˛ The potential programming languages for implementing the system have to sup-
port multithreading to simultaneously handle multiple tasks (R05).

˛ The system should support almost all popular web browsers, such as Internet
Explorer, Safari, Chrome, and Firefox (R39, R19, and R29).

˛ The case study participants preferred to select programming languages that
have been employed to implement web-based and transaction processing sys-
tems (R12 and R50).

˛ The potential programming languages must be mature enough and trendy in
the market because they have comprehensive documentation and friendly com-
munities (R07, R08, R21, and R45).

Results
As the software engineers of Saanaa DP depend heavily on Microsoft technology, they
have selected C# as their primary choice for their customers. The case study partic-
ipants defined 49 feature requirements and prioritized almost 70% of them as soft
constraints (Should-Have and Could-Have features). Thus, the DSS had to suggest
more feasible solutions; however, they assigned the Must-Have priority to several
particular features, such as web-based systems and supporting predefined software
architecture patterns supported by a limited list of programming languages (see Ta-
ble 5.4).

The DSS offered C#, Python, and Java as three almost equal alternatives, besides
Object Pascal and Go as two potential solutions with lower scores. During the data
collection phase to build the decision model, we did not find any evidence that shows
Go and Object Pascal can be employed in transaction-based systems (banking Systems).

5.4.5 Case Study 5: FinanceComp
FinanceComp is an Iranian financial institution that provides personal loans, com-
mercial loans, and mortgage loans; moreover, it allows financial transactions at its
branches. Additionally, it provides an internet banking system to help customers view
and operate their respective accounts through the internet.

The software architecture of the system is based on the Multitier and Client-Server
architecture patterns. Security is one of the main quality concerns of the software
engineers in the case study; accordingly, they employed multi-tenant databases to
store financial transactions. Furthermore, the system is deployed and maintained on
a private cloud.

Requirements
The experts at FinanceComp defined the following subset of requirements for the
system (for more detail, see Table 5.4):

˛ Standard data classifications (definition and formats) should be established and
used for recording financial events (R50).

˛ Internal controls over data entry, transaction processing, and reporting should
be applied consistently (R20 and R50).

˛ The system must provide timely and useful financial reports to support man-
agers (R13).

˛ The system should define, maintain, and execute the posting and editing rules
for processed transactions (R50 and R44).

118 ∣ Chapter 5 – Programming Language Ecosystems

˛ The system should provide and maintain online queries and reports on balances
separately for the current and prior months (R50).

˛ The case study participants highlighted that Object-oriented programming and
Event-driven programming are the essential programming paradigms that they
have used to model the system to incorporate the advantages of modularity and
reusability (R02 and R20).

˛ The system should generate an audit log that identifies all document additions,
changes, approvals, and deletions by users (R18).

˛ The experts mentioned that the potential programming languages have to sup-
port socket programming, enabling them to exchange information between pro-
cesses across the network (R04).

˛ The programming languages should facilitate their software architecture imple-
mentation and assist them with employing software architecture design patterns
(R22 and R32).

˛ Maintainability, scalability, and security were part of their quality concerns, so
that they preferred to hire highly mature programming languages (R08, R06,
and R31).

˛ The developers’ availability besides their current programming knowledge and
experience is a vital factor that has profoundly impacted their decision-making
process (R35).

Results
The case study participants at FinanceComp stated that their system’s former imple-
mentation was based on Java, and now they want to consider C# as another alterna-
tive solution for implementing the system. They defined 30 programming language
feature requirements and assigned Must-Have priority to 60% percent of them. Thus,
they were looking for a limited set of programming languages with unique capabili-
ties.

The complexity of programming languages was not an issue for them; however,
they wanted to select a language that can hire enough senior developers to work
with. Finally, the DSS concluded that C#, Java, Python, and PHP could be used as the
most suitable alternatives to their case.

5.4.6 Case Study 6: SecureSECO
SecureSECO is a research organization in the Netherlands. The researchers at Se-
cureSECO work in close collaboration with Utrecht University and the Delft Univer-
sity of Technology. The goal of the research group is to secure and increase trust in
the software ecosystem by using distributed ledger technology and empirical software
engineering research.

The Software Heritage Graph (SHG) is a database that contains 8 billion source
code files that have been collected from the worldwide software ecosystem. This
archive is a treasure trove, but it is a big challenge to extract value from the SHG. The
researchers at SecureSECO propose the SearchSECO, a hash-based index for code
fragments that enables searching source code at the method level in the worldwide
software ecosystem. They want to create a set of parsers that extract fragments (meth-
ods) from the code files and make them findable.

Section 5.4 – Empirical Evidence: The Case Studies ∣ 119

Requirements
The experts at SecureSECO defined the following subset of requirements for develop-
ing the SearchSECO (for more detail, see Table 5.4):

˛ An extensible data structure, a meta-model representing the relevant entities
for SecureSECO, is needed (R55).

˛ The system needs a parsing and extraction architecture that enables the rapid
extraction of code file methods, including the call graph in a project (R67).

˛ The system will initially use parsers for Java, C, JavaScript, and Python (R44).
˛ SearchSECO requires a project data extractor to collect data about the code

fragments, such as author data and version data (R24).
˛ The system needs several repository spiders that collect source code and project

data from different repositories (R43).
˛ SearchSECO has multiple generic extraction techniques to extract code from

languages for which it does not have parsers available individually (R63).
˛ The system needs smart hashing techniques for hashing the abstract syntax tree

of code clones and for hashing code fragment meta-data (R64).
˛ SearchSECO requires a search API that enables one to search through the Se-

cureSECO ledger rapidly (R59).
˛ a Job distribution architecture, Worker nodes that can perform the SecureSECO

maintenance jobs, is required (R13 and R59).
˛ SearchSECO needs a data collection dashboard that shows the current state of

the SearchSECO platform’s growth (R71 and R20).

Results
Recently, the SecureSECO organization experts designed the SearchSECO architec-
ture, so it has not been implemented yet. The case study participants identified 59
programming language feature requirements and prioritized more than 70% of them
as soft constraints (Could-Have and Should-Have) features based on their assump-
tions at the current stage of the software development life cycle. Accordingly, they
have not limited themselves to a specific technology or third party vendor. The Se-
cureSECO experts indicated Python, Rust, Java, C#, and C++ as their top-5 potential
programming languages.

We did not find any evidence showing that Rust supports a toolchain and a code
coverage tool during this study’s data collection phase. Accordingly, the DSS ex-
cluded Rust from the ranked shortlist of solutions because the case study participants
prioritized these two features as two Must-Have feature requirements. Based on the
feature requirements, the DSS suggested to employ Java, C#, Python, PHP, C++, and
JavaScript as potential solutions. As aforementioned, each software-intensive project
can be implemented by employing a set of programming languages; for instance, the
case study participants, after getting feedback from us, asserted that SearchSECO
could be developed using a combination of Python and JavaScript programming lan-
guages.

5.4.7 Case Study 7: ENVRI-FAIR
The Environmental Research Infrastructure (ENVRI) community is a community of
Environmental Research Infrastructures, projects, networks, and other diverse stake-

120 ∣ Chapter 5 – Programming Language Ecosystems

holders interested in environmental Research Infrastructure matters. The overarching
goal of ENVRI-FAIR is for all participating Research Infrastructures to improve their
FAIRness and prepare the connection of their data repositories and services to the
European Open Science Cloud. With the development of FAIR implementations from
the participating Research Infrastructures and integrated services among the environ-
mental subdomains, these data and services will be brought together at a higher level
(for the entire cluster), providing more efficient researchers’ services and policymak-
ers.

One of the deliverable projects in ENVRI FAIR context is Open Semantic Search
Engine (OSSE), which is a platform for building own Search Engine, Explorer for
Discovery of extensive document collections based on Apache Solr or Elasticsearch
open-source enterprise-search and Open Standards for Linked Data, Semantic Web,
and Linked Open Data integration. In this case study, the experts were interested in
various OSSE functionality, such as importing and indexing linked data from semantic
knowledge graphs for full-text search and faceted search.

Requirements
The experts of the ENVRI-FAIR project defined the following subset of requirements
for developing the OSSE (for more detail, see Table 5.4):

˛ As the most common type for knowledge storage, representation, reasoning,
RDF’s support is the core requirement in the design and development of the
knowledge base of the search engine. This requirement can include the follow-
ing specific options, such as RDF import/export, RDF storage, owl import, and
SPARQL support (R10, R24, R30, and R70).

˛ An interface for search and discovery of knowledge base content should be pro-
vided. This could be the conventional keyword-based search or faceted search.
Rather than strict adherence to a single controlled vocabulary or keyword set, a
semantic search function is further expected to permit search based on ‘similar’
or ‘related’ terms (R39 and R61).

˛ Due to the variance of source types in the ENVRi community, various methods
should be supported for knowledge acquisition, like form-based manual RDF
ingestion, Questionnaire-based RDF triple generation, existing RDF integration,
structured and unstructured information transformation, etc. Specific measures
should be considered to facilitate non-technical users adding knowledge in a
straight-forward way (R48, R59, and R87).

˛ A graph/network analysis view can provide a visualization of the direct and
indirect relations, connections and networks between named entities like per-
sons, organizations or main concepts which occur together in your content, data
sources, and documents or are connected in your Linked Data Knowledge Graph
(R65, R66, and R19).

˛ Considering the typical case where multiple users contribute to the knowledge
base, provenance is of fundamental importance. This primarily refers to track-
ing individual additions, deletions, and updates and their administration, i.e.,
approval, rejection, reversion (R05 and R20).

Section 5.5 – Analysis of the Results ∣ 121

Table 5.5: this table presents the context of the case study companies (Context), the feature
requirements (Requirements), the case study participants’ ranked shortlists (CP ranked short-
lists), and the outcomes of the DSS for the case studies based on their requirements and priori-
ties (DSS Solutions). Moreover, the numbers of features requirements (#Feature Req) and the
percentages of the MoSCoW priorities are shown in the table. Note, the numbers in percent-
ages beside the solutions signify the calculated scores by the DSS. For instance, the score of the
C programming language for Oceaneering is 78% (see (Farshidi et al., 2018a) for the details).

App. Domain Control systems

#Employees 800-1000 101-250 50-80 20-50 4500-5000 20-50 101-250

Country Netherlands Netherlands Iran Iran Iran Netherlands Netherlands

Must-Have 38.96%

Should-Have 20.78%

Could-Have

#Feature Req.

1. C++ C# C# C# C# Python PHP

2. C VB.net PHP - Java Rust Python

3. Java TypeScript Python - - Java Java

4. Python JavaScript - - - C# C#

5. - - - - - C++ -

1. Java 99% C# 99% C# 99% C# 99% C# 100% Java 90% Java 94%

2. C# 92% Java 99% Python 99% Python 99% Java 100% C# 89% C# 93%

3. C++ 84% Python 99% Java 99% Java 99% Python 100% Python 88% PHP 92%

4. Python 84% JavaScript 78% PHP 85% Object Pascal 87% PHP 100% PHP 84% Python 91%

5. C 78% VB.Net 72% - - Go 87% - - C++ 71% JavaScript 75%

6. PHP 64% TypeScript 65% - - - - - - JavaScript 65% Ruby 72%

ENVRI-FAIR

Search engines

58

50.77%

16.92%

32.31%

30.61%

16.33%

53.06%

60.00%

30.00%

10.00%

27.12% 27.59%

44.83%

27.59%

C
P

 r
a
n

k
e
d

 S
h

o
rt

li
s
ts

30

D
S

S
 S

o
lu

ti
o

n
s

Oceaneering Dooman ltd. Saanaa DP

6577 4965

CMS Helpdesk systems Booking systems

40.26%

R
e
q

u
ir

e
m

e
n

ts

59

44.62%

27.69%

27.69%

50.85%

22.03%

C
o

n
te

x
t

SecureSECO

Financial systems

ASC FinanceComp

Distributed ledgers

Results
The case study participants stated that after analyzing the requirements of the OSSE,
they investigated the potential open-source tools that can be used and customized to
meet the requirements. After performing an extensive evaluation, they selected an
open-source tool called open semantic search. The backend of the tool was imple-
mented in PHP and Python. Accordingly, the first two solutions for the case study
participants were these programming languages. However, they assumed that Java
and C# could be employed in developing additional components of the OSSE.

More than 70% of the feature requirements were prioritized as soft constraint fea-
tures so that the DSS could offer a broader list of alternative solutions. The DSS re-
sults showed that besides the case study participants’ solutions, JavaScript and Ruby
could be considered as two more options. Scalability, popularity, and maturity of the
programming languages were prioritized as three Must-Have features, so the DSS
prioritized Java and C# higher than the offered solutions.

5.5 Analysis of the Results
The validity metric is defined as the degree to which an artifact works correctly. There
are two ways to measure validity: (1) the results of the DSS compared to the prede-

122 ∣ Chapter 5 – Programming Language Ecosystems

fined case-study participant shortlist of potentially feasible programming languages,
and (2) according to the domain experts’ opinion.

Concerning effectiveness, the case study participants asserted that the updated and
validated version of the decision model is useful and valuable in finding the shortlist
of feasible programming languages. Moreover, the DSS reduces the time and cost
of the decision-making process. The case study participants expressed that the DSS
enabled them to meet more detailed programming language feature requirements.
Furthermore, they were surprised to find their primary concerns, especially when
different experts’ opinions are combined.

The DSS suggests that C#, Java, and Python can be feasible solutions for all seven
case studies (see Table 5.5), which means that these programming languages sup-
port all of the features with Must-have priority. It makes sense as these programming
languages are in the top-5 list of popular solutions in the market (see Table 5.3);
moreover, their maturity levels are relatively high, as they support most of the pro-
gramming language features that we have considered in this study (see Tables 5.2).

Scalability and maturity of the programming languages were two key quality con-
cerns of the case study participants (see Table 5.4) so that they considered at least one
of the top-5 programming languages as their potential solutions. Table 5.5 represents
that the DSS can come up with more feasible programming languages than human
experts.

Table 5.4 shows that supporting Debugger, Object-Oriented Programming, Testing
tools, Socket programming, threading, Scalability, Open source compiler or Interpreter,
General-Purpose PL, Web-Based Systems, Web Services, Free implementation of the core
libraries, Event-driven programming, Software Architecture Patterns, Software Architec-
ture Design Patterns, and Object–Relational Mapping (ORM) were programming lan-
guage features that all of the case studies assigned priorities to them and defined
them as their programming language feature requirements. All of the case study par-
ticipants somehow declared that the Object-Oriented Programming paradigm leads
to cheaper and faster development. They mainly preferred to employ a programming
language, or a set of languages, that supports debugging, tracking, and testing tools.

It is not surprising that socket programming and threading were prioritized as two
essential features, as all of the case studies were mainly involved with network pro-
gramming and web-based applications. In other words, Client-Server was one of the
software architecture patterns of the backbone of their systems.

Easy to reuse and read existing code and write new code have considered three
programming language features in the decision model. These features were priori-
tized as Must-Have and Should-Have features at four case study companies so that
the case study participants were looking for programming languages that facilitate
the development process and increase the reusability and readability of their source
code.

Besides the free implementation of their core libraries, open-source programming
languages, as two programming language features, arouse almost all of the case study
participants’ attention. We realized that the development teams’ budget at the case
study companies was impactful on their decisions to select either licensed or open-
source programming languages. In other words, the budget constraint can be led to
selecting the cheapest feasible solution as the best fitting solution.

Section 5.6 – Discussion ∣ 123

5.6 Discussion

5.6.1 Case Study Participants
Almost all of the case study participants asserted that for evaluating a program-
ming language from its usability point of view, they should be familiar with the lan-
guage first, essentially when it is a cutting-edge programming language. It is a time-
consuming process depending on the language’s complexity, making it more challeng-
ing to evaluate. Thus, they require technical knowledge to comprehend the program-
ming language and its features to create suitable test setups and compare it with other
potential solutions. Typically, they need to focus on particular parts of the program-
ming language - assessing the entire language at once is nearly impossible because
it would take much time. Additionally, to evaluate the programming language, the
case study company’s experts need to answer the following question: which program-
ming language features are the most important ones? Can a language’s complexity
be evaluated in a questionnaire or a usability test, or do we need test users evaluat-
ing the language over a more extended period? What are the right set of criteria to
declare a language is usable? How can we assume a language is better than another
one? What should be measured to find this out? Several measurements could be
more practical, such as learnability, understandability, or consistency – What is most
substantial? The case study participants confirmed that the decision model, including
its programming language features and languages, can address such questions and
reduce the decision-making process’s time and cost.

One of the participants mentioned that in contrast to licensed programming lan-
guages, in which programmers are limited to use them for a few days only, open-source
programming languages are available to evaluate before actual implementation. How-
ever, after selecting an open-source programming language as the primary language,
sometimes multiple modifications are made in the source code of an open-source pro-
gramming language by unknown developers. Eventually, this leaves programmers ques-
tioning about the current version of the code they are using. In the case of licensed
programming languages, the changes are made systematically by authorized developers
of the source code, and they notify the version of the code. Accordingly, a development
team should be able to organize the source code and increase its reusability.

One of the case participants stated that code reuse is the practice of using existing
code for a new function or component. The existing code may be reused to perform the
same function or to do a similar but slightly modified function providing for efficiencies,
cost savings, and improved overall quality. In order to reuse code, that code should be
high-quality, so it should be secure and reliable. Code reusable in practice means that
developers have to build libraries that other projects requiring that same functionality
can utilize. So the developers should identify the core competence of each module. .

Biases, such as motivational and cognitive (Montibeller & Winterfeldt, 2015), arise
because of shortcuts or heuristics that decision-makers use to solve problems and per-
form tasks. The Hawthorne effect (Jones, 1992), which is the tendency for decision-
makers to change their behavior when observed, is a form of cognitive bias. The
case study participants might have been more careful in the observational setting
than in the real setting because they are being observed by scientists judging their

124 ∣ Chapter 5 – Programming Language Ecosystems

selected programming language feature requirements and priorities. Moreover, the
Bandwagon effect (Nadeau et al., 1993), which is the tendency to do or believe things
because many other decision-makers do or believe the same, is another form of cog-
nitive bias. The Bandwagon effect typically shows up in group decisions. To mitigate
the Hawthorne and Bandwagon effects, individual and group interviews have been
conducted.

5.6.2 Experts
One of the experts asserted that some programming languages are certainly better op-
tions for solving different problems, making the selection process more straightforward.
For instance, if you are integrating heavily with Microsoft products, then you have to
consider .NET on your list of potential alternatives. If you perform functions, such as sci-
entific modeling, Python can be a better choice because of its well-defined math libraries
and the ability to scale well with Hadoop. If enterprise-level security for a business-to-
business application is critical, then Java can be the best fitting language. Thus, some
factors, including the problem domain, business case, and the types of customers are
impactful in the evaluation process.

The experts expressed that programming languages’ supported programming lan-
guage features play a significant role in the programming language selection process.
For instance, one of the experts expressed that we are a developer-centric company and
need a comprehensive set of software development kits for various well-known program-
ming languages, including Java, Python, Ruby, and PHP. Each programming language
has different features, communities, support, and ecosystems to consider when making
your choice.

Almost all of the experts mentioned that their companies continuously improve
and reevaluate their technologies, including the used programming languages. They
mainly consider a limited set of programming language features and languages in
their selection process; thus, a decision model, such as the one in this study, can ease
their evaluation process.

5.6.3 Lessons learned
General-purpose programming languages, such as C# and Java, are nearly at the
same level of maturity and support almost the same feature set, so programming
language selection is majorly concerned with the ecosystem, the community, and the
availability of programmers. The ecosystem can be considered as libraries, tools, and
frameworks that support programming languages. The community is typically the
one who maintains the ecosystem. Even when backed by a company, the community
is the main drive for improvements, often implementing them. The availability of
programmers is self-explanatory. Some programming languages, such as Haskell, are
appreciated in theory, but fewer programmers are available than Java.

When a software development company selects a popular programming language,
it can count on sourcing numerous well-qualified developers in the market who are
available to work at the company. Such programming languages are surrounded by
huge communities that provide developers with samples and solutions to solve critical
tasks and problems much quicker.

Section 5.6 – Discussion ∣ 125

Experience in using technology provides invaluable knowledge when selecting suit-
able technology. In other words, software engineers typically prefer to select the
programming languages they have employed before and have some experience. The
main factor is the cost of adding a new programming language. Hiring new develop-
ers, changing the infrastructure, and learning the best practices are costly for many
companies. Therefore, the answer to the best programming language question usu-
ally is what the company was already using. There are many risks associated with
this, as an organization could end up being stuck in a legacy technology for which
there is no longer a demand (Khadka et al., 2014). It is thereby advisable for these
companies to primarily use the DSS to avoid innovation stasis.

For small projects, selecting a programming language is much faster and more
straightforward, as the brevity of the lines of code is essential. In other words, soft-
ware engineers prefer to select a programming language requiring fewer code lines
to develop the project in such projects. The intention is to get the solution out first,
next to be worried about the performance. However, for large organizational projects,
programming language selection is a different story. Various development teams will
develop different modules and services expected to interact and interconnect with
another to address a particular problem. In this case, the programming language se-
lection might be involved with the high level of portability of the language to run on
different platforms or exchangeability of data and information.

5.6.4 The Decision Model
The case study participants confirm that the DSS provides programming languages
to help software development companies in their initial decisions for selecting pro-
gramming languages. In other words, the DSS recommended nearly the same pro-
gramming languages as the case study participants suggested to their companies af-
ter extensive analysis and discussions. However, the DSS offers a shortlist of feasible
programming languages; therefore, software development companies should perform
further investigations, such as performance testing, to find the best fitting program-
ming language for their software products.

The case study participants confirm that the updated and validated version of the
DSS is useful and valuable in finding the shortlist of feasible solutions. Finally, it
reduces the time and cost of the decision-making process. Our website11 is up and
running to keep the decision support system’s knowledge base up-to-date and valid.
The supported programming language features are going to change due to technolog-
ical advances. As such, the decision model must be updated regularly. We envision
a community of users of the DSS, who maintain and curate the system’s knowledge
and consider building such a community as future work.

Decision support systems can be employed to make decisions quicker and more
efficiently; however, they suffer from adoption problems (Donzelli, 2006). A DSS
supports rational decision making by recommending alternative solutions basis the
objectivity. Although limited rationality plays a crucial role in a decision-making pro-
cess, subjectivity should not be discarded. A DSS promotes objectivity and dismisses
subjectivity, which can have a drastic consequence on the decisions’ reliability.

11https://dss-mcdm.com

126 ∣ Chapter 5 – Programming Language Ecosystems

The DSS provides a discussion and negotiation platform to enable requirement
engineers to make group decisions. It detects and highlights the conflicts in the as-
signed priorities to decision-makers’ programming language feature requirements and
asks them to resolve disagreements. Thus, the DSS supports requirements engineers
in the requirements verification and validation activity by avoiding conflict between
programming language feature requirements and generating feasible solutions ac-
cording to the programming language feature requirements. Moreover, the DSS can
be considered as a communication tool among the decision-makers to facilitate the
requirements specification activity (Farshidi et al., 2020c).

It is essential to highlight that sometimes unpopular programming languages have
unique features that the popular ones do not support them. For instance, OptiML is
an embedded domain-specific language for machine learning. OptiML enables soft-
ware developers to run statistical inference algorithms expressible by the statistical
query model to be easy to express and execute quickly (Sujeeth et al., 2011). Alter-
natively, there are many command-line tools on UNIX-like operating systems (such
as Linux, Mac, and BSD), each one accepting instructions in their format. This for-
mat can be considered a domain-specific language that allows defining the tasks to
be executed. For example, SED executes the text transformations indicated using its
domain-specific language (Dougherty & Robbins, 1997). Consequently, we need a de-
cision model for selecting such programming languages. We believe that the decision
model can be extended in the future to consider such programming languages as its
alternative solutions.

5.6.5 Limitations and Threats to Validity
The validity assessment is an essential part of any empirical study. Validity discussions
typically involve Construct Validity, Internal Validity, External Validity, and Conclusion
Validity.
Construct validity refers to whether an accurate operational measure or test has been
used for the concepts being studied. In literature, decision-making is typically defined
as a process or a set of ordered activities concerning stages of problem identifying,
data collection, defining alternatives, selecting a shortlist of alternatives as feasible so-
lutions with the ranked preferences (Fitzgerald et al., 2017; Kaufmann et al., 2012).
To mitigate the threats to the construct validity, we followed the MCDM theory and
the six-step of a decision-making process (Majumder, 2015) to build the decision
model for the programming language selection problem. Moreover, we employed
document analysis and expert interviews to capture knowledge regarding program-
ming languages as two different knowledge acquisition techniques. Additionally, the
DSS and the decision model have been evaluated through seven real-world case stud-
ies at seven different real-world software development companies in the Netherlands
and Iran.

A challenge for this study is that the qualities and features that we have identified
with the support of twelve experts can vary wildly with the expert’s perception. Some
of the experts, for instance, indicated that most features could quickly be built us-
ing the language, although it is not necessarily included in the language’s standard
libraries. While we are convinced that the twelve experts have added a significant
amount of extra knowledge to the model, one might argue we need a large number

Section 5.6 – Discussion ∣ 127

of experts per programming language to reach consensus on each feature. We should
also be aware of the strong opinions surrounding programming languages, making
it somewhat more complicated to find consensus in the data. A potential solution to
this validity threat is the introduction of the community, as mentioned earlier.
Internal validity attempts to verify claims about the cause-effect relationships within
the context of a study. In other words, it determines whether the study is sound or
not. To mitigate the threats to the decision model’s internal validity, we define DSS
success when it, in part, aligns with the case study participants’ shortlist and when
it provides new suggestions that are identified as being of interest to the case study
participants. Emphasis on the case study participants’ opinion as a measurement
instrument is risky, as they may not have sufficient knowledge to make a valid judg-
ment. We counter this risk by conducting more than one case study, assuming that
the case study participants are handling their interest and applying the DSS to other
problem domains, where we find similar results (Farshidi & Jansen, 2020a; Farshidi
et al., 2018a; Farshidi et al., 2018b; Farshidi et al., 2020c; Farshidi et al., 2018c;
Farshidi et al., 2020e).
External validity concerns the domain to which the research findings can be gen-
eralized. External validity is sometimes used interchangeably with generalizability
(feasibility of applying the results to other research settings). We evaluated the deci-
sion model in the context of Dutch enterprises. To mitigate threats to the research’s
external validity, we captured knowledge from different knowledge sources without
any regional limitations to define the constructs and build the decision model. Ac-
cordingly, we hypothesize that the decision model can be generalized to all software
development companies worldwide who face uncertainty in the programming lan-
guage selection problem. Another question is whether the framework and the DSS
can be applied to other problem domains as well. The problem domains (Farshidi et
al., 2018a; Farshidi et al., 2020c; Farshidi et al., 2018c; Farshidi et al., 2020e) were
selected opportunistically and pragmatically, but we are convinced that there are still
many decision problems to which the framework and the DSS can be applied. The
categories of problems to which the framework and the DSS can be applied success-
fully can be summed up as follows: (1) the problem regards a technology decision in
system design with long-lasting consequences, (2) there is copious scientific, industry,
and informal knowledge publicly available to software engineers, and (3) the (team
of) software engineer(s) is not knowledgeable in the field but very knowledgeable
about the system requirements. We believe that the framework can be employed as a
guideline to build decision models for MCDM problems in software production.
Conclusion validity verifies whether the methods of a study such as the data collec-
tion method can be reproduced, with similar results. We captured knowledge sys-
tematically from the sources of knowledge following the MCDM framework (Farshidi
et al., 2018a). The accuracy of the extracted knowledge was guaranteed through
the protocols that were developed to define the knowledge extraction strategy and
format. A review protocol was proposed and applied by multiple research assistants,
including bachelor and master students, to mitigate the research’s conclusion validity
threats. By following the framework and the protocols, we keep consistency in the
knowledge extraction process and check whether the acquired knowledge addresses

128
∣

C
hapter5

–
Program

m
ing

Language
Ecosystem

s

Table 5.6: this table compares a subset of selected studies from the literature that addresses the programming language selection problem.
The first and second columns (Studies and Years) refer to the considered studies and their publication years. The third column (DMA)
indicates the decision-making approach that the studies have employed to address the problem. The fourth column (MCDM) denotes whether
the corresponding decision-making technique is an MCDM approach. The fifth column (PC) indicates whether the MCDM approach applied
pairwise comparison as a weight calculation method or not. The sixth column (QA) determines the type of quality attributes. The seventh
and eighth columns (#C and #A) signify the number of criteria and alternatives that were considered in the selected studies. The next three
columns indicate the numbers of common quality attributes (#CQ), features (#CF), and alternatives (#CA) of this study (the first row) with
the selected studies. The last column (Cov.) shows the percentage of the coverage of the considered criteria (quality attributes and features).

Studies Years DMA MCDM PC QA #C #A #CQ #CF #CA Cov.
This
study DSS Yes No ISO/IEC 25010

EX. ISO/IEC 9216 164 47 57 107 47 100%

Mishra et al. (2020) 2020 Fuzzy Logic Yes No Domain Specific 7 8 5 2 7 100%
Costanza et al. (2019) 2019 Benchmarking No N/A Domain Specific 2 3 2 0 3 100%

Yıldızbaşı & Daneshvar (2018) 2018 TOPSIS Yes Yes Domain Specific 18 4 8 8 4 89%
Feraud & Galland (2017) 2017 Benchmarking No N/A Domain Specific 14 5 5 8 0 92%

Yoon et al. (2016) 2016 FDM Yes No Domain Specific 29 6 3 12 3 52%
Ray et al. (2014) 2014 Statistical Analysis No N/A Domain Specific 26 17 2 12 17 82%

Lesani et al. (2014) 2014 FAHP Yes Yes Domain Specific 8 5 3 3 5 75%
Meyerovich & Rabkin (2013) 2013 Statistical Analysis No N/A Domain Specific 14 33 3 7 26 71%

Bissyandé et al. (2013) 2013 Statistical Analysis No N/A Domain Specific 3 30 2 1 17 100%
Bhattacharya & Neamtiu (2011) 2011 Statistical Analysis No N/A Domain Specific 4 2 2 0 2 50%

Mannila & Raadt (2006) 2006 Benchmarking No N/A Domain Specific 17 11 9 7 9 94%
Parker et al. (2006) 2006 AHP Yes Yes Domain Specific 23 7 9 12 7 91%

Cochran & Chen (2005) 2005 Fuzzy Logic Yes No Domain Specific 36 3 9 2 1 31%
Holtz & Rasdorf (1988) 1988 Benchmarking No N/A Domain Specific 23 4 18 3 3 91%

Section 5.7 – Related Work ∣ 129

the research questions. Moreover, we crosschecked the captured knowledge to assess
the results’ quality, and we had at least two assistants extracting data independently.

5.7 Related Work
Decision analysis, which is the study of decision making for problems with multiple
objectives, has been developed and widely employed in solving complex decision-
making problems. In literature, decision-making is typically defined as a process or
a set of ordered activities concerning stages of problem identifying, data collection,
defining alternatives, selecting a shortlist of alternatives as feasible solutions with the
ranked preferences. Fitzgerald et al. (2017) define decision-making as a process that
consolidates critical assessment of evidence and a structured process that requires
time and conscious effort. Kaufmann et al. (2012) state that the decision-making
process encourages decision-makers to establish relevant decision criteria, recognize a
comprehensive collection of alternatives, and assess the alternatives accurately. Over
the past few years, various methods and underlying theories have been introduced
for solving decision-making problems in software production, such as programming
language selection.

In this research, Snowballing was the primary method to investigate the existing lit-
erature regarding techniques that address the programming language selection prob-
lem. Table 5.6 summarizes a subset of selected studies that discuss the problem.

5.7.1 Benchmarking and Statistical Analysis
In literature, some studies employed Benchmarking and Statistical Analysis to evalu-
ate and compare a collection of programming languages against each other. For in-
stance, Meyerovich & Rabkin (2013) conducted survey research to identify the factors
that lead to language adoption. They concluded that only a limited number of pro-
gramming languages were used for most applications, but the programming market
supports many programming languages with niche user bases. Furthermore, essential
programming language features have only secondary importance in adoption. Open-
source libraries, existing code, and experience strongly influence developers when
selecting a project’s programming language.

Holtz & Rasdorf (1988) introduced and discussed various attributes of program-
ming languages that can positively or negatively affect the computer-aided design
and computer-aided engineering software. Four programming languages, Fortran, C,
Pascal, and Modula-2, were compared using the attributes.

Bhattacharya & Neamtiu (2011) introduced a methodology for quantifying the im-
pact of programming language on software quality and developer productivity. They
formulated four hypotheses that investigated whether using C++ leads to better soft-
ware than using C. Then, they tested their hypotheses on large data sets to ensure
statistically significant results.

Mannila & Raadt (2006) suggested a set of criteria, including learnability, suitabil-
ity, and availability, of programming languages. Next, they compared eleven pro-
gramming languages (including Eiffel, Haskell, Java, JavaScript, Logo, Pascal, Python,

130 ∣ Chapter 5 – Programming Language Ecosystems

and Scheme) according to the criteria. Finally, they assigned scores to the languages
based on the number of criteria that they support.

Ray et al. (2014) collected an extensive data set from GitHub to study the effect of
programming language features such as static versus dynamic typing, strong versus
weak typing on software quality. By triangulating findings from different methods
and controlling for confounding effects such as team size, project size, and project
history, they reported that programming language design does have a significant but
modest effect on software quality.

Bissyandé et al. (2013) investigated a large number of open-source projects from
GitHub to measure the popularity, interoperability and impact of various programming
languages in terms of lines of code, development teams, issues, etc.

Feraud & Galland (2017) compared five agent-based programming languages ac-
cording to a number of criteria, such as Code extensibility and Debugging tools.

Costanza et al. (2019) performed performance testing to analyze and compare the
performance of three programming languages (Go, Java, and C++). Based on their
benchmark results, the authors selected Go as their implementation tool and rec-
ommended considering Go as a valid candidate for developing other bioinformatics
applications.

Studies based on benchmarking and statistical analysis are typically
time-consuming approaches and mainly applicable to a limited set of alternatives
and criteria, as they require a thorough knowledge of programming languages and
concepts. Decision-making based on such analysis can be challenging as
decision-makers cannot assess all their requirements and preferences at the same
time, especially when the number of requirements and alternatives is significantly
high. Furthermore, benchmarking and statistical analysis are likely to become
outdated soon and should be kept up to date continuously, which involves a
high-cost process.

5.7.2 MCDM approaches
As aforementioned, finding the best fitting programming language(s) for a software
project is a decision-making process that evaluates several alternatives and criteria.
The selected programming language(s) should address the concerns and priorities of
the decision-makers.

Conversely to MCDM approaches, studies based on Benchmarking and Statistical
Analysis principally offer generic results and comparisons and do not consider indi-
vidual decision-maker needs and preferences.

The tools and techniques based on MCDM are mathematical decision models ag-
gregating criteria, points of view, or features (Floudas & Pardalos, 2008). Support
is a fundamental concept in MCDM, indicating decision models are not developed
following a process where the decision maker’s role is passive (Dvořák et al., 2018).
Alternatively, an iterative process is applied to analyze decision-makers’ priorities and
describe them as consistently as possible in a suitable decision model. This iterative
and interactive modeling procedure forms the underlying principle of decision sup-
port tendency of MCDM, and it is one of the main distinguishing characteristics of the
MCDM as opposed to statistical, and optimization decision-making approaches (Gil-
Aluja, 2013).

Section 5.7 – Related Work ∣ 131

A variety of MCDM approaches have been introduced by researchers recently. A
subset of selected MCDM methods is presented as follows: The Analytic Hierarchy
Process (AHP) is a structured and well-known method for organizing and analyz-
ing MCDM problems based on mathematics and psychology. Parker et al. (2006)
presented a set of criteria for selecting a programming language for use in an in-
troductory programming course. Next, they applied the AHP to evaluate the seven
programming languages they considered potential alternatives. This MCDM approach
considers a hierarchical structure of objectives, criteria, and alternatives to make com-
plex decisions.

The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is an
MCDM approach that employs information entropy to assess alternatives.

Yıldızbaşı & Daneshvar (2018) employed the TOPSIS method to evaluate a set of
programming languages based on seven criteria such as ease of use and ability of
programming languages. This approach aims to come up with an ideal solution and a
negative ideal solution and then identify a scenario that is nearest to the ideal solution
and farthest from the negative ideal solution.

Fuzzy logic is an approach to computing based on degrees of truth rather than the
usual Boolean logic. Cochran & Chen (2005) and Mishra et al. (2020) employed
fuzzy set theory and fuzzy operations to address the programming language selection
problem using based on weighted scores. Sometimes combinations of fuzzy logic
with other MCDM approaches, such as AHP, are employed to solve MCDM problems.
For instance, Lesani et al. (2014) introduced a FAHP-based approach to evaluate five
object-oriented programming languages against eight decision criteria.

The Fuzzy Delphi Method (FDM) is a more advanced version of the Delphi Method
in that it utilizes triangulation statistics to determine the distance between the levels
of consensus within the expert panel. Yoon et al. (2016) identified a set of key factors
for educational programming language selection and then applied the Delphi method
based on a 20-expert panel to evaluate six programming languages.

The majority of the MCDM techniques in literature define domain-specific quality
attributes to evaluate the alternatives. Such studies are mainly appropriate for specific
case studies. Furthermore, the results of MCDM approaches are valid for a specified
period; therefore, the results of such studies, by programming language advances,
will be outdated. Note that, in our proposal, this is also a challenge, and we propose
a solution for keeping the knowledge base up to date in section 5.6.

Additionally, pairwise comparison is typically considered as the main method to
assess the weight of criteria in MCDM techniques. For a problem with n number
of criteria n(n−1)

2 number of comparisons are needed (Saaty, 1990). It means that
the pairwise comparison is a time-consuming process and gets exponentially more
complicated as the number of criteria increases (Ribeiro et al., 2011). A subset of
MCDM approaches, such as TOPSIS and AHP, are not scalable (Ibriwesh et al., 2018;
Khari & Kumar, 2013), so in modifying the list of alternatives or criteria, the whole
process of evaluation should be redone. Therefore, these methods are costly and ap-
plicable to only a small number of criteria and alternatives. In this study, we have
considered 164 criteria and 47 alternatives to building a decision model for the pro-
gramming language selection problem.

In contrast to the named approaches, the cost of creating, evaluating, and applying

132 ∣ Chapter 5 – Programming Language Ecosystems

the proposed decision model is not penalized exponentially by the number of criteria
and alternatives because it is an evolvable and expandable approach that splits down
the decision-making process into four maintainable phases (Farshidi et al., 2018c).
Moreover, we introduce several parameters to measure non-Boolean criteria’ values,
e.g., the maturity level and popularity of programming languages. The proposed
decision model addresses the main knowledge management issues, such as capturing,
sharing, and maintaining knowledge. Moreover, it uses the ISO/IEC 25010 (ISO,
2011) as a standard set of quality attributes. This quality standard is a domain-
independent software quality model and provides reference points by defining a top-
down standard quality model for software systems.

5.8 Conclusion
The development of software systems is well recognized as an engineering activity,
hence the term software engineering. As with all engineering activities, supervisors
and practitioners must have a firm understanding of the fundamentals. The com-
plexity of software engineering has increased dramatically in the past decade. With
the continuing increase in the variety, functionality, and complexity of software engi-
neering, more attention must be paid to programming language suitability to make
rational decisions regarding language selection.

In this study, the programming language selection process is modeled as a multi-
criteria decision-making problem that deals with evaluating a set of alternatives and
considering a set of decisions criteria (Triantaphyllou et al., 1998). Moreover, we
presented a decision model for the programming language selection problem based
on the technology selection framework (Farshidi et al., 2018a). The novelty of
the approach provides knowledge about programming languages to support unin-
formed decision-makers while contributing a sound decision model to knowledge-
able decision-makers. Furthermore, it incorporates deeply embedded requirements
engineering concepts, such as the ISO software quality standards and the MoSCoW
prioritization technique, besides knowledge engineering theories, to develop the de-
cision model. We conducted seven industry case studies to evaluate the decision
model’s usefulness and effectiveness to address the decision problem. We find that
while organizations are typically tied to particular ecosystems by extraneous factors,
they can benefit significantly from our DSS use.

The case studies show that this article’s decision model also provides a founda-
tion for future work on MCDM problems. We intend to build trustworthy decision
models to address Programming Language Framework and Model- Driven Development
Platform selection problems as our (near) future work.

CHAPTER 6

Model-Driven Development
Platforms

Context: Model-Driven Development platforms shift the focus of soft-
ware development activity from coding to modeling for enterprises.
A significant number of such platforms are available in the market.
Selecting the best fitting platform is challenging, as domain experts
are not typically model-driven deployment platform experts and
have limited time for acquiring the needed knowledge. Method: We
model the problem as a multi-criteria decision-making problem and
capture knowledge systematically about the features and qualities of
30 alternative platforms. Results: Through four industry case studies,
we confirm that the decision model can support decision-makers
with the selection problem by reducing the time and cost of the
decision-making process and by providing a richer list of options
than the enterprises considered initially. Conclusion: Our industry
contribution is the decision model. We show that having decision
knowledge readily available supports decision-makers in making
more rational, efficient, and effective decisions. The study’s theo-
retical contribution is the observation that the decision framework
provides a reliable approach for creating decision models in software
production.

keywords- Model-Driven Development platform; decision model;
multi-criteria decision-making; decision support system; industry
case study

This chapter is based on the following publication:

Farshidi, S., S. Jansen & S. Fortuin (2021), “Model-driven development platform selection:
four industry case studies”, Software and Systems Modeling.

Section 6.1 – Introduction ∣ 135

6.1 Introduction
Software applications are produced and maintained by software engineers, and busi-
ness processes are introduced and managed by domain experts (non-developers) who
mainly understand business (Olariu et al., 2016). Software development requires in-
teractions with domain experts, necessitating a level of agreement in describing the
technical phases of development. Moreover, software products are getting more com-
plicated, so they need to be discussed at different abstraction levels depending on
the technical background of the involved domain experts, the development process’s
phase, and the business objectives (Brambilla et al., 2017).

Model-Driven Development (MDD) is a vision of software development where mod-
els play a core role as primary development artifacts (Staron, 2006). Modeling tools
in software production are widespread and have reached a degree of maturity where
their performance and availability are increasingly accepted, also by non-technical
users. Over the last two decades, an extensive list of modeling tools (García-Borgoñon
et al., 2014) has been introduced (Richardson & Rymer, 2016) to support MDD, such
as low-code/no-code platforms and business process management systems. Such
modeling tools and platforms’ primary aspiration is to boost productivity and de-
crease time-to-market by facilitating development at a higher level of abstraction and
employing concepts closer to the problem domain at hand, rather than the ones given
by programming languages (Sendall & Kozaczynski, 2003).

According to Gartner, by 2024, MDD platforms will be responsible for over 65% of
the application development activity, and three-quarters of large enterprises will be
using at least four MDD platforms, as such platforms enable enterprises to develop
applications quicker using more capabilities and fewer conventional developers (Vin-
cent et al., 2019).

A significant number of MDD platforms with a broad list of features and services
are available in the market (Richardson & Rymer, 2016), so it is challenging for
enterprises to select the best fitting platforms that address their requirements and
priorities (Hutchinson et al., 2014). The selection problem can be modeled as a
multi-criteria decision-making (MCDM) problem that deals with evaluating a set of
alternatives and considers a set of decisions criteria (Triantaphyllou et al., 1998).
MCDM poses a cost-effective solution based on its mathematical modeling method
for finding the best fitting feasible alternative according to decision-makers’ prefer-
ences (Dhiman & Deb, 2020).

Knowledge about MDD platforms is fragmented in a wide range of literature, docu-
mentation, and software engineers’ experience. To systematically capture such knowl-
edge and make it available in a reusable and extendable format, we have followed the
framework (Farshidi et al., 2018a) to build a decision model for the MDD platform
selection problem. The framework and a Decision Support System (DSS) (Farshidi
et al., 2018b) were introduced in our previous studies for building decision models
for MCDM problems in software production.

The DSS is a platform1 for building MCDM decision models based on the frame-
work. Decision models can be uploaded to the DSS’s knowledge base to facili-

1The decision studio is available online on the DSS website: https://dss-mcdm.com

136 ∣ Chapter 6 – Model-Driven Development Platforms

tate software-producing organizations’ decision-making process according to their re-
quirements and preferences. Furthermore, the DSS can be used over the full lifecycle
and co-evolve its advice based on evolving requirements.

The rest of this study is structured as follows: Section 6.2 presents a brief descrip-
tion of the MDD platforms and determines the scope of the study. Section 6.3 formu-
lates the MDD platform selection problem as an MCDM problem, defines the research
questions of the study, and describes our research method, which is based on the
design science, expert interviews, document analysis, and exploratory theory-testing
case studies. This study has the following contributions:

˛ Section 6.4 explains the integration of the captured tacit knowledge of soft-
ware engineers through interviews and the explicit knowledge scattered in an
extensive list of websites, articles, and reports. This study’s findings provide
knowledge that can educate and support the decision-makers to understand: 1)
which MDD platforms are available at the moment, 2) the capabilities of the
MDD platforms, and 3) which features are fulfilled by which platforms.

˛ Section 6.5 describes four industry case studies in the Netherlands to evaluate
the effectiveness and usefulness of the decision model to address the decision
problem. Moreover, This section analyzes the DSS results and compares them
with the case study participants’ shortlist of feasible MDD platforms. The results
show that the DSS recommended nearly the same solutions as the case study
participants suggested to their companies after extensive analysis and discus-
sions and do so more efficiently.

Section 6.6 highlights barriers to the knowledge acquisition and decision-making
process, such as motivational and cognitive biases, and argues how we have mini-
mized these threats to the validity of the results. Section 6.7 positions the proposed
approach in this study among the other MDD platform selection techniques in the lit-
erature. Finally, Section 6.8 summarizes the proposed approach, defends its novelty,
and offers directions for future studies.

6.2 Background
Hailpern & Tarr (2006) give a general definition of MDD: “A software engineering
approach consisting of the application of models and model technologies to raise the
level of abstraction at which developers create and evolve software, with the goal of
both simplifying (making easier) and formalizing (standardizing, so that automation
is possible) the various activities and tasks that comprise the software life cycle”.

Software production with an MDD platform is not initiated by programming (high-
coding) but modeled using visual modeling or declarative development tools and
pre-built templates and components understood by citizen developers. The concep-
tual model transforms into an application (Ceri et al., 2009), such as web-based or
wearable apps, by generating code or model interpretation (Brambilla et al., 2017).
The process of transforming a conceptual model into an application is called concep-
tual modeling compilation (Pastor & Molina, 2007). The development of conceptual
models comprises the real world’s representation using an abstraction level higher
than that of source code. Likewise, source code represents a higher abstraction level
than that for machine code obtained through a conventional compilation process.

Section 6.2 – Background ∣ 137

Therefore, it seems logical to refer to the process of transforming a conceptual model
into a software product using the term compilation.

The simplified interface leads many to believe that building applications using MDD
platforms requires little or no coding knowledge. However, sometimes these prede-
fined components need to be customized using programming languages. For exam-
ple, maybe a developer wants to place a particular widget on a web application home
page, which is not a part of the MDD platform’s default widget library. In this case,
she needs to extend the platform capabilities by developing a unique widget and mak-
ing it a new component for future projects. Additionally, some MDD platforms offer
the flexibility to deploy and maintain applications on public or private clouds or even
on-premises. Automated deployment, together with a cloud-native and stateless ar-
chitecture, leads to high availability and fail-over to support large-scale deployments,
especially in an enterprise context.

Four principles underlie the architecture of an MDD platform (Brown, 2004): (1)
Models expressed in a well-defined notation are a cornerstone to system understand-
ing for enterprise-scale solutions. (2) Building systems can be organized around a set
of models by imposing a series of transformations between models, organized into an
architectural framework of layers and transformations. (3) A formal underpinning
for describing models in a set of metamodels facilitates meaningful integration and
transformation among models and is the basis for automation through tools. (4) Ac-
ceptance and broad adoption of the model-based approach require industry standards
to provide consumers with openness and foster competition among vendors. Accord-
ingly, in literature, there are a significant number of tools and platforms that are
based on the MDD paradigm, for instance, modeling notations and software process
modeling languages, such as UML and Petri-nets (García-Borgoñon et al., 2014).

Gartner (Dunie et al., 2019) and Forrester (Rymer et al., 2019) categorized MDD
platforms, including low-code/no-code platforms and business process management
systems into the following two sets:
Business Process Management Suite (BPMS) is a set of platforms to support busi-
ness process management initiatives. BPMS is an MDD approach that aids a process
improvement lifecycle from start to end – from process discovery, definition, design,
implementation, monitoring, and analysis. BPMS platforms are used for automat-
ing, measuring, and optimizing business processes. Note, BPMS is an extension of
classical workflow management systems and approaches (Van Der Aalst, 2003).
intelligent Business Process Management Suite (iBPMS) is a subset of low-
code/no-code application development platforms. It provides the functionality
needed to support more intelligent business operations, such as real-time analytics
and collaborative capabilities (Dunie et al., 2019). According to Gartner’s report,
iBMPS is the next generation of BPMS that leverages recent technological advances
to attain a degree of operational responsiveness not possible with BPMS platforms.

This study focuses on BMPS and iBPMS as two essential sets of MDD platforms
to build a decision model for the decision-making process. Note that we use MDD
platforms to refer to BMPS and iBPMS platforms for the sake of brevity.

138 ∣ Chapter 6 – Model-Driven Development Platforms

6.3 Research Approach
This section defines the problem, indicates the study objective, and formulates the
research questions. Moreover, it elaborates on the research methods and relates them
to individual research questions to which they apply. Additionally, the knowledge ac-
quisition techniques, analysis procedures, and the tactics used to mitigate the threats
to this study’s validity are presented in this section.

6.3.1 Problem Definition
In this study, we formulate the MDD Platform selection problem as an MCDM prob-
lem:

Let Plat f orms = {p1, p2, . . . p∣Plat f orms∣} be a set of MDD platforms in the
market (i.e., Mendix, Outsystems, and ServiceNow). Furthermore, Features =
{ f1, f2, . . . t∣Features∣} be a set of MDD features (i.e., Supporting Native modeling tool
and Decision table) of the MDD platforms, and each platform p, where p ∈ Plat f orms,
supports a subset of the set Features. The goal is finding the best fitting MDD plat-
forms as solutions, where Solutions ⊂ Plat f orms, that support a set of MDD feature
requirements, called Requirements, where Requirements ⊆ Features. An MCDM ap-
proach for the selection problem receives Plat f orms and their Features as its input,
then applies a weighting method to prioritize the Features based on the decision-
makers’ preferences to define the Requirements, and finally employs a method of
aggregation to rank the Plat f orms and suggests Solutions. Accordingly, an MCDM
approach can be formulated as follows:

MCDM ∶ Plat f orms × Features × Requirements → Solutions

Typically, a unique optimal solution for an MCDM problem does not exist, and it
is necessary to employ decision-makers’ preferences to differentiate between solu-
tions (Majumder, 2015). Particular platforms might fit into an enterprise; however,
some might be better than others. It is tough to state which platform is the best one,
partially because we can not predict the future or know how the enterprise would
have evolved if a different platform was selected. Therefore, it is inevitable to note
that such a technology selection process can never be completely objective because
humans have to make decisions.

Figure 1.2 visualises MCDM approach for the MDD platform selection problem in
a 3D space. It shows that the degree of satisfaction of the decision-makers with a
suggested solution is fuzzy, which means that the satisfaction degree from a decision-
maker perspective may range between completely true (best fit) and completely false
(worst fit) (Dvořák et al., 2018), which is represented by a range of colors from red
to dark green.

6.3.2 Research Question
The Main Research Question (MRQ) of this study is as follows:

MRQ: How can knowledge regarding MDD platforms be captured and organized

Section 6.3 – Research Approach ∣ 139

systematically to support enterprises with the decision-making process?

We formulated the following research questions to capture knowledge regarding
the MDD platform systematically and to build a decision model for the decision
problem based on the framework (Farshidi et al., 2018a):

RQ1: Which MDD concepts should be considered as the MDD features in the
decision model?
RQ2: Which MDD platforms should be considered in the decision model?
RQ3: Which software quality attributes can be used to evaluate the MDD plat-
forms?
RQ4: What are the impacts of the MDD features on the quality attributes of the
MDD platforms?
RQ5: Which MDD platforms currently support the MDD features?

6.3.3 Research Methods
Research methods are classified based on their data collection techniques (inter-
view, observation, literature, etc.), inference techniques (taxonomy, protocol analysis,
statistics, etc.), research purpose (evaluation, exploration, description, etc.), units of
analysis (individuals, groups, process, etc.), and so forth (Meredith et al., 1989).
Multiple research methods can be combined to achieve a fuller picture and a more
in-depth understanding of the studied phenomenon by connecting complementary
findings that conclude from the methods from the different methodological traditions
of qualitative and quantitative investigation (Johnson & Onwuegbuzie, 2004).

The data collection is an empirical study that can be quantitative or qualita-
tive (Runeson & Höst, 2009). Quantitative data comprises numbers and classes, while
qualitative data involves descriptions and explanations of phenomena. Quantitative
data is analyzed using statistics, while qualitative data is analyzed using expert inter-
views and case study research to provide a more detailed and more in-depth expla-
nation. However, a combination of qualitative and quantitative data often provides a
better understanding of the studied phenomenon (Seaman, 1999) (Mixed research).
Table 6.6 shows the research methods and data collection types of a subset of studies
in the literature that address the MDD platform selection problem.

We designed a framework (Farshidi et al., 2018a) and implemented a DSS (Farshidi
et al., 2018b) for supporting software engineers (decision-makers) with their MCDM
problems in software production. Knowledge engineering theories have been em-
ployed to design and implement the DSS and the framework. The framework pro-
vides a guideline for decision-makers to build decision models for MCDM problems in
software production following the six-step of the decision-making process (Majumder,
2015): (1) identifying the objective, (2) selection of the features, (3) selection of the
alternatives, (4) selection of the weighing method, (5) applying the method of aggre-
gation, and (6) decision making based on the aggregation results.

In this study, we applied the framework to build a decision model for the MDD
platform selection problem. Moreover, we used design science, expert interviews,
and document analysis as a mixed data collection method to capture knowledge re-
garding MDD platforms and to answer the research questions. Then, we identified

140 ∣ Chapter 6 – Model-Driven Development Platforms

30 MDD platforms and 94 MDD features by conducting semi-structured interviews
with 26 domain experts. We also indicated the mapping between the MDD features
and platforms by analyzing MDD platforms’ documents and the experts’ tacit knowl-
edge. Moreover, we mapped the MDD features to the quality attributes suggested
by ISO/IEC 25010 standard (ISO, 2011) and extended ISO/IEC 9126 standard (Car-
vallo & Franch, 2006) and calculate the impacts of the MDD platforms on the quality
attributes based on three expert interviews. According to the acquired knowledge
and guidelines of the framework (Farshidi et al., 2018a), we modeled the decision
problem as an MCDM problem and built a decision model for the MDD platform se-
lection problem. Finally, we have evaluated the decision model by conducting four
real-world case studies.

Design Science
Design science is an iterative process (Simon, 1996), has its roots in engineer-
ing (Hevner et al., 2004), is broadly considered a problem-solving process (Fortus et
al., 2005), and attempts to produce generalizable knowledge about design processes
and design decisions. The design process is a set of hypotheses that can eventually be
proven by creating the artifact it describes (Walls et al., 1992). However, a design’s
feasibility can be supported by a scientific theory to the extent that the design com-
prises the theory’s principles. Research investigations involve a continuous, repetitive
cycle of description, explanation, and testing (Meredith et al., 1989). Accordingly, in
most cases, theory development is a process of gradual change (Baxter, 2004). The
research approach for creating decision models for MCDM problems is Design Sci-
ence, which addresses research by building and evaluating artifacts to meet identified
business needs (Hevner et al., 2008).

Recently, we designed a theoretical framework (Farshidi et al., 2018a) and imple-
mented a DSS (Farshidi et al., 2018b) for supporting software engineers (decision-
makers) with their MCDM problems in software production. Knowledge engineering
theories have been employed to design and implement the DSS and the framework.
In this study, we applied the framework to build a decision model for the MDD plat-
form selection problem. Additionally, we employed the DSS to facilitate the decision-
making process. The research approach for creating the decision model is Design
Science, which addresses research through the building and evaluation of artifacts
to meet identified business needs (Hevner et al., 2004), accordingly, we carried out
four industry case studies in the context of four real-world enterprises to evaluate the
decision model.

Expert Interviews
Twenty-six domain experts from different software producing organizations have par-
ticipated in this research to answer the research questions and build a decision model
for the MDD platform selection problem. Expert Interview is an essential knowledge
acquisition technique (Chen, 2004) in qualitative research. The primary source of
knowledge to build a decision model is domain expertise. Please note that these
interviews are different from the interviews we conducted during the case study in-
terviews with the case participants.

We followed Myers’ and Newman’s guidelines (Myers & Newman, 2007) to conduct
a series of qualitative semi-structured interviews with senior software engineers to

Section 6.3 – Research Approach ∣ 141

explore expert knowledge regarding MDD Platforms and evaluate the outcomes of
our study.

We developed a role description before contacting potential experts to ensure the
right target group. Then, we contacted the experts through email using the role
description and information about our research topic. The experts were pragmatically
and conveniently selected according to their expertise and experience mentioned on
their LinkedIn profile. We considered a set of expert evaluation criteria (including
“Years of experience”, “Expertise”, “Skills”, “Education”, and “Level of expertise”) to
select the experts.

Each interview followed a semi-structured interview protocol and lasted between
45 and 60 minutes. We used open questions to elicit as much information as possi-
ble from the experts minimizing prior bias. All interviews were done in person and
recorded with the interviewees’ permission, then transcribed for further analysis.

Acquired knowledge during each interview was typically propagated to the next
to validate the captured knowledge incrementally. Finally, the findings were sent to
the interview participants afterward for final confirmation. Note, for the validity of
the results, the research’s data collection phases were not affected by the case study
participants; moreover, none of the interviewees or researchers were involved in the
case studies.

Please note that we did not use formal coding for the analysis of the interviews
and the literature. What we did do, however, could be termed incremental concept
development. During the literature study and interviews, concepts were identified
that were relevant. Candidate qualities and features were identified, defined, and
fine-tuned with the interviewees and later confirmed by asking the interviewees for
post-analysis of the interview and literature results. While this did not constitute for-
mal coding, we did mark concepts related to the domain, came up with the literature
study, and came up with the interviews. Secondly, these concepts were incrementally
fine-tuned until an agreement was reached with the interviewees.

Document analysis
Document analysis is a systematic procedure for reviewing or evaluating documents,
including text and images that have been recorded without a researcher’s interven-
tion (Bowen et al., 2009). Document analysis is one of the analytical methods in
qualitative research that requires data investigation and interpretation to elicit mean-
ing, gain understanding, and develop empirical knowledge (Corbin & Strauss, 2014).
We reviewed webpages, whitepapers, scientific articles, fact sheets, technical reports,
product wikis, product forums, product videos, and webinars to map the platforms’
MDD features.

One of the principal challenges while document analysis is the lack of standard
terminology among MDD platforms. Sometimes different MDD platforms refer to the
same concept by different names, or even worse, the same name might stand for
different concepts in different MDD platforms. Discovering conflicts is essential to
prevent semantic mismatches throughout the knowledge extraction phase.

We followed the framework to capture a conceptual phrase representing a segment
of data related to a particular research question. In other words, we used a concep-
tual mapping of MDD concepts to identify potential conflicts in knowledge sources.

142 ∣ Chapter 6 – Model-Driven Development Platforms

For instance, conceptually similar phrases and definitions regarding MDD platforms’
features were collected together for more detailed analysis. Based on the framework,
document analysis and conceptual mapping were employed to extract knowledge
from the selected sources of knowledge and prevent semantic mismatches.

We defined an extract extraction form to obtain consistent extraction of relevant
knowledge and checked whether the acquired knowledge would address the research
questions. The extracted knowledge, which correspond to the research questions, has
been classified into five categories: quality attributes, MDD platforms, MDD features,
impacts of the MDD features on the quality attributes, and supportability of the MDD
features by the MDD platforms. Next, the extracted knowledge was employed to build
a decision model for the MDD platform selection problem. Finally, the decision model
was uploaded to the knowledge base of the DSS.

Case Study
Case Study is an empirical methodology that investigates a phenomenon within a par-
ticular context in the domain of interest (Yin, 2017). A case study can be employed
to collect data regarding a particular phenomenon or to apply a tool and evaluate its
efficiency and effectiveness using interviews. Yin (2017) distinguishes four types of
case study designs according to holistic versus embedded and single versus multiple.
In this study, we employ holistic multiple case designs: examining multiple real-world
companies’ cases within their context to learn more about one specific unit of anal-
ysis and evaluating the decision model for the MDD platform selection problem. To
conduct the case studies and evaluate the proposed decision model, we followed the
following case study protocol:

1. - Step 1: Requirements elicitation. At least two managers or team leaders
of the case study companies’ IT departments should participate in the research,
as such participants are thoroughly informed on the design decisions and the
requirements of their decision context. During the interview session with each
company’s case study participants, we first ask them to explain the decision
context and requirements. Next, we show the MDD feature list to the partici-
pants and explain the features completely. Afterward, we ask the participants
to identify their MDD feature requirements and prioritize them based on the
MoSCoW prioritization technique (DSDM consortium and others, 2014). Addi-
tionally, they have to express the rationales behind the requirements elicitation.
Finally, they should identify a set of MDD platforms as potential solutions for
their software projects.

2. - Step 2: Results and recommendations. We need to define four separate
cases in the DSS knowledge base according to the case studies’ requirements
and priorities. Next, the DSS can suggest a set of feasible solutions per case
individually. Then, the outcomes should be discussed with the case study par-
ticipants.

3. - Step 3: Analysis. We need to compare the DSS feasible solutions with the case
study participants solutions suggested by the experts at the case study compa-
nies based on their internal meetings. Furthermore, we should analyze the
outcomes and observations and then report them to the case study participants
and receive their feedback on the results.

Section 6.4 – MCDM for MDD Platform Selection ∣ 143

Figure 6.1: This figure is adapted from our previous study (Farshidi et al., 2018a) and shows
the main building blocks of the decision support system beside the proposed decision model
for the MDD Platform selection problem.

Source of Knowledge A Decision model for Model-Driven Platform Selection Decision Support System

Alternatives

Domain

Features

ISO/IEC 25010
Ext. ISO/IEC 9126

Exclude Infeasible Solutions

Score Calculation

Feasible
MDD Platforms

Feature
Requirements

(MoSCoW)

 Domain Experts
- Senior Developers
- Software Architects

Software Quality
Experts

has
1..*

1..*

impacts on
1..*

1..*

Model-Driven Development Platform

Mendix

Kissflow Pega

Microsoft ...

RQ1

OutSystems

Appian

Model-Driven Development Feature

Modeling Spectrum

Transformation Process

Business Rule Modeling

User Interface Modeling

Software Quality Attribute

ISO/IEC 25010 Ext. ISO/IEC 9126

Inference Engine

Knowledge Base

Decision-Maker

Documentation,
Literature, etc.

...

RQ2

RQ3

RQ4

RQ5

We ensured validity in the conversations with the case participants in the following
ways. First, we made sure that all terms we used in the discussions were known by
providing the list of features and qualities and discussing these terms with the par-
ticipants during the interviews. Secondly, the discussions with the case participants
were noted down by the researchers during the interviews, and these were processed
within 24 hours to ensure that none of the results would be forgotten. We did not
record the meetings to avoid tension during these discussions. Finally, we confirmed
the results from the decision support model with the case participants and discussed
whether our inputs into the decision support tool were correct.

We have considered other study designs, such as action research studies, to support
the engineers during their selection. However, by performing these case studies post
hoc, we could ensure that the case participants had used their selected platforms for
a more extended period of time. Another possibility would have been to survey end-
users of MDD Platforms. However, as we were particularly interested in how our
model and tool were used, performing multiple case studies at companies provided
us with the highest level of detail for the empirical results.

6.4 MCDM for MDD Platform Selection
We follow the framework (Farshidi et al., 2018a) as modeled in Figure 6.1 to build a
decision model for the MDD platform selection problem. Generally speaking, a
decision model for an MCDM problem contains decision criteria, alternatives, and
mappings. Figure 6.1 represents the main building blocks of the decision support

144 ∣ Chapter 6 – Model-Driven Development Platforms

system besides the proposed decision model.

6.4.1 RQ1: MDD Features
Domain experts were the primary source of knowledge to identify the right set of
MDD features, even though documentation and literature studies of MDD platforms
can be employed to develop an initial hypothesis about the MDD feature set. Each
MDD feature has a data type, such as Boolean and non-Boolean. For example, the
data types of MDD features, such as the popularity in the market and supportability of
Real-time Analytics, can be considered as non-Boolean and Boolean, respectively.

The initial set of MDD features was extracted from the following sources: White
papers, Fact sheets, Technical reports, Instruction manuals, Product wikis, Product
forums, Product videos, Webinars. Additionally, twenty-three domain experts have
participated in this phase of the research to identify a potential list of MDD features.
Accordingly, 90 Boolean and four non-Boolean MDD features were identified and
extracted from the expert interviews’ results. Eventually, the validity and reliability of
the final list of the features2 was evaluated and confirmed by the domain experts.

6.4.2 RQ2: MDD Platforms
To answer the second research question, we identified 104 MDD platforms as our
initial hypothesis based on the following three methods:

˛ Exploring literature with the keywords “Low-Code”, “No-Code”, “BPMS”,
“iBPMS”, and “Model-Driven Development” platforms.

˛ Exploiting our network of domain experts, including software engineers and
academics. Note, we conducted 26 expert interviews.

˛ Asking interviewed domain experts at the end of each interview whether they
know of products that should be researched.

Next, we reviewed the published surveys and reports from well-known knowledge
bases, such as Gartner (Dunie et al., 2019; Vincent et al., 2019) and Forrester (Rymer
et al., 2019); eventually, we selected 30 MDD platforms that at least three sources of
knowledge confirmed the necessity of their existence in the decision model. The first
row of Table 6.1 shows the list of the selected MDD platforms.

6.4.3 RQ3: Software Quality Attributes
Based on the IEEE Standard Glossary of Software Engineering Terminology (Com-
mittee et al., 1998; Samadhiya et al., 2010), the quality of software products is the
degree to which a system, component, or process meets specified requirements (such
as functionality, performance, security, and maintainability) and the extent to which
a system, component or process meets the needs or expectations of a user. It is neces-
sary to find quality attributes widely recommended by other researchers to measure
the system’s characteristics.

The literature study results approved that researchers do not agree upon a set of
conventional criteria, including quality attributes and features, to evaluate the MDD

2The entire list of the MDD features and supportability of considered MDD platforms are available and
accessible on the data repository (Farshidi et al., 2020d).

Section 6.4 – MCDM for MDD Platform Selection ∣ 145

platforms (See Table 6.6). Additionally, we realized that their suggested criteria were
mainly applied to specific domains to address different research questions. Conse-
quently, a set of nonexclusive and domain-independent criteria is needed to evaluate
MDD platforms.

The ISO/IEC 25010 (ISO, 2011) presents best practice recommendations on the
base of a quality assessment model. The quality model defines which quality char-
acteristics should be considered when assessing the qualities of a software product.
A set of quality attributes should be defined in the decision model (Farshidi et al.,
2018a). In this study, we used the ISO/IEC 25010 standard (ISO, 2011) and extended
ISO/IEC 9126 standard (Carvallo & Franch, 2006) as two domain-independent qual-
ity models to analyze MDD features based on their impact on quality attributes of
MDD platforms. The key rationale behind using these software quality models is
that they are a standardized way of measuring a software product. Moreover, they
describe how easily and reliably a software product can be used.

The last four columns of Table 6.6 show the results of our analysis regarding the
common criteria and alternatives of this study with the selected publications. Let us
define the coverage of the i-th selected study as follows:

Coveragei =
CQi +CFi

Ci
× 100

Where CQi and CFi denote the numbers of common quality attributes (column
#CQ) and features (column #CF) of the i-th selected study; furthermore, Ci signifies
its number of suggested criteria. The last column (Cov.) of Table 6.6 indicates the
percentage of the coverage of the considered criteria within the selected studies. On
average, 75% of those criteria are already considered in this study.

6.4.4 RQ4: The impacts of MDD features
The mapping between the sets software quality attributes and MDD platforms was
identified based on domain experts’ knowledge. Three domain experts participated
in this phase of the research to map the MDD platforms (Features) to the quality
attributes (Qualities) based on a Boolean adjacency matrix3

(Qualities × Features → Boolean). For instance, Entity-Attribute-Relationship (EAR) as
an MDD feature influences the functional correctness quality attribute. The
framework does not enforce an MDD feature to present in a single quality attribute;
MDD features can be part of many quality attributes. For example, Native modeling
tool as an MDD feature might be linked to multiple quality attributes such as resource
utilization and functional appropriateness. The experts believed that about 74%
percent of the MDD features impact the following key characteristics of the MDD
platforms:

˛ Functional suitability is defined in ISO/IEC 25010 as the degree to which an
MDD platform functions that meet the stated or implicit requirements when
used under specific conditions.

˛ Usability defines the degree to which an MDD platform can be used to achieve

3The acquired knowledge regarding the impacts of the MDD platforms on the quality attributes was
used to calculate the Impact Factors (Farshidi et al., 2018a) that apply in the score calculation of the DSS.
The final Boolean adjacency matrix is available online on the data repository (Farshidi et al., 2020d).

146 ∣ Chapter 6 – Model-Driven Development Platforms

Table 6.1: This table shows the first part of the Boolean Features (FeatureB), MDD Platforms
(Plat f orms), and the “BFP” mapping. Note, 1s on each row indicates that the corresponding
platforms support the MDD feature of that row, and 0s signify the corresponding platforms do
not support that feature, or we did not find any strong evidence of their supports based on the
documentation analysis. Moreover, the rows in black indicate the categories of the features,
and the rows in blue show the features, and the rows below them are their subfeatures. The
definitions of the features are available on the data repository (Farshidi et al., 2020d).

Boolean Features

MDD Platforms

(BFP)

C
o

v
e

ra
g

e

O
u
ts

y
s
te

m
s

M
e

n
d

ix

A
p
p
ia

n

S
a
le

s
fo

rc
e
 (

L
ig

h
tn

in
g
)

M
ic

ro
s
o

ft
 P

o
w

e
rA

p
p

s

K
is

s
fl
o
w

Z
o

h
o

 (
C

re
a

to
r)

S
e
rv

ic
e
N

o
w

 (
N

o
w

 P
la

tf
o
rm

)

O
ra

c
le

 A
P

E
X

P
e
g
a
 (

In
fi
n
it
y
)

G
o
o
g
le

 A
p
p
 M

a
k
e
r

Q
u
ic

k
 B

a
s
e

T
ra

c
k
V

ia

W
a

v
e

M
a
k
e

r

K
o
n
y
 (

Q
u
a
n
tu

m
)

G
e
n
e
X

u
s

C
o

d
e

le
s
s
 P

la
tf

o
rm

s

IB
M

 (
D

ig
it
a
l
A

p
p
 B

u
ild

e
r)

S
o
ft
w

a
re

 A
G

 (
 A

g
ile

A
p
p
s
 L

iv
e
)

B
e
tt
y
 B

lo
c
k
s

S
e
rv

o
y

4
2
w

in
d
m

ill
s

T
h

in
k
w

is
e

U
s
o

ft

T
ri
g

g
re

A
p
te

a
n

O
p
e
n
T

e
x
t
(A

p
p
W

o
rk

s
 1

6
)

W
E

M
 M

o
d
e

le
r

G
o
ri
lla

IT
 (

K
a
ro

o
d
a
 P

la
tf
o
rm

)

A
g
ile

P
o
in

t
(N

X
)

Platform Types

General-purpose platform 68.97% 1 1 0 1 1 0 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1 0 0 1 1 1

Process app platform 20.69% 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0

Mobile app platform 100.00% 1

Request-handling platform 13.79% 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0

Modeling spectrum

Model-centric (Low-code) 93.10% 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1

Model only (No-code) 51.72% 0 1 1 1 1 1 0 0 0 1 0 0 1 1 1 0 0 0 1 1 0 1 0 0 1 0 0 0 1 1

Developer Citizen

Domain Experts 68.97% 0 1 1 1 1 1 0 0 0 1 0 0 1 1 1 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1

Business Analysts 100.00% 1

Professional Developers 65.52% 1 1 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 1 1

Development

Visual IDE 100.00% 1

Multi-channel/Cross-platform Application 65.52% 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 0 1 0 0 1 0 0 0 0

Programming mandatory 31.03% 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 1 1 0 0

Programming optional 65.52% 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 1 1

Integration 89.66% 1 0 1 1 1 0 0

Cross-Platform Integration 79.31% 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 0 0 0 0 1 1 1 1 1

Integrate with an ERP system 55.17% 0 1 1 0 0 1 1 0 1 1 0 0 1 0 0 1 1 1 0 1 1 0 1 0 0 0 1 1 0 1

Data mapping 72.41% 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1 1 0 0 1 0 0 0

REST 82.76% 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 0 0

SOAP 68.97% 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 0 1 1 0 1 1 0 1 0 1 0 0

OData services 41.38% 1 1 0 1 1 0 1 1 1 1 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0

Importing data 68.97% 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1 0 0 1 0 0 0

Deployment 100.00% 1

Public Cloud platform 100.00% 1

Private Cloud platform 37.93% 1 1 1 0 1 0 0 0 1 0 0 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

On-premise 72.41% 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 0 1 0 0 1 0 0 1

Access control 100.00% 1

Identity and permissions management 100.00% 1

Multi-factor authentication (MFA) 51.72% 1 1 1 1 1 1 1 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0

OAuth 75.86% 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0 0 0 0 1 1 1 0 1

Single Sign-On (SSO) 75.86% 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 1 0 0 1 1 0 1

Data Management 93.10% 1 0 1 1 1 0 1

SQL or NoSQL databases 65.52% 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 0 1 1 0 1 0 0 0 0

Web API 86.21% 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1

Service Calls 72.41% 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0

Local application-specific databases 44.83% 1 1 1 1 1 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0

Connectors to various back-ends or services 55.17% 1 1 1 1 1 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 1 0 1 0 0 0 0 1 0 0

Real-time Analytics 68.97% 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 1

Report and Analytics 68.97% 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 0 0 1 0 0 1 1 0 0 1

Application lifecycle manager 82.76% 1 0 1 1 0 0 1 1 0 0

user stories 41.38% 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0

Built-in team collaboration 82.76% 1 0 1 1 0 0 1 1 0 0

sandbox-to-production phases 34.48% 1 1 0 0 1 0 0 1 1 1 0 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0

component catalogue 37.93% 1 1 0 0 1 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0

Application and portfolio management 51.72% 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0

Version control 48.28% 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0

Administrative controls 44.83% 1 1 1 1 1 0 1 1 1 1 0 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0

User Interface

Tool set 62.07% 1 1 1 1 1 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 1 0 0 1 0 0 0 0

Form & View 100.00% 1

Predefined components 100.00% 1

Multilingual Apps 62.07% 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 1 1 1 1 0 0 1 0 0 0 1 0 0

Company-Branded Templates & Styling 72.41% 1 0 0 0 0 0 1 0 0 0

Create extensions and widget libraries 58.62% 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0

Data Modeling

Entity-Attribute-Relationship (EAR) 86.21% 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1

Object-Role Modeling (ORM) 20.69% 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0

Ontology modeling 13.79% 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Business rule modeling

Data rules 96.55% 1 0 1

Process rules 93.10% 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1

Decision table 41.38% 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0

Decision tree 44.83% 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0

Expression modeling

Expression editor 79.31% 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 1 1 1 0 0 1 1 0 1

Natural language rules 27.59% 0 0 0 1 0 0 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Close to programming language 37.93% 1 1 0 0 1 0 0 1 1 0 0 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

Programmed 27.59% 1 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 0 1 0 0 0 0 0

Section 6.4 – MCDM for MDD Platform Selection ∣ 147

Table 6.2: This table shows the second part of the Boolean Features (FeatureB), MDD Platforms
(Plat f orms), and the “BFP” mapping. Note, 1s on each row indicates that the corresponding
platforms support the MDD feature of that row, and 0s signify the corresponding platforms do
not support that feature, or we did not find any strong evidence of their supports based on the
documentation analysis. Moreover, the rows in black indicate the categories of the features,
and the rows in blue show the features, and the rows below them are their subfeatures. The
definitions of the features are available on the data repository (Farshidi et al., 2020d).

Boolean Features

MDD Platforms

(BFP)

C
o

v
e

ra
g

e

O
u
ts

y
s
te

m
s

M
e

n
d

ix

A
p
p
ia

n

S
a
le

s
fo

rc
e
 (

L
ig

h
tn

in
g
)

M
ic

ro
s
o

ft
 P

o
w

e
rA

p
p

s

K
is

s
fl
o
w

Z
o

h
o

 (
C

re
a

to
r)

S
e
rv

ic
e
N

o
w

 (
N

o
w

 P
la

tf
o
rm

)

O
ra

c
le

 A
P

E
X

P
e
g
a
 (

In
fi
n
it
y
)

G
o
o
g
le

 A
p
p
 M

a
k
e
r

Q
u
ic

k
 B

a
s
e

T
ra

c
k
V

ia

W
a

v
e

M
a
k
e

r

K
o
n
y
 (

Q
u
a
n
tu

m
)

G
e
n
e
X

u
s

C
o

d
e

le
s
s
 P

la
tf

o
rm

s

IB
M

 (
D

ig
it
a
l
A

p
p
 B

u
ild

e
r)

S
o
ft
w

a
re

 A
G

 (
 A

g
ile

A
p
p
s
 L

iv
e
)

B
e
tt
y
 B

lo
c
k
s

S
e
rv

o
y

4
2
w

in
d
m

ill
s

T
h

in
k
w

is
e

U
s
o

ft

T
ri
g

g
re

A
p
te

a
n

O
p
e
n
T

e
x
t
(A

p
p
W

o
rk

s
 1

6
)

W
E

M
 M

o
d
e

le
r

G
o
ri
lla

IT
 (

K
a
ro

o
d
a
 P

la
tf
o
rm

)

A
g
ile

P
o
in

t
(N

X
)

Model Transformation

Modeling Tool 100.00% 1

Native modeling tool 48.28% 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 1 1 0 1 1 1 0 0 1 0 0 1 0 0 1

Web modeling tool 79.31% 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1 0 1 1 0 1 1 1

Engine 100.00% 1

Code Generation 55.17% 0 1 0 1 1 0 1 1 0 0 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1

Model interpretation 44.83% 1 0 1 0 0 1 0 0 1 1 1 0 1 0 0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0

Storage 82.76% 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 0 0 1 0 1

XML/JSON as data storage 68.97% 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 0 1 1 0 0 0 1 0 1

Store model locally 51.72% 1 1 1 1 1 0 1 1 0 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 1 0 0 0 0 1

Portability 65.52% 1 1 1 1 1 0 1 1 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0 1 0 1 1 0 0

Convert model to text 31.03% 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 1 1 0 0

Support different stacks 34.48% 1 1 0 0 1 0 1 1 1 0 1 0 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0

Plug and play architecture 37.93% 1 1 1 1 0 0 1 1 1 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0

Business Process Automation

Workflow 100.00% 1

Process flow 93.10% 1 0 1 1 0 1 1 1 1 1

Case flow 44.83% 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0

Application Types

Mobile Apps 96.55% 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

Web portals 100.00% 1

Web applications 100.00% 1

Smartwatch (wearable) Apps 13.79% 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Security and Protection (Compliance)

HIPAA compliant 51.72% 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0

ISO 27001-2013 certification 65.52% 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 0 0 1 1 1 0 0 0 1 0 1 1 1 0 1

SOC 1 26.67% 0 1 1 0 1 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0

SOC 2 56.67% 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1

SOC 3 33.33% 0 1 1 0 1 1 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0

PCI DSS 34.48% 1 1 1 1 1 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

GDPR 86.21% 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1 1 0 1

specified goals with effectiveness, efficiency, and satisfaction in a specified con-
text of use. Moreover, it embraces quality attributes such as “Learnability”,
“Operability”, “User error protection”.

˛ Maintainability is the degree to which an MDD platform can be effectively and
efficiently modified without introducing defects or degrading existing product
quality. For instance, the experts believe that “Modularity”, “Reusability”, “Ana-
lyzability”, “Modifiability”, and “Testability” can be considered as key strengths
of the MDD platforms that support “Model only” or “Model-centric” features.

˛ Supplier includes a set of quality attributes such as “Reputation” and “Support”
of the MDD platforms.

˛ Cost denotes the amount of money that a company spends on implementing a
software product using an MDD platform. It includes quality attributes such as
“Implementation Cost”, “Platform Cost”, and “Licensing Costs”.

˛ Product defines a set of quality attributes regarding the state or fact of exclusive
rights and control over the property. For instance, “Stability”, “Ownership”, and
“Guarantees” are part of this characteristic.

148 ∣ Chapter 6 – Model-Driven Development Platforms

Table 6.3: This table shows the NFP mapping between the Non-Boolean MDD Features and
Platforms. Note, the Popularity in the market, Active Community, Maturity level of the company,
and Future Roadmap are the Non-Boolean MDD features that were considered in this study. The
parameters of these features are listed below each feature, for example, Founded, Number of
Employees, Type, and Revenue per year are the parameters of the Maturity level of the company.

Non-Boolean Features-

MDD Platforms

(NFP)

O
u
ts

y
s
te

m
s

M
e
n
d
ix

A
p
p
ia

n

S
a
le

s
fo

rc
e
 (

L
ig

h
tn

in
g
)

M
ic

ro
s
o
ft
 P

o
w

e
rA

p
p
s

K
is

s
fl
o
w

Z
o
h
o
 (

C
re

a
to

r)

S
e
rv

ic
e
N

o
w

 (
N

o
w

 P
la

tf
o
rm

)

O
ra

c
le

 A
P

E
X

P
e
g
a
 (

In
fi
n
it
y
)

G
o
o
g
le

 A
p
p
 M

a
k
e
r

Q
u
ic

k
 B

a
s
e

T
ra

c
k
V

ia

W
a
v
e
M

a
k
e
r

K
o
n
y
 (

Q
u
a
n
tu

m
)

G
e
n
e
X

u
s

C
o
d
e
le

s
s
 P

la
tf
o
rm

s

IB
M

 (
D

ig
it
a
l
A

p
p
 B

u
ild

e
r)

S
o
ft
w

a
re

 A
G

 (
 A

g
ile

A
p
p
s
 L

iv
e
)

B
e
tt
y
 B

lo
c
k
s

S
e
rv

o
y

4
2
w

in
d
m

ill
s

T
h
in

k
w

is
e

U
s
o
ft

T
ri
g
g
re

A
p
te

a
n

O
p
e
n
T

e
x
t
(A

p
p
W

o
rk

s
 1

6
)

W
E

M
 M

o
d
e
le

r

G
o
ri
lla

IT
 (

K
a
ro

o
d
a
 P

la
tf
o
rm

)

A
g
ile

P
o
in

t
(N

X
) Source of Knowledge

Popularity in the market H H H H H H H H H H M M M M M M M M L L L L L L L L L L L L Domain experts

Google hits

1
3
.5

0
0

1
2
.8

0
0

8
.9

6
0

3
9
.7

0
0

2
.7

8
0

1
8
.3

0
0

4
5
.7

0
0

9
.0

3
0

3
6
.3

0
0

8
.8

4
0

2
.2

4
0

3
.9

1
0

8
.0

1
0

2
.4

2
0

3
.7

0
0

7
1
0

8
.5

2
0

2
.6

0
0 5

3
.4

7
0

8
0
2 3

3
0
1 6

1
1

5
0

1
5

3
3 2

1
.6

2
0

Query string: "Product Name"+

 "Low code"+ "No code"

Google Trends

(Means of the past 12 months) 8
0
,8

4

8
2
,7

8

6
7
,6

7

8
2
,6

1

6
5
,1

4

6
6
,9

6

8
5
,4

9

7
6
,1

4

8
9
,2

0

6
7
,5

5

7
2
,7

8

1
6
,6

3

5
8
,6

9

4
7
,5

1

5
3
,3

5

7
7
,6

9

6
6
,6

1

8
1
,0

0

6
5
,4

1

3
6
,7

1

5
3
,8

8

0
,0

0

0
,0

0

3
4
,7

6

0
,0

0

5
5
,5

3

2
9
,5

3

3
1
,9

2

0
,0

0

0
,0

0

www.trends.google.com

Twitter (follower)

2
3
.9

K

1
0
.8

K

1
5
,9

K

4
8
3
.8

K

2
3
.3

K

3
,5

K

5
5
,3

K

3
2
,2

K

6
,2

K

4
7
.7

K 2
3

5
,4

K

3
,1

K

1
8
,3

K

1
1
,6

K

6
,7

K

4
,5

K

4
,5

K 1
7

3
,9

K

1
K

8
4
9

2
9
0

2
2
0

8
6

1
,3

K

2
K

1
3
8 9

1
5
K

www.twitter.com

Gartner 1 1 1 1 1 0 1 1 1 1 0 1 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 www.gartner.com

The Forrester Wave 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 www.forrester.com

softwaretestinghelp (2020) 1 1 1 1 0 1 0 www.softwaretestinghelp.com

pcmag 1 1 1 1 1 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 www.pcmag.com

TrustRadius 1 1 1 0 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 www.trustradius.com

G2 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 www.g2.com

predictiveanalyticstoday 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 www.predictiveanalyticstoday.com

featuredcustomers 1 1 1 0 1 1 1 0 0 0 0 1 1 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 www.featuredcustomers.com

apriorit 1 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 www.apriorit.com

objectivity 1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 www.objectivity.co.uk

altitudemarketing 1 1 1 1 0 1 www.altitudemarketing.com

Active Community H H H H H L M H H H H M L L M L L H L L L L L L L H L L L L Domain experts

LinkedIn (job openings) 1
4
9

1
3
2

1
7
0

3
K

8
,7

K 1 6

1
,4

K

6
1
4

9
1
3

4
K 1
0

1
4 3

1
7

N
/A

N
/A

8
,9

K

N
/A 3

2
0

N
/A 6
4

7
4

N
/A 8
0

N
/A

N
/A

N
/A

N
/A

www.linkedin.com

LinkedIn (Followers) 5
6
K

2
0
,4

K

2
9
,1

K

2
M

1
0
,1

5
M

5
,3

K

2
5
5
,7

K

2
7
7
K

5
M

1
9
1
,6

5
K

1
6
,6

3
M

7
,9

K

2
,5

K

2
,1

K

4
0
,2

K

9
,2

K

2
,9

K

7
,9

7
M

N
/A

5
,4

K

1
K 4
8

2
,1

K

4
9
7

2
1
1

2
0
,2

0
K

3
,1

K

N
/A

1
5
7

1
,2

K

www.linkedin.com

Glassdoor (jobs) 1
3
2

1
5
7

2
8
0

1
.9

K

1
0
K

N
/A 1
5

4
,2

K

1
1
K

6
4
6

6
,8

K 4
4

1
5

N
/A 9

N
/A 7

1
7
K

N
/A 2
3 2

N
/A

2
7

N
/A

N
/A 1
1
6

N
/A

N
/A

N
/A

6

www.glassdoor.com

Maturity level of the company H M H H H L H H H H H M M M H M M H L M M M M M L H M L M M Domain experts

Founded

2
0
0
1

2
0
0
5

1
9
9
9

1
9
9
9

1
9
7
5

2
0
1
2

1
9
9
6

2
0
0
4

1
9
7
7

1
9
8
3

1
9
9
8

1
9
9
9

2
0
0
6

2
0
1
4

2
0
0
7

1
9
8
8

1
9
8
8

1
9
1
1

2
0
1
3

2
0
1
2

2
0
0
1

2
0
0
9

2
0
0
2

1
9
8
7

2
0
1
3

2
0
1
2

2
0
0
1

N
/A 2
0
0
1

2
0
0
3

www.glassdoor.com

Number of Employees

1
0
0
1
 t
o
 5

0
0
0

5
0
1
 t
o
 1

0
0
0

1
0
0
1
 t
o
 5

0
0
0

1
0
0
0
0
+

1
0
0
0
0
+

1
0
1
 t
o
 2

5
0

2
0
1
 t
o
 5

0
0

5
0
0
1
 t
o
 1

0
0
0
0

1
0
0
0
0
+

1
0
0
1
 t
o
 5

0
0
0

1
0
0
0
0
+

2
0
1
 t
o
 5

0
0

5
1
 t
o
 2

0
0

5
1
 t
o
 2

0
0

1
0
0
1
 t
o
 5

0
0
0

2
0
1
 t
o
 5

0
0

5
1
 t
o
 2

0
0

1
0
0
0
0
+

N
/A

5
1
 t
o
 2

0
0

5
1
 t
o
 2

0
0

1
1
 t
o
 5

0

5
1
 t
o
 2

0
0

1
1
 t
o
 5

0

1
1
 t
o
 5

0

1
0
0
1
 t
o
 5

0
0
0

5
0
1
 t
o
 1

0
0
0

N
/A

1
1
 t
o
 5

0

5
1
 t
o
 2

0
0 www.glassdoor.com

www.crunchbase.com

www.linkedin.com

Type

P
ri
v
a
te

P
ri
v
a
te

P
u
b
lic

P
u
b
lic

P
u
b
lic

P
ri
v
a
te

P
ri
v
a
te

P
u
b
lic

P
u
b
lic

P
u
b
lic

P
u
b
lic

P
ri
v
a
te

P
ri
v
a
te

S
u
b
s
id

ia
ry

P
ri
v
a
te

P
ri
v
a
te

P
ri
v
a
te

P
u
b
lic

P
ri
v
a
te

P
ri
v
a
te

P
ri
v
a
te

P
ri
v
a
te

P
ri
v
a
te

P
ri
v
a
te

P
ri
v
a
te

P
ri
v
a
te

P
ri
v
a
te

P
ri
v
a
te

P
ri
v
a
te

P
ri
v
a
te

www.glassdoor.com

www.crunchbase.com

www.linkedin.com

Revenue per year

$
1
0
0
 t
o
 $

5
0
0
 M

$
1
0
0
 t
o
 $

5
0
0
 M

$
1
0
0
 t
o
 $

5
0
0
 M

$
1
0
+

 B

$
1
0
+

 B

N
/A

$
1
0
0
 t
o
 $

5
0
0
 M

$
2
 t
o
 $

5
 B

$
1
0
+

 B

$
5
0
0
 M

 t
o
 $

1
 B

$
1
0
+

 B

N
/A

1
8
,6

 M

1
5
,9

 M

$
1
0
0
 t
o
 $

5
0
0
 M

$
5
 t
o
 $

1
0
 M

N
/A

$
1
0
+

 B

N
/A

$
5
 t
o
 $

1
0
 M

N
/A

N
/A

N
/A

N
/A

N
/A

$
1
0
0
 t
o
 $

5
0
0
 M

N
/A

N
/A

N
/A

$
1
0
 t
o
 $

2
5
 M www.glassdoor.com

www.crunchbase.com

www.linkedin.com

Future Roadmap H H M H H L L H H L H L M H L M L H L M L L L M L M H L L L Domain experts

Research and Development department 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 0 0 Product website

science-industry collaboration 1 1 1 1 1 0 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 0 Product website

Co-publications in peer reviewed journals 1 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 Web of Science

6.4.5 RQ5: Supportability of the MDD Features
An MDD platform contains a set of MDD features that can be either Boolean or non-
Boolean. A Boolean MDD feature (FeatureB) is a feature that is supported by the MDD
platform, for example, supporting the Native modeling tool. A non-Boolean MDD
feature (FeatureN) assigns a non-Boolean value to a particular MDD platform; for
example, the popularity in the market of an MDD platform can be “high”, “medium”,
or “low”. Accordingly, this study’s MDD features are a collection of Boolean and non-
Boolean features, where Features = FeatureB ∪ FeatureN.

The mapping BFP ∶ FeatureB × Plat f orms → {0, 1} defines the supportability of
the Boolean MDD features by the platforms. So that BFP(f , p) = 0 means that the

Section 6.5 – Empirical Evidence: the Case Studies ∣ 149

platform p does not support the MDD feature f or we did not find any evidence for
proof of this feature’s supportability by the MDD platform. Moreover, BFP(f , l) = 1
signifies that the platform supports the feature. The mapping BFP is defined based
on documentation of the MDD platforms and expert interviews. Tables 6.1 and 6.2
present the Boolean Features that we have considered in the decision model.

The experts defined four non-Boolean MDD features, including “Popularity in the
market”, “active community”, “Maturity level of the company”, and “future roadmap”.
The assigned values to the non-Boolean MDD features for a specific MDD platform is
based on a 3-point Likert scale (High, Medium, and Low), where NFP ∶ FeaturesN ×
Plat f orms → {H, M, L}, based on several predefined parameters. For instance, the
“popularity in the market” of an MDD platform was defined based on the following
parameters: the number of the “Google hits”, “Google Trends (Means of the past 12
months)”, “Twitter (follower)”, and the popular forums and reports that considered
the platform in their evaluation. Table 6.3 shows the non-Boolean programming
features, their parameters, and sources of knowledge.

6.4.6 MDD Feature Requirements:
The DSS (Farshidi et al., 2018b) receives the MDD feature requirements based on the
MoSCoW prioritization technique (DSDM consortium and others, 2014).

Decision-makers should prioritize their MDD feature requirements using a set of
weights (WMoSCoW = {wMust, wShould, wCould, wWon′t}) according to the definition of
the MoSCoW prioritization technique. MDD feature requirements with Must-Have
or Won’t-Have priorities act as hard constraints and MDD feature requirements with
Should-Have and Could-Have priorities act as soft constraints. So that, the DSS ex-
cludes all infeasible MDD platforms which do not support MDD features with Must-
Have and support MDD features with Won’t-Have priorities. Then, it assigns non-
negative scores to feasible MDD platforms according to the number of MDD features
with Should-Have and Could-Have prioritizes (Farshidi et al., 2018a).

Decision-makers specify desirable values, according to their preferences, for non-
Boolean MDD feature requirements. For example, a decision-maker could be inter-
ested in prioritizing MDD platforms with the Maturity level above average. Therefore,
the Maturity level of the company above average is a Should-Have feature.

6.5 Empirical Evidence: the Case Studies
Four industry case studies in the context of four real-world enterprises have con-
ducted to evaluate and signify the decision model’s usefulness and effectiveness to
address the MDD platform selection problem. To increase diversity in our evaluation,
we selected the case studies from different domains, such as workflow management,
project management, and Enterprise Resource Planning (ERP) systems. Furthermore,
one of the case studies was a software consultancy company working in close col-
laboration with Mendix and was interested in evaluating other potential alternatives.
We had a session with the decision-makers at each case study company to capture
their functional and quality requirements, constraints and assumptions, and technol-
ogy acceptance criteria. They explained their concerns and barriers, such as their

150 ∣ Chapter 6 – Model-Driven Development Platforms

budget or lack of time and technical knowledge in the development team to build the
desired software product. Then, we showed the feature list4 besides their explana-
tions (Farshidi et al., 2020d) and asked them to identify their feature requirements
based on the MoSCoW prioritization technique (Table 6.4).

Note, the case study participants have identified several potentially feasible MDD
platforms for their projects through multiple internal expert meetings and investiga-
tion into MDD platforms before participating in this research (see the CSP row in
Table 6.5). Four industry cases were defined based on the MoSCoW prioritization
technique and stored in the DSS knowledge base. Next, the Inference Engine of the
DSS generated feasible solutions for each case. The rest of the section describes the
case study companies’ shortlists and analyzes the DSS outcomes.

6.5.1 Case Study 1: Nederlandse Spoorwegen (NS)
Nederlandse Spoorwegen (Dutch: NS; English: Dutch Railways) is a Dutch state-
owned company, the principal passenger railway operator in the Netherlands.
Founded in 1938 and with more than 4500 employees, NS provides rail services on
the Dutch leading rail network. The Information and Communications Technology
(ICT) department of NS has more than 400 employees and is responsible for moni-
toring the IT projects’ short-term and long-term progress.

The experts at the ICT department implemented a workflow management system
called NOVA, based on the Mendix platform, to enable users to define different work-
flows for different types of jobs or processes in the context of IT projects. The case
study participants stated that NOVA mappings out the IT projects’ workflows in an
ideal state; it finds redundant tasks, automates the processes, and identifies bottle-
necks or areas for improvement.

The case study participants stated that they want to evaluate a shortlist of feasible
MDD platforms that they came up with through an extensive investigation into po-
tential alternatives. They considered Mendix and Microsoft PowerApps as two MDD
platforms before participating in this research. The case study participants mentioned
that the third alternative for them could be “High-Coding” or implementing a work-
flow management system by hiring a team of senior software engineers and architects.

NS Requirements
The case study participants at NS defined a subset of the key functionality of NOVA
as follows:

˛ It gets a clear overview of work in progress in a particular workflow (R17).
˛ It allows creating, prioritizing, assigning tasks, divides tasks into workflow

stages, decides who works on what part, and allows monitoring work moving
through multiple stages (R1, R16, R17).

˛ It enables centralized governance, so creating task lists, adding tasks/subtasks,
subscribing to the entire tasklist, assigning tasks/subtasks to one or multiple
people, logging activities, and scheduling events can be managed and moni-
tored in one place (R5, R6).

˛ It creates custom roles and grants access to people based on their responsibilities
(R1).

4The Boolean and non-Boolean features are presented in Tables 6.1, 6.2, and 6.3

Section 6.5 – Empirical Evidence: the Case Studies ∣ 151

˛ It provides a dynamic structure for executing non-routine unpredictable busi-
ness processes that require coordination of multiple tasks and complex decision-
making (R8, R16).

˛ It has a policy access-control mechanism that restricts access to authorized users
and defines users’ roles and privileges (R1).

The participants expressed that the MDD platform should be popular enough in
the market (R24), as popularity indicates that an MDD platform is widely purchased
by other businesses and has an active community (R58). Furthermore, they believed
that the maturity level of the MDD platform is an essential criterion that assesses
the efficiency and effectiveness of an MDD platform (R9). Additionally, the potential
MDD platform should deploy the workflow management system on a private cloud
due to higher security, flexibility, and availability (R6).

The case study participants identified their feature requirements based on the
MoSCoW prioritization technique (See Table 6.4). Then, we defined a case according
to their requirements and priorities in the DSS knowledge base.

Results and Analysis
The case study participants at NS identified 40 MDD feature requirements that more
than half of them prioritized as “Must-Have” features (see Table 6.5). The DSS ex-
cluded 26 MDD platforms from the 30 platforms in its knowledge base and offered
four potential MDD platforms to NS. Table 6.5 shows that Mendix was the first feasi-
ble platform for NS. Additionally, Oracle APEX, Microsoft PowerApps, and OutSystems
were scored as the second to fourth potential solutions.

The case study participants were looking for a Low-code or No-code platform to pri-
oritize “Model-only” (R20) and “Model-centric” (R10) as two Should-Have features.
Based on our assessment, Mendix and Microsoft PowerApps support both of these
features. “Ontology modeling” (R27) as a Should-Have feature is only supported by
Oracle APEX. Moreover, “Plug and play architecture” as another Should-Have feature
does not support by Microsoft PowerApps.

The experts who participated in this case study expressed that NOVA is currently
based on Mendix as they had some legal limitations to select a suitable platform
that meets their requirements. NS is a semi-government organization that should
follow some government bureaucracy; for instance, they have to deploy NOVA on a
national platform that uses a local data center inside the Netherlands borders. They
mentioned that the DSS results showed that they made the right decision in their
selection process; additionally, they can consider more potential solutions in their
future evaluation.

6.5.2 Case Study 2: Innovation-Kite customer
Innovation-Kite is a software development company in the Netherlands and Germany
with more than 500 employees. They have a “Solution Center” with an international
network of experienced ICT-specialists and developers. The experts at Innovation-Kite
stated that the agile development methodology requires closer interaction between
end-users and developers. The local Agile / Scrum Business Engineering should make
general use of specialized developers who can make specific integrations and adjust-

152 ∣ Chapter 6 – Model-Driven Development Platforms

Table 6.4: This table represents the entire list of the feature requirements that were defined
by the case study participants. Note, the Boolean and non-Boolean features that are presented
in Tables 6.1, 6.2, and 6.3. The first column signifies the requirement id (RID). We used this
column to determine the link between the feature requirements and the actual needs of the
case study participants.

RID MDSD Feature Requirements
Nederlandse

Spoorwegen (NS)

Innoviation-Kite

Customer
Bizzomate Royal IHC

R1 Identity and permissions management Must-Have Must-Have Must-Have Must-Have

R2 SQL or NoSQL databases Must-Have Must-Have Must-Have Must-Have

R3 Tool set Must-Have Must-Have Must-Have Must-Have

R4 Predefined components Must-Have Must-Have Must-Have Must-Have

R5 Web portals Must-Have Must-Have Must-Have Must-Have

R6 Private Cloud platform Must-Have Should-Have Must-Have Must-Have

R7 Entity-Attribute-Relationship (EAR) Must-Have Must-Have Should-Have Must-Have

R8 Data rules Must-Have Must-Have Should-Have Must-Have

R9 Maturity level of the company Must-Have Must-Have Should-Have Must-Have

R10 Model-centric (Low-code) Should-Have Must-Have Must-Have Should-Have

R11 Business Analysts Should-Have Should-Have Must-Have Must-Have

R12 Form & View Must-Have Should-Have Should-Have Must-Have

R13 Plug and play architecture Should-Have Must-Have Should-Have Must-Have

R14 Programming optional Must-Have Must-Have Must-Have

R15 Workflow Must-Have Must-Have Must-Have

R16 Process rules Must-Have Must-Have Should-Have Could-Have

R17 Case flow Must-Have Must-Have Could-Have Should-Have

R18 Decision table Should-Have Must-Have Could-Have Must-Have

R19 Process flow Should-Have Must-Have Must-Have

R20 Model only (No-code) Should-Have Should-Have Must-Have Could-Have

R21 Decision tree Should-Have Must-Have Could-Have Should-Have

R22 Visual IDE Should-Have Should-Have Could-Have Must-Have

R23 Professional Developers Must-Have Could-Have Must-Have

R24 Popularity in the market Should-Have Should-Have Should-Have Should-Have

R25 Expression editor Should-Have Should-Have Must-Have

R26 Web modeling tool Should-Have Could-Have Must-Have

R27 Ontology modelling Should-Have Could-Have Could-Have Should-Have

R28 Native modeling tool Could-Have Could-Have Must-Have

R29 Object-Role Modeling (ORM) Should-Have Could-Have Should-Have

R30 Natural language rules Should-Have Could-Have Should-Have

R31 Support different stacks Could-Have Should-Have Should-Have

R32 XML/JSON as data storage Must-Have Could-Have

R33 Integrate with an ERP system Must-Have Could-Have

R34 Code Generation Could-Have Must-Have

R35 Two step generation Could-Have Must-Have

R36 Store model locally Could-Have Must-Have

R37 General-purpose platform Must-Have

R38 REST Must-Have

R39 SOAP Must-Have

R40 OData services Must-Have

R41 Web API Must-Have

R42 Service Calls Must-Have

R43 Connectors to various back-ends or services Must-Have

R44 Company-Branded Templates & Styling Must-Have

R45 Domain Experts Could-Have Should-Have Could-Have

R46 Convert model to text Should-Have Could-Have Could-Have

R47 Real-time Analytics Could-Have Could-Have Could-Have Could-Have

R48 Report and Analytics Could-Have Could-Have Could-Have Could-Have

R49 Version control Could-Have Could-Have Could-Have Could-Have

R50 Close to programming language Could-Have Should-Have

R51 Model interpretation Could-Have Should-Have

R52 Public Cloud platform Should-Have

R53 Create extensions and widget libraries Should-Have

R54 Multi-channel/Cross-platform Application Could-Have

R55 data mapping Could-Have

R56 importing data Could-Have

R57 Mobile Apps Could-Have

R58 Active Community Could-Have

R59 Future Roadmap Could-Have

R60 Programmed Could-Have

ments (customizations) within an existing customer infrastructure and environment,
so that test work and specific optimizations can also be performed cost-effectively.

Section 6.5 – Empirical Evidence: the Case Studies ∣ 153

One of their customers was a small startup company with around ten employees.
The startup company requested a software application to help them estimate activi-
ties, scheduling, cost control, and budget management. The experts at Innovation-
Kite wanted to design and implement a customized project management system for
this customer by employing one of their strategic technology partners, Betty Blocks,
and Mendix. Additionally, the case study participants stated that without the time
and budget limitation of their customers, they have enough in-House expertise and
knowledge to build an entirely new software product so that High-Coding can be
considered the third potential solution.

The case study participants joined this research to evaluate the shortlist of potential
solutions (Betty Blocks, Mendix, and High-Coding) for this startup company. More-
over, they desired to know about other possible MDD platforms that they have to take
into account.

Innovation-Kite Requirements
The case study participants at Innovation-Kite defined a subset of the customized
project management system’s key functionality:

˛ Viewing progress across all ongoing projects, identifying projects at risk, moni-
toring timelines, and sharing project status in real-time (R15, R47, R48)

˛ Keeping workflow tools in one place, having a centralized management unit for
details and updates, storing projects’ files in a secured data storage, and keeping
templates always consistent (R2, R5, R6, R52)

˛ Reporting a clear picture of how the resources are being used (R48)
˛ Offering account management and provisioning system to define new end-users,

roles, and privileges (R1)
˛ Managing all activities and tasks required to maintain a desired level of excel-

lence (R19)
The Innovation-Kite experts expressed that they want to be independent of par-

ticular programming languages and development processes. However, they required
a level of flexibility to add new functionality or customize an existing component.
Therefore, they prioritized the “Model-centric (Low-code)” feature as Must-Have and
the “Model only (No-code)” as a Should-Have feature (R10, R20). Moreover, they
wanted to employ their technical knowledge so that a potential MDD platform has to
support professional developers (R23). The case study participants mentioned that
their customers always want to deploy their software products on the cloud; however,
according to their budgets and infrastructures, it can be on private or public clouds;
thus, they considered both of these options as Should-Have features (R6, R52).

Results and Analysis
The case study participants identified 37 MDD feature requirements, including
43.24% hard-constraint features (Must-Have) and 56.76% soft-constraint features
(Should-Have and Could-Have). The DSS suggested five possible solutions, namely
Mendix, Salesforce (Lightning), Betty Blocks, OutSystems, and ServiceNow (Now
Platform). Table 6.5 shows that Mendix was the first, and Betty Blocks was the third
feasible platform for this case study. They did not consider Salesforce (Lightning) as
a solution, as they had no experience with employing this platform.

The DSS scored Betty Blocks as the third solution as it does not support “Decision

154 ∣ Chapter 6 – Model-Driven Development Platforms

Table” (R18), “Natural language rules” (R30), and “Object-Role Modeling” (R29).
According to our assessment, Mendix does not support “Natural language rules” and
“Ontology modeling”. Please note that the Should-Have features have higher prior-
ities than Could-Have features, so MDD platforms that support more Should-Have
features scores higher.

The experts who participated in this case study stated that “OutSystems” could be
a potential solution as it supports all the feature requirements that they required.
However, they needed to perform a cost-benefit analysis to evaluate its usefulness.
The experts mentioned that the DSS could support them for their future evaluation,
reducing decision-making time. However, we need to keep the knowledge base of the
DSS besides the decision model regularly up-to-date.

6.5.3 Case Study 3: Bizzomate
Bizzomate is a software consultancy company in the Netherlands to support organi-
zations with technical and technological problems, such as MDD platform selection.
Organizations hire external consultancy companies, such as Bizzomate, when their
internal resources and expertise are insufficient. External consultants analyze an or-
ganization’s existing setup and make suggestions. Additionally, the experts at Biz-
zomate advises its customers on how to configure their software applications, write
code, fix bugs, or customize their software systems for specific tasks or businesses.

The experts at Bizzomate stated that they use MDD platforms to increase agility
in software development. Such platforms assist them with working closely together
in one environment, and various stakeholders can collaborate, create, iterate, and
release solutions in a fraction of the time compared to traditional development meth-
ods.

Mendix is the leading partner of Bizzomate in the software development process.
The experts at Bizzomate typically employ the Mendix platform to implement cus-
tomized software solutions for their customers. They have recently investigated a
little bit regarding other potential platforms and considered Betty Blocks an alterna-
tive solution for their customers. The case study participants joined this research to
evaluate the selected shortlist of MDD platforms based on requirements that typically
take into account to build a customized software solution.

Bizzomate Requirements
The case study participants at Bizzomate defined a subset of their essential MDD
feature requirements that they generally consider to select an MDD platform for their
customers:

˛ The MDD platform has to enable developers to use models to develop software
(R10) and generate code automatically (R35).

˛ Developers have to use models to build software and solely communicate with
each other about the system in terms of models (R20). Note, coding terminol-
ogy is absent.

˛ A full application could be created without any programming, but developers
can use one programming language (R14).

˛ The platform has to be able to govern users by enforcing both authentication
and authorization. Authentication verifies a user’s identity. Once authenticated,

Section 6.5 – Empirical Evidence: the Case Studies ∣ 155

the verified user may use any of the resources their account is authorized to
access (R1).

˛ Toolset gives modelers access to a what-you-see-is-what-you-get editor, in which
access is provided to different user interface components. Within such an editor,
the user is free to edit those elements’ height and width (R3).

˛ The platform has to allow users to model user interface predefined components
without altering the user interface components’ location, width, and height
(R4).

˛ The platform has to support developers with designing and implementing web
portals (R5). A web portal is a specially designed website that brings infor-
mation from diverse sources, like emails, online forums, and search engines,
together in a uniform way. Usually, each information source gets its dedicated
area on the page for displaying information; often, the user can configure which
ones to display.

˛ The platform should support EAR5 (R7), which is used to represent attributes
as well as entities and relationships.

The participants expressed that non-Boolean features such as popularity in the mar-
ket (R24) and the company’s maturity level (R9) play an essential role in the MDD
platform selection process.

Results and Analysis
The case study participants identified 42 MDD feature requirements, including
30.95% hard-constraint features (Must-Have) and 69,05% soft-constraint features
(Should-Have and Could-Have). They defined a limited number of Must-Have fea-
tures as they did not focus on a particular IT project. The case study participants
put their emphasis on the platform-specific features that they were already familiar
with. In other words, their feature requirements were biased to the features that their
shortlist of MDD platforms were supported them. Thus, the DSS results did not sur-
prise them. Table 6.5 shows that Mendix was the first, and Betty Blocks was the third
feasible platform for this case study.

The DSS scored Betty Blocks as the third solution as it does not support a set of
the soft constraint requirements, such as “Code Generation” (R34), “Decision Table”
(R18), “Natural language rules” (R30), and “Object-Role Modeling” (R29).

The case study participants stated that they have never considered Appian as an
alternative solution for their project because they do not have any experience with this
platform; however, they will investigate its functionality and possibilities for future
projects.

6.5.4 Case Study 4: Royal IHC
Royal IHC is an international supplier of innovative equipment, ships, and services
for offshore, dredging, and wet mining. Royal IHC enables customers to execute
complex projects from the water surface to the ocean floor in the most challenging
maritime environments. The head office is located in the Netherlands, but more than
3,000 employees work from offices worldwide. Thus, customer support is provided

5Entity-Attribute-Relationship

156 ∣ Chapter 6 – Model-Driven Development Platforms

Table 6.5: DSS Results

Context

#Employees

Must-Have 52.50% 43.24% 30.95% 50.00%

Should-Have 25.00% 37.84% 23.81% 28.57%

Could-Have 22.50% 18.92% 45.24% 21.43%

Won't-Have 0.00% 0.00% 0.00% 0.00%

#Feature Req.

1 Mendix Betty Blocks Mendix Mendix

2 Microsoft PowerApps Mendix Betty Blocks Betty Blocks

3 High-Code High-Code

1 Mendix 91% Mendix 93% Mendix 99% Mendix 77%

2 Oracle APEX 86% Salesforce (Lightning) 92% Appian 90% OutSystems 67%

3 Microsoft PowerApps 84% Betty Blocks 72% Betty Blocks 87% Betty Blocks 48%

4 OutSystems 77% OutSystems 71%

5 ServiceNow (Now Platform) 70%

Nederlandse Spoorwegen (NS) Innovation-Kite Customer Bizzomate Royal IHC

Project management system Software consulting company ERP systemWorkflow management system

C
P

 S
h

o
rt

li
s
t

D
S

S
 S

o
lu

ti
o

n
s

50-10020-505-105-10

R
e

q
u

ir
e

m
e

n
ts

40 37 42 42

on every continent. The company faces ever-changing customer needs and healthy
global competition.

Digitization is an inevitable factor for every organization, including Royal IHC,
to provide customers with innovative solutions. The case participants asserted that
Royal IHC would gain increased business agility, transparency, and uniformity of in-
formation by consolidating the IT environment, a vital part of its national and in-
ternational value chain. Recently, the ICT department at Royal IHC introduced an
ERP application called “One IHC”, based on the low-code platform from Mendix, to
support their key strategic goals of collaboration, globalization, and growth.

Royal IHC participated in this research to assess their current platform (Mendix)
and an alternative to it (Betty Blocks). Moreover, they wanted to know about any
potential MDD platforms that could be considered in the near future.

Royal IHC Requirements
The case study participants defined the following subset of requirements of One IHC
to select the best fitting MDD platform.

˛ The platform has to support Royal IHC’s demand for applications with a native
mobile experience on multiple devices. The platform needs to be available both
online and offline (R22, R26, R29).

˛ The platform has to enhance the collaboration between business stakeholders
and IT (R11). It leads to an increase in the organization’s development capacity
to meet the growing demand for applications, dashboards, and portals (R23,
R47, R48).

˛ The platform has to support component-based architectures (R13).

Section 6.6 – Discussion ∣ 157

˛ The platform has to enable users to save models as byte code on their local
machine (R36).

˛ The platform could be integrated with an ERP system (R33).
˛ A set of data rules must be defined to ensure that only values compliant with the

data rules are allowed within a data object. Data rules will form the foundation
for correcting or removing data (R8).

Results and Analysis
The case study participants identified 42 MDD feature requirements that half of them
were Must-Have features. Their hard-constrained feature requirements were mainly
biased toward the features the shortlist of MDD platforms already supported, and they
were completely aware of them. They wanted to know about alternative solutions,
so the other half of their feature requirements were mainly about nice-to-have MDD
features (soft-constrains). Table 6.5 shows that Mendix was the first, and Betty Blocks
was the third feasible platform for this case study.

The DSS scored Betty Blocks as the third solution as it does not support a set of
the soft constraint requirements, such as “Code Generation” (R34), “Decision Table”
(R18), “Ontology modeling (R27)” (R30), and “Object-Role Modeling” (R29).

The case study participants asserted the OutSystems platform could be an interest-
ing alternative to them, and they have not considered it up to now because of a lack
of knowledge and expertise regarding this platform; however, they will consider it
an option in their future evaluations. Note, Royal IHC hired some experts from Biz-
zomate to support them with their decision-making process, so it was not surprising
that their shortlists were the same.

6.6 Discussion

6.6.1 Case Study Participants
Software products may be more successful in some regions. Not every MDD platform
is equally represented in different regions of the world. We observed specific MDD
platforms that are primarily active in the Netherlands and focus their support efforts
on the Netherlands because there is the most business for them. As aforementioned,
the case study companies were located in the Netherlands. Almost all of them pre-
ferred to select one of the locally produced MDD platforms, specifically Mendix and
Betty Blocks, because of their concerns regarding legal issues and safety. While we
did not collect each platform’s sales data, we have to remain cognizant that some
MDD platforms may be over- or underrepresented in particular geographic regions.

The total cost of ownership of MDD platforms plays an inevitable factor in the
decision-making process. However, none of the case study participants considered
it a “Must-Have” feature, as they believed that functional suitability, maturity, and
popularity of potential solutions should be prioritized higher. One of the case study
participants expressed that “we have to examine total costs besides total benefits to
make a rational decision about the potential solution that will provide the highest
positive impact on the future of our business”. The DSS assigns higher scores to the

158 ∣ Chapter 6 – Model-Driven Development Platforms

general-purpose platforms, such as Mendix and Appian, as they offer a vast set of
services and functions.

Biases, such as motivational and cognitive (Montibeller & Winterfeldt, 2015), arise
because of shortcuts or heuristics that decision-makers use to solve problems and per-
form tasks. The Hawthorne effect (Jones, 1992), which is the tendency for decision-
makers to change their behavior when they are being observed, is a form of cognitive
bias. The case study participants might have been more careful in the observational
setting than in the real setting because they are being observed by scientists judging
their selected MDD feature requirements and priorities. Moreover, the Bandwagon ef-
fect (Nadeau et al., 1993), which is the tendency to do or believe things because many
other decision-makers do or believe the same, is another form of cognitive bias. The
Bandwagon effect typically shows up in group decisions. To mitigate the Hawthorne
and Bandwagon effects, individual and group interviews have been conducted.

Please note that sometimes the case study participants are biased toward a specific
alternative solution. For instance, in this study, all case study participants asserted
that Mendix was one of their alternative solutions. Regional limitation, popularity
in the market, financial plus political issues, and tacit knowledge of the case study
participants can be considered potential factors were limiting alternative solutions.
Accordingly, conducting case studies in different regions could lead to different MDD
feature requirements; consequently, the DSS can suggest different rankings or even
entirely different alternative solutions.

6.6.2 Domain Experts
The experts expressed that the decision-making process is a lot different for small
organizations than large ones. Looking at the IT landscape, we notice a difference in
the selection process because the requirements of small and large organizations are
remarkably different. Small enterprises typically start purchasing a unique MDD plat-
form to solve multiple problems; they cannot invest in multiple platforms to perform
different tasks because of financial constraints. Larger enterprises can invest more
money to employ multiple MDD platforms for different tasks. However, using multi-
ple platforms requires more training costs and knowledge sharing possibilities. The
best-fitting MDD platform for a company should add values instead of just solving
quick issues.

The experts asserted that MDD platforms should not be employed in three use
cases: (1) Complex applications with rich functionality, such as software products,
require continuous development and maintenance to integrate a significant number
of services and components from third parties. Thus, an MDSM platform is not the
best way to develop complex applications, and it is better to hire a development team
that can address the functional requirements and quality concerns. (2) The MDD
platforms should not be used to build applications for enterprises that employ the
generated applications to perform their core businesses. The key rationale to avoid
using MDD platforms for such scenarios is that MDD platforms are mainly designed
for simple reoccurring problems, and they limit creativity by simplifying the complex-
ity of the real-world. Thus, such enterprises will be limited to a set of predefined
functions and cannot make new wild decisions. (3) The MDD platforms would not be

Section 6.6 – Discussion ∣ 159

a cost-effective solution for businesses that rely principally on freemium end-users, as
MDD platforms may charge their customers based on the number of their end-users.

Software development is an iterative and incremental process, based on a collec-
tion of invaluable concepts and principles (Beck et al., 2001; Pressman, 2005). As
extensively discussed in (Asadi & Ramsin, 2008; Embley et al., 2011), it should be
kept in mind that MDD is not a concrete methodology, but a generic approach that
can be applied to software development processes to take advantage of its promises.
The main issue with using models to drive software engineering directly is that they
are far from flexible. First, end-users are limited by the type of the MDD platforms
they use. Second, they are only flexible in the parts of the solution covered by the
used Domain-Specific Languages. The higher level of abstraction, the more common-
alities will be ‘hard-coded’ in the MDD platforms. Third, sometimes models are made
flexible at only a limited set of predefined components by lower-level languages.

6.6.3 The Decision Model
The case study participants confirm that the updated and validated version of the
DSS is useful in finding the shortlist of feasible solutions. Finally, it reduces the time
and cost of the decision-making process. Our website6 is up and running to keep the
knowledge base of the decision support system up-to-date and valid. We aim to create
a community around the platform that regularly updates the curated knowledge base
with new MDD platform features. We consider it as future work to enable third parties
to add new features and products to the database in a wiki-style manner. These
additions need to be approved by us, as it may be tempting for product marketers to
overstate the features present in the platform.

The study of heuristics-and-biases has investigated various decision-making short-
cuts and has documented their inferior performance (Kahneman et al., 1982; Tver-
sky & Kahneman, 1974). However, these uncomplicated heuristics can be viewed
as smart approaches to save time so that a decision-maker can respond immedi-
ately (Gigerenzer & Selten, 2002). Applying simple rules is sometimes an answer
to complexity (Simon, 1955). When faced with a problem that is highly complex
to solve optimally, the decision-maker falls back on a simple rule that makes sense
based on what is understood. Fast-and-frugal heuristics can perform well in certain
domains (Gigerenzer & Todd, 1999), such as MDD selection, to find the best fitting
alternatives based on a limited set of criteria, for instance, background knowledge
and experience of the decision-maker. Thus, the decision model can be considered a
method to evaluate the shortlist of decision-makers’ alternative solutions and assist
them with decision-making under uncertainty.

We believe that the theoretical contribution and the answer of the main research
question (see section 6.3.2) of this study is a decision model that can be used to make
informed decisions in software production, and models from software engineering,
such as the ISO standard quality model and the MoSCoW prioritization technique,
are fundamental building blocks in such decisions. Researchers can replace the ISO
standard quality model with more specific quality attributes to customize the decision
model. Although we employ the MoSCoW prioritization technique to simplify the

6https://dss-mcdm.com

https://dss-mcdm.com

160 ∣ Chapter 6 – Model-Driven Development Platforms

understanding and manage priorities, other researchers can employ other types of
prioritization techniques to define the feature requirements.

With the knowledge available through the decision model, researchers can more
rapidly evaluate MDD platforms in the market, add more platforms or features to
the decision model systematically according to the presented guideline, employ the
reusable knowledge (presented in Tables 6.1, 6.2, 6.3, and 6.4) to develop new con-
cepts and solutions for future challenges.

6.6.4 Limitations and Threats to Validity
The validity assessment is an essential part of any empirical study. Validity discussions
typically involve Construct Validity, Internal Validity, External Validity, and Conclusion
Validity.
Construct validity refers to whether an accurate operational measure or test has been
used for the concepts being studied. In literature, decision-making is typically defined
as a process or a set of ordered activities concerning stages of problem identifying,
data collection, defining alternatives, selecting a shortlist of alternatives as feasible
solutions with the ranked preferences (Fitzgerald et al., 2017; Kaufmann et al., 2012).
To mitigate the threats to the construct validity, we followed the MCDM theory and
the six-step of a decision-making process (Majumder, 2015) to build the decision
model for the MDD platform selection problem. Moreover, we employed document
analysis and expert interviews as two different knowledge acquisition techniques to
capture knowledge regarding MDD platforms. Additionally, the DSS and the decision
model have been evaluated through four real-world case studies at four different
real-world enterprises in the Netherlands.
Internal validity attempts to verify claims about the cause-effect relationships within
the context of a study. In other words, it determines whether the study is sound or not.
To mitigate the threats to the internal validity of the decision model, we define DSS
success when it, in part, aligns with the case-study participants shortlist and when
it provides new suggestions that are identified as being of interest to the case study
participants. Emphasis on the case study participants’ opinion as a measurement in-
strument is risky, as the case study participants may not have sufficient knowledge to
make a valid judgment. We counter this risk by conducting more than one case study,
assuming that the case study participants are handling their interest and applying the
DSS to other problem domains, where we find similar results (Farshidi et al., 2018a;
Farshidi et al., 2020c; Farshidi et al., 2018c; Farshidi et al., 2020e).
External validity concerns the domain to which the research findings can be general-
ized. External validity is sometimes used interchangeably with generalizability (fea-
sibility of applying the results to other research settings). We evaluated the decision
model in the context of Dutch enterprises. To mitigate threats to the research’s exter-
nal validity, we captured knowledge from different sources of knowledge without any
regional limitations to define the constructs and build the decision model. Accord-
ingly, we hypothesize that the decision model can be generalized to all enterprises
worldwide who face uncertainty in the MDD platform selection problem. Another
question is whether the framework and the DSS can be applied to other problem do-
mains as well. The problem domains (Farshidi et al., 2018a; Farshidi et al., 2020c;
Farshidi et al., 2018c; Farshidi et al., 2020e) were selected opportunistically and prag-

Section 6.7 – Related Work ∣ 161

matically, but we are convinced that there are still many decision problems to which
the framework and the DSS can be applied. The categories of problems to which the
framework and the DSS can be applied successfully can be summed up as follows: (1)
the problem regards a technology decision in system design with long-lasting conse-
quences, (2) there is copious scientific, industry, and informal knowledge publicly
available to software engineers, and (3) the (team of) software engineer(s) is not
knowledgeable in the field but very knowledgeable about the system requirements.
Conclusion validity verifies whether the methods of a study such as the data collec-
tion method can be reproduced, with similar results. We captured knowledge sys-
tematically from the sources of knowledge following the MCDM framework (Farshidi
et al., 2018a). The accuracy of the extracted knowledge was guaranteed through
the protocols that were developed to define the knowledge extraction strategy and
format. A review protocol was proposed and applied by multiple research assistants,
including bachelor and master students, to mitigate the threats to the research’s con-
clusion validity. By following the framework and the protocols, we keep consistency
in the knowledge extraction process and check whether the acquired knowledge ad-
dresses the research questions. Moreover, we crosschecked the captured knowledge
to assess the quality of the results, and we had at least two assistants extracting data
independently.

6.7 Related Work
In this study, Snowballing was applied as the primary method to investigate the ex-
isting literature regarding techniques that address the MDD platform selection prob-
lem. Table 6.6 summarizes a subset of selected studies that discuss the problem. As
aforementioned, the last column (Cov.) of Table 6.6 indicates the percentage of the
coverage of the considered criteria within the selected studies. On average, 75% of
those criteria are already considered in this study. In other words, the decision model
contains a significant number of criteria, including features and quality attributes,
that have been mentioned in literature.

6.7.1 Intelligent Business Process Management Suite Selection
In literature, a wide range of publications has assessed different iBPMS platforms and
compared them against a set of criteria. Dunie et al. (2019) reported considered 26
criteria, such as sales execution/pricing and marketing strategy, to evaluate nineteen
iBPMS platforms as leaders, challengers, niche players, and visionaries.

Sanchis et al. (2020) introduced a framework to manage the overall network of a
collaborative manufacturing and logistics environment that enables humans, appli-
cations, and Internet of Things devices to seamlessly communicate and interoperate
in the interconnected environment, promoting resilient digital transformation. Then,
the authors conducted a literature study regarding MDD platforms to identify sixteen
features that they support. Finally, the authors compared their framework with six
Low-Code platforms against the features.

Rymer et al. (2019) researched a list of low-code platforms, including 13 vendors,
to consider for the evaluation. From that initial pool of vendors, they narrowed the

162
∣

C
hapter6

–
M
odel-D

riven
D
evelopm

entPlatform
s

Table 6.6: compares a subset of selected studies from the literature that addresses the MDD platform selection problem. The first six columns indicate the selected study
(Study), the publication type (Type) (including Research Paper (RP), Master Thesis (MT), and Report (R)), the research methods (R. Method) (including Expert Interview (Experts),
Document Analysis (Doc Analysis), Design Science (Design Sc.), Systematic Literature Review (SLR), Survey, and Case Study), the data collection type (Data Col.), and MDD platforms
(Platforms), and the publication year (Year) of the corresponding selected studies, respectively. The seventh column (Approach) indicates the decision-making approach that the
studies have employed to address the MDD platform selection problem. The eighth column (MCDM) denotes whether the corresponding decision-making technique is an MCDM
approach. The ninth column indicates whether the MCDM approach applied pairwise comparison (PC) as a weight calculation method or not. The tenth column (QA) determines the
type of quality attributes. The eleventh and twelfth columns (#C and #A) signify the number of criteria and alternatives considered in the selected studies. The next three columns
indicate the numbers of common quality attributes (#CQ), features (#CF), and alternatives (#CA) of this study (the first row) with the selected studies. The last column (Cov.) shows
the percentage of the coverage of the considered criteria (quality attributes and features).

Study Type R. Method Data Col. Platforms Year Approach MCDM PC QA #C #A #CQ #CF #CA Cov.

This
study

RP

Design Sc.
Experts
Doc Analysis
Case Study

Mixed
iBPMS
BPMS 2020 DSS Yes No

ISO/IEC 25010
EX. ISO/IEC 9216 151 30 57 94 30 100%

Sanchis et al. (2020) RP SLR Quantitative iBPMS 2020 Benchmarking No N/A Domain Specific 16 7 0 11 2 68%

Vincent et al. (2019) Report
Survey
Doc Analysis Quantitative iBPMS 2019 SA No N/A Domain Specific 15 18 7 5 12 80%

Rymer et al. (2019) Report
Survey
Doc Analysis Quantitative iBPMS 2019 SA No N/A Domain Specific 20 13 2 14 9 80%

Dunie et al. (2019) Report
Survey
Doc Analysis Quantitative iBPMS 2019 SA No N/A Domain Specific 26 19 9 4 6 50%

Vugec et al. (2019) RP Doc Analysis Quantitative iBPMS 2019 Benchmarking No N/A Domain Specific 4 9 1 3 5 100%

Sattar (2018) MT
Case Study
Experts
Doc Analysis

Mixed iBPMS 2018 Benchmarking No N/A Domain Specific 10 13 2 8 3 100%

Zolotas et al. (2018) RP Doc Analysis Quantitative iBPMS 2018 Benchmarking No N/A N/A 4 11 0 2 5 50%

Şen et al. (2018) RP Experts Qualitative BPMS 2018
AHP
FTOPSIS Yes Yes Domain Specific 4 5 2 2 0 100%

Hendriks et al. (2017) MT Experts Qualitative iBPMS 2017 WSM Yes No Domain Specific 16 5 5 7 3 75%

Melo et al. (2017) RP Doc Analysis Quantitative iBPMS 2017 Benchmarking No N/A
ISO/IEC 25010
Domain Specific 38 2 20 12 2 84%

Meidan et al. (2017) RP SLR Quantitative BPMS 2017 SA No N/A Domain Specific 41 7 10 21 0 76%

Richardson & Rymer (2016) Report
Survey
Doc Analysis Quantitative iBPMS 2016 SA No N/A Domain Specific 5 42 0 4 12 80%

Wasilewski (2016) RP Doc Analysis Quantitative BPMS 2016 SA No N/A N/A 35 27 0 23 6 66%
Vukšić et al. (2016) RP SLR Quantitative BPMS 2016 Benchmarking No N/A Domain Specific 11 3 1 8 2 82%

Delgado et al. (2015) RP
Case Study
Doc Analysis Qualitative BPMS 2015 WSM Yes No Domain Specific 11 13 3 8 1 100%

Mejri et al. (2015) RP Survey Quantitative BPMS 2015 WSM Yes No Domain Specific 4 8 0 3 0 75%
Marín et al. (2014) RP Survey Qualitative MDA 2014 Benchmarking No N/A Domain Specific 9 8 4 3 0 78%

Ravasan et al. (2014) RP
Experts
Doc Analysis Qualitative BPMS 2014 FTOPSIS Yes Yes Domain Specific 48 5 19 16 0 73%

Davies & Reeves (2010) RP
Experts
Doc Analysis Qualitative BPMS 2010 WSM Yes No Domain Specific 53 10 10 40 0 94%

Kapteijns et al. (2009) RP
Case Study
Doc Analysis Qualitative BPMS 2009 Benchmarking No N/A Domain Specific 12 4 1 6 1 58%

Štemberger et al. (2009) RP
Case Study
Doc Analysis Qualitative BPMS 2009 AHP Yes Yes Domain Specific 10 5 5 3 0 80%

Section 6.7 – Related Work ∣ 163

final list based on several inclusion criteria, such as low-cost-of-entry commercial
models, building many business use cases, and primarily targeting large enterprises.
Then, they collected data from products and strategies through a detailed question-
naire, demos and briefings, and a reference-customer survey. They used those inputs,
along with the analyst’s experience and expertise in the marketplace, to score the
platforms, applying a relative rating system that compares each platform against the
others in the evaluation.

Vugec et al. (2019) identified the following four social business process manage-
ment dimensions based on literature study: Egalitarianism, Collective intelligence,
Self-organization, and Social production. Next, the authors selected nine iBPMSs
reported by Dunie et al. (2019) to compare their functionality against the social di-
mensions.

Sattar (2018) assessed 13 low-code platforms based on supporting ten criteria,
such as cloud platform attributes, and then introduced a decision tree for the low-
code platform selection problem.

Zolotas et al. (2018) presented a low-code platform based on the REST architec-
ture that enables developers to model attribute-based access control policies without
requiring any code writing. Then, the authors compared their approach with eleven
low-code platforms against four security features. Melo et al. (2017) considered the
ISO/IEC 25010 standard besides a set of quality aspects, such as vendor and cost, to
evaluate Oracle Apex and OutSystems.

Hendriks et al. (2017) researched for essential characteristics of low-code plat-
forms and how they should be matched to each other. They performed interviews
with industry experts to determine how the industry looks upon matching situations
and platforms. Finally, they introduced a framework based on the characteristics to
support organizations with the iBPMS platform selection.

Richardson & Rymer (2016) carried out an online vendor survey to assess 42 low-
code platforms. The authors of the report then divided low-code platforms into the
following five categories using their background and functionality: General purpose
platforms, Process application platforms, Database application platforms, Request
handling platforms, and Mobile application platforms.

Wasilewski (2016) compared the Gartner’s reports about BPMS and iBMPS markets
from 2009 to 2015 to analyze the behavior of the leaders in the Magic Quadrant.

6.7.2 Business Process Management Suite Selection
A vast range of BPMS platforms is currently available on the market to cater to a
wide variety of modeling objectives. A subset of publications that reported on the
evaluation of BPMS platforms is presented as follows.

Şen et al. (2018) applied the Analytic Hierarchy Process (AHP)7 and the Fuzzy
Technique for Order Preference by Similarity to Ideal Solution (FTOPSIS)8 to address

7AHP is an MCDM technique for making decisions between alternatives. AHP allows decision-makers
to capture their strategic goals as a set of weighted criteria that they then use to rank alternatives.

8The TOPSIS is an MCDM approach that employs information entropy to assess alternatives. Fuzzy logic
is an approach to computing based on “degrees of truth” rather than the usual Boolean logic. Sometimes
combinations of fuzzy logic with other MCDM approaches, such as FTOPSIS, are employed to solve MCDM
problems.

164 ∣ Chapter 6 – Model-Driven Development Platforms

the problem of choosing BPMS for a retailer operating in the textile sector. In the
first step, the AHP implementation and the pairwise comparisons were taken from
the seven decision-makers determined the decision criteria’ weights. In the second
step, the FTOPSIS method was performed to select the best fitting BPMS with the
decision-makers’ quantitative and qualitative evaluations.

Meidan et al. (2017) performed a formal survey based on a systematic literature
review method and quality models to classify and compare BPMSs according to a set
of characteristics of open source BPMS. Additionally, they observed that every BPMS
provider used its terminology to explain business process concepts (e.g., join and
fork elements, exception handling, events). Unifying the terminology could help to
improve interoperability and portability among BPMSs. Furthermore, the evaluation
showed that BPMSs could be classified into two families: the first one is oriented
to normal users (e.g., Bonita and ProcessMaker), and the second one is platform-
oriented to developers and expert users (e.g., Activiti, Camunda, and jBPM).

Vukšić et al. (2016) presented a guideline and a set of selection criteria such as
maturity, reporting and analytics, business rules, user interface and user experience,
and modeling notation to evaluate three BPMS platforms (IBM, K2, and Software
AG).

Kapteijns et al. (2009) performed research regarding BMPS platforms in small-scale
development projects to investigate the case study participants’ level of satisfaction.
Moreover, the authors collected a set of BMPS features from the literature to compare
four BMPS platforms against each other.

Delgado et al. (2015) presented a systematic approach based on the Weighted Sum
Model (WSM)9 for assessing BPMS tools, both open-source and proprietary. The
authors suggested a list of relevant vital characteristics for BPMS tools and a way
of evaluating the provided support using test cases and a case study to provide an
overall view of the tool support.

Mejri et al. (2015) used a questionnaire to capture a set of BPMSs’ strengths and
weaknesses in terms of flexibility from their researchers and developers. Then, they
used the Weighted Sum Method to calculate the scores of the BPMSs and rank them
accordingly. Ravasan et al. (2014) introduced a set of functional and non-functional
criteria for selecting the right BPMS for an organization. The authors then applied the
FTOPSIS approach to calculate the weight of the criteria based on decision-makers’
requirements and priorities.

Davies & Reeves (2010) reported on the Australian government department’s ex-
periences in selecting a BPM tool to support its process modeling, analysis, and de-
sign activities. Candidate solutions were identified for evaluation by researching case
studies and market overviews.

Štemberger et al. (2009) presented a method for BPMS selection to support
decision-makers (managers and IT experts) with the BPMS selection process. Their
approach was based on the AHP method and developed BPM tools features from
project goals and critical success factors. Their research reported two points: (1) to
choose the best fitting software tool for a particular application and business, an or-
ganization requires a method for the evaluation of a BPMS, and (2) the selection of a

9Weighted Sum Model is an aggregation function that transforms multiple criteria into a single value by
multiplying each criterion by a weighting factor and summing up all weighted criteria.

Section 6.7 – Related Work ∣ 165

BPMS is a multi-criteria decision process. Accordingly, a suitable method for making
multi-objective decisions should be employed.

6.7.3 Strengths and Liabilities
Studies based on Benchmarking (Kapteijns et al., 2009; Marín et al., 2014; Melo
et al., 2017; Sanchis et al., 2020; Sattar, 2018; Vugec et al., 2019; Vukšić et al.,
2016; Zolotas et al., 2018) and Statistical Analysis (SA) (Dunie et al., 2019; Meidan
et al., 2017; Richardson & Rymer, 2016; Rymer et al., 2019; Vincent et al., 2019;
Wasilewski, 2016) are typically time-consuming approaches and mainly applicable
to a limited set of alternatives and criteria, as they require in-depth knowledge of
programming languages and concepts. Such analysis is subject to increased error,
particularly when a relational analysis is used to attain a higher interpretation level.
One of the critical issues regarding statistical analysis is the tendency to skip unjusti-
fied conclusions concerning causal relationships. Researchers usually obtain evidence
that two variables are highly correlated; however, that does not prove that one vari-
able causes another. Finding relationships among correlations and causation need
in-depth expertise and experience regarding MDD platforms and their concepts, as
such links are mainly qualitative. Additionally, benchmarking and statistical analy-
sis are likely to become outdated soon and continuously kept up to date, which is a
high-cost process.

As aforementioned, finding the best MDD platform for an organization is a decision-
making process that deals with evaluating several alternatives and criteria. Accord-
ingly, the selected platform should address the concerns and priorities of the decision-
makers. Conversely to MCDM approaches, studies based on “Benchmarking” and
“Statistical Analysis” principally offer generic results and comparisons and do not
consider individual decision-maker needs and preferences. A variety of MCDM ap-
proaches have been introduced by researchers recently.

The majority of the MCDM techniques (Davies & Reeves, 2010; Delgado et al.,
2015; Hendriks et al., 2017; Mejri et al., 2015; Şen et al., 2018; Štemberger et al.,
2009) define domain-specific quality attributes to evaluate the alternatives. Such
studies are mainly appropriate for specific case studies. Furthermore, MCDM ap-
proaches are valid for a specified period; therefore, the results of such studies will
be outdated by MDD platforms’ advances. Note that, in our proposal, this is also a
challenge, and we propose a solution for keeping the knowledge base up to date in
section 6.6. Some of the methods, such as FTOPSIS and AHP, are not scalable, so
in modifying the list of alternatives or criteria, the evaluation process should be re-
done. Therefore, these methods are costly and applicable to only a small number of
criteria and alternatives. This study has considered 151 criteria and 30 alternatives
to building a decision model for the MDD platform selection problem.

In contrast to the named approaches, the cost of creating, evaluating, and apply-
ing the proposed decision model in this study is not penalized exponentially by the
number of criteria and alternatives. It is an evolvable and expandable approach that
splits down the decision-making process into four maintainable phases (Farshidi et
al., 2018c). Moreover, we introduce several parameters to measure the values of
non-Boolean criteria, such as the maturity level and market popularity of the MDD
platforms. The proposed decision model addresses main knowledge management is-

166 ∣ Chapter 6 – Model-Driven Development Platforms

sues, including capturing, sharing, and maintaining knowledge. Furthermore, it uses
the ISO/IEC 25010 (ISO, 2011) as a standard set of quality attributes. This qual-
ity standard is a domain-independent software quality model and provides reference
points by defining a top-down standard quality model for software systems.

Recently, we built five decision models based on the framework to model the
selection of Database Management Systems (Farshidi et al., 2018c), Cloud Service
Providers (Farshidi et al., 2018a), Blockchain Platforms (Farshidi et al., 2020c), Soft-
ware Architecture Patterns (Farshidi et al., 2020e), and Programming Languages. In
all five studies, case studies were conducted to evaluate the DSS’s effectiveness and
usefulness in addressing MCDM problems. The results confirmed that the DSS per-
formed well to solve the mentioned problems in software production. We believe that
the framework can be employed as a guideline to build decision models for MCDM
problems in software production.

6.8 Conclusion
In this study, the selection process of the model-driven development platforms is mod-
eled as a multi-criteria decision-making problem that deals with evaluating a set of
alternatives and taking into account a set of decision criteria (Triantaphyllou et al.,
1998). Moreover, we presented a decision model for the selection problem based
on the technology selection framework (Farshidi et al., 2018a). The novelty of the
approach provides knowledge about model-driven development platforms to support
uninformed decision-makers while contributing a sound decision model to knowl-
edgeable decision-makers. Furthermore, it incorporates deeply embedded software
engineering concepts, such as the ISO software quality standards and the MoSCoW
prioritization technique, besides knowledge engineering theories, to develop the deci-
sion model. We conducted four industry case studies to evaluate the decision model’s
usefulness and effectiveness to address the decision problem. We find that while
organizations are typically tied to particular ecosystems by extraneous factors, they
can benefit significantly from our DSS by evaluating their decisions, exploring more
potential alternative solutions, and analyzing an extensive list of features. The case
studies show that this article’s decision model also provides a foundation for future
work on MCDM problems. We intend to build trustworthy decision models to address
the Programming Language selection problem as our (near) future work.

Part III: Decision-Making in Pattern-Driven
Design

CHAPTER 7

Capturing Software Architecture
Knowledge

Context: Software architecture is a knowledge-intensive field. One
mechanism for storing architecture knowledge is the recognition and
description of architectural patterns. Selecting architectural patterns
is a challenging task for software architects, as knowledge about
these patterns is scattered among a wide range of literature.
Method: We report on a systematic literature review, intending
to build a decision model for the architectural pattern selection
problem. Moreover, twelve experienced practitioners at software-
producing organizations evaluated the usability and usefulness of
the extracted knowledge.
Results: An overview is provided of 29 patterns and their effects on
40 quality attributes. Furthermore, we report in which systems the
29 patterns are applied and in which combinations. The practitioners
confirmed that architectural knowledge supports software architects
with their decision-making process to select a set of patterns for a
new problem. We investigate the potential trends among architects
to select patterns.
Conclusion: With the knowledge available, architects can more
rapidly select and eliminate combinations of patterns to design
solutions. Having this knowledge readily available supports software
architects in making more efficient and effective design decisions
that meet their quality concerns.

keywords- architectural patterns; architectural styles; quality
attributes; design decisions; knowledge acquisition

This chapter is partially based on the following publication:

Farshidi, S., S. Jansen & J. M. van der Werf (2020e), “Capturing software architecture
knowledge for pattern-driven design”, Journal of Systems and Software.

Section 7.1 – Introduction ∣ 171

7.1 Introduction
Software architecture plays an indispensable role in the success or failure of any soft-
ware system, as it deals with the base structure, subsystems, and interactions among
these subsystems (Clements et al., 2003). Software architecting can be viewed as a
decision-making process: software architects consider a set of alternative solutions
that could solve a system design problem, and select the set that is evaluated as
the optimal (Lago & Avgeriou, 2006). Software architecture decisions are design
decisions that address system requirements, including both functional and quality re-
quirements. In this article, we present the results from an SLR that intends to support
architects in the decision process, by linking quality attributes to software patterns1.

Software architecture design decisions, such as the selection of architectural pat-
terns and software design patterns, are typically made in the early phases of the
software development life cycle. In the following paragraphs, we define architectural
patterns, styles, and tactics (Shaw, 1995).

Architectural patterns are universal and reusable solutions to commonly occurring
problems in software architecture (Buschmann et al., 2007a). Each architectural pat-
tern describes high-level structures and behaviors of software systems and addresses
a particular recurring problem within a given context in software architecture design.
Architectural patterns aim to satisfy several functional and quality attribute require-
ments. In literature, sometimes the terms “architectural patterns” and “architectural
styles” are used interchangeably, since they are, in essence, the same concepts and
only differ in their description forms (Avgeriou & Zdun, 2005).

Software design patterns are experience-based standard solutions applied by devel-
opers to solve common problems when implementing a software system (Hussain
et al., 2017). Note, a software design pattern is not a finished design that can be
transformed directly into source or machine code. Architectural patterns are simi-
lar to software design patterns but have a broader scope. In this study, we focus on
architectural patterns, and for the sake of brevity, we use patterns to refer to them.

software architecture tactics are design decisions that improve individual quality
attribute concerns (Harrison & Avgeriou, 2010). Tactics that are implemented in
existing architectures can have significant impacts on the patterns in the system. In
other words, tactics are reusable architectural building blocks that provide generic
solutions to address issues about quality attributes that patterns have impacts on.

Pattern descriptions contain knowledge about quality attributes, and software ar-
chitects rely on that knowledge to make effective design decisions, so increasing such
knowledge means increasing the role of patterns in satisfying quality attributes (Me
et al., 2016). Patterns and quality attributes are not independent and have significant
interaction with each other. Such interactions can be observed as trade-offs between
quality attributes. Software architects need to select and employ an optimal set of
patterns to satisfy quality concerns. For instance, some studies assert that Reusability
is a strength (Qin et al., 2008; Sabagh & Al-Yasiri, 2011) and Scalability is a liabil-
ity (Galster et al., 2010; Majidi et al., 2010) of the Layers pattern. If an architect is

1The knowledge base of this study, including the primary studies and extracted knowledge, is available
as a technical report on the following web page: http://swapslr.com

172 ∣ Chapter 7 – Capturing Software Architecture Knowledge

looking for both qualities, she has two options: choose another (set of) pattern(s) or
use software architecture tactics to improve Scalability.

Software architects are making the design decisions that have long-lasting impacts
on quality attributes of a software-intensive system (Kruchten, 2008). Software ar-
chitects define the architecture of the system, maintain the architectural integrity of
the system, assess technical risks, perform risk mitigation strategies, participate in
project planning, consult with design and implementation teams, and assist product
marketing (Kruchten, 1999). Therefore, software architects make high-level design
decisions every day (Tyree & Akerman, 2005). Software architects engage in pro-
cesses of creation, perfection, and destruction on a daily basis. Their work consists of
setting standards for developers, designing and implementing new parts of a system’s
architecture, developing shells around and interfaces to legacy systems, monitoring
quality attributes, and occasionally creative destruction to make way for significant
renovations. Pattern selection is a process that happens organically during the process
of architecting a system.

Generally speaking, functional requirements define what a system does, whereas
quality requirements explain how well those functions are
performed (Blaine & Cleland-Huang, 2008). Quality requirements tend to present
trade-offs that must be thoroughly negotiated and resolved (Chung et al., 2000). For
instance, a software architect might want to design a system to be both highly secure
and available, or she might want a system to respond quickly and support thousands
of users simultaneously. Therefore, she has to design an architectural solution that
supports these conflicting quality requirements to optimize the delivered system’s
value. Quality requirements are often more challenging to measure and track than
their functional counterparts. Whereas functional requirements are either present or
not present in a system, quality requirements tend to be achieved at various levels
along a continuum (Blaine & Cleland-Huang, 2008).

System quality is best exposed in production, independent of whether system qual-
ity has been made explicit. Note, it is essential to recall those well-known authors,
such as Wiegers & Beatty (2013), classify quality attributes as external (exposed at
the run time/in production, e.g., performance) and internal (exposed at design time,
e.g., modifiability). If architects do not think about performance, the system will still
expose its performance in the field. The knowledge around the quality of a system
under design is hard to gather without in the field experiences; however, experience
with similar patterns in other systems provides invaluable insight into the inherent
qualities of a new system. The rationale behind this article is that patterns exhibit
similar quality behaviors when purely implemented (without tactics) in different sys-
tems and that this knowledge can be used by architects to make informed design
decisions.

In this study, we followed a mixed research method, a combination of qualita-
tive and quantitative research, to systematically capture architectural knowledge and
make it available in a reusable and extendable format. First, we conducted a Sys-
tematic Literature Review (SLR). The SLR has been carried out following the steps
and guidelines of Kitchenham (2004) to identify common lists of patterns and quality
attributes, besides strengths and liabilities, application domains, combinations, and
trends of the patterns. Next, a serious of expert interviews, based on Bogner et al.

Section 7.2 – Background ∣ 173

(2009), has been conducted to evaluate the usefulness and reusability of the extracted
knowledge. Note, the knowledge is summarized in this article, and we propose three
ways of disseminating the knowledge to the architect: education, tool support, and
pattern quality impact reporting. The practitioners who participated in this research
confirmed that the extracted knowledge supports software architects with their daily
decision-making process.

7.2 Background

7.2.1 Patterns in Software Architecture
Several definitions exist that explain Software Architecture. It is both seen as the
set of structures of software elements, and their relations and properties to reason
over a software system (Bass et al., 2013), and as the set of principal design deci-
sions (Jansen et al., 2008).

In this paper, we consider the former definition, the set of structures, as the out-
come of the latter, i.e., software architecture is the outcome of a set of principle
design decisions. This is reflected in the meta-model, depicted in Figure 7.1, which
is based on the ISO/IEC/IEEE standard 42010 (ISO, 2011). Architectural decisions
may depend on other decisions, pertains to one or more concerns of stakeholders,
and should contain some rationale to justify it. The outcome of the decision affects
the architecture description. Besides, the decision may raise new concerns. Concerns
include both functional requirements as well as quality attributes (Bass et al., 2013).

An architectural pattern expresses a fundamental structural organization schema
for software systems (Rozanski & Woods, 2012). A closely related term in literature
is “architectural style”. As there is no widely accepted definition for both terms in
literature, we refer to both as “architectural pattern”. An architectural pattern differs
from software patterns, also referred to as design patterns, in that a software pattern
provides a solution for a general design problem (Hussain et al., 2017), whereas an
architectural pattern describes the organizational schema of a software system.

Table 7.1 outlines the definitions of the foundational concepts for the SLR. Please
note that many of the definitions were handpicked from the plethora of definitions
available because we needed to make sure that the definitions fit the meta-model in
Figure 7.1.

7.2.2 Decision Process
Building a software architecture can be regarded as a decision-making
process (Lago & Avgeriou, 2006): a software architect considers several alternative
solutions (design decisions) that could solve the design problem statement, and
subsequently chooses one of the solutions that optimally addresses the problem. The
software architecture design decision, such as the selection of architectural patterns,
is formulated as follows: (1) a software architect runs into a design problem, (2) she
looks for actual features she thinks can solve this problem, such as “distribute data
over multiple servers”, (3) she goes through the description of several patterns and
identifies several candidates, (4) she identifies an optimum pattern for her problem

174 ∣ Chapter 7 – Capturing Software Architecture Knowledge

Figure 7.1: This figure shows a meta-model, based on the ISO/IEC/IEEE standard 42010 (ISO,
2011), for decision-making in software architecture. The essential included elements are the
architect, the architecture, the knowledge base, and the quality attributes.

architecture
rationale

architecture
decision

justifies

1..*

1..*

depends upon

0..*0..*

concern

quality attribute
functional

requirement

pertains to

0..* 1..*

raises

0..* 0..*
 architecture
description

affects

1..* 0..*

architecture

expresses

applied pattern

applies

1..*

1..*

contains

1..*
applied tactic

aggregates

1..* 0..*

impacts on

1..* 1..*

architect
has

1..*

has

1..*

1..*

RQ
2

impacts on

1..* 1..*

Trend
affects

0..*

0..*

affects

0..*

0..*

RQ
6

RQ
3

Decision model for pattern selection

application
domain

employs in
1..*

1..*

RQ
4

5
RQ

pattern tactic
packages

1..* 0..*RQ
1

combination

0..*

1..*

available for

1..*

and goes through tactics to make sure it works in the context. The decision model
for the pattern selection problem can be used in steps 2 and 3 to facilitate the
decision-making process for software architects.

Figure 7.1 represents a meta-model for decision-making in architecture. It shows in
general terms how patterns, quality attributes, and tactics are related to each other,
and how they are linked to the architecture. It provides a structure for discussion
of the specific ways that applied tactics affect the patterns used. It also provides a
foundation for the description of the impact of applied patterns and tactics on the
software architect’s quality concerns. Note that we distinguished the applied patterns
and tactics in the architecture from the potential set of design decisions (patterns and
tactics that are available in the knowledge base of software architects).

Section 7.2 – Background ∣ 175

Table 7.1: List of terms and their definitions used in this article. Please note that all terms
except for Functional Requirement can be preceded by the words “Software Architecture”.

Term Definition Refs
Software Archi-
tecture

Software architecture is the structure or structures of the sys-
tem, which comprise software components, the externally vis-
ible properties of those components, and the relationships be-
tween them.

Clements et al.
(2003)

Pattern universal and reusable solutions to commonly occurring prob-
lems in software architecture.

Buschmann
et al. (2007a)

Tactic design decisions that improve individual quality attribute con-
cerns

Harrison & Avge-
riou (2010).

Quality The quality of a system is the degree to which the system sat-
isfies the stated and implied needs of its various stakeholders,
and thus provides value.

ISO (2011)

Architect person, team, or organization responsible for systems archi-
tecture

ISO (2017)

Rationale captures the knowledge and reasoning that justify the result-
ing design, and its primary goal is to support designers by
providing means to record and communicate the argumenta-
tion and reasoning behind the design process.

Horner & At-
wood (2006)
and Tang et al.
(2006)

Decision A decision is consisting of a restructuring effect on the com-
ponents and connectors that make up the software architec-
ture, design rules imposed on the architecture and resulting
system as a consequence, design constraints imposed on the
architecture, and a rationale explaining the reasoning behind
the decision.

Bosch (2004)

Functional
Requirement

condition or capability that must be met or possessed by a
system, system component, product, or service to satisfy an
agreement, standard, specification, or other formally imposed
documents

ISO (2017)

Concern is any interest in the system. The term is derived from the
phrase "separation of concerns" as in Software Engineering.
One or more stakeholders may hold a concern. Concerns in-
volve system considerations such as performance, reliability,
security, availability, and scalability.

ISO (2011)

The pattern selection process is challenging for software architects, as knowledge
about patterns is scattered among a wide range of literature. Knowledge regarding
patterns has to be collected, organized, stored, and quickly retrieved when it needs
to be employed. There exists a need for a decision support system that intelligently
supports software architects in selecting suitable patterns according to their require-
ments.

7.2.3 Related Studies
It is becoming increasingly common in software engineering to synthesize results
through SLRs, even though that is a relatively recent phenomenon (Brereton et
al., 2007). In software, architecture research SLRs are also increasingly com-
mon (Uzun & Tekinerdogan, 2018; Weinreich & Groher, 2016) and generally serve
the purpose of mapping out particular research challenges in the domain. Our SLR
was conducted because we lacked a near-to-complete source of evidence to create a
reliable decision model for architects. Our study distinguishes itself from such studies

176 ∣ Chapter 7 – Capturing Software Architecture Knowledge

as it synthesizes literature intending to collect data for practitioners and evaluates the
collected data with practitioners themselves. The study also contributes overviews of
commonly discussed patterns and quality attributes, providing a basis for new re-
search. It is notable, for instance, that many of the quality attributes found in our
study are not present in the well known ISO standards.

The software architecture field has evolved over the last four
decades (Clements & Shaw, 2009; Shaw & Clements, 2006) from the early
fundamental concepts from the mid-80s to the ubiquitous proliferation of roles of
software architects in contemporary industrial practice (Capilla et al., 2016).
Architectural knowledge, such as the impacts of patterns on quality attributes, has
been widely addressed in the literature. However, the knowledge is fragmented over
a wide range of heterogeneous studies (Buchgeher et al., 2016; Me et al., 2016;
Tang et al., 2011b), so a sound methodology is required to capture and aggregate
this knowledge systematically. The data collection is an empirical study that can be
quantitative or qualitative (Runeson & Höst, 2009). Quantitative data comprises
numbers and classes, while qualitative data involves descriptions and explanations
of phenomena. Quantitative data is analyzed using statistics, while qualitative data
is analyzed using expert interviews or/and case studies to provide a more detailed
and more in-depth explanation. However, a combination of qualitative and
quantitative data often provides a better understanding of the studied
phenomenon (Seaman, 1999) (Mixed research).

Research methods are classified based on their data collection techniques (inter-
view, observation, literature, etc.), inference techniques (taxonomy, protocol analysis,
statistics, etc.), research purpose (evaluation, exploration, description, etc.), units of
analysis (individuals, groups, process, etc.), and so forth. Multiple research meth-
ods are combined to achieve a fuller picture and a more in-depth understanding of
the studied phenomenon by connecting complementary findings that conclude from
the use of methods from the different methodological traditions of qualitative and
quantitative investigation (Johnson & Onwuegbuzie, 2004).

In this study, we considered a systematic literature review and expert interviews
as a mixed data collection method to identify frequent mentioning sets of patterns
and quality attributes that were discussed widely in academic publications. Then, we
highlighted 29 patterns and 40 quality attributes than were mentioned in more than
three selected primary studies. Moreover, we extracted potential strengths and lia-
bilities of the patterns to map the patterns to the quality attributes and calculate the
impacts of the patterns on the quality attributes based on fuzzy logic. Additionally,
we realized that the authors of the selected primary studies employed the patterns in
particular types of systems and applications so that we considered them as the poten-
tial application domains of the patterns. Furthermore, we tracked the publications’
years of the studies and their mentioned patters to imply a trendy manner among
academics to employ patterns and research them.

Table 7.2 positions this study among a subset of selected primary studies. This
table shows that none of the selected primary studies employed qualitative and quan-
titative data collection methods to evaluate a significant number of patterns. Note,
the research results of all of the selected primary studies have been included in the
knowledge base of the SLR (See Section 7.3.7).

Section
7.2

–
Background

∣177

Table 7.2: This table shows a subset of studies in literature. The first six columns indicate the selected study (Study), the publication type
(PT) (including Research Paper (RP), Book, and Chapter (Chp)), the publication year (Year), and the data collection method (DCM), the
research purpose (Purpose), and data collection type (Type) of the corresponding selected primary studies, respectively. The seventh and
eighth columns (#P and #QA) denote the number of considered patterns and quality attributes in the selected primary studies. The last three
columns identify whether the selected primary studies investigated on the potential domains of patterns, possible trends of utilizing patterns,
impacts of patterns on quality attributes, or not.

Study PT Year DCM Purpose Type #P #QA Domain Trend Impact
This
Study RP 2020 SLR

Interview Evaluation Mixed 29 40 Yes Yes Yes

Pramod Mathew Jacob (2018) RP 2018 Experiment Evaluation Quantitative 4 8 Yes No Yes
Haoues et al. (2017) RP 2017 Survey Evaluation Quantitative 3 27 No No Yes
Me et al. (2016) RP 2016 SLR Evaluation Quantitative 8 15 No No Yes
Richards (2015) Book 2015 Case Study Evaluation Qualitative 5 6 Yes No Yes
Buyya et al. (2013) Chp 2013 Case Study Description Qualitative 15 15 Yes No Yes
Yang et al. (2012) RP 2012 Case Study Evaluation Qualitative 7 11 Yes No Yes
Bode & Riebisch (2010) RP 2010 Case Study Evaluation Mixed 9 15 No No Yes
Harrison & Avgeriou (2008a) RP 2010 Statistics Description Quantitative 20 4 Yes No No
Ahmad et al. (2010) RP 2010 Case Study Description Qualitative 5 9 No No Yes
Qin et al. (2008) Chp 2008 Case Study Description Qualitative 7 15 Yes No Yes
Harrison & Avgeriou (2007) RP 2007 Statistics Evaluation Quantitative 7 8 No No Yes
Avgeriou & Zdun (2005) RP 2005 Literature Description Qualitative 24 10 No No Yes
Buschmann et al. (1996) Book 1996 Case Study Description Qualitative 8 20 Yes No Yes
Garlan & Shaw (1993) Chp 1994 Case Study Description Qualitative 6 5 Yes No Yes

178 ∣ Chapter 7 – Capturing Software Architecture Knowledge

Note, an extensive list of studies addresses the impacts of patterns on quality
attributes. Each study considered different sets of patterns and quality attributes
(Columns #P and #QA). Moreover, we perceived that some patterns have conflict-
ing impacts on a particular quality attribute. For instance, some studies (Ahmad et
al., 2010; Harrison & Avgeriou, 2008b) expressed that Performance efficiency is a key
strength of Client-Server, however, some other studies (Elahi & Babamir, 2015; Ja-
cob & Mani, 2018) stated that Performance efficiency is a key liability of Client-Server.
The majority of studies in the literature reported some potential domains of patterns.
However, we realized that different studies suggested different domains. For exam-
ple, Yang et al. (2012) stated that Pipe and Filters can be used in Operating Systems,
and Buyya et al. (2013) asserted this pattern can be employed in Compiler design as
well.

7.3 Systematic Literature Review
Recently, we designed a framework (Farshidi et al., 2018c) and implemented a Deci-
sion Support System (DSS) (Farshidi et al., 2018b) for supporting software developers
and architects (decision-makers) with their multi-criteria decision-making (MCDM)
problems in software production. An MCDM problem deals with evaluating a set of
alternatives and considers a set of decision criteria (Triantaphyllou et al., 1998). The
framework applies the six-step decision-making process (Majumder, 2015) to build
maintainable and evolvable decision models for MCDM problems in software produc-
tion. Moreover, the framework provides a guideline for decision-makers to build de-
cision models for MCDM problems in software production. Based on the framework,
we built decision models for the selection of Database Management Systems (Farshidi
et al., 2018c), Cloud Service Providers (Farshidi et al., 2018a), and Blockchain Plat-
forms (Farshidi et al., 2020c)2.

In order to capture knowledge systematically regarding patterns and build a de-
cision model, based on the framework, for the pattern selection problem (as future
work), the following research questions have been formulated to guide our study:

RQ1: Which patterns are frequently employed by architects since the emergence of
the field?
RQ2: Which quality attributes are commonly utilized by architects to evaluate pat-
terns?
RQ3: What are strengths and liabilities of patterns reported in literature?
RQ4: What are the possible application domains of patterns mentioned in litera-
ture?
RQ5: Which combinations of patterns are available in literature?
RQ6: Do architects select patterns based on trends?
RQ1: A set of patterns among an extensive list of patterns should be considered.

Note, patterns can be alternatives to each other, for example, Interpreter, Rule-Based
System, and Virtual Machine (Avgeriou & Zdun, 2005).

RQ2: By increasing knowledge about patterns, it is possible to make better-

2The decision models and modeling studio are available on the DSS website: www.dss.amuse-
project.org.

Section 7.3 – Systematic Literature Review ∣ 179

informed decisions, avoid failures, and better satisfy quality attributes and achieve
system-wide quality targets (Me et al., 2016). A set of quality attributes should be
defined in the decision model. Quality attributes are characteristics of the system that
are intrinsically non-functional. One of the primary purposes of the architecture of a
system is to create a system design to satisfy the quality attributes (Harrison & Avge-
riou, 2007). It is essential to find quality attributes that are widely mentioned by
other researchers to identify the characteristics of patterns.

RQ3: Part of the software architects’ concerns are those requirements that have
impacts on quality attributes of software-intensive systems (Kazman et al., 1994).
Quality requirements are the horizontal cross-cutting concerns that impact a system,
such as performance, security, and usability. Software architects should be aware of
any requirement or design decision that impacts one of these concerns and should
elicit requirements that allow for the measurement of quality attributes. Therefore,
to build a beneficial and powerful decision model for the pattern selection problem, it
must be achievable to find which patterns impact specific quality attributes, compare
and contrast impacts, and highlight their interactions.

RQ4: Application-generic and application-specific knowledge are two types of
architectural knowledge (Lago & Avgeriou, 2006). Application-generic knowledge
refers to knowledge that software architects have implicitly in their heads, from their
former experience. Moreover, application-specific knowledge involves all the deci-
sions taken during the architecting process of a particular system and the architectural
solutions that implemented the decisions. In other words, application-generic knowl-
edge is used to make decisions for a single application and thus construct application-
specific knowledge. Therefore, knowledge regarding application domains, in which
candidate patterns are already employed, can help software architects make informed
decisions.

RQ5: Patterns tend to be combined to provide greater support for the reusability
during the software design process (That et al., 2013). A pattern can be blended with,
connected to, or included in another pattern. For instance, the Broker pattern can
be connected to the Client-Server pattern to form the combined Client-Server-Broker
pattern (Harrison & Avgeriou, 2010).

RQ6: Software architecture has experienced considerable growth over the past
decades, and it promises to continue that growth for the foreseeable future. Although
the architectural design has matured into an engineering discipline that is broadly rec-
ognized and practiced, some significant challenges will need to be addressed. Such
challenges are expected to arise as a natural outcome of dissemination and matu-
ration of the well-known architectural practices and technologies (Garlan, 2014).
Software developers and architects should be aware of technology advancements,
standards, and trends that affect potential architecture decisions and concerns. The
last research question investigates any potential trends among architects that attract
them to use a particular pattern.

Systematic Literature Review is one of the most broadly accepted research methods
of evidence-based software engineering (Kitchenham et al., 2004). An SLR provides a
prescribed process for identifying, evaluating, and interpreting all available evidence
relevant to a particular research question or topic (Petersen et al., 2008). In this study,
the SLR functioned as a knowledge acquisition process to capture knowledge about

180 ∣ Chapter 7 – Capturing Software Architecture Knowledge

patterns and ultimately making it available in forms of reusable knowledge. The SLR
has been carried out following the steps and guidelines of Kitchenham (2004): rea-
soning the necessity of the SLR, defining research questions, searching relevant stud-
ies, applying inclusion/exclusion criteria, assessing the quality of studies, extracting
knowledge, analyzing the results.

7.3.1 Data sources and search strategy
In this study, the search strategy has two search methods: manual search and auto-
matic search. These search methods are complementary to each other. In the manual
search, we investigated published studies in reputable journals and conferences in the
software architecture domain. This search method guarantees that we explore rele-
vant studies, but it consumes a significant amount of time and effort in judging many
irrelevant studies.

In the automatic search, we defined a search query to retrieve results from scientific
search engines. Firstly, the search query was built based on the generic keywords
extracted during the manual search process. In other words, the search query only
contained generic keywords to avoid possible biased search results; for instance, we
did not consider any standard titles of patterns (such as Layers and Client-Server)
and quality attributes (such as performance and availability) explicitly. Secondly, we
tested the query on the selected scientific search engines to find out whether the
outcomes are compatible with the results of the manual search. Note, the query con-
tains the concepts of the meta-model (see Figure 7.1), as it gives an overview of the
decision-making process in designing architecture. In the automatic search (Zhang
et al., 2011), we used the following query:

((“software architecture” OR “software architectural”) AND (“pattern” OR “style”))
AND (“selection” OR “evaluation” OR “quality attribute” OR “design decision” OR
“decision-making”)
Figure 7.2 demonstrates the stages of the search process and the numbers of pri-

mary studies in each stage. Moreover, Table 7.3 shows the journals and conference
proceedings considered in the manual search besides the scientific search engines in
the automatic search. Note, Google Scholar was not involved in the automatic search
since it offers many irrelevant studies. Moreover, it has substantial overlap with the
other digital libraries considered in this SLR.

7.3.2 Inclusion and exclusion criteria
The inclusion and exclusion criteria were applied to the selected publications at dif-
ferent rounds of the search process, as illustrated in Figure 7.2. The studies were
included in the SLR if they were peer-reviewed, written in English, available, and
discussed patterns. Furthermore, the abstracts or titles of the primary studies had
to explicitly state that the articles were on the topic of architectural patterns. The
articles were published mainly as journal papers, conference papers, theses, technical
reports, or books.

The peer-reviewed articles relevant to the topic of interest were published from
1990 to the first half of 2019. Note, we did not limit the SLR to this period. However,
we did not find any qualified primary studies before 1990 to add to the SLR’s knowl-

Section 7.3 – Systematic Literature Review ∣ 181

Figure 7.2: This figure illustrates the phases of the search process and the number of primary
studies in each phase of the SLR. The corresponding number of primary studies in each step
of the search process for manual search and automatic search is signified in red and blue,
respectively.

Manual Search

Automatic Search

ACM DL

Springer

IEEE Xplore

ScienceDirect

Web of Science

Scopus

JSS

TSE

IST

IEEE Software

ICSE

SANER

ECSA

ICSA

TOSEM

4,121

4,050

3,944

3,541

2,088

764

709

588

473

369

254

218

179

45

30

Search Process

Review topic area, titles, and abstracts,
conclusions

Apply inclusion and exclusion criteria

Perform scanning and skimming

Conduct snowballing: scan the references

Read the papers completely

Knowledge base

232
Primary studies

20,278

1,095
Assess the quality of primary studies

Add primary studies to the
knowledge base

(209) (37)

(198) (34)

(538) (83)

(493) (74)

(2005) (189)

(7,042) (311)

Knowledge extraction
process

Table 7.3: Selected journals and conference proceedings in the manual and automatic searches.

Source Acronym
Journal of Systems and Software JSS
IEEE Transactions on Software Engineering TSE
Information and Software Technology IST
IEEE Software, International Conference on Software Engineering ICSE
IEEE International Conference on Software Analysis, Evolution and Reengineering. SANER
European Conference on Software Architecture ECSA
International Conference on Software Architecture ICSA
ACM Transactions on Software Engineering and Methodology TOSEM

ACM Digital Library ACM DL
Springer Publishing Springer
IEEE Xplore Digital Library IEEE Xplore
ScienceDirect -
Web of Science -
Elsevier’s Scopus Scopus

182 ∣ Chapter 7 – Capturing Software Architecture Knowledge

edge base. Editorials, position papers, keynotes, reviews, tutorial summaries, and
panel discussions were excluded from the SLR. Moreover, all duplicated publications,
studies with inadequate validation (i.e., no evidence), and on other platforms instead
of computer-based patterns (e.g., Computer Networks, Electronics) were not consid-
ered in the SLR. A publication was only selected for knowledge extraction when it had
at least a proof of concept (such as a case study or an experiment). The less mature
one was excluded if two publications addressed the same topic and were published
in different conferences or journals. The journals and conference proceedings in the
manual search besides the primary studies in the automatic search were reviewed
by four researchers (including a principal investigator, a junior researcher, and two
research assistants).

7.3.3 Quality assessment
In addition to the inclusion and exclusion criteria, it is essential to assess the quality
of primary studies (Kitchenham, 2004). The quality assessment of primary studies
comes up with more detailed inclusion and exclusion criteria, guides the interpreta-
tion of findings and determines the strength of inferences, and offers recommenda-
tions for further research. Recording the strengths and weaknesses of primary studies
indicates whether aspects of study design or conduct have biased the results (sub-
stantially the extent to which the study results can be “believed”) (Khan et al., 2001).

Dybå & Dingsøyr (2008) introduced three main issues (Rigour, Credibility, and
Relevance) regarding the quality of primary studies that should be taken into account
when assessing primary studies in an SLR. Rigour indicates whether a thorough and
appropriate approach has been applied to research methods in the study. Credibility
signifies whether the findings are well-presented and meaningful. Relevance denotes
whether the results are useful to the software industry and the research community.
Dyba and Dingsoyr presented 11 quality assessment questions to cover the three main
issues that have been used in our assessment.

Both the first and second authors determined quality assessment criteria indepen-
dently. Discrepancies arose in around 10% of the articles, and these were discussed
collaboratively to come to a final judgment. The questions provide a measure of the
extent to which we can be confident that primary study findings can make a valuable
contribution to the review. The grading of each of the 11 quality assessment questions
was done on a dichotomous (“yes” or “no”) scale. Table 7.4 shows the result of the
quality assessment questions for the primary studies in the SLR.

7.3.4 Search process
The number of primary studies at each stage of the search process in this paper is pre-
sented in Figure 7.2. First, we found 20,278 articles as a result of the manual search.
Due to the considerable amount of retrieved publications in this step, the first round
of selection was performed (Review topic area, titles, abstracts, and conclusions).
Some publications were not easy to select based only on their titles and keywords,
so such publications were preserved for the next round of selection (7,042 publica-
tions). At the end of the second step, 2,005 publications met the inclusion criteria in
the manual search process. Next, by scanning and skimming the text of the selected

Section 7.3 – Systematic Literature Review ∣ 183

Table 7.4: Quality assessment: each primary study in the SLR has been assessed based on these
qualities. This table shows the percentages of the “yes/no” answers to the quality assessment
question based on the 232 selected primary studies in the SLR.

quality assessment question Yes (%) No (%)
Is the paper based on research (or is it merely a “lessons learned” report based on
expert opinion)? 98.71 1.29

Is there a clear statement of the aims of the research? 98.29 1.72
Is there an adequate description of the context in which the research was carried
out?

96.12 3.88
Was the research design appropriate to address the aims of the research? 75.3 24.57
Was the recruitment strategy appropriate to the aims of the research? 90.95 9.05
Was there a control group with which to compare treatments? 10.34 89.66
Was the data collected in a way that addressed the research issue? 86.64 13.36
Was the data analysis sufficiently rigorous? 85.78 14.22
Has the relationship between researcher and participants been considered to an ad-
equate degree? 46.98 53.02

Is there a clear statement of findings? 100 0.00
Is the study of value for research or practice? 100 0.00

publications, 493 relevant publications were identified. After that, snowballing was
performed to scan the references of the selected publications to explore and identify
43 more studies in the manual search process. In the last round of selection, if a
publication met all the inclusion and exclusion criteria, it was included. After read-
ing the primary studies thoroughly, 209 publications were selected. The quality of
the primary studies was reevaluated according to the quality assessment questions to
exclude the low-quality publications (11 publications were removed).

Next, the query was built according to the extracted keywords from the primary
studies of the manual search. After performing the automatic search, 1,095 publi-
cations were found. In the first round of review, 311 primary studies were selected
according to their topic areas, titles, abstracts, and conclusions. Afterward, inclusion
and exclusion criteria were applied to refine the primary studies, so 189 articles were
moved to the next stage. Based on the scanning and skimming of the primary studies,
74 papers were considered for performing snowballing. Subsequently, 9, more stud-
ies were added to the knowledge base of the SLR. After reading the primary studies
completely, 37 primary studies were selected. The quality of the primary studies was
reevaluated according to the quality assessment questions to exclude the low-quality
publications (3 publications were removed).

Eventually, 232 high-quality primary studies (198 + 34) promoted to the knowl-
edge base3 of the SLR for performing the knowledge extraction process.

7.3.5 Knowledge extraction process
A structured coding procedure is employed to extract knowledge from the selected
primary studies. Structured coding captures a conceptual area of the research inter-
est (Saldaña, 2015). The extracted knowledge has been classified into six categories:
Patterns, Quality Attributes, Impacts, Application domains, Combinations, and Trends.
The rest of this study reports the results of data analysis with a descriptive approach.

3The knowledge base of this study, including the primary studies and extracted knowledge, is available
as a technical report on the following web page: http://swapslr.com

184 ∣ Chapter 7 – Capturing Software Architecture Knowledge

7.3.6 Threats to validity
The validity assessment is an essential part of any empirical study, including
SLRs (Zhou et al., 2016). The validity frequently involves Construct Validity, Internal
Validity, External Validity, and Conclusion Validity. Other types of validity, such as
Theoretical validity and Interpretive validity, were rarely considered in the field of
software architecture, so they are not discussed in this paper.

Construct validity refers to whether an accurate operational measure or test has
been used for the concepts being studied. In this study, a meta-model (see Fig-
ure 7.1), based on the ISO/IEC/IEEE standard 42010 (ISO, 2011), was built to
represent the decision-making process in designing software architecture. The es-
sential elements of the meta-model are utilized to formulate the research questions.
The meta-model guarantees that the research questions cover all potential publica-
tions regarding patterns. The query in the automatic search was built based on the
meta-model, so we tried to obtain more relevant studies as much as possible.
Internal validity attempts to verify claims about the cause-effect relationships
within the context of a study. In other words, it determines whether the study
is sound or not. In order to ensure that the paper selection process was unbiased
as far as possible, the quasi-gold standard (QGS) (Zhang & Babar, 2010; Zhang et
al., 2011) was adopted. The QGS systematically integrates manual and automated
search strategies and suggests a relatively accurate search performance evaluation
in terms of sensitivity and precision. Although we searched six online digital li-
braries, they are believed to cover the majority of the high-quality publications in
software architecture. To capture as many publications as possible, however, we
also employed the snowballing as the complementary search to diminish the possi-
bility of missing relevant publications. The journals and conference proceedings in
the manual search and the primary studies in the automatic search were reviewed
by four researchers, including a principal investigator, a junior researcher, and two
research assistants. Moreover, the practitioner evaluation sections reflect the use-
fulness and effectiveness of the SLR findings from real-world software architects’
perspectives.
External validity defines the domain to which the research findings can be gen-
eralized to real-world applications. External validity is sometimes employed in-
terchangeably with generalizability (feasibility of applying the results to other re-
search settings). In this study, we selected publications that include a discussion
about patterns from 1990 to 2019. The excluded studies and inaccessible stud-
ies may affect the generalizability of the SLR. However, as less than 3% was not
accessible to us, we do not expect that data was missed that would significantly in-
fluence our results. The reusable extracted knowledge available through this study
can help both academics and practitioners develop new theories and methods for
future challenges.
Conclusion validity verifies whether the methods of a study such as the data collec-
tion method can be reproduced, with similar results. We captured knowledge from
the selected publications regarding Patterns, Quality Attributes, Impacts, Application
domains, Combinations, and Trends. The accuracy of the extracted knowledge was
guaranteed through the protocol that was developed to define the knowledge ex-

Section 7.3 – Systematic Literature Review ∣ 185

traction strategy and format. The review protocol was proposed and reviewed by
the authors. We defined a data extraction form to obtain consistent extraction of
relevant knowledge and checked whether the acquired knowledge would address
the research questions. Both the first and second authors determined quality as-
sessment criteria independently. Moreover, the crosscheck was necessary among
the reviewers, and again we had at least two researchers extracting data indepen-
dently.

7.3.7 Analysis and Results
Patterns
Patterns offer universal and reusable solutions to commonly occurring problems in
software architecture design (Avgeriou & Zdun, 2005). Finding the most common set
of patterns helps software architects to have a better understanding of design decision
problems and potential solutions to solve such problems.

Figure 7.3 provides an overview of the number of studies that considered each
pattern as one of their design decisions or pattern alternatives. The primary studies
that discuss the patterns are spread across the early years of the emergence of soft-
ware architecture (1990) (Kruchten et al., 2006) to the present (2019). Figure 7.3
shows the distribution of theses primary studies over the 29 years. To prevent po-
tential biases, we only considered the patterns mentioned in at least three primary
studies. Each selected publication was at least relevant to a particular pattern and
discussed its characteristics (such as liabilities, strengths, components, connections,
and typologies) and domains (see Section 7.3.7). Consequently, 29 patterns4 satisfied
the constraints and were included in this study.

The number of primary studies from the year 2005 has increased significantly. Fur-
thermore, more than 20 percent of the primary studies were published in the years
2010 and 2011. As the academic literature is merely a reflection of the multitude of
patterns that are being used in the industry, we must note that occurrence in academic
literature does not necessarily mean occurrence in the industry. Figure 7.3 shows that
Client-Server, Layers, Pipes and Filters, Service-Oriented Architecture (SOA), and Model-
View-Controller (MVC) are the top 5 architectural patterns that were investigated in
the primary studies.

Quality Attributes
One of the fundamental concepts in software architecture specification is identifying
required levels of measurement of software quality attributes or system qualities such
as performance, security, available, and reusability.

In the literature, patterns are described according to the functionality they deliver,
and their strengths or liabilities are shown concerning several quality attributes (Me
et al., 2016). Strengths and liabilities assess the importance of the impact of pat-
terns on quality attributes (Harrison & Avgeriou, 2007). Therefore, patterns and
quality attributes are not independent and have significant explicit/implicit interac-
tions (Harrison & Avgeriou, 2010). Such interactions can be represented as reusable

4A textual definition of each of the patterns is available in the technical report on the following web
page: http://swapslr.com

186 ∣ Chapter 7 – Capturing Software Architecture Knowledge

Figure 7.3: This figure demonstrates the number of primary studies per year (1990-2019) that
were relevant to a particular pattern. The bottom of the figure indicates the total number
of primary studies that were relevant to the patterns. For example, 90 publications in the
knowledge base of this study discussed the Client-Server pattern. The right side of the figure
shows the number of primary studies per year. Some of the studies discussed more than one
pattern. Hence the sum of numbers in the bottom row exceeds the total number of studies
found. For instance, we found 87 publications in the year 2010.

Year C
LI

EN
T-

SE
R

V
ER

LA
YE

R
S

P
IP

ES
 A

N
D

 F
IL

TE
R

S

SO
A

M
V

C

C
O

M
P

O
N

EN
T-

B
A

SE
D

B
LA

C
K

B
O

A
R

D

P
U

B
LI

SH
-S

U
B

SC
R

IB
E

C
2

IM
P

LI
C

IT
 IN

V
O

C
A

TI
O

N

B
R

O
K

ER

SH
A

R
ED

 R
EP

O
SI

TO
R

Y

SP
A

C
E-

B
A

SE
D

P
EE

R
-T

O
-P

EE
R

M
IC

R
O

SE
R

V
IC

E

P
A

C

M
IC

R
O

K
ER

N
EL

R
P

C

V
IR

TU
A

L
M

A
C

H
IN

E

R
EF

LE
C

TI
O

N

IN
TE

R
P

R
ET

ER

R
U

LE
-B

A
SE

D
 S

YS
TE

M

EX
P

LI
C

IT
 IN

V
O

C
A

TI
O

N

M
A

ST
ER

-S
LA

V
E

B
A

TC
H

 S
EQ

U
EN

TI
A

L

IN
D

IR
EC

TI
O

N
 L

A
YE

R

IN
TE

R
C

EP
TO

R

M
ES

SA
G

E
Q

U
EU

IN
G

C
Q

R
S

2019 1 1 2

2018 4 2 1 3 1 2 3 1 5 1 1 1 25

2017 1 7 2 1 1 2 9 1 1 25

2016 5 6 4 3 6 1 1 2 1 1 3 2 3 1 2 1 1 2 1 1 47

2015 7 6 3 3 3 4 2 1 1 3 5 1 1 1 1 1 1 44

2014 4 3 1 8 2 2 2 1 1 1 3 1 1 2 1 33

2013 2 1 2 4 1 1 1 2 1 1 1 1 1 1 1 21

2012 2 4 1 6 4 1 2 1 1 1 23

2011 5 6 5 6 3 3 3 2 1 1 1 3 1 3 1 1 1 1 1 2 1 51

2010 11 15 9 3 6 6 5 5 3 4 5 1 4 3 1 2 2 1 1 87

2009 1 1 4 5 1 1 2 3 1 2 1 22

2008 5 6 6 1 6 5 3 3 2 4 2 2 3 1 2 2 1 1 1 56

2007 5 4 2 4 3 3 1 3 1 1 2 2 2 1 1 35

2006 7 4 3 2 1 2 1 4 1 3 1 1 1 1 32

2005 5 3 1 2 2 1 2 2 1 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 37

2004 4 2 1 4 1 2 2 1 17

2003 4 1 1 1 1 1 1 10

2002 3 1 1 1 1 7

2001 1 1 2 1 1 1 1 1 2 1 1 1 14

2000 2 2 1 1 1 1 1 1 1 1 1 13

1999 3 3 4 1 4 1 3 2 1 1 1 1 1 1 27

1998 1 1 1 3

1997 1 1 1 3

1996 2 2 1 1 1 1 2 1 1 1 13

1995 6 3 5 1 3 3 1 2 1 1 26

1994 1 1 2

1993 1 1 1 1 1 1 1 1 8

1992 1 1

1991 1 1 1 1 1 5

1990 1 1

studies (patterns) 90 76 62 57 45 33 30 28 28 24 24 21 20 19 18 18 14 14 12 10 10 6 6 5 5 4 4 4 3

Experts 12 12 8 12 12 12 6 12 3 6 12 4 8 12 12 2 6 12 12 5 7 9 5 9 9 3 4 12 9

st

u
d

ie
s

p
e

r
ye

ar

Patterns

knowledge elements (Me et al., 2016). For instance, selecting the Layers pattern in-
volves a trade-off between efficiency and maintainability, where the second quality
attribute is better fit (Harrison & Avgeriou, 2007).

We tried to identify the most widespread quality concerns that were considered in
the literature. Figure 7.4 indicates the quality attributes that were explicitly men-
tioned in at least three primary studies. We encountered 40 relevant quality at-
tributes. According to the results of the analysis (see Figure 7.4), Reusability, Flex-

Section 7.3 – Systematic Literature Review ∣ 187

ibility, Performance efficiency, Scalability, and Maintainability are the top five software
quality attributes that were investigated and reported on in more than 30 primary
studies.

Figure 7.4 shows that Characteristics of the ISO/IEC 25010 standard (such as Relia-
bility, Performance efficiency, Usability, and Maintainability) were considered as qual-
ity concerns in the primary studies. However, Subcharacteristics of the ISO/IEC 25010
standard (such as Operability and Accountability) were less discussed in the primary
studies. Note, the quality attributes printed in black are based on the ISO/IEC 25010
standard (ISO, 2011), and the rest of them (printed in blue) are not mentioned in
the ISO standard5. Each cell of the matrix contains two rows. The first row is a triple
(L|N|H), including the numbers of studies that reported a particular quality attribute
as a Liability (L), Neutral (N), and Strength (H) for its corresponding pattern. The
decimal numbers in the second rows of the stained cells show the results of the fuzzy
calculation for the impacts.

Impacts
Every architecture decision is made with a rationale. A strength or liability is an ar-
gument to utilize or to avoid a pattern in a particular situation (Me et al., 2016).
Therefore, the degree to which patterns impact quality attributes determines archi-
tectural decisions (i.e., adopting or avoiding a pattern for a given design problem).

When architects have to make architecture decisions, an understanding of the im-
pacts of patterns on quality attributes is needed. The solution space from which an
architect must select one design is far more extensive than an architect can over-
see (Sabry, 2015). Our observation that further illustrates this problem is that it is
not uncommon in industry to hire an architect with experience and expertise with a
particular pattern. As such, software architects need better decision support tooling,
to help them make their decisions with the right knowledge at hand.

Identifying the impacts of patterns on quality attributes requires analysis of a con-
siderable amount of knowledge regarding patterns (Harrison & Avgeriou, 2010).
Missing the impacts of patterns on quality attributes at architecture design time leads
to additional liabilities. Because quality attributes are system-wide capabilities, they
generally cannot be evaluated entirely until the whole system can be evaluated (Burn-
stein, 2006).

In the knowledge extraction phase of this study, we realized some inconsisten-
cies regarding the observed impacts of patterns on quality attributes. Some studies
reported conflicting impacts of a particular pattern on a quality attribute. For in-
stance, (Harrison & Avgeriou, 2008a; Qin et al., 2008; Sharma et al., 2015) stated
that efficiency is a strength of the Pipe and Filter pattern, however, (Vogel et al., 2011)
expressed that efficiency is a liability for this pattern. Therefore, efficiency can be
considered as both strength and liability of the Pipes and Filters pattern.

Quantifying the impact of a particular pattern on the quality attributes is
complicated because quality attributes are system-wide capabilities. Generally, they
cannot be evaluated entirely until the whole system can be evaluated. In this study,
we applied fuzzy logic as a method to aggregate the extracted knowledge regarding

5The definitions of the quality attributes are entirely available in the technical report on the following
web page: Http://swapslr.com

188 ∣ Chapter 7 – Capturing Software Architecture Knowledge

Figure 7.4: This figure shows the Quality Impact Matrix. Liabilities (red cells), Strengths (green
cells), Neutrals (yellow cells), and Unknown (white cells) are shown based on the cell colors.
Furthermore, the color intensity is an indicator of agreement among studies as well as the num-
bers in the cells. This table provides the relationships between patterns and quality attributes.
Note, as this figure is hard to read, a larger version is available from http://swapslr.com.

C
O

M
P

O
N

EN
T-

B
A

SE
D

SO
A

P
IP

ES
 A

N
D

 F
IL

TE
R

S

LA
YE

R
S

IM
P

LI
C

IT
 IN

V
O

C
A

TI
O

N

C
LI

EN
T-

SE
R

V
ER

B
R

O
K

ER

B
LA

C
K

B
O

A
R

D

M
V

C

M
IC

R
O

K
ER

N
EL

M
IC

R
O

SE
R

V
IC

E

SP
A

C
E-

B
A

SE
D

P
A

C

SH
A

R
ED

 R
EP

O
SI

TO
R

Y

R
EF

LE
C

TI
O

N

P
U

B
LI

SH
-S

U
B

SC
R

IB
E

V
IR

TU
A

L
M

A
C

H
IN

E

B
A

TC
H

 S
EQ

U
EN

TI
A

L

IN
TE

R
P

R
ET

ER

C
Q

R
S

C
2

P
EE

R
-T

O
-P

EE
R

R
P

C

M
A

ST
ER

-S
LA

V
E

EX
P

LI
C

IT
 IN

V
O

C
A

TI
O

N

IN
TE

R
C

EP
TO

R

IN
D

IR
EC

TI
O

N
 L

A
YE

R

R
U

LE
-B

A
SE

D
 S

YS
TE

M

M
ES

SA
G

E
Q

U
EU

IN
G

1|0|0 5|0|0 3|1|4 0|1|5 2|0|4 5|4|0 1|0|0 4|1|0 0|0|1 3|0|1 9|0|0 8|0|0 1|0|0 4|0|0 1|0|0 0|0|1 0|0|1 0|0|1 2|0|0 1|0|0 2|0|0 1|0|0 1|0|0

0,79 0,79 0,45 0,25 0,36 0,66 0,79 0,74 0,21 0,7 0,79 0,79 0,79 0,79 0,79 0,21 0,21 0,21 0,79 0,79 0,79 0,79 0,79

10|0|0 19|1|0 11|2|1 16|2|0 7|1|0 3|2|1 4|0|0 6|2|1 2|1|1 3|0|0 3|0|0 1|1|0 0|1|2 1|1|0 1|0|0 0|0|1 1|0|1 1|0|0 6|0|0 0|0|1 1|0|0 1|0|0

0,79 0,77 0,73 0,76 0,76 0,61 0,79 0,69 0,6 0,79 0,79 0,64 0,3 0,64 0,79 0,21 0,5 0,79 0,79 0,21 0,79 0,79

2|0|1 2|0|1 10|2|7 3|2|15 0|1|4 4|2|4 1|1|5 3|2|8 0|1|5 1|0|5 3|0|1 2|1|0 1|0|5 0|0|2 0|0|3 0|1|0 0|0|1 0|0|1 1|0|0 1|0|0 1|0|1 1|0|0

0,65 0,65 0,56 0,29 0,26 0,5 0,3 0,36 0,25 0,26 0,7 0,7 0,26 0,21 0,21 0,5 0,21 0,21 0,79 0,79 0,5 0,79

1|0|0 1|0|0 4|1|3 16|1|0 2|3|0 2|1|3 7|0|0 0|0|6 4|0|3 6|0|0 0|0|1 1|0|0 4|0|0 0|1|2 4|0|0 3|0|0 0|0|1 1|0|0 0|0|1 0|0|1 2|0|0

0,79 0,79 0,55 0,77 0,61 0,43 0,79 0,21 0,56 0,79 0,21 0,79 0,79 0,3 0,79 0,79 0,21 0,79 0,21 0,21 0,79

2|0|0 3|0|1 5|1|0 2|2|3 0|1|0 2|2|0 4|0|0 1|2|1 5|0|0 5|0|0 1|0|0 1|0|0 3|0|0 1|1|0 1|0|0 2|0|0 0|0|1 3|0|0 1|0|0 1|0|0 1|0|0

0,79 0,7 0,75 0,45 0,5 0,64 0,79 0,5 0,79 0,79 0,79 0,79 0,79 0,64 0,79 0,79 0,21 0,79 0,79 0,79 0,79

1|0|0 2|0|1 0|0|7 9|1|0 1|2|0 4|0|1 5|0|1 0|0|6 1|0|0 1|0|0 4|0|0 1|0|1 1|0|0 1|0|2 1|0|0 1|0|0 0|0|1 0|0|1 0|0|1

0,79 0,65 0,21 0,76 0,58 0,72 0,73 0,21 0,79 0,79 0,79 0,5 0,79 0,35 0,79 0,79 0,21 0,21 0,21

0|0|2 0|0|2 6|1|1 7|0|1 0|0|4 0|2|3 0|1|3 0|0|8 3|1|0 1|1|0 3|0|1 0|0|1 0|1|0 0|1|2 0|0|1 1|0|1 0|0|1 0|0|1 0|0|1

0,21 0,21 0,71 0,75 0,21 0,32 0,27 0,21 0,73 0,64 0,7 0,21 0,5 0,3 0,21 0,5 0,21 0,21 0,21

1|0|0 2|0|1 5|0|2 6|1|1 3|0|1 0|0|3 2|0|0 5|0|1 2|0|0 1|0|0 1|0|0 1|0|0 2|0|0 0|0|1 0|0|1 1|0|1 1|0|1 1|0|0 1|0|0

0,79 0,65 0,67 0,71 0,7 0,21 0,79 0,73 0,79 0,79 0,79 0,79 0,79 0,21 0,21 0,5 0,5 0,79 0,79

2|0|0 6|0|0 4|0|0 7|0|1 2|0|0 1|0|0 1|0|0 3|0|0 3|0|0 5|0|0 5|0|0 2|0|1 2|0|0 1|0|0 3|0|0 1|0|0 1|0|0 1|0|0

0,79 0,79 0,79 0,75 0,79 0,79 0,79 0,79 0,79 0,79 0,79 0,65 0,79 0,79 0,79 0,79 0,79 0,79

2|1|0 5|0|1 1|1|7 7|0|1 0|1|3 1|1|3 1|1|1 0|2|3 0|1|0 6|0|0 3|0|0 1|1|0 0|0|2 0|0|3 1|0|0 0|0|1 0|0|1

0,7 0,73 0,28 0,75 0,27 0,35 0,5 0,32 0,5 0,79 0,79 0,64 0,21 0,21 0,79 0,21 0,21

1|0|0 3|0|0 2|0|4 4|2|0 1|2|1 1|1|3 2|0|0 0|0|4 1|0|0 3|0|0 2|1|0 0|1|0 0|0|1 0|0|1 1|0|0 1|0|0 1|0|0

0,79 0,79 0,36 0,7 0,5 0,35 0,79 0,21 0,79 0,79 0,7 0,5 0,21 0,21 0,79 0,79 0,79

2|0|0 2|0|0 0|1|0 2|0|0 1|1|0 0|1|0 2|0|0 0|0|1 2|0|0 1|0|0 3|0|1 1|0|0 1|0|0 0|1|0 0|1|0 1|0|0 1|0|0

0,79 0,79 0,5 0,79 0,64 0,5 0,79 0,21 0,79 0,79 0,7 0,79 0,79 0,5 0,5 0,79 0,79

1|0|0 1|0|1 2|1|0 1|0|1 0|1|0 1|0|1 1|0|0 0|1|1 0|1|0 1|0|0 0|1|0 0|0|1 0|0|1 0|0|1 0|0|1 0|0|1 1|0|0

0,79 0,5 0,7 0,5 0,5 0,5 0,79 0,36 0,5 0,79 0,5 0,21 0,21 0,21 0,21 0,21 0,79

0|0|2 0|1|1 1|0|2 0|2|0 0|1|1 0|0|1 2|0|0 2|1|1 2|0|1 3|0|2 1|0|0 2|1|0 0|1|0 3|0|0 2|0|0 1|0|0

0,21 0,36 0,35 0,5 0,36 0,21 0,79 0,6 0,65 0,59 0,79 0,7 0,5 0,79 0,79 0,79

4|1|2 2|0|0 5|2|0 10|1|1 1|1|0 0|1|0 4|0|0 4|3|0 2|0|3 3|1|0 3|0|0 2|0|0 3|0|0 2|0|0

0,61 0,79 0,71 0,74 0,64 0,5 0,79 0,67 0,41 0,73 0,79 0,79 0,79 0,79

2|0|0 3|0|1 0|0|2 1|1|0 1|1|0 1|1|0 1|0|0 0|0|2 1|0|1 1|0|0 3|0|0 0|0|1 0|0|1 1|0|0

0,79 0,7 0,21 0,64 0,64 0,64 0,79 0,21 0,5 0,79 0,79 0,21 0,21 0,79

0|0|1 3|0|0 2|0|2 0|0|1 1|2|0 0|1|0 0|2|1 0|1|0 0|1|0 5|0|0 1|0|0 0|1|0 0|0|1 0|0|1

0,21 0,79 0,5 0,21 0,58 0,5 0,42 0,5 0,5 0,79 0,79 0,5 0,21 0,21

0|0|1 1|0|0 1|0|0 0|1|0 0|1|0 0|1|0 0|1|0 1|0|0 1|0|0 1|0|0 0|1|0 0|0|1 1|0|0

0,21 0,79 0,79 0,5 0,5 0,5 0,5 0,79 0,79 0,79 0,5 0,21 0,79

1|0|0 3|0|1 1|0|2 1|0|1 0|0|1 0|0|1 0|0|1 0|1|0 0|0|1 1|0|0 1|0|1 1|0|0

0,79 0,7 0,35 0,5 0,21 0,21 0,21 0,5 0,21 0,79 0,5 0,79

0|1|0 1|2|2 3|0|1 0|1|0 1|0|0 5|0|0 1|0|1 6|0|0 1|0|0 4|0|0 2|0|0

0,5 0,43 0,7 0,5 0,79 0,79 0,5 0,79 0,79 0,79 0,79

1|0|1 1|1|0 1|1|0 0|1|0 0|1|0 0|0|1 1|1|0 1|0|0 0|1|0 0|0|1 0|0|1

0,5 0,64 0,64 0,5 0,5 0,21 0,64 0,79 0,5 0,21 0,21

1|0|0 0|0|1 1|0|3 1|0|0 1|0|0 1|0|0 0|1|0 1|0|0 0|0|1 2|0|0

0,79 0,21 0,3 0,79 0,79 0,79 0,5 0,79 0,21 0,79

1|0|0 0|0|3 0|0|3 3|0|0 0|0|3 0|0|3 0|0|3 0|0|3 0|0|3 1|0|0

0,79 0,21 0,21 0,79 0,21 0,21 0,21 0,21 0,21 0,79

2|0|0 0|0|1 0|0|2 1|0|0 0|0|2 1|0|0 2|0|0 1|0|0

0,79 0,21 0,21 0,79 0,21 0,79 0,79 0,79

3|0|0 6|0|0 1|0|0 1|0|0 2|0|0 2|0|0 0|1|0

0,79 0,79 0,79 0,79 0,79 0,79 0,5

1|0|0 0|0|1 0|0|3 0|0|1 2|0|1 1|1|0 1|0|0

0,79 0,21 0,21 0,21 0,65 0,64 0,79

1|0|0 1|0|0 1|0|0 2|0|0 1|0|0 1|0|0 1|0|0

0,79 0,79 0,79 0,79 0,79 0,79 0,79

0|0|1 1|0|0 2|0|0 0|0|1 0|0|1 0|0|1

0,21 0,79 0,79 0,21 0,21 0,21

0|0|1 0|0|1 1|0|0 1|0|0 2|0|0 2|0|0

0,21 0,21 0,79 0,79 0,79 0,79

0|0|1 1|0|1 1|0|1 0|0|1 0|1|0 1|0|0

0,21 0,5 0,5 0,21 0,5 0,79

1|0|0 0|0|1 2|0|0 0|0|1 1|0|0

0,79 0,21 0,79 0,21 0,79

1|0|1 0|0|1 0|0|1 0|0|1

0,5 0,21 0,21 0,21

0|0|1 0|0|1 1|0|0 0|0|1

0,21 0,21 0,79 0,21

1|0|0 1|0|0 1|0|0 1|0|0

0,79 0,79 0,79 0,79

0|0|1 0|0|1 1|0|2

0,21 0,21 0,35

2|0|0 0|0|1 1|0|0

0,79 0,21 0,79

0|0|1 1|0|0 1|0|0

0,21 0,79 0,79

0|0|1 0|0|1 1|0|0

0,21 0,21 0,79

1|0|0 0|0|1 0|0|1

0,79 0,21 0,21

2|0|0 1|0|0

0,79 0,79

studies (patterns) 33 57 62 76 24 90 24 30 45 14 18 20 18 21 10 28 12 6 10 3 28 19 14 5 6 4 4 6 4

Patterns

st

u
d

ie
s

(Q
u

al
it

y
A

tt
ri

b
u

te
s)

Quality Attributes

3

Latency

3

Implementation Cost

3

Compatibility

5

Accessibility

3

Cost

3

Replaceability

5

Installability

3

Development Effort

3

Ease of development

5

Confidentiality

7

Ease of deployment

3

manageability

11

Exchangeability

12

Resource utilization

7

Interoperability

9

Implementability 5

Time behavior

10

Variability 5

Usability

3

Integrity 8

9

Traceability

32

Modularity 10

6

Complexity 16

17

Adaptability 14

Availability

39

Reliability 26

19

Modifiability 15

Testability

27

Security 23

Scalability 35

Reusability 57

Performance efficiency

Integrability

3

3

Fault tolerance

Evolvability

Maintainability

Analyzability

Flexibility

39

27

Extensibility

Portability

Section 7.3 – Systematic Literature Review ∣ 189

the potential impacts of patterns on quality attributes.

Fuzzy Logic Calculations - we employed fuzzy logic (Chen, 1998) as a method for
aggregating individual fuzzy opinions into a group fuzzy consensus pinion. Suppose
each primary study as an individual expert, where expert Ei(i = 1, 2, ..., n) constructs
a positive trapezoidal fuzzy number Ri with membership functions MRi(x) to repre-
sent his/her opinion on a particular impact. In this study, we defined the following
trapezoidal fuzzy numbers for Liability (L), Neutral (N), and Strength (H):

L = (0.0, 0.1428, 0.2856, 0.4286)

N = (0.2856, 0.4286, 0.5712, 0.7140)
H = (0.5712, 0.7140, 0.8568, 1.0)

Suppose R1 = (a1, b1, c1, d1) and R2 = (a2, b2, c2, d2) are two trapezoidal numbers that
represent two experts’ opinion in fuzzy space, then the similarity S(R1, R2) between
these R1 and R2 is defined as follows (Chen, 1998):

S(R1, R2) = 1− ∣a1 − a2∣+ ∣b1 − b2∣+ ∣c1 − c2∣+ ∣d1 − d2∣
4

The degree of agreement A(Ei) of expert Ei is calculated based on the following
equation:

A(Ei) =
1

n − 1

n
∑

j=1 ∧ i≠j
S(Ri, Rj); i = 1, 2, .., n

The relative degree of agreement RA(Ei) of expert Ei is defined as follows:

RA(Ei) =
A(Ei)

∑n
i=1 A(Ei)

; i = 1, 2, .., n

Finally, the aggregation of fuzzy opinion is calculated based on the following equa-
tion (Chen, 1998):

R = RA(E1)⊗ R1 ⊕ RA(E2)⊗ R2 ⊕ ...⊕ RA(En)⊗ Rn

Note, in this study, we used Mean of Maxima (MoM) as a method of deffuzification,
so that, MoM(L) = 0.21, MoM(N) = 0.50, and MoM(H) = 0.79.

Figure 7.4 presents the impacts of the patterns on the quality attributes. Note, the
impacts have been reported as Liabilities (red cells), Strengths (green cells), Neutrals
(yellow cells), or Unknown (white cells). The Unknown impacts mean that we did not
find any information about them. Note, the cells with thick borders signify singleton
impacts, which means that we found only one study that has been discussed those
impacts. The coloring codes are the results of the calculated fuzzy logic (the decimal
number in the second row of each colored cell) to gain a consensus among studies.
Therefore the color intensity indicates the agreements among studies on particular
impacts. In other words, the color intensity can help decision-makers to have a better

190 ∣ Chapter 7 – Capturing Software Architecture Knowledge

understanding of existing knowledge in the literature concerning the reported im-
pacts. For instance, we found 20 studies regarding the impact of Layers pattern on
Reusability, so that, 17 studies considered Reusability as a key strength, 2 studies men-
tioned some Reusability challenge, and only one study asserted that Reusability is a
key liability for the Layers pattern. Therefore, the dark green color can be interpreted
that Reusability is a key liability for the Layers pattern; however, some Reusability
challenges reported in the literature regarding this impact.

Application domains
By increasing knowledge about patterns, it is possible to make better-informed de-
cisions, avoid failures, and better satisfy quality attributes and achieve system-wide
quality targets (Me et al., 2016).

Application-generic and application-specific knowledge are two types of architec-
tural knowledge (Lago & Avgeriou, 2006). Application-generic knowledge refers to
knowledge that software architects have implicitly in their heads, from their former
experience in working in one or more domains. Moreover, application-specific knowl-
edge involves all the decisions taken during the architecting process of a particular
system and the architectural solutions that implemented the decisions. Therefore,
application-generic knowledge is used to make decisions for a single application and
thus construct application-specific knowledge.

The application domains, in which the observed patterns are used, support soft-
ware architects in selecting appropriate patterns for their problem domain. Figure 7.5
shows the application domains of the identified patterns. We categorized the observed
application domains based on the suggested software taxonomy by (Forward & Leth-
bridge, 2008).

Combinations
Despite an extensive list of patterns documented in the literature, patterns are infre-
quently applied in a system design in their original form, and they must be combined
with other patterns to address different design decisions of the system (Buschmann
et al., 2007a). In other words, a particular pattern provides the missing ingredient
needed by another pattern or conflicts with another one by providing an alternative
solution to a related problem. The goal of combining patterns is to make the resulting
design more complete and balanced (Buschmann et al., 2007b).

In general, not all potential combinations of patterns are useful. However, because
each pattern description is self-contained and independent of the others, it is difficult
to extract the useful combinations from the individual pattern descriptions (Schmidt
et al., 2013). The combinations of patterns are more than aggregates of their el-
ements (Kamal & Avgeriou, 2010). Unfortunately, individual patterns descriptions
are not always explicit on “how” to combine them with consistent patterns. For in-
stance, the Layers pattern can be combined with the Client-Server pattern, or the C2
and Publish-Subscribe patterns can be used as a paired pattern (Kamal & Avgeriou,
2010).

Suppose PAT is the set of frequently used patterns bu software architects in the
SLR, P1 and P2 are two patterns, where P1, P2 ∈ PAT. When building a solution for
a particular problem addressed by P1, one sub-problem is similar to a problem ad-
dressed by P2. Consequently, the pattern P1 utilizes the pattern P2 in its solution.

Section 7.3 – Systematic Literature Review ∣ 191

Figure 7.5: This figure illustrates possible applications of the architectural patterns according to
the SLR. The numbers in the cells show the number of studies that discussed the corresponding
application domain of an architectural pattern. Note, in the first column, cells in the dark blue
indicate the categories of the application domains.

Application domains SO
A

P
IP

ES
 A

N
D

 F
IL

TE
R

S

LA
YE

R
S

SH
A

R
ED

 R
EP

O
SI

TO
R

Y

C
O

M
P

O
N

EN
T-

B
A

SE
D

C
LI

EN
T-

SE
R

V
ER

B
LA

C
K

B
O

A
R

D

M
V

C

M
IC

R
O

SE
R

V
IC

E

IM
P

LI
C

IT
 IN

V
O

C
A

TI
O

N

R
P

C

SP
A

C
E-

B
A

SE
D

M
IC

R
O

K
ER

N
EL

P
EE

R
-T

O
-P

EE
R

B
R

O
K

ER

P
U

B
LI

SH
-S

U
B

SC
R

IB
E

C
2

V
IR

TU
A

L
M

A
C

H
IN

E

P
A

C

EX
P

LI
C

IT
 IN

V
O

C
A

TI
O

N

R
EF

LE
C

TI
O

N

IN
TE

R
P

R
ET

ER

M
A

ST
ER

-S
LA

V
E

M
ES

SA
G

E
Q

U
EU

IN
G

C
Q

R
S

R
U

LE
-B

A
SE

D
 S

YS
TE

M

B
A

TC
H

 S
EQ

U
EN

TI
A

L

IN
D

IR
EC

TI
O

N
 L

A
YE

R

IN
TE

R
C

EP
TO

R

Design and Engineering Software 10 8 8 2 14 2 1 11 1 5 1 2 1 2 2 3 4 6 2 3 1 89

Interactive System 9 2 2 6 19

Compiler Design 5 1 1 1 4 3 15

Case & Related Developer Tools 2 2 4

Commercial-Off-The-Shelf (Cots) 6 8 14

Data Base Systems 2 2 2 2 1 9

Context-Aware Systems 2 2 2 2 1 1 1 1 12

System Families 1 1 1 3

Adaptable Systems 2 1 2 5
Software Product Line (Spl) 1 1 4 1 1 8

Distributed Computing 24 3 6 2 11 2 2 8 3 4 1 2 5 3 1 1 1 2 1 82

Distributed Systems 18 2 3 2 11 2 1 5 3 1 1 2 5 3 1 1 2 1 64

Cloud Computing Applications 3 1 2 3 1 10
Mobile Applications 3 3 1 1 8

Web Applications / Services 10 3 6 2 13 4 6 1 2 4 3 1 55

Web-Based Systems 4 3 6 1 12 4 2 1 3 3 1 40

Web Services 3 1 1 2 2 1 10
Service-Based Systems 3 2 5

Systems Software 1 16 9 1 4 5 2 1 1 1 7 2 1 1 1 53

Operating Systems 1 14 7 1 4 3 1 1 1 1 4 2 40

Network and Communication Systems 2 2 4

Multi-Processors Environment 2 1 3
Plug-and-Play Environment 3 1 1 1 6

Strategic and Operations Analysis 27 1 1 1 30

Enterprise Service Bus (ESB) 17 1 1 19

Enterprise Application Integration (EAI) 7 7
Customer Relationship Management (CRM) 3 1 4

Information Management and Decision Support Systems 5 4 3 1 2 3 2 2 2 2 3 29

Expert System 1 2 1 3 7
Management Information Systems 5 4 2 1 3 2 1 2 2 22

Control-Dominant Software 2 3 2 2 3 3 1 1 1 2 1 1 2 1 25

Embedded Systems 1 2 2 2 2 2 1 1 2 1 16

Real-Time Systems 1 1 1 1 1 5
Internet Of Things (Iots) 1 1 1 1 4

Computation-Dominant Software 5 2 9 16

Speech Recognition 1 6 7

Signal Processing 4 2 6
Pattern Recognition 1 1 1 3

Data-Dominant Software 2 1 6 1 10

File-Sharing Applications 1 3 4

Exchange Data And Information 1 1 1 3
Skype Network 3 3

Games / Entertainment 2 2 3 1 8
Gaming Systems 2 2 3 1 8

Transaction Processing 1 1 1 3
Banking System 1 1 1 3

Coverage (%) 57 43 39 37 35 33 33 33 26 26 26 22 22 20 17 15 15 15 13 13 8.7 8.7 8.7 8.7 8.7 4.3 4.3 0 0

Patterns

st

u
d

ie
s

Note, a typical combination of patterns is the combination of P1 and P2 (e.g, a soft-
ware architect can employ the Microservice pattern besides Rule-based patterns). In
contrast to “P1 employs P2”, P1 does not employ P2 in its solution.

Figure 7.6 illustrates the combinations of the pattern that we found during the SLR.
The observed combinations in Figure 7.6 are based on the “P1 employs P2” relation-
ships. For example, 17 primary studies stated that the Client-Server pattern employs
the Broker pattern. The broker is responsible for receiving all messages, filtering the
messages, deciding who is the owner of each message, and sending the message to
the correct clients.

192 ∣ Chapter 7 – Capturing Software Architecture Knowledge

Figure 7.6: This figure demonstrates the observed combinations of patterns while perform-
ing SLR. Please note that we only identified couples, so the figure should be read as that we
encountered the broker pattern combined with the Layers pattern five times in the literature.
Moreover, the combinations are not symmetric; for instance, Broker-Layers is not the same as
Layers-Broker. Architects can use this figure to decide whether a combination they are planning
to make, has been made before. Note, each cell in the last row (compatibility) indicates the
percentage of the patterns that can be combined with the corresponding pattern based on the
selected primary studies. For instance, the “Client-Server” can be combined with 66% of the
other patterns in the list.

Potential combinations C
LI

EN
T-

SE
R

V
ER

LA
YE

R
S

P
IP

ES
 A

N
D

 F
IL

TE
R

S

SO
A

M
V

C

SP
A

C
E-

B
A

SE
D

M
IC

R
O

K
ER

N
EL

P
U

B
LI

SH
-S

U
B

SC
R

IB
E

C
2

P
EE

R
-T

O
-P

EE
R

C
O

M
P

O
N

EN
T-

B
A

SE
D

P
A

C

EX
P

LI
C

IT
 IN

V
O

C
A

TI
O

N

M
IC

R
O

SE
R

V
IC

E

V
IR

TU
A

L
M

A
C

H
IN

E

B
R

O
K

ER

IN
D

IR
EC

TI
O

N
 L

A
YE

R

SH
A

R
ED

 R
EP

O
SI

TO
R

Y

B
LA

C
K

B
O

A
R

D

IN
TE

R
P

R
ET

ER

B
A

TC
H

 S
EQ

U
EN

TI
A

L

R
EF

LE
C

TI
O

N

IN
TE

R
C

EP
TO

R

C
Q

R
S

R
U

LE
-B

A
SE

D
 S

YS
TE

M

IM
P

LI
C

IT
 IN

V
O

C
A

TI
O

N

R
P

C

M
A

ST
ER

-S
LA

V
E

M
ES

SA
G

E
Q

U
EU

IN
G

CLIENT-SERVER 18 1 6 1 5 1 2 1 1 1 1 1 1 40

BROKER 17 6 2 3 1 1 2 1 1 2 1 37

LAYERS 9 1 7 3 1 1 1 1 1 1 1 2 2 1 1 1 1 35

SHARED REPOSITORY 3 5 5 1 2 1 2 2 1 2 1 1 26

COMPONENT-BASED 4 10 2 2 1 1 1 1 1 23

PUBLISH-SUBSCRIBE 6 1 3 1 3 2 3 1 20

RPC 9 3 1 2 1 1 1 1 19

PIPES AND FILTERS 2 6 1 1 2 1 13

MVC 2 6 3 1 1 13

BLACKBOARD 2 4 3 1 1 11

PAC 3 4 2 1 10

SOA 2 4 2 1 9

C2 2 1 1 1 2 2 9

INTERPRETER 2 1 1 1 4 9

INDIRECTION LAYER 1 1 1 2 1 1 1 8

IMPLICIT INVOCATION 1 3 1 1 1 7

EXPLICIT INVOCATION 2 1 3 1 7

MESSAGE QUEUING 1 1 1 1 1 1 1 7

MICROKERNEL 1 5 6

INTERCEPTOR 3 1 4

SPACE-BASED 2 1 3

PEER-TO-PEER 2 1 3

MICROSERVICE 3 3

RULE-BASED SYSTEM 1 1 1 3

VIRTUAL MACHINE 1 1

REFLECTION 1 1

BATCH SEQUENTIAL 1 1

CQRS 1 1

MASTER-SLAVE 0

Compatibility (%) 66 41 38 38 34 31 28 24 24 24 24 14 17 17 14 14 10 10 10 10 6,9 6,9 6,9 3,4 3,4 3,4 3,4 0 0

Patterns

st

u
d

ie
s

Trends
The possibility of existing trends among researchers in selecting patterns has been
investigated in this SLR. As aforementioned, the primary studies that discuss the pat-
terns are spread across the early years of the emergence of software architecture
(1990) (Kruchten et al., 2006) to the present (2019).

Although numerous software systems have succeeded by employing patterns con-
sciously, there have also been failures, due in substantial part to common misinterpre-
tations about patterns, i.e., what they are and what they are not, what characteristics
and purpose they have, their target audience, and the various strengths and liabili-

Section 7.3 – Systematic Literature Review ∣ 193

ties of applying them (Buschmann et al., 2007b). The pattern community has long
been interested in understanding the underlying theories, forms, and methodologies
of patterns, pattern languages, and associated concepts to codify knowledge about,
understanding of, and application domains of patterns.

Figure 7.3 shows the distribution of theses primary studies over the 29 years. To
prevent potential biases, we only considered the patterns that were mentioned at
the minimum of three primary studies. We observe that SOA, Cloud computing ar-
chitecture (Spaced-based), and Microservices gained more attention in recent years.
Moreover, some patterns such as C2, Presentation-abstraction-control (PAC), Remote
Procedure Call (RPC) and Batch sequential patterns are not discussed widely in aca-
demic literature.

7.3.8 Discussion
This section summarizes the observed answers to the research questions and identifies
several lessons learned. We end the discussion with an interesting question: how
can creativity be preserved when an architecture decision is simplified to a limited
decision model?

Addressing Research Questions
In this subsection, we reflect on each of the proposed research questions based on the
SLR.

To answer the first research question (RQ1) that aims at identifying the frequently
employed patterns since the emergence of the field (1990), we found 29 patterns (see
figure 7.3.7) that discussed at more than three primary studies.

The second research question (RQ2) is the most frequent quality attributes that
software architects are mainly concerned about. We found 40 quality attributes
(see Figure 7.3.7) that explicitly mentioned in the primary studies as liabilities and
strengths of the patterns.

The answer to the third research question (RQ3) reveals the impacts of the pat-
terns on the quality attributes based on the aggregation of liabilities and strengths
reported in primary studies (see Figure 7.4). Such impacts lead to a deeper under-
standing of the patterns, identify the potential risks of employing a particular pattern,
facilitate generating a quality attribute utility tree for a system, improve architecture
documentation, and assist software architects with the pattern selection process.

To answer the fourth research question (RQ4) that aims at finding common ap-
plication domains, we observed 35 application domains and classified them into 11
categories (see Figure 7.5). With such knowledge regarding the application domains,
software architects can determine whether similar patterns have been chosen in their
domains.

To answer the fifth research question (RQ5), we collected a set of suitable combina-
tions of patterns observed in the primary studies (see Figure 7.6). Such combinations
can address common sub-problems in patterns, such as solving the communication
problem in the Client-Server pattern by the Broker pattern. Note, each paired pat-
tern (e.g., Client-Server-Broker) can have entirely different characteristics from its
constituent patterns.

The sixth research question (RQ6) asks whether trends can be observed in pattern

194 ∣ Chapter 7 – Capturing Software Architecture Knowledge

selection among software architects. Figure 7.3 demonstrates the distribution of the
observed patterns this SLR from 1990 up to 2019. We realized that some patterns
were trending for a period, and other patterns gained more attention after several
years. For instance, the C2 was trending before 2010; moreover, the Microservice
pattern gained attention in recent years. However, the Client-Server, Layers, Pipe and
Filters, Component based patterns were almost always considered as primary alterna-
tives in the pattern selection process.

Lessons learned
Knowledge about software patterns and their impacts on quality attributes is spread
throughout decades of scientific reporting on pattern observation in practice. Archi-
tects must continuously align quality requirements, patterns, tactics, and application
domains. It is non-trivial for both practitioners and academics to answer questions
such as “what kind of effect does the introduction of Microservices have on the vari-
ability of a system for end-users?”. Software architects typically neglect to sufficiently
document their design decisions because they do not appreciate the advantages of
documentation of such design decisions (Harrison & Avgeriou, 2010). This lack of ac-
curate documentation can significantly impact future design decisions. Furthermore,
it is problematic for the actual architecture in practice.

We can revert to traditional building architecture for several lessons learned. First,
we must accept that we will not find a comprehensive set of patterns: technological
innovations will continually introduce more complex and specific patterns. Analog
to how the elevator has enabled us to build taller buildings, new innovative patterns
such as CQRS enable us to create larger and more scalable systems. This continuous
innovation remains a responsibility of the academic community to consolidate and
present architecture knowledge to the practitioner community continuously.

It is possible to identify trends in pattern usage. We hypothesize that software archi-
tects are biased towards trending patterns in their architecture design decisions. Over
time, quality requirements of systems change because of advances in technology that
address particular quality concerns of software architects. Software architects need
to have a more explicit awareness of software architecture trends and evaluate them
in the context of the system requirements. If we look at traditional building archi-
tecture again, it does not come as a surprise that architects are sensitive to trends:
patterns may introduce new possibilities that provide end-users with more efficient
and satisfying structures.

In this research, we only focus on individual patterns that solve particular parts of
a design problem. Patterns, however, have several types of relationships with each
other. (1) Patterns can be alternatives to each other, for example, Interpreter, Virtual
Machine, and Rule-based system. (2) Patterns can also be complementary and easily
combined. For instance, the combination of Client-Server and Broker is valid and
mentioned in some studies in the SLR. (3) Patterns may also be incompatible. For
instance, we did not find any combinations of Pipes and Filters and Broker.

Besides reporting, academics have a responsibility to define what architects need
to make explicit. The majority of the primary studies focus on a limited set of pat-
terns and quality attributes (see Figures 7.3 and 7.4), and they were more concerned
with generic quality attributes, such as the quality attributes of the ISO/IEC 25010

Section 7.3 – Systematic Literature Review ∣ 195

standard. According to the ISO/IEC 25010 standard description (ISO, 2011), the
Characteristics are broken down into Subcharacteristics. The Characteristics are con-
ceptually more generic quality attributes, and conversely, the Subcharacteristics have
more concrete definitions. Several studies considered a Characteristics and its Sub-
characteristics as two separate quality attributes (For example, Maintainability and
Modifiability). Architects and researchers need to be more accurate in defining the
patterns, their usage of them, and the quality attributes they measure them by.

Patterns promoting similar quality attributes sometimes have common characteris-
tics. For instance, both Layers and C2 support flexibility and separation of concerns,
and there is a significant implementation overlap between them. While the similarity
of patterns is a reliable indicator of potentially reusable code, it often has the oppo-
site effect on the compositionality of those patterns. Experience shows that the similar
patterns (e.g., C2 and Layers) cannot or are not typically composed together (Malek
et al., 2010). Our main observation here is that essential relationships with other
patterns also characterize patterns. The ability to rapidly compose patterns in this
manner opens up new avenues of research to study the compatibility of patterns with
one another and to develop new hybrid and domain-specific patterns. One of the
most significant threats to this study’s validity is that we take the academic reporting
of patterns as a representative overview of the industry. In the future, we aim to solve
this by also including grey literature in the study. Furthermore, we identify a need
for a comprehensive view of patterns, where a curated set of patterns is regularly
published as a reference for architects, similar to other industry-specific catalogs.

Software architecture tactics are a sub-class of design decisions and focus on the im-
provement of particular quality attributes (Harrison & Avgeriou, 2010). For instance,
Ping/Echo and Heartbeat are two tactics that can be selected to improve Reliability.
If selecting and applying sets of patterns without consideration impede some of the
quality attributes, these tactics can be employed to improve a system’s quality at-
tributes. A future research challenge is to support architects in this fine-tuning of a
selected set of patterns using particular tactics.

Our hypothesis remains that an optimal initial set of patterns will require less use of
tactics at a later stage in a system’s development. We define an optimal set of patterns
as the theoretical set of patterns that best addresses the requirements of the software
project, including features (e.g., provides an API), quality (e.g., up to current security
standards), and project requirements (feasible to implement with allotted resources).
We acknowledge that identifying this set perfectly is impossible, for instance, due to
the use of tactics, but in software design, we must strive towards such an optimal set.

Stifling creativity. A relevant question is whether the data provided in this article
stifles the architect’s creativity: the article could be used to discourage particular new
pattern combinations, for instance. We believe that the benefits of having overviews
such as the most common combinations, such as in Table 7.3.7 of this article, can
inspire architects to work with a broader set of knowledge than they would have
before. Following that hypothesis, the information in this article should broaden the
architects’ knowledge instead of stifling them into set rules.

196 ∣ Chapter 7 – Capturing Software Architecture Knowledge

7.4 Practitioner Evaluation
We followed Myers and Newman guidelines (Myers & Newman, 2007) to conduct
a series of qualitative semi-structured interviews with twelve senior software archi-
tects to explore expert knowledge regarding architectural patterns and evaluate the
outcomes of the SLR.

We developed a role description before contacting potential experts in order to en-
sure the right target group. We contacted 43 architects in the Netherlands through
email using the role description and information about our research topic. Overall,
twelve senior software architects at different software producing organizations in the
Netherlands participated in this research. The experts were pragmatically and conve-
niently selected according to their expertise and experience that they mentioned on
their LinkedIn profile. The experts had, on average, more than ten years of experi-
ence with designing architectures. Each of the interviews followed a semi-structured
interview protocol and lasted between 60 and 90 minutes.

According to Runeson et al. (2012), we discuss the four threats: construct validity,
internal validity, external validity, and reliability. We used open questions to elicit as
much information as possible from the experts minimizing prior bias. All interviews
were done in person and recorded with the interviewees’ permission, then coded for
further analysis to decrease a threat to construct validity. In order to mitigate a
possible threat to internal validity, we consider a set of expert evaluation criteria
(including “Years of experience”, “Expertise”, “Skills”, “Education”, and “Level of
expertise”) to select the experts. This study’s relatively small number of interviewees
highlights the issue of generalization and the external validity of the research
results. However, the diversity of the interviewees, who were working at twelve
different software development companies, lead to unbiased and generalize results.
The interview protocol and coding were reviewed by two authors of this paper to
minimize a threat to reliability.

Patterns: The domain experts were familiar with most of the selected patterns in
this study. However, some experts asserted that particular patterns, such as C2 and
Indirection Layer, are not as well-known as the rest of the patterns. Moreover, two
experts mentioned that Master-Slave is not frequently used in software architecture.
The last row in Figure 7.3 shows the number of experts that were familiar with each
pattern. Note, all twelve experts were familiar with well-known patterns, such as
“Client-Server”, “Layers”, “SOA”, “MVC”, “Component-based”, and “Microservices”.

Quality Attributes: The domain experts were familiar with the reported quality at-
tributes, i.e., the qualities in the ISO standard (see Figure 7.4). They mentioned
that software architects mostly consider a limited set of quality attributes to evalu-
ate real-world software systems. Furthermore, they asserted that some of the quality
attributes in our list are semantically close to each other and can be combined. For
instance, one of the experts asserted that terms such as “response time”, “capacity”,
“latency”, “throughput”, and “execution speed” are linked to “Performance”; more-
over, quality attributes such as “modifiability” and “stability” are connected to “Main-
tainability”.

Section 7.4 – Practitioner Evaluation ∣ 197

Based on the IEEE Standard Glossary of Software Engineering Terminology (Com-
mittee et al., 1998; Samadhiya et al., 2010), the quality of software products is the
degree to which a system, component or process meets specified requirements (such
as functionality, performance, security, and maintainability) and the extent to which
a system, component or process meets the needs or expectations of a user. It is nec-
essary to find quality attributes that are widely recommended by other researchers to
measure the characteristics of the system.
The result of the SLR confirmed that researchers do not agree upon a set of conven-
tional quality attributes (See Figure 7.4). Additionally, we realized that their sug-
gested quality attributes were mainly applied to specific domains to address different
research questions. Moreover, quality attributes such as “Security” and “Confiden-
tiality”, “Availability” and “Fault-tolerance”, “Testability” and “Traceability”, “Main-
tainability” and “Manageability”, etc. can be considered as synonym terminologies.
However, we observed that some authors distinguished and categorized quality at-
tributes conceptually. For instance, Yang et al. (2012) stated that “Confidentiality”,
“Integrity”, “Accountability”, “Authenticity” are sub characteristics of “Security”. Sim-
ilarly, Bode & Riebisch (2010) stated that “Testability” and “Traceability” are sub
characteristics of “Evolvability”. Consequently, a set of nonexclusive and domain-
independent quality attributes is needed to evaluate software products.
The ISO/IEC 25010 (ISO, 2011) presents best practice recommendations on the base
of a quality assessment model. The quality model defines which quality
characteristics should be considered when assessing the qualities of a software
product. The key rationale behind using such software quality models is that they
are a standardized way of measuring a software product (Haoues et al., 2017). In
figure 7.4, the quality attributes printed in black are based on the ISO/IEC 25010
standard (ISO, 2011), and the rest of them (printed in blue) are not mentioned in
the ISO standard6.

Strength and Liabilities: The domain experts asserted that Figure 7.4 provides an
extensive analysis regarding the impacts. They confirmed that such analysis is useful
for software architects and can assist them with their decision-making process to
select the best fitting set of patterns according to their quality concerns. The experts
expressed that in real-world scenarios, software architects employ tactics to improve
individual quality concerns. Tactics are mainly implemented in the source code so
that their implementation can be easier or more difficult based on the nature of the
system they are implemented in.

Application Domains The experts asserted that they had almost similar experiences
with selecting and employing patterns in particular domains. One of the experts con-
firmed that some patterns are well-known candidates in particular domains, such as
a combination of CQRS, Microservices, Layers, and Client-Server, which are all com-
monly used in ERP software. The practitioners stated that knowledge about appli-
cation domains could be helpful for software architects and support them to identify

6The definitions of the quality attributes are entirely available in the technical report on the following
web page: Http://swapslr.com

198 ∣ Chapter 7 – Capturing Software Architecture Knowledge

the initial set of patterns based on the similarity between their application domains
and the observed domains based on other architects’ experiences.
It is interesting to highlight that the knowledge regarding a limited set of patterns
can lead to a cognitive bias (Montibeller & Winterfeldt, 2015) that forces
practitioners an over-reliance on the patterns that they are familiar with. For
instance, we noticed that some experts during the interviews had emphasized more
on a particular set of patterns that they have mentioned as their expertise and skills
in their LinkedIn profiles.

Combinations: The practitioners stated that in real-world architectures, they
manipulate and combine patterns with meeting their requirements. Furthermore,
they employ combinations of patterns besides software architecture tactics as
architecture strategies to achieve particular quality attribute goals (e.g., improving
security or performance). The practitioners confirmed that such knowledge about
combinations are useful to them and can provide guidelines to select patterns and
practical combinations. The practitioners also reconfirmed that pattern combinations
can exist in many configurations. This presents a new challenge. For example, if a
microservice uses CQRS independently, CQRS does not influence the total
microservice architecture. However, if CQRS is used in an event-based architecture,
those two patterns need to be developed in lock-step, as they influence each other
heavily. For now, we recognize a dichotomy: combinations of patterns can be made
that influence each other, while it is also possible to have combinations of patterns
that do not influence each other at all. In future work, such relationships should be
made explicit and specified in more detail.

Trends: The practitioners asserted that it is a well-known phenomenon that any tech-
nology is trend sensitive due to new insights and rapid advancements. Consequently,
software architects have to be informed about the advancements in the technology
industry and trends that can benefit their business in the future. Software architects
sometimes have to select a particular set of patterns because of legacy technology
choices. Sometimes vendor lock-in makes a customer dependent on a vendor for
products and services, unable to use another vendor without substantial switching
costs. An example of a pattern that has been trending in recent years is the Microser-
vices pattern. Microservices advantages can tempt software architects to consider it as
a hammer and convert every problem (design decision) into a nail. In other words,
software architects tend to consider a set of patterns that are trending. For instance,
one of the experts mentioned that software architects prefer to use Publish-Subscribe
instead of RPC as a communication mechanism. Furthermore, MVC, as a pattern that
facilitates the design of user-interfaces, is more popular than its alternatives, C2 and
PAC. In our research, we need to be cognizant of these trends, while not becoming
dogmatic. In engineering, new tools have led to some of the greatest advances, and
we expect the job of the software architect to remain an engineering job primarily for
a long time.

Section 7.5 – Conclusion ∣ 199

7.5 Conclusion
Knowledge about architectural patterns is scattered among studies in the literature.
In this study, we capture and aggregate knowledge about architectural patterns and
make it available through this paper and a web site as reusable knowledge for archi-
tects. The amount of data collected from academic literature surpasses other studies
in terms of a number of patterns studied and quality impacts identified. We also
identify possible trends and application domains of architectural patterns.

The practitioners who participated in this research confirmed that the provided
knowledge in this study could support researchers and practitioners with selecting
the best fitting sets of architectural patterns for designing pattern-driven architecture
according to their quality concerns and application domains.

The lack of sufficient knowledge regarding patterns and their impacts on quality
attributes, plus their application domains in literature, impedes progress in the soft-
ware architecture field and leads to unreliable decisions by software architects. This
research serves several purposes. First, it is an explicit call to action for all architects
and researchers to document their pattern usage, the quality attributes they meet,
the tactics used to optimize those quality attributes, and the application domains
they best apply. Second, we use this work as a source for designing more extensive
decision support system (Farshidi et al., 2018c) that can support architects in finding
the right combination of patterns for any software system. We plan to evaluate the
decision support system in expert sessions with seasoned software architects. As the
knowledge base of the decision support system also functions as a knowledge-sharing
platform, it may become the first up to date and maintained pattern catalog.

CHAPTER 8

Decision Support for
Pattern-Driven Architecture

The selection process of architectural patterns is challenging for
software architects, as knowledge about patterns is scattered among
a wide range of literature. Knowledge about architectural patterns
must be collected, organized, stored, and quickly retrieved when it
needs to be employed. In this tool paper, we introduce a decision
support system that uses a decision model for supporting software
architects with the pattern selection problem according to their
requirements, including functional and quality requirements. The
decision model is built based on a technology selection framework
for modeling multi-criteria decision-making problems in software
production. Twenty-four software architects in the Netherlands have
evaluated the tool. They confirm that the tool supports them with
their daily decision-making process.

keywords- Software architecture patterns; Pattern-driven soft-
ware architecture; multi-criteria decision-making; decision support
system; decision model;

This chapter is based on the following publication:

Farshidi, S. & S. Jansen (2020a), “A decision support system for pattern-driven software
architecture”, in: Proceedings of the 14th European Conference on Software Architecture, ECSA
2020, vol. 1, ACM, pp. 1–12.

Section 8.1 – Introduction ∣ 203

8.1 Introduction
Software architecture is fundamental for the development of a software product and
plays an indispensable role in its success or failure as software architecture deals with
the base structure, subsystems, and interactions among these subsystems (Clements et
al., 2003). Software architecture design can be viewed as a decision-making process:
software engineers consider a set of alternative solutions that could solve a system
design problem, and select the set that is evaluated as the optimal (Lago & Avgeriou,
2006).

Software architecture is the composition of a set of architectural design decisions,
concerns, variation points, features, and usage scenarios that address various system
requirements, including functional and quality requirements (Bosch, 2004). Each
architectural design decision is made with a design rationale (Dutoit et al., 2007),
which represents the knowledge that provides the answers to questions about the
design decision or the process followed to make that decision.

An architectural pattern describes high-level structures and behaviors of software
systems and addresses a particular recurring problem within a given context in soft-
ware architecture design (Buschmann et al., 1996). Architectural patterns aim to
satisfy several requirements and help to document the architectural design deci-
sions (Avgeriou & Zdun, 2005). So that selecting architectural patterns is a subset
of architectural design decisions (Zimmermann, 2010), and it is a challenging task
for software architects, as knowledge about patterns, such as their application do-
mains and their interactions with quality attributes, is scattered among a wide range
of literature (Tang et al., 2011b). Thus, a decision support system (DSS) is needed to
support software architects with architectural pattern selection intelligently.

In this article, we present a DSS for Pattern-Driven Architecture, which assists soft-
ware architects in selecting the best fitting set of patterns. The DSS asks architects
for their requirements in terms of functional requirements and quality concerns. Ac-
cordingly, several sets of architectural patterns are returned that match these require-
ments. Subsequently, architects can start tweaking the requirements to find the most
suitable set of patterns for their design. The DSS is based on several well-known
software engineering concepts, such as the ISO/IEC software quality models and the
MoSCoW prioritization technique. Architects will indicate their preferences using
primary selections such as ‘The application must have high availability’ and ‘The ap-
plication could have accessibility’. Using a literature study, we have assessed how
patterns perform on these quality criteria. The DSS bundles this knowledge and pro-
vides architects with an interactive and collaborative decision tool.

We regard building a software architecture as a decision-making process (Rozan-
ski & Woods, 2012): (1) Stakeholders with their requirements are engaged. (2) Sce-
narios are captured. (3) Architectural patterns are identified to address requirements.
(4) Potential combinations of patterns are explored. (5) Architects evaluate the com-
binations of patterns (alternative solutions). If the alternative solutions do not meed
the requirements, they are reworked and requirements revisited. (6) An architecture
is drafted using the identified patterns (alternative solutions), viewpoints, and per-
spectives. (7) Different architectural alternatives for refining the draft are explored,
and architectural decisions are made to select among them. (8) The architecture is

204 ∣ Chapter 8 – Decision Support for Pattern-Driven Architecture

evaluated with stakeholders. Finally, if the architecture does not fulfill stakeholder re-
quirements, the architecture design is reworked and requirements possibly revisited
(see Fig. 8.1). While this process has been a reliable method for producing architec-
tures, it strongly depends on the architect’s limited knowledge and experience, who
may have experience with only a small number of patterns. Thus, we envision a
process where the architect is supported by tools to enhance her knowledge of the
patterns available for particular design problems.

Recently, we designed a framework (Farshidi et al., 2018c) for supporting software
developers and architects (decision-makers) with their multi-criteria decision-making
(MCDM) problems in software production. An MCDM problem deals with evaluating
a set of alternatives and considers a set of decision criteria (Majumder, 2015). In this
tool paper, we introduce a decision model, based on the framework, for the patterns
selection problem. The DSS employed the decision model to support software archi-
tects with the pattern selection problem. Accordingly, we believe that the DSS can
be used in steps (1-5) to facilitate the decision-making process for software architects
(see Fig. 8.1).

The rest of this tool paper is organized as follows. Section 8.2 outlines a brief de-
scription of the DSS components and explains the constituent parts of the decision
model. Section 8.3 presents the DSS and its application through a real-world exam-
ple. Section 8.4 positions the DSS, among other tools and MCDM approaches, in the
literature. Finally, Section 8.6 presents the evaluation of the DSS and summarizes
this tool paper.

8.2 Decision Support System
A DSS is an information system that comprises domain-specific knowledge and deci-
sion models to assist decision-makers by offering knowledge about a set of alterna-
tives (Wang, 1997). In this tool paper, the DSS integrates key aspects of knowledge-
driven and model-driven DSSs (Power, 2008a) to store and organize the extracted
knowledge regarding architectural patterns systematically facilitate the decision-
making process. Note, for the sake of simplicity, we use patterns to refer “architectural
patterns”.

Additionally, we follow the framework (Farshidi et al., 2018c) for modeling decision
problems in software production as MCDM problems. The framework applies the six-
step decision-making process (Majumder, 2015) to build decision models for MCDM
problems. The knowledge base of the DSS is a collection of decision models for
different MCDM problems (Farshidi et al., 2018a; Farshidi et al., 2018b; Farshidi et
al., 2020c; Farshidi et al., 2020e). According to the framework, the decision model
for the pattern selection problem contains three sets (including Patterns, Software
Quality Models, and Features) besides the mapping among the elements of these sets
(see Fig. 8.1).
- Patterns: Patterns are the building blocks that, when assembled, can provide com-
plete solutions for an architect’s problem (see Fig. 8.1). Patterns have relationships
to each other. For example, patterns can be alternatives to each other, for exam-
ple, Interpreter, Rule-Based System, and Virtual Machine (Avgeriou & Zdun, 2005);
Moreover, some patterns can also be complementary and combined. For instance, the

Section 8.2 – Decision Support System ∣ 205

Figure 8.1: This figure shows that the DSS can be deployed in the the software architecture
design process to support the software architects with the pattern selection problem (Farshidi
et al., 2018a; Rozanski & Woods, 2012).

Decision Support System

Knowledge Base

ProcessProcess

The Decision Model for Pattern Selection

Software Quality Models

ISO/IEC 25010

Features

Problem

Context

Forces

Solution

Resulting ContextPros/Cons

Examples

Rationale

Related Patterns

Known Uses

Patterns

Client/Server

Layers CQRS

SOA
...

has

1..* 1..*

impacts on

1..*1..*

(Collection of decision models)

Inference Engine

Exclude Infeasible Solutions

Score Calculation

User Interface

 Requirement
(MoSCoW)

Feasible
Patterns

Software Architecture Design Process

Consolidate inputs

Identify scenarios

Identify relevants
architectural patterns

Produce candidate
architecture

Explore architectural
options

Evaluate architecture
with stakeholders

Rework architecture,
revisit requirements

Decision[not acceptable]

[acceptable]

(1)

(2)

(3)

(6)

(7)

(8)

Explore combinations of
architectural patterns

Rework solutions,
revisit requirements

Evaluate potential
alternative solutions

Decision

[not acceptable][acceptable]

(4)

(5)

Client-Server pattern can be combined with the Broker pattern (Harrison & Avgeriou,
2010).
- Software Quality Models: A set of quality attributes, such as Availability and Se-
curity, should be defined in the decision model. We employed the ISO/IEC 25010
standard (ISO, 2011) as a domain-independent quality model. The key rationale be-
hind using this software quality model is that it is a standardized way of assessing a
software product’s quality. Moreover, it describes how easily and reliably a software
product can be used.
- Features: Each pattern has a set of features, for instance, “centralized governance” is
a feature of the “Client-Server”. We identified the following types of features through
a Systematic Literature Review (SLR) (Farshidi et al., 2020e). We reviewed 21,373 ar-
ticles, and finally, 232 high-quality primary studies have been selected for performing
the knowledge extraction process. Note, such feature types can be found in most pat-
terns, even with different titles. (1: Problem) Descriptions of the problems indicating
the intent in applying patterns. (2: Context) The preconditions under which patterns
are applicable. (3: Forces) Descriptions of the allied forces and constraints. (4: So-
lution) Static structures and dynamic behaviors of patterns. (5: Resulting Context)

206 ∣ Chapter 8 – Decision Support for Pattern-Driven Architecture

The post-conditions after a pattern has been applied. (6: Examples) Some sample
applications of patterns. (7: Rationale) An explanation/justification of each pattern
as a whole. (8: Related Patterns) The relationships among patterns. (9: Known Uses)
Known applications of patterns within existing systems. (10: Pros/Cons) Pros and
cons of employing patterns.
- Mappings: We identified the impacts of 29 patterns on 40 quality attributes based
on a series of expert interviews with twelve senior software architects at different
software producing organizations in the Netherlands (Farshidi et al., 2020e). More-
over, The mapping between the patterns and the features was investigated with the
SLR and the experts.
Decision-Makers, such Software architects and developers, prioritize their require-
ments based on the MoSCoW prioritization technique (DSDM consortium and others,
2014), and then they send the requirements through the user interface of the DSS to
the inference engine. Figure 8.3 shows the user interface of the DSS.
Inference engine: The DSS has an inference engine that receives inputs from the
user interface. Next, it excludes all infeasible solutions, those that do not support
“Must-Have” features or those that support “Won’t-Have” features, and then it ranks
the feasible solutions based on the number of “Should-Have” and “Could-Have” fea-
tures that they support. In other words, requirements with Must-Have or Won’t-Have
priorities act as hard-constraints and requirements with Should-Have and Could-Have
priorities act as soft-constraints. The inference engine assigns a non-negative score to
each alternative solution based on the well-known Sum of Weights Method (Farshidi
et al., 2018a), and finally, it returns a shortlist of feasible patterns (solutions) to the
user interface.

8.3 A Practical Running Example
The DSS is accessible through the following link: (https://dss-mcdm.com). After
login to the system, a software architect should select the “Software Architecture
Pattern Selection” to create an instance of the decision model.

This section presents a real-world example of the pattern selection process. We
asked a software architect at AFAS Software, a software producing organization in
the Netherlands, to define their software architecture from a high-level of abstraction;
then, we used the DSS and the decision model to capture the architect’s concerns and
requirements; next, the DSS generated a set of solutions accordingly.
Case Description - The software architect described AFAS software as follows: AFAS
Software is a Dutch vendor of Enterprise Resource Planning (ERP) Software with more
than 500 employees. AFAS has the goal of automating business processes found in a
diverse range of companies. It supports business processes such as invoicing, project man-
agement, payrolling in a single integrated software system. The current AFAS product,
called AFAS Profit, is a traditional client-server application with a relational database for
storing and retrieving customers’ management data, such as business models and ontolo-
gies. AFAS Profit is a complete, integrated ERP system used by more than 10000 small
and medium-sized enterprises. For example, Ernst & Young, Kwik-Fit, LeasePlan, Oad
Reizen, Sandd, and Wibra, are already employing AFAS Profit to automate their busi-
ness processes. Fig. 8.2 shows the description of the decision-making problem in terms of

https://dss-mcdm.com

Section 8.3 – A Practical Running Example ∣ 207

Figure 8.2: The architects describe their case in the context description screen. The tool uses
text matching to automatically extract a subset of features from the description to get the
architect started.

the case title and description; moreover, the logo of the company can be attached to the
“case description”.
Case Definition - The software architect defined AFAS Profit as a web-based solu-
tion that is consistent with the user experience of the windows client but feels web-native
to customers. AFAS Profit is configurable by customers in their styling to match their
logo and business style. AFAS Profit has the following characteristics: (1) It is a com-
bination of a client or frontend portion that interacts with the user and a server or
back-end portion that interacts with the shared resource. The client process contains
solution-specific logic and provides the interface between the user and the rest of the
application system. The server process acts as a software engine that manages shared
resources. (2) All data are centralized on a single server, simplifying security checks,
including updates of data and software. (3) It supports a higher degree of flexibility
and security, compared to the previous solution. (5) Its performance has increased
significantly, compared to the previous solution, as tasks are shared between servers.

The architect stated that “Functional Correctness”, “Resource Utilization”, “Config-
urability”, “Accessibility”, “Reliability”, “Availability”, and “Scalability” are the main
quality concerns. Additionally, “technology agnostic”, ”modern web application”, and
”reusability of the business logic” are the key requirements of AFAS profit. Fig. 8.3 shows
the “case definition” of AFAS Profit. The software architect assigned the MoSCoW priori-
ties (Must-Have, Should-Have, Could-Have, and Won’t-Have) to the requirements. Note,
the data type the features can be either Boolean or Non-Boolean. For instance, “han-
dling user input” is a Boolean feature, which means that a pattern either supports it or

208 ∣ Chapter 8 – Decision Support for Pattern-Driven Architecture

Figure 8.3: represents how a decision-maker can define the requirements based on the
MoSCoW prioritization technique.

not. However, the level of support of “Availability” or “Scalability”, as two Non-Boolean
features, of a pattern can be “High”, “Medium”, or “Low”.
Case Evaluation - The software architect stated that AFAS Profit architecture is based
on a combination of the “Client-Server”, “Publish-Subscribe”, and “Layers” patterns. The
main rationales behind these design decisions are (1) the frontend can be easily replaced
or upgraded, and every module of the business logic, in the back-end, can be reused.
(2) The web client communicates over HTTP with the server, so it is possible to choose
different technologies for the web client. (3) They can implement a Content Management
System (CMS) to make the web client configurable in style and layout. (4) While the
data is requested through communication with the server, preventing stale data, the CMS
parts are published with some delay, making it possible to cache the style and layout for
fast retrieval.

The inference engine gets the requirements and evaluates the alternative patterns
in its knowledge base accordingly. As each pattern supports only a limited set of
features, the inference engine has to generate feasible solutions (combinations of
patterns). Note, finding a subset of patterns that support all hard-constraints can be
formulated as the set cover problem. The DSS uses an algorithm based on the set
cover problem to generate several feasible solutions when all patterns in its knowl-
edge base do not support the entire list of hard-constraints of a decision-maker. For
instance, Fig. 8.4 shows that the DSS could not find any patterns that address all the

Section 8.3 – A Practical Running Example ∣ 209

Figure 8.4: illustrates part of the case evaluation by the DSS. Ticks (3) in a row signify that the
feature is supported by the corresponding patterns, and crosses (7) symbolize that the patterns
do not support the feature.

AFAS Profit requirements so that it generated a set of solutions consist of multiple
patterns.

Figure 8.5: shows top-3 solutions for AFAS Profit.

Patterns tend to be combined to provide greater support for the reusability during
the software design process (That et al., 2013). A pattern can be blended with,
connected to, or included in another pattern. For instance, the Broker pattern can
be connected to the Client-Server pattern to form the combined Client-Server-Broker

210 ∣ Chapter 8 – Decision Support for Pattern-Driven Architecture

pattern (Harrison & Avgeriou, 2010). Fig. 8.5 shows top-3 solutions for AFAS profit.
The solutions support all requirements with Must-Have priorities and do not support
Won’t have requirements (hard-constraints). Note, the DSS generated almost similar
solutions that the experienced software architects at AFAS came up with. Note that
the DSS sorts its suggestions based on their scores so that top-3 solutions can be
considered the most valuable suggestions.

Figure 8.6: show a subset of the mapping between features and patterns used by the DSS to
generate solutions for AFAS profit. The primary source of knowledge to build this mapping
is the SLR. We employed Fuzzy logic to gain some agreement among the selected studies to
calculate the values (Farshidi et al., 2020e). Note: High (H), Medium (M), Low (L), Unknown
(?).

The DSS Reports - In the knowledge extraction phase for building the decision model,
we observed multiple inconsistencies regarding the impacts of patterns on quality at-
tributes. Some studies reported adverse impacts of a particular pattern on a quality
attribute. For instance, efficiency can be considered as both strength and liability of the
Pipes and Filters pattern. We applied fuzzy logic to aggregate the extracted knowledge
regarding the potential impacts of patterns on quality attributes. In the implemen-
tation of the score calculation (trade-off) phase of the DSS, the impact values range
from -2 to 2+. Accordingly, the patterns with more liabilities score lower than those
that have more strengths. Note, quantifying the impact of a particular pattern on
the quality attributes is complicated because quality attributes are system-wide ca-
pabilities. Generally, they cannot be evaluated entirely until the whole system can
be evaluated. The DSS evaluates alternative solutions according to decision-makers’
quality concerns. Fig 8.6 shows the impacts of the single solutions for AFAS profit on
a subset of quality attributes.

Fig. 8.7 illustrates a decision structure based on AFAS profit requirements. The

Section 8.4 – Related Work ∣ 211

Figure 8.7: shows part of the decision structure for the AFAS profit that was generated by the
DSS. The domain of the decision-making process is "Finding the best fitting set of patterns for
AFAS profit". The qualities are based on the ISO/IEC 25010 (ISO, 2011) quality model. The
software architect (decision-maker) defined the feature requirements. The DSS suggested fea-
sible alternative solutions for AFAS profit (last level). Note, the mapping between the qualities
and the features was based on domain experts’ knowledge; moreover, the relationships among
features and patterns were determined based on the SLR (Farshidi et al., 2020e).

ISO/IEC 25010
Ext. ISO/IEC 9126

Feature Requirements Feasible alternative
solutions for AFAS profit

Domain

DSS automatically generates such decision structures according to the requirements
of decision-makers. The first level of the decision structure (Domain) indicates the
goal of the decision-making process. The second level denotes the relevant quality at-
tributes that impact the prioritized requirements, which are signified in the third level
(requirements). The last level (Feasible Solutions) shows a list of feasible patterns for
the decision domain.

8.4 Related Work
In the SLR (Farshidi et al., 2020e), we reviewed selected 232 high-quality primary
studies for performing the knowledge extraction process. The knowledge base of
the SLR, including the primary studies and extracted knowledge, is available as a
technical report on the following web page: http://swapslr.com. We realized that
researchers introduced a variety of tools and MCDM techniques to address the pat-
tern selection problem. Notably, there are few tools available for software architects.
Architecting is a knowledge-intensive practice, so it can be hard to find the best way
to support architects with the right knowledge at the right time. A subset of tools for
supporting software architects with their design decisions are presented as follows:
Archium (www.archium.io) is a visualization tool that produces a view on the func-
tional dependencies between architectural design decisions. It is not an automatic
pattern detection or selection, but visualizing the dependencies can help software
architects identify such patterns. ArchReco (www.cs.ucy.ac.cy/ sielis) provides a de-
sign environment that software architects can draw diagrams with pre-defined shapes
that exist in a palette. The description of the shapes is part of a contextual element
set that ArchReco’s processes suggest the most suitable context-based recommended
design patterns. Such Design Patterns are retrieved from several data sources and

212 ∣ Chapter 8 – Decision Support for Pattern-Driven Architecture

filtered according to the contextual information that is processed when software ar-
chitects request recommendations.Sirius (www.obeodesigner.com/en/product/sirius)
is a tool that enables software architects to graphically design complex systems while
keeping the corresponding data consistent (architecture, component properties, etc.).
AKB (www.se.jku.at/akb-knowledge-sharing) is an implementation and extension of
the Architecture Haiku concept, a one-page design description. AKB supports soft-
ware architects with capturing and sharing of architectural knowledge based on ar-
chitecture profiles.

The DSS enables software architects to document their drawings and design ra-
tionales. We implemented a design studio based on the Unified Modeling Language
concepts to store design decisions while the decision-making process. The main dif-
ference between the DSS and such tools is that it supports software architects with
their decision-making process. In other words, the DSS provides a discussion and
negotiation platform to enable software architects to make group decisions. Further-
more, the DSS can be used over the full life-cycle and can co-evolve its advice based
on evolving requirements. Software architects can prioritize their functional require-
ments and quality concerns using the MoSCoW prioritization technique through the
user interface of the DSS. Then, the DSS generates a set of feasible solutions that
address the requirements.

In contrast to existing MCDM approaches in the literature (see (Farshidi et al.,
2020e)), the cost of creating, evaluating, and applying the decision model is not
penalized exponentially by the number of criteria and alternatives, because it is an
evolvable and expandable approach that splits down the decision-making process into
four maintainable phases (Farshidi et al., 2018c). The decision model addresses main
knowledge management issues, including capturing, sharing, and maintaining knowl-
edge.

Recently, we built five more decision models based on the framework for the selec-
tion process of database Management Systems (Farshidi et al., 2018c), Cloud-Service
Providers (Farshidi et al., 2018a), Blockchain Platforms (Farshidi et al., 2020c),
Model-Driven Software Development Platforms, and Programming Languages. Case
studies and expert interviews were conducted to evaluate the DSS’s effectiveness and
usefulness in addressing these MCDM problems. The results confirmed that the DSS
performed well to solve the mentioned problems in software production.

8.5 Evaluation
We carried out a study with 24 software architects and developers in the Netherlands
to assess the user acceptance of the decision support system and the decision model
based on the Technology Acceptance Model. Firstly, we formed 12 groups of two
individuals according to their expertise and the companies that they were working
with. Next, we introduced the decision model within the DSS portal and presented
some of its applications. Then, we assigned the problem definitions of two real-world
software architectures to the groups and asked them to design two solutions for the
problems. The groups used the decision model within the DSS platform to help them
with (1) defining the requirements based on the MoSCoW prioritization technique,
and (2) finding the best fitting set of patterns. The group sessions lasted between

Section 8.5 – Evaluation ∣ 213

45 to 60 minutes. At the end of the sessions, we ask all of the participants to fill
out a TAM-based questionnaire; Next, we collected their feedback and opinion about
the decision model. The participants highlighted that the decision model, in terms of
reusable knowledge regarding the patterns, was a useful tool that can support them
to explore more patterns while designing real-world software architectures. They
asserted that the decision model assists them in finding liabilities and strength of
patterns, their features, and potential application domains that they have employed
in.

The DSS assists software architects in the requirements elicitation activity by offer-
ing a list of essential features of patterns. Moreover, software architects have different
perspectives on their requirements in different phases of the Software Development
Life-Cycle. They might want to consider generic domain features in the early phases
of the life-cycle, whereas they are interested in more technical features as their devel-
opment process matures. Therefore, the DSS might come up with various solutions
for a software architect in different phases of its software development life-cycle. As
the choices of a decision-maker are stored in the DSS knowledge base, it does not
cost a significant amount of time to rerun the decision-making process. In a typical
scenario, an architect will tweak her decisions and values to assess her choices have
on the desired set of patterns. Software architects sometimes have to select a partic-
ular set of patterns because of legacy technology choices. Sometimes vendor lock-in
makes a customer dependent on a vendor for products and services, unable to use
another vendor without substantial switching costs. An example of a pattern that has
been trending in recent years is the Microservices pattern (see (Farshidi et al., 2020e)).
Microservices advantages can tempt architects to consider it as a hammer and convert
every design decision into a nail.

Patterns and quality attributes are not independent and have significant interaction
with each other. Such interactions can be observed as trade-offs between quality at-
tributes. Software architects need to select and employ an optimal set of patterns to
satisfy quality concerns. For instance, some studies assert that Reusability is a strength
and Scalability is a liability of the Layers pattern (see (Farshidi et al., 2020e)). If an
architect is looking for both qualities, she has two options: choose another (set of)
pattern(s) or use tactics to improve Scalability. System quality is best exposed in pro-
duction, independent of whether system quality has been made explicit. We recall
that well-known authors, such as Wiegers & Beatty (2013), classify quality attributes
as external (exposed at the run time/in production, e.g., performance) and internal
(exposed at design time, e.g., modifiability). If architects do not think about per-
formance, the system will still expose its performance in the field. The knowledge
around the quality of a system under design is hard to gather without in the field
experiences; however, experience with similar patterns in other systems provides in-
valuable insight into the inherent qualities of a new system. The DSS recommends
patterns that exhibit similar quality behaviors when purely implemented (without tac-
tics) in different systems and that this knowledge can be used by architects to make
informed design decisions. We consider it future work to further explore these rela-
tionships between patterns and the way in which these communicating properties are
best communicated to architects, having to choose from a set of complex solutions.

The tool has been designed using the .Net framework. While it has been optimized

214 ∣ Chapter 8 – Decision Support for Pattern-Driven Architecture

somewhat, the tool will sometimes still perform slowly, with end-user wait times
of around 5 seconds, which is workable, but not ideal. One of the challenges is the
solution space: for recommending solutions (combinations of patterns), the problem’s
search space is huge, consisting of 29 patterns and 188 features. For instance, for a
solution with three patterns, the problem’s search space is found to contain ∼ 29 ×
28× 27× 188 possible problem states.

8.6 Conclusion
In this tool paper, we present a DSS besides a decision model for architectural pattern
selection. The DSS suggests feasible patterns for particular cases based on the qual-
ity concerns and functional requirements of decision-makers. The DSS1 is accessible
through the following link: (https://dss-mcdm.com). We consider it future work to
ensure that the knowledge base remains up to date, for instance, through a wiki-
mechanism. Thus, software architects can consider the DSS as a source of knowledge
and reliable assistance while making decisions regarding the best-fitting set of pat-
terns for their software architectures. Additionally, we should enhance the DSS with
a learning module that improves its learnability aspect in the future.

It is presently impossible to assess which patterns are compatible and frequently
used in combination, even though practically all systems implement more than one
pattern. The knowledge base of the DSS contains individual patterns that solve par-
ticular parts of a design problem. The inference engine uses an algorithm based on
the set cover problem to generate several feasible solutions when all patterns in its
knowledge base do not support the entire list of hard-constraints of a decision-maker.

In our studies, we have dealt with different kinds of architectures, with a slight bias
towards enterprise resource planning systems. We consider it as future work to apply
the tool to problems in other domains, such as Internet of Things, gaming, or media
systems.

1Please watch a demo video of the DSS through this link: https://youtu.be/AhfGYpwpJSQ

https://youtu.be/AhfGYpwpJSQ

CHAPTER 9

Design Decisions in
Pattern-Driven Architecture

Context: Software architecture design is a decision-making process.
Software architects make design decisions continuously, based on
their design rationales and tacit knowledge, while designing software
architectures. A subclass of design decisions is selecting architectural
patterns, which is a challenging process, as knowledge about them is
fragmented over a wide range of various studies. Hence, a decision
model is required to analyze architectural patterns using systematic
identification and evaluation of potential alternatives. Method:
We have developed a decision model and tool to support software
architects in architectural pattern selection using the Technology
Acceptance Model. We have evaluated potential adoption with
24 software architects in the Netherlands. Results: The decision
model was perceived as useful for architectural pattern selection,
and the participants also described it as a form of knowledge that
they needed in their work. Additionally, we received constructive
feedback to improve the tool. Conclusion: Having reusable knowl-
edge of the decision model readily available supports software
architects in making design decisions that meet their requirements
and priorities. Additionally, the lessons learned can be employed by
other researchers to set up their studies, to evaluate their decision
support tools, and to gain feedback from software architects.

keywords- Architectural Patterns; Design Decisions; Decision
Model; Decision Support System; Technology Acceptance Model

This chapter is based on the following publication:

Farshidi, S. & S. Jansen (2020b), “Evaluating architect adoption of a decision support tool”,
(Submitted).

Section 9.1 – Introduction ∣ 217

9.1 Introduction
Decision-making is an inevitable portion of software development, and a considerable
number of decisions are made during the software development life cycle regarding
processes, products, tools, methods, and techniques (Ruhe, 2002). Software archi-
tecture is the composition of a set of architectural design decisions, concerns, varia-
tion points, features, and usage scenarios that address various system requirements,
including functional and quality requirements (Bosch, 2004). Design decisions are
concerned with the system’s application domain, architectural patterns employed in
the system, or other infrastructure selections as well as other aspects needed to satisfy
all requirements (Bosch, 2004). Each architectural design decision is made with a de-
sign rationale (Dutoit et al., 2007), which represents the knowledge that provides the
answers to questions about the design decision or the process followed to make that
decision. Software architecture decisions are made in the early stage of the software
development life cycle and have a significant impact on shaping the analysis of the
problem and the expression of the design (Shaw, 1995). Software architects make
decisions that have long-lasting impacts on quality attributes of a software-intensive
system (Kruchten, 2008).

An architectural pattern describes high-level structures and behaviors of software
systems and addresses a recurring problem within a given context in software archi-
tecture design (Buschmann et al., 1996). Architectural patterns aim to satisfy several
functional and quality attribute requirements and help document architectural de-
sign decisions (Avgeriou & Zdun, 2005). Selecting architectural patterns is a subset
of architectural design decisions (Zimmermann, 2010), and it is a challenging task
for software architects, as knowledge about patterns is scattered among a wide range
of literature (Farshidi et al., 2020e; Me et al., 2016). Note, for the sake of brevity, we
use patterns to refer to architectural patterns.

Knowledge regarding patterns has to be collected, organized, stored and quickly
retrieved when it needs to be employed. There exists a need for a decision model to
support software architects in selecting suitable patterns according to their require-
ments. The decision-making process in software architecture can be modeled as a
Multi-Criteria Decision Making (MCDM) technique that provides more formal and
quantitative reasoning. Finding the best fitting solution for a particular subset of de-
sign decisions can also be modeled as an MCDM problem that deals with evaluating a
set of alternatives and takes into account a set of decisions criteria (Triantaphyllou et
al., 1998). Recently, we introduced a framework (Farshidi et al., 2018a) to build deci-
sion models for MCDM problems in software production. Moreover, we designed and
implemented a Decision Support System (DSS) (Farshidi et al., 2018b) for supporting
software architects with their such MCDM problems.

In this study, we follow the framework (Farshidi et al., 2018a) to build a deci-
sion model for the pattern selection problem. Next, we carried out a study with 24
software practitioners in the Netherlands to assess the decision model within DSS’s
knowledge base in addressing the decision-making problem. This study is structured
as follows: Section 9.2 describes multiple research methods that we have combined
to achieve a fuller picture and a more in-depth understanding of patterns by connect-
ing complementary findings that conclude from the use of methods from the different

218 ∣ Chapter 9 – Design Decisions in Pattern-Driven Architecture

methodological traditions of qualitative and quantitative investigations. Moreover,
it highlights barriers to the knowledge acquisition and decision-making process and
argues how we have minimized the threats to the validity of the results. Section 9.3
formulates the pattern selecting as an MCDM problem, afterward, it outlines the main
building blocks of the decision model; Additionally, Section 9.4 presents the research
setting and estimates background knowledge of the software practitioners on pat-
terns. Furthermore, it assesses the user acceptance of the decision model based on
qualitative analysis of the Technology Acceptance Model (TAM). Section 9.5 analyzes
the results and discusses lessons learned from the study. Section 9.6 positions our
work among the other pattern selection techniques in the literature. Finally, Section
9.7 summarizes the proposed approach, defends its novelty, and offers directions for
future studies.

9.2 Research method
We regard building a software architecture as a decision-making
process (Lago & Avgeriou, 2006): a software architect considers several alternative
solutions that could solve the design problem, and subsequently chooses one of the
solutions that optimally addresses the problem. The software architecture design
decision, such as the selection of patterns, is formulated as follows (Farshidi et al.,
2020e). (1) a software architect runs into a design problem; (2) she looks for actual
features she thinks can solve this problem, such as “distribute data over multiple
servers”;(3) she goes through the description of several patterns and identifies
several candidates; (4) she identifies an optimum pattern for her problem and
applies tactics to make sure it works in the context. We assume that the proposed
decision model in this study can be employed in steps (2) and (3) to facilitate the
decision-making process for software architects (see Fig. 9.1). To guide our research,
we defined the following research questions: (RQ1) How can we transform
architectural knowledge regarding patterns into a decision model to support
software architects with the pattern selection process? (RQ2) Do software architects
find the decision model useful and easy to use in the pattern selection process?
(RQ3) How do software architects use the decision model within the DSS knowledge
base to find the best fitting set of patterns?

The framework (Farshidi et al., 2018a), which we use in this study, provides a
guideline for software architects to build decision models for MCDM problems in
software production following six-step of the decision-making process (Majumder,
2015). Fig. 9.1 represents the main building blocks of the DSS besides the proposed
decision model. In this study, we considered the following knowledge sources to
answer the first research question and build and evaluate a decision model for the
pattern selection problem.
1) Structured Literature Review (SLR): The decision model for the pattern selec-
tion problem requires knowledge regarding patterns in terms of potential alternatives
(candidate solutions) and their features. As architectural knowledge about patterns
is scattered among a wide range of literature (Farshidi et al., 2020e; Me et al., 2016),
we conducted an SLR, following the steps and guidelines of Kitchenham (2004), to
capture this architectural knowledge systematically. The SLR functioned as a knowl-

Section 9.2 – Research method ∣ 219

Figure 9.1: shows the decision model for the pattern selection problem. Moreover, it represents
the main building blocks of the DSS that is adapted from our previous study (Farshidi et al.,
2018a). Note, the DSS and the decision model is accessible through the following link: https:
//dss-mcdm.com

Source of Knowledge Decision Model for Pattern Selection Decision Support System

Alternatives

Domain

Features

ISO/IEC 25010
Ext. ISO/IEC 9126

Exclude Infeasible Solutions

Score Calculation

Requirements
(MoSCoW)

Feasible
Patterns

 Domain Experts
- Senior Developers
- Software Architects

Software Quality
Experts

has1..*

1..*

impacts on1..*

1..*

Patterns

Client/Server

Layers CQRS

SOA ...

Features

Problem

Context

Forces

Solution

Resulting ContextPros/Cons

Examples

Rationale

Related Patterns

Known Uses

Software Quality Aspects

ISO/IEC 25010 Ext. ISO/IEC 9126

Inference Engine

Knowledge Base

Decision-Maker
Systematic

Literature Review

edge acquisition process to capture knowledge regarding a potential list of patterns
and their features. Eventually, 232 high-quality primary studies were selected for
performing the knowledge extraction process (Farshidi et al., 2020e).
2) Expert Interview: We followed the Myers and Newman guidelines (Myers & New-
man, 2007) to conduct a series of qualitative semi-structured interviews with twelve
senior software architects, including freelancers and employees of different software
producing organizations, to explore expert knowledge regarding architectural pat-
terns and build the decision model. We developed a role description before contacting
potential experts in order to ensure the right target group. We contacted 43 archi-
tects in the Netherlands through email using the role description and information
about our research topic. Overall, twelve senior software architects in the Nether-
lands participated in this research. The experts were pragmatically and conveniently
selected according to their expertise and experience that they mentioned on their
LinkedIn profile. The experts had, on average, more than ten years of experience with
designing software architectures. Each of the interviews followed a semi-structured
interview protocol and lasted between 60 and 90 minutes.

We used open questions to elicit as much information as possible from the experts
minimizing prior bias. All interviews were done in person and recorded with the in-
terviewees’ permission; The interviews were coded for further analysis to decrease a
threat to construct validity. In order to mitigate a possible threat to internal valid-
ity, we consider a set of expert evaluation criteria (including “Years of experience”,
“Expertise”, “Skills”, “Education”, and “Level of expertise”) to select the experts. The

https://dss-mcdm.com
https://dss-mcdm.com

220 ∣ Chapter 9 – Design Decisions in Pattern-Driven Architecture

relatively small number of interviewees for this study highlights the issue of general-
ization and the external validity of the research results. However, the diversity of the
interviewees, who were working at or with a variety of software development com-
panies, led to unbiased and generalized results. The interview protocol and coding
were reviewed by two authors of this paper to minimize a threat to reliability.
3) Evaluation with Practitioners: To answer the last two research questions, we
conducted a study with a group of software practitioners, including 24 software ar-
chitects and developers in the Netherlands. The software practitioners were selected
according to their expertise and years of experience. On average, the participants had
more than seven years of experience designing and developing real-world software-
intensive systems. We asked them to use the decision model through the DSS to
design two real-world software architecture. Finally, we assessed the user acceptance
of the decision model based on qualitative analysis of the TAM (Davis, 1989).

Biases, such as motivational and cognitive (Montibeller & Winterfeldt, 2015), arise
because of shortcuts or heuristics that software architects use to solve problems and
perform tasks. The Hawthorne effect (Jones, 1992), which is the tendency for soft-
ware architects to change their behavior when they are being observed, is a form
of cognitive bias. The participants might have been more careful in the observa-
tional setting than they would be in the real setting because they are being observed
by scientists judging their assessment questionnaires. Moreover, the Bandwagon ef-
fect (Nadeau et al., 1993), which is the tendency to do or believe things because many
other software architects do or believe the same, is another form of cognitive bias. The
Bandwagon effect typically shows up in group decisions. To mitigate the Hawthorne
and Bandwagon effects, we formed 12 groups of two individuals according to their
expertise and the companies that they were working with. In order to keep the bal-
ance between the groups, the teammates, including one senior practitioner beside
one junior practitioner, were selected from different software companies.

9.3 Architectural pattern selection as an MCDM
In this study, we formulated the pattern selection problem as an MCDM problem.
Let Patterns = {p1, p2, . . . p∣Patterns∣} be a set of patterns (i.e., “SOA”, “Layers”, and
“CQRS”). Moreover, Features = { f1, f2, . . . f∣Features∣} be a set of features (i.e., known
uses, context, and forces) of the patterns, and each pattern p, where p ∈ Patterns,
has a subset of the Features. The goal is finding the suitable pattern p which meets a
set of requirements (Requirements), where Requirements ⊆ Features. In other words,
the pattern p is a feasible pattern (or a combination of patterns) that addresses the
requirements and concerns of the software architects. For instance, when a soft-
ware architect is looking for a pattern, or a set of patterns, to build a highly scalable
distributed system, she can employ “SOA” as an alternative solution, as it supports
“decentralized data management” and “decentralized governance", moreover, “Scala-
bility” is a strength of this pattern (Farshidi et al., 2020e).

We follow the framework (Farshidi et al., 2018a) as a guideline to build the
decision model, so the following building blocks should be defined:
- Patterns: They are universal and reusable solutions to commonly occurring
problems in software architecture. In literature, sometimes the terms “architectural

Section 9.3 – Architectural pattern selection as an MCDM ∣ 221

patterns” and “architectural styles” are used interchangeably, since they are, in
principle, the same concepts and only differ in their description
forms (Avgeriou & Zdun, 2005). Design patterns are experience-based approved
solutions employed by developers to solve common problems when implementing a
software system (Hussain et al., 2017). Patterns are comparable to design patterns
but have a more extensive scope. After reviewing the primary studies in the SLR, we
identified 29 patterns mentioned in at least three studies. Table 9.1 shows the
complete list of the patterns that we have considered in the decision model.
- Features: Several different compositions are used in the literature for defining
patterns, and no single composition has achieved widespread acceptance (Haren,
2011). However, there is a comprehensive agreement on the types of features that a
pattern should contain (Buschmann et al., 1996). During the SLR, we tried to
identify the following types of features. Note, such feature types can be found in
most patterns, even with different titles. (1: Problem) Descriptions of the problems
indicating the intent in applying patterns. (2: Context) The preconditions under
which patterns are applicable. (3: Forces) Descriptions of the allied forces and
constraints. (4: Solution) Static structures and dynamic behaviors of patterns. (5:
Resulting Context) The post-conditions after a pattern has been applied. (6:
Examples) Some sample applications of patterns. (7: Rationale) An
explanation/justification of each pattern as a whole. (8: Related Patterns) The
relationships among patterns. (9: Known Uses) Known applications of patterns
within existing systems. (10: Pros/Cons) Advantages and disadvantages of
employing patterns. In this study, we have identified 188 features1 regarding the
patterns. Table 9.1 shows a subset of the features that we have considered in the
decision model.

- The mapping between features and patterns: Patterns are described based on the
functionality they deliver, besides their strengths or liabilities are shown concerning
several quality attributes (Me et al., 2016). A strength or liability is an argument
to employ or to avoid a pattern in a particular situation. Therefore, the degree to
which patterns impact quality attributes supports software architects selecting the
best fitting pattern (s), i.e., adopting or avoiding a pattern for a given design problem.
The notion of “forces”, as a feature type, equates in many ways to “quality attributes”
that software architects try to optimize and the concerns they attempt to address in
designing architectures.

The impacts of the patterns on the quality attributes, such as availability and se-
curity, are key reasons to select a particular pattern. In the knowledge extraction
phase of the SLR, we realized some inconsistencies regarding the observed impacts
of patterns on quality attributes. Some studies reported adverse impacts of a partic-
ular pattern on a quality attribute. For instance, Qin et al. (2008) and Sharma et al.
(2015) stated that efficiency is a strength of the Pipe and Filter pattern, however, Vogel
et al. (2011) expressed that efficiency is a liability for this pattern. Therefore, efficiency
can be considered as both strength and liability of the Pipes and Filters pattern.

Quantifying the impact of a particular pattern on the quality attributes is complex.

1Note, the complete list of the features is available on the DSS website: <The link has been removed
due to the double-blind review process>

222 ∣ Chapter 9 – Design Decisions in Pattern-Driven Architecture

Table 9.1: shows a subset of the mapping between the features and the patterns. Note, the
complete lists of definitions of the patterns and features besides the mapping among them is
available on the DSS website: https://dss-mcdm.com

SO
A

M
IC

R
O

SE
R

V
IC

E
SP

A
C

E-
B

A
SE

D
C

LI
EN

T-
SE

R
V

ER
C

2
M

V
C

B
LA

C
K

B
O

A
R

D
SH

A
R

ED
 R

EP
O

SI
TO

R
Y

M
IC

R
O

K
ER

N
EL

P
U

B
LI

SH
-S

U
B

SC
R

IB
E

LA
YE

R
S

P
IP

ES
 A

N
D

 F
IL

TE
R

S
C

O
M

P
O

N
EN

T-
B

A
SE

D
B

R
O

K
ER

P
EE

R
-T

O
-P

EE
R

P
A

C
IM

P
LI

C
IT

 IN
V

O
C

A
TI

O
N

M
A

ST
ER

-S
LA

V
E

B
A

TC
H

 S
EQ

U
EN

TI
A

L
IN

D
IR

EC
TI

O
N

 L
A

YE
R

C
Q

R
S

R
P

C
IN

TE
R

C
EP

TO
R

M
ES

SA
G

E
Q

U
EU

IN
G

R
U

LE
-B

A
SE

D
 S

YS
TE

M

R
EF

LE
C

TI
O

N
EX

P
LI

C
IT

 IN
V

O
C

A
TI

O
N

IN
TE

R
P

R
ET

ER
V

IR
TU

A
L

M
A

C
H

IN
E

Centralized data management

Decentralized data management

Data conversion/transformation

Multiple clients

Centralized governance

Decentralized governance

Single access point

Parallel processing

Multi stage process

Sequential processing
Thread processes

Scalability

Reusability

Performance efficiency

Testability
Modifiability

Feature-Pattern

Patterns

We applied fuzzy logic to aggregate the extracted knowledge regarding the potential
impacts of patterns on quality attributes (Farshidi et al., 2020e). Table 9.1 shows a
subset of the mapping between the features and the patterns that we have considered
in the decision model.
- Impacts of features: We employed the ISO/IEC 25010 standard (ISO, 2011) and ex-
tended ISO/IEC 9126 standard (Carvallo & Franch, 2006) as two domain-independent
quality models to analyze the impacts of the features on the software quality aspects.
The key rationale behind using these Software quality models is that they are a stan-
dardized way of measuring a software product. Moreover, they describe how easily
and reliably a software product can be used.

The mapping between the sets Qualities, which includes “Software Quality As-
pects”, and “Features” was identified based on domain experts’ knowledge. The do-
main experts, who participated in this phase of the research, mapped the features
to the software quality aspects based on a Boolean adjacency matrix (Qualities ×
Features → Boolean). For instance, they stated that “Decentralized Governance” as
a feature influences the “Time behavior” of a software product. The experts did not
enforce a feature to present in a single quality aspect, as typically, the features have
impacts on multiple quality aspects, which means that the cardinality of the mapping
is many-to-many. For example, “Centralized Governance” as a feature might impact
on “Resource utilization” and “Analyzability” of a software product.
- Feature Requirements: Software architects should prioritize their requirements

https://dss-mcdm.com

Section 9.4 – Empirical Evidence ∣ 223

using a set of weights according to the definition of the MoSCoW prioritization tech-
nique and send them to the inference engine of the DSS. Feature requirements with
Must-Have or Won’t-Have priorities act as hard constraints and feature requirements
with Should-Have and Could-Have priorities act as soft constraints. The DSS excludes
all infeasible patterns which do not support features with Must-Have and support
features with Won’t-Have priorities. Then, it assigns non-negative scores to feasible
patterns according to the number of features with Should-Have and Could-Have prior-
itizes (Farshidi et al., 2018a) that they have.

Figure 9.2: illustrates the participants while working together on their assignments.

9.4 Empirical Evidence
A group of software practitioners, including 24 software architects and developers in
the Netherlands, have participated in this research to assess the user acceptance of
the decision model based on the TAM. Firstly, we tried to estimate the participants’
background knowledge with the 29 patterns, so we asked them to fill out a question-
naire and indicate whether they were familiar with the patterns. Then, we asked them
to determine which patterns had employed before in their software design projects.
Afterward, we formed 12 groups of two individuals according to their expertise and
the companies that they were working with. Next, we introduced the decision model
within the DSS knowledge base and presented some of its applications. Afterward,
we assigned the problem definitions of two real-world software architectures to the
groups and asked them to design two solutions for the problems. The groups used
the DSS as an assistant to help them with 1) defining the requirements based on

224 ∣ Chapter 9 – Design Decisions in Pattern-Driven Architecture

the MoSCoW prioritization technique, and 2) finding the best fitting set of patterns.
The group sessions lasted between 45 to 60 minutes. At the end of the sessions, we
ask all of the participants to fill out a TAM-based questionnaire. Next, we collected
their feedback and opinion about the decision model. Fig. 9.2 illustrates the software
architects while working on designing the assigned software architectures.

Table 9.2: shows the software practitioners’ background knowledge regarding patterns. They
indicated the patterns that they were familiar with or had employed in their projects.

Architectural patterns Familiar Employed

Client-Server 22.22% 77.78%

Service-Oriented Architecture 33.33% 61.11%

Model-View-Controller 22.22% 72.22%

Component-Based 33.33% 55.56%

Microservice 44.44% 44.44%

Layers 22.22% 55.56%

Message Queuing 38.89% 38.89%

Virtual Machine 27.78% 44.44%

Publish-Subscribe 33.33% 33.33%

Event-Based / Implicit Invocation 27.78% 33.33%

Broker 33.33% 27.78%

Command Query Responsibility Segregation 38.89% 22.22%

Space-Based / Cloud-Based 33.33% 16.67%

Batch Sequential 22.22% 27.78%

Peer-To-Peer 33.33% 16.67%

Shared Repository 22.22% 22.22%

Remote Procedure Call 16.67% 27.78%

Master-Slave 16.67% 27.78%

Pipes and Filters 16.67% 22.22%

Reflection 16.67% 22.22%

Interpreter 22.22% 16.67%

Command and Control 22.22% 11.11%

Rule-Based System 5.56% 22.22%

Presentation-Abstraction-Control 22.22% 0.00%

Interceptor 11.11% 11.11%

Blackboard 16.67% 0.00%

Microkernel 5.56% 11.11%

Explicit Invocation 16.67% 0.00%

Indirection Layer 5.56% 11.11%

9.4.1 Assessment of Background Knowledge
After reviewing and extracting knowledge from 232 high-quality primary studies in
the SLR (Farshidi et al., 2020e), we identified 29 patterns that were mentioned in at
least three primary studies. Next, we considered this set of patterns as the potential
alternative solutions in the decision model.

In this study, we asked the 24 software practitioners who participated in our re-
search to indicate their background knowledge regarding the patterns. They had to
signify the patterns that they were familiar with or had employed in their projects.
Table 9.2 presents the results of the analysis of the software practitioners’ responses.
The results show that Client-Server, Service-Oriented Architecture (SOA), Model-View-
Controller (MVC), Component-Based, and Microservice are top-5 patterns that were in-
dicated as the most well-known patterns among the participants. Additionally, none
of the participants had employed Explicit Invocation, Blackboard, and Presentation-

Section 9.4 – Empirical Evidence ∣ 225

Abstraction-Control in their projects. Moreover, we observed that the practitioners
had limited knowledge regarding Indirection Layer, Microkernel, and Interceptor.

It is interesting to highlight that almost half of the participants were not informed
about such a potential list of patterns. Accordingly, they requested to keep the hard
copy of the descriptions and applications of the patterns that we attached to the
questionnaires.

Figure 9.3: illustrates one of the questionnaires, including a candidate architecture for AFAS
software architecture, that was filled out by a group of participants.

9.4.2 Candidate Architectures
Two experienced software architects from AFAS software and Eijsink booq have par-
ticipated in our research and formulated their software architectures in the form of
two real-world problems definitions. A brief description of the problem definitions is
presented as follows.
AFAS software is an Enterprise Resource Planning (ERP) software product that au-
tomates and integrates business processes such as invoicing, project management,
and payrolling in different enterprises. The AFAS software architecture should be a
suite of modular, independent, technology agnostic, and scalable services. The service
should be deployed on the cloud and be able to communicate through standard and
well-defined interfaces. Additionally, the development of the services should be han-
dle by multiple parallel software development teams. Eventual consistency should be

226 ∣ Chapter 9 – Design Decisions in Pattern-Driven Architecture

appropriately addressed in the architecture design, as it offers low latency at the risk
of returning stale data.
Eijsink booq is a streamlined ordering process that integrates payment terminals. Ei-
jsink booq architecture should be a collection of components that directly responsible
for the sales process, such as EFT (pin) terminals or a hotel system ("charge this to
my room"). Components should control assortment and pricing; furthermore, they
should work after the sale for bookkeeping and invoicing. The architecture should be
highly secure, reliable, and available as it works with sensitive financial transactions.
The main leading principle is "an interruptible sales process with a reliable manage-
ment process". Immutability: Once an event is considered "finished" and is recorded,
it cannot change. Recorded event data is immutable. Unidirectionality: data always
travels in one direction, never bidirectionally. The responsible component stores and
distributes the data, but will never receive the same data from other components. Ro-
bustness through decoupling: components will not have undue dependencies on each
other. Decoupling and eventual consistency should be preferred over tight coupling.

Figure 9.4: shows one of the suggested set of alternative solutions by the DSS to a group of
participants.

ISO/IEC 25010
Ext. ISO/IEC 9126

Feature
Requirements

Domain Feasible alternative
solutions

Legend
MICROSERVICE (MIS)
Command Query Responsibility Segregation (CQRS)
SPACE-BASED (SPB) / CLOUD-BASED
SHARED REPOSITORY (SHR)
PEER-TO-PEER (P2P)
BLACKBOARD (BLB)
COMMAND AND CONTROL (C2)
CLIENT-SERVER (CS)
MODEL-VIEW-CONTROLLER (MVC)
ACTIVE REPOSITORY (ACR)

We asked the 24 software practitioners to design at least one solution per group
to address the design problems. We used Rozanski and Woods guidelines (Rozan-
ski & Woods, 2012) to develop the following sections in the questionnaire for can-
didate architectures. (1) Context refers to the environment of the software system.
(2) Concerns often translate into requirements on quality attributes, which are vari-
ously called non-functional requirements, extra-functional requirements, behavioral
requirements, or quality attribute requirements. (3) Criteria represent some signifi-

Section 9.4 – Empirical Evidence ∣ 227

cant, central functionality of the system. (4) Candidate solutions refer to the architec-
ture and designing the system components that meet the system requirements. (5)
Design decisions indicate a set of architectural patterns/styles. (6) Rationale reflect the
rationale used for the decision-making process and form the natural bridge between
the rationale and the resulting architecture. (7) Consequences (Pros./ Cons.) involve
selecting different tradeoffs using the pros and cons of the solutions as arguments to
rationalize the selection of a particular solution.

The participants employed the DSS as an assistant to elicit requirements, including
functional requirements and quality concerns. Then, they filled out the questionnaires
based on the suggested alternative solutions by the DSS and their tacit knowledge.
Figure 9.3 illustrates one of the candidate architectures for AFAS software that was
suggested by one of the groups. Figure 9.4 shows one of the suggested set of alterna-
tive solutions by the DSS used by one of the groups.

9.4.3 Technology Acceptance Model
The TAM is a robust framework applied to predict how and when individuals will
adopt and use a new technology (Davis, 1989). The TAM has been widely applied in
technology assessment, producing reliable results when users have worked with the
technology for some time. The TAM suggests that “Perceived Usefulness” and “Per-
ceived Ease of Use” are two significant determinants of users’ attitudes towards em-
ploying information technology. “Perceived Ease of Use” is the degree to which a user
believes that the technology is challenging to use, based on the cognitive resources
required to work with a particular system. “Perceived Usefulness” is interpreted as
how much a user believes that the system will enhance her performance on a task.
According to the TAM, “Perceived Usefulness” and “Perceived Ease of Use” are firmly
associated with Self-predicted future usage, i.e., the intention to employ a tool. For
each of the three fundamental concepts of the TAM, there are sets of statements that
measure the concepts. We adopted the statements presented by (Babar et al., 2007b)
to form the following TAM-based statements in the questionnaire:
Perceived Usefulness (Ui): Work more Quickly (U1): using the decision model in my
job would enable me to accomplish tasks more quickly; Improve Performance (U2):
using the decision model would improve my job performance; Increase Productivity
(U3): using the decision model in my job would increase my productivity; Effec-
tiveness (U4): using the decision model would enhance my effectiveness on the job;
Makes Job Easier(U5): using the decision model would make it easier to do my job;
Useful (U6): I would find the decision model useful in my job;
Perceived Ease of Use (Ei): Easy to Learn (E1): learning to operate the decision model
would be easy for me; Easy to Perform (E2) I would find it easy to get the decision
model to do what I want it to do; Clear and Understandable (E3): my interaction with
the decision model would be clear and understandable; Easy to become Skilful (E4):
I would find the decision model to be flexible to interact with; Easy to Remember
(E5): it would be easy for me to become skillful at using the decision model; Easy to
Use (E6): I would find the decision model easy to use;
Self-predicted future use (Si): Actual Usage (S1): I predict that I will regularly use the
decision model in the future; Prefer Paper-Based Format (S2): I would prefer using
the decision model to paper-based forms for performing inspections;

228 ∣ Chapter 9 – Design Decisions in Pattern-Driven Architecture

Table 9.3: shows the results of the assessment in terms of “descriptive statistics”, “factor anal-
ysis”, and “summary of responses”.

1 2 3 4 5 6 7

e
x
tr

e
m

e
ly

 l
ik

e
ly

q
u
it
e
 l
ik

e
ly

s
lig

h
tl
y
 l
ik

e
ly

n
e
it
h
e

r

s
lig

h
tl
y
 u

n
lik

e
ly

q
u
it
e
 u

n
lik

e
ly

e
x
te

re
ly

 u
n

lik
e
ly

Work more Quickly U1: 3.75 1.39 0.89 0.36 0.15 0.00% 16.67% 41.67% 12.50% 8.33% 20.83% 0.00%

Improve Performance U2: 3.42 1.29 0.84 -0.04 0.16 0.00% 29.17% 33.33% 12.50% 16.67% 8.33% 0.00%

Increase Productivity U3: 3.79 1.58 0.93 0.31 0.12 0.00% 20.83% 37.50% 12.50% 8.33% 12.50% 8.33%

Effectiveness U4: 3.42 1.41 0.87 0.17 0.03 0.00% 33.33% 29.17% 16.67% 4.17% 16.67% 0.00%

Makes Job Easier U5: 2.96 1.14 0.82 0.26 0.04 8.33% 29.17% 33.33% 16.67% 12.50% 0.00% 0.00%

Useful U6: 2.83 0.94 0.82 0.33 0.11 4.17% 37.50% 33.33% 20.83% 4.17% 0.00% 0.00%

Easy to Learn E1: 1.96 0.61 0.25 0.39 0.63 16.67% 75.00% 4.17% 4.17% 0.00% 0.00% 0.00%

Easy to Perform E2: 2.71 1.10 0.49 0.81 0.18 12.50% 29.17% 41.67% 12.50% 0.00% 4.17% 0.00%

Clear and Understandable E3: 2.75 1.20 0.45 0.89 0.21 12.50% 33.33% 33.33% 12.50% 4.17% 4.17% 0.00%

Easy to become Skilful E4: 2.63 0.75 0.24 0.89 0.29 4.17% 41.67% 41.67% 12.50% 0.00% 0.00% 0.00%

Easy to Remember E5: 2.42 0.86 0.07 0.85 0.33 12.50% 45.83% 29.17% 12.50% 0.00% 0.00% 0.00%

Easy to Use E6: 2.63 1.03 0.18 0.89 0.25 8.33% 50.00% 16.67% 20.83% 4.17% 0.00% 0.00%

Actual Usage S1: 3.33 1.57 0.81 0.44 0.39 4.17% 33.33% 29.17% 12.50% 4.17% 12.50% 4.17%

Prefer Paper-Based Format S2: 2.42 1.26 0.04 0.15 0.89 29.17% 25.00% 29.17% 12.50% 0.00% 4.17% 0.00%

Perceived Usefulness Ui: 20.17 6.76 0.93 1.00 0.27 0.13

Perceived Ease of Use Ei: 15.26 4.59 0.89 0.27 1.00 0.27

Self-predicted future usage Si: 5.75 2.22 N/A 0.13 0.27 1.00

S
e
lf
-p

re
d
ic

te
d

 f
u
tu

re
 u

s
a
g
e

P
e
rc

e
iv

e
d
 E

a
s
e
 o

f
U

s
e

P
e
rc

e
iv

e
d
 U

s
e
fu

ln
e
s
s

C
ro

n
b

a
c
h
’s

 α

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n

M
e
a
n

Factor AnalysisDescriptive Statistics Summary of Responses

The participants used a seven-point Likert scale to respond to each statement of
the questionnaire regarding their degree of agreement or disagreement. They had to
choose one of seven responses: extremely likely (1), quite likely (2), slightly likely
(3), neither (4), slightly unlikely (5), quite unlikely (6), extremely unlikely (7). A nu-
merical value was assigned to each statement so that the sum of those values meant
the user’s attitudes towards employing the decision model. Additionally, we consid-
ered an open-end remark section following each set of statements related to each
concept to gain more feedback from the participants. Table 9.3 shows the results of
the assessment in terms of “descriptive statistics”, “factor analysis”, and “summary of
responses”.
Descriptive Statistics: The numerical results correspond to the Likert scale show that
the participants on average respond cautiously positive to the statements, as the mean
values (column Mean) are mainly between 2 (quite likely) and 4 (neither). Many
participants responded positively; however, a number of the participants were not
convinced about the usefulness and ease of use of the decision model’s support for the
pattern selection process. One reason for such responses might be the consequences
of the low level of experience with the decision model within the DSS knowledge
base (See the “Summary of Responses” for more detail). The results of the “Self-
predicted future usage” factors show that, on average, the participants intended to
use the decision model regularly if it is available.

The reliability analysis verifies the internal validity and consistency of the state-
ments related to each concept of the TAM. Generally speaking, reliability is the de-
gree to which one would obtain the same result if she carried out the study again to

Section 9.4 – Empirical Evidence ∣ 229

the same participants under the same conditions (Laitenberger & Dreyer, 1998). The
most widely accepted measure of reliability is Cronbach’s alpha. Cronbach’s alpha
reveals how much each measured statement is correlated with every other statement,
the consistency of the assessment model, i.e., the degree to which high responses
correlate with highs, and low responses correlate with lows across all statements. A
Cronbach’s Alpha reliability level that exceeds a threshold of 0.8 indicates a reliable
measure (Carmines & Zeller, 1979). In this study, the Alpha values were 0.93 and
0.89 for “Perceived Usefulness” and “Perceived Ease of Use” statements, respectively
(See Fig. 9.4). Thus, the results confirm that the questionnaire was consistent.
Factor Analysis: This phase of the analysis reports the relationships among state-
ments of the concepts. Factor analysis clusters the statements and assigns them to
one of the three fundamental concepts of the TAM. The factor loadings indicate the
correlation of the statements with the concepts so that they range from -1, a perfect
negative association, through 0, no relation, to +1, a perfect positive correlation with
the concepts. A statement is typically meant to a concept if it has a loading of at
least 0.7 (Kim et al., 1978). Table 9.3 represents the adapted factor loading. The re-
sults of the usefulness statements (U1. . . U6) show a high correlation with “Perceived
Usefulness”, as their factor loadings are higher than 0.7. Additionally, the results of
the ease of use statements (E1 . . . E6) indicate an acceptable correlation with the sec-
ond concept. Note, even lower values than 0.7 are sometimes considered significant
for a particular concept (Kim et al., 1978). For instance, E1 and S1 have values (0.39)
slightly below 0.7.

According to the theory of reasoned action, usefulness and ease of use are strongly
correlated to self-predicted future (S1), the intention of actually using the tool, if it
is available (Babar et al., 2007b). The last three rows of the “factor analysis” section
of Table 9.3 show the concept correlation among these three concepts: Self-predicted
future use is indeed correlated to both usefulness and ease of use, while usefulness
and ease of use have some, correlation, which is consistent with reports in litera-
ture (Babar et al., 2007b). Hence, usefulness and ease of use are essential determi-
nants that influence self-predicted future usage. Note, the majority of the participants
stated that they prefer using a paper-based format of the decision model in the future,
as the performance and the user interface of the DSS were not satisfactory from their
perspective.
Summary of Responses: The distribution of the responses regarding each statement
is shown in the summary of the responses’ section (see Fig. 9.4). For instance, 41.67
percent of the participants believed that it is “slightly likely” that using the decision
model in their job would enable them to accomplish tasks more quickly (U1); more-
over, 20.83 percent of them stated that the statement is “quite unlikely” in their case.
As aforementioned, to have a deeper understanding concerning the numerical re-
sponses, we asked the participants to elaborate their responses in open-end remarks
(Ri) for each concept of the TAM. Overall, we received the following sixteen unique
responses:
- Perceived Usefulness: (R1)“I do not make a lot of similar decisions in my daily job.”,
(R2)“I would use the DSS as a second opinion rather than basing my entire decisions
on it.”, (R3)“I prefer to use the DSS as an evaluation tool to check my decisions after
the design.”, (R4)“Although The DSS needs some improvements, it can help me to give

230 ∣ Chapter 9 – Design Decisions in Pattern-Driven Architecture

a border perspective.”, (R5)“I have to use the DSS on my projects to check if it has the
same conclusions as myself. I guess some specific things might be missing. However,
when it concludes the same as me, it will help to convince others. Additionally, it can
help me to explore more options.”, (R6)“I think during the design phase, the DSS might
be confusing and make the phase slower. However, after the initial design, it could be
useful for evaluating and improving the design.”, (R7)“I like the idea of suggesting the
best fitting patterns. It can be used to generate architecture descriptions.”, and (R8)“two
participants asserted that they could not tell us anything about the usefulness of the DSS,
as they do not have enough experience with it.”
- Perceived Ease of Use: (R9)“The performance of the DSS should be improved.”, (R10)“I
need to have some more experience with the DSS to answer the questions regarding its
ease of use.”, (R11)“three participants expressed that the user interface of the DSS should
be improved for actual usage.”, (R12)“I need more time to use it and see how it works.
Nevertheless, at first glance, it is not easy to use.”, and (R13)“It looks easy to use.”.
- Self-predicted future use: (R14)“I would like to use the DSS besides the traditional
decision-making process.”, (R15)“I will try to convince others to try the DSS, and I want
to use to once more and share my experience with it.”, (R16)“I will try it again.”.

9.5 Discussion and Analysis
To answer the first research question (RQ1), we followed the framework to capture
knowledge regarding the patterns from the literature and software architects’ expe-
rience. It is essential to admit that we cannot find a comprehensive set of patterns:
technological innovations will continually introduce more complex and specific pat-
terns. Analog to how the elevator has enabled us to build taller buildings, new inno-
vative patterns such as CQRS enable us to create more extensive and more scalable
systems. Because of this continuous innovation, it remains a responsibility of the
academic community to consolidate and present architectural knowledge to the prac-
titioner community continuously.
(RQ2) The participants highlighted that the decision model, in terms of reusable
knowledge regarding the patterns, was a useful tool that can support them to ex-
plore more patterns while designing real-world software architectures. They asserted
that the decision model itself could assist them in finding liabilities and strength of
patterns, their features, and potential application domains that they have employed
in. After the session, most of the participants asked us to send the hard copy of the
decision model in the form of tables.

Although we received significant positive numerical responses regarding the use-
fulness of the decision model (U1. . . U6) and oral feedback, the open-end remarks
revealed that the DSS needed improvements in its performance and user interface to
support software architects. Moreover, according to the responses and during the ses-
sion, we realized that the DSS was not an intuitive tool, and the participants required
some training to be able to use it effectively. The session’s time limit was an issue that
affected the evaluation of the usefulness of the decision model.

The responses regarding the “self-predicted future use” (S1 and S2) also show that
the participants were interested in using the decision model and tended to use it as a
support tool that supports them with the pattern selection process.

Section 9.6 – Related work ∣ 231

Table 9.4: shows a comparison of selected studies from the literature that addresses the pat-
tern selection problem. The first and second columns (Studies and Years) refer to the studies
and their publication years. The third column (DMA) indicates the decision-making approach
that the studies have employed to address the problem. The fourth column (MCDM) denotes
whether the corresponding decision-making technique is an MCDM approach. The fifth column
(PC) indicates whether the MCDM approach applied pairwise comparison as a weight calcu-
lation method or not. The sixth column (QA) determines the type of quality attributes. The
seventh and eighth columns (#C and #P) signify the number of criteria and patterns that were
considered in the selected studies.

Studies Years DMA MCDM PC QA #C #P

This study DSS Yes No ISO/IEC 25010
EX. ISO/IEC 9216 188 29

Jacob & Mani (2018) 2018 Benchmarking No N/A Domain Specific 8 4
Haoues et al. (2017) 2017 Benchmarking No N/A ISO/IEC 25010 39 5

Me et al. (2016) 2016 Benchmarking No N/A Domain Specific 15 11
Nawaz et al. (2015) 2015 WSM Yes No Domain Specific 38 2

Richards (2015) 2015 Benchmarking No N/A Domain Specific 6 5
Galster et al. (2010) 2010 AHP Yes Yes Domain Specific 29 5
Moaven et al. (2008) 2008 Fuzzy logic Yes Yes Domain Specific 3 3

Avgeriou & Zdun (2005) 2005 Benchmarking No N/A Domain Specific 10 24
Garlan & Shaw (1993) 1994 Benchmarking No N/A Domain Specific 5 6

(RQ3) Almost all participants drew the draft versions of their designs on pieces of pa-
per and made their design decisions accordingly. In other words, drawing the design
was a way for them to convert their tacit knowledge to explicit knowledge to com-
municate, brainstorm, and make decisions (see Figure 9.3). Afterward, they started
to use the DSS as a tool to evaluate what they had designed (see Figure 9.4). Thus,
we realized that the DSS requires an option to document their drawings and de-
sign rationales to prevent knowledge vaporization. We implemented a design studio
based on the Unified Modeling Language concepts to collect such drawings while the
decision-making process.

9.6 Related work
Benchmarking and documentation are typically time-consuming approaches and
mainly applicable to a limited set of patterns and criteria, as they require in-depth
knowledge of patterns and concepts. Furthermore, such studies should be kept up
to date continuously, which involves a high-cost process. Table 9.4 shows a subset of
such studies.
MCDM Techniques have introduced by researchers to address the pattern selection
problem in the literature. A subset of selected MCDM methods, such as the Weighted
Sum Model (WSM) and The Analytic Hierarchy Process (AHP), is shown in Table 9.4.
The majority of the MCDM techniques in literature define domain-specific quality at-
tributes to evaluate the alternatives. Such studies are appropriate for specific case
studies. Furthermore, MCDM approaches are valid for a specified period; therefore,
the results of such studies will be outdated. Some of the methods, such as AHP, are
not scalable, so in modifying the list of alternatives or criteria, the whole process of
evaluation should be redone. Therefore, these methods are costly and applicable to
only a small number of criteria and alternatives. According to the SLR (Farshidi et

232 ∣ Chapter 9 – Design Decisions in Pattern-Driven Architecture

al., 2020e), we considered 188 criteria and 29 patterns to build a decision model for
the pattern selection problem. Recently, we built five more decision models based on
the framework for the selection process of database Management Systems (Farshidi
et al., 2018c), Cloud-Service Providers (Farshidi et al., 2018a), Blockchain Plat-
forms (Farshidi et al., 2020c), Model-Driven Software Development Platforms, and
Programming Languages. Case studies and expert interviews were conducted to eval-
uate the DSS’s effectiveness and usefulness in addressing these MCDM problems. The
results confirmed that the DSS performed well to solve the mentioned problems in
software production.

9.7 Conclusions
In this study, the architectural pattern selection problem in pattern-driven software
design is modeled as a multi-criteria decision-making problem that deals with eval-
uating a set of alternatives (patterns) and taking into account a set of decision cri-
teria (Triantaphyllou et al., 1998). Moreover, we presented a decision model for
the decision-making problem based on our framework (Farshidi et al., 2018a). In
order to build the decision model, we conducted an SLR besides a set of expert in-
terviews. Additionally, we carried out a study with a group of software practitioners
in the Netherlands to assess the user acceptance of the decision model within the
knowledge base of a decision support system (Farshidi et al., 2018b) based on the
technology acceptance model. The results show that software practitioners tend to
employ the decision model as a decision support tool to evaluate their design de-
cisions in pattern-driven software design. It is essential to highlight that we have
received constructive feedback from the participants to improve the decision model
in the decision support system’s knowledge base to facilitate the decision-making pro-
cess. Academics and practitioners can use the lesson learned in this study to set up
their studies for evaluating decision support tools in software architecture.

Concluding the Research

CHAPTER 10

Conclusion

In this dissertation, we developed a theoretical framework to assist software engi-
neers with decision-making in MCDM problems in software production. The frame-
work provides a guideline for software engineers to capture knowledge systematically
from different sources of knowledge to build decision models for MCDM problems in
software production. Knowledge has to be captured and organized when it is needed.
We designed and implemented a decision support system for software production,
called SoProDSS, that utilized our decision models to facilitate decision-making and
support software engineers with their MCDM problems.

The rest of this chapter is organized as follows: Section 10.1 addresses the re-
search questions that are defined in the introduction chapter (see Section 1.7.1).
Section 10.2 discusses the threats to the validity of the research. Next, reflections on
this research are provided by placing research results and implications in a broader
context, and directions for future research are described in Section 10.3. Finally,
Section 10.4 presents the limitations of the main limitations of our work and gives
an agenda for future research to continue improving the SoProDSS and supporting
software engineers with their decision-making problems in software production.

236 ∣ Conclusion

10.1 Contributions and observations
This section discusses the strengths and liabilities of MCDM techniques in literature
and positions the MCDM framework among them. Furthermore, it addresses the
research questions which are defined in Section 1.7.1 and explains our main observa-
tions and contributions to the field of software production.

10.1.1 Strengths and Liabilities of MCDM Techniques
Decision analysis, which is the study of decision making for problems with multiple
objectives, has been developed and widely employed in solving complex decision-
making problems. Over the past few years, various methods and underlying theories
have been introduced for solving decision-making problems in software production.
According to the literature studies in Sections 2.3, 3.3, 4.3, 5.7, 6.6, and 7.2.3, we
observed that the majority of the multi-criteria decision-making (MCDM) techniques
in literature define domain-specific quality attributes to evaluate alternatives. Such
techniques are mainly appropriate for specific case studies.

The results of MCDM approaches are valid for a specified period because of techno-
logical advances. Note that, in our proposal, this is also a challenge, and we propose
a solution for keeping the knowledge base up to date, in Section 5.6. Additionally, a
pairwise comparison is typically considered as the main method to assess the weight
of criteria in MCDM techniques. For a problem with n number of criteria n(n−1)

2
number of comparisons are needed (Saaty, 1990). It means that the pairwise com-
parison is a time-consuming process, and gets exponentially more complicated as the
number of criteria increases (Ribeiro et al., 2011). A subset of MCDM approaches,
such as AHP and TOPSIS, are not scalable (Ibriwesh et al., 2018; Khari & Kumar,
2013), so in modifying the list of alternatives or criteria, the whole process of eval-
uation should be redone. Therefore, these methods are costly to maintain, inflexible
to change, and applicable to only a small number of criteria and alternatives (see
Tables 2.1, 3.1, 4.1, 5.6, 6.6, and 7.2).

In contrast to the named approaches in the literature, the cost of creating, eval-
uating, and applying the decision models, including Database Management System
(Chapter 2), Cloud Service Provider (Chapter 3), Blockchain Platform (Chapter 4),
Programming Language Ecosystem (Chapter 5), Model-Driven Software Development
Platform (Chapter 6), are not penalized exponentially by the number of criteria and
alternatives, because they are evolvable and expandable approaches that split down
the decision-making process into four maintainable phases (see Chapter 2). More-
over, we introduce several parameters to measure non-Boolean criteria’ values, e.g.,
the maturity level and popularity of technology alternatives. The decision models
address the main knowledge management issues, such as capturing, sharing, and
maintaining knowledge. Furthermore, they use the ISO/IEC 25010 (ISO, 2011) as a
standard set of quality attributes. This quality standard is a domain-independent soft-
ware quality model and provides reference points by defining a top-down standard
quality model for software systems (see Section 6.4.3).

Section 10.1 – Contributions and observations ∣ 237

10.1.2 Research Questions
Software engineering is a knowledge-intensive field (Pressman, 2005), so software
engineers need to spend a significant portion of their time collecting data regarding
their design decisions and the domains of the decisions-making problems (Meyer
et al., 2019). Thus, the main research question of this dissertation is formulated as
follows:

MRQ — How can software engineering knowledge be captured and organized
systematically to support software engineers with software production
decision-making?

We hypothesized that software engineers lack the needed knowledge to make
significant decisions in software production. To answer the main question of this
dissertation and gain more insight into the decision-making process in software
production, we formulated six research questions in the introduction chapter and
investigated them in Chapters 2 to 9. This section answers the questions and briefly
evaluates the findings that correspond to each of the questions.

RQ1 — How do software engineers make decisions in software production?

We conducted interviews with a set of domain experts at different software produc-
ing organizations to answer this research question. Additionally, we tracked the case
study participants’ behavior while defining their requirements and making-decisions
and observed the following points:
1.1 - Software engineers typically consider a limited set of criteria and solutions and
make decisions based on their tacit knowledge. Based on the case studies that we
have conducted in this dissertation, we realized that software engineers continuously
improve and reevaluate their decisions in different phases of the software develop-
ment life-cycle. In Chapters 2, 3, and 4, we observed that software engineers typically
focus on more generic domain features of alternatives in the early phases of the life-
cycle, whereas they are interested in more detailed and specific domain features as
their development process matures.
1.2 - In Chapter 9, we find that software engineers draw draft versions of their designs
on pieces of paper and make their design decisions accordingly. In other words,
drawing the design is a way for them to convert their tacit knowledge to explicit
knowledge to communicate, brainstorm, and make decisions.
1.3 - From the expert interviews reported in Chapters 2 and 5, we notice that ex-
perience in using technology provides invaluable knowledge when selecting suitable
technology. In other words, software engineers typically prefer to select technology
solutions that they have employed before and have experience with. The main fac-
tor is the cost of adding a new technology solution. Hiring new software engineers,
changing the infrastructure, and learning the best practices are costly for software
producing organizations. There are many risks associated with the decision-making
process, as a software producing organization could end up being stuck in a legacy

238 ∣ Conclusion

technology for which there is no longer a demand (Khadka et al., 2014) or sufficient
support.
1.4 - Software engineers are biased towards trending technology solutions in their
design decisions (see Chapter 7). Over time, quality requirements of systems change
because of advances in technology that address particular quality concerns of software
engineers. It is possible to identify trends in technology usage.
1.5 - In Chapter 6, we describe how we observed that the decision-making process
is different for small organizations versus large ones. Looking at the IT landscape,
we notice a difference in the selection process because the requirements of small
and large organizations are different. Small enterprises typically start purchasing a
unique technology solution to solve multiple problems; they cannot invest in vari-
ous solutions for performing different tasks because of financial constraints. Larger
enterprises can invest in employing various solutions for different tasks, and thus
experience more flexibility in their decision processes.
1.6 - The interviewed domain experts who participated in our research were mainly
software consultants (see Sections 2.2, 3.2, 4.2, 5.2, 6.3, and 9.2). Accordingly, we
realized that software producing organizations are willing to pay significant amounts
for advice from domain experts, such as software architects, cloud specialists, and
database experts.

Observation I
Software engineers typically consider a limited set of criteria and solutions and
make decisions based on their tacit knowledge. They continuously improve
and reevaluate their decisions in different phases of the software develop-
ment life-cycle. Software engineers prefer to select technology solutions that
they have employed before and have experience with. Additionally, they are
biased towards trending technology solutions. Software producing organiza-
tions typically invest more in their decision-making process by hiring software
consultants.

RQ2 — How can a framework be developed that serves as a reference framework
for decision problems in software production?

The development of software products, systems, and services typically results in
complex decision support models and decision-making processes (Badampudi et al.,
2018). In literature, designers have proposed a variety of theory development ap-
proaches, with slightly different iterative structure and logic. A subset of the selected
studies is presented as follows.

Seven guidelines were introduced by Hevner et al. (2004) to align information
science DSR with real-world production experience. They stated that a business
needs to motivate the development of validated artifacts that meet those needs.
The development of justified theories about these artifacts produces knowledge that
supports design scientists with their design decisions. Meredith et al. (1989) plus
Cooper & Emory (1995) suggested that all DSR investigations involve a continuous,
repetitive cycle of description, explanation, and testing (through prediction). Thus,

Section 10.1 – Contributions and observations ∣ 239

proposing knowledge (explanation) and validating knowledge (testing) simply are
two stages in the ongoing cycle of research. The nature of the design process was
described by Simon (1996) as a Generate/Test Cycle. The design process in the Gen-
erate/Test Cycle involves, first, the generation of alternatives and, then, the testing of
these alternatives against a whole array of requirements and constraints. Van Strien
(1997) suggested a regulative cycle that begins with an investigation of a practical
problem, then determines a set of possible solutions, validates them, selects one of
them, and implements the solution chosen; the outcome of which can then be eval-
uated, which could be the start of a new cycle of the regulative cycle. Cross & Roy
(1989) introduced a four-stage model (exploration, generation, evaluation, and com-
munication) for designing products.

In this dissertation, we develop a theoretical framework called the MCDM frame-
work (see Figure 1.4), in an iterative process for supporting software engineers with
decision problems in software production.
2.1 - Theory development is a process of gradual change (Baxter, 2004). In other
words, the development process of theories in DSR is an act of iterative interpreta-
tion. In a theory development process, designers make comparable design decisions
in a particular domain. Such design decisions and their corresponding design ratio-
nales should be grouped and considered as repeatable design decisions for building
similar theories in a particular domain. The captured knowledge from the develop-
ment process of a theory provides an overview of the theory’s design decisions and
rationales. With such overviews, scientists can systematically develop and report their
theories in DSR. Figure 1.1 shows the design process that we have followed to develop
the MCDM framework for building decision models for MCDM problems in software
production.
2.2 - The framework should be instantiated in each cycle of the MCDM framework
development process to build a decision model for a particular MCDM problem in soft-
ware production. In this dissertation, we instantiated the MCDM framework to build
six decision models, including Database Management System (Chapter 2), Cloud Ser-
vice Provider (Chapter 3), Blockchain Platform (Chapter 4), Programming Language
Ecosystem (Chapter 5), Model-Driven Software Development Platform (Chapter 6),
and Architectural Pattern selection problems (Chapter 9). The evaluation of each de-
cision model leads to partial validation of the framework as a reference guideline that
can be employed to address decision-making problems in software production.
2.3 - The applicability and validity of the framework should be tested by conducting
multiple deductive case studies in each iteration of the theory development process.
In this dissertation, we conducted 21 real-world case studies at different software-
producing organizations (see Sections 2.5.3, 3.5.3, 4.5, 5.4, and 6.5). Case study
participants had their functional requirements and quality concerns. Accordingly,
they identified a set of alternative solutions based on their internal meetings before
participating in the research. Afterward, the SoProDSS generated a shortlist of ranked
feasible solutions according to their requirements. We defined the results’ success
when they, in part, aligned with the case study participants’ shortlist of solutions and
provided new suggestions that were identified as being of interest to the case study
participants.
2.4 - In each cycle of the MCDM framework development process, (new) constructs

240 ∣ Conclusion

KB (Collection of Models)

Case-owner
(MoSCoW)

Case Definition

IE

Score Calculation

Ranked Feasible
Solutions

Decision

Meta-Model

Qualities

Features

Feature-Values

Domain-Alternatives

Mapping: FA

Domain-Description

Domain-Features

Mapping: SF

Case-Definition

Features’ priorities

Knowledge Based Models

Software Quality
Experts

Meta-Model
Designers

Knowledge Acquisition

Domain Experts

Domain

Qualities

Features

Alternatives

Documentation,
Literature, etc.

Exclude infeasible
Solutions

Software Quality Model

ISO/IEC 25010

Ext. ISO/IEC 2610

KB (Collection of Models)

Case-owner
(MoSCoW)

Case Definition

IE

Score Calculation

Ranked Feasible
Solutions

Decision

Meta-Model (MM)

Qualities

Features

Feature-Values (FV)

Domain-Alternatives

Mapping: FA

Domain-Description (DD)

Domain-Features

Mapping: SF

Case-Definition (CD)

Features’ priorities

Knowledge Based Models

Software Quality
Experts

Meta-Model
Designers

Knowledge Acquisition

Domain Experts

Domain

Qualities

Features

Alternatives

Documentation,
Literature, etc.

Exclude infeasible
Solutions

Software Quality Model (SQM)

ISO/IEC 25010

Ext. ISO/IEC 2610

(1) (2)

(3)

(4)

(5)

(6)

𝑉𝑒𝑟𝑠𝑖𝑜𝑛3.0 𝑉𝑒𝑟𝑠𝑖𝑜𝑛3.1

Phrasing & Beautification: coloring, ordering, renaming

Figure 10.1: illustrates two revisions of the MCDM Framework. Please note the changes in
captions, coloring, and ordering of the constructs.

and relationships are defined or revised accurately to keep consistency among com-
ponents of the theory (see Section 1.8). We revised the MCDM framework during
the theory development process and recorded the design decisions and rationales. In
the early stages of the research, we assumed that technology alternatives have only
Boolean features, meaning that a technology alternative supports a functionality or
does not support it. According to the expert interviews in Chapter 2, we realized that
technology alternatives have non-Boolean features, such as the total cost of owner-
ship and popularity in the market. Consequently, we had to define new concepts and
propositions.
2.5 - Multiple knowledge representation formalisms (Sloman, 1985) can be utilized
to represent a specific theory and improve the depth of understanding of the theory.
We considered the graphical representation and mathematical formalization besides
ontological modeling as three knowledge representation formalisms to represent the
design decisions and rationales of the MCDM framework (see Chapter 3). We realized
that sometimes making design decisions in a particular knowledge representation for-
malism can lead to inconsistencies in the others. Such inconsistencies, in turn, lead to
making either phrasing or beautification design decisions in the theory development
process.

Figure 10.1 illustrates two revisions of the graphical representation of the MCDM
framework; moreover, the figure pinpoints design decisions that we made besides
their design rationales while building the framework. The improvement of the ap-
pearance (beautification) of a knowledge representation formalism, such as intu-
itive naming and proper coloring, leads to a higher level of understanding. Note,
we changed the graphical representation and the mathematical formalization of the
framework simultaneously to keep the consistency between them.
2.6 - Design decisions and rationales can be completed in one stage of the devel-
opment process, for instance, "Textual improvement by capitalization and graphical

Section 10.1 – Contributions and observations ∣ 241

beautifications (coloring)" was a design rationale of two design decisions (phrasing
and beautification) in the description stage of the development process of the MCDM
framework, and led to a revision of the framework.

Design decisions and rationales can be initiated and improved along with design
decisions and partially finalized in more than one stage of the framework. For ex-
ample, identifying primary constructs and statements of relationships started and
progressed in parallel within the description and explanation stages of the frame-
work’s development process and led to its first revision. In this dissertation, the con-
stituent components of the framework have not changed since their definitions (see
Figures 2.1, 3.1, 4.1, 5.1, 6.1, and 9.1).
2.7 - The number of design rationales and design decisions has decreased
significantly in the last revisions of the framework. In this dissertation we used six
figures (including Figures 2.1, 3.1, 4.1, 5.1, 6.1, and 9.1) to represented the main
building blocks of the graphical representation of the MCDM framework. Each figure
represents a decision model based on the framework for a particular
decision-making problem in software production. A quick comparison of these six
figures shows that the number of differences among the first three figures
(Chapters 2, 3, and 4) is more than the last three ones (Chapters 5, 6, and 9). Thus,
we conclude that the development process of the MCDM framework is converged to
a maturity level that it can be employed to address different decision-making
problems in software production.

Contribution I
The development process of an MCDM framework is an act of iterative inter-
pretation. In each cycle of the development process, (new) constructs and re-
lationships should be defined or revised to keep consistency among the frame-
work’s components. The framework should then be instantiated in each cycle
of the development process to build a decision model for a particular MCDM
problem in software production. The evaluation of each decision model leads
to partial validation of the framework as a reference guideline that can be
employed to address decision-making problems in software production. The
framework’s applicability and validity can be tested by conducting multiple
deductive case studies in each iteration of the theory development process.
The number of design rationales and design decisions will be decreased signif-
icantly in the framework’s final revisions, as it will be reached an acceptable
level of maturity.

RQ3 — Which sources of knowledge should be used to build decision models in
software production?

3.1 - When comparing technology alternatives, data must be collected from a variety
of unstructured digital documents, such as webpages, whitepapers, scientific articles,
fact sheets, technical reports, product wikis, product forums, product videos, and we-
binars can be used to form initial hypotheses. In Chapters 2, 3, 4, 5, 6, and 9, we
perceived that initial sets of domain features and alternatives, as our initial hypothe-

242 ∣ Conclusion

ses, concerning decision problems can be extracted based on exploring literature and
existing documentation.
3.2 - Tacit knowledge (such as observations, opinions, prejudices, and ideas) is one
of the primary sources of organizational knowledge (Nonaka & Von Krogh, 2009)
to build the decision models in this dissertation (see Figure 1.1). In Chapter 6, we
observed that tacit knowledge is deeply rooted in software engineers’ practices and
experiences. The biased and intuitive nature of tacit knowledge makes it challenging
to process or transfer the captured knowledge in any systematic or logical way. The
study of heuristics-and-biases has investigated various decision-making shortcuts and
has documented their inferior performance (Kahneman et al., 1982; Tversky & Kah-
neman, 1974). However, these uncomplicated heuristics can be viewed as smart
approaches to save time so that a decision-maker can respond immediately (Gigeren-
zer & Selten, 2002). Applying simple rules is sometimes an answer to complexity (Si-
mon, 1955). When faced with a problem that is highly complex to solve optimally,
the decision-maker falls back on a simple rule that makes sense based on what is
understood. Fast-and-frugal heuristics can perform well in certain domains (Gigeren-
zer & Todd, 1999) to find the best fitting alternatives based on a limited set of crite-
ria, for instance, background knowledge and experience of the decision-maker. For
tacit knowledge to be communicated, it should be transformed into explicit knowl-
edge (e.g., words, models, or numbers) so that anyone can understand it (Mohamed,
2010).
3.3 - Software quality models serve in this dissertation as the basis for the evaluation
models of technology alternatives. Based on the IEEE Standard Glossary of Software
Engineering Terminology (Committee et al., 1998; Samadhiya et al., 2010), the
quality of software products is the degree to which a system, component or process
meets specified requirements (such as functionality, performance, security, and
maintainability) and the extent to which a system, component or process meets the
needs or expectations of a user. It is necessary to find quality attributes widely
recommended by other researchers to measure the system’s characteristics. The
literature study results showed that researchers do not agree upon a set of
conventional criteria, including quality attributes and domain features, to evaluate
technology alternatives. Additionally, we realized that their suggested criteria were
mainly applied to specific domains to address different research questions.
Consequently, a set of nonexclusive and domain-independent criteria is needed to
evaluate technology alternatives. The ISO/IEC 25010 (ISO, 2011) presents best
practice recommendations on the base of a quality assessment model. The quality
model defines which quality characteristics should be considered when assessing the
qualities of a software product. In this dissertation, we used the ISO/IEC 25010
standard (ISO, 2011) and extended ISO/IEC 9126 standard (Carvallo & Franch,
2006) as two domain-independent quality models to analyze domain features based
on their impact on quality attributes of technology alternatives (see Chapter 2).

Section 10.1 – Contributions and observations ∣ 243

Observation II
The primary sources of knowledge for building decision models should be ex-
tracted based on exploring literature and existing documentation. Moreover,
tacit knowledge (such as observations, opinions, prejudices, and ideas) should
be considered as another source of knowledge to build decision models. Ad-
ditionally, standard software quality models should be used for the evaluation
models of technology alternatives, as they provide a foundation for reasoning,
and it would be inefficient to recreate such lists of qualities independently.

RQ4 — How should domain knowledge for building a decision model be
extracted and categorized?

4.1 - Expert Interview is an essential knowledge acquisition technique (Chen, 2004)
in eliciting knowledge about software production decisions. We followed the guide-
lines from Myers & Newman (2007) to conduct 92 qualitative semi-structured in-
terviews with senior software engineers to explore expert knowledge regarding the
decision-making problems and evaluate the outcomes of our study so that we used
the tacit knowledge of domain experts to identify the right sets of domain features
and alternatives (see Sections 2.2, 3.2, 4.2, 5.2, 6.3, 7.4, and 9.2).
4.2 - Document analysis is a systematic procedure for reviewing or evaluating doc-
uments, including text and images that have been recorded without a researcher’s
intervention (Bowen et al., 2009). Document analysis is one of the analytical meth-
ods in qualitative research that requires data investigation and interpretation to elicit
meaning, gain understanding, and develop empirical knowledge (Corbin & Strauss,
2014). According to the MCDM framework, the mapping between features and alter-
natives is defined based on documentation and expert interviews. In the knowledge
acquisition phases of the decision models, we realized that one of the principal chal-
lenges is the lack of standard terminology among technology providers. Different
vendors refer to the same concept by different names, or even worse, the same name
might stand for different concepts in different alternatives. Discovering conflicts in
the mapping is essential to prevent semantic mismatches throughout the selection
process. In order to tackle this issue and prevent potential mismatches, we have ini-
tially collected the critical features of each alternative and then, based on cross peer
reviews and expert interviews, tried to identify the similarities and mismatches (see
Chapter 2 and 7).
4.3 - Systematic Literature Review is one of the most broadly accepted research
methods of evidence-based software engineering (Kitchenham et al., 2004). As a
significant part of the architectural knowledge is scattered, incoherent, and incom-
plete (Tang et al., 2011b), a sound methodology is required to capture this knowl-
edge systematically. The data collection is an empirical study that can be quantitative
or qualitative (Runeson & Höst, 2009). Quantitative data comprises numbers and
classes, while qualitative data involves descriptions and explanations of phenomena.
Quantitative data is analyzed using statistics, while qualitative data is analyzed using
expert interviews or/and case studies to provide a more detailed and more in-depth
explanation. However, a combination of qualitative and quantitative data often pro-

244 ∣ Conclusion

vides a better understanding of the studied phenomenon (Seaman, 1999). An SLR
provides a prescribed process for identifying, evaluating, and interpreting all available
evidence relevant to a particular research question or topic (Petersen et al., 2008). In
Chapter 7, the SLR applied as a knowledge acquisition process to capture knowledge
about architectural patterns and ultimately making it available in forms of reusable
knowledge.
4.4 - In this dissertation, a structured coding procedure has been employed to extract
knowledge from the selected sources of knowledge. Structured coding captures a
conceptual area of the research interest (Saldaña, 2015). The extracted knowledge,
which correspond to the elements of a decision problem, has been categorized into
five categories: quality attributes, alternatives, domain features, impacts of domain
features on quality attributes, and supportability of domain features by alternatives.
Next, the extracted knowledge has been employed to build a decision model for an
MCDM problem (see Chapters 2, 3, 4, 5, 6, and 9).
4.5 - In Sections 2.3, 3.3, 4.3, 5.7, 6.6, and 7.2.3, we realized that a significant
number of MCDM techniques in the literature use pairwise comparison as the main
method to assess the weight of criteria. For a problem with n number of criteria
n(n−1)

2 number of comparisons are needed (Saaty, 1990). It means that the pairwise
comparison is a time-consuming process, and gets exponentially more complicated
as the number of criteria increases. Moreover, most MCDM methods are not scalable,
so in modifying the list of alternatives or criteria, the evaluation process must be
repeated. Traditional methods are costly and applicable to a small number of criteria
and alternatives. In most cases, a unique optimal solution for an MCDM problem
does not exist, so it is necessary to use decision-makers’ preferences to differentiate
between and prioritize solutions (Majumder, 2015). Therefore, decision-makers, as
one of the sources of knowledge in their decision-making process, should prioritize
and classify domain features based on their requirements and priorities.

Observation III
Expert interviews, document analysis, and systematic literature review are
knowledge acquisition techniques employed to extract knowledge from dif-
ferent sources of knowledge. A structured coding procedure can be employed
to extract knowledge from the selected sources of knowledge. The extracted
knowledge, which correspond to the elements of a decision problem, can be
categorized into five categories: quality attributes, alternatives, domain fea-
tures, impacts of domain features on quality attributes, and supportability of
domain features by alternatives.
Additionally, as one of the sources of knowledge in the decision-making pro-
cess, decision-makers need to prioritize and classify domain features based on
their requirements and priorities.

RQ5 — How should the extracted knowledge for building a decision model be
organized for facilitating the decision-making process?

5.1 - Software production is a suitable domain to deploy decision support systems that

Section 10.1 – Contributions and observations ∣ 245

intelligently support decision-makers with the decision-making process. The decision-
making process gets more complicated as the numbers of decision-makers, alterna-
tives and criteria increase (Majumder, 2015). DSS experts in Chapters 2 and 3 stated
that a DSS is a tool that can be used over the software development life-cycle and can
co-evolve its advice based on evolving requirements. In this dissertation, we designed
and implemented the SoProDSS that integrates key aspects of Knowledge-Driven and
Model-Driven DSSs to systematically organize the extracted knowledge regarding de-
cision models to facilitate the decision-making process, and to support software engi-
neers with their design decisions in software production (see Chapter 8). Figure 10.2
illustrates the MCDM framework and the main building blocks of the SoProDSS.

Decision Meta-Model

Qualities

Features

Decision Model

Software Quality Model

ISO/IEC 25010 & Ext. ISO/IEC 9126
Software Quality

Experts

Meta-Model
Designers

Knowledge Acquisition

Domain Experts

Documentation,
Literature, etc.

Domain-Description

Domain-Features

(1) (2)

Feature-Values

Domain-Alternatives

(3)

Knowledge Base

Domain

Qualities

Features

Alternatives

Inference Engine

Score Calculation

Exclude infeasible
Solutions

(5)

Ranked Feasible
Solutions

Decision

(6)

Decision-Maker
(MoSCoW)

Case Definition

Case-Definition

Domain Feature Requirements

(4)

Case Owner

Figure 10.2: The MCDM framework that we follow to build decision models for MCDM problems in software produc-
tion.

5.2 - The decision-making process in multi-criteria decision making is defined aptly
by Majumder (2015) to have six steps: (1) identifying the objective, (2) selection of
the criteria, (3) selection of the alternatives, (4) selection of the weighing method,
(5) applying the method of aggregation, and (6) decision-making based on the aggre-
gation results. In this dissertation, we followed this decision-making process to build
maintainable and evolvable decision models for MCDM problems, and to make the
knowledge acquisition more reliable and trustful (see Chapter 1).
5.3 - A decision model in the knowledge base of the SoProDSS as it is a collection
of facts and rules of an MCDM problem. In other words, a decision model defines
a decision structure to solve a specific MCDM problem (see Figure 4.2). Here we
describe the components that we defined in this work:
5.3.1 - The Decision Meta-Model is a simplified view of decision models and highlights
the fundamental structure of decision models in the knowledge base. Furthermore, it
provides ontological descriptions of MCDM problems. The Decision Meta-Model has
two sets, namely, Qualities and Features. Software quality attributes such as inter-

246 ∣ Conclusion

operability, maturity, and performance of technology alternatives are kept in the set
Qualities. Additionally, domain features should be listed in the set Features.
5.3.2 - The Domain-Description determines the first and second steps, indicated by
Identifying the objective and Selection of the features, of the decision-making process.
As aforementioned, the initial set of domain features is extracted from online docu-
mentation of technology alternatives. Then, the list of features should be reviewed
and validated by a set of selected domain experts. Next, the experts define the map-
ping between the sets Qualities and Features based on a Boolean adjacency matrix
(Qualities × Features → Boolean).
5.3.3 The Feature-Value represents the third step, shown by Selection of the alter-
natives, of the decision-making process. A list of technology alternatives should be
defined based on well-known vendors, websites, related forums, and domain ex-
perts’ knowledge (see Figures 4.2 and 5.1). Domain features can be either Boolean
or non-Boolean. A Boolean domain feature (FeatureB) is a feature that its sup-
portability by technology alternatives is investigated. Figures 4.3, 5.2, and 6.1 are
three samples of the mapping between Boolean domain features and technology
alternatives (MappingBoolean ∶ FeatureB × Alternatives → {0, 1}). Moreover, a non-
Boolean domain feature (FeatureN) assigns a non-Boolean value to a particular tech-
nology alternative. Figures 4.4, 5.3, and 6.3 present a subset of mappings between
non-Boolean domain features and technology alternatives (Mappingnon−Boolean ∶
FeatureN × Alternatives → {High, Medium, Low}).
5.3.4 - The Case-Definition defines the fourth step, denoted by Selection of the weigh-
ing method, of the decision-making process. The MoSCoW prioritization technique
is a tool in management, business analysis, project management, and software engi-
neering to reach a common understanding with decision-makers on the importance
they place on each domain feature requirement; According to the MCDM frame-
work, decision-makers should prioritize their domain feature requirements using the
MoSCoW technique.

Suppose WMoSCoW = {wMust, wShould, wCould, wWon′t} is the set of priority weights
according to the definition of the MoSCoW (DSDM consortium and others, 2014).
Domain feature requirements with Must Have or Won’t Have priorities act as hard
constraints and domain feature requirements with Should Have and Could Have prior-
ities act as soft constraints. Note, we could have used other prioritization techniques,
but we wanted to keep it simple (see Tables 2.2, 3.4, and 4.5 besides Figures 5.4
and 6.4).
5.3.5 - The Inference Engine comprises two steps: the fifth step, i.e., Applying the
method of aggregation and the sixth step, i.e., Decision making based on the
aggregation results, of the decision-making process. Decision-makers define and
prioritize their domain feature requirements based on MoSCoW prioritization
technique, and then the Inference Engine of the SoProDSS receives them (see
Figure 8.3). The Inference Engine infers candidate solutions using the rules and
facts of the decision models that it has in its knowledge base. In other words, the
Inference Engine excludes infeasible solutions and assigns scores to the feasible
ones, and then offers a ranked shortlist of feasible solutions to the decision-makers
(see Tables 2.3, 3.5, 4.6, 5.5, 6.5, and 8.5).

Section 10.1 – Contributions and observations ∣ 247

Contribution II
We designed and implemented the SoProDSS to systematically organize the
extracted knowledge regarding decision models, facilitate the decision-making
process, and support software engineers with their design decisions in soft-
ware production. The decision models that we have built, following the
MCDM theory and the six-step of the decision-making process, should be up-
loaded in the knowledge base of the SoProDSS. Then, decision-makers should
define their domain feature requirements based on the MoSCoW prioritization
technique. Accordingly, the SoProDSS inference engine excludes infeasible so-
lutions and offers a ranked shortlist of feasible solutions.

RQ6 — Will software engineers be willing to use the decision models within the
decision support system to perform their tasks?

6.1 - In Chapter 9, we carried out a study with 24 software engineers in the Nether-
lands to assess the user acceptance of the SoProDSS based on the Technology Accep-
tance Model (TAM). We ask the participants to fill out a TAM-based questionnaire
and state their opinions about the SoProDSS. The participants highlighted that So-
ProDSS is a useful tool that can help them explore more alternatives while designing
real-world software products. They asserted the SoProDSS itself could assist them in
finding liabilities and strength of alternatives, their features, and potential application
domains that they have employed in.
6.2 - The captured knowledge in the knowledge base of the SoProDSS is useful for
software engineers. It can assist them with their decision-making process to select the
best fitting set of alternatives according to their concerns, as declared by the software
engineers in our research described in Chapter 7.
6.3 - In Section 2.5.3, 3.5.3, 4.5, 5.4, and 6.5, the case study participants mentioned
that the SoProDSS provides an effective shortlist of alternative solutions to help soft-
ware engineers in their initial decision-making process. In other words, the SoProDSS
recommended nearly the same solutions as the case study participants suggested to
their companies after extensive analysis and discussions. However, the SoProDSS of-
fers a shortlist of feasible alternatives; therefore, software producing organizations
should perform further investigations, such as performance testing, to find the best
fitting alternative for their software products.

The case study participants asserted that the updated and validated version of the
SoProDSS is useful in finding the shortlist of feasible solutions. Finally, it reduces the
time and cost of the decision-making process.
6.4 - The SoProDSS provides a discussion and negotiation platform to enable
requirements engineers to make group decisions (see Chapter 4). It detects and
highlights the conflicts in the assigned priorities to the domain feature requirements
by decision-makers and asks them to resolve disagreements. Thus, the SoProDSS
supports software engineers in the requirements verification and validation activity
by avoiding conflict between domain feature requirements and generating feasible
solutions according to the requirements. Moreover, the SoProDSS can be considered
as a communication tool among the decision-makers to facilitate the requirements

248 ∣ Conclusion

specification activity.

Contribution III
The software engineers, who assessed the SoProDSS and the decision mod-
els, highlighted that the SoProDSS is a useful tool that can help them explore
more alternatives while designing real-world software products. They asserted
the SoProDSS itself could assist them in finding liabilities and strength of al-
ternatives, their features, and potential application domains that they have
employed in. Moreover, they mentioned that the SoProDSS provides an ef-
fective shortlist of alternative solutions to help them in their initial decision-
making process. They declared that the updated and validated version of the
SoProDSS is useful and valuable in finding the shortlist of feasible solutions.
Finally, it reduces the time and cost of the decision-making process.

We formulated six research questions to answer the following main question of the
dissertation:

MRQ — How can software engineering knowledge be captured and organized
systematically to support software engineers with software production
decision-making?

MRQ.1 - We presented the development process of the MCDM framework (See Fig-
ure 1.1) in an iterative process. In each cycle of the MCDM framework develop-
ment process (or in each chapter of the dissertation), we instantiated the framework
to build a decision model for a particular MCDM problem in software production.
Accordingly, we built and evaluated six decision models for the following decision
problems in software production: (1) Database Management System (Chapter 2),
(2) Cloud Service Provider (Chapter 3), (3) Blockchain Platform (Chapter 4), (4)
Programming Language Ecosystem (Chapter 5), (5) Model-Driven Software Devel-
opment Platform (Chapter 6), and (6) Architectural Pattern (Chapter 9) selection
problems.
MRQ.2 - We showed that the MCDM framework is a theory for design and action (Gre-
gor, 2006) for building decision models in the context of MCDM problems in software
production. The MCDM framework shows that HOW software engineers can effi-
ciently select the best fitting alternative solutions based on their requirements and
priorities. Table 1.2 outlines the MCDM framework as a theory for design and action
in DSR.
MRQ.3 - We designed and implemented the SoProDSS that integrates key aspects
of Knowledge-Driven and Model-Driven DSSs to organize the extracted knowledge
regarding decision models systematically, to facilitate the decision-making process,
and to support software engineers with their design decisions in software production
(see Chapter 8).
MRQ.4- Decision-makers define and prioritize their domain feature requirements
based on MoSCoW prioritization technique (DSDM consortium and others, 2014),
and then send them to the Inference Engine of the SoProDSS. The Inference Engine

Section 10.2 – Threats to Validity ∣ 249

infers candidate solutions using the rules and facts of the decision models that it has
in its knowledge base. In other words, the Inference Engine excludes infeasible so-
lutions and assigns scores to the feasible ones, and then offers a ranked shortlist of
feasible solutions to the decision-makers (see Section 2.5.3, 3.5.3, 4.5, 5.4, and 6.5).

The main contribution

Software engineers should follow the MCDM framework to systematically cap-
ture and organize knowledge regarding an MCDM problem in software pro-
duction. Additionally, they should employ the SoProDSS that we created to
define their feature requirements and quality concerns based on the MoSCoW
prioritization technique. With the SoProDSS in hand, software engineers make
decisions more rapidly and efficiently with a richer set of information than
without it.

10.2 Threats to Validity
The validity assessment is an essential part of any empirical study. Validity

discussions typically involve Construct Validity, Internal Validity, External Validity,
and Conclusion Validity. Other types of validity, such as Theoretical validity and
Interpretive validity, are rarely considered in software engineering, so they are not
discussed in this dissertation. Table 10.1 shows the tactics that we used to mitigate
the threats to the validity of this dissertation.

Construct validity — refers to whether an accurate operational measure or test has
been used for the concepts being studied. Developing a theory is an incremental
process (Simon, 1996) and requires making correct design decisions. Moreover, the
development process involves a continuous and repetitive cycle.

In literature, decision-making is typically defined as a process or a set of ordered
activities concerning stages of problem identifying, data collection, defining alterna-
tives, selecting a shortlist of alternatives as feasible solutions with the ranked prefer-
ences (Fitzgerald et al., 2017; Kaufmann et al., 2012). Majumder (2015) defines the
following six steps of a decision-making process as a multi-criteria decision-making:
(1) identifying the objective, (2) selection of the criteria, (3) selection of the alterna-
tives, (4) selection of the weighing method, (5) applying the method of aggregation,
and (6) decision-making based on the aggregation results.

In this dissertation, we developed a theoretical framework (MCDM framework)
based on the MCDM theory and the six-step of a decision-making process to model
decision-making problems in software production (see Chapter 1.6). The MCDM
framework contains the following constructs: Domain of the problem, Domain Fea-
tures, Alternatives, Software Quality Model to indicate the impacts of domain fea-
tures on alternatives, Decision-Maker, MoSCoW prioritization technique as the weigh-
ing method, Domain Feature Requirements, the Weighting Sum Model (WSM) as the
method of aggregation, the Inference Engine of the decision support system to suggest
feasible solutions, Ranked Feasible Solutions.

250 ∣ Conclusion

The framework has instantiated in each cycle of the MCDM framework develop-
ment process to build a decision model for a particular MCDM problem in software
production. We designed and implemented the SoProDSS to organize decision mod-
els to facilitate decision-making.

To mitigate the threats to the construct validity, we employed different knowledge
acquisition techniques to capture knowledge from domain experts, case studies, liter-
ature studies to (re)define the constructs and their relationships in each cycle of the
theory development process (see Sections 2.2, 3.2, 4.2, 5.2, 6.3, and 9.2).

The SoProDSS and the decision models have been evaluated through 21
real-world case studies at different software-producing organizations in the
Netherlands and Iran. The case study participants asserted that the approach and
tooling provide significantly more insight into their selection process, provide a
richer prioritized option list than if they had done their research independently, and
reduce the time and cost of the decision-making process. However, we also asserted
that it is not easy to implement, adopt, and maintain such a system as its knowledge
base must be updated regularly. Moreover, software engineers’ strong opinions
surrounding technology alternatives make it somewhat more complicated to find
consensus in the data. We followed the guidelines from Myers & Newman (2007) to
conduct 92 qualitative semi-structured interviews with senior software engineers to
explore expert knowledge about the decision-making problems, decision models,
and the outcomes of our study.

Internal validity — attempts to verify claims about the cause-effect relationships
within the context of a study. In other words, it determines whether the study is
sound or not.

In this dissertation, we instantiated the MCDM framework to build six decision
models, including Database Management System (Chapter 2), Cloud Service Provider
(Chapter 3), Blockchain Platform (Chapter 4), Programming Language Ecosystem
(Chapter 5), Model-Driven Software Development Platform (Chapter 6), and Archi-
tectural Pattern selection problems (Chapter 9). Then, we conducted a set of case
studies to evaluate each decision model.

To mitigate the threats to the internal validity of each decision model, we defined
the case study results success when they, in part, aligned with the case study partici-
pants’ shortlist and when they provided new suggestions that were identified as being
of interest to the case study participants—using the case study participants’ opinion
as a measurement instrument was risky, as they may not had sufficient knowledge to
make a valid judgment. We countered this risk by conducting more than one case
study, assuming that the case study participants were handling in their interest and
applying the SoProDSS to other problem domains in software production.

In Chapter 2, 3, 4, 5, 6, and 9, we observed that biases, such as motivational and
cognitive (Montibeller & Winterfeldt, 2015), arise because of shortcuts or heuristics
that decision-makers use to solve problems and perform tasks. The Hawthorne
effect (Jones, 1992), which is the tendency for decision-makers to change their
behavior when they are being observed, is a form of cognitive bias. The case study
participants might have been more careful in the observational setting than they
would be in the real setting because they are being observed by scientists judging

Section 10.2 – Threats to Validity ∣ 251

their selected domain feature requirements and priorities. Moreover, the Bandwagon
effect (Nadeau et al., 1993), which is the tendency to do or believe things because
many other decision-makers do or believe the same, is another form of cognitive
bias. The Bandwagon effect typically shows up in group decisions. To mitigate the
Hawthorne and Bandwagon effects, individual and group interviews based on a set
of predefined interview protocols have been conducted.

External validity — concerns the domain to which the research findings can be gen-
eralized. External validity is sometimes used interchangeably with generalizability
(feasibility of applying the results to other research settings). Wieringa & Daneva
(2015) state that "the scope of a theory is the set of phenomena to which it is appli-
cable. The scope of a generalization is the set of phenomena for which it is true, and
the scope of a model is the set of phenomena to which it can be applied". In other
words, a theoretical framework is general if it can be applied to many phenomena.
The more general a framework, the larger the set of phenomena to which it is ap-
plicable. A theoretical generalization is a form of generalizations that theorizes the
findings of a case study according to critical realism consists of postulated constructs
and relationships in the real domain (Tsang, 2014).

The majority of the case study participants and domain experts who participated
in the research originated from software producing organizations in the Netherlands
(see Sections 2.5.3, 3.5.3, 4.5, 5.4, and 6.5). In other words, we evaluated the de-
cision models mainly in the context of Dutch software producing organizations. To
mitigate threats to the research’s external validity, we captured knowledge from dif-
ferent sources of knowledge without any regional limitations to define the constructs
and build the decision models. Accordingly, we hypothesize that the research results
can be generalized to all software engineers worldwide who face uncertainty in soft-
ware production decision-making problems.

Another question is whether the approach and software tools can be applied to
other problem domains as well. The problem domains were selected opportunistically
and pragmatically, but we are convinced that there are still many decision problems to
which the approach can be applied. The categories of problems to which the MCDM
approach and toolset can be applied successfully can be summed up as follows: (1)
the problem regards a technology decision in system design with long-lasting con-
sequences, (2) there is copious scientific, industry, and informal knowledge publicly
available to software engineers, and (3) the (team of) software engineer(s) is not
knowledgeable in the field but very knowledgeable about the system requirements.

A challenge for this dissertation is that the qualities and features that we have
identified with the support of a limited set of experts can vary wildly with the
perception of the expert (see Sections 2.2, 3.2, 4.2, 5.2, 6.3, and 9.2). While we are
convinced that the experts have added a significant amount of extra knowledge to
the decision models, one might argue we need a large number of experts per
technology alternative to reach consensus on each feature. The main objective of
expert interviews, as a knowledge acquisition method, is to efficiently and
thoroughly extract rules and facts for the knowledge base of a DSS from domain
experts (Hu, 2013). In each cycle of the MCDM framework development process to
build a decision model for a particular MCDM problem, interviewing with experts

252 ∣ Conclusion

had continued until the extracted knowledge had been converged (data
saturation) (Legard et al., 2003). We should also be aware of the strong opinions
surrounding technology alternatives, as that makes it somewhat more complicated
to find consensus in the data. A potential solution to this validity threat is building a
community around the SoProDSS to use feedback from decision-makers to improve
its knowledge base.

Conclusion validity — verifies whether the methods of a study such as the data
collection method can be reproduced, with similar results. We captured knowledge
from the sources of knowledge following the MCDM framework. The accuracy of the
extracted knowledge was guaranteed through the protocol that was developed to
define the knowledge extraction strategy and format (see
Sections 2.2, 3.2, 4.2, 5.2, 6.3, and 9.2). To mitigate the threats to the research’s
conclusion validity, a set of review protocols were proposed and applied by multiple
researchers, including bachelor and master students. We defined a structured coding
procedure to keep consistency in the knowledge extraction process and check
whether the acquired knowledge addresses the research questions (see
Section 7.3.3). Moreover, we crosschecked the captured knowledge to assess the
quality of the results, and we had at least two assistants extracting data
independently.

Table 10.1: The tactics that we used to mitigate the threats to the dissertation validity.

Tactics Construct
validity

Internal
validity

External
validity

Conclusion
validity

Following the six-step of the decision-making process 3

Following the MCDM theory 3 3 3

An extensive literature study 3 3

Conducting 21 case studies 3 3 3

Interviewing 92 domain experts 3 3

Employing interview protocols 3 3

Capturing knowledge without any regional limitations 3

Following a structured coding procedure 3

Quality assessment based on cross-check reviews 3

Software engineering and design science are two fields where methodological ap-
proaches have matured rapidly. In this dissertation, we have followed the guidelines
from those fields to ensure that we derived correct conclusions from our work and
that the artifacts we created are proven to contribute to the field. In Table 10.1, we
show that we diligently defend against common validity threats to strengthen this
line of reasoning and hope that this will remain the standard of scrutiny applied in
our maturing domain.

10.3 Reflections
In this section, we reflect on the research project in general and, more specifically, on
the research process, methods applied, and industry observations.

Section 10.3 – Reflections ∣ 253

10.3.1 Reflections on the Research Process
Expert interview
Expert interview is an essential knowledge acquisition technique (Chen, 2004) in
qualitative research. We followed the Myers & Newman (2007) guidelines to con-
duct a series of qualitative semi-structured interviews with senior software engineers
to explore expert knowledge regarding the decision-making problems and evaluate
the outcomes of our study. Thus, expert interviews are by no means just “data-
gathering meetings" employed essentially for capturing knowledge. To clarify any
misunderstandings: expert interviews are not only a popular knowledge acquisition
technique, but they are also a reliable research method (Bogner et al., 2009) (see
Sections 2.2, 3.2, 4.2, 5.2, 6.3, and 9.2).

The first step in conducting expert interviews is identifying the right set of domain
experts. Experts are "agents having specific expertise within an organizational or
institutional context," who "(re)present solutions to problems and decision-making
processes" (Meuser & Nagel, 1989). Experts do not – as in the research by Meuser
and Nagel – belong to an organization’s management elite, however very often hail
from the mid- and lower ranks of organizations. Generally, they are highly educated
people who are deeply knowledgeable about their status and accustomed to present-
ing themselves favorably, tackling challenging situations, and elaborating on complex
contexts (Bogner et al., 2009).

During the phase of conducting the expert interview, it is necessary to follow a pre-
defined protocol as a systematic approach to ask questions for specific information
related to the aims of the study (Patton, 2015). In other words, the interview ques-
tions should be aligned with the research questions. Maxwell (2012) stated that the
research questions formulate what we want to understand; the interview questions
are what we want to ask experts to gain that understanding. The development of
suitable interview questions needs creativity and insight, rather than an automatic
translation of the research questions into an interview protocol. It depends basically
on the researchers’ understanding of the research context and how the interview ques-
tions and observational strategies will operate in practice.

Burke & Miller (2001) suggests a well-structured interview guideline, which, apart
from open questions, also provides closed ones. They stated that the answers to
open questions function as an explanation horizon for the answering behavior with
closed questions: "Ensure you have a mix of open-ended and close-ended questions.
It is helpful to have some questions where people respond, for example, in a specific
Likert scale fashion (that is, close-ended response options), so that you have some
easy-to-score data. The open-ended questions will then provide you with the rich
filler to elaborate upon such responses."

In this dissertation, each of the interview series followed a semi-structured inter-
view protocol and lasted mainly between 60 and 90 minutes. Acquired knowledge
during each interview typically propagated to the next to validate the captured knowl-
edge incrementally. Finally, the findings were sent to the interview participants after-
ward for final confirmation (see Sections 2.2, 3.2, 4.2, 5.2, 6.3, and 9.2).

Interviewers or scientists who conduct expert interviews should behave as neutral
as possible. Still, they cannot always act neutrally in interviews (Bogner et al., 2009),

254 ∣ Conclusion

while they must attempt to extract unbiased tacit knowledge of interviewees. It is
essential to highlight that, during the expert interviews, we realized that the way of
talking and behaving, for example, a proper body language in face-to-face conver-
sations, have significant impacts on the motivation of the interviewees to elaborate
on detail and tell more about the context. Therefore, we tried to dress appropri-
ately, avoid prolonged eye contact, be confident and friendly, be aware of our body
language, and be prepared for what to say.

Sometimes interviewers are not interested enough to transfer their tacit knowledge,
known as the iceberg-effect (Vogel, 1995), caused by a variety of reasons. Perhaps
the interviewee is not a "real" expert on the topic studied, or the expert is no longer
knowledgeable in the domain. For instance, we faced several situations where the
interviewees were full-blooded experts, but the conversations were awkward and tir-
ing, and getting them to talk was tough. Meuser & Nagel (1989) recommended to
terminate such discussions. Please note, to a certain degree, this effect is typically
happening at the beginning of all interviews, as a situation of trust should be built up
first (Bogner et al., 2009). For example, we face the following case in an interview
with an expert at a software producing organization: The expert was very suspicious
and asked me what I wanted to know exactly and how I wanted to use it afterward.
At first, he refused to record his voice, but after my explanation and guarantee to
anonymously use the extracted knowledge, he allowed me to do so. In the future,
we will use consent forms to gain permission to share, use, or distribute the captured
knowledge (anonymously) before conducting the interviews.

Case study
Case study is an empirical research method (Jansen, 2009) that investigates a phe-
nomenon within a particular context in the domain of interest (Yin, 2017). Case
studies can describe, explain, and evaluate a hypothesis. Researchers are free to carry
out an empirical study in any way, as long as it takes place within a realistic context.
A case study can be employed to collect data regarding a particular phenomenon or to
apply a tool and then evaluate its efficiency and effectiveness using expert interviews
(see Sections 2.2, 3.2, 4.2, 5.2, 6.3, and 9.2).

Planning and scoping a case study research project that addresses research ques-
tions appropriately and adequately can be challenging. Additionally, the data col-
lection phase can be time-consuming and tiresome, and typically ends with large
amounts of data (Cavaye, 1996). Furthermore, the availability of suitable case study
companies may be restricted, as software producing organizations are not always
enthusiastic about participating in case study research. The reporting of the results
can also be complicated, as the validity of findings should be investigated, and the
conclusions reached should be established (Yin, 2017).

The unit of analysis explains what forms a "case", and a complete set of data for
one study of the unit of analysis constitutes a single case (Darke et al., 1998). The
unit of analysis can be an individual, a group, an organization, or an event or another
phenomenon. It is typically defined based on initial research questions and the ex-
pected level to address the research questions (Yin, 2017). In other words, the unit
of analysis indicates the breadth and depth of the data collection process to answer
the research question adequately.

Section 10.3 – Reflections ∣ 255

The number of cases to be studied depends on the focus of the research question.
As discussed earlier, single cases provide for in-depth investigation and full descrip-
tion. Multiple case designs allow accurate or theoretical replication and cross-case
comparison. The right number of cases for qualitative research is not indicated in the
literature. Yin (2017) recommends that more replications lead to a higher level of
certainty. Eisenhardt (1989) states that between four and ten cases are acceptable
for theory building using case study research. Darke et al. (1998) acknowledge that
both single- and multiple case designs can be applied in exploratory research. Where
explanatory research is undertaken, an individual case may provide the foundation
for developing explanations of why a phenomenon occurs, and these may then lead
to further investigation by applying them to more cases in other settings. In this dis-
sertation, to evaluate each decision model, we selected multiple cases in the context
of different software producing organizations to explore the research questions and
theoretical evolution much broader and prevent potential biases.

Theory development process
Based on the findings, we extract the following lessons for young researchers. First,
we observe that theory development in design science requires tenacity: the many
versions of even the most straightforward theoretical framework indicate that one
must not stop developing a theory until a consensus is reached between a team
of researchers, no more inconsistencies and gaps are identified, and (parts of) the
framework is evaluated. Secondly, we must train young researchers to be accurate in
their definitions of concepts: if their primary constructs are inaccurate, the definition
relationships become impossible or even erroneous. Thirdly, we must make junior
researchers intimately familiar with the research activities needed for process-based
theory development, such as literature research, academic discourse, and different
theory representations. Finally, we must carefully use the word "theory", as it is used
to indicate both a set of untested hypotheses and a well-established, tested, and ac-
cepted theory.

10.3.2 Reflection on the Outcomes
The development of software products, systems, and services typically results in com-
plex decision models and decision-making processes (Badampudi et al., 2018). Soft-
ware engineers need a decision support system in software production as (1) decision
problems are often inadequately understood and described, (2) decisions are made at
the last moment and under time pressure, (3) decisions are not relying on empirically
evaluated decision models, best knowledge and experience and a sound methodology,
and (4) decisions are made without considering the perspectives of all the involved
stakeholders (Ruhe, 2002).

In this dissertation, we observe that software engineers perform much better
and make informed decisions with the right knowledge at the right time (See Sec-
tions 2.6, 3.6, 4.6, 5.6, 6.6, 7.4, and 9.5). Generally speaking, decision support sys-
tems can support decision-makers to transfer and organize knowledge. Efficient de-
cision support provides software engineers more independence to analyze data and
documents to acquire knowledge systematically in terms of facts and results, as they
need them.

256 ∣ Conclusion

The complexity of the software engineering process and its socio-technical nature
as the main barriers to the adoption of decision support systems (Donzelli, 2006).
Additionally, software engineers are, like most intelligent professionals, opinionated,
moody, and convinced of their tacit knowledge. In order to mitigate the impacts
of tacit expert knowledge, domain interpretation, and of overlearned professional
practices, software engineering knowledge needs to be systematically captured and
organized when it is required.

From the results of our analysis (see Sections 2.6, 3.6, 4.6, 5.6, 6.6, 7.4, and 9.5),
we realized that is a lot of resistance from software engineers to adopt decision sup-
port systems because everyone is an expert. In other words, software engineers typ-
ically do not want to change their working style and how they are performing tasks.
Cummings & Worley (2014) stated that change is often seen as a personal threat by
those involved in a transition. Unfamiliarity with the new ways of working can lead
to discomfort that spontaneously rises software engineers’ resistance (Bridges, 2009).

Adopting new tools also challenge software engineers to advance their skills and
knowledge, gain new ones, and learn the tools and techniques – all additional
threats to the individual that actively contribute to increasing their resistance to
change (Serour & Henderson-Sellers, 2005). Consequently, software engineers can
develop a resistance to change their working style, which itself can become a critical
obstacle to adopt a DSS to evaluate software engineering design decisions.

The inescapable reality is that people are different and therefore act and react to
changes independently. Indeed, occasionally, even the same software engineer can
behave in a different manner (Serour & Henderson-Sellers, 2005). Moreover, resis-
tance could be a silent request for assistance, more information, or a statement of
different priorities. Resistance can be considered to be an opportunity to gather in-
formation and learn more about the current and desired state (Bamberger, 2002).
Accordingly, we will continue to introduce and improve the SoProDSS and the deci-
sion models, and look for different use cases and potential decision-making problems
in the software engineering domain along the road.

In this dissertation, we designed and implemented the SoProDSS that integrates
key aspects of Knowledge-Driven and Model-Driven DSSs to store and organize
the extracted knowledge regarding decision models systematically, to facilitate the
decision-making process, and to support software engineers with their design deci-
sions in software production (see Figure 1.4). The SoProDSS is somewhere between
a real product and a proof of concept. We are planning to establish a startup based on
the decision-making concepts and the MCDM framework to fill the gap in decision-
making approaches between industry and academia and evaluate the SoProDSS in
real-world scenarios.

Software engineering is a knowledge-intensive field (Pressman, 2005), and soft-
ware engineers spend a significant portion of their time collecting data regarding
their daily tasks (Meyer et al., 2019). As decision support systems support software
engineers with their jobs by facilitating their decision-making processes and recom-
mending design decisions, the principal concepts of DSSs should become an elemental
part of software engineering education.

Section 10.4 – Limitations and Future Work ∣ 257

10.3.3 Personal Reflections
Doing a Ph.D. for me was an incredible journey into science and engineering. As a
researcher and sometimes as a developer, I have experienced incredible, joyful mo-
ments, along with some painful lessons.

I have developed a tool to support the community of people who I care about most,
and then I have improved it based on the feedback that I have received from them.
I have spent hours discussing the tool’s outcomes with the case study participants,
domain experts, and my colleagues. I have learned how to present myself and tell the
story about my research for different people with different backgrounds.

The most time-consuming and troublesome part of the work was the data collection
phase. However, I have always been so excited and curious to see the results and
then analyze them. Moreover, finding the right set of domain experts and case study
companies was challenging. On average, one-third of the selected experts replied to
my emails, and in the end, half of them agreed to participate in the research.

Finally, I believe that my future career choices are influenced by the research I have
done and the people I have met during the last four years. Now, I know that I want
to work on knowledge engineering and management for the rest of my career.

10.4 Limitations and Future Work
In this final section, we discuss the main limitations of our work and identify some
directions for future research.

(1) Automated domain feature extraction — Mapping domain features to
alternatives in a decision problem is a time-consuming process, as currently, we
analyze potential documents manually. In order to keep the knowledge base of the
SoProDSS up-to-date, we need to check the documentation of the alternatives
periodically. Traditional methods of feature extraction, such as natural language
processing techniques (Bakar et al., 2015; Riloff, 1996), require handcrafted
features in a training set. Deep learning enables us to extract feature automatically
from big data, instead of adopting handcrafted features, which mainly depends on
our prior knowledge and initial hypotheses regarding the feature set.

(2) Sentiment analysis — Mapping non-Boolean domain features to alternatives
require analyzing documents and expert opinions regarding alternatives. The data
collection phase is a time-consuming process that involves finding a set of
parameters to estimate feelings about alternatives. Additionally, the validity of the
estimation mainly relies on domain expert opinions that can be biased toward their
tacit knowledge. Sentiment analysis (Feldman, 2013; Liu, 2012; Pang & Lee, 2008)
can be employed to interpret and classify emotions (positive, negative, and neutral)
within the documentation regarding alternatives, such as popularity in the market,
using natural language processing techniques.

(3) A community of users — Software producing organizations are under pressures
that force them to react instantly to evolving conditions in business environments.

258 ∣ Conclusion

They need to be innovative in how they operate and be agile in making strategic,
tactical, and operational decisions. Building a community of users around the
SoProDSS lets us be closer to decision-makers in real-time, understand their
requirements and preferences, support them quickly with making rational decisions,
and use their feedback to improve the SoProDSS.

(4) Knowledge-as-a-Service (KaaS) — Researchers and practitioners in the
software engineering field face fundamental challenges introduced by fragmented
knowledge from heterogeneous, autonomous sources with complicated and
uncertain relations in particular research domains. Additionally, the exponential
growth rate of knowledge in a domain surpasses human experts’ current ability to
formalize and capture tacit and explicit knowledge effectively. Thus, a
Knowledge-as-a-Service should be designed and implemented to automate the
knowledge acquisition based on artificial intelligence approaches, integrate the
captured knowledge, and deliver consistent knowledge to researchers and
practitioners (Zhao et al., 2012; Zhao et al., 2019).

(5) Creativity in design decisions — Software production is primarily a complex
problem-solving activity, which requires creativity (Glass, 2006). In real-world
scenarios, software engineers deal with the following two types of decision
problems. (1) routine decision problems that they need to make decisions among a
set of standard alternative solutions. (2) non-routine decision problems that they
use their tacit knowledge to make creative and unique design decisions. In this
dissertation, we mainly focused on routine decision problems and excluded the art
creation and human characteristics, including creativity. In order to support software
engineers with their design decisions in software production, non-routine decision
problems should be investigated and modeled as well (Howard et al., 2008; Maiden
et al., 2010; Shneiderman et al., 2006).Default

Figure 10.3: CherryPickInc is the name of the startup company, that we are planning to estab-
lish based on the MCDM concepts of this dissertation.

(6) Valorization — It is necessary to create value the acquired knowledge regarding
the decision model in this dissertation and make the SoProDSS suitable and available
for commercial and societal use and translating it into a competitive decision support
tool and entrepreneurial activity. We are planning to establish a startup based on
the decision-making concepts and the MCDM framework to fill the gap in decision-
making approaches between industry and academia and evaluate the SoProDSS in
real-world scenarios. We believe that the SoProDSS will be significantly improved if
it employs in daily practices of software engineers and gain feedback from them. It
can then be used as a powerful tool to support software producing organizations with
their decision problems in software production.

Bibliography

Ahmad, R., A. Nadeem, T.-h. Kim, et al. (2010), “Isare: an integrated software archi-
tecture reuse and evaluation framework”, in: International Conference on Advanced
Software Engineering and Its Applications, Springer, pp. 174–187.

Asadi, M. & R. Ramsin (2008), “Mda-based methodologies: an analytical survey”,
in: European Conference on Model Driven Architecture-Foundations and Applications,
Springer, pp. 419–431.

Avgeriou, P., P. Kruchten, P. Lago, P. Grisham & D. Perry (2007), “Sharing and reusing
architectural knowledge–architecture, rationale, and design intent”, in: 29th Inter-
national Conference on Software Engineering (ICSE’07 Companion), IEEE, pp. 109–
110.

Avgeriou, P. & U. Zdun (2005), “Architectural patterns revisited-a pattern language”,
European Conference on Pattern Languages of Programs.

Babar, M. A., R. C. de Boer, T. Dingsoyr & R. Farenhorst (2007a), “Architectural
knowlege management strategies: approaches in research and industry”, in: Second
Workshop on Sharing and Reusing Architectural Knowledge-Architecture, Rationale,
and Design Intent (SHARK/ADI’07: ICSE Workshops 2007), IEEE, pp. 2–2.

Babar, M. A., T. Dingsøyr, P. Lago & H. Van Vliet (2009), Software architecture knowl-
edge management, Springer.

Babar, M. A. & P. Lago (2009), “Design decisions and design rationale in software
architecture”, Journal of Systems and Software, vol. 82, no. 8, pp. 1195–1197.

Babar, M. A., D. Winkler & S. Biffl (2007b), “Evaluating the usefulness and ease of use
of a groupware tool for the software architecture evaluation process”, in: First In-
ternational Symposium on Empirical Software Engineering and Measurement (ESEM
2007), IEEE, pp. 430–439.

Badampudi, D., K. Wnuk, C. Wohlin, U. Franke, D. Smite & A. Cicchetti (2018),
“A decision-making process-line for selection of software asset origins and com-
ponents”, Journal of Systems and Software, vol. 135, pp. 88–104.

Bakar, N. H., Z. M. Kasirun & N. Salleh (2015), “Feature extraction approaches from
natural language requirements for reuse in software product lines: a systematic
literature review”, Journal of Systems and Software, vol. 106, pp. 132–149.

Bamberger, J (2002), “Managing resistance–techniques for managing change and im-
provement”, in: Asia Pacific Software Engineering Process Group (SEPG) Conference
Handbook and CD-ROM, Hong Kong, 30pp.

260 ∣ Bibliography

Baskerville, R. & J. Pries-Heje (2010), “Explanatory design theory”, Business & Infor-
mation Systems Engineering, vol. 2, no. 5, pp. 271–282.

Bass, L., P. Clements & R. Kazman (2013), Software Architecture in Practice, Addison
Wesley.

Baumeister, J. & A. Striffler (2015), “Knowledge-driven systems for episodic decision
support”, Knowledge-Based Systems, vol. 88, pp. 45–56.

Baxter, L. A. (2004), “A tale of two voices: relational dialectics theory”, Journal of
Family Communication, vol. 4, no. 3-4, pp. 181–192.

Beck, K., M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham, M. Fowler, J.
Grenning, J. Highsmith, A. Hunt, R. Jeffries, et al. (2001), “Principles behind the
agile manifesto”, Agile Alliance, pp. 1–2.

Becker, C., M. Kraxner, M. Plangg & A. Rauber (2013), “Improving decision support
for software component selection through systematic cross-referencing and anal-
ysis of multiple decision criteria”, in: System Sciences (HICSS), 2013 46th Hawaii
International Conference on, IEEE, pp. 1193–1202.

Bhattacharya, P. & I. Neamtiu (2011), “Assessing programming language impact on
development and maintenance: a study on c and c++”, in: Proceedings of the 33rd
Int. Conference on Software Engineering, ACM, pp. 171–180.

Bissyandé, T. F., F. Thung, D. Lo, L. Jiang & L. Réveillère (2013), “Popularity, interop-
erability, and impact of programming languages in 100,000 open source projects”,
in: 2013 IEEE 37th annual computer software and applications conference, IEEE,
pp. 303–312.

Blaine, J. D. & J. Cleland-Huang (2008), “Software quality requirements: how to
balance competing priorities”, IEEE Software, vol. 25, no. 2, pp. 22–24.

Bode, S. & M. Riebisch (2010), “Impact evaluation for quality-oriented architectural
decisions regarding evolvability”, in: European Conference on Software Architecture,
Springer, pp. 182–197.

Bogner, A., B. Littig & W. Menz (2009), Interviewing experts, Springer.
Bosch, J. (2004), “Software architecture: the next step”, in: European Workshop on

Software Architecture, Springer, pp. 194–199.
Bowen, G. A. et al. (2009), “Document analysis as a qualitative research method”,

Qualitative research journal, vol. 9, no. 2, p. 27.
Brahimi, L., L. Bellatreche & Y. Ouhammou (2016), “A recommender system for dbms

selection based on a test data repository”, in: East European Conference on Advances
in Databases and Information Systems, Springer, pp. 166–180.

Brambilla, M., J. Cabot & M. Wimmer (2017), “Model-driven software engineering in
practice”, Synthesis lectures on software engineering, vol. 3, no. 1, pp. 1–207.

Brereton, P., B. A. Kitchenham, D. Budgen, M. Turner & M. Khalil (2007), “Lessons
from applying the systematic literature review process within the software engi-
neering domain”, Journal of systems and software, vol. 80, no. 4, pp. 571–583.

Bridges, W. (2009), Managing transitions: Making the most of change, Da Capo Press.
Bright, T. J., A. Wong, R. Dhurjati, E. Bristow, L. Bastian, R. R. Coeytaux, G. Samsa, V.

Hasselblad, J. W. Williams, M. D. Musty, et al. (2012), “Effect of clinical decision-
support systems: a systematic review”, Annals of internal medicine, vol. 157, no. 1,
pp. 29–43.

Bibliography ∣ 261

Brown, A. W. (2004), “Model driven architecture: principles and practice”, Software
and Systems Modeling, vol. 3, no. 4, pp. 314–327.

Brownsword, L., T. Oberndorf & C. A. Sledge (2000), “Developing new processes for
cots-based systems”, IEEE software, vol. 17, no. 4, pp. 48–55.

Buchgeher, G., R. Weinreich & T. Kriechbaum (2016), “Making the case for central-
ized software architecture management”, in: International Conference on Software
Quality, Springer, pp. 109–121.

Burge, J. E., J. M. Carroll, R. McCall & I. Mistrik (2008), Rationale-based software
engineering, Springer.

Burke, L. A. & M. K. Miller (2001), “Phone interviewing as a means of data collec-
tion: lessons learned and practical recommendations”, in: Forum Qualitative Sozial-
forschung/Forum: Qualitative Social Research, vol. 2, 2.

Burnstein, I. (2006), Practical software testing: a process-oriented approach, Springer
Science & Business Media.

Buschmann, F, R Meunier, H Rohnert, P Sommerlad & M Stal (1996), “Pattern-
oriented software architecture-a system of patterns”, Advances in software engineer-
ing and knowledge engineering, vol. 1, pp. 1–487.

Buschmann, F., K. Henney & D. C. Schmidt (2007a), Pattern-oriented software archi-
tecture, on patterns and pattern languages, vol. 5, John wiley & sons.

Buschmann, F., K. Henney & D. C. Schmidt (2007b), “Past, present, and future trends
in software patterns”, IEEE software, vol. 24, no. 4, pp. 31–37.

Büyüközkan, G. & S. Güleryüz (2016), “A new integrated intuitionistic fuzzy group
decision making approach for product development partner selection”, Computers
& Industrial Engineering, vol. 102, pp. 383–395.

Buyya, R., C. Vecchiola & S. T. Selvi (2013), Mastering cloud computing: foundations
and applications programming, Newnes.

Cai, X., M. R. Lyu, K.-F. Wong & R. Ko (2000), “Component-based software engineer-
ing: technologies, development frameworks, and quality assurance schemes”, in:
Proceedings Seventh Asia-Pacific Software Engeering Conference. APSEC 2000, IEEE,
pp. 372–379.

Capilla, R., A. Jansen, A. Tang, P. Avgeriou & M. A. Babar (2016), “10 years of soft-
ware architecture knowledge management: practice and future”, Journal of Systems
and Software, vol. 116, pp. 191–205.

Carando, P. (Dec. 1989), “Shadow: fusing hypertext with ai”, IEEE Expert: Intelligent
Systems and Their Applications, vol. 4, no. 4, 65–78.

Carmines, E. G. & R. A. Zeller (1979), Reliability and validity assessment, vol. 17, Sage
publications.

Carvallo, J. P. & X. Franch (2006), “Extending the iso/iec 9126-1 quality model with
non-technical factors for cots components selection”, in: Proceedings of the 2006
international workshop on Software quality, ACM, pp. 9–14.

Cavaye, A. L. (1996), “Case study research: a multi-faceted research approach for is”,
Information systems journal, vol. 6, no. 3, pp. 227–242.

Cechich, A., M. Piattini & A. Vallecillo (2003), Component-based software quality:
methods and techniques, vol. 2693, Springer.

262 ∣ Bibliography

Ceri, S., M. Brambilla & P. Fraternali (2009), “The history of webml lessons learned
from 10 years of model-driven development of web applications”, in: Conceptual
modeling: Foundations and applications, Springer, pp. 273–292.

Chen, S.-M. (1998), “Aggregating fuzzy opinions in the group decision-making envi-
ronment”, Cybernetics & Systems, vol. 29, no. 4, pp. 363–376.

Chen, W. K. (2004), The electrical engineering handbook, Elsevier.
Chung, L, B Nixon, E Yu & J Mylopoulos (2000), “Non-functional requirements in

software engineering–kluwer academic publishers”, Massachusetts, USA.
Clements, P., R. Kazman, M. Klein, D. Devesh, S. Reddy & P. Verma (2007), “The

duties, skills, and knowledge of software architects”, in: 2007 Working IEEE/IFIP
Conference on Software Architecture (WICSA’07), IEEE, pp. 20–20.

Clements, P., R. Kazman, M. Klein, et al. (2003), Evaluating software architectures,
Tsinghua University Press Beijing.

Clements, P. & M. Shaw (2009), “" the golden age of software architecture" revisited”,
IEEE software, vol. 26, no. 4, pp. 70–72.

Cochran, J. K. & H.-N. Chen (2005), “Fuzzy multi-criteria selection of object-oriented
simulation software for production system analysis”, Computers & operations re-
search, vol. 32, no. 1, pp. 153–168.

Committee, S. E. S. et al. (1998), “Ieee standard for software maintenance”, IEEE Std,
pp. 1219–1998.

Cooper, R. & W. Emory (1995), Business Research Methods 5th et. London, Richard D
Irwin.

Corbin, J. & A. Strauss (2014), Basics of qualitative research: Techniques and procedures
for developing grounded theory, Sage publications.

Costanza, P., C. Herzeel & W. Verachtert (2019), “A comparison of three programming
languages for a full-fledged next-generation sequencing tool”, BMC bioinformatics,
vol. 20, no. 1, p. 301.

Cross, N (1999), “Evidence from protocol and other formal studies of design activity”,
Proceedings of Knowing and Learning to Design, pp. 27–29.

Cross, N. & R. Roy (1989), Engineering design methods, vol. 4, Wiley New York.
Cummings, J. (2003), “Knowledge sharing: a review of the literature”.
Cummings, T. G. & C. G. Worley (2014), Organization development and change, Cen-

gage learning.
Darke, P., G. Shanks & M. Broadbent (1998), “Successfully completing case study re-

search: combining rigour, relevance and pragmatism”, Information systems journal,
vol. 8, no. 4, pp. 273–289.

Davies, I. & M. Reeves (2010), “Bpm tool selection: the case of the queensland court
of justice”, in: Handbook on Business Process Management 1, Springer, pp. 339–360.

Davis, F. D. (1989), “Perceived usefulness, perceived ease of use, and user acceptance
of information technology”, MIS quarterly, pp. 319–340.

De Boer, R. C. & R. Farenhorst (2008), “In search ofarchitectural knowledge’”, in:
Proceedings of the 3rd international workshop on Sharing and reusing architectural
knowledge, pp. 71–78.

De Boer, R. C. & H. Van Vliet (2009), “Quont: an ontology for the reuse of quality
criteria”, in: 2009 ICSE Workshop on Sharing and Reusing Architectural Knowledge,
IEEE, pp. 57–64.

Bibliography ∣ 263

Dean Jr, J. W. & M. P. Sharfman (1993), “Procedural rationality in the strategic
decision-making process”, Journal of management Studies, vol. 30, no. 4, pp. 587–
610.

Dear Developers: Coding Languages That Will Set You Apart (2019), https://hired.
com/blog/candidates/data-reveals-hottest-coding-languages/, Pratini,
Napala, (visited on 02/09/2020).

Delgado, A., D. Calegari, P. Milanese, R. Falcon & E. García (2015), “A systematic
approach for evaluating bpm systems: case studies on open source and proprietary
tools”, in: IFIP International Conference on Open Source Systems, Springer, pp. 81–
90.

Desanctis, G. & R. B. Gallupe (1987), “A foundation for the study of group decision
support systems”, Management science, vol. 33, no. 5, pp. 589–609.

Developer Survey Results (2019), https://insights.stackoverflow.com/survey/
2019, StackOverflow, (visited on 02/09/2020).

Dhar, V. & R. Stein (1997), Intelligent Decision Support Methods: The Science of Knowl-
edge Work, USA: Prentice-Hall, Inc., ISBN: 0135199352.

Dhiman, H. S. & D. Deb (2020), Decision and Control in Hybrid Wind Farms, Springer.
Dinh, T. T. A., J. Wang, G. Chen, R. Liu, B. C. Ooi & K.-L. Tan (2017), “Blockbench:

a framework for analyzing private blockchains”, in: Proceedings of the 2017 ACM
International Conference on Management of Data, ACM, pp. 1085–1100.

Do You Speak Code? (2019), https : / / www . codingame . com / work / resources /
codingame - 2019 - developer - survey / programming - languages/, codingame,
(visited on 02/09/2020).

Dodgson, J. S., M. Spackman, A. Pearman & L. D. Phillips (2009), Multi-criteria anal-
ysis: a manual, Department for Communities and Local Government: London.

Donzelli, P. (2006), “Decision support system for software project management”, IEEE
software, vol. 23, no. 4, pp. 67–75.

Dougherty, D. & A. Robbins (1997), sed & awk: UNIX Power Tools, " O’Reilly Media,
Inc."

Doumpos, M. & E. Grigoroudis (2013), “Multicriteria decision aid and artificial intel-
ligence”, Whiley (UK).

Doval, D., S. Mancoridis & B. S. Mitchell (1999), “Automatic clustering of software
systems using a genetic algorithm”, in: STEP’99. Proceedings Ninth International
Workshop Software Technology and Engineering Practice, IEEE, pp. 73–81.

DSDM consortium and others (2014), “The dsdm agile project framework handbook”,
Ashford, Kent, UK: DSDM Consortium.

Dunie, R., W. Schulte, M Cantara & M. Kerremans (2019), “Magic quadrant for intel-
ligent business process management suites”, Gartner Inc.

Dutoit, A. H., R. McCall, I. Mistrík & B. Paech (2007), Rationale management in soft-
ware engineering, Springer Science & Business Media.

Dvořák, O., R. Pergl & P. Kroha (2018), “Affordance-driven software assembling”, in:
Enterprise Engineering Working Conference, Springer, pp. 39–54.

Dybå, T. & T. Dingsøyr (2008), “Empirical studies of agile software development: a
systematic review”, Information and software technology, vol. 50, no. 9-10, pp. 833–
859.

https://hired.com/blog/candidates/data-reveals-hottest-coding-languages/
https://hired.com/blog/candidates/data-reveals-hottest-coding-languages/
https://insights.stackoverflow.com/survey/2019
https://insights.stackoverflow.com/survey/2019
https://www.codingame.com/work/resources/codingame-2019-developer-survey/programming-languages/
https://www.codingame.com/work/resources/codingame-2019-developer-survey/programming-languages/

264 ∣ Bibliography

Eight Top Programming Languages and Frameworks of (2019), https://hackernoon.
com/8-top-programming-languages-frameworks-of-2019-2f08d2d21a1, hack-
ernoon, (visited on 02/09/2020).

Eisenhardt, K. M. (1989), “Building theories from case study research”, Academy of
management review, vol. 14, no. 4, pp. 532–550.

Elahi, A. & S. M. Babamir (2015), “Evaluating software architectural styles based
on quality features through hierarchical analysis and fuzzy integral (fahp)”, in:
Information and Knowledge Technology, IEEE, pp. 1–6.

Embley, D. W., S. W. Liddle & O. Pastor (2011), “Conceptual-model programming: a
manifesto”, in: Handbook of Conceptual Modeling, Springer, pp. 3–16.

Falessi, D., G. Cantone, R. Kazman & P. Kruchten (2011), “Decision-making tech-
niques for software architecture design: a comparative survey”, ACM Computing
Surveys (CSUR), vol. 43, no. 4, pp. 1–28.

Farenhorst, R. & H. Van Vliet (2009), “Understanding how to support architects in
sharing knowledge”, in: 2009 ICSE Workshop on Sharing and Reusing Architectural
Knowledge, IEEE, pp. 17–24.

Farshidi, S. & S. Jansen (2020a), “A decision support system for pattern-driven soft-
ware architecture”, in: Proceedings of the 14th European Conference on Software
Architecture, ECSA 2020, vol. 1, ACM, pp. 1–12.

– (2020b), “Evaluating architect adoption of a decision support tool”, (Submitted).
Farshidi, S., S. Jansen, R. De Jong & S. Brinkkemper (2018a), “A decision support

system for cloud service provider selection problems in software producing organi-
zations”, in: 2018 IEEE 20th Conference on Business Informatics (CBI), vol. 1, IEEE,
pp. 139–148.

– (2018b), “Multiple criteria decision support in requirements negotiation”, in: the
23rd International Conference on Requirements Engineering: Foundation for Software
Quality (REFSQ 2018), vol. 2075, pp. 100–107.

Farshidi, S., S. Jansen & M. Deldar (2020a), “A decision model for programming
language ecosystem selection”, (Submitted).

– (2020b), A Decision Model for Programming LanguageEcosystem Selection: Seven In-
dustry Case Studies, http://dx.doi.org/10.17632/5tc6v6zkzf.1, Utrecht
University, (visited on 05/15/2020).

Farshidi, S., S. Jansen, S. España & J. Verkleij (2020c), “Decision support for
blockchain platform selection: three industry case studies”, IEEE Transactions on
Engineering Management.

Farshidi, S., S. Jansen & S. Fortuin (2020d), Model-Driven Development Platform Se-
lection: Four Industry Case Studies, http://dx.doi.org/10.17632/fbg29x5vkk.1,
Utrecht University, (visited on 07/06/2020).

– (2021), “Model-driven development platform selection: four industry case studies”,
Software and Systems Modeling.

Farshidi, S., S. Jansen, R. de Jong & S. Brinkkemper (2018c), “A decision support
system for software technology selection”, Journal of Decision Systems.

Farshidi, S., S. Jansen & J. M. van der Werf (2020e), “Capturing software architecture
knowledge for pattern-driven design”, Journal of Systems and Software.

https://hackernoon.com/8-top-programming-languages-frameworks-of-2019-2f08d2d21a1
https://hackernoon.com/8-top-programming-languages-frameworks-of-2019-2f08d2d21a1
http://dx.doi.org/10.17632/5tc6v6zkzf.1
http://dx.doi.org/10.17632/fbg29x5vkk.1

Bibliography ∣ 265

Fedorowicz, J. (1993), “A technology infrastructure for document-based decision sup-
port systems”, in: Decision support systems (3rd ed.) putting theory into practice,
pp. 125–136.

Feldman, R. (2013), “Techniques and applications for sentiment analysis”, Communi-
cations of the ACM, vol. 56, no. 4, pp. 82–89.

Feraud, M. & S. Galland (2017), “First comparison of SARL to other agent-
programming languages and frameworks”, Procedia Computer Science, vol. 109,
pp. 1080–1085.

Fischer, G., A. C. Lemke, R. McCall & A. I. Morch (1991), “Making argumentation
serve design”, Human–Computer Interaction, vol. 6, no. 3-4, pp. 393–419.

Fitzgerald, B. & K.-J. Stol (2014), “Continuous software engineering and beyond:
trends and challenges”, in: Proceedings of the 1st International Workshop on Rapid
Continuous Software Engineering, pp. 1–9.

Fitzgerald, D. R., S. Mohammed & G. O. Kremer (2017), “Differences in the way we
decide: the effect of decision style diversity on process conflict in design teams”,
Personality and Individual Differences, vol. 104, pp. 339–344.

Floudas, C. A. & P. M. Pardalos (2008), Encyclopedia of optimization, Springer Science
& Business Media.

Fortus, D., J. Krajcik, R. C. Dershimer, R. W. Marx & R. Mamlok-Naaman (2005),
“Design-based science and real-world problem-solving”, International Journal of
Science Education, vol. 27, no. 7, pp. 855–879.

Forward, A. & T. C. Lethbridge (2008), “A taxonomy of software types to facilitate
search and evidence-based software engineering”, in: Proceedings of the 2008 con-
ference of the center for advanced studies on collaborative research: meeting of minds,
ACM, p. 14.

Franch, X. & J. P. Carvallo (2003), “Using quality models in software package selec-
tion”, IEEE software, vol. 20, no. 1, pp. 34–41.

Frauenthaler, P., M. Borkowski & S. Schulte (2019), “A framework for blockchain
interoperability and runtime selection”, arXiv preprint arXiv:1905.07014.

Frederiksen, N. (1986), “Toward a broader conception of human intelligence.”, Amer-
ican Psychologist, vol. 41, no. 4, p. 445.

Fu, L., L. Shi, Y. Yang & B. Yu (2010), “The selection of project management software
by FAHP and FMCDM in automobile r&d process”, in: Networking and Digital Society
(ICNDS), 2010 2nd International Conference on, vol. 1, IEEE, pp. 66–69.

Galster, M., A. Eberlein & M. Moussavi (2010), “Systematic selection of software ar-
chitecture styles”, Iet Software, vol. 4, no. 5, pp. 349–360.

García-Borgoñon, L., M. A. Barcelona, J. A. García-García, M Alba & M. J. Escalona
(2014), “Software process modeling languages: a systematic literature review”, In-
formation and Software Technology, vol. 56, no. 2, pp. 103–116.

Garg, R., R Sharma & K. Sharma (2017), “Mcdm based evaluation and ranking of
commercial off-the-shelf using fuzzy based matrix method”, Decision Science Letters,
vol. 6, no. 2, pp. 117–136.

Garg, S. K., S. Versteeg & R. Buyya (2011), “Smicloud: a framework for comparing
and ranking cloud services”, in: Utility and Cloud Computing (UCC), 2011 Fourth
IEEE International Conference on, IEEE, pp. 210–218.

266 ∣ Bibliography

Garlan, D. (2014), “Software architecture: a travelogue”, in: Proceedings of the on
Future of Software Engineering, ACM, pp. 29–39.

Garlan, D. & M. Shaw (1993), “An introduction to software architecture”, in: Advances
in software engineering and knowledge engineering, World Scientific, pp. 1–39.

Gerrity, T. P. (1971), “Design of man-machine decision systems: an application to
portfolio management”, in:

Ghosh, T. (2004), “Creating incentives for knowledge sharing draft”.
Gigerenzer, G. & R. Selten (2002), Bounded rationality: The adaptive toolbox, MIT

press.
Gigerenzer, G. & P. M. Todd (1999), Simple heuristics that make us smart, Oxford

University Press, USA.
Gil-Aluja, J. (2013), Handbook of management under uncertainty, vol. 55, Springer

Science & Business Media.
Glass, R. L. (2006), Software Creativity 2.0, developer.* Books.
Godse, M. & S. Mulik (2009), “An approach for selecting software-as-a-service (saas)

product”, in: Cloud Computing, 2009. CLOUD’09. IEEE International Conference on,
IEEE, pp. 155–158.

Graaf, B., M. Lormans & H. Toetenel (2003), “Embedded software engineering: the
state of the practice”, IEEE software, vol. 20, no. 6, pp. 61–69.

Gregor, S. (2006), “The nature of theory in information systems”, MIS Quarterly,
vol. 30, no. 3, pp. 611–642.

Gruber, T. R. (1989), “Automated knowledge acquisition for strategic knowledge”, in:
Knowledge Acquisition: Selected Research and Commentary, Springer, pp. 47–90.

Guo, J., J. White, G. Wang, J. Li & Y. Wang (2011), “A genetic algorithm for optimized
feature selection with resource constraints in software product lines”, Journal of
Systems and Software, vol. 84, no. 12, pp. 2208–2221.

Hailpern, B. & P. Tarr (2006), “Model-driven development: the good, the bad, and the
ugly”, IBM systems journal, vol. 45, no. 3, pp. 451–461.

Halabi, T. & M. Bellaiche (2017), “Evaluation and selection of cloud security services
based on multi-criteria analysis MCA”, in: Computing, Networking and Communica-
tions (ICNC), 2017 International Conference on, IEEE, pp. 706–710.

Haoues, M., A. Sellami, H. Ben-Abdallah & L. Cheikhi (2017), “A guideline for soft-
ware architecture selection based on ISO 25010 quality related characteristics”, Int.
Journal of System Assurance Engineering and Management, vol. 8, no. S2, pp. 886–
909.

Haren, V. (2011), “Togaf version 9.1 a pocket guide”.
Harrison, N. B. & P. Avgeriou (2007), “Leveraging architecture patterns to satisfy

quality attributes”, in: European conference on software architecture, pp. 263–270.
– (2008a), “Analysis of architecture pattern usage in legacy system architecture doc-

umentation”, in: Seventh Working IEEE/IFIP Conference on Software Architecture
(WICSA 2008), IEEE, pp. 147–156.

Harrison, N. B. & P. Avgeriou (2008b), “Incorporating fault tolerance tactics in soft-
ware architecture patterns”, in: International Workshop on Software Engineering for
Resilient Systems, New York, New York, USA: ACM Press, p. 9.

Bibliography ∣ 267

Harrison, N. B. & P. Avgeriou (2010), “How do architecture patterns and tactics in-
teract? a model and annotation”, Journal of Systems and Software, vol. 83, no. 10,
pp. 1735–1758.

Heineman, G. T. & W. T. Councill (2001), “Component-based software engineering”,
Putting the pieces together, addison-westley, p. 5.

Hendriks, D., S. Hoppenbrouwers & P van Bommel (2017), “The selection process
of model based platforms”, MA thesis, the Netherlands: Radboud University Ni-
jmegen.

Hettiarachchi, C. & H. Do (2019), “A systematic requirements and risks-based test
case prioritization using a fuzzy expert system”, in: 2019 IEEE 19th International
Conference on Software Quality, Reliability and Security (QRS), IEEE, pp. 374–385.

Hevner, A. R., S. T. March, J. Park & S. Ram (2004), “Design science in information
systems research”, MIS quarterly, pp. 75–105.

– (2008), “Design science in information systems research”, Management Information
Systems Quarterly, vol. 28, no. 1, p. 6.

Hileman, G. & M. Rauchs (2017), Global blockchain benchmarking study.
Holsapple, C., S. Shen & A. Whinston (1982), “A consulting system for data base

design”, Information Systems, vol. 7, no. 3, pp. 281 –296.
Holtz, N. M. & W. J. Rasdorf (1988), “An evaluation of programming languages and

language features for engineering software development”, Engineering with Com-
puters, vol. 3, no. 4, pp. 183–199.

Horner, J. & M. E. Atwood (2006), “Effective design rationale: understanding the
barriers”, in: Rationale management in software engineering, Springer, pp. 73–90.

Hospers, J. (1956), “What is explanation?”, Essays in Conceptual Analysis, pp. 94–119.
Howard, T. J., S. J. Culley & E. Dekoninck (2008), “Describing the creative design pro-

cess by the integration of engineering design and cognitive psychology literature”,
Design studies, vol. 29, no. 2, pp. 160–180.

Hu, S. D. (2013), Expert systems for software engineers and managers, Springer Science
& Business Media.

Hussain, S., J. Keung & A. A. Khan (2017), “Software design patterns classification
and selection using text categorization approach”, Applied Soft Computing, vol. 58,
pp. 225–244.

Hutchinson, J., J. Whittle & M. Rouncefield (2014), “Model-driven engineering prac-
tices in industry: social, organizational and managerial factors that lead to success
or failure”, Science of Computer Programming, vol. 89, pp. 144–161.

Ibriwesh, I., S.-B. Ho & I. Chai (2018), “Overcoming scalability issues in analytic
hierarchy process with redccahp: an empirical investigation”, Arabian Journal for
Science and Engineering, vol. 43, no. 12, pp. 7995–8011.

IEEE-SA (2000), 1471-2000-IEEE Recommended Practice for Architectural Description
for Software-Intensive Systems.

İmamoğlu, M. Y. & D. Çetinkaya (2017), “A rule based decision support system for
programming language selection”, in: 2017 2nd International Conference on Knowl-
edge Engineering and Applications (ICKEA), IEEE, pp. 71–75.

ISO (2011), “Iec25010: 2011 systems and software engineering–systems and soft-
ware quality requirements and evaluation (square)–system and software quality
models”, International Organization for Standardization, vol. 34, p. 2910.

268 ∣ Bibliography

ISO (2011), “Iec/ieee systems and software engineering: architecture description”,
ISO/IEC/IEEE 42010: 2011 (E)(Revision of ISO/IEC 42010: 2007 and IEEE Std 1471-
2000).

– (2017), iec/ieee international standard-systems and software engineering–vocabulary,
tech. rep., ISO/IEC/IEEE 24765: 2017 (E).

Jacob, P. M. & P. Mani (2018), “Software architecture pattern selection model for
internet of things based systems”, IET Software.

Jadhav, A. S. & R. M. Sonar (2011), “Framework for evaluation and selection of the
software packages: a hybrid knowledge based system approach”, Journal of Systems
and Software, vol. 84, no. 8, pp. 1394–1407.

Jansen, A. & J. Bosch (2005), “Software architecture as a set of architectural de-
sign decisions”, in: Working IEEE/IFIP Conference on Software Architecture, IEEE,
pp. 109–120.

Jansen, A., J. Bosch & P. Avgeriou (2008), “Documenting after the fact: recovering
architectural design decisions”, Journal of Systems and Software, vol. 81, no. 4,
pp. 536–557.

Jansen, S., M. Cusumano & K. M. Popp (2019), “Managing software platforms and
ecosystems”, IEEE Software, vol. 36, no. 3, pp. 17–21.

Jansen, S. (2009), “Applied multi-case research in a mixed-method research project:
customer configuration updating improvement”, in: Information Systems Research
Methods, Epistemology, and Applications, IGI Global, pp. 120–139.

Jansen, S., S. Brinkkemper & A. Finkelstein (2013a), “Business network management
as a survival strategy”, in: Software Ecosystems, Edward Elgar Publishing, 29––42.

Jansen, S., M. A. Cusumano & S. Brinkkemper (2013b), Software ecosystems: analyz-
ing and managing business networks in the software industry, Edward Elgar Publish-
ing.

Johnson, R. B. & A. J. Onwuegbuzie (2004), “Mixed methods research: a research
paradigm whose time has come”, Educational researcher, vol. 33, no. 7, pp. 14–26.

Jones, S. R. (1992), “Was there a hawthorne effect?”, American Journal of sociology,
vol. 98, no. 3, pp. 451–468.

Jusoh, Y. Y., K. Chamili, N. Che Pa & J. Yahaya (2014), “Open source software se-
lection using an analytical hierarchy process (ahp)”, American Journal of Software
Engineering and Applications, vol. 3, no. 6, pp. 83–89.

Kahneman, D., S. P. Slovic, P. Slovic & A. Tversky (1982), Judgment under uncertainty:
Heuristics and biases, Cambridge university press.

Kamal, A. W. & P. Avgeriou (2010), “Mining relationships between the participants of
architectural patterns”, in: European Conference on Software Architecture, Springer,
pp. 401–408.

Kapteijns, T., S. Jansen, S. Brinkkemper, H. Houët & R. Barendse (2009), “A com-
parative case study of model driven development vs traditional development: the
tortoise or the hare”, From code centric to model centric software engineering: Prac-
tices, Implications and ROI, vol. 22.

Karsak, E. E. & C. O. Özogul (2009), “An integrated decision making approach for erp
system selection”, Expert systems with Applications, vol. 36, no. 1, pp. 660–667.

Bibliography ∣ 269

Kaufmann, L., S. Kreft, M. Ehrgott & F. Reimann (2012), “Rationality in supplier
selection decisions: the effect of the buyer’s national task environment”, Journal of
Purchasing and Supply Management, vol. 18, no. 2, pp. 76–91.

Kazman, R., L. Bass, G. Abowd & M. Webb (1994), “Saam: a method for analyzing
the properties of software architectures”, in: Proceedings of 16th International Con-
ference on Software Engineering, IEEE, pp. 81–90.

Khadka, R., B. V. Batlajery, A. M. Saeidi, S. Jansen & J. Hage (2014), “How do pro-
fessionals perceive legacy systems and software modernization?”, in: Proceedings of
the 36th International Conference on Software Engineering, pp. 36–47.

Khan, K. S., G. Ter Riet, J. Glanville, A. J. Sowden, J. Kleijnen, et al. (2001), Under-
taking systematic reviews of research on effectiveness: CRD’s guidance for carrying out
or commissioning reviews, 4 (2n, NHS Centre for Reviews and Dissemination.

Khari, M. & N. Kumar (2013), “Comparison of six prioritization techniques for soft-
ware requirements”, Journal of Global Research in Computer Science, vol. 4, no. 1,
pp. 38–43.

Kim, J.-O., O. Ahtola, P. E. Spector, C. W. Mueller, et al. (1978), Introduction to factor
analysis: What it is and how to do it, vol. 13, Sage.

Kitchenham, B. (2004), “Procedures for performing systematic reviews”, Keele, UK,
Keele University, vol. 33, no. 2004, pp. 1–26.

Kitchenham, B. A., T. Dyba & M. Jorgensen (2004), “Evidence-based software engi-
neering”, in: Proceedings of the 26th international conference on software engineering,
IEEE Computer Society, pp. 273–281.

Kochhar, P. S., D. Wijedasa & D. Lo (2016), “A large scale study of multiple program-
ming languages and code quality”, in: 2016 IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), vol. 1, IEEE, pp. 563–573.

Koens, T. & E. Poll (2018), “What blockchain alternative do you need?”, in: Data Pri-
vacy Management, Cryptocurrencies and Blockchain Technology, Springer, pp. 113–
129.

Kohli, R. & S. K. Sehra (2014), “Fuzzy multi criteria approach for selecting software
quality model”, International Journal of Computer Applications, vol. 98, no. 11.

Kruchten, P. (1999), “The software architect”, in: Working Conference on Software
Architecture, Springer, pp. 565–583.

– (2006), “What do software architects do”, Technical Report SEI online report.
– (2008), “What do software architects really do?”, Journal of Systems and Software,

vol. 81, no. 12, pp. 2413–2416.
Kruchten, P., H. Obbink & J. Stafford (2006), “The past, present, and future for soft-

ware architecture”, IEEE software, vol. 23, no. 2, pp. 22–30.
Kuo, T.-T., H. Zavaleta Rojas & L. Ohno-Machado (2019), “Comparison of blockchain

platforms: a systematic review and healthcare examples”, Journal of the American
Medical Informatics Association, vol. 26, no. 5, pp. 462–478.

Lago, P. & P. Avgeriou (2006), “First workshop on sharing and reusing architectural
knowledge.”, ACM SIGSOFT Software Engineering Notes, vol. 31, no. 5, pp. 32–36.

Laitenberger, O. & H. M. Dreyer (1998), “Evaluating the usefulness and the ease of use
of a web-based inspection data collection tool”, in: Int. Software Metrics Symposium.
Metrics, IEEE, pp. 122–132.

270 ∣ Bibliography

Lee, J. W. & S. H. Kim (2000), “Using analytic network process and goal programming
for interdependent information system project selection”, Computers & Operations
Research, vol. 27, no. 4, pp. 367–382.

Lee, S. & K.-K. Seo (2016), “A hybrid multi-criteria decision-making model for a cloud
service selection problem using bsc, fuzzy delphi method and fuzzy ahp”, Wireless
Personal Communications, vol. 86, no. 1, pp. 57–75.

Legard, R., J. Keegan & K. Ward (2003), “In-depth interviews”, Qualitative research
practice: A guide for social science students and researchers, vol. 6, no. 1, pp. 138–
169.

Lesani, S. H., B. Rouyendegh & B Erdebilli (2014), “Object-oriented programming lan-
guage selection using fuzzy AHP method”, in: annual meeting of the ISAHP, vol. 29,
pp. 1–17.

Li, Y.-F., M. Xie & T. Goh (2009), “A study of mutual information based feature se-
lection for case based reasoning in software cost estimation”, Expert Systems with
Applications, vol. 36, no. 3, pp. 5921–5931.

Lin, H.-Y., P.-Y. Hsu & G.-J. Sheen (2007), “A fuzzy-based decision-making proce-
dure for data warehouse system selection”, Expert systems with applications, vol. 32,
no. 3, pp. 939–953.

Little, J. D. (1970), “Models and managers: the concept of a decision calculus”, Man-
agement science, vol. 16, no. 8, B–466.

Liu, B. (2012), “Sentiment analysis and opinion mining”, Synthesis lectures on human
language technologies, vol. 5, no. 1, pp. 1–167.

Liu, S., F. T. Chan & W. Ran (2016), “Decision making for the selection of cloud ven-
dor: an improved approach under group decision-making with integrated weights
and objective/subjective attributes”, Expert Systems with Applications, vol. 55,
pp. 37–47.

Look At 5 of the Most Popular Programming Languages (2019), https://stackify.
com / popular - programming - languages - 2018/, PUTANO, BEN, (visited on
02/09/2020).

Macdonald, M, L Liu-Thorrold & R Julien (2017), “The blockchain: a comparison of
platforms and their uses beyond bitcoin”, COMS4507-Adv. Computer and Network
Security.

Maček, D. & D. Alagić (2017), “Comparisons of bitcoin cryptosystem with other com-
mon internet transaction systems by AHP technique”, Journal of Information and
Organizational Sciences, vol. 41, no. 1, pp. 69–87.

Maiden, N., S. Jones, K. Karlsen, R. Neill, K. Zachos & A. Milne (2010), “Requirements
engineering as creative problem solving: a research agenda for idea finding”, in:
2010 18th IEEE International Requirements Engineering Conference, IEEE, pp. 57–
66.

Majidi, E., M. Alemi & H. Rashidi (2010), “Software architecture: a survey and classi-
fication”, in: Communication Software and Networks, 2010. ICCSN’10. Second Inter-
national Conference on, IEEE, pp. 454–460.

Majumder, M. (2015), “Multi criteria decision making”, in: Impact of urbanization on
water shortage in face of climatic aberrations, Springer, pp. 35–47.

https://stackify.com/popular-programming-languages-2018/
https://stackify.com/popular-programming-languages-2018/

Bibliography ∣ 271

Malek, S., H. Ramnath Krishnan & J. Srinivasan (2010), “Enhancing middleware sup-
port for architecture-based development through compositional weaving of styles”,
Journal of Systems and Software, vol. 83, no. 12, pp. 2513–2527.

Mannila, L. & M. de Raadt (2006), “An objective comparison of languages for teach-
ing introductory programming”, in: Proceedings of the 6th Baltic Sea conference on
Computing education research: Koli Calling 2006, pp. 32–37.

Maple, C. & J. Jackson (2018), “Selecting effective blockchain solutions”, in: European
Conference on Parallel Processing, Springer, pp. 392–403.

Maranville, S. (1992), “Entrepreneurship in the business curriculum”, Journal of Ed-
ucation for Business, vol. 68, no. 1, pp. 27–31.

March, S. T. & V. C. Storey (2008), “Design science in the information systems dis-
cipline: an introduction to the special issue on design science research”, MIS quar-
terly, vol. 32, no. 4, pp. 725–730.

Marín, B., A. Salinas, J. Morandé, G. Giachetti & J. L. de la Vara (2014), “Main features
for mdd tools: an exploratory study”, in: International Conference on Model-Driven
Engineering and Software Development, Springer, pp. 183–196.

Maxwell, J. A. (2012), Qualitative research design: An interactive approach, vol. 41,
Sage publications.

Me, G., C. Calero & P. Lago (2016), “A long way to quality-driven pattern-based ar-
chitecting”, in: European Conference on Software Architecture, ed. by Tekinerdogan,
B., Zdun, U. & Babar, A., Cham: Springer International Publishing, pp. 39–54.

Medvidovic, N. & R. N. Taylor (2010), “Software architecture: foundations, theory,
and practice”, in: Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering-Volume 2, ACM, pp. 471–472.

Meidan, A., J. A. García-García, M. Escalona & I Ramos (2017), “A survey on business
processes management suites”, Computer Standards & Interfaces, vol. 51, pp. 71–
86.

Mejri, A., S. A. Ghanouchi & R. Martinho (2015), “Evaluation of process modeling
paradigms enabling flexibility”, Procedia Computer Science, vol. 64, pp. 1043–1050.

Melle, W. van, E. H. Shortliffe & B. G. Buchanan (1984), “EMYCIN: a knowledge en-
gineer’s tool for constructing rule-based expert systems”, Rule-based expert systems:
The MYCIN experiments of the Stanford Heuristic Programming Project, pp. 302–313.

Melo, C. d. O., J. Moraes, M. Ferreira & R. M. d. C. Figueiredo (2017), “A method for
evaluating end-user development technologies”, ORGANIZATIONAL TRANSFORMA-
TION and INFORMATION SYSTEMS (SIGORSA).

Meredith, J. (1993), “Theory building through conceptual methods”, International
Journal of Operations & Production Management, vol. 13, no. 5, pp. 3–11.

Meredith, J. R., A. Raturi, K. Amoako-Gyampah & B. Kaplan (1989), “Alternative
research paradigms in operations”, Journal of operations management, vol. 8, no. 4,
pp. 297–326.

Meuser, M. & U. Nagel (1989), “Experteninterviews-vielfach erprobt, wenig bedacht:
ein beitrag zur qualitativen methodendiskussion”.

Meyer, A., E. T. Barr, C. Bird & T. Zimmermann (2019), “Today was a good day: the
daily life of software developers”, IEEE Transactions on Software Engineering.

Meyerovich, L. A. & A. S. Rabkin (2013), “Empirical analysis of programming lan-
guage adoption”, in: ACM SIGPLAN Notices, vol. 48, ACM, pp. 1–18.

272 ∣ Bibliography

Mishra, A. R., A. Chandel & D. Motwani (2020), “Extended mabac method based on
divergence measures for multi-criteria assessment of programming language with
interval-valued intuitionistic fuzzy sets”, Granular Computing, vol. 5, no. 1, pp. 97–
117.

Moaven, S., J. Habibi, H. Ahmadi & A. Kamandi (2008), “A Decision Support Sys-
tem for Software Architecture-Style Selection”, in: 2008 Sixth International Confer-
ence on Software Engineering Research, Management and Applications, IEEE, IEEE,
pp. 213–220, ISBN: 978-0-7695-3302-5, URL: http://ieeexplore.ieee.org/
document/4609428/.

Mohamed, A. H. (2010), “Facilitating tacit-knowledge acquisition within require-
ments engineering”, in: Proceedings of the 10th WSEAS international conference on
Applied computer science, pp. 27–32.

Mohemad, R., A. R. Hamdan, Z. A. Othman & N. M. M. Noor (2010), “Deci-
sion support systems (DSS) in construction tendering processes”, arXiv preprint
arXiv:1004.3260.

Montibeller, G. & D. Winterfeldt (2015), “Cognitive and motivational biases in deci-
sion and risk analysis”, Risk Analysis, vol. 35, no. 7, pp. 1230–1251.

Morton, M. S. S. (1971), Management decision systems: computer-based support for
decision making, Division of Research, Graduate School of Business Administration,
Harvard . . .

Most used programming languages among developers worldwide (2019), https://www.
statista.com/statistics/793628/worldwide-developer-survey-most-used-
languages/, statista, (visited on 02/09/2020).

Musen, M. A., B. Middleton & R. A. Greenes (2014), “Clinical decision-support sys-
tems”, in: Biomedical informatics, Springer, pp. 643–674.

Myers, M. D. & M. Newman (2007), “The qualitative interview in is research: exam-
ining the craft”, Information and organization, vol. 17, no. 1, pp. 2–26.

Nadeau, R., E. Cloutier & J.-H. Guay (1993), “New evidence about the existence of a
bandwagon effect in the opinion formation process”, International Political Science
Review, vol. 14, no. 2, pp. 203–213.

Nawaz, F., A. Mohsin, S. Fatima & N. K. Janjua (2015), “Rule-based multi-criteria
framework for saas application architecture selection”, in: IFIP Int. Conf. on Artificial
Intelligence in Theory and Practice, Springer, pp. 129–138.

Nickerson, R. S. (1994), “The teaching of thinking and problem solving”, in: Thinking
and problem solving, Elsevier, pp. 409–449.

Nonaka, I. & H. Takeuchi (1995), The knowledge-creating company: How Japanese
companies create the dynamics of innovation, Oxford university press.

Nonaka, I. & G. Von Krogh (2009), “Perspective—tacit knowledge and knowledge
conversion: controversy and advancement in organizational knowledge creation
theory”, Organization science, vol. 20, no. 3, pp. 635–652.

Olariu, C., M. Gogan & F. Rennung (2016), “Switching the center of software devel-
opment from it to business experts using intelligent business process management
suites”, in: Soft Computing Applications, Springer, pp. 993–1001.

Onut, S. & T. Efendigil (2010), “A theorical model design for erp software selection
process under the constraints of cost and quality: a fuzzy approach”, Journal of
Intelligent & Fuzzy Systems, vol. 21, no. 6, pp. 365–378.

http://ieeexplore.ieee.org/document/4609428/
http://ieeexplore.ieee.org/document/4609428/
https://www.statista.com/statistics/793628/worldwide-developer-survey-most-used-languages/
https://www.statista.com/statistics/793628/worldwide-developer-survey-most-used-languages/
https://www.statista.com/statistics/793628/worldwide-developer-survey-most-used-languages/

Bibliography ∣ 273

Oztaysi, B. (2014), “A decision model for information technology selection using ahp
integrated topsis-grey: the case of content management systems”, Knowledge-Based
Systems, vol. 70, pp. 44–54.

Pahl, C., N. El Ioini & S. Helmer (2018), “A decision framework for blockchain plat-
forms for IoT and edge computing”, in: International Conference on Internet of
Things, Big Data and Security.

Pang, B. & L. Lee (2008), “Opinion mining and sentiment analysis”, Foundations and
trends in information retrieval, vol. 2, no. 1-2, pp. 1–135.

Parker, K. R., J. T. Chao, T. A. Ottaway & J. Chang (2006), “A formal language selec-
tion process for introductory programming courses”, Journal of Information Tech-
nology Education: Research, vol. 5, no. 1, pp. 133–151.

Pastor, O. & J. C. Molina (2007), Model-driven architecture in practice: a software pro-
duction environment based on conceptual modeling, Springer Science & Business Me-
dia.

Patton, M. Q. (2015), “Qualitative research and methods: integrating theory and prac-
tice”, Thousand Oaks, CA: SAGE Publications.

Perkusich, M., L. C. e Silva], A. Costa, F. Ramos, R. Saraiva, A. Freire, E. Dilorenzo,
E. Dantas, D. Santos, K. Gorgônio, H. Almeida & A. Perkusich (2020), “Intelligent
software engineering in the context of agile software development: a systematic
literature review”, Information and Software Technology, vol. 119, p. 106241.

Petersen, K., R. Feldt, S. Mujtaba & M. Mattsson (2008), “Systematic mapping studies
in software engineering.”, International Conference on Evaluation and Assessment in
Software Engineering.

Peyton Jones, S., R. Leshchinskiy, G. Keller & M. M. Chakravarty (2008), “Harnessing
the multicores: nested data parallelism in haskell”, in: IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science, Schloss
Dagstuhl-Leibniz-Zentrum für Informatik.

Phillips Brooks, F. (1995), The Mythical Man-Month: Essays on Software Engineering,
Anniversary Edition, 2/E, Pearson Education India.

Polanyi, M. (1966), The Tacit Dimension, London: Routledge and Kegan Paul.
Pour, G. (1998), “Component-based software development approach: new opportu-

nities and challenges”, in: Proceedings. Technology of Object-Oriented Languages.
TOOLS 26 (Cat. No. 98EX176), IEEE, pp. 376–383.

Pour, G., M. Griss & J. Favaro (1999), “Making the transition to component-based en-
terprise software development: overcoming the obstacles-patterns for success”, in:
Proceedings Technology of Object-Oriented Languages and Systems. TOOLS 29 (Cat.
No. PR00275), IEEE, pp. 419–419.

Power, D. J. (2000), “Web-based and model-driven decision support systems: concepts
and issues”, AMCIS 2000 Proceedings, p. 387.

– (2008a), “Decision support systems: a historical overview”, in: Handbook on deci-
sion support systems 1, Springer, pp. 121–140.

– (2008b), “Understanding data-driven decision support systems”, Information Sys-
tems Management, vol. 25, no. 2, pp. 149–154.

Power, D. J. & R. Sharda (2007), “Model-driven decision support systems: concepts
and research directions”, Decision Support Systems, vol. 43, no. 3, pp. 1044–1061.

274 ∣ Bibliography

Pramod Mathew Jacob, a. P. M. (2018), “Software architecture pattern selection
model for internet of things based systems”, IET Software, vol. 12, 5, 390–396(6).

Pressman, R. S. (2005), Software engineering: a practitioner’s approach, Palgrave
macmillan.

Programming Languages InfoQ Trends Report (2019), https://www.infoq.com/
articles/programming-language-trends-2019/, Avram, Abel et al., (visited on
02/09/2020).

PYPL PopularitY of Programming Language (2019), http://pypl.github.io/PYPL.
html, PYPL, (visited on 02/09/2020).

Qin, Z., X. Zheng & J. Xing (2008), “Architectural styles and patterns”, Software Ar-
chitecture, pp. 34–88.

Ramsey, C. L. & V. R. Basili (1989), “An evaluation of expert systems for software en-
gineering management”, IEEE Transactions on Software Engineering, vol. 15, no. 6,
pp. 747–759.

Ravasan, A. Z., S. Rouhani & H. Hamidi (2014), “A practical framework for business
process management suites selection using fuzzy topsis approach.”, in: ICEIS (3)),
pp. 295–302.

Ray, B., D. Posnett, V. Filkov & P. Devanbu (2014), “A large scale study of pro-
gramming languages and code quality in github”, in: Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering, ACM,
pp. 155–165.

Razavian, M., A. Tang, R. Capilla & P. Lago (2016), “Reflective approach for software
design decision making”, in: 2016 Qualitative Reasoning about Software Architec-
tures (QRASA), IEEE, pp. 19–26.

Repschlaeger, J., T. Proehl & R. Zarnekow (2014), “Cloud service management deci-
sion support: an application of AHP for provider selection of a cloud-based it service
management system”, Intelligent Decision Technologies, vol. 8, no. 2, pp. 95–110.

Ribeiro, R. A., A. M. Moreira, P. Van den Broek & A. Pimentel (2011), “Hybrid assess-
ment method for software engineering decisions”, Decision Support Systems, vol. 51,
no. 1, pp. 208–219.

Richards, M. (2015), Software architecture patterns, O’Reilly Media, Incorporated.
Richardson, C. & J. R. Rymer (2016), “Vendor landscape: the fractured, fertile terrain

of low-code application platforms”, FORRESTER, Janeiro.
Riloff, E. (1996), “An empirical study of automated dictionary construction for infor-

mation extraction in three domains”, Artificial intelligence, vol. 85, no. 1-2, pp. 101–
134.

Rodriguez, A., F. Ortega & R. Concepción (2017), “An intuitionistic method for the
selection of a risk management approach to information technology projects”, IS,
vol. 375, pp. 202–218.

Rouhani, S. & A. Z. Ravasan (2015), “Multi-objective model for intelligence evalua-
tion and selection of enterprise systems”, International Journal of Business Informa-
tion Systems, vol. 20, no. 4, pp. 397–426.

Rozanski, N. & E. Woods (2012), Software systems architecture: working with stake-
holders using viewpoints and perspectives, Addison-Wesley.

https://www.infoq.com/articles/programming-language-trends-2019/
https://www.infoq.com/articles/programming-language-trends-2019/
http://pypl.github.io/PYPL.html
http://pypl.github.io/PYPL.html

Bibliography ∣ 275

Ruhe, G. (2002), “Software engineering decision support–a new paradigm for learn-
ing software organizations”, in: International Workshop on Learning Software Orga-
nizations, Springer, pp. 104–113.

Runeson, P. & M. Höst (2009), “Guidelines for conducting and reporting case study
research in software engineering”, Empirical software engineering, vol. 14, no. 2,
p. 131.

Runeson, P., M. Host, A. Rainer & B. Regnell (2012), Case study research in software
engineering: Guidelines and examples, John Wiley & Sons.

Rus, I. & J. S. Collofello (1999), “A decision support system for software reliabil-
ity engineering strategy selection”, in: Proceedings. Twenty-Third Annual Interna-
tional Computer Software and Applications Conference (Cat. No. 99CB37032), IEEE,
pp. 376–381.

Rus, I., M. Halling & S. Biffl (2003), “Supporting decision-making in software en-
gineering with process simulation and empirical studies”, International Journal of
Software Engineering and Knowledge Engineering, vol. 13, no. 05, pp. 531–545.

Rymer, J, R. Koplowitz, C Mines, S Sjoblom & C Turley (2019), The Forrester Wave™:
Low-Code Development Platforms For AD&D Professionals.

Saaty, T. L. (1990), “How to make a decision: the analytic hierarchy process”, Euro-
pean journal of operational research, vol. 48, no. 1, pp. 9–26.

Saaty, T. L. & L. G. Vargas (2006), Decision making with the analytic network process,
Springer.

Sabagh, A. A. & A. Al-Yasiri (2011), “An extensible framework for context-aware smart
environments”, in: International Conference on Architecture of Computing Systems,
Springer, pp. 98–109.

Sabry, A. E. (2015), “Decision Model for Software Architectural Tactics Selection
Based on Quality Attributes Requirements”, Procedia Computer Science, vol. 65,
pp. 422–431.

Sage, A. (1991), Decision support systems engineering, Wiley series in systems engi-
neering, J. Wiley, ISBN: 9780471530008.

Sahay, B. & A. Gupta (2003), “Development of software selection criteria for supply
chain solutions”, Industrial Management & Data Systems.

Saldaña, J. (2015), The coding manual for qualitative researchers, Sage.
Samadhiya, D., S.-H. Wang & D. Chen (2010), “Quality models: role and value in

software engineering”, in: 2010 2nd International Conference on Software Technol-
ogy and Engineering, vol. 1, IEEE, pp. V1–320.

Sanchis, R., Ó. García-Perales, F. Fraile & R. Poler (2020), “Low-code as enabler of
digital transformation in manufacturing industry”, Applied Sciences, vol. 10, no. 1,
p. 12.

Sattar, N. A. (2018), “Selection of low-code platforms based on organization and ap-
plication type”, MA thesis, Lappeenranta University of Technology, Finland: Busi-
ness and Management.

Schmidt, D. C., M. Stal, H. Rohnert & F. Buschmann (2013), Pattern-Oriented Software
Architecture, Patterns for Concurrent and Networked Objects, vol. 2, John Wiley &
Sons.

Schon, D. A. (1984), The reflective practitioner: How professionals think in action,
vol. 5126, Basic books.

276 ∣ Bibliography

Seaman, C. B. (1999), “Qualitative methods in empirical studies of software engi-
neering”, IEEE Transactions on software engineering, vol. 25, no. 4, pp. 557–572.

Şen, A. Y., N. Semiz, B. Güneş, D. Algül, Z. Gergin & N. D. Dönmez (2018), “The
selection of a process management software with fuzzy topsis multiple criteria de-
cision making method”, in: The International Symposium for Production Research,
Springer, pp. 150–167.

Sendall, S. & W. Kozaczynski (2003), “Model transformation: the heart and soul of
model-driven software development”, IEEE software, vol. 20, no. 5, pp. 42–45.

Serour, M. & B Henderson-Sellers (2005), “Resistance to adoption of an oo software
engineering process: an empirical study”, in: European and Mediterranean Confer-
ence on Information Systems, EMCIS 2005.

Sharda, R., S. H. Barr & J. C. MCDonnell (1988), “Decision support system effective-
ness: a review and an empirical test”, Management science, vol. 34, no. 2, pp. 139–
159.

Sharma, A., M. Kumar & S. Agarwal (2015), “A complete survey on software archi-
tectural styles and patterns”, Procedia Computer Science, vol. 70, pp. 16–28.

Shaw, M. (1995), “Making choices: a comparison of styles for software architecture”,
IEEE Software, vol. 12, no. 6, pp. 27–41.

Shaw, M. & P. Clements (2006), “The golden age of software architecture”, IEEE soft-
ware, vol. 23, no. 2, pp. 31–39.

Shneiderman, B., G. Fischer, M. Czerwinski, M. Resnick, B. Myers, L. Candy, E. Ed-
monds, M. Eisenberg, E. Giaccardi, T. Hewett, et al. (2006), “Creativity support
tools: report from a us national science foundation sponsored workshop”, Interna-
tional Journal of Human-Computer Interaction, vol. 20, no. 2, pp. 61–77.

Simon, H. A. (1955), “A behavioral model of rational choice”, The quarterly journal of
economics, vol. 69, no. 1, pp. 99–118.

Simon, H. A. (1996), The Sciences of the Artificial (3rd Ed.) Cambridge, MA, USA: MIT
Press, ISBN: 0-262-69191-4.

Sloman, A. (1985), Why we need many knowledge representation formalisms, Citeseer.
Small place to discover languages in GitHub (2014), https://githut.info/, GitHut,

(visited on 02/09/2020).
Sommerville, I. (1985), Software Engineering (2nd Ed.) USA: Addison-Wesley Long-

man Publishing Co., Inc., ISBN: 0201142295.
Sprague Jr, R. H. & H. J. Watson (1979), “Bit by bit: toward decision support systems”,

California Management Review, vol. 22, no. 1, pp. 60–68.
Staderini, M., E. Schiavone & A. Bondavalli (2018), “A requirements-driven method-

ology for the proper selection and configuration of blockchains”, in: 2018 IEEE 37th
Symposium on Reliable Distributed Systems (SRDS), IEEE, pp. 201–206.

Staron, M. (2006), “Adopting model driven software development in industry–a case
study at two companies”, in: International Conference on Model Driven Engineering
Languages and Systems, Springer, pp. 57–72.

Štemberger, M. I., V. Bosilj-Vukšić & M. I. Jaklić (2009), “Business process manage-
ment software selection–two case studies”, Economic research-Ekonomska istraži-
vanja, vol. 22, no. 4, pp. 84–99.

https://githut.info/

Bibliography ∣ 277

Sujeeth, A. K., H. Lee, K. J. Brown, T. Rompf, H. Chafi, M. Wu, A. R. Atreya, M. Oder-
sky & K. Olukotun (2011), “Optiml: an implicitly parallel domain-specific language
for machine learning”, in: ICML.

Szyperski, C., D. Gruntz & S. Murer (2002), Component software: beyond object-
oriented programming, Pearson Education.

Tang, A., M. A. Babar, I. Gorton & J. Han (2006), “A survey of architecture design
rationale”, Journal of systems and software, vol. 79, no. 12, pp. 1792–1804.

Tang, A., T. de Boer & H. van Vliet (2011a), “Building roadmaps: a knowledge shar-
ing perspective”, in: Proceedings of the 6th International Workshop on SHAring and
Reusing Architectural Knowledge, pp. 13–20.

Tang, A., P. Liang & H. Van Vliet (2011b), “Software architecture documentation: the
road ahead”, in: 2011 Ninth Working IEEE/IFIP Conference on Software Architecture,
IEEE, pp. 252–255.

Tang, H., Y. Shi & P. Dong (2019), “Public blockchain evaluation using entropy and
TOPSIS”, Expert Systems with Applications, vol. 117, pp. 204–210.

That, M. T. T., S. Sadou, F. Oquendo & I. Borne (2013), “Composition-centered archi-
tectural pattern description language”, in: European Conference on Software Archi-
tecture, Springer, pp. 1–16.

The RedMonk Programming Language Rankings (2019), https : / / redmonk . com /
sogrady/2019/07/18/language- rankings- 6-19/, O’Grady, Stephen, (visited
on 02/09/2020).

The State of Developer Ecosystem (2019), https : / / www . jetbrains . com / lp /
devecosystem-2019/, jetbrains, (visited on 02/09/2020).

The Top Programming Languages (2019), https://spectrum.ieee.org/computing/
software/the-top-programming-languages-2019, Cass, Stephen, (visited on
02/09/2020).

TIOBE Index (2020), https://www.tiobe.com/tiobe-index/, TIOBE, (visited on
02/09/2020).

Top Programming Languages Rankings (2019), https://dzone.com/articles/top-
programming-languages-rankings, Zakrevsky, Alex, (visited on 02/09/2020).

Triantaphyllou, E., B Shu, S. N. Sanchez & T. Ray (1998), “Multi-criteria decision
making: an operations research approach”, Encyclopedia of electrical and electronics
engineering, vol. 15, no. 1998, pp. 175–186.

Tsang, E. W. (2014), “Case studies and generalization in information systems re-
search: a critical realist perspective”, The Journal of Strategic Information Systems,
vol. 23, no. 2, pp. 174–186.

Tversky, A. & D. Kahneman (1974), “Judgment under uncertainty: heuristics and bi-
ases”, science, vol. 185, no. 4157, pp. 1124–1131.

– (2000), Choices, values, and frames, Cambridge University Press.
Tyree, J. & A. Akerman (2005), “Architecture decisions: demystifying architecture”,

IEEE software, vol. 22, no. 2, pp. 19–27.
Uzun, B. & B. Tekinerdogan (2018), “Model-driven architecture based testing: a sys-

tematic literature review”, Information and Software Technology, vol. 102, pp. 30
–48.

https://redmonk.com/sogrady/2019/07/18/language-rankings-6-19/
https://redmonk.com/sogrady/2019/07/18/language-rankings-6-19/
https://www.jetbrains.com/lp/devecosystem-2019/
https://www.jetbrains.com/lp/devecosystem-2019/
https://spectrum.ieee.org/computing/software/the-top-programming-languages-2019
https://spectrum.ieee.org/computing/software/the-top-programming-languages-2019
https://www.tiobe.com/tiobe-index/
https://dzone.com/articles/top-programming-languages-rankings
https://dzone.com/articles/top-programming-languages-rankings

278 ∣ Bibliography

Van Den Berk, I., S. Jansen & L. Luinenburg (2010), “Software ecosystems: a soft-
ware ecosystem strategy assessment model”, in: Proceedings of the Fourth European
Conference on Software Architecture: Companion Volume, pp. 127–134.

Van Der Aalst, W. M. (2003), “Business process management demystified: a tutorial
on models, systems and standards for workflow management”, in: Advanced Course
on Petri Nets, Springer, pp. 1–65.

Van Strien, P. J. (1997), “Towards a methodology of psychological practice: the regu-
lative cycle”, Theory & Psychology, vol. 7, no. 5, pp. 683–700.

Vincent, P., K. Iijima, M. Driver, J. Wong & Y. Natis (2019), “Magic quadrant for
enterprise low-code application platforms”, Gartner Inc.

Visualizing Language Migration Over Time (2017), https://www.i- programmer.
info/news/98-languages/10943-visualizing-language-migration-over-
time.html, Swift, Janet, (visited on 02/09/2020).

Vogel, B. (1995), “Wenn der eisberg zu schmelzen beginnt–einige reflexionen über
den stellenwert und die probleme des experteninterviews in der praxis der em-
pirischen sozialforschung”, Experteninterviews in der Arbeitsmarktforschung. Diskus-
sionsbeiträge zu methodischen Fragen und praktischen Erfahrungen. Beiträge zur
Arbeitsmarkt-und Berufsforschung, vol. 191, pp. 73–83.

Vogel, O., I. Arnold, A. Chughtai & T. Kehrer (2011), “Architecture Means (WITH
WHAT)”, in: Software Architecture, Springer Berlin Heidelberg, pp. 115–286.

Vugec, D. S., A.-M. Stjepić & L. Sušac (2019), “Business process management soft-
ware functionality analysis: supporting social computing and digital transforma-
tion”, ISSN 2671-132X Vol. 1 No. 1 pp. 1-876 June 2019, Zagreb, p. 547.

Vujošević-Janičić, M. & D. Tošić (2008), “The role of programming paradigms in the
first programming courses”, The Teaching of Mathematics, vol. 2, no. 21, pp. 63–83.

Vukšić, V. B., L. Brkić & M. Baranović (2016), “Business process management sys-
tems selection guidelines: theory and practice”, in: 2016 39th International Conven-
tion on Information and Communication Technology, Electronics and Microelectronics
(MIPRO), IEEE, pp. 1476–1481.

Walls, J. G., G. R. Widmeyer & O. A. El Sawy (1992), “Building an information system
design theory for vigilant eis”, Information systems research, vol. 3, no. 1, pp. 36–59.

Wang, H. (1997), “Intelligent agent-assisted decision support systems: integration
of knowledge discovery, knowledge analysis, and group decision support”, Expert
Systems with Applications, vol. 12, no. 3, pp. 323–335.

Wang, Y., D. Liu & G. Ruhe (2004), “Formal description of the cognitive process of
decision making”, in: Proceedings of the Third IEEE International Conference on Cog-
nitive Informatics, 2004. IEEE, pp. 124–130.

Wasilewski, A. (2016), “Business process management suite (bpms) market changes
2009- 2015”, Information Systems in Management, vol. 5.

Weinreich, R. & I. Groher (2016), “Software architecture knowledge management
approaches and their support for knowledge management activities: a systematic
literature review”, Information and Software Technology, vol. 80, pp. 265 –286.

What Stats & Surveys Are Saying About Top Programming Languages (2019), https:
//codinginfinite.com/top-programming-languages-2020-stats-surveys/,
codinginfinite, (visited on 02/09/2020).

Wiegers, K. & J. Beatty (2013), Software requirements, Pearson Education.

https://www.i-programmer.info/news/98-languages/10943-visualizing-language-migration-over-time.html
https://www.i-programmer.info/news/98-languages/10943-visualizing-language-migration-over-time.html
https://www.i-programmer.info/news/98-languages/10943-visualizing-language-migration-over-time.html
https://codinginfinite.com/top-programming-languages-2020-stats-surveys/
https://codinginfinite.com/top-programming-languages-2020-stats-surveys/

Bibliography ∣ 279

Wieringa, R. (2009), “Design science as nested problem solving”, in: Proceedings of
the 4th international conference on design science research in information systems
and technology, ACM, p. 8.

Wieringa, R. & M. Daneva (2015), “Six strategies for generalizing software engineer-
ing theories”, Science of computer programming, vol. 101, pp. 136–152.

Wong, W. & D. F. Radcliffe (2000), “The tacit nature of design knowledge”, Technology
Analysis & Strategic Management, vol. 12, no. 4, pp. 493–512.

Wüst, K. & A. Gervais (2018), “Do you need a blockchain?”, in: 2018 Crypto Valley
Conference on Blockchain Technology (CVCBT), IEEE, pp. 45–54.

Xu, L. & S. Brinkkemper (2007), “Concepts of product software”, European Journal of
Information Systems, vol. 16, no. 5, pp. 531–541.

Yabo, P. (2016), Comparison of Cryptocurrency Developments. Key Metrics of Blockchain
Platforms, CoinFabrik, URL: https : / / docs . google . com / spreadsheets / d /
1DQ770nGnHfJOoRSqTLmIkhuVK5CAbs - Fgqb6UoGMfVM / edit # gid = 0 (visited on
06/14/2016).

Yang, H., S. Zheng, W. C. Chu & C. Tsai (2012), “Linking functions and quality at-
tributes for software evolution”, in: 2012 19th Asia-Pacific Software Engineering
Conference, vol. 1, pp. 250–259.

Yazgan, H. R., S. Boran & K. Goztepe (2009), “An erp software selection process with
using artificial neural network based on analytic network process approach”, Expert
systems with applications, vol. 36, no. 5, pp. 9214–9222.

Yıldızbaşı, A. & B. Daneshvar (2018), “Multi-criteria decision making approach for
evaluation of the performance of computer programming languages in higher edu-
cation”, Computer Applications In Engineering Education, vol. 26, no. 6, pp. 1992–
2001.

Yin, R. K. (1981), “The case study as a serious research strategy”, Knowledge, vol. 3,
no. 1, pp. 97–114.

– (2017), Case study research and applications: Design and methods, Sage publications.
Yoon, I., J. Kim & W. Lee (2016), “The analysis and application of an educational pro-

gramming language (RUR-PLE) for a pre-introductory computer science course”,
Cluster Computing, vol. 19, no. 1, pp. 529–546.

Zhang, H. & M. A. Babar (2010), “On searching relevant studies in software engi-
neering”, in: 14th International Conference on Evaluation and Assessment in Software
Engineering (EASE), pp. 1–10.

Zhang, H., M. A. Babar & P. Tell (2011), “Identifying relevant studies in software
engineering”, Information and Software Technology, vol. 53, no. 6, pp. 625–637.

Zhao, Z., P. Grosso & C. de Laat (2012), “Oeirm: an open distributed processing based
interoperability reference model for e-science”, in: IFIP International Conference on
Network and Parallel Computing, Springer, pp. 437–444.

Zhao, Z., X. Liao, P. Martin, J. Maduro, P. Thijsse, D. Schaap, M. Stocker, D. Gold-
farb & B. Magagna (2019), “Knowledge-as-a-service: a community knowledge base
for research infrastructures in environmental and earth sciences”, in: 2019 IEEE
World Congress on Services (SERVICES), vol. 2642, IEEE, pp. 127–132.

Zhou, X., Y. Jin, H. Zhang, S. Li & X. Huang (2016), “A map of threats to validity of
systematic literature reviews in software engineering”, in: 2016 23rd Asia-Pacific
Software Engineering Conference (APSEC), IEEE, pp. 153–160.

https://docs.google.com/spreadsheets/d/1DQ770nGnHfJOoRSqTLmIkhuVK5CAbs-Fgqb6UoGMfVM/edit#gid=0
https://docs.google.com/spreadsheets/d/1DQ770nGnHfJOoRSqTLmIkhuVK5CAbs-Fgqb6UoGMfVM/edit#gid=0

280 ∣ Bibliography

Zimmermann, O. (2010), “Architectural decisions as reusable design assets”, IEEE
software, vol. 28, no. 1, pp. 64–69.

Zolotas, C., K. C. Chatzidimitriou & A. L. Symeonidis (2018), “Restsec: a low-code
platform for generating secure by design enterprise services”, Enterprise Information
Systems, vol. 12, no. 8-9, pp. 1007–1033.

Summary

Decision making is an inevitable part of software engineering. Software engineers
make a considerable number of decisions during the software development life cy-
cle. Thus, as a subset of software engineering, software production can be considered
a continuous decision-making process. The decision process refers to the steps in-
volved in choosing and evaluating the best fitting alternative solution(s) for software
engineers, as decision-makers, according to their preferences and requirements. Ad-
ditionally, a software product is typically a long-living system to determine the future
of the product and the costs associated with its development.

In order to make informed decisions, the decision-makers around a software prod-
uct should either acquire knowledge themselves or hire external experts to support
them with their decision-making process. The process gets more complicated as the
number of decision-makers, alternatives, and criteria increases. Therefore, software
production is a suitable domain to deploy decision support systems that intelligently
support these decision-makers in the decision-making process. A decision model for
each decision-making problem is required to externalize and organize knowledge re-
garding the selection context.

In this dissertation, we focus on pragmatically selected decision-making problems
that software engineers face in software production. The following categories of
software production decisions are discussed: (1) decision-making regarding COTS
components for inclusion into software products. (2) decision problems related to
software development technologies that deal with finding the best fitting technolo-
gies for developing a software product. (3) architectural design decisions concerning
pattern-driven software design.

We developed a theoretical framework to assist software engineers with a set
of Multi-Criteria Decision-Making (MCDM) problems in software production. The
framework provides a guideline for software engineers to systematically capture
knowledge from different knowledge sources to build decision models for MCDM
problems in software production. Knowledge has to be collected, organized, and
quickly retrieved when it is needed to be employed. We designed, implemented,
and evaluated a decision support system (DSS) that utilizes such decision models
to facilitate decision-making and support software engineers with their daily MCDM
problems.

The framework and the decision support system have been used to model and
support software engineers with the following decision-making problems:

282 ∣ Summary

1. COTS component selection problems:
˛ Database Technology Selection
˛ Cloud Service Provider Selection
˛ Blockchain Platform Selection

2. Software development technology selection problems:
˛ Programming Language Ecosystem Selection
˛ Model-Driven Software Development Platform selection

3. Decision-Making in Pattern-Driven Design:
˛ Software Architecture Pattern Selection

A broad study has been carried out based on qualitative and quantitative research
to evaluate the DSS’s efficiency and effectiveness and the decision models inside its
knowledge base to support software engineers with their decision-making process in
software production. The DSS and the decision models have been evaluated through
19 real-world case studies at different software-producing organizations located in
the Netherlands and Iran. The case study participants asserted that the approach and
tooling provide significantly more insight into their selection process, provide a richer
prioritized option list than if they had done their research independently, and reduce
the time and cost of the decision-making process. However, we also asserted that it
is not easy to implement, adopt, and maintain such a system as its knowledge base
must be updated regularly. Moreover, software engineers’ strong opinions surround-
ing technology alternatives make it somewhat more complicated to find consensus in
the data. We conducted 89 qualitative semi-structured interviews with senior soft-
ware engineers to explore expert knowledge about the decision-making problems,
decision models, and the outcomes of our study.

The dissertation concludes that software production decisions are best made with
decision support systems but that the steps towards full adoption of such systems are
hampered. First, gathering and maintaining appropriate knowledge in a centralized
manner is relatively costly and requires more time investment than traditional deci-
sion methods. Secondly, software engineers are not used to using such technologies
and find it challenging to adopt it into their daily practice.

Samenvatting

Het maken van beslissingen is een essentieel onderdeel van software engineering.
Software engineers maken een significant aantal beslissingen tijdens de relatief lange
levenscyclus van een software product. Deze beslissingen bepalen het succes van
een software product en brengen vaak significante kosten en baten met zich mee. In
dit proefschrift wordt het softwareproductieproces geduid als continu beslissingspro-
ces. Het beslissingsproces in software productie wordt gedefinieerd als de stappen die
gevolgd worden bij het kiezen en evalueren van de best passende alternatieve oplossing
voor en door software engineers, als besluitvormers, op basis van hun voorkeuren en
vereisten.

Om weloverwogen beslissingen te nemen, moeten de besluitvormers rondom
een softwareproduct ofwel zelf kennis verwerven of externe experts inhuren bij
het besluitvormingsproces. Het proces wordt ingewikkelder naarmate het aantal
besluitvormers, alternatieven, en criteria toeneemt. In dit proefschrift poneren we
dat softwareproductie een geschikt domein is voor de inzet van beslissingsonders-
teunende systemen die op intelligente wijze de software engineer ondersteunen. We
onderkennen daarbij ook dat voor elk beslissingsprobleem een beslissingsmodel nodig
is om kennis over de selectiecontext te verzamelen, organiseren, en te gebruiken.

In dit proefschrift richten we ons op besluitvormingsproblemen waarmee soft-
ware engineers worden geconfronteerd bij de productie van software. De volgende
categorieën beslissingen in softwareproductie worden besproken: (1) besluitvorm-
ing over componenten voor opname in softwareproducten; (2) beslissingsproblemen
met betrekking tot software-ontwikkelingstechnologieën; en (3) architectonische on-
twerpbeslissingen met betrekking tot patroongestuurd software-ontwerp.

We hebben een theoretisch raamwerk ontwikkeld om software engineers te helpen
met een reeks Multi-Criteria Beslissingsproblemen (MCB) bij de productie van soft-
ware. Het raamwerk maakt het voor software engineers mogelijk om systematisch
kennis uit verschillende kennisbronnen te verzamelen voor de bouw van besliss-
ingsmodellen voor MCB in softwareproductie. Kennis moet worden verzameld, geor-
dend, opgeslagen en snel teruggevonden wanneer deze nodig is. We hebben een
beslissingsondersteunend systeem ontworpen, geïmplementeerd, en geëvalueerd. Dit
systeem neemt als invoer een beslissingsmodel en heeft als doel om de besluitvorm-
ing te vergemakkelijken en om software engineers te ondersteunen bij hun dagelijkse
MCB.

284 ∣ Samenvatting

Het raamwerk en het beslissingsondersteuningssysteem zijn gebruikt om software
engineers te ondersteunen bij de volgende besluitvormingsprocessen:

1. COTS Componentselectie:
˛ Database Technologie Selectie
˛ Cloud Service Provider Selectie
˛ Blockchain Platform Selectie

2. Software ontwikkeltechnologie-selectie:
˛ Programmeertaal-ecosysteemselectie
˛ Modelgedreven softwareontwikkelingsplatformselectie

3. Besluitvorming voor patroongedreven ontwerp:
˛ Software Architectuur Patroonselectie

We hebben een studie uitgevoerd op basis van kwalitatief en kwantitatief onder-
zoek om de efficiëntie en effectiviteit van het beslissingsondersteuningsmodel en
het beslissingsondersteuningssysteem te evalueren. Het beslossingsondersteuningsys-
teem en de beslismodellen zijn geëvalueerd aan de hand van 19 praktijkstudies bij
verschillende software producenten in Nederland en Iran. De studiedeelnemers gaven
aan dat de aanpak en tooling aanzienlijk meer inzicht geven in hun selectiepro-
ces. Daarnaast geeft het beslissingsondersteuningssysteem een rijkere lijst met gepri-
oriteerde opties dan wanneer de deelnemers hun onderzoek onafhankelijk hadden
gedaan. Tot slot geven de deelnemers aan dat het beslissingsondersteuningsmodel en
-systeem tijd en kosten bespaart in het beslissingsproces.

We hebben echter ook ondervonden dat het niet eenvoudig is om een dergelijk
systeem te implementeren, te adopteren, en te onderhouden, aangezien de kennis
regelmatig moet worden bijgewerkt. Bovendien maken de sterke meningen van soft-
ware engineers over technologie-alternatieven het ingewikkelder om consensus in
de gegevens te vinden. We hebben 89 kwalitatieve semi-gestructureerde interviews
gehouden met senior software engineers om kennis te vergaren over de besluitvorm-
ingsproblemen, besluitmodellen, en de resultaten van ons onderzoek.

Het proefschrift concludeert dat beslissingen in softwareproductie het beste wor-
den genomen met beslissingsondersteunende systemen, maar dat de stappen naar
volledige adoptie van dergelijke systemen nog worden belemmerd. Ten eerste is het
verzamelen en onderhouden van geschikte kennis op een gecentraliseerde manier
relatief duur en vergt het meer tijdinvestering dan traditionele besluitvormingsmeth-
oden. Ten tweede zijn software-ingenieurs niet gewend om dergelijke technologieën
te gebruiken en vinden ze het een uitdaging om deze in hun dagelijkse praktijk op te
nemen. In de toekomst zullen we de het systeem verder ontwikkelen, bijvoorbeeld
door de semi-automatische vergaring van kennis via machine learning. Daarnaast
willen we werken aan het verder uitbreiden van de set van beslissingsmodellen.

Publication List

Farshidi, S., S. Jansen & J. M. van der Werf (2020e), “Capturing software
architecture knowledge for pattern-driven design”, Journal of Systems and Software

Farshidi, S., S. Jansen, S. España & J. Verkleij (2020c), “Decision support for
blockchain platform selection: three industry case studies”, IEEE Transactions on
Engineering Management

Farshidi, S., S. Jansen & S. Fortuin (2021), “Model-driven development platform
selection: four industry case studies”, Software and Systems Modeling

Farshidi, S. & S. Jansen (2020a), “A decision support system for pattern-driven
software architecture”, in: Proceedings of the 14th European Conference on Software
Architecture, ECSA 2020, vol. 1, ACM, pp. 1–12

Farshidi, S., S. Jansen, R. de Jong & S. Brinkkemper (2018c), “A decision support
system for software technology selection”, Journal of Decision Systems

Farshidi, S., S. Jansen, R. De Jong & S. Brinkkemper (2018a), “A decision support
system for cloud service provider selection problems in software producing
organizations”, in: 2018 IEEE 20th Conference on Business Informatics (CBI), vol. 1,
IEEE, pp. 139–148

Farshidi, S., S. Jansen, R. De Jong & S. Brinkkemper (2018b), “Multiple criteria
decision support in requirements negotiation”, in: the 23rd International Conference
on Requirements Engineering: Foundation for Software Quality (REFSQ 2018),
vol. 2075, pp. 100–107

Curriculum Vitae

Siamak Farshidi was born on August 8th, 1988, in Tehran, Iran. From 2008 to 2001,
he studied Software Engineering at Adiban Institute of Higher Education, where he
received his Bachelor of Science degree. In the years that followed, he continued with
the master of Software Engineering at Shiraz University, which resulted in a Master of
Science degree in 2014. He started his Ph.D. research in May 2016 at the Department
of Information and Computer Science at Utrecht University, focused on Multi-Criteria
Decision-Making problems in software production. During his Ph.D., Siamak Farshidi
coordinated and taught courses on data modeling, information systems, and software
architecture to students of Business Informatics. Additionally, he established a startup
company named CherryPickInc in 2020 based on his dissertation’s decision-making
concepts. The research and educational activities of Siamak Farshidi focus on Knowl-
edge Engineering, Conceptual Modeling, Decision Support Systems, and Software
Architecture.

SIKS Dissertation Series

2011 01 Botond Cseke (RUN), Variational Algorithms for Bayesian Inference in Latent Gaussian Models
02 Nick Tinnemeier (UU), Organizing Agent Organizations. Syntax and Operational Semantics of an

Organization-Oriented Programming Language
03 Jan Martijn van der Werf (TUE), Compositional Design and Verification of Component-Based Information

Systems
04 Hado van Hasselt (UU), Insights in Reinforcement Learning; Formal analysis and empirical evaluation of

temporal-difference
05 Bas van der Raadt (VU), Enterprise Architecture Coming of Age - Increasing the Performance of an Emerging

Discipline.
06 Yiwen Wang (TUE), Semantically-Enhanced Recommendations in Cultural Heritage
07 Yujia Cao (UT), Multimodal Information Presentation for High Load Human Computer Interaction
08 Nieske Vergunst (UU), BDI-based Generation of Robust Task-Oriented Dialogues
09 Tim de Jong (OU), Contextualised Mobile Media for Learning
10 Bart Bogaert (UvT), Cloud Content Contention
11 Dhaval Vyas (UT), Designing for Awareness: An Experience-focused HCI Perspective
12 Carmen Bratosin (TUE), Grid Architecture for Distributed Process Mining
13 Xiaoyu Mao (UvT), Airport under Control. Multiagent Scheduling for Airport Ground Handling
14 Milan Lovric (EUR), Behavioral Finance and Agent-Based Artificial Markets
15 Marijn Koolen (UvA), The Meaning of Structure: the Value of Link Evidence for Information Retrieval
16 Maarten Schadd (UM), Selective Search in Games of Different Complexity
17 Jiyin He (UVA), Exploring Topic Structure: Coherence, Diversity and Relatedness
18 Mark Ponsen (UM), Strategic Decision-Making in complex games
19 Ellen Rusman (OU), The Mind’s Eye on Personal Profiles
20 Qing Gu (VU), Guiding service-oriented software engineering - A view-based approach
21 Linda Terlouw (TUD), Modularization and Specification of Service-Oriented Systems
22 Junte Zhang (UVA), System Evaluation of Archival Description and Access
23 Wouter Weerkamp (UVA), Finding People and their Utterances in Social Media
24 Herwin van Welbergen (UT), Behavior Generation for Interpersonal Coordination with Virtual Humans On

Specifying, Scheduling and Realizing Multimodal Virtual Human Behavior
25 Syed Waqar ul Qounain Jaffry (VU), Analysis and Validation of Models for Trust Dynamics
26 Matthijs Aart Pontier (VU), Virtual Agents for Human Communication - Emotion Regulation and Involvement-

Distance Trade-Offs in Embodied Conversational Agents and Robots
27 Aniel Bhulai (VU), Dynamic website optimization through autonomous management of design patterns
28 Rianne Kaptein (UVA), Effective Focused Retrieval by Exploiting Query Context and Document Structure
29 Faisal Kamiran (TUE), Discrimination-aware Classification
30 Egon van den Broek (UT), Affective Signal Processing (ASP): Unraveling the mystery of emotions
31 Ludo Waltman (EUR), Computational and Game-Theoretic Approaches for Modeling Bounded Rationality
32 Nees-Jan van Eck (EUR), Methodological Advances in Bibliometric Mapping of Science
33 Tom van der Weide (UU), Arguing to Motivate Decisions
34 Paolo Turrini (UU), Strategic Reasoning in Interdependence: Logical and Game-theoretical Investigations
35 Maaike Harbers (UU), Explaining Agent Behavior in Virtual Training
36 Erik van der Spek (UU), Experiments in serious game design: a cognitive approach
37 Adriana Burlutiu (RUN), Machine Learning for Pairwise Data, Applications for Preference Learning and Su-

pervised Network Inference
38 Nyree Lemmens (UM), Bee-inspired Distributed Optimization
39 Joost Westra (UU), Organizing Adaptation using Agents in Serious Games
40 Viktor Clerc (VU), Architectural Knowledge Management in Global Software Development
41 Luan Ibraimi (UT), Cryptographically Enforced Distributed Data Access Control
42 Michal Sindlar (UU), Explaining Behavior through Mental State Attribution
43 Henk van der Schuur (UU), Process Improvement through Software Operation Knowledge
44 Boris Reuderink (UT), Robust Brain-Computer Interfaces

290 ∣ SIKS Dissertation Series

45 Herman Stehouwer (UvT), Statistical Language Models for Alternative Sequence Selection
46 Beibei Hu (TUD), Towards Contextualized Information Delivery: A Rule-based Architecture for the Domain

of Mobile Police Work
47 Azizi Bin Ab Aziz (VU), Exploring Computational Models for Intelligent Support of Persons with Depression
48 Mark Ter Maat (UT), Response Selection and Turn-taking for a Sensitive Artificial Listening Agent
49 Andreea Niculescu (UT), Conversational interfaces for task-oriented spoken dialogues: design aspects influ-

encing interaction quality

2012 01 Terry Kakeeto (UvT), Relationship Marketing for SMEs in Uganda
02 Muhammad Umair (VU), Adaptivity, emotion, and Rationality in Human and Ambient Agent Models
03 Adam Vanya (VU), Supporting Architecture Evolution by Mining Software Repositories
04 Jurriaan Souer (UU), Development of Content Management System-based Web Applications
05 Marijn Plomp (UU), Maturing Interorganisational Information Systems
06 Wolfgang Reinhardt (OU), Awareness Support for Knowledge Workers in Research Networks
07 Rianne van Lambalgen (VU), When the Going Gets Tough: Exploring Agent-based Models of Human Perfor-

mance under Demanding Conditions
08 Gerben de Vries (UVA), Kernel Methods for Vessel Trajectories
09 Ricardo Neisse (UT), Trust and Privacy Management Support for Context-Aware Service Platforms
10 David Smits (TUE), Towards a Generic Distributed Adaptive Hypermedia Environment
11 J.C.B. Rantham Prabhakara (TUE), Process Mining in the Large: Preprocessing, Discovery, and Diagnostics
12 Kees van der Sluijs (TUE), Model Driven Design and Data Integration in Semantic Web Information Systems
13 Suleman Shahid (UvT), Fun and Face: Exploring non-verbal expressions of emotion during playful interac-

tions
14 Evgeny Knutov (TUE), Generic Adaptation Framework for Unifying Adaptive Web-based Systems
15 Natalie van der Wal (VU), Social Agents. Agent-Based Modelling of Integrated Internal and Social Dynamics

of Cognitive and Affective Processes.
16 Fiemke Both (VU), Helping people by understanding them - Ambient Agents supporting task execution and

depression treatment
17 Amal Elgammal (UvT), Towards a Comprehensive Framework for Business Process Compliance
18 Eltjo Poort (VU), Improving Solution Architecting Practices
19 Helen Schonenberg (TUE), What’s Next? Operational Support for Business Process Execution
20 Ali Bahramisharif (RUN), Covert Visual Spatial Attention, a Robust Paradigm for Brain-Computer Interfacing
21 Roberto Cornacchia (TUD), Querying Sparse Matrices for Information Retrieval
22 Thijs Vis (UvT), Intelligence, politie en veiligheidsdienst: verenigbare grootheden?
23 Christian Muehl (UT), Toward Affective Brain-Computer Interfaces: Exploring the Neurophysiology of Affect

during Human Media Interaction
24 Laurens van der Werff (UT), Evaluation of Noisy Transcripts for Spoken Document Retrieval
25 Silja Eckartz (UT), Managing the Business Case Development in Inter-Organizational IT Projects: A Method-

ology and its Application
26 Emile de Maat (UVA), Making Sense of Legal Text
27 Hayrettin Gurkok (UT), Mind the Sheep! User Experience Evaluation & Brain-Computer Interface Games
28 Nancy Pascall (UvT), Engendering Technology Empowering Women
29 Almer Tigelaar (UT), Peer-to-Peer Information Retrieval
30 Alina Pommeranz (TUD), Designing Human-Centered Systems for Reflective Decision Making
31 Emily Bagarukayo (RUN), A Learning by Construction Approach for Higher Order Cognitive Skills Improve-

ment, Building Capacity and Infrastructure
32 Wietske Visser (TUD), Qualitative multi-criteria preference representation and reasoning
33 Rory Sie (OUN), Coalitions in Cooperation Networks (COCOON)
34 Pavol Jancura (RUN), Evolutionary analysis in PPI networks and applications
35 Evert Haasdijk (VU), Never Too Old To Learn – On-line Evolution of Controllers in Swarm- and Modular

Robotics
36 Denis Ssebugwawo (RUN), Analysis and Evaluation of Collaborative Modeling Processes
37 Agnes Nakakawa (RUN), A Collaboration Process for Enterprise Architecture Creation
38 Selmar Smit (VU), Parameter Tuning and Scientific Testing in Evolutionary Algorithms
39 Hassan Fatemi (UT), Risk-aware design of value and coordination networks
40 Agus Gunawan (UvT), Information Access for SMEs in Indonesia
41 Sebastian Kelle (OU), Game Design Patterns for Learning
42 Dominique Verpoorten (OU), Reflection Amplifiers in self-regulated Learning
43 Withdrawn
44 Anna Tordai (VU), On Combining Alignment Techniques
45 Benedikt Kratz (UvT), A Model and Language for Business-aware Transactions
46 Simon Carter (UVA), Exploration and Exploitation of Multilingual Data for Statistical Machine Translation
47 Manos Tsagkias (UVA), Mining Social Media: Tracking Content and Predicting Behavior
48 Jorn Bakker (TUE), Handling Abrupt Changes in Evolving Time-series Data
49 Michael Kaisers (UM), Learning against Learning - Evolutionary dynamics of reinforcement learning algo-

rithms in strategic interactions
50 Steven van Kervel (TUD), Ontologogy driven Enterprise Information Systems Engineering
51 Jeroen de Jong (TUD), Heuristics in Dynamic Sceduling; a practical framework with a case study in elevator

dispatching

2013 01 Viorel Milea (EUR), News Analytics for Financial Decision Support

SIKS Dissertation Series ∣ 291

02 Erietta Liarou (CWI), MonetDB/DataCell: Leveraging the Column-store Database Technology for Efficient
and Scalable Stream Processing

03 Szymon Klarman (VU), Reasoning with Contexts in Description Logics
04 Chetan Yadati (TUD), Coordinating autonomous planning and scheduling
05 Dulce Pumareja (UT), Groupware Requirements Evolutions Patterns
06 Romulo Goncalves (CWI), The Data Cyclotron: Juggling Data and Queries for a Data Warehouse Audience
07 Giel van Lankveld (UvT), Quantifying Individual Player Differences
08 Robbert-Jan Merk (VU), Making enemies: cognitive modeling for opponent agents in fighter pilot simulators
09 Fabio Gori (RUN), Metagenomic Data Analysis: Computational Methods and Applications
10 Jeewanie Jayasinghe Arachchige (UvT), A Unified Modeling Framework for Service Design.
11 Evangelos Pournaras (TUD), Multi-level Reconfigurable Self-organization in Overlay Services
12 Marian Razavian (VU), Knowledge-driven Migration to Services
13 Mohammad Safiri (UT), Service Tailoring: User-centric creation of integrated IT-based homecare services to

support independent living of elderly
14 Jafar Tanha (UVA), Ensemble Approaches to Semi-Supervised Learning Learning
15 Daniel Hennes (UM), Multiagent Learning - Dynamic Games and Applications
16 Eric Kok (UU), Exploring the practical benefits of argumentation in multi-agent deliberation
17 Koen Kok (VU), The PowerMatcher: Smart Coordination for the Smart Electricity Grid
18 Jeroen Janssens (UvT), Outlier Selection and One-Class Classification
19 Renze Steenhuizen (TUD), Coordinated Multi-Agent Planning and Scheduling
20 Katja Hofmann (UvA), Fast and Reliable Online Learning to Rank for Information Retrieval
21 Sander Wubben (UvT), Text-to-text generation by monolingual machine translation
22 Tom Claassen (RUN), Causal Discovery and Logic
23 Patricio de Alencar Silva (UvT), Value Activity Monitoring
24 Haitham Bou Ammar (UM), Automated Transfer in Reinforcement Learning
25 Agnieszka Anna Latoszek-Berendsen (UM), Intention-based Decision Support. A new way of representing

and implementing clinical guidelines in a Decision Support System
26 Alireza Zarghami (UT), Architectural Support for Dynamic Homecare Service Provisioning
27 Mohammad Huq (UT), Inference-based Framework Managing Data Provenance
28 Frans van der Sluis (UT), When Complexity becomes Interesting: An Inquiry into the Information eXperience
29 Iwan de Kok (UT), Listening Heads
30 Joyce Nakatumba (TUE), Resource-Aware Business Process Management: Analysis and Support
31 Dinh Khoa Nguyen (UvT), Blueprint Model and Language for Engineering Cloud Applications
32 Kamakshi Rajagopal (OUN), Networking For Learning; The role of Networking in a Lifelong Learner’s Profes-

sional Development
33 Qi Gao (TUD), User Modeling and Personalization in the Microblogging Sphere
34 Kien Tjin-Kam-Jet (UT), Distributed Deep Web Search
35 Abdallah El Ali (UvA), Minimal Mobile Human Computer Interaction
36 Than Lam Hoang (TUe), Pattern Mining in Data Streams
37 Dirk Börner (OUN), Ambient Learning Displays
38 Eelco den Heijer (VU), Autonomous Evolutionary Art
39 Joop de Jong (TUD), A Method for Enterprise Ontology based Design of Enterprise Information Systems
40 Pim Nijssen (UM), Monte-Carlo Tree Search for Multi-Player Games
41 Jochem Liem (UVA), Supporting the Conceptual Modelling of Dynamic Systems: A Knowledge Engineering

Perspective on Qualitative Reasoning
42 Léon Planken (TUD), Algorithms for Simple Temporal Reasoning
43 Marc Bron (UVA), Exploration and Contextualization through Interaction and Concepts

2014 01 Nicola Barile (UU), Studies in Learning Monotone Models from Data
02 Fiona Tuliyano (RUN), Combining System Dynamics with a Domain Modeling Method
03 Sergio Raul Duarte Torres (UT), Information Retrieval for Children: Search Behavior and Solutions
04 Hanna Jochmann-Mannak (UT), Websites for children: search strategies and interface design - Three studies

on children’s search performance and evaluation
05 Jurriaan van Reijsen (UU), Knowledge Perspectives on Advancing Dynamic Capability
06 Damian Tamburri (VU), Supporting Networked Software Development
07 Arya Adriansyah (TUE), Aligning Observed and Modeled Behavior
08 Samur Araujo (TUD), Data Integration over Distributed and Heterogeneous Data Endpoints
09 Philip Jackson (UvT), Toward Human-Level Artificial Intelligence: Representation and Computation of Mean-

ing in Natural Language
10 Ivan Salvador Razo Zapata (VU), Service Value Networks
11 Janneke van der Zwaan (TUD), An Empathic Virtual Buddy for Social Support
12 Willem van Willigen (VU), Look Ma, No Hands: Aspects of Autonomous Vehicle Control
13 Arlette van Wissen (VU), Agent-Based Support for Behavior Change: Models and Applications in Health and

Safety Domains
14 Yangyang Shi (TUD), Language Models With Meta-information
15 Natalya Mogles (VU), Agent-Based Analysis and Support of Human Functioning in Complex Socio-Technical

Systems: Applications in Safety and Healthcare
16 Krystyna Milian (VU), Supporting trial recruitment and design by automatically interpreting eligibility criteria
17 Kathrin Dentler (VU), Computing healthcare quality indicators automatically: Secondary Use of Patient Data

and Semantic Interoperability

292 ∣ SIKS Dissertation Series

18 Mattijs Ghijsen (UVA), Methods and Models for the Design and Study of Dynamic Agent Organizations
19 Vinicius Ramos (TUE), Adaptive Hypermedia Courses: Qualitative and Quantitative Evaluation and Tool

Support
20 Mena Habib (UT), Named Entity Extraction and Disambiguation for Informal Text: The Missing Link
21 Kassidy Clark (TUD), Negotiation and Monitoring in Open Environments
22 Marieke Peeters (UU), Personalized Educational Games - Developing agent-supported scenario-based training
23 Eleftherios Sidirourgos (UvA/CWI), Space Efficient Indexes for the Big Data Era
24 Davide Ceolin (VU), Trusting Semi-structured Web Data
25 Martijn Lappenschaar (RUN), New network models for the analysis of disease interaction
26 Tim Baarslag (TUD), What to Bid and When to Stop
27 Rui Jorge Almeida (EUR), Conditional Density Models Integrating Fuzzy and Probabilistic Representations of

Uncertainty
28 Anna Chmielowiec (VU), Decentralized k-Clique Matching
29 Jaap Kabbedijk (UU), Variability in Multi-Tenant Enterprise Software
30 Peter de Cock (UvT), Anticipating Criminal Behaviour
31 Leo van Moergestel (UU), Agent Technology in Agile Multiparallel Manufacturing and Product Support
32 Naser Ayat (UvA), On Entity Resolution in Probabilistic Data
33 Tesfa Tegegne (RUN), Service Discovery in eHealth
34 Christina Manteli (VU), The Effect of Governance in Global Software Development: Analyzing Transactive

Memory Systems.
35 Joost van Ooijen (UU), Cognitive Agents in Virtual Worlds: A Middleware Design Approach
36 Joos Buijs (TUE), Flexible Evolutionary Algorithms for Mining Structured Process Models
37 Maral Dadvar (UT), Experts and Machines United Against Cyberbullying
38 Danny Plass-Oude Bos (UT), Making brain-computer interfaces better: improving usability through post-

processing.
39 Jasmina Maric (UvT), Web Communities, Immigration, and Social Capital
40 Walter Omona (RUN), A Framework for Knowledge Management Using ICT in Higher Education
41 Frederic Hogenboom (EUR), Automated Detection of Financial Events in News Text
42 Carsten Eijckhof (CWI/TUD), Contextual Multidimensional Relevance Models
43 Kevin Vlaanderen (UU), Supporting Process Improvement using Method Increments
44 Paulien Meesters (UvT), Intelligent Blauw. Met als ondertitel: Intelligence-gestuurde politiezorg in gebieds-

gebonden eenheden.
45 Birgit Schmitz (OUN), Mobile Games for Learning: A Pattern-Based Approach
46 Ke Tao (TUD), Social Web Data Analytics: Relevance, Redundancy, Diversity
47 Shangsong Liang (UVA), Fusion and Diversification in Information Retrieval

2015 01 Niels Netten (UvA), Machine Learning for Relevance of Information in Crisis Response
02 Faiza Bukhsh (UvT), Smart auditing: Innovative Compliance Checking in Customs Controls
03 Twan van Laarhoven (RUN), Machine learning for network data
04 Howard Spoelstra (OUN), Collaborations in Open Learning Environments
05 Christoph Bösch (UT), Cryptographically Enforced Search Pattern Hiding
06 Farideh Heidari (TUD), Business Process Quality Computation - Computing Non-Functional Requirements to

Improve Business Processes
07 Maria-Hendrike Peetz (UvA), Time-Aware Online Reputation Analysis
08 Jie Jiang (TUD), Organizational Compliance: An agent-based model for designing and evaluating organiza-

tional interactions
09 Randy Klaassen (UT), HCI Perspectives on Behavior Change Support Systems
10 Henry Hermans (OUN), OpenU: design of an integrated system to support lifelong learning
11 Yongming Luo (TUE), Designing algorithms for big graph datasets: A study of computing bisimulation and

joins
12 Julie M. Birkholz (VU), Modi Operandi of Social Network Dynamics: The Effect of Context on Scientific

Collaboration Networks
13 Giuseppe Procaccianti (VU), Energy-Efficient Software
14 Bart van Straalen (UT), A cognitive approach to modeling bad news conversations
15 Klaas Andries de Graaf (VU), Ontology-based Software Architecture Documentation
16 Changyun Wei (UT), Cognitive Coordination for Cooperative Multi-Robot Teamwork
17 André van Cleeff (UT), Physical and Digital Security Mechanisms: Properties, Combinations and Trade-offs
18 Holger Pirk (CWI), Waste Not, Want Not! - Managing Relational Data in Asymmetric Memories
19 Bernardo Tabuenca (OUN), Ubiquitous Technology for Lifelong Learners
20 Lois Vanhée (UU), Using Culture and Values to Support Flexible Coordination
21 Sibren Fetter (OUN), Using Peer-Support to Expand and Stabilize Online Learning
22 Zhemin Zhu (UT), Co-occurrence Rate Networks
23 Luit Gazendam (VU), Cataloguer Support in Cultural Heritage
24 Richard Berendsen (UVA), Finding People, Papers, and Posts: Vertical Search Algorithms and Evaluation
25 Steven Woudenberg (UU), Bayesian Tools for Early Disease Detection
26 Alexander Hogenboom (EUR), Sentiment Analysis of Text Guided by Semantics and Structure
27 Sándor Héman (CWI), Updating compressed colomn stores
28 Janet Bagorogoza (TiU), Knowledge Management and High Performance; The Uganda Financial Institutions

Model for HPO
29 Hendrik Baier (UM), Monte-Carlo Tree Search Enhancements for One-Player and Two-Player Domains
30 Kiavash Bahreini (OU), Real-time Multimodal Emotion Recognition in E-Learning

SIKS Dissertation Series ∣ 293

31 Yakup Koç (TUD), On the robustness of Power Grids
32 Jerome Gard (UL), Corporate Venture Management in SMEs
33 Frederik Schadd (TUD), Ontology Mapping with Auxiliary Resources
34 Victor de Graaf (UT), Gesocial Recommender Systems
35 Jungxao Xu (TUD), Affective Body Language of Humanoid Robots: Perception and Effects in Human Robot

Interaction

2016 01 Syed Saiden Abbas (RUN), Recognition of Shapes by Humans and Machines
02 Michiel Christiaan Meulendijk (UU), Optimizing medication reviews through decision support: prescribing a

better pill to swallow
03 Maya Sappelli (RUN), Knowledge Work in Context: User Centered Knowledge Worker Support
04 Laurens Rietveld (VU), Publishing and Consuming Linked Data
05 Evgeny Sherkhonov (UVA), Expanded Acyclic Queries: Containment and an Application in Explaining Missing

Answers
06 Michel Wilson (TUD), Robust scheduling in an uncertain environment
07 Jeroen de Man (VU), Measuring and modeling negative emotions for virtual training
08 Matje van de Camp (TiU), A Link to the Past: Constructing Historical Social Networks from Unstructured

Data
09 Archana Nottamkandath (VU), Trusting Crowdsourced Information on Cultural Artefacts
10 George Karafotias (VUA), Parameter Control for Evolutionary Algorithms
11 Anne Schuth (UVA), Search Engines that Learn from Their Users
12 Max Knobbout (UU), Logics for Modelling and Verifying Normative Multi-Agent Systems
13 Nana Baah Gyan (VU), The Web, Speech Technologies and Rural Development in West Africa - An ICT4D

Approach
14 Ravi Khadka (UU), Revisiting Legacy Software System Modernization
15 Steffen Michels (RUN), Hybrid Probabilistic Logics - Theoretical Aspects, Algorithms and Experiments
16 Guangliang Li (UVA), Socially Intelligent Autonomous Agents that Learn from Human Reward
17 Berend Weel (VU), Towards Embodied Evolution of Robot Organisms
18 Albert Meroño Peñuela (VU), Refining Statistical Data on the Web
19 Julia Efremova (Tu/e), Mining Social Structures from Genealogical Data
20 Daan Odijk (UVA), Context & Semantics in News & Web Search
21 Alejandro Moreno Célleri (UT), From Traditional to Interactive Playspaces: Automatic Analysis of Player

Behavior in the Interactive Tag Playground
22 Grace Lewis (VU), Software Architecture Strategies for Cyber-Foraging Systems
23 Fei Cai (UVA), Query Auto Completion in Information Retrieval
24 Brend Wanders (UT), Repurposing and Probabilistic Integration of Data; An Iterative and data model inde-

pendent approach
25 Julia Kiseleva (TU/e), Using Contextual Information to Understand Searching and Browsing Behavior
26 Dilhan Thilakarathne (VU), In or Out of Control: Exploring Computational Models to Study the Role of Hu-

man Awareness and Control in Behavioural Choices, with Applications in Aviation and Energy Management
Domains

27 Wen Li (TUD), Understanding Geo-spatial Information on Social Media
28 Mingxin Zhang (TUD), Large-scale Agent-based Social Simulation - A study on epidemic prediction and

control
29 Nicolas Höning (TUD), Peak reduction in decentralised electricity systems - Markets and prices for flexible

planning
30 Ruud Mattheij (UvT), The Eyes Have It
31 Mohammad Khelghati (UT), Deep web content monitoring
32 Eelco Vriezekolk (UT), Assessing Telecommunication Service Availability Risks for Crisis Organisations
33 Peter Bloem (UVA), Single Sample Statistics, exercises in learning from just one example
34 Dennis Schunselaar (TUE), Configurable Process Trees: Elicitation, Analysis, and Enactment
35 Zhaochun Ren (UVA), Monitoring Social Media: Summarization, Classification and Recommendation
36 Daphne Karreman (UT), Beyond R2D2: The design of nonverbal interaction behavior optimized for robot-

specific morphologies
37 Giovanni Sileno (UvA), Aligning Law and Action - a conceptual and computational inquiry
38 Andrea Minuto (UT), Materials that Matter - Smart Materials meet Art & Interaction Design
39 Merijn Bruijnes (UT), Believable Suspect Agents; Response and Interpersonal Style Selection for an Artificial

Suspect
40 Christian Detweiler (TUD), Accounting for Values in Design
41 Thomas King (TUD), Governing Governance: A Formal Framework for Analysing Institutional Design and

Enactment Governance
42 Spyros Martzoukos (UVA), Combinatorial and Compositional Aspects of Bilingual Aligned Corpora
43 Saskia Koldijk (RUN), Context-Aware Support for Stress Self-Management: From Theory to Practice
44 Thibault Sellam (UVA), Automatic Assistants for Database Exploration
45 Bram van de Laar (UT), Experiencing Brain-Computer Interface Control
46 Jorge Gallego Perez (UT), Robots to Make you Happy
47 Christina Weber (UL), Real-time foresight - Preparedness for dynamic innovation networks
48 Tanja Buttler (TUD), Collecting Lessons Learned
49 Gleb Polevoy (TUD), Participation and Interaction in Projects. A Game-Theoretic Analysis
50 Yan Wang (UVT), The Bridge of Dreams: Towards a Method for Operational Performance Alignment in IT-

enabled Service Supply Chains

294 ∣ SIKS Dissertation Series

2017 01 Jan-Jaap Oerlemans (UL), Investigating Cybercrime
02 Sjoerd Timmer (UU), Designing and Understanding Forensic Bayesian Networks using Argumentation
03 Daniël Harold Telgen (UU), Grid Manufacturing; A Cyber-Physical Approach with Autonomous Products and

Reconfigurable Manufacturing Machines
04 Mrunal Gawade (CWI), Multi-core Parallelism in a Column-store
05 Mahdieh Shadi (UVA), Collaboration Behavior
06 Damir Vandic (EUR), Intelligent Information Systems for Web Product Search
07 Roel Bertens (UU), Insight in Information: from Abstract to Anomaly
08 Rob Konijn (VU) , Detecting Interesting Differences:Data Mining in Health Insurance Data using Outlier

Detection and Subgroup Discovery
09 Dong Nguyen (UT), Text as Social and Cultural Data: A Computational Perspective on Variation in Text
10 Robby van Delden (UT), (Steering) Interactive Play Behavior
11 Florian Kunneman (RUN), Modelling patterns of time and emotion in Twitter #anticipointment
12 Sander Leemans (TUE), Robust Process Mining with Guarantees
13 Gijs Huisman (UT), Social Touch Technology - Extending the reach of social touch through haptic technology
14 Shoshannah Tekofsky (UvT), You Are Who You Play You Are: Modelling Player Traits from Video Game

Behavior
15 Peter Berck (RUN), Memory-Based Text Correction
16 Aleksandr Chuklin (UVA), Understanding and Modeling Users of Modern Search Engines
17 Daniel Dimov (UL), Crowdsourced Online Dispute Resolution
18 Ridho Reinanda (UVA), Entity Associations for Search
19 Jeroen Vuurens (UT), Proximity of Terms, Texts and Semantic Vectors in Information Retrieval
20 Mohammadbashir Sedighi (TUD), Fostering Engagement in Knowledge Sharing: The Role of Perceived Ben-

efits, Costs and Visibility
21 Jeroen Linssen (UT), Meta Matters in Interactive Storytelling and Serious Gaming (A Play on Worlds)
22 Sara Magliacane (VU), Logics for causal inference under uncertainty
23 David Graus (UVA), Entities of Interest — Discovery in Digital Traces
24 Chang Wang (TUD), Use of Affordances for Efficient Robot Learning
25 Veruska Zamborlini (VU), Knowledge Representation for Clinical Guidelines, with applications to Multimor-

bidity Analysis and Literature Search
26 Merel Jung (UT), Socially intelligent robots that understand and respond to human touch
27 Michiel Joosse (UT), Investigating Positioning and Gaze Behaviors of Social Robots: People’s Preferences,

Perceptions and Behaviors
28 John Klein (VU), Architecture Practices for Complex Contexts
29 Adel Alhuraibi (UvT), From IT-BusinessStrategic Alignment to Performance: A Moderated Mediation Model

of Social Innovation, and Enterprise Governance of IT"
30 Wilma Latuny (UvT), The Power of Facial Expressions
31 Ben Ruijl (UL), Advances in computational methods for QFT calculations
32 Thaer Samar (RUN), Access to and Retrievability of Content in Web Archives
33 Brigit van Loggem (OU), Towards a Design Rationale for Software Documentation: A Model of Computer-

Mediated Activity
34 Maren Scheffel (OU), The Evaluation Framework for Learning Analytics
35 Martine de Vos (VU), Interpreting natural science spreadsheets
36 Yuanhao Guo (UL), Shape Analysis for Phenotype Characterisation from High-throughput Imaging
37 Alejandro Montes Garcia (TUE), WiBAF: A Within Browser Adaptation Framework that Enables Control over

Privacy
38 Alex Kayal (TUD), Normative Social Applications
39 Sara Ahmadi (RUN), Exploiting properties of the human auditory system and compressive sensing methods

to increase noise robustness in ASR
40 Altaf Hussain Abro (VUA), Steer your Mind: Computational Exploration of Human Control in Relation to

Emotions, Desires and Social Support For applications in human-aware support systems
41 Adnan Manzoor (VUA), Minding a Healthy Lifestyle: An Exploration of Mental Processes and a Smart Envi-

ronment to Provide Support for a Healthy Lifestyle
42 Elena Sokolova (RUN), Causal discovery from mixed and missing data with applications on ADHD datasets
43 Maaike de Boer (RUN), Semantic Mapping in Video Retrieval
44 Garm Lucassen (UU), Understanding User Stories - Computational Linguistics in Agile Requirements Engi-

neering
45 Bas Testerink (UU), Decentralized Runtime Norm Enforcement
46 Jan Schneider (OU), Sensor-based Learning Support
47 Jie Yang (TUD), Crowd Knowledge Creation Acceleration
48 Angel Suarez (OU), Collaborative inquiry-based learning

2018 01 Han van der Aa (VUA), Comparing and Aligning Process Representations
02 Felix Mannhardt (TUE), Multi-perspective Process Mining
03 Steven Bosems (UT), Causal Models For Well-Being: Knowledge Modeling, Model-Driven Development of

Context-Aware Applications, and Behavior Prediction
04 Jordan Janeiro (TUD), Flexible Coordination Support for Diagnosis Teams in Data-Centric Engineering Tasks
05 Hugo Huurdeman (UVA), Supporting the Complex Dynamics of the Information Seeking Process
06 Dan Ionita (UT), Model-Driven Information Security Risk Assessment of Socio-Technical Systems
07 Jieting Luo (UU), A formal account of opportunism in multi-agent systems
08 Rick Smetsers (RUN), Advances in Model Learning for Software Systems

SIKS Dissertation Series ∣ 295

09 Xu Xie (TUD), Data Assimilation in Discrete Event Simulations
10 Julienka Mollee (VUA), Moving forward: supporting physical activity behavior change through intelligent

technology
11 Mahdi Sargolzaei (UVA), Enabling Framework for Service-oriented Collaborative Networks
12 Xixi Lu (TUE), Using behavioral context in process mining
13 Seyed Amin Tabatabaei (VUA), Computing a Sustainable Future
14 Bart Joosten (UVT), Detecting Social Signals with Spatiotemporal Gabor Filters
15 Naser Davarzani (UM), Biomarker discovery in heart failure
16 Jaebok Kim (UT), Automatic recognition of engagement and emotion in a group of children
17 Jianpeng Zhang (TUE), On Graph Sample Clustering
18 Henriette Nakad (UL), De Notaris en Private Rechtspraak
19 Minh Duc Pham (VUA), Emergent relational schemas for RDF
20 Manxia Liu (RUN), Time and Bayesian Networks
21 Aad Slootmaker (OUN), EMERGO: a generic platform for authoring and playing scenario-based serious games
22 Eric Fernandes de Mello Araujo (VUA), Contagious: Modeling the Spread of Behaviours, Perceptions and

Emotions in Social Networks
23 Kim Schouten (EUR), Semantics-driven Aspect-Based Sentiment Analysis
24 Jered Vroon (UT), Responsive Social Positioning Behaviour for Semi-Autonomous Telepresence Robots
25 Riste Gligorov (VUA), Serious Games in Audio-Visual Collections
26 Roelof Anne Jelle de Vries (UT),Theory-Based and Tailor-Made: Motivational Messages for Behavior Change

Technology
27 Maikel Leemans (TUE), Hierarchical Process Mining for Scalable Software Analysis
28 Christian Willemse (UT), Social Touch Technologies: How they feel and how they make you feel
29 Yu Gu (UVT), Emotion Recognition from Mandarin Speech
30 Wouter Beek, The "K" in "semantic web" stands for "knowledge": scaling semantics to the web

2019 01 Rob van Eijk (UL),Web privacy measurement in real-time bidding systems. A graph-based approach to RTB
system classification

02 Emmanuelle Beauxis Aussalet (CWI, UU), Statistics and Visualizations for Assessing Class Size Uncertainty
03 Eduardo Gonzalez Lopez de Murillas (TUE), Process Mining on Databases: Extracting Event Data from Real

Life Data Sources
04 Ridho Rahmadi (RUN), Finding stable causal structures from clinical data
05 Sebastiaan van Zelst (TUE), Process Mining with Streaming Data
06 Chris Dijkshoorn (VU), Nichesourcing for Improving Access to Linked Cultural Heritage Datasets
07 Soude Fazeli (TUD), Recommender Systems in Social Learning Platforms
08 Frits de Nijs (TUD), Resource-constrained Multi-agent Markov Decision Processes
09 Fahimeh Alizadeh Moghaddam (UVA), Self-adaptation for energy efficiency in software systems
10 Qing Chuan Ye (EUR), Multi-objective Optimization Methods for Allocation and Prediction
11 Yue Zhao (TUD), Learning Analytics Technology to Understand Learner Behavioral Engagement in MOOCs
12 Jacqueline Heinerman (VU), Better Together
13 Guanliang Chen (TUD), MOOC Analytics: Learner Modeling and Content Generation
14 Daniel Davis (TUD), Large-Scale Learning Analytics: Modeling Learner Behavior & Improving Learning Out-

comes in Massive Open Online Courses
15 Erwin Walraven (TUD), Planning under Uncertainty in Constrained and Partially Observable Environments
16 Guangming Li (TUE), Process Mining based on Object-Centric Behavioral Constraint (OCBC) Models
17 Ali Hurriyetoglu (RUN),Extracting actionable information from microtexts
18 Gerard Wagenaar (UU), Artefacts in Agile Team Communication
19 Vincent Koeman (TUD), Tools for Developing Cognitive Agents
20 Chide Groenouwe (UU), Fostering technically augmented human collective intelligence
21 Cong Liu (TUE), Software Data Analytics: Architectural Model Discovery and Design Pattern Detection
22 Martin van den Berg (VU),Improving IT Decisions with Enterprise Architecture
23 Qin Liu (TUD), Intelligent Control Systems: Learning, Interpreting, Verification
24 Anca Dumitrache (VU), Truth in Disagreement - Crowdsourcing Labeled Data for Natural Language Process-

ing
25 Emiel van Miltenburg (VU), Pragmatic factors in (automatic) image description
26 Prince Singh (UT), An Integration Platform for Synchromodal Transport
27 Alessandra Antonaci (OUN), The Gamification Design Process applied to (Massive) Open Online Courses
28 Esther Kuindersma (UL), Cleared for take-off: Game-based learning to prepare airline pilots for critical situ-

ations
29 Daniel Formolo (VU), Using virtual agents for simulation and training of social skills in safety-critical circum-

stances
30 Vahid Yazdanpanah (UT), Multiagent Industrial Symbiosis Systems
31 Milan Jelisavcic (VU), Alive and Kicking: Baby Steps in Robotics
32 Chiara Sironi (UM), Monte-Carlo Tree Search for Artificial General Intelligence in Games
33 Anil Yaman (TUE), Evolution of Biologically Inspired Learning in Artificial Neural Networks
34 Negar Ahmadi (TUE), EEG Microstate and Functional Brain Network Features for Classification of Epilepsy

and PNES
35 Lisa Facey-Shaw (OUN), Gamification with digital badges in learning programming
36 Kevin Ackermans (OUN), Designing Video-Enhanced Rubrics to Master Complex Skills
37 Jian Fang (TUD), Database Acceleration on FPGAs

296 ∣ SIKS Dissertation Series

38 Akos Kadar (OUN), Learning visually grounded and multilingual representations

2020 01 Armon Toubman (UL), Calculated Moves: Generating Air Combat Behaviour
02 Marcos de Paula Bueno (UL), Unraveling Temporal Processes using Probabilistic Graphical Models
03 Mostafa Deghani (UvA), Learning with Imperfect Supervision for Language Understanding
04 Maarten van Gompel (RUN), Context as Linguistic Bridges
05 Yulong Pei (TUE), On local and global structure mining
06 Preethu Rose Anish (UT), Stimulation Architectural Thinking during Requirements Elicitation - An Approach

and Tool Support
07 Wim van der Vegt (OUN), Towards a software architecture for reusable game components
08 Ali Mirsoleimani (UL),Structured Parallel Programming for Monte Carlo Tree Search
09 Myriam Traub (UU), Measuring Tool Bias and Improving Data Quality for Digital Humanities Research
10 Alifah Syamsiyah (TUE), In-database Preprocessing for Process Mining
11 Sepideh Mesbah (TUD), Semantic-Enhanced Training Data AugmentationMethods for Long-Tail Entity Recog-

nition Models
12 Ward van Breda (VU), Predictive Modeling in E-Mental Health: Exploring Applicability in Personalised De-

pression Treatment
13 Marco Virgolin (CWI), Design and Application of Gene-pool Optimal Mixing Evolutionary Algorithms for

Genetic Programming
14 Mark Raasveldt (CWI/UL), Integrating Analytics with Relational Databases
15 Konstantinos Georgiadis (OUN), Smart CAT: Machine Learning for Configurable Assessments in Serious

Games
16 Ilona Wilmont (RUN), Cognitive Aspects of Conceptual Modelling
17 Daniele Di Mitri (OUN), The Multimodal Tutor: Adaptive Feedback from Multimodal Experiences
18 Georgios Methenitis (TUD), Agent Interactions & Mechanisms in Markets with Uncertainties: Electricity Mar-

kets in Renewable Energy Systems
19 Guido van Capelleveen (UT), Industrial Symbiosis Recommender Systems
20 Albert Hankel (VU), Embedding Green ICT Maturity in Organisations
21 Karine da Silva Miras de Araujo (VU), Where is the robot?: Life as it could be
22 Maryam Masoud Khamis (RUN), Understanding complex systems implementation through a modeling ap-

proach: the case of e-government in Zanzibar
23 Rianne Conijn (UT), The Keys to Writing: A writing analytics approach to studying writing processes using

keystroke logging
24 Lenin da Nobrega Medeiros (VUA/RUN), How are you feeling, human? Towards emotionally supportive

chatbots
25 Xin Du (TUE), The Uncertainty in Exceptional Model Mining
26 Krzysztof Leszek Sadowski (UU), GAMBIT: Genetic Algorithm for Model-Based mixed-Integer opTimization
27 Ekaterina Muravyeva (TUD), Personal data and informed consent in an educational context
28 Bibeg Limbu (TUD), Multimodal interaction for deliberate practice: Training complex skills with augmented

reality
29 Ioan Gabriel Bucur (RUN), Being Bayesian about Causal Inference
30 Bob Zadok Blok (UL), Creatief, Creatieve, Creatiefst
31 Gongjin Lan (VU), Learning better – From Baby to Better
32 Jason Rhuggenaath (TUE), Revenue management in online markets: pricing and online advertising
33 Rick Gilsing (TUE), Supporting service-dominant business model evaluation in the context of business model

innovation
34 Anna Bon (MU), Intervention or Collaboration? Redesigning Information and Communication Technologies

for Development

2021 01 Francisco Xavier Dos Santos Fonseca (TUD),Location-based Games for Social Interaction in Public Space

	Acknowledgments
	Introduction
	Decision-Making in Software Production
	Multi-Criteria Decision-Making Problems
	Multi-Criteria Decision-Making Techniques
	Decision Support Systems
	MCDM Problems in Software Production
	Problem investigation
	Research Approach
	Theory Development in Design Science Research
	The MCDM Framework
	Dissertation Outline

	Database Management Systems
	Introduction
	Research Method
	Related work
	Multi-Criteria Decision-Making
	DBMS Selection
	Results and Analysis
	Discussion
	Conclusion

	Cloud Service Providers
	Introduction
	Research Method
	Related Work
	Multi-Criteria Decision-Making
	Cloud Service Provider Selection
	Results and Analysis
	Discussion
	Conclusion

	Blockchain Platforms
	Introduction
	Research Approach
	Related Work
	Multi-Criteria Decision-Making for Blockchain Platform Selection
	Empirical Evidence: The Case Studies
	Results and Analysis
	Discussion
	Conclusion

	Programming Language Ecosystems
	Introduction
	Research Method
	Multi-Criteria Decision-Making for Programming Language Selection
	Empirical Evidence: The Case Studies
	Analysis of the Results
	Discussion
	Related Work
	Conclusion

	Model-Driven Development Platforms
	Introduction
	Background
	Research Approach
	MCDM for MDD Platform Selection
	Empirical Evidence: the Case Studies
	Discussion
	Related Work
	Conclusion

	Capturing Software Architecture Knowledge
	Introduction
	Background
	Systematic Literature Review
	Practitioner Evaluation
	Conclusion

	Decision Support for Pattern-Driven Architecture
	Introduction
	Decision Support System
	A Practical Running Example
	Related Work
	Evaluation
	Conclusion

	Design Decisions in Pattern-Driven Architecture
	Introduction
	Research method
	Architectural pattern selection as an MCDM
	Empirical Evidence
	Discussion and Analysis
	Related work
	Conclusions

	Conclusion
	Contributions and observations
	Threats to Validity
	Reflections
	Limitations and Future Work

	Bibliography
	Summary
	Samenvatting
	Publication List
	Curriculum Vitae
	SIKS Dissertation Series

