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Introduction

“Well, I am no rocket scientist, and I have immense re-
spect for people who can land a machine the size of a
car on another planet. But the sad fact is that we’re
actually much better at planning a flight path of an in-
terplanetary rocket than we are managing the economy,
merging two corporations, or even predicting how many
copies a book will sell. So why is that rocket science
seems hard, whereas problems having to do with people
- which arguably are much harder - seem like common
sense?”

— Duncan J. Watts (Watts, 2011)

The substantial topics studied in this dissertation are coordination problems in
social dilemma situations and how general trust is established. The paragraphs
below are stylized examples of the studies’ mechanisms. Example 1a till Example
1d are to illustrate how a coordination problem can be a social dilemma. Example
2 illustrates how general trust mechanisms can be promoted in social structures.

Example 1a: Imagine, you and a colleague are working on a project together.
You remember you two had a dispute on which text program you wanted to use.
You want to use the program ‘Word’ and your colleague wants to use the program
‘LATEX’. At the time of the dispute, it was already hard to decide which program
to use, because neither of you had a clear argument on why the preferred program
was better. However, now you cannot recall which program you ended up choosing
and you cannot contact your colleague in order to ask. If you don’t choose the
same program to work with as your colleague, the work is for nothing and you
probably don’t make the deadline. Which program would you choose to use?

Example 1b: You are in the same situation only with three colleagues. Again,
no clear decision has been made regarding which program to use. Let’s assume
you know the two other colleagues also don’t know which program to use and you
are again unable to contact each other. You still have your preference for Word,
however, your two colleagues both have a preference for LATEX. What would you
choose in this situation? Is your reasoning and/or decision different from a week
before?

Example 1c: A week later, you and your colleagues haven’t learned from your
past mistakes. Again, nobody wrote down the minutes when the decision was
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Chapter 1

made on which program to use. You are working with the same two colleagues as
the week before. You still have your preference for the program Word and your two
colleagues still prefer LATEX. Again, you do not know which program you ended
up choosing to work with. Again, choosing the wrong one means you don’t make
the deadline. However, you do know that last week both your colleagues choose
to work in LATEX. What would you choose in this situation? Is your reasoning
and/or decision different from a week before?

Example 1d: A huge project is coming up. It is a twenty person project and
again no clear decision has been made on which program to use. You ask your
two colleagues what they prefer. One prefers Word, the other LATEX. Since you
also prefer Word, the three of you decide to go with Word. However, one hour
later the colleague who prefers LATEX talked to a fourth colleague who also prefers
LATEX. The colleague tells you she changed her mind to LATEX as well. What will
you do now? Also change to LATEX or stick with Word?

Example 2: A big project came in. It’s a prestigious case and you’ll receive a
large bonus when you finish it in time. However, the deadline is very soon. You
figure you can make it, but the work has to be done very efficiently. Your boss
also understands this and proposes that you can choose the people you want to
work with. The first option is to work with two colleagues with whom you are
sharing an office. You know them and get along well. You have similar skills,
but you figure that if (and only if) you manage to work as a team, you’ll get
the work done just before the deadline. However, free-riding behavior would be
detrimental to the project. The second option is you work with two people from
other departments. You have never met these two people, but both have a very
different skill set compared to you. You figure the project can be divided in three
parts, and each part can be perfectly matched to the skill set of the people in your
team. The project can be done very efficiently and it takes less time than with
your close colleagues, but you figure you’ll make the deadline if (and only if) all
team members do their part. In both options the obtained bonus will be equally
split over the team members. Which option would you choose? Why?

Example 1a until Example 1d are stylized situations on how people choose to
coordinate when they prefer different options. In these examples there is a tension
between what people prefer and the need to choose the same as others. Example
2 is on how trust is established in groups of people. The question in Example
2 is whether you rather work with people you know or with people who have
complementary skills to you. If you choose for the first option, you probably
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figured that you know those colleagues well and you get along. The knowledge on
past interactions with them will create the trust needed to work as a team and
finish the project. If you choose for the second option, you probably figure that
a complementary skilled team can do the job efficiently and the people in this
team will do their work because not doing it means they don’t get the bonus. You
even might have figured that while you don’t know them, they belong to the same
company, and the institutional context might provide some extra security. In the
first case, familiarity and personal relations will create the basis for trust. In the
second case, complementary and institutional context.

What the above examples have in common is that they both relate to the socio-
logical problem of social cohesion. In the first part of this dissertation, we study a
particular kind of cohesion problem where people want to cooperate/coordinate,
but differ in their opinions on how to achieve the goal. In this situation there is a
tension both for the individual and in the group as a whole. On the group level,
cooperation means that some people may not get their preferred option. For the
individual the tension is between behaving cooperatively and trying to get what
you want with the risk that there will be no cooperation at all. In this disserta-
tion, we hypothesize that the social interaction structure (or network structure)
might help and shape this process. Some networks might facilitate unity, while
other network structures might have a polarizing effect. In Chapters 2, 3 and 4 the
effect of network structure on coordination problems with asymmetric preferences
is studied by means of different methods.

In the second part of this dissertation, we study the influence of social interaction
on cohesion on a more abstract level. Social interaction is not only shaped by
individuals who choose to interact with others. People interact, cooperate and
coordinate with others they do not know on a daily basis. Social interactions are
also shaped by the way society is organized. How a society is organized is regulated
by its institutions. We focus on one such organization (or institution), namely the
division of labor. In this second part of the dissertation we test an old hypothesis
that economic dependencies that emerge from a division of labor can be a source
of social cohesion. In Chapter 5 we aim to empirically measure aspects of the
division of labor and relate these measures to indicators of social cohesion.

In order to study these problems, we borrow ideas and methods from the relatively
new field of ‘complex systems science’ and more specifically ‘network science’.
Because complex systems science has been such an important part in writing this
dissertation, I start with a small overview of the main ideas, before introducing

5



Chapter 1

the individual chapters of this dissertation in more depth. The goal is to give
some background knowledge to the main ideas and methods in this dissertation
and how they can be useful in the field of sociology. And it is also meant as an
small introduction to complex system science for those who do not know complex
system science, and its connection to sociology for those who do not know sociology.
However, it is not meant as an exhaustive overview of neither scientific fields.
After this short introduction, the goals, research questions, and the results of the
individual chapters will be discussed in more detail.

1.1 Complex Systems Science

Although complexity science is becoming rapidly more popular, an agreed upon
exact definition of a ‘complex system’ is still lacking (Ladyman et al., 2013). A
‘complex system’ is often described by its characteristics such as many interacting
components, non-linear behavior, feedback, sensitive dependence on initial condi-
tions and emergent behavior. However, non of these characteristics can be con-
sidered as necessary or sufficient conditions to define a complex system (Ladyman
et al., 2013). One reason is that for every of these characteristics there are systems
that are considered ‘complex’ that do not have these requirements, while there are
systems that are not considered ‘complex’ that do have some of these characteris-
tics. Another reason is that important characteristics such as ‘emergence’ lack an
agreed upon definition themselves (Ladyman et al., 2013). One could say that the
definition of a complex systems is an interaction of different characteristics, that
is sensitive to the object of study, with different emergent properties for different
academic disciplines. Because of the lack of definition, it might be more useful
to think about when an object of study can benefit from thinking about it as a
system that is ‘complex’. Therefore, in what follows the concepts are introduced
as they are regarded in this dissertation, together with a discussion of the added
value of thinking about sociological phenomena in these terms.

In this dissertation, complex systems science is the study of how interacting com-
ponents bring about patterns or behavior that are characteristic for the total
system. The object of study is not so much the components that form the system,
but rather the interactions that together describe some properties of the system
as a whole. What makes a complex system distinct form a ‘regular’ system is
that the system as a whole is more effectively described by system-level proper-
ties compared to describing the system by the properties of the components that
form the system. So, complex system science studies how components in a system

6



Introduction

interact with each other bringing about global or ‘macroscopic’ properties of a
system. As most things in nature or science do not just appear on their own and
are completely self sufficient, many studied subjects in the full range of science can
be considered either a component of a complex system or a complex system itself.
Some examples of complex systems are, a cell, a brain, organisms, the internet, a
power grid, markets, a society, an eco-system or the universe.

Take for instance the (human) brain. The brain consists of billions of neurons that
interact with each other. However, in studying the brain, it does not make much
sense to only describe it as a set of neurons firing. In order to learn something
about the brain it is easier to describe it at a higher level, for instance by de-
scribing its functionality. Examples of higher level phenomena of the brain could
be information processing, coordination of bodily functions or consciousness. It is
often hard to think of these phenomena in terms of exact configurations of neurons
firing. With a phenomenon like consciousness it is even hard to imagine how this
emerges from neural activity at all. This is because higher level phenomena, like
consciousness, have properties that the lower level neurons seemingly do not have.
Yet, neural activity is most likely responsible for all of these phenomena. When
these higher level phenomena are best described by properties that are usually not
the properties that best describe the lower level interactions, this is referred to as
‘emergence’ or ‘emergent phenomena’. Emergence is one of the key concepts in
complex systems science and throughout this dissertation.

1.1.1 Emergence

One reason to study a system of components is when the behavior of the system
has emergent phenomena. Emergence occurs when all components together can
have properties that the individual components do not have themselves. The same
holds for sociological phenomena. At the basis of most sociological phenomena are
social interactions (or social networks). Social interactions are to a large degree
structured. For instance by informal institutions, such as culture, or more formal
institutions, such as a legal system. Just like the brain, it does not make sense
to study all the individual social interactions. Instead, sociologists try to describe
patterns in these human interactions that bring about a phenomenon. How a
society functions can be regarded as an emergent phenomenon of how its social
interactions are structured, as it does not make sense to describe the collective
phenomenon in terms of the individuals in it.

So emergent phenomena have properties that the lower level components do not
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have. But does this mean that emergent phenomena are something more than
the patterns and lower level behavior that causes them? In order to answer this
question let us see if emergence can be explained in a reductionist view.

1.1.2 Reductionism

Complex system science is often contrasted to reductionism. Reductionism is the
idea that (complex) phenomenon can be reduced to the (interaction) of their parts
or more fundamental parts, where the parts behave in some regular way. The phe-
nomenon to be explained is therefore equal to summing its (more fundamental)
parts. So the question is if we can understand emergent phenomena by sum-
ming their parts, even though the emergent phenomena have properties that the
components do not?

In order to think about the question above, let’s do a thought experiment called
Laplace’s demon. Laplace’s demon is the (philosophical) idea, that if someone (the
demon) knows the precise location and momentum of every atom in the universe,
their past and future values for any given time are entailed; they can be calculated
from the laws of classical mechanics. Although in the light of current scientific
knowledge on classical mechanics and quantum physics (which I know nothing
about), this conception of Laplace’s demon is most likely wrong, the idea still
serves as a thought experiment.

Could Laplace’s demon understand properties of an emergent phenomenon by
knowing, comprehending and understanding all micro-level behavior? If Laplace’s
demon knows the exact position and behavior of all neurons in a brain, could it
derive a higher level property like ‘consciousness’ from this? Or if Laplace’s demon
knows all social interactions in a group of people, can it derive the culture? In the
first example the question is whether ‘consciousness’ is an ontological difference
from the set of neurons or ‘just’ an epistemological difference. When consciousness
is ontological different from the set of neurons, this means that consciousness and
a set of neurons are two fundamentally different things or entities. When con-
sciousness and neurons are epistemological different and not ontological different,
this means that both are the same thing, it is just too difficult to comprehend or
understand consciousness as the set of interacting neurons. In philosophy this is
called ‘conceptual dualism’ (Papineau, 2002; Davidson, 1980). This means that
we have different ways of thinking about the same substance. The ‘physical event’
of neurons firing might be the same substance as ‘the experience’ of consciousness,
but to talk about the physical event and the experience we need a different set of
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words. So while ‘consciousness’ and ‘a set of interacting neurons’ are actually the
same thing, it is too complicated to express ‘the set of interacting neurons’ in such
a way that it means the same as ‘consciousness’. For an emergent phenomenon like
culture, it is easier to see how this is just an epistemological difference. Because
culture itself is not an entity, just a collective noun for a set of humans and their
patterns of interactions. The same holds for ant colonies or bird flocks. One can
simulate ant colonies and bird flocks and the result will be exactly equal to the
sum of behaviors of the ants and their interactions. However, when we talk about
their collective behavior, you don’t want to explain each ant and each interaction.

1.1.3 Reductionism and emergence

Complexity has been used to describe phenomena where properties at a higher
scale cannot be reduced to properties at a lower scale. A popular phrasing is to
say that the whole is more than the sum of its parts. Or isn’t it? I think this
is a common mistake, or it seems to suggest at the very least something that it
is not, as the whole is always exactly the sum of its parts. So why is a concept
like emergence useful? The problem is that we don’t know what to sum to get to
the whole or, when we do know the sum, it does not provide useful information.
Scientific knowledge is often not to sum, but to summarize. The sum itself often
does not provide us the interesting scientific information. So I think most emergent
phenomena are epistemological differences between the macroscopic properties and
the microscopic behavior that causes it. The confusion arises because there is often
a ‘conceptual dualism’ between the agents and the emergent phenomenon. It is
simply too difficult to express the emergent phenomenon in terms of its agents in
an effective manner. For instance, when describing a ‘car’ to someone who has
never heard of a car before, it is often not very useful to give a list of the parts it is
made of and how they interact. It is more useful to give a summary of its purpose.
We understand scientific knowledge as describing something complex or difficult
as simple as possible. The art of complexity science is therefore to describe some
‘complex’ phenomenon, as simple as possible.

Reductionism is compatible with the complex systems perspective, when we ac-
cept that agents are not closed systems (Carroll, 2017). Agents have inputs and
outputs, and how you structure the in and outputs across agents is what is causing
emergence. However, the behavior can still be understood by the behavior of in-
dividual agents given some input pattern. So within complex system science, the
object of study is not the agent itself, but the pattern it produces when it interacts
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with an environment and/or other agents, changing the subject of study from the
agent to feedback patterns between agents or environment. Emergent phenomena
can be studied by recurring patterns that occur with events of interest. The first
step is recognizing the patterns. The second step is understanding the origin of
the regularity (Holland, 2000).

So what do we do when we describe a system in terms of emergent properties?
Laplace’s demon can predict the next state with exact precision from the previous
one by knowing all the parameters in the system and having infinite computational
power to predict the next. Emergence is knowing only a small number of param-
eters in the system, but being able to predict the next state with a reasonable
certainty.

1.2 Complex Systems Science and Sociology

Sociology could be regarded as a complexity science par excellence. The definition
of sociology on Wikipedia reads: ‘Sociology is a study of society, patterns of social
relationships, social interaction and culture of everyday life’ (Wikipedia, 2019).
What should be clear from this definition is that sociology consists almost entirely
of emergent phenomena, with some key concepts like ‘patterns’ and ‘interaction’
already present in its definition. Society could be regarded as a complex adaptive
systems and many of its objects of study, such as social cohesion or inequality, are
emergent phenomena (Waldrop, 1993; Eve et al., 1997).

That sociology is a complexity science par excellence is exactly at the root of the
problem stated in the quote by Duncan Watts at the beginning of the chapter.
Let’s take one step back to Laplace’s demon and assume we know the fundamental
building blocks of the universe and how they act according to deterministic laws.
Laplace’s demon can calculate the past and the present if it knows the precise
location and momentum of every atom in the universe. Laplace’s demon could
also calculate sociological phenomena with 100 percent accuracy. However, in
explaining the sociological phenomena, lets say social inequality, Laplace’s demon
could only inform us on how all the fundamental building blocks in one state
got into another according to some law. This would not be very informative to
the sociologist, so the sociologist asks the demon to explain the phenomena on a
higher level. The demon goes on and explains the sociological phenomena in terms
of properties of matter and how they interact. The demon’s story loses precision,
but the story becomes more tangible to the sociologist. However, the sociologist
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Figure 1.1: When the title would be ‘Fields arranged by Complexity’ the arrow might
point to the other direction (xkdc, 2019).

is still not satisfied with the demon’s explanation and asks again to explain the
phenomena on a higher level. The demon tells the story again, however, this time
in terms of living organisms, their chemical processes and molecular interactions.
The demons story loses again precision, but the sociologist really gets the feeling
that he is starting to understand the demon. However, not quite yet, and the
sociologist asks again to explain the phenomena on a higher level. The demon
goes on and explains of every individual in a society which choices they made that
caused the social inequality. The sociologist finally thinks he fully understands
and asks the demon, do I summarize it correctly by saying that all individuals
maximize utility?

So to answer Duncan Watt’s question, sociology could be regarded physics with
numerous levels of emergence. At every level of emergence, one loses precision in
the predicted event (or as Figure 1.1 puts it, the prediction becomes less pure).
For instance, by assuming that people maximize utility, you can probably describe
some important patterns in society, but you also miss information, as that human
decision making is much more complicated than a simple utility function. A human
has a brain, with chemical processes that produces patterns, but also deviations
from those patterns. All those factors together make that a society produce many
degrees of freedom and high amounts of uncertainty. Thereby, it is not useful to
talk about sociological problems in terms of configurations of atoms. However,
this does not mean that sociology is a lost cause.

In a sense, sociologists have tried to deal with complexity for decades. For many
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Figure 1.2: Coleman boat, where A and D represent propositions describing macro-
conditions and macro-outcomes, B and C represent propositions describing micro-
conditions and micro-outcomes, Arrow 1 represents assumptions on how social conditions
affect these variables, Arrow 2 represents the micro-theory, Arrow 3 represents the trans-
formation rule of how individual behavior generates macro-outcomes, Arrow 4 represents
an empirical regularity at the macro-level.

sociologists, complexity science, or complexity thinking should sound familiar. For
instance, many elements of network science find their roots in sociology (Freeman,
1977). However, the most obvious connection between complex systems science
and sociology is the micro-macro link in James Coleman’s ‘boat’ scheme (Coleman,
1994).

The Coleman boat represented in Figure 1.2 is considered to be the blue print of
sociological theory building (Raub et al., 2011). Sociological theory is concerned
with explaining how certain macro-conditions cause macro-outcomes, represented
by node A and D in Figure 1.2. In sociological theory, macro-level phenomena
often refer to the social system, such as a society or culture, and the micro-level
refers to the level of the individual. Coleman’s claim here is that macro conditions
and outcomes are mere empirical regularities. For a sociological theory to claim
causality, the theory needs to take the behavioral level into account.

Arrow 3 of the Coleman boat in Figure 1.2 represents the transformation rule. The
transformation rule describes how individual behavior leads to macro-outcomes.
To see why this is relevant, let’s take a look at the most recent Presidential elec-
tions in the United States of America between Donald Trump and Hillary Clinton.
The Coleman boat can be used to explaining why Trump won the election. How-
ever, now we only focus on how the individual votes (node C in Figure 1.2) lead to
the macro-outcome of who is elected. If the elective system (transformation rule)
would have been majority rule, the individual votes would be summed. The pres-
idential candidate with the most votes would win the election, in case of majority
rule, Hillary Clinton. However, the USA has an electoral district system. The
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district system is an indirect election in which an electoral college is chosen to rep-
resent a state. The electoral college in its turn chooses the President, in this case
Donald Trump. In this example it becomes clear that the same micro-outcomes
can result in completely different macro-outcomes by changing the transformation
rule.

So when is it useful to think about a sociological problem as a complex system? I
think this has all to do with the transformation rule, Arrow 3 in Figure 1.2. When
the macro-outcome is an aggregate of the micro-outcomes, the macro-outcome is
the same as summing the micro behaviors. In this case there is no interdependence
between the actors and complexity science is of not much use. However, when there
is a discrepancy between the individual micro-outcome and the observed macro-
outcome, it might be useful to think about the empirical deviation as a complex
system.

One of the first and most famous examples of modeling the micro-macro link is
Schelling’s segregation model (Schelling, 1969; Schelling, 1971). Schelling stud-
ied residential segregation in the United States of America in the late 1960’s.
The observation was made that even though the attitudes towards racial residen-
tial segregation where changing significantly towards more positive attitudes for
more residential integration, the observed residential segregation stayed the same.
Schelling developed an agent based model where the decisions of the agent are
dependent on the decisions of other agents. In the model, agents have a preference
to be around a certain amount of similar others. If this preference is not met
they move somewhere else and if this preference is met they stay where they are.
The model indicates that when the agents have very mild preferences for being
around of similar others, complete residential segregation can emerge. Therefore,
the model can explain the emergence of residential segregation even though the
individual agents do not want residential segregation to happen. A remark has
to made here that a similar model has been published before Schelling published
his version (Hegselmann, 2017; Sakoda, 1971). Other examples of modeling the
transformation rule as a complex system are Granovetter’s threshold model (Gra-
novetter and Soong, 1983). This model explained how collective acting can depend
on tipping points (or critical mass). Schelling segregation model also contains tip-
ping points, however the term was named and popularized by Granovetter.

What the field of complexity science has to offer to the field of sociology is a so-
phistication of the methods of modeling the micro-macro link. In this dissertation
a modest contribution is made by researching methods borrowed from the field of
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Table 1.1: Cooperation problem represented as a prisoners dilemma.

Cooperate Defect
Cooperate 3,3 1,4
Defect 4,1 2,2

complexity. The methods used in this dissertation are network science, game the-
ory, statistical mechanics and economic complexity. In what follows we introduce
how these methods are applied to substantial research topics.

1.3 Part 1: Chapters 2 till 4

The study of why people cooperate is older than many academic disciplines that
study the problem of cooperation. Although questions regarding cooperation were
asked long before, many regard the book titled Leviathan by Thomas Hobbes -
written and published in the year 1651 - as the starting point of the scientific
inquiry (Hobbes, 1968; Christman, 2017). Cooperation is studied in many disci-
plines and different contexts. However, the problem of cooperation might be most
simple and elegantly formulated by social dilemma games.

Social dilemmas are situations in which rational choices by individual actors lead to
outcomes that are suboptimal compared to when the actors had cooperated (Raub
et al., 2015; Buskens and Raub, 2013). Arguably the most famous social dilemma
game is the prisoner’s dilemma (Binmore et al., 2007). As can be seen in Table 1.1,
in the prisoner’s dilemma the players can choose to cooperate or to defect. The
cooperation problem arises because defection is always the best response to both
choices of the other player. Therefore, both players choose to defect. Both players
would have had a higher payoff if both chose to cooperate. However, cooperation
is not a best response strategy. This example is arguably the most simple way of
formalizing a cooperation problem. Therefore, the prisoner’s dilemma has been
topic of debate for many decades. Many different solutions have been brought
forward such as playing the game repeatedly (Axelrod and Hamilton, 1981). More
recently, network structure also has been put forward as a possible solution to
the cooperation problem formulated by the prisoner’s dilemma (Raub and Weesie,
1990; Nowak and May, 1992; Szolnoki et al., 2008; Gracia-Lázaro et al., 2012). In
this dissertation we study if network structure can help to overcome another type
of social dilemma.
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Table 1.2: Payoff table of an asymmetric coordination game

α β

α 2,1 0,0
β 0,0 1,2

The social dilemma studied in this dissertation is known as the ‘battle of the
sexes’ (BoS). In game theory, the ‘battle of the sexes’ represents a situation in
which people like to agree on options in the first place, but some people prefer one
option more than the other. This situation is called ‘battle of the sexes’ based on
a suggested story in which a man prefers to go to a sports game, while a woman
prefers to go to the theater. However, both would rather do something together
than alone.

The 2-player version of ‘battle of the sexes’ is formalized in Table 1.2. In Table
1.2, there is a row player and a column player. Both players can choose between
two options, in this case named α and β. The payoff of the individual players is
dependent on which option they choose. The two choice combinations create four
payoff combinations, represented in the matrix in Table 1.2. In each of the four
combinations the first entry in the matrix is the payoff of the row player and the
second entry is the payoff of the column player. Both players have a higher payoff
if they choose the same option compared to both choosing a different option. The
row player has the highest payoff if both players choose α and the column player
has the highest payoff if both players choose β.

A real life example of this asymmetric situation is choosing between two gaming
consoles. This Christmas both Playstation and Xbox will release their new gaming
console. Imagine, you and a friend want to buy one, but you prefer the Playstation
and your friend the Xbox. You both prefer buying the same device over buying
a different one, because this will allow you to play against each other over the
internet. Studies show that when you have to make the decision which console
to buy independently, you are most likely to end up choosing your own preferred
option. In this case, you miscoordinate and this is the least favorable outcome for
both of you (Cooper et al., 1989; Binmore et al., 2007). When you are allowed to
communicate and go back and forth a couple of times you will probably converge
on one of the two consoles (Duffy et al., 2017; De Kwaadsteniet et al., 2012; Lau
and Mui, 2008). However, this can be frustrating for the player who did not end
up with his or her most preferred option.
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Table 1.3: Example payoff table 3 player asymmetric ‘battle of the sexes’ game. The
first entry is for player 1, the second entry for player 2, and the third entry for player 3.

Player 2 α β
Player 3 α β α β

Player 1 α 4,2,2 0,0,0 2,1,0 0,2,2
β 0,1,1 1,2,0 1,0,2 2,4,4

Table A12 illustrates the situation in which a third player is added who also has
a preference for one of the two options. In the three player case, the situation
changes and the payoff table is not balanced anymore. The intuitive explanation
is that when three people have a preference for one of two options, there will always
be a majority for one of the two options.

In Chapters 2 until 4, we study what happens when this 2 × 2 game is played
by more than three players, where the players are connected by a network. In
the network, the players are the nodes and they play the 2 × 2 game with other
players who they share an edge with. The intuitive expectation is that network
structure is relevant because the network will contain local majorities for one of
the two options, as exemplified in Table A12. However, the network connects
multiple local interaction points that may or may not have a majority for one of
the two preferences. How these are connected might therefore be of vital impor-
tance for understanding how these decisions are established in larger groups. We
hypothesize that the decision behavior in larger groups can be predicted from the
mathematical properties of the network structure for an important part.

In Chapter 2 a simulation model is created. The goal of the simulation model
is to create ‘Laplace’s demon’ for these dynamics. By simulation, we create the
system ourselves. We could describe the system by describing at every time point
every choice made by each agent and why this choice was made. However, in
order to do this, we need at least as much information to describe the system as
the system produces. The goal of the simulation is to describe the system and
predict the choice behavior with as little information as possible. This requires
two steps. First, recognize if the system produces any patterns. Second, if the
systems produces patterns, try to understand the causation of the patterns.

The expectation in Chapter 2 is that different network structures cause differ-
ent choice patterns for battle of the sexes games with multiple players. In order
to study whether different types of networks produce different patterns, we take
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the random ‘Erdös-Rényi’ network as a baseline. Because the baseline model is
the most random of the chosen networks, we expect that no particular patterns of
choice behavior will follow from these simulations. So many parameters are needed
to describe the system, resulting in little reduction of information. However, we
hypothesize that the less random the network structure, the more clear the pat-
terns become. So in less random network structures, less parameters are needed
to describe the system and the information can be summarized very effectively. In
order to relate the patterns to the network structure, we vary a couple of proper-
ties of the networks. Next, we relate the resulting patterns to the mathematical
properties of the different types of networks.

In Chapter 2 we show that the produced patterns in choice behavior are highly
dependent on the mathematical properties of the network. In general, the less
‘random’ the structure of the links of the network are generated, the more precise
the choice behavior can be predicted with a small set of parameters. The most
important predictor variables are on the macro level how clustered a network is
and on the micro level the degree centrality of the players. We show that all results
are robust independent of network size.

In Chapter 3, the predictions made by the simulation model in Chapter 2 are
tested in a computerized lab experiment. The goal is to empirically validate the
theoretical model of Chapter 2. During the experiment, groups of 20 people played
2 × 2 games with other participants with whom they were connected through a
network. The participants were asked to choose between the options ‘blue’ and
‘yellow’. The participants could earn money if their choice corresponded with the
choice of the participant(s) they were connected to. However, some participants
received more money if they coordinated on ‘blue’, while others got more money
when they coordinated on ‘yellow’. Participants received nothing if one has chosen
‘blue’ and the other participant ‘yellow’. So the game has both an element of
coordination and an element of competition.

The results of the experiment are very much in line with the predictions of the
computational model. As expected, the less ‘random’ the network structure, the
more the experimental results are in line with the predictions of the computational
models. The found correlation of behavior between the computational model and
the experimental results is low for a random network, intermediate for clustered
‘small world’ networks, and high for centralized ‘preferential attachment’ networks.
Furthermore, clustering of the network leads to higher heterogeneity of choices.
And participants with higher degree centrality have more influence on the choices
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made in the network overall.

The results obtained in Chapter 2 are based on a computational model. In Chap-
ter 4 we try to further generalize the results in Chapter 2 by adding analytical
results. In order to obtain analytical results we make use of the ferromagnetic
Ising model. We further generalize the ferromagnetic Ising model to represent the
asymmetric interaction in the battle of the sexes. The asymmetric interactions
are realized by allowing the parameter that in the original model represents the
‘external magnetic field’, to vary between nodes. Therefore, the magnetization
can be one direction for one node and the other direction for another node. So,
the asymmetric preferences of the battle of the sexes can be modeled by means
of the magnetization of the individual nodes. We find that there are some differ-
ences in the equilibrium behavior between the computational model and the Ising
model. With the Ising model we find a richer set of equilibria compared to the
computational model. This finding actually strengthens our faith in the results
obtained by the computational model, because these results seem to suggest that
if we model coordination problem in Chapter 2 analytically, the results become
stronger. One reason to suspect that the results become stronger when modeled
analytically is that the update rule used in computational models are unlikely to
find unstable equilibrium points. However, it should be noted that we where un-
able to formulate the Ising model such that it accurately corresponds to the results
of the computational model in all networks considered.

1.4 Part 2: Chapter 5

In Chapter 5 we recognize that models of small groups with repeated interactions
cannot fully explain social cohesion. Modern societies do not only function ac-
cording to repeated interactions with acquainted people. The more complex a
society becomes, the more daily life becomes defined by social interactions with
people one is not acquainted with. Instead, people interact with people they have
not met before everyday. Therefore, repeated interactions and the structure of
one’s social network can explain some variance of the cohesion problem, but not
all of it. In Chapter 5, we argue that social interactions are for an important part
shaped by a division of labor and regulatory institutions. We go back to a classical
sociological theory known as ‘organic solidarity’, that has ‘long been forgotten in
modern debate’, but is making a revival in recent studies (Portes and Vickstrom,
2011; Abascal and Baldassarri, 2015).
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Phenomena such as social cohesion, cooperation and trust certainly can be estab-
lished via the repeated interactions of small cohesive groups. However, in modern
societies these interactions are embedded in a larger societal structure. The larger
societal structure meaning the way a society is organized by its formal and infor-
mal institutions. So with ‘institutions’ we mean institutions in the broad sense,
defined as ‘stable, valued, recurring patterns of behavior’ (Huntington, 2006). The
patterns of behavior can be formal arranged and enforced, such as law and order,
or self maintaining and informal, such as different forms of culture.

We argue that the effect of the division of labor, although an institution in itself,
should be studied independently from other types of institutions. For instance,
someone’s job causes a powerful (economic) embeddedness that forces people to
position themselves against others on a day to day basis. For instance, when a
customer enters a shop, the social roles are immediately clear. Both the shop
owner and the customer have to maintain a certain social standard to maintain
their economic position. Therefore, economic relations help define social order.
How these relations are structured can therefore be of vital importance to various
social mechanisms that extend beyond the economic realm.

In a recent study, authors inspired by Durkheim’s theory on organic solidarity,
theorize on the relevance of this theory in current debate (Portes and Vickstrom,
2011; Durkheim, 1893). They write that organic solidarity is dependent on three
conditions, namely:

1. (Economic) Diversity among members of a society

2. Strong coordinating institutions

3. A complex division of labor (specialization).

The influence of formal institutions on positive outcomes for society, such as co-
operation and trust, is a widely studied subject and topic of ongoing debate (Fehr
and Gachter, 2000; Kosfeld et al., 2009; Gürerk et al., 2006; Lo Iacono, 2019; IOS,
2019). However, the effect of a complex division of labor and economic diversity
has not yet been tested empirically.

In Chapter 5 we use recent methods from the field of economic complexity that aim
to quantify (economic) diversity among members of a society and the specialization
of an occupation. We use the obtained variables and test how they relate to self-
reported generalized trust. We argue that generalized trust cannot be explained by
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repeated interactions between individuals. In the used survey question measuring
generalized trust the respondent is asked: ‘Generally speaking, would you say that
most people can be trusted or that you can’t be too careful in dealing with people?’.
The question asks if people in general can be trusted and not only people one is
acquainted with or had previous interactions with. Therefore, in order to explain
generalized trust we need to turn to other types of explanations, such as organic
solidarity. In Chapter 5 we show that there is a large effect of both occupational
diversity as well as occupational complexity on whether the respondents answer
positively on the generalized trust question.

1.5 Future research

In general, the field of ‘games on graphs’ is slowly getting saturated on the mod-
eling side. With that I mean that I do not expect major field changing discoveries
to happen. Although important nuances can still be made. In Chapters 2 and 3,
the agents and people try to coordinate using local information only. An interest-
ing addition would be to study whether global information could further help to
facilitate the coordination process.

In Chapter 4, we where unable to find a single set of parameters such that an Ising
model accurately represent the results of the computational model of Chapter 2 in
all cases. Instead, the parameters of the Ising model depend on the network type
for approximating the computational results. In terms of parsimony, it would be
interesting to find the microscopic parameters such that the Ising model can mimic
the behavior of the computational model always. If such microscopic parameters
exist, they can be used to generalize predictions for different types of networks.

On the empirical side of on the subject of ‘games on graphs’ there are still many
opportunities. Particularly, field experiments on the effect of network structure
on coordination processes and/or social dilemma situations are lacking. The mod-
els can be used as a theoretical framework for deriving hypotheses on empirical
situations. The other way around, empirical studies can be used in validating
and readjusting the parameters of existing models. Managing and coordinating
are jobs people get paid to do, so a field experiment testing current models (or
theories) should not be hard to find.

On further understanding the theory of organic solidarity there is potentially much
to gain. The results indicate there is an effect of a division of labor on trust. How-
ever, the difficulty with the theory of organic solidarity is that there are problems
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with endogeneity which need attention: economic interdependence induces trust,
but trust in return leads to people willing to collaborate more. Furthermore, both
dependent and independent variables are imprecise measures that can benefit from
empirical clarity and theoretical rigor. How economic embeddedness causes people
to trust more is an open question. In order to improve our understanding of these
mechanisms, new micro models need to be developed that directly link economic
embeddedness to individual behavior. Furtermore, we need to theorize about how
generalized trust (or organic trust) differs from communitarian or in-group based
types of trust. Next, we need to formulate hypotheses on when to expect com-
munitarian trust mechanisms to take happen and when organic trust mechanisms
happen and test these hypotheses empirically.

Maybe the biggest question left unanswered in this dissertation is why the theory
of organic solidarity has been largely forgotten in modern debate? On the one
hand, the theory seems like one of the most simple and elegant explanations of
human cooperation in the history of sociology. On the other hand, the theory
might be so heavily underdetermined that in fact we never stopped researching it.
I think the theory has established the pattern, we now just need to find the origin.
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Cohesion and polarization in asymmetric
coordination
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Chapter 2

Network effects on coordination in asymmetric games1

Abstract: Network structure can have an important effect on the behavior of
players in an iterated 2x2 game. We study the effect of network structure on global
and local behavior in asymmetric coordination games using best response dynam-
ics. We find that global behavior is highly dependent on network topology. Random
(Erdös-Rényi) networks mostly converge to homogeneous behavior, but the higher
the clustering in the network the more heterogeneous the behavior becomes. Behav-
ior within the communities of the network is almost exclusively homogeneous. The
findings suggest that clustering of networks facilitates self-organization of uniform
behavior within clusters, but heterogeneous behavior between clusters. At the local
level we find that some nodes are more important in determining the equilibrium
behavior than other nodes. Degree centrality is for most networks the main predic-
tor for the behavior and nodes with an even degree have an advantage over nodes
with an uneven degree in dictating the behavior. We conclude that the behavior is
difficult to predict for (Erdös-Rényi) networks and that the network imposes the
behavior as a function of clustering and degree heterogeneity in other networks.

1This chapter is published as: Broere, J., Buskens, V., Weesie, J. & Stoof, H. (2017). Network
effects on coordination in asymmetric games. Scientific reports, 7 (1), 17016. Broere wrote the
manuscript, did the simulations and analysis. Broere, Buskens, Weesie and Stoof contributed to
the idea development and manuscript writing. All authors discussed the results and reviewed
the manuscript. We thank Rense Corten, Jonas Haslbeck, Oisin Ryan and Merel van Herpen for
their comments on earlier drafts of this manuscript.
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2.1 Introduction

Coordinating interdependent behavior when actors have different interests can be
extremely difficult. These types of situations can be represented by an asymmetric
‘battle of the sexes’ game as shown in Table 2.1. Table 2.1 represents a situation in
which two actors have a choice between α and β. Coordination on the same choice
yields the highest payoff, but the actors differ in their preference for either α or
β. Analyzing this situation, it becomes clear that the Nash equilibria seem either
unfair, because one actor is better off than the other, or inefficient in the case
of a mixed Nash equilibrium (Binmore et al., 2007). Therefore, it is difficult to
make behavioral predictions on the choices of players in these types of situations.
The coordination problem is potentially larger when there are more than two
actors involved. However, in a three player game, the behavior is already easier to
predict when two players have a preference for α and one has a preference for β.
The most likely Nash equilibrium is for all players to play α, because this yields
the highest utility for the two α players, independent of what the β player does.
In games with more than three players, the behavioral prediction is dependent
on the interaction structure. When the interaction structure is represented as a
network, there are local majorities of actors that have a preference for one of the
equilibria. Therefore, it seems plausible that the network structure is crucial for
understanding an asymmetric coordination problem with multiple actors. In this
chapter we study the influence of network structure on global and local behavior
in iterated asymmetric coordination games.

Situations in which interdependent actors have to coordinate behavior with un-
equal preferences are wide-spread. The classic 2 by 2 example is the situation
of a man and a woman who have to coordinate their evening out without means
of communication. The man has a preference to go to a football match and the
woman prefers to go to the opera, however, they still prefer to go to the same
event over going to the events alone. It is very hard to coordinate this problem
with no means of communication. There are also contexts in which the group
and interaction structures are relevant. Think for instance about a school class

Table 2.1: Payoff table of an asymmetric coordination game

α β

α 2,1 0,0
β 0,0 1,2
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in a theme park that has to decide which attraction to go to next. Some of the
children prefer to go to the roller coaster and others prefer to go to the water
attraction. However, they also prefer going with their friends instead of going
alone. It is therefore likely that a person with a preference for attraction A will
still go to attraction B if the majority of his or her friends have a preference of
attraction B. So, whether a preferred option is also the option which yields the
highest utility might be dependent on the preferences of others in the network and
the interaction structure. Similar dynamics can be expected when people have to
choose between (operating) systems on their phone, computer or game consoles.
For some applications it is necessary that your friends have the same system, so
coordinating on the same system as your friends might yield more utility than
choosing your personal favorite system.

A classical game theoretical example of modeling asymmetric situations is the so-
called ‘battle of the sexes’ (BoS). BoS is a special case of a coordination game
with two pure-strategy asymmetric equilibria and one mixed strategy equilibrium.
As presented in Table 2.1, the players differ with respect to their preferences
over the equilibria, but coordinating on the same equilibrium is still preferred over
miscoordination. The equilibria of this game have been widely studied theoretically
and empirically in both one shot and repeated versions of BoS (Binmore et al.,
2007; Cooper et al., 1989). However, it is not at all clear for the network version
of BoS to what equilibrium the game will converge, if at all. Emerging equilibrium
behavior is likely dependent on the initial conditions and the spatial structure of
the network.

Some research has been done on ‘battle of the sexes’ types of games in the context
of spatially distributed interactions in both theoretical and experimental settings.
A great amount of work on spatial BoS games is done by Alonso-Sanz, mostly in
the context of homogeneous spatial structures such as cellular automata (Alonso-
Sanz, 2011; Alonso-Sanz, 2012a; Alonso-Sanz, 2012b). Some interesting results
include the ability of self organization by means of forming homogeneous clusters
in the spatial structure. Furthermore, Hernandez, Muñoz-Herrera and Sánchez
(2013) introduce a model to analyze the Nash equilibria of an asymmetric game
on a network. They find that on Erdös-Rényi networks situations equilibria ex-
ists where all players can choose there preferred action when the heterogeneity
is high in the network, whereas players tend to coordinate on the other action
when they are in a clear minority situation. In related work the influence of the
strength of preferences is studied (Hernández et al., 2017). The higher the dif-
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ference in preferences the harder it is to reach coordination. However, when the
difference in the preferences are small, full coordination is always an equilibrium.
Mäs and Nax (2016) studied the response behavior of human subjects in two fixed
networked coordination games in an experimental setting. An interesting find-
ing is that 96 percent of the decisions followed a myopic best response pattern.
Other related studies show the effect of asymmetries on cooperation in (weak)
Prisoner’s Dilemma games (Wang et al., 2014; Szolnoki and Perc, 2014; Amaral
et al., 2016). An important result is that asymmetry introduced by payoff hetero-
geneity or mixed games has a favorable effect on cooperation. The main difference
between our study and the studies above is that we study the effect of network
structure on behavior, both on the local and global level and we derive predictions
from the network structure.

To the best of our knowledge, no studies have been performed on the influence of
the spatial structure of a network on the equilibrium behavior in a BoS game. We
believe that studying a BoS game is particularly interesting because these games
provide us with information on which types of nodes end up in their preferred
equilibrium and which do not, dependent on the spatial position. If network
structure is of any influence, some nodes should have more powerful positions in
the sense that in their position in the network they more easily coordinate on its
preferred behavior. Therefore, network structure can be of vital importance in
understanding asymmetric coordination problems with multiple actors.

Network structure is often found to be a crucial concept in understanding many
phenomena such as virus spreading, percolation, social cooperation and informa-
tion diffusion (Szabó and Fath, 2007; Albert and Barabási, 2002; Watts and Dodds,
2007; Stegehuis et al., 2016). Many studies have shown that differences in network
topology can lead to wildly different behavior. These studies often focus on global
network effects, such as cooperation in a Prisoner’s Dilemma game, or just local
effects, such as identifying influential spreaders in diffusion models (Santos et al.,
2006; Freeman, 1977; Kitsak et al., 2010). We argue that global and local dynam-
ics are inevitably dependent on each other. Considering that network structure
has an effect on global level dynamics, there must be an effect on the local level
as well and vice versa.

Game theory is an often used method of modeling network dynamics (Szabó and
Fath, 2007; Albert and Barabási, 2002). Game theory is a set of analytical tools to
represent interdependent situations between agents, designed to model and make
predictions on decision making. In the networked game, agents play games with
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Table 2.2: Possible payoff situations in BoS on a network, where 0 < S < 1

(a)

α β

α 1,S 0,0
β 0,0 S,1

(b)

α β

α 1,1 0,0
β 0,0 S,S

(c)

α β

α S,S 0,0
β 0,0 1,1

a subset of a population, represented by edges in a network. Many computational
studies have shown that the spatial structure of a network can have an influence
on the evolution of behavior in a game (Roca et al., 2009; Szabó and Fath, 2007;
Buskens and Snijders, 2015). Santos et al. (2006) compare complete, small-world
and scale-free networks on cooperative behavior. They show that heterogeneity
of the degree distribution has an important influence on the asymptotic density
of cooperators in symmetric games such as Stag-Hunt and Prisoner’s Dilemmas.
Tomassini and Pestelacci (2010) show that the presence of clusters of highly con-
nected nodes in a network has a positive impact on cooperation. However, too
much clustering can lead to so-called ‘topological traps’ (Roca et al., 2010). These
traps can prevent cooperation from spreading uniformly through the network.
Most of these studies focus on the effect of the spatial structure on the behav-
ior of symmetric games, such as symmetric Prisoner’s Dilemmas and symmetric
coordination games. However, interesting situations can also arise in asymmetric
games.

2.2 Methods

We utilize a ‘battle of the sexes’ coordination game to represent actors with their
different preferences. Assuming that the behavior of the most influential or pow-
erful network positions are more likely to converge to their preferred equilibrium
than the less influential or powerful network positions, spatial effects can be un-
derstood by the probability of a given node in a network to end up in its preferred
equilibrium, irrespective of other initial conditions.

In Table 2.2a the utility matrix of the 2 × 2 BoS game is presented. The game is
modeled such that 0 < S < 1. In this case the row player has the highest payoff
when both players choose α and the column player has the highest payoff when
both players choose β. Coordinating on the same behavior is more rewarding
than miscoordination. The 2 × 2 game can be mapped on a network by pairwise
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interactions between nodes who share an edge. In this network, every node has
a preference for either α or β, so is a row or a column player. When nodes play
pairwise interactions against multiple nodes on a network, three situations can
occur. The first situation is a pairwise interaction between two nodes who differ
on their preference for α or β, as already described in Table 2.1 and again in Table
2.2a. In the second situation, two nodes with the same preference for α pairwise
interact, as shown in Table 2.2b. In the third situation, two nodes with the same
preference for β interact, as shown in Table 2.2c. In the 2 × 2 case, coordination is
difficult in the first situation, but rather obvious in the second and third situation.

A potential extra difficulty is added when nodes have to coordinate with multiple
nodes at the same time in a network, while having to choose for each connection
the same behavior (Easley and Kleinberg, 2010a). The total utility of a node
depends on the returns of multiple interactions at the same time. Say node i has
d neighbors and a preference for playing α. A fraction q of the neighbors play α

and the fraction (1 − q) plays β. If node i chooses α the payoff will be qd as the
utility will be 0 for miscoordinating with nodes who play β. If node i chooses β

the payoff will be (1− q)dS. Assuming node i knows q, node i will choose α if

qd ≥ (1− q)dS. (2.1)

By rearranging the terms,
q ≥ S/(1 + S), (2.2)

it becomes clear that the choice for α or β is dependent on the fraction of neighbors
that play α or β. However, the game is played multiple rounds and the nodes don’t
know in advance what the strategy is that their neighboring nodes will play.

In each round the nodes update their belief on what strategy yields the highest
payoff, α or β, by means probabilistic dynamic in which the behavioral propensity
changes towards the best response. Let i = 1...N be the nodes in the population.
Let s ∈ {α, β} be the strategy of node i, πi the payoff of node i and π∗i the payoff
when the alternative strategy would have been played. Then, the probability pts,i
that a strategy s is played in round t, given the probability pt−1

s,i that a strategy s

is played in round t− 1 equals;

pts,i =

{
pt−1
s,i + 0.1 for πt−1

i ≥ π∗,t−1
i

pt−1
s,i − 0.1 for πt−1

i < π∗,t−1
i ,

(2.3)

where pts,i is the probability that strategy s is played at some time t by node i

(Buskens and Snijders, 2015). So, at every time t each node updates the probabil-
ity to play α or β towards a myopic best response reply strategy. If the best reply
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at time t − 1 would have been α, the probability of playing α at time t increases
compared to time t − 1. If the best reply at time t − 1 would have been β, the
probability of playing α at time t decreases at time t (simultaneously the proba-
bility to play β increases). The probabilities are naturally bounded by the values
0 and 1. We choose this probabilistic response behavior because this prevents the
problem of non-convergence, compared to the deterministic myopic best response
behavior. However, the results and dynamics are very similar to the deterministic
version of myopic best response.

2.2.1 Simulation Design

We perform a computational study in which actors play 2 x 2 games against
their neighbors represented by the nodes and edges of a network. Three types of
networks are considered, namely random Erdös-Rényi (ER) networks, small-world
(SW) networks, and preferential attachment (PA) networks. The ER-networks
are generated using the G(N, per) Erdös-Rényi model, where N is the number
of nodes in the graph and per the probability for drawing an edge between two
arbitrary nodes. We choose N = 20 and per = 0.2 in our simulation. The SW-
networks are generated using the Watts-Strogatz algorithm (Watts and Strogatz,
1998). The algorithm starts with a one-dimensional lattice consisting of N = 20

nodes. Each node is connected with two neighboring nodes by an edge. The
edges are rewired randomly with probability psm. SW-networks are known to
have short average path lengths and high clustering. The clustering decreases
with the value of psm. The higher the value of psm, the more the network will
resemble the Erdös-Rényi model in terms of clustering (Watts and Strogatz, 1998).
In order to vary the amount of clustering within SW-networks, we vary psm, where
psm ∈ {0.05, 0.1, 0.15, 0.2, 0.25}. The PA-networks are generated by the algorithm
proposed by Barabasi and Albert (1999). The algorithm starts with m0 nodes.
With each iteration one new node with m edges adds on to the existing nodes
with probability ppa, where ppa,i = ki/

∑
j kj , and where ki is the degree of node

i and the sum is made over the previously added nodes. This process continuous
until the network consists of N = 20 nodes. We choose m = 2 in order to keep the
density of the network equal to the other types of networks. We choose N = 20

for all networks in this study because with this size the relative influence of one
node on the global behavior can still be substantial, while this size is big enough
to guarantee the complexity of behavior in the network. Results for larger network
sizes will be discussed in Figure A3 till Figure A5 and, Table A2 and Table A3 of
the appendix. We only include connected graphs for all network types throughout
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the whole simulation.

All networks are generated with size 20 of which 10 nodes have a preference for α

(row players in Table 2.2a) and 10 nodes have a preference for β (column players
in Table 2.2a). The constraint of 10 α and 10 β players is imposed to maximize
the coordination problem. The preferences of the nodes are randomly assigned. In
the simulation a 1000 ER-networks, SW-networks and PA-networks are generated,
thus 3000 networks in total. For each network the game is played 100 times.

After the networks are initialized the iterated game starts. In each iteration a
node has to choose between α and β. The total obtained utility is a function
of the actions of the neighboring nodes, given by the utility matrix in Table
2.2. We chose S ∈ {0.9, 0.7, 0.5}. If S becomes smaller, the incentive to devi-
ate from one’s preferred behavior becomes smaller as well. In the remainder of
this paper we only discuss results for the single case S = 0.9 because this value
maximizes the dynamics in the system. Results for other values of S can be
found in Figure A6, Figure A7 Table A4 and Table A5 of the appendix. Ini-
tially, at t = 0, each node plays its preferred option with probability 1. After
each round the probabilities to play α or β are updated by means of the response
decision rule described in Equation 10. The game continues until none of the
nodes changes probabilities anymore, so all probabilities are either 0 or 1 to play
α. The iterations run with a minimum of 10 and a maximum of 100 iterations.
After each game several variables are saved. These include the initial conditions,
several node and network characteristics and the equilibrium state of the node
and the network. All files necessary to replicate the simulation can be found on
the first author’s github page: https://github.com/JJBroere/Network-effects-on-
coordination-in-asymmetric-games.

2.2.2 Variables

The goal of this study is to infer how equilibrium behavior depends on the initial
conditions of the networks as well as the power of an individual node to determine
its equilibrium behavior given its position in the network. The first dependent
network level variable is the proportion of nodes playing α in the network. A
proportion of 1 indicates that all nodes in the network play α and a proportion
of 0 indicates all nodes in the network play β. We define heterogeneity of the
behavior as the variance of α behavior in the network;

h(pα) = var(pα) = pα(1− pα), (2.4)
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Table 2.3: Number of neighboring nodes required for a local majority

Degree centrality 1 2 3 4 5 6 7 8
Number of neighboring nodes needed 1 1 2 2 3 3 4 4
Percentage of neighboring nodes needed 100% 50% 67% 50% 60% 50% 57% 50%

where pα is the proportion of nodes playing α in the network.

The second dependent variable is the dichotomous variable Preferred, indicating
whether a node ends up in the equilibrium of preference after the game has con-
verged. Third, we define Power of a node as the probability of a node to converge
to its preferred equilibrium independent of the distribution of preferences. So, if
different distributions of preferences on a network are played, what is the propor-
tion of times a node converges to the preferred equilibrium given its position in
the network. 100 different distributions of preferences per network will be played.
Power is thus, the aggregate variable of Preferred.

In addition, we consider several independent variables that could be indicative of
the equilibrium behavior of the game. The first set of independent variables are
centrality measures. From common sense it might be expected that the most cen-
tral nodes in a network are the most powerful. A wide range of centrality measures
have been developed to account for different aspects of centrality in a network. In
this paper four different centrality measures are considered, namely degree central-
ity, eigenvector centrality, betweenness centrality and closeness centrality. See the
supplementary methods section of the appendix for the formal definitions of the
centrality measures used in this chapter. Furthermore, we add a dummy variable
indicating whether the degree centrality of a node is even or uneven. As can be
derived from Equation 5.3, where S = 0.9, the fraction of neighbors playing the
preferred behavior of node i in order for node i to also play its preferred behavior
is different for nodes with an even degree compared to an uneven degree. As pre-
sented in Table 2.3, the fraction where q > S/(1+S), thus q > 0.474 is always 50%
for nodes with an even degree centrality while the fraction is bigger for an uneven
degree centrality. The difference decreases as the degree centrality increases.

Secondly, we look at the influence of clustering on the behavior in the network.
Clusters, modules or communities are closely connected subgraphs within a net-
work. As shown by Roca et al. (2010), clustering can be an important predictor
of whether or not behavior will spread uniformly through a network. Alonso-Sanz
(2011) shows how behavior self-organizes in homogeneous (agreement) clusters
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when played on cellular automata. We expect that the self-organizing behavior of
preferences will be influenced by network characteristics and more specifically the
clustering of the network. This clustering effect might be even more relevant when
groups of nodes with the same preference are clustered together.

In this study we use the Walktrap algorithm as described by Pons and Latapy
(2006) to identify communities in a network. This algorithm performs a random
walk on the graph. The main idea is that in clustered networks the random walk is
more likely to remain in the same community than leave the community because
of higher connectedness within the community. For every node in the network
the random walk is used to compute a ‘distance’ between all pairs of nodes. The
computed distance is used to find the partition that maximizes the modularity.

We also use the modularity to quantify how clustered a network is. Modularity
is the fraction of edges within one module minus the expected fraction of edges if
the edges where distributed at random (Newman, 2006). Modularity of a network
is defined as;

Q =
1

2N

∑
ij

[
Aij − kikj

2N

]
δ(ci, cj), (2.5)

where N is the number of nodes, A is the adjacency matrix, k the degree of a
node, c is the number of the community a node belongs to as identified by the
Walktrap algorithm described above and δ(x, y) is 1 if x = y and 0 otherwise.

The third set of independent variables are related to the initial conditions of the
network. The preferences of the nodes are randomly assigned on the network. In
order to evaluate how the equilibrium behavior is related to the local distribution
of preferences, for each node two variables are saved. First, for every node, the
percentage of neighbors with the same preference is saved, defined as;

Ln
i =

∑
j Aijδ(pri, prj)∑

j Aij
, (2.6)

where A is the adjacency matrix, pr is the preference of the node (row or column
player).

Secondly, the percentage of nodes with the same preference within the same com-
munity is saved, defined as;

Lc
i =

∑
j δ(ci, cj)δ(pri, prj)∑

j δ(ci, cj)
, (2.7)
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Table 2.4: Descriptives of the dependent and independent variables.

Statistic N Mean St. Dev. Min Max

Proportion α 300,000 0.500 0.337 0 1
Heterogeneity 300,000 0.146 0.104 0 0.250
Preferred 6,000,000 0.640 0.478 0 1
Power 60,000 0.640 0.108 0.2 1
Eigenvector centrality 60,000 0.523 0.245 0.004 1
Betweenness centrality 60,000 0.101 0.108 0 1
Degree centrality 60,000 0.191 0.115 0 1
Same preference cluster 60,000 0.471 0.254 0 1
Same preference neighbors 60,000 0.474 0.322 0 1
Modularity 3,000 0.313 0.069 0.112 0.518

where c is the community a node belongs to as identified by the Walktrap algorithm
described above.

2.2.3 Descriptive statistics

In Table 2.4 the descriptive statistics of all dependent and independent variables
are presented. The dataset contains of 3,000 networks, information about 20 nodes
and 100 starting configurations per network, leading to 6,000,000 ‘observations’.
Figure A1 in appendix of this dissertation shows that the variance of the variable
Preferred caused by the stochasticity of the response dynamics is limited when the
same preference distribution is played on a network multiple times. The Figure A2
in appendix shows that the estimates of Power are stabilized after 100 different
initial conditions.

2.3 Results

To get a first impression on how the equilibrium behavior is related to network type
we first look at the global behavior of the networks. In Figure 2.1 histograms are
shown for the proportion of α behavior after convergence of the dynamics. As can
be seen in Figure 2.1, most frequently the behavior in ER-networks converges to
either uniform α or uniform β behavior. The behavior for SW-networks are shown
for different values of the rewiring probability psm. When psm = 0.25 the behav-
ior is mostly uniform α behavior or uniform β behavior, closely resembling the
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Figure 2.1: Proportion of α played in a network after convergence for ER-networks,
SW-networks with rewiring probability 0.25, SW-networks with rewiring probability 0.2,
SW-networks with rewiring probability 0.15, SW-networks with rewiring probability 0.1,
SW-networks with rewiring probability 0.05, PA-networks and within communities of all
networks.

outcome of the ER-Network. However, the lower the value of psm, and therefore
the higher the level of modularity/clustering, the more heterogeneous the behav-
ior becomes. The behavior in SW-networks with p = 0.05 seldom converges to
uniform behavior. PA-networks have a low modularity and the behavior is mostly
homogeneous. This trend can be described by the Pearson correlation between the
heterogeneity of behavior in the network and the modularity of the network, which
is r = 0.49. In the bottom right histogram of Figure 2.1 the behavior is shown
within communities of all networks in the data. The convergence behavior within
communities of networks is almost exclusively homogeneous in all networks.

In Figure 2.2, kernel regression plots are shown for the dependent variable Pre-
ferred. Kernel regression is a non-parametric technique of estimating the condi-
tional expectation of a random variable. The conditional expectation is computed
by a locally weighted average given some kernel as a weight function. The kernels
in Figure 2.2 are estimated with a box kernel and bandwidth = 0.5. The two
predictors are the proportion of adjacent neighbors that have the same preference
as shown in the left part of Figure 2.2 and the proportion of nodes that have the
same preference in the same community as shown in the right part of Figure 2.2.
The plots indicate a strong relation between the clustering of the preferences and
the expected probability that a node behavior converges to its preferred behavior.
There seems to be a clear tipping point for the effect of the percentage of neighbor-
ing nodes with the same preference where there is a local majority of preferences.
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Figure 2.2: Kernel regression plot, dependent variable preference as a function of, left
the fraction of same preference neighbors, right the fraction of same preference nodes in
the community.

This relation clearly is stronger for the more clustered SW-networks compared to
the ER-networks and PA-networks, indicating that the local interactions become
more important in more clustered networks.

In Figure 2.3 the density of the variable Power is plotted for ER, SW and PA-
networks. The higher the proportion the more power a node has to determine
its equilibrium behavior given its position in the network. A proportion of 0.5
indicates that the behavior is random and there is no association between the
nodes spatial position and its equilibrium behavior. If the proportion is 1, the
node always converges to the preferred equilibrium and has maximum power to
determine its equilibrium behavior. As can be seen in the left part of Figure 2.3,
for ER-networks the density roughly follows a normal distribution with a mean
of 0.618. The density of Power in PA-networks is comparable to the density of
ER-networks with a mean of 0.637. On the right of Figure 2.3 the densities of SW-
networks for different values of psm are plotted. The lower the value of psm the
more the density shifts to the right, indicating that there are more powerful nodes
in SW-networks with lower value of psm. Because more clustered networks have
more heterogeneous behavior, more nodes will be able to choose their preferred
behavior.

In Table 2.5 the OLS-regression results with node Power as dependent variable
are presented. Interactions between all variables are included in the model. To
obtain the relevant predictors we used cross validated backward model selection

37



Chapter 2

Figure 2.3: Density of node Power for random ER, Small World and PA-networks

based on a minimum difference of 0.01 in the R2 of the model. There are two
types of variance in the data, namely the within network and the between network
variance. As shown in Table 2.5 the inter class correlation (ICC) does not exceed
0.022 for SW, is 0.062 for PA-networks and is 0.091 for ER-networks. We decided
to ignore the between-level variance since most of the variance is on the within-
level. The explained variance is 62.8 percent for ER-networks, 62.2 percent for
PA-networks and always more than 70 percent for SW-networks.

Regression results indicate that an Even degree centrality is an important predictor
for node Power in all types of networks. For all networks the predicted score for
a nodes power increases around 0.16, indicating a 16 percent higher probability
to converge to its preferred behavior when a node has an even degree centrality.
For nodes with an even degree it’s easier to obtain a local majority compared to
nodes with an uneven degree as shown in Table 2.3. For PA-networks there is one
other important predictor for node Power, namely degree centrality. Nodes with
the highest degree centrality have a 34.4 percent higher predicted probability of
percent to converge to its preferred behavior. Nodes with an even degree and a high
degree centrality the predicted probability is 99.4 percent. This seems to indicate
that the global behavior is predominantly dictated by a few influential nodes with
high degree centrality. In SW-networks degree centrality is also an important
predictor for node Power, the effect is weaker compared to PA-networks. The final
model for ER-networks is a complicated model in which all centrality measures are
important predictors and the model has difficult to interpret interactions. But it is
clear that in ER-networks having a high degree is not the only centrality measure
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Table 2.5: Regression results, standardized, dependent variable Power.

ER SW p = 0.25 SW p = 0.20 SW p = 0.15 SW p = 0.1 SW p = 0.05 PA

Even 0.154 0.159 0.160 0.165 0.165 0.172 0.155
DegC 0.210 0.197 0.191 0.166 0.155 0.315
EVC 0.025
BetC 0.964
ClosC −0.470
BetC:EVC −0.839
EVC:ClosC 0.369
Constant 0.627 0.478 0.488 0.499 0.516 0.524 0.452

N 20,000 4,000 4,000 4,000 4,000 4,000 20,000
R2 0.628 0.726 0.714 0.739 0.740 0.757 0.532

*Even = variable indicating an even degree, EVC= Eigenvector centrality, BetC= Betweenness centrality, DegC = Degree centrality,
ClosC= Closeness centrality. *Interaction in uncentered variables.

leading to high degree centrality.

All results together seem to indicate that in ER-networks the global behavior is
mostly homogeneous, but difficult to predict since this behavior is dependent on
multiple centrality measures at the same time. In PA-networks the behavior is
also mostly homogeneous, however in this type of network the behavior is dic-
tated by a few influential nodes with high degree centrality. In SW-networks with
high clustering, degree centrality is also important, but the spread of behavior is
limited by the a node’s community, leading to heterogeneous global behavior. In
all networks, nodes with an even degree have an advantage over nodes with an
uneven degree, because it is easier for nodes with an even degree to obtain a local
majority.

2.3.1 Robustness

In order to check the robustness of the results we also varied the network size, the
network density and the value of S. The results can be found in Figure A3 till Fig-
ure A7 and Table A2 till Table A5 of the appendix of this dissertation. As can be
seen in appendix A3, more clustered networks have more heterogeneous behavior
also in larger networks, the differences become even stronger for larger networks.
As can be seen in Figure A4 and Figure A5, when network density increases the
heterogeneity of behavior becomes less because the modularity decreases as the
density increases. As can be seen in Table A2 and Table A3, there is a depen-
dency at the local level on the size of the network. First of all, the positive effect
of an even degree centrality decreases as the average degree centrality increases,
which can be expected by looking at Figure 2.3. Degree centrality is the main
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predictor in SW-networks and PA-networks, however the relative power of one
node decreases in larger networks, as can be seen from the decreasing regression
coefficients. Secondly, in larger networks with high clustering, centrality measures
are no longer predictive of node power, because the centrality measures are with
respect to the network as a whole, while the spread of behavior is limited by the
clustering. In this case the position of a node within its community is probably
more important than its position in the network as a whole. In Table A4 and
Table A5 results for the values of S = 0.7 and S = 0.5 are shown. For S = 0.7

the results are comparable to those of S = 0.9. For S = 0.5 nodes are less likely
to change their behavior, because the fraction q = 0.5/(1 + 0.5) = 0.33 is lower.
This can be seen in the higher intercepts of the regression models and the lower
effect of the predictors. However, it should be noted that even with S = 0.5 the
behavior within clusters is mostly homogeneous.

2.4 Discussion

In this paper we study the effect of network structure on global equilibrium be-
havior and the behavior of individual nodes in asymmetric ‘battle of the sexes’
games. Looking at the heterogeneity of behavior in the network, we find that
network topology has a large effect on the global equilibrium behavior of the net-
works. The heterogeneity of behavior is largely determined by the modularity of
the network. These findings are independent of network size and even visible in
other values of S. When there is a clear community structure in the network,
coordinating on the same behavior within the community is more rewarding than
coordinating with nodes outside the community, simply because a node has on
average more edges in its community than outside its community. So, in networks
with more clearly defined communities (high modularity), some communities can
coordinate on one behavior while other communities coordinate on the other be-
havior, leading to more heterogeneity in behavior at the global level. The ratio of
edges inside and outside the community is lower for networks with low modularity,
so edges inside the community are almost equally important as edges outside the
community. Therefore, nodes often coordinate on the same behavior throughout
the whole network in networks with low modularity, in particular in ER-networks.

The same mechanism of clustering is at play when we look at the effect of the ini-
tial conditions. Whether a node converges to the preferred equilibrium is largely
dependent on the preferences of the neighboring nodes. The probability that a
node ends up in the preferred equilibrium can largely be predicted by the major-
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ity of preferences in the adjacent nodes or the nodes in the community the node
belongs to. This relation is much stronger for more clustered networks. Cluster-
ing makes the relation to the direct neighbors and nodes within a cluster more
important than the relation outside of the cluster. Together with the finding that
high modularity limits the spread of uniform behavior, it can be expected that at
some value of modularity the cluster topology becomes more important than the
global level topology for the equilibrium behavior.

However, determining what the actual equilibrium behavior will be is not as sim-
ple as calculating the majority of preferences in a community. Not every node
has the same weight or power to determine the behavior. Nodes with an even
number of adjacent nodes have an advantage over nodes with an uneven num-
ber of adjacent nodes. A node with three neighbors needs two out of three to
choose the same behavior, while a node with four neighbors needs two out of four
neighboring nodes to choose the same behavior. Also, degree centrality plays an
important role. PA-networks have low clustering and the degree distribution is
known to have many nodes with low degree centrality and a few with high degree
centrality. Therefore, the global behavior is mostly determined by a few nodes
with high degree centrality. In SW-networks degree centrality is also important,
but because of its clustering, the influence of a node with high degree on the global
behavior is limited to the behavior of the community the node belongs to. For
ER-networks global behavior depends in a less clear way on individual network
positions. Because the clustering is low and degree distribution is less heteroge-
neous than PA-networks, often more complex and random network characteristics
determine to which behavior the network converges.

It will be interesting if future research focuses on how the cluster (or meso) level
is related to the local (or micro) level and global (or macro) level behavior. So,
at what value of modularity is the meso-level topology more important for the
dynamics than the global topology? In future research, we plan to test these
computational results empirically on human subjects in an experimental study.
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Chapter 3

An experimental study of network effects on coor-
dination in asymmetric games1

Abstract: Network structure has often proven to be important in understanding
the decision behavior of individuals or agents in different interdependent situa-
tions. Computational studies predict that network structure has a crucial influ-
ence on behavior in iterated 2 by 2 asymmetric ‘battle of the sexes’ games. We
test such behavioral predictions in an experiment with 240 human subjects. We
found that as expected the less ‘random’ the network structure, the better the ex-
perimental results are predictable by the computational models. In particular, there
is an effect of network clustering on the heterogeneity of convergence behavior in
the network. We also found that degree centrality and having an even degree are
important predictors of the decision behavior of the subjects in the experiment. We
thus find empirical validation of predictions made by computational models in a
computerized experiment with human subjects.

1This chapter is published as: Broere, J., Buskens, V., Stoof, H., & Sánchez, A. (2019). An
experimental study of network effects on coordination in asymmetric games. Scientific reports,
9 (1), 6842. Broere wrote the manuscript, did the analysis and programmed the experiment.
Broere and Sánchez developed and executed the experiment. Buskens, Stoof, Sánchez contributed
to idea development, experiment development and manuscript writing. All authors discussed the
results and reviewed the manuscript. We thank Ignacio Tamarit and Pau Casanova for their help
with the experiments. We thank Merel van Herpen for her comments on the manuscript.
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3.1 Introduction

Coordination problems are numerous in everyday life (Schelling, 1980; Crawford
et al., 2008; Mehta et al., 1994). While avoiding collusion in traffic, meeting
one another or making an exchange, coordination is a vital part of the success
of the interaction. Coordination processes are therefore arguably fundamental to
understanding the functioning of social, economic and biological systems. Game
theoretical models are often used to model coordination problems with a strategic
interdependence among actors. The success of this method has led to a wide liter-
ature ranging from ‘two by two’ games to complex spatial multi-agent (network)
models, and from theoretical studies to experimental tests (Binmore et al., 2007;
Easley and Kleinberg, 2010b; Cooper et al., 1989; Szabó and Fath, 2007; Perc and
Szolnoki, 2010). The coordination problem can be especially difficult when agents
do not share the same preferences for different options. These situations are often
formalized by asymmetric coordination games, also known as the ‘battle of the
sexes’. Computational models (Broere et al., 2017; Mazzoli and Sanchez, 2017)
and other theoretical studies (Hernández et al., 2017; Hernandez et al., 2013) show
that network structure is an important predictor of behavior in iterated asymmet-
ric games. Although these models convincingly show that there are network effects
on equilibrium behavior, no empirical studies have been conducted to corroborate
these findings. Previous research on network effects on other types of games, such
as the Prisoners Dilemma, show that the predictions made by computational mod-
els are not always evident when tested empirically (Gracia-Lázaro et al., 2012). It
is therefore crucial to test the predictions and assumptions made by these models.
In this paper we empirically test predictions made by computational and theoret-
ical studies in an experimental study with human subjects (Broere et al., 2017;
Mazzoli and Sanchez, 2017; Hernández et al., 2017; Hernandez et al., 2013).

The problem with asymmetric coordination games is that it is difficult to make
behavioral predictions about the outcome of the game. Table 3.1 illustrates a
‘battle of the sexes’ game in which the two pure-strategy Nash equilibria are:
both players play α or both players choose β. However, the players differ in their
preference for the equilibria. Therefore, the game consists of an element of coordi-
nation and an element of competition between the players. There is also a mixed
Nash equilibrium, but this equilibrium is inefficient, because the expected payoff
is lower for both players compared to any of the pure-strategy Nash equilibria.
Miscoordination is the most frequent outcome when human subjects play these
one-shot games in an experimental setting (Cooper et al., 1989; Binmore et al.,
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Table 3.1: Example payoff table asymmetric ‘battle of the sexes’ game, where the first
entry is for player 1 and the second entry for the player 2

Player 2 α β
Player 1 α 2,1 0,0

β 0,0 1,2

2007). Both players often choose the behavior according to their own preferred
equilibrium, resulting in the lowest payoff for both players. The players often con-
verge to one of the two equilibria when the game is played repeatedly (Duffy et al.,
2017; De Kwaadsteniet et al., 2012; Lau and Mui, 2008). In rarer cases players
manage to switch simultaneously between the two equilibria, thereby obtaining
the best outcome for both players (Duffy et al., 2017).

The situation can be made more complex by adding another player. This means
there are three players who have to make a decision between α and β, but again
they differ in their payoff for choosing α or β. Although the complexity of the
situation is increased in terms of the number of players, it is easier to predict
the outcome. The payoffs are balanced pairwise between the players, but the
global situation is not, because there will always be a majority for one of the
options. Intuitively one can already anticipate that when three people have to
decide between two options, and two prefer option β and only one prefers α, the
most likely outcome will be β. The three player situation is illustrated in Table
3.2, in which the payoffs are the sum of the pairwise interactions of Table 3.1.
Again there are two pure-strategy Nash equilibria: all players play α or all players
play β. However, in this case the equilibria are not equivalent and therefore not
equally likely. The equilibrium ‘all players play β’ yields a higher payoff for the
two column players. Also, when the column players both play β, their payoff will
at least be two, independent of what player 1 does. When the column players both
play α, their payoff will be two maximally. No such coordination possibility exists
for player 1 and 2 or 1 and 3. Assuming full information for all players, choosing
β is the best option for both column players. Because the row player is aware of
this, the best reply would be to play β as well, making ‘all players play β’ the
behavioral prediction in an empirical setting.

The situation changes again when players only interact with a subset of players
in the game, instead of all other players. In Figure 3.1 two situations with four
players are illustrated. The nodes represent the players and the edges represent
which nodes interact with each other. There are two nodes which prefer α and two
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Table 3.2: Example payoff table 3 player asymmetric ‘battle of the sexes’ game. The
first entry is for player 1, the second entry for player 2, and the third entry for player 3.

Player 2 α β
Player 3 α β α β

Player 1 α 4,2,2 0,0,0 2,1,0 0,2,2
β 0,1,1 1,2,0 1,0,2 2,4,4

nodes which prefer β. In the network on the left of Figure 3.1 every node interacts
only with nodes who have the opposite preference. Again the equilibria are: all
players playing α or all players playing β. The situation is completely balanced,
therefore it is again hard to predict the outcome of the game. The situation
illustrated on the left of Figure 3.1 is the same as the situation on the right of
Figure 3.1 with the exception that the edge from the top left node to the top right
node is replaced with an edge from the top left node to the bottom right node.
Although this is a minor change in the interaction structure, it is now easier to
predict the outcome of this game. Both players with a preference for β always have
to interact with players with a different preference. However, both players with a
preference for α also interact with each other, making their pairwise interaction
no longer an asymmetric battle of the sexes game, but a symmetric coordination
game. Therefore, choosing α yields the highest payoff for the pairwise interaction
between these two nodes. The node on the top right has no other choice than to
coordinate on the same behavior as the node on the bottom right. The node on
the bottom left can therefore infer that the other players will choose α, making it
the best response to also choose α. So, ‘all players play α’ is the prediction in this
situation.

In the 4-player situation one can still reason about what the predictions will be.
In situations with more than 4 players it rapidly becomes harder to reason about
the behavioral outcome of a game and the situation becomes yet more complicated
when there are complex interaction structures added. In these types of situations,
computational models are used to develop predictions.

There are several computational studies exploring the behavior of multiple agents
with asymmetric ‘battle of the sexes’ type of dynamics. Several studies explore
homogeneous spatial structures such as cellular automata (Alonso-Sanz, 2011;
Alonso-Sanz, 2012a; Alonso-Sanz, 2012b). An interesting finding is the ability
of self organization in agreement clusters in cellular automata. Clusters of ad-
jacent nodes can coordinate on one behavior while other parts of the cellular
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Figure 3.1: Four-player games, represented as a network; α and β denote the preferences
of the players.

automata can coordinate on the other behavior. Hernández, Muñoz-Herrera and
Sánchez introduce a theoretical model for exploring Nash equilibria of battle of the
sexes games on Erdös-Rényi networks under the conditions of both complete and
incomplete information (Hernandez et al., 2013). They find a rich set of equilib-
ria where both homogeneous and heterogeneous equilibrium behavior is possible
when players have complete information. This set is reduced when players have
incomplete information. In a subsequent study, the influence of group size and the
strength of preferences on equilibrium behavior is studied (Hernández et al., 2017).
The stronger the preferences, the harder it is to obtain homogeneous equilibrium
behavior. Other related work studies computationally the behavior of dynamic
networks in which actors can make or break their links (Bojanowski and Buskens,
2011). This study identifies a set of networks that are stable, in the sense that ac-
tors no longer wish to break links or make new ones, often resulting in segregated
networks. In addition, some studies consider the influence of heterogeneity in other
games such as (weak) Prisoner’s Dilemma games (Wang et al., 2014; Szolnoki and
Perc, 2014; Amaral et al., 2016). An interesting result is that payoff heterogene-
ity is predicted to have a favorable effect on cooperation. Furthermore, there
are some experimental studies with human subjects testing the effects of network
structure on the number of rounds the participants need to reach coordination
in both symmetric and asymmetric coordination games. Findings indicate that
network structure influences the pace at which participants coordinate and net-
work density can help the coordination process in asymmetry coordination games
(McCubbins et al., 2009). Other experimental studies show that with complete
information on choices made by all actors in the entire network, participants are
quicker in reaching coordination compared to more limited information sets (En-
emark et al., 2014). However, these experimental studies do not study the effect
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of network structure on what the equilibrium behavior will be.

All this research, based mostly on computational models, yields specific predictions
about global behavior on complex situations. However, obtaining those predictions
often requires a lot of simplifying assumptions. The question then arises as to how
well do these models predict actual behavior given the assumptions they make and
the complexity of the situation? This is the main motivation for the experimental
work we report in this paper.

3.2 Theory

In this study we empirically test behavioral predictions from previous computa-
tional (Broere et al., 2017; Mazzoli and Sanchez, 2017) and theoretical studies
(Hernández et al., 2017; Hernandez et al., 2013); specifically, we consider the in-
fluence of network structure on equilibrium behavior in iterated asymmetric ‘battle
of the sexes’ games. We focus on the computational model described in Chapter
2. In this study nodes play iterated 2× 2 games with their neighbors. Each node
gets a preference assigned before the first round of the game (say α or β), that
determines whether the node is a row or a column player as shown in Table 3.2.
Every round the nodes choose between α or β and the decision of the node is
played against all its neighboring nodes. In the first round, the nodes play their
preferred behavior with probability one. After every round, the nodes update
their probability of playing α or β by means of reinforcement learning (Cimini
and Sánchez, 2014; Ezaki and Masuda, 2017). The probability of choosing either
α or β is updated towards what would have been the best choice the previous
round. Earlier research investigated the response behavior of human subjects in
iterated ‘battle of the sexes’ games in two types of ring networks (Mäs and Nax,
2016; van Gerwen and Buskens, 2018). This study found that 96 percent of the
decisions of the subjects followed a myopic best response pattern. We therefore
choose a similar update rule. The update rule is more explicitly described in S1
of the Supplementary Materials. It should be noted that we used a step of 0.5
instead of 0.1 in Equation 2.3 of Chapter 2, because we think this is more realistic
for human subjects.

The computational study in Chapter 2 compares the equilibrium behavior in three
different types of networks. The baseline model is the Erdös-Rényi (ER) random
network. This type of network is usually defined as G(N, per), where N is the
number of nodes in the network and per the probability of drawing an edge between
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two arbitrary nodes. Thus, for every two nodes in the network the probability
that an edge is present is the same. Depending on the choice of the parameters,
this usually leads to a network with low clustering and relatively low variation
in the degree distribution. The computational study predicts that equilibrium
behavior is often homogeneous in these networks, in the sense that all nodes end
up choosing the same behavior, all α or all β. However, it is hard to predict which
equilibrium the nodes will end up playing, mostly because this is dependent on a
complex combination of network characteristics. Both equilibria (all α or all β) are
generally equally likely. This situation closely resembles the situations described
in Table 3.1 and the left network of Figure 3.1.

The second type of network studied in the computational study are clustered
networks. The clustered networks are obtained by means of the Watts-Strogatz
algorithm (Watts and Strogatz, 1998). The algorithm starts with a lattice con-
sisting of N nodes. Each node is connected with n neighboring nodes. The edges
are rewired randomly with a constant probability for all edges. Using relatively
low values of the rewiring probability, the characteristic of these networks are
short average path lengths and high clustering, known as the ‘small world’ net-
work characteristics. The computational study predicts that equilibrium behavior
is homogeneous within the clusters, but heterogeneous between clusters, resulting
in heterogeneous behavior in the overall network. Similar effects are shown in an
experiment with different (learning) dynamics (Vriens and Corten, 2018). This
result is pretty intuitive when taking a closer look at the definition of clustering.
Clustering is often defined by the ratio of edges within a cluster and the edges out-
side the cluster (Fortunato, 2010; Newman, 2006). The higher this average ratio,
the higher the clustering of the network. In clustered networks coordinating on
the same behavior within the cluster is simply more rewarding because there are
on average more edges within the community than outside. This causes different
communities to coordinate on different choices. A good predictor of the behavior
within the cluster is the preference of high degree nodes. The higher the degree of a
node, the higher the probability that the node converges to its preferred behavior.

The third type of network studied in the computational study are centralized
networks. This type of network is constructed using the preferential attachment
algorithm (Barabási and Albert, 1999). This algorithm starts with one or more
nodes and new nodes are added iteratively. In each iteration, the probability for
a new node to connect to an existing node depends on the number of links the
existing nodes already have; the more links a node already has, the higher the
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Table 3.3: Number of neighboring nodes required for a local majority given the degree
of a node. Nodes with an even degree always need 50%, while an uneven degree requires
more than 50% of its neighbors.

Degree centrality 1 2 3 4 5 6 7 8
Number of neighboring nodes needed 1 1 2 2 3 3 4 4
Percentage of neighboring nodes needed 100% 50% 67% 50% 60% 50% 57% 50%

probability that the new node gets connected to it. This creates a ‘rich get richer’
effect. In the computational study, the centralized networks had low-clustering, a
few central nodes with high degree centrality and a majority of peripheral nodes
with low degree centrality. The equilibrium behavior in these networks is, just like
random networks, often homogeneous in the sense that all nodes end up choosing
the same option: all α or all β. However, which equilibrium the nodes converge
to is easily predicted by the preference of the nodes with high degree centrality.
In these networks the nodes with the highest degree centrality could dictate the
equilibrium behavior of the overall network. This situation closely resembles the
situation of the right network in Figure 3.1.

Another effect which is present in all types of networks is related to an even degree
centrality. Nodes with an even degree centrality can relatively easily coordinate
on their preferred behavior compared to nodes with a similar but uneven degree
centrality. This situation can be understood by reviewing the 3 player situation
described in Table 3.2. When nodes have an even degree, the total number of
relevant choices is uneven, including the node itself. So locally there is always a
majority for one of the choices as described earlier in Table 3.2. Table 3.3 exem-
plifies the situation up to degree centrality eight. The percentage of neighboring
nodes that have to choose the same behavior for a local majority is always 50
percent for nodes with an even degree centrality, while it requires more than 50
percent for nodes with an uneven degree centrality. This effect was also found in
symmetric coordination games in a computational study by Buskens and Snijders
(2005).

Summarizing, computational studies predict homogeneous equilibrium behavior
in random networks, while the predicted probability is often close to 50 percent
for either all α or all β. So, the information which can be derived from the
network is limited. The predicted equilibrium behavior in centralized networks is
also homogeneous, but the equilibrium behavior can be predicted by a few nodes
with high degree centrality. In clustered networks degree centrality is also a good
predictor of behavior, but behavior is restricted to the community the node belongs
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to. Finally, nodes with an even degree centrality more easily coordinate on their
preferred behavior than nodes with an uneven degree centrality. Based on these
computational predictions, we will empirically test the following hypotheses:

Hypothesis 1:
The correlation of (equilibrium) behavior between the computational model and
the empirical results will be higher for centralized networks and clustered networks
compared to random networks.

Hypothesis 2:
The equilibrium behavior is more heterogeneous in clustered networks compared
to random and centralized networks.

Hypothesis 3:
Participants with high degree centrality will more often play their preferred be-
havior.

Hypothesis 4:
Nodes with an even degree centrality more often play their preferred behavior than
nodes with uneven degree centrality in all networks.

3.3 Methods

3.3.1 Experimental setup

In order to test the four hypotheses we carried out a computerized laboratory
experiment on networks of size 20. We used the Python based software platform
oTree (Chen et al., 2016). The experiments where conducted both at Univer-
sidad Carlos III de Madrid, Spain and Utrecht University, the Netherlands. In
total 140 subjects participated in Madrid between April 9th and April 20th 2018.
These participants were invited from the IBSEN volunteer pool (IBSEN, 2018).
In addition, 100 subjects participated between May 22nd and May 30th in the
Experimental Laboratory for Sociology and Economics (ELSE), Utrecht. These
participants were invited using the ORSEE recruitment system (Greiner et al.,
2004). In total we conducted 12 sessions with 20 participants. Therefore N=240
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Table 3.4: Payoff table for the experiment

Player 2 Blue Yellow
Player 1 Blue 10,8 0,0

Yellow 0,0 8,10

in total.

During the experiment, participants played an iterated asymmetric ‘battle of the
sexes’ game against multiple other participants at the same time. Every partic-
ipant interacted with a subset of other players. Interactions are mapped on a
network in which the players are nodes and they play the game with the partici-
pants to whom they are connected. The payoff table is shown in Table 3.4. The
payoffs are chosen such that the difference between coordinating on the preferred
option and the not preferred option is a real difference, but small enough for par-
ticipants to have incentive to deviate from their own preference. Participants can
choose between ‘blue’ and ‘yellow’ and play the same choice against all participants
they interact with.

In this study we used three different networks, each to represent the characteristics
of random networks, clustered networks and centralized networks. The networks
used in the experiments are represented in Figure 3.2 and the adjacency matrices
can be found in Table A6 till Table A8 of the appendix. The network on the
left in Figure 3.2 has low clustering and low differentiation in degree centrality of
the nodes. The network in the center of Figure 3.2 has high clustering and low
differentiation in degree centrality of the nodes. The network on the right in Figure
3.2 has low clustering and a few nodes with high degree centrality. All networks
have a network size of 20 nodes and a network density of 0.2. The network size
is big enough that it contains non-trivial complexity and small enough to make
it experimentally feasible. The computational study shows that the hypothesized
outcomes can be expected for networks of size 20 and in a similar way for larger
network sizes (Broere et al., 2017).

Upon arrival participants were seated randomly in the laboratory. All subjects
participated in games on all three networks. Before the first round of each network,
participants were assigned their ‘type’ at random. The type determined whether
they were the row or the column player in Table 3.4. The randomization was
performed with the constraint of 10 row players and 10 column players to maximize
the coordination problem. In every network, the participants played 20 rounds in
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Figure 3.2: 20-player games, represented as a network. Left the random network, in
the middle the clustered network, on the right the centralized network.

which their type, location in the network, and the participants they interacted
with are the same. The order in which participants were placed on each one of
the networks was varied between sessions.

In each round participants had to decide between ‘blue’ and ‘yellow’. After all
participants had made their decisions, they where all informed about their payoff
in that round and how many of the participants he/she is connected with played
‘blue’ or ’yellow’. The participant did not receive information about players in the
network he or she was not connected with. Next, the participants were asked to
make a new decision for the next round, continuing for 20 rounds. We informed the
participants beforehand that they would play 20 rounds. We communicated the
exact number of rounds because we did not expect any end game effects. Before the
actual rounds were played the participants were asked to read the instructions of
the game. After that, they were asked to answer questions about the instructions
in order to test whether they understood the game. Before the participants played
on the actual networks, three practice rounds on a random network were played.

The experiments lasted an average of 45 minutes. The payoff of each round was
accumulated and then divided by the number of opponents (interaction partners
in the network). For every 50 points earned, the participants received 1 euro.
In addition, they received 5 euros show up fee. The maximum that could be
obtained was 17 euros. The average payoff was around 14 euros, the lowest was
10.50 euros, the highest 16.50 euros. After the experiment, participants were
asked to leave the room, after which they were invited one by one to collect their
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earnings in privacy. The experiments in Spain were in Spanish and the experiments
in the Netherlands were in English. The instructions in both languages can be
found in Figure A8 and Figure A9 of the appendix. The oTree code together
with the obtained data and the R-scripts for the analyses can be found on the
first authors github page: https://github.com/JJBroere/An-experimental-study-
of-network-effects-on-coordination-in-asymmetric-games.

3.3.2 Measures and analytical strategy

In order to test hypothesis 1, we have to calculate the correlation between the
computational model and the empirical results. The correlations are computed
with the same starting conditions; the same network and preferences of the actors
in the same positions on the network. Given the same starting conditions, how
often do the nodes in the computational model make the same choice (blue or
yellow) as the people in the experiment? Thus, the correlation of the behavior
between the computational graph gc and the behavior of the empirical graph ge

for each graph is defined as:

r = cor(gc, ge) =

∑N
i=1

∑R
t=1 f(x

c
it, x

e
it)

N ×R
, (3.1)

where xit is the behavior (‘blue’ or ‘yellow’) of node i at round t, N is the number
of nodes and R the number of rounds. The function f(xc

it, x
e
it) can have two values,
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{
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it �= xe

it.

The computational model is run with the same initial conditions (distribution of
types) as the empirical result. Because the computational model has a stochastic
update rule, we run the model 100 times and report the median correlation between
the model and the empirical result. We chose to report the median, because in
some cases the distribution can be very skewed. For the full specification of the
computational model see appendix and Chapter 2.

In order to test hypothesis 2 we resort to an analysis of variance (ANOVA) with
post hoc tests on the heterogeneity of behavior in the networks in the last 5 rounds.
We chose to look at the last 5 rounds instead of just the last round because random
switching of behavior in the last rounds can influence the results. By taking the
average of the last five rounds, the effects of switching or possible end game effects
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Table 3.5: Correlation between the computational model and the empirical results.
The correlation is defined in the text. The percentage correct is the percentage correctly
predicted behavior of the experimental results by the computational model

All rounds Last five rounds
Correlation (sd) % correct (sd) Correlation (sd) % correct (sd)

Random 0.13 (0.09) 56 (4.61) 0.18 (0.16) 59 (8.29)
Clustered 0.44 (0.28) 72 (6.46) 0.51 (0.13) 76 (6.65)
Centralized 0.74 (0.17) 87 (8.74) 0.92 (0.25) 96 (12.48)
N 12 12 12 12

will be minimized in the analyses. We define heterogeneity of behavior as the
variance of participants choosing ‘blue’ in the network:

h(pblue) = var(pblue) = pblue(1− pblue), (3.2)

where pblue is the proportion of nodes playing ‘blue’ in the last 5 rounds of the
game.

We test hypotheses 3 and 4 by means of a multilevel logistic regression for all
subject decisions over all 20 rounds. Three levels are specified, taking into account
the repeated measures of the participants and the correlation within networks. The
dependent variable is 1 when the participant plays its preferred behavior and 0
otherwise. The predictor variables are the degree centrality of the participant in
the network and the evenness of the degree.

Results

In Table 3.5, the correlations between the empirical results and the computational
model for each network are presented. We investigate how well the computational
model predicts both the empirical behavior in all 20 rounds and the convergence
behavior of the last five rounds. It is hard to define an objective convergence
criterion, because participants sometimes switch behavior in an equilibrium state,
presumably trying to persuade their neighbors to switch as well. We therefore ap-
ply a more subjective interpretation of convergence using as rule of thumb whether
or not the switching of a player leads to switching behavior for other players as
well. According to this interpretation, convergence is reached in the last five rounds
in all sessions for the clustered network in Figure 3.2, and for the network with
the central node in Figure 3.2. Not all sessions converged in the random network
in Figure 3.2. Six out of twelve networks did not fully converge in the last five
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rounds. This can occur because the switching of behavior was still effective, in-
ducing neighbors switching behavior as well, while in the other two networks it
rarely happened that switching behavior led to neighbors switching behavior as
well. See Figure A10 till Figure A15 of the appendix for a visual example of the
behavior of the computational model compared to the experimental results.

The correlation between the empirical results and the computational model is
r = 0.13, sd = 0.09 for random networks over all 20 rounds and r = 0.18, sd = 0.16

for the last five rounds. The random network closely resembles the original two
player game in Table 3.1 or the situation on the left in Figure 3.1. In these
situations different equilibria are equally likely. This is also reflected in the current
results where the computational model poorly predicts the empirical behavior. The
correlation of the clustered network is r = 0.44, sd = 0.28 and r = 0.51, sd = 0.13

for the last five rounds. This means that the model predicts 76 percent of the
empirical observations correctly in the last five rounds. Predictions for these types
of networks are significantly better compared to the random network. Finally, for
the centralized network, the median correlation is r = 0.74, sd = 0.17 in all rounds
and r = 0.92, sd = 0.25 for the last five rounds, meaning that towards the end
behavior is predicted correct in almost all cases: in fact, out of 12 sessions the
behavior was predicted wrongly only twice. In these cases the empirical behavior
converged to the complete opposite direction from the predicted behavior, leading
to a correlation of -0.98 and -1. This is reflected in the standard error. However, 10
out of 12 times the empirical results are correctly predicted by the computational
model. Based on these results we found evidence in favor of hypothesis 1.

In order to test hypothesis 2, we examine heterogeneity of behavior in the last five
rounds of the games for the different networks. The mean variance in the random
networks is, μ = 0.116, sd = 0.099, although six out of twelve networks have not
converged. The mean variance in the clustered networks is, μ = 0.183, sd = 0.085,
corresponding to a situation in which clustered networks converged most of the
time to a state where around half of the participants choose ‘blue’ and the other
participants choose ‘yellow’. The mean variance in the networks with a central
node is, μ = 0.024, sd = 0.030. This indicates that these networks converge
to homogeneous behavior where all participants choose ‘blue’ or all participants
choose ‘yellow’ every time. An ANOVA was conducted to compare the effect of the
networks on the heterogeneity in the last five rounds. The ANOVA test yielded
significant variation among conditions, F (2, 33) = 12.6, p < 0.001. A post hoc
Tukey test further shows that the random networks and the clustered networks do
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Table 3.6: Multilevel logistic regression results, dependent variable is 1 if the participant
chose his or her preferred behavior, 0 otherwise. Three levels are specified, taking into
account the repeated measures of the participants and the correlation within networks.

All Networks Random Clustered Centralized

Degree centrality 0.118∗∗∗ (0.013) 0.185 (0.138) 0.280 (0.401) 0.210∗∗ (0.085)
Even degree 0.164∗∗∗ (0.060) −0.305 (0.473) 1.033∗∗ (0.476) −0.400 (0.500)
Constant 0.228∗ (0.136) 1.171∗ (0.638) −0.155 (1.638) 0.922∗ (0.493)

Random
Subject 1.913(1.383) 9.231(3.038) 9.635(3.104) 12.13(3.483)
Network 0.017(0.132)

Observations 14,400 4,800 4,800 4,800
logLik -7956.3 -1846.1 -1767.9 -1712.8

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

not differ significantly at p = 0.101, although it should again be noted that the
random network often did not converge. The clustered networks and the networks
with a central node differ significantly at p < 0.001; the random network and
the centralized network differ significantly at p = 0.019. Although the difference
between the clustered network and the random network is not evident, we do
believe that the random networks that did not converge yet would converge to the
homogeneous state if more rounds where played. The random networks that did
converge, all converged to a (mostly) homogeneous state. Furthermore, we found
a very clear difference between the random network and the centralized network in
terms of heterogeneity of behavior. We therefore conclude that we have empirical
evidence in favor of hypothesis 2.

In Table 3.6 the results of the multilevel logistic regression analyses are presented.
The dependent variable is a dichotomous variable indicating whether a partici-
pant chose the preferred behavior. The regression is conducted for all networks
together, and with the three networks separately. In the model with all net-
works together there is a positive statistical significant effect of degree centrality
on playing ones preferred behavior, β = 0.118, sd = 0.013, p < 0.001. The higher
the degree centrality, the higher the probability that the participants will play
their preferred behavior. There is also a positive statistically significant effect
of an even degree centrality, β = 0.164, sd = 0.060, p = 0.006. If a participant
has an even degree centrality, the probability that the participant will play his
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or her preferred behavior is higher as well. Looking at the random networks,
there is no statistically significant effect of any of the predictors. In the clus-
tered network there is a statistically significant effect of an even degree centrality,
β = 1, 033, sd = 0.476, p = 0.029. There is no statistical effect of degree centrality.
In the centralized network we do find a statistical significant effect of degree cen-
trality, β = 0.210, sd = 0.085, p = 0.013. However no statistically significant effect
of having an even degree centrality. We found evidence in favor of hypothesis 3 and
hypothesis 4 when combining all the data. However, the hypotheses could not be
confirmed in the networks separately. This could be caused by a lack of statistical
power and variation in the degree distribution within some types of networks.

3.4 Conclusion and discussion

In this paper we empirically studied the effects of network structure on behavior
in iterated ‘battle of the sexes’ games with human subjects. The hypotheses were
derived from computational models from previous studies. The empirical results
convincingly show that the computational models have empirical validity. The
correlations between the computational model and the empirical behavior indi-
cates that network structure governs the behavior to some extent. As expected,
as the network structure becomes less ‘random’, the more accurate the compu-
tational model prediction of the behavior of the players. Furthermore, we found
evidence that the major network effects found in the computational study have
a clear counterpart on the behavior of the game when played with human sub-
jects. Thus, in the clustered networks the equilibrium behavior was clearly more
heterogeneous compared to the centralized networks. In random networks we did
not find a significant difference with the clustered network. However, this could
partially be explained because half of the sessions with the random networks did
not converge after 20 rounds and more homogeneity could still be expected. We
also found evidence that degree centrality and having an even degree plays a role
in determining the behavior of the game.

Although the experiments were conducted in relatively small and simple networks,
we do believe that the results are generalizable to bigger and more complex net-
work settings. As both the computational and the empirical results show, most
of the behavior is limited to the clusters of the network, and within each clus-
ter our reasoning in terms of how majority influences decision presented above
seems to apply quite well. When a larger network consists of multiple clusters, the
same behavior can be expected within the clusters of the larger network. In larger
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networks with low clustering the same dynamics can be expected as in smaller net-
works, however the relative influence of a single node on the equilibrium behavior
naturally becomes smaller as the number of nodes in the network becomes larger.

The small and limited number of networks studied is however a limitation of the
current study. In this study we chose three fixed networks to represent networks
used in the computational study; namely an Erdös-Rényi random network, a small
world network and a preferential attachment network. There are several caveats
to make about these choices. First of all, the networks belong to a class of network
defined by their mathematical properties. We did not study any variation between
networks within this class. The lack of variation within one network also makes
it harder to detect the influence of different nodes. Secondly, the mathematical
properties of the networks are often limiting properties as the number of nodes
goes to infinity: although the effects are independent of size in the computational
study, the networks in this study might in fact be too small to represent the limiting
properties of the class of networks. However, studying larger and/or more different
networks is complicated and expensive in an experimental context with human
subjects, because this would require very large sample sizes and also a large amount
of participant fee. The limiting factor is in the between network comparisons. In
the current study it required 240 participants to be able to compare 12 networks
per type.

All in all, our experiments show that the behavior of people trying to coordinate
in a network can be understood reasonably well in terms of local considerations.
In other words, subjects react to what they observe around them, the rest of the
network does not seem to be relevant. This opens an interesting avenue of research
as in other situations, different from the one considered here, global information
may be available that changes how people behave. Indeed, it was observed that
when the total number of people making one or the other choice is made available
to the subjects, global coordination is reached much more easily in a population
of moving subjects(Antonioni et al., 2014). In the case of networks, knowing that
there are very many players choosing the option one prefers may help to insist on
making the decision that goes in one’s interest, in the hope that eventually one’s
neighbors might conform to the global majority. This, along with trying to extend
our experiments to larger networks and to more representatives of each class,
would be an interesting contribution to establish the knowledge on coordination
on networks on firm grounds.
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Asymmetric games on networks and the Ising model1

Abstract: Many computational and theoretical studies show that network struc-
ture can have an important effect on the evolution of behavior in iterated 2 × 2
games. However, the results of these models often depend on simplifying assump-
tions, such as the update rule. Understanding the role of simplifying assumptions
is therefore necessary for the interpretation of the outcomes and the generalizability
of these models. We study the influence of such simplifying assumptions for an it-
erated asymmetric ’battle of the sexes’ game by comparing it to an implementation
using the ferromagnetic Ising model. In order to represent the conflicting interests
of players in a ‘battle of the sexes’ game, we further generalize the Ising model
by allowing the ‘external magnetic field’ parameter to vary between actors. We
find a richer and more detailed set of equilibria by modeling the game as an Ising
model. Which theoretical model yields the best predictions for empirical situations
is dependent on the studied empirical situation at hand.

1This chapter is based on a paper written by Joris Broere, Vincent Buskens and Henk Stoof.
Broere wrote the manuscript and conducted the analyses. Buskens contributed substantially to
the manuscript. Stoof initiated the project and contributed substantially to the manuscript.
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4.1 Introduction

Social dilemmas occur when individual rational behavior leads to an outcome that
is less desirable compared to situations in which the actors had cooperated (Raub
et al., 2015; Buskens and Raub, 2013). In these situations, actors can benefit
by uncooperative choices, unless the other actor(s) choose uncooperative as well
(Van Lange et al., 2013). Game theory is often used to formalize these types of
situations (Binmore, 1994). Examples of social dilemmas in game theory are the
prisoner’s dilemma and some types of asymmetric coordination games. Under-
standing when cooperation or coordination occurs is fundamental to understand-
ing behavior in real world situations, such as free riding behavior, overexploitation
of common goods and conflict in general (Allison and Kerr, 1994; Hardin, 1968;
Broere et al., 2017). This has led to a large body of work trying to understand
when cooperation occurs and when it breaks down (Raub et al., 2015; Macy and
Flache, 2002). Repeated interactions and network structure are often suggested as
possible solutions for different variations of social dilemmas (Axelrod and Hamil-
ton, 1981; Grujić et al., 2010; Nowak and May, 1993; Perc et al., 2013; Perc and
Szolnoki, 2010; Perc and Szolnoki, 2008). However, the results often depend on
simplifying assumptions of the models, such as the update rule (Gracia-Lázaro
et al., 2012; Roca et al., 2009). Therefore, the simplifying assumptions are im-
portant to study in order to understand the validity and generalizability of these
models. In this study, different ways of formalizing of one such social dilemma
can affect the predicted outcome of the game. We hereby focus on the asymmetric
coordination game known as ‘battle of the sexes’.

The effect of networks in iterated game is a rigorously studied subject. There is
substantial literature on theoretical, computational and experimental studies for
different games (Binmore et al., 2007; Easley and Kleinberg, 2010b; Cooper et al.,
1989; Szabó and Fath, 2007; Perc and Szolnoki, 2010; Broere et al., 2017; Gracia-
Lázaro et al., 2012; Broere et al., 2019). Many computational studies use repeated
decisions in discrete time steps that lead to some form of convergence. This way of
formalizing network games requires a large set of assumptions. In iterated games,
all players make decisions simultaneously at fixed time points. The decision for the
next time point is updated by a fixed update rule in which information of other
players choices is partly revealed. By making repeated decisions, a correlation is
introduced into the behavior of the players, as the decision of a player at time
t is dependent on the various decisions made at t − 1. Because the correlation
determines how much the choice made in time point t is dependent on t − 1, the
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strength of this correlation might be an important feature to study.

In discrete time models the correlation between decision time points might vary
between different update rules, but also in how the update rule is specified. For
instance, the correlation can be influenced by introducing a random error term
into the update rule. The bigger the error term, the less t depends on t − 1.
However, even though the error term in an update rule might influence the cor-
relation between time points, it cannot be used to model the correlation between
time points explicitly. Studying the effect of the correlation explicitly can lead to
valuable information, because it represents the importance of previous time points
or the strength of interaction in general.

We here study the effect of the update rule by modeling the same situation as a
repeated interaction model and with the ferromagnetic Ising model. The ferro-
magnetic Ising model studies alignment of dichotomous variables that represent
positive and negative atom spins. We will parametrize the ferromagnetic Ising
model such that the alignment will represent the coordination problem of the bat-
tle of the sexes. In the Ising model variables interact with a external magnetic
field. We allow the magnetic field to take on different and opposite signs for dif-
ferent nodes in the network in order to represent the different preferences in the
battle of the sexes. The Ising model also allows for the modeling of the correlation
explicitly by means of an interaction coefficient between the Ising spins. The Ising
model can provide analytical solutions for discrete variables on simple networks
and does not depend on an update rule. We will compare analytic expectations of
ring networks with results from previous computational studies and draw conclu-
sions about the validity of both methods (Broere et al., 2017; Mazzoli and Sanchez,
2017; Hernández et al., 2017; Hernandez et al., 2013).

4.1.1 The battle of the sexes as a spin system

Coordination is fundamental to any form of organization. Some types of coordi-
nation are just a matter of convention, such as on which side of the road people
drive (Voss, 2001). This type of coordination is unproblematic in the sense that
it does not matter from person to person on which side of the road they drive,
as long as everybody chooses the same side. Coordination can become more dif-
ficult when people prefer different options. For instance, when a group of people
work on a project together and some people would like to use software X for the
project, while others have a preference for software Y . In this case, coordination
can lead to frustration as some people will have there preference fulfilled, while
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others do not (Hernández et al., 2017; Hernandez et al., 2013). When an actor
is coordinating on an outcome that is not favorable for the actor itself, the actor
shows cooperative behavior while at the same time the actor can be frustrated
about not meeting its preferred behavior.

Situations of coordination where the agents have different preferences are often
formalized as an asymmetric coordination game known as ‘the battle of the sexes’.
The battle of the sexes is an interesting game because it contains both the element
of coordination and the element of competition (Binmore et al., 2007). In the
example game described in Table 4.1a, the players have to choose between two
options, in this case α or β. The numbers indicate the payoffs the players obtain
given their own choice and the choice of the other player. Coordinating on the
same choice yields a higher payoff for both players compared to miscoordination.
The pure Nash equilibria for this game are, both players choose α or both players
choose β. However, the players differ on which of the equilibrium they prefer.
Player 1 has a higher payoff when both players choose α and player 2 has a higher
payoff when both players choose β. The mixed strategy solution of this game is
suboptimal, since it yields a lower expected value for both players compared to
both pure strategy equilibria.

Experimental studies where human subjects play one-shot battle of the sexes games
tend to corroborate the suboptimal mixed strategy solution. In an experimental
study, miscoordination happens 52 percent of the time (Cooper et al., 1989). In
that study, the payoff matrix is defined as S1 = S2 = 1/2 in Table 4.1a. This find-
ing is very close to the mixed strategy solution, which predicts miss-coordination
to happen 5/9 percent of the time and coordination 4/9 percent of the time. A
solution to overcome this suboptimal outcome is by playing the game repeatedly
amongst the same two players. The players can learn from past choices of the
other player and adjust their choice based on the rounds before. The repeated
play creates a correlation in the choices of the players. By knowing past behavior,
players can anticipate future behavior. Experimental studies with human subjects
who play the game repeatedly against the same player almost always manage to
coordinate after a couple of rounds (Duffy et al., 2017; De Kwaadsteniet et al.,
2012; Lau and Mui, 2008).

The Ising model can represent the binary choice options of the battle of the sexes
while taking into account correlations in choices. The Ising model is a classic
model from the field of statistical physics (Ising, 1925; Glauber, 1963). It models
binary variables that interact pairwise given a graph structure. In the original
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Table 4.1: Left: Example payoff table asymmetric ‘battle of the sexes’ game, where
the first entry is for player 1 and the second entry for player 2, where 0 < Si < 1 with
i ∈ 1, 2. Right: example of two interacting spins, where the energy-levels E are defined
by two magnetic fields B1, for player 1 and B2 for player 2, and an interaction coefficient
J , where J > 0, B1 > 0 and B2 < 0, for an energy landscape that models the same
dilemma as the battle of the sexes game.

Player 2 α β
Player 1 α 1,S1 0,0

β 0,0 S2,1
(a)

↑ ↓
↑ −J −B1 −B2 J −B1 +B2

↓ J +B1 −B2 −J +B1 +B2

(b)

application it models the alignment of atomic spins that can be in a positive
or negative spin state. The Ising model is later used to model many different
systems with interacting binary variables, with application in fields like sociology,
psychology, neuroscience and game theory (Hopfield, 1982; Borsboom and Cramer,
2013; Haslbeck et al., 2018; Hauert and Szabó, 2005). In this paper we use the Ising
model to model the binary choice options of actors in an asymmetric coordination
game who interact given a network structure.

The game in Table 4.1a can be written as the energy landscape of two interacting
atomic spins, as stated in Table 4.1b. Table 4.1b represents the energy landscape
of two atoms that can be in one of two states, namely up or down, where the energy
function of the configuration is defined as E(s). The probability of an atom of
being in the up state or the down state is dependent on an external magnetic field
B and the interaction coefficient J . The field B determines the attraction of (or
preference for) the atom to be in one of the spin states. Important to note is that
the external magnetic field can be different for the two players. External magnetic
field B1 interacts with player 1 and external magnetic field B2 interacts with player
2. The interaction coefficient J determines the correlation of behavior between
the two atoms. The model is called ferromagnetic when J > 0, meaning that the
atoms have a higher probability for alignment (↑↑ or ↓↓). The model is called
anti-ferromagnetic when J < 0, meaning that the atoms have a higher probability
for the opposite direction (↑↓ or ↓↑). The model is called non-interactive when
J = 0. The coupling constant J can be interpreted as the correlation of behavior
between the two atoms, so when J = 0 the energy landscape is equal to the
one-shot situation in Table 4.1a with a mixed equilibrium that is uncorrelated.

In order to see how Table 4.1a and Table 4.1b are related, let us look at an
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example. The probability of the particles to be in one of the four states of the
energy landscape is

P (s1, s2) =
e−E(s)

Z
, (4.1)

where Z is a normalizing constant defined as the sum of e−E(s) over all possible
configurations, s1 is the state of atom 1 (or player 1), which can be up or down,
s2 is the state of atom 2 (or player 2), which can also be up or down, and E is the
energy of the combined state s, determined by the parameters J , B1 and B2. In the
uncorrelated case where J = 0, the joined state is equal to the multiplication of the
probabilities that the individual spins are in that state, P (s1, s2) = P1(s1)P2(s2).
The probability of states of the uncorrelated landscape in Table 4.1b is equal to
the probabilities of the uncorrelated (one-shot) mixed strategy in Table 4.1a if the
parameters relate in the following manner

B1 = ln
√

1

S1
, (4.2)

and

B2 = −ln
√

1

S2
. (4.3)

For example, lets define the game in Table 4.1a as S1 = S2 = 1/2. The mixed
strategy solution in this situation is for player 1 to play α two thirds of the time
and β one third of the time and for player 2 to play β two thirds of the time
and α one thirds of the time. Therefore, the probabilities of the different strategy
combinations are 2/9 for (α, α), 4/9 for (α, β), 1/9 for (β, α) and 2/9 for (β, β).
The probability of being in the (↑↑) state can now be calculated by filling in
Equation 4.1,

P (↑↑)= e−(−J−B1−B2)

e−(−J−B1−B2)+e−(J−B1+B2)+e−(J+B1−B2)+e−(−J+B1+B2)
=2/9 (4.4)

where, J = 0 and B1 = −B2 = ln
√
2. Filling in Equation 4.1 for the other states

yields P (↑↓) = 4/9, P (↓↑) = 1/9 and P (↓↓) = 2/9, as designed.

In the next sections, we use a computational method and the Ising model to study
the equilibrium behavior for small networks. We use the Ising model to calculate
analytical results for these networks, where we vary the interaction coefficient J

in order to represent the repeated interactions of the network games. Due to the
nature of the battle of the sexes game the interaction coefficient is ferromagnetic,
as the player prefer to coordinate their behavior. We compare the results of both
methods.
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4.1.2 The battle of the sexes on a network

In recent studies, the effect of spatial structures on the equilibrium behavior of
asymmetric coordination games became of interest. Several studies explore homo-
geneous spatial structures such as cellular automata (Alonso-Sanz, 2011; Alonso-
Sanz, 2012a; Alonso-Sanz, 2012b). An interesting finding is the ability of self or-
ganization in agreement clusters in cellular automata. Clusters of adjacent nodes
can coordinate on one behavior while other parts of the cellular automata can
coordinate on the other behavior. Hernández, Muñoz-Herrera and Sánchez (2013)
introduce a theoretical model for exploring Nash equilibria of battle of the sexes
games on Erdös-Rényi networks under the conditions of both complete and in-
complete information. In the complete information case, the actors know what
type of actors the other players in the network are. In the incomplete information
case, the players only have believes about the other player represented by a prob-
ability distribution. They find a rich set of equilibria where both homogeneous
and heterogeneous equilibrium behavior is possible when players have complete
information. This set is reduced when players have incomplete information. In a
subsequent study, the influence of group size and the strength of preferences on
equilibrium behavior are studied (Hernández et al., 2017). Computational models
show that network structure can be an important predictor of behavior for iterated
battle of the sexes games (Broere et al., 2017). This study compares the conver-
gence behavior in preferential attachment, small world and Erdös-Rényi networks.
The findings suggest that clustering in networks facilitates self organization of
uniform behavior within clusters, but the clusters themselves behave more or less
independent from the rest of the network. Furthermore, nodes with a higher de-
gree centrality and nodes having an even degree are more likely to converge to
their preferred equilibrium and can therefore be used to predict the behavior in
the full network. In a subsequent study, predictions made by the computational
study were validated in an experimental study with 240 human subjects (Broere
et al., 2019).

There are many examples of studies that utilize the Ising model to study game the-
oretical situations (Galam and Walliser, 2010; Stauffer, 2008; Perc et al., 2017).
Different game have been studied. One study implements an asymmetric Ising
model to represent cooperation in a public goods game (Bruggeman et al., 2018).
They show that a critical level of noise can trigger a cascade of cooperation. An-
other paper uses the Ising model to study Nash equilibria in the response strategy
of ‘correlated’ Snowdrift games (Correia and Stoof, 2019). They show that in game
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theoretical situations that are naturally correlated, there is a wide set of Nash equi-
libria possible when the players are allowed to deviate from the correlation. They
find these solutions to be describable by Ising models in thermal equilibrium. The
Ising model is also used to describe the market game, which closely resembles the
battle of the sexes game (Reyes, 2019).

In this paper, we will add to the results obtained in (Hernandez et al., 2013;
Hernández et al., 2017; Broere et al., 2017), by deriving analytic results for sim-
ple networks using the Ising model. We can compare the results to the results
from computational models. The analytically derived results help us to further
generalize the conclusions made by these previous studies or help us understand
possible deviations from these conclusions. Furthermore, the Ising model allows
us to study the effect of correlations introduced by the update rule in the behavior
by varying the interaction coefficient J .

4.2 Theory

The Ising model can be used to calculate analytical expressions for small networks
of interacting binary variables. By further generalizing the Ising model, it can
be parametrized to represent the asymmetric situation of the battle of the sexes
for ring graphs. Before we generalize the Ising model, we will first describe the
standard model as illustration of how this model is solved in practice.

4.2.1 The Ising model and its exact solution in one dimen-
sion

Consider a one-dimensional ring graph G. For every node i, there is a discrete
variable si, such that si ∈ 1,−1, representing respectively spin up or spin down.
So each node is interacting with two neighbours on a line with periodic boundary
conditions. Then, the total system’s energy is given by

E({si}) = −
N∑
i=1

(
Jsisi+1 +

B

2
(si + si+1)

)
, (4.5)

where {si} denotes the complete set of si for the number of N (identical) spin
particles in an external field B, and where J indicates the interaction strength
(Ising, 1925; Huang, 2008). Note that on a ring graph we have that sN+1 = s1.

68



Asymmetric games on networks and the Ising model

The probability that the particle is in the state s is

P ({si}) = e−E({si})

Z
, (4.6)

Z being a normalizing constant known as the partition function. In order to get
the partition function the sum is made over all possible states of all spins. So the
partition function is given by

ZN =
∑

s1=±1

∑
s2=±1

...
∑

sN=±1

exp

{
N∑
i=1

[
Jsisi+1 +

B

2
(si + si+1)

]}

=
∑

s1=±1

∑
s2=±1

...
∑

sN=±1

N∏
i=1

exp
[
Jsisi+1 +

B

2
(si + si+1)

]

=
∑

s1=±1

∑
s2=±1

...
∑

sN=±1

N∏
i=1

Tsi,si+1 .

(4.7)

Here we introduced the numbers

Tsi,si+1 = exp
[
Jsisi+1 +

B

2
(si + si+1)

]
, (4.8)

that can be seen as elements of the so called ‘transfer matrix’ (Kramers and Wan-
nier, 1941a; Kramers and Wannier, 1941b) as

T =

(
T1,1 T1,−1

T−1,1 T−1,−1

)
. (4.9)

So the transfer matrix represents the Boltzmann weights of all possible states of
si and si+1.

The partition function is now given by the trace of the N -th power of the transfer
matrix

ZN = tr[TN ], (4.10)

which can analytically be calculated by diagonalizing the transfer matrix. The
total magnetization of the network are given by

M =
∂

∂B
lnZN (4.11)

and the magnetization per spin is thus given by

m =
M

N
. (4.12)
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4.2.2 The generalized Ising model with a node-dependent
magnetic field

The battle of the sexes is an asymmetric game, which means that the same choice
combination can have a different payoff for different players. Therefore we need
to define attraction (or preference) to accommodate the different preferences of
the game. We can do this by allowing the system variables to vary between the
particles. The total energy of the system can now be defined as:

E({si}) = −
N∑
i=1

Ji+ 1
2
sisi+1 −

N∑
i=1

Bisi, (4.13)

where Ji+ 1
2

denotes the interaction coefficient between i and i+1 and Bi can take
on different values for different i.

The battle of the sexes has two types of players. Looking at Table 4.1a, the row
player has a preference for the equilibrium where both players choose α and the
column player has a preference for the equilibrium where both players choose β.
When the battle of the sexes is played on a network interaction structure, three
types of interactions can occur. A player can interact with a player that has a
preference for the opposite equilibrium. This situation is the original battle of the
sexes game. However, in a multi-player situation on a network, two players with
a preference for α or two players with a preference for β can also interact with
each other. These situations are symmetric coordination games. Because all three
situations need to be accommodated for, we need to define three different transfer
matrices. We define the transfer matrix for interactions of opposite preferences

T =

(
T1,1 T1,−1

T−1,1 T−1,−1

)
(4.14)

and for interactions with equal preferences for one type,

T̃ =

(
T̃1,1 T̃1,−1

T̃−1,1 T̃−1,−1

)
(4.15)

and for the other type,

T̂ =

(
T̂1,1 T̂1,−1

T̂−1,1 T̂−1,−1

)
. (4.16)

So the partition function can now be written as product of the trace of the n-th
power of the different transfer matrices T, T̃ and T̂, so schematically,

Z = tr[TnT̃
ñ
T̂

n̂
], (4.17)
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where n refers to number of links with transfer matrix T, ñ refers to number of
links with transfer matrix T̃, n̂ refers to number of links with transfer matrix T̂
and the total number of links is n + ñ + n̂ = N . In Equation 4.17 we have not
explicitly denoted the order of variations of the transfer matrices, but only the
total number. However, each transfer matrix represents a link between nodes, so
the order of the transfer matrices is dependent on the ordering of the different
type of nodes in the network. The ordering is important because the transfer
matrices do not commute. In the next section we describe the different orderings
of nodes that correspond with different orderings of the transfer matrices. The
magnetizations of the network are again given by

Mi =
∂

∂Bi
lnZ, (4.18)

whereas the total magnetization per spin is given by

m =
1

N

∑
i

Mi (4.19)

4.3 Methods

We compare the results of the Ising model to the results of a previous compu-
tational study for four different situations described in Figure 4.1 (Broere et al.,
2019). Figure 4.1 illustrates four ring networks with four different distributions of
two groups. In the computational set-up the groups are defined as the row and
column players in Table 4.1a. Group 1 consists of the row players and is defined
by the green nodes in Figure 4.1. Group 1 has a preference for choosing α and
the strength of their preference is defined by S1. Group 2 consists of the column
players and is defined by the red nodes in Figure 4.1. Group 2 has a preference
for choosing β and the strength of their preference is defined by S2. In the Ising
model the grouping is the same, only the strength of their preference is dependent
on the corresponding value of the magnetic field. The groups can differ on the
values of S in the game theory context or B in the Ising context, but the values
are the same within the groups. Furthermore, for simplicity we use Ji+ 1

2
= J in

the Ising model.

In Figure 4.1, network 1 represents a completely integrated network where the
nodes only interact with nodes with a different preference. Network 2 represents
a completely segregated network that consists of two equal clusters of nodes. Net-
work 3 represents a partly segregated network. Network 4 represents a segregated
network with unequally sized groups.
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Figure 4.1: Networks where the colours indicate the preferences. The green nodes
prefer α equilibrium and the red nodes prefer the β equilibrium.

We compare the results from the Ising model, with results from computational
models. We focus on the computational model described in Broere et al. (2017).
In this study nodes play iterated 2×2 games with their neighbors. Each node gets
a preference assigned before the first round of the game (α or β) that determines
whether the node is a row or a column player as shown in Table 4.1a. Every round
the nodes choose between α or β and the decision of the node is played against all
its neighboring nodes. In the first round, the nodes play their preferred behavior
with probability one. After every round, the nodes update their probability of
playing α or β by means of reinforcement learning (Cimini and Sánchez, 2014;
Ezaki and Masuda, 2017). The probability of choosing either α or β is updated
towards what would have been the best choice in the previous round.

4.4 Results

In this section we compare the results from the Ising model to the results of the
computational model. We will discuss the results of the ring networks with four
different distributions of row and column players illustrated in Figure 4.1.

In Figure 4.2, the average magnetization is plotted for the different networks,
where the x-axis represents the values of B for the red nodes and y-axis the value
of B for the green nodes. On the z-axis the average magnetization per spin is
plotted represented by the color. Per network, the results are plotted for three
values of J = {0, 0.5, 1}. These values are chosen because here the most variation
occurs.

In the left plots of Figure 4.2, the results are plotted for the networks with J = 0.
Results for J = 0 are equal to the uncorrelated equilibrium which is the same
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(a) Network 1

(b) Network 2

(c) Network 3

(d) Network 4

Figure 4.2: Average magnetization m, where the x-axis represents the B value of red
nodes and the y-axis the B value green nodes. On the left the plotted values for J = 0,
in the middle the plotted values for J = 0.5 and on the right the plotted values for J = 1.

73



Chapter 4

for all the networks. On the upper-left to down-right diagonal the B-value of the
green nodes is exactly opposite to the B-value of the red nodes (i.e Bgreen = 0.5

and Bred = −0.5), the strength of the preferences and the distribution of the
preferences in the network are completely in balance for the first three networks.
The strength of the preferences cancel each other out, so there is m = 0 total
magnetization. The more Bgreen and Bred are getting out of balance, the more
the magnetization tilts in the direction of the group with a stronger preference.
Looking from bottom the left to the top right, this is resulting in a S-shaped dis-
tribution. For Network 4 in Figure 4.2 there is a majority preferring α. Therefore,
the diagonal line is not everywhere equal to m = 0 magnetization for Network 4
and the magnetization shifts towards the values corresponding with Bgreen.

In the middle plots of Figure 4.2a results are plotted for J = 0.5 and in the right
plots of Figure 4.2 results are plotted for J = 1. For all networks, the slope
of the distribution becomes more steep as J increases. However, the effect of
the interaction coefficient is different for the different networks. Comparing the
middle Figure 4.2a and the middle Figure 4.2b, the regions are different where the
B-values have opposite signs. In this region the slope of the distribution is less
steep for the middle plot Figure 4.2b compared to the middle plot of Figure 4.2a.
The same holds for the right plots of Figure 4.2a and Figure 4.2b. This indicates
that it is easier to coordinate on one choice in the integrated network compared to
the clustered network. For network 3, the effect of clustering is comparable to the
results of network 2. However, the effect of clustering is less prominent, because
this network is only partially clustered, as can be seen in Figure 4.2c. For network
4, the majority group has more influence on the direction of the magnetization
than the minority group.

In Figure 4.3, the results of Figure 4.2 are plotted again while the axis are scaled
in terms of S according to Equation 4.2 in order to make the plots comparable to
the simulation results. As this is now scaled to the computational model, on the z-
axis the probability of choosing α is plotted. So a probability of one indicates that
all nodes in the network choose α, a probability of zero means all nodes choose
β. The first three plots are the results from the Ising model with first results
for J = 0, second J = 0.5, and third J = 1 and the most right plot the results
of the simulation of the iterated game theory model. Again, results for J = 0

are equal to the uncorrelated mixed equilibrium solution for the whole network.
First thing to notice is that the results are much messier for the simulations, even
with higher resolution and more simulations the picture does not change much.
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(a) Network 1

(b) Network 2

(c) Network 3

(d) Network 4

Figure 4.3: Probability of choosing α, where the x-axis represents the values of Bred in
terms of S and y-axis the value of Bgreen in terms of S. So the x and y axis of Figure
4.2 are converted according to Equation 4.2. On the left the plotted values for J = 0, in
the second lot the values for J = 0.5, in the third plot the values for J = 1 and on the
right the simulation results

75



Chapter 4

Although the general pattern seems to be comparable to that of the Ising model,
on the diagonal line the pattern looks the same. Eyeballing the results of Network
1 and Network 3, the simulation results seem to be mostly in line with the Ising
model results where J = 1. This seems to indicate that there is a high correlation
in behavior in this network. Eyeballing the results of Network 2 and Network 4,
the simulation results seem to be most in line with the Ising model results where
J = 0. The results seem to indicate that in more integrated situations like network
1 and network 3, there is more conflict and the correlation can help to overcome
the conflicting interests. In the more segregated Network 2 and Network 4 there
is less frustration. The segregated groups of nodes can coordinate with each other
and therefore the correlation has less of an influence.

4.5 Conclusions and discussion

In this paper, we study an asymmetric coordination situation on a network with
two methods, an Ising-like model and a computational method. First, we looked
at how correlated behavior affected the predictions made by the different models.
In the Ising model the correlation in behavior can be modeled by an interaction
coefficient. The results are highly dependent on the chosen value of this interaction
coefficient. As a general result, the higher the interaction coefficient, the easier the
coordination, as reflected in higher magnetization in the Ising model. Comparing
the results from the Ising model to the computational method, the effect of the
correlation might be larger for situations where there is more frustration. The
correlation might helps to facilitate the coordination process in situations where
conflict is highest, such as completely integrated networks. In segregated where
most nodes only interact with nodes with the same preference, frustration is low-
est. When frustration is low the correlation has less influence on the equilibrium
because the segregated groups can already coordinate amongst themselves.

At the moment there is no clear version of the Ising model that accurately corre-
spond to the results of the computational model. The ferromagnetic interaction
does agree with the high correlation found in the integrated networks. However,
the segregated networks appear to correspond better to the results modeled with-
out a ferromagnetic iteration and as a pure strategy (uncorrelated) Nash equlib-
rium. Intuitively, the problem lies in the fact that the parameters, and particalary
the magnetic fields, are geared to represent the battle of the sexes but are clearly
suboptimal for the coordination games. Therefore, in order to reproduce the re-
sults from the computational method, the most accurate parameters of the current
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formulation of the Ising model are dependent on the network variation. However,
in terms of parsimony this dependency is not ideal. In future research it would
be interesting to find the microscopic parameters such that the Ising method can
mimic the behavior of the computational model independently of the network
structure. However it is currently unclear how to parametrize the model such
that the same set of parameters yield the same results independent of the net-
work structure. In the current formulation of the Ising model we only looked at
dyadic interactions. A possible solution can be to add higher order interactions
to the model. However, we leave it to future research to find such a right set of
microscopic parameters.

Taking a closer look at the results from the current study, the Ising-like model as
a function of all its parameters has a much richer set of equilibria compared to
the computational model. One source of this difference is the used update rule
in the computational model. The update rule acts as a stepwise optimization
algorithm in a multidimensional landscape with (meta)stable and unstable equi-
libria. Some equilibria obtained by the Ising model are unstable equilibria in the
computational method. Because these equilibria are unstable in using the update
function, unstable equilibria are not found unless the algorithm by chance starts
at this exact spot. The update rule in computational models makes dichotomous
decisions at fixed time points. At every time step the probability of choosing one
of the two options gets updated towards the best response of the previous round.
Because of this dichotomy, the update rule is less sensitive for the size of the payoff
difference, as it only evaluates whether or not one decision would yield a better
result or not. Even though the update rule adjusts the probability for one deci-
sion or the other based on the relative difference in the payoff, many equilibria
obtained by the Ising model are less likely found by the update rule. Because, the
Ising method yields an analytical expression, the Ising method does not have this
problem. This finding corresponds to the study by Hernández, Muñoz-Herrera
and Sánchez. As mentioned in the introduction they find a rich set of equilib-
ria where both homogeneous and heterogeneous equilibrium behavior is possible
when players have complete information. This set is reduced when players have
incomplete information (Hernandez et al., 2013). The update rule used in the com-
putational approach is comparable to the incomplete information case because it
only optimizes the payoff by evaluating local information.

Whether the current parametrization of the Ising model for asymmetric preferences
or the computational model give better predictions is very much dependent on
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the empirical situation one wants to capture. The computational model predicts
situations better where the actors have to make multiple decisions over time and
multiple games are played on links of the network. In these situations unstable
and metastable equilibria are not very likely and are rightfully excluded from
the prediction. In more symmetric situations where the same game is played on
every link of the network or when the correlations are externally introduced, the
Ising model makes better predictions. In the latter case, i.e., coordination with
externally introduced correlations, one may think of a traffic-light coordinating
agents in traffic (Correia and Stoof, 2019). It is therefore of utmost importance to
be aware of the models’ assumptions.

It should be noted that the ring structure we discuss here is an extreme example,
because the problems with the iterative method are highest in a ring network. In
more structured networks the problem of not ending up in the optimal equilibrium
is less of an issue, because most problem occur in completely balanced situations.
In less balanced networks, there are less unstable and metastable equilibria and the
equilibria are more determined by the structure of the network as earlier research
suggest. We can expect to encounter some of these problems in more structured
networks as well. However, the results from the current study suggest that the
results found in earlier studies would only become stronger if we manage to model
them analytically. Also, experimental results corroborate the prediction made by
the computational method when human subjects play these games iteratively on
structured networks (Broere et al., 2019).

For future work it will be interesting to obtain analytical results for more complex
networks by understanding better the correspondence between the various update
rules and (possible many-body) interaction parameters of the Ising-like models.
Complex networks might reveal a richer set of equilibria in these situations as
well. Furthermore, it would be interesting to test the predictions made by these
models in empirical situations where we expect different assumptions to be true.
This would give an interesting test of the validity of both these models.
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Chapter 5

The division of labor and generalized trust:
Organic solidarity revisited1

Abstract: Although Durkheim’s theory on organic solidarity is more than 100
years old, the theory has been surprisingly absent in empirical research. In this
paper we make a first attempt to study the main mechanisms of the theory empir-
ically. We argue that economic interdependencies and complementarity can serve
as a base for generalized trust. We construct variables by means of census data
that contains counts of people working in a certain occupation in every metropoli-
tan statistical area in the USA. The constructed variables aim to quantify patterns
in the division of labor, which we argue are caused by specialization and the re-
sulting interdependencies between the occupations. Furthermore, we use a novel
method from the field of economic complexity that aims to quantify how specialized
or ‘complex’ an occupation is. We test the hypotheses using the General Social
Survey data. We show that there are strong relations between both the ‘occupa-
tional diversity’ of the respondents occupation and the ‘occupational complexity’
of the respondents occupation, on self-reported general trust. The results further
strengthen our believe that division of labor is one of the key foundations of human
cooperation. We conclude that more empirical research on these mechanisms can
improve our understanding of human cooperation.

1This chapter is based on a paper written by Joris Broere, Alje van Dam and Marcus H. Kris-
tiansen. Broere wrote the manuscript, conducted the analyses and contributed substantially to
the idea development. Van Dam was consulted on the economic complexity measures, co-wrote
the methods section and provided data on the economic complexity measures. Kristiansen con-
tributed substantially to the idea development and contributed substantially to the manuscript.
We thank Vincent Buskens and Henk Stoof for their comments on the chapter. This chapter was
presented at the Conference on Complex Systems 2018, Thessaloniki, Greece.
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5.1 Introduction

In recent studies, both Portes and Vickstrom (2011), and Abascal and Baldassarri
(2015) call out the need for a better understanding of the mechanisms of organic
solidarity. The term ‘organic solidarity’ was first introduced by Emile Durkheim in
his book The division of labor in society (Durkheim, 1893). In this work, Durkheim
asks the question: how can a society become more individualistic without losing
social order? In the answer to the question, Durkheim distinguishes between two
types of solidarity: mechanical solidarity and organic solidarity. Mechanical soli-
darity is rooted in cohesive and small homogeneous groups or communities whose
repeated interactions bring about cooperative norms and values. Organic solidar-
ity on the other hand is founded in interdependencies and complementary between
people that emerge from a division of labor. Durkheim claims that the higher the
division of labor in a society, the more specialized and individualistic its members.
The specialization creates economic dependencies between people that can serve
as a basis for trust and solidarity. We argue that both the question and the answer
Durkeim poses are still relevant for sociological research today. Although mech-
anism that form mechanical solidarity are arguably abundantly studied (Evans
and Dion, 1991; Axelrod and Hamilton, 1981; Buskens and Raub, 2002), tests of
mechanisms that relate to ‘organic solidarity’ are absent from current empirical
literature (Portes and Vickstrom, 2011). In this study we make a first step towards
testing aspects of these mechanisms empirically.

The theory of organic solidarity has been absent from the current sociological
debate (Portes and Vickstrom, 2011). One explanation could be that organic
solidarity is a difficult concept to operationalize, as organic solidarity refers to an
evolutionary process, containing many mechanisms at the same time. In this paper
we make a first attempt to quantify some of the main mechanisms. We argue that
economic interdependencies, caused by specialization, can serve as a base for trust
and cooperation. Next, we use census data on the occurrence of 840 categorized
occupations in 400 Metropolitan Statistical Areas (MSA) in the US to quantify
patterns in the division of labor. We construct two variables that serve as a proxies
for economic dependency. First, we construct a variable that measures the average
economic diversity of areas in which an occupation occurs. Second, we introduce
a novel empirical method from the field of economic complexity that aims to
quantify the amount of specialization or ‘complexity’ of the different occupational
categories (Hidalgo and Hausmann, 2009). We show that ‘occupational diversity’
and ‘occupational complexity’ emerging from specialization and the division of
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labor are strong predictors of self-reported generalized trust. We conclude that
we found evidence in favor of mechanisms of organic solidarity and that these
mechanisms deserve to be studied in more detail.

5.1.1 The division of labor and organic solidarity

Both Portes and Vickstrom (2011), and Abascal and Baldassarri (2015) argue that
Durheims distinction between mechanical and organic solidarity is still relevant.
However, according to Portes and Vickstrom (2011) the term ‘organic solidarity’
has been “ largely forgotten in the current debate”. Therefore, we start with a small
overview of the key concepts as they where originally introduced before turning to
its current day relevance.

The division of labor has received attention from several thinkers of which Adam
Smith’s work is arguably the most well known. Adam Smith concludes in his book
The Wealth of the Nations that the division of labor is one of the main drivers of the
improvement in productivity of labor (Smith, 1776). The idea behind a division
of labor is well established. The production of a product can gain efficiency when
the process is separated in different tasks. Workers can specialize in a certain
task, making them more competent and efficient in the task at hand, compared
to workers who have to divide their time over multiple tasks. The specialization
leads to more efficiently produced products, and thus a net higher economic gain.
Recent studies focus on mechanisms that could be limiting factors of labor division,
such as the cost of managing (or coordinating) specialized workers, principal-agent
conflicts, free-riding behavior and communication problems (Becker and Murphy,
1992). However, the general proposition that the returns of time spent on tasks
are usually greater to workers who exploit a smaller range of skills is undisputed.

Emile Durkheim later noted that the division of labor was not only instrumental
for economic reasons, but also yielded positive effects on what he considered to
be ‘moral phenomena’ (Durkheim, 1893). In Durkheim’s treatment on the effects
of a division of labor he distinguished between two different forms of solidarity
he called mechanical and organic solidarity (Durkheim, 1893). Mechanical soli-
darity is founded upon homogeneous people whose similarity results in a shared
culture and norms that bring about positive outcomes such as trust, cooperation
and solidarity. This type of solidarity is mostly present in less developed societies.
Its counterpart organic solidarity is rooted in complex interdependencies, comple-
mentarity, and individualization that emerge from a division of labor. In societies
with a higher division of labor workers have skills that are complementary to each
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other. When jobs become more specialized in subtasks, specialization also creates
a higher dependency between people, as there will be a higher need for using each
other’s service. The interdependency that emerges from a division of labor can
function as a basis for social order and solidarity (Durkheim, 1893).

Durkheim has a Darwinian notion on why the development from less developed
(homogeneous) societies to more developed (heterogeneous) societies takes place.
He argues that specialization and a division of labor is a natural, evolutionary
process that happens everywhere in nature and is driven by the struggle to survive.
The more organisms look alike, the more they will be each other’s rivals. This is
because they have the same need and pursue the same goals. However, if organisms
differ more from one another, the needs and objectives will also differ, and these
will therefore be less of a hindrance to one another. This also applies to forms
of society. In primitive forms of society in which people often have the same way
of meeting their needs, the common goals can easily come into conflict. If two
people have to get their food in the same way, they can regard each other as
competition. However, if one of the two decides to collect his food in a different
way, there will no longer be any competition (Durkheim, 1893). In more advanced
societies with a greater of division of labor, there will be less conflict because
different goals are pursued. At the same time, division of labor and specialization
make people more dependent on each other, making conflict less rational and
requiring cooperation to provide for the full range of necessities of life (Durkheim,
1893). Durkheim compared the functioning of people in a developed society to the
functioning of organs in a human body. Every organ in the human body has its
own but interdependent task. When one organ stops functioning, the whole body
will die. Hence, he called this type of solidarity ‘organic solidarity’. (Durkheim,
1893).

Durkheim’s work can be placed in a broader literature on social order, starting
at Thomas Hobbes’s ‘state of nature’ (Hobbes, 1968). There was, and still is, a
popular debate on the question how civil society arose from a state of absolute
freedom, and how (forms of) political authority can be legitimate. A popular
answer to this question is in the form of the so called social contract theories.
Although there are many versions of the social contract theory, they all have one
thing in common: people have to give up freedom (or invest in a common good) for
the benefit of a commonwealth out of a well-understood self-interest (Christman,
2017). The general argument is to get out of the state of nature and arrive at an
orderly state in which life is better for everyone. The agreement among people is
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what is called ‘the social contract’. A difficult point within contract theories is the
transition from the state of nature to the orderly society. David Hume argues that
a social contract has no stable basis without stable social relations (Hume, 1739).
Without a basis of trust, a contract offers no guarantee whatsoever. A social
contract therefore presupposes a form of order on which to base the contract. In
The Division of Labor in Society Durkheim responded to David Hume, claiming
that social order can exist without a social contract. Social order can arise from a
division of labor. The emergent social order is however instable and needs to be
maintained by a social contract.

Although a the term ‘social contract’ might sound a bit abstract, in practice the
word can be replaced by ‘institutions’, including laws and social rules. A complex
division of labor cannot function without well functioning regulating institutions.
Historically there is a constant interplay between a changing division of labor and
the need for new institutions, and visa versa, how institutions help shape the
evolution of a division of labor (North, 1991). Economic growth can for a large
part be contributed to the development of institutions that allow an economy to
realize gains from specialization and division of labor (North, 1991). The role
of institutions in the functioning of societies is of course still very relevant today
(Fehr and Gachter, 2000; Kosfeld et al., 2009; Gürerk et al., 2006; IOS, 2019).
There is for instance an ongoing debate on how different institutions influence
social mechanisms, such as cooperation, trust and solidarity.

Both Portes and Vickstrom (2011), and Abascal and Baldassarri (2015) reintro-
duce the term ‘organic solidarity’ to counter what they call Robert Putnam’s
communitarian conception of social capital. The communitarian conception of
social capital often regards social capital to be a property of a group of people,
such as a community. The micro mechanisms defining the theories often rely on
repeated interactions of cohesive groups that facilitate a shared culture and norms
of trust and reciprocity. However, as Putnam concludes himself, communitarian
social capital is declining, and modern societal structures are less and less con-
structed by close cohesive groups (Putnam, 2000). Instead societies are becoming
increasingly more complex and groups larger and more abstract. Communitarian
explanations can certainly be regarded as one of the mechanisms for the creation of
positive collective outcomes such as trust, but probably not the only mechanism.
Portes and Vickstrom (2011) argue that given the complexity of modern societies,
we should find explanations that go beyond the communitarian conceptualization
of social capital that rely on mechanisms rooted in similarity and homogeneity.
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And Abascal and Baldassarri (2015) write: “We should instead set our sights on
understanding the building blocks of organic solidarity, the social glue in societies
characterized by complex interdependencies, complementarity, and individualiza-
tion.”

Portes and Vickstrom (2011) write that organic solidarity is dependent on three
conditions:

1. (Economic) diversity among members of a society.

2. Strong coordinating institutions.

3. A complex division of labor (specialization).

The first two conditions can be regarded are preconditions for the third. A com-
plex division of labor requires a wide set of specialized labor. Strong institutions
are needed to regulate a division of labor (North, 1991). There are few examples
that influence social interactions of the daily life of people more than these three
points. Social interactions are shaped by a division of labor and regulating insti-
tutions. However, because these aspects are so intertwined it is difficult to study
which of these aspects cause which aspect of social interactions to change. For
instance, in testing Durkheims theory, is it the economic dependency emerging
from a division of labour, or the associated coordinating institutions that bring
about positive effects, such as solidarity cooperation and trust? There are many
studies researching the effect of institutions on cooperation and trust (Rothstein
and Stolle, 2008; Tan and Tambyah, 2011; Gürerk et al., 2006; Lo Iacono, 2019).
In this study we focus on the other two conditions as stated by Portes and Vick-
strom (2011). First, we study the effect of ‘occupational diversity’ on generalized
trust. Second, we study the effect of ‘occupational complexity’ (or specialization)
of an occupation on generalized trust.

5.1.2 Operationalization of organic solidarity

Mechanisms of organic solidarity are understudied in empirical sociological liter-
ature. One explanation could be that organic solidarity is a difficult concept to
operationalize. An economic dependency between complementary skilled workers
is highly abstract and difficult to measure. This problem is already present in
Durkheim’s work. Durkheim could not quantify the different forms of social soli-
darity, therefore he studied solidarity by different types of law that he considered
to correspond to the different types of solidarity (Durkheim, 1893). Durkheim
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categorizes criminal law as promoting mechanical solidarity. The corresponding
penal law and repressive sanctions are there to maintain a sense of unity and to
correct deviations from the communal life and their corresponding values. Civil
law characterized by cooperative law and restitutory sanctions is promoting or-
ganic solidarity. This type of law is meant to compensate or balance a wrong
doing for those who have been harmed. Therefore, restitutory sanctions are there
to protect individual rights. According to Durkheim, the balance between resti-
tutory or penal law is an indication of the type of solidarity (Durkheim, 1893).
Although the remark has to be made that Durkheim’s analysis of these types of
law is widely regarded as incorrect by later authors (Baxi, 1974; Merton, 1934;
Sheleff, 1975).

In other academic contexts economic dependency is easier quantifiable. There is
for instance a wide range of literature on the role of economic interdependencies in
international conflict in the field of political science (Gartzke et al., 2001; Wallace,
2013; Copeland, 1996; Krasner, 1976). Trade data between two countries is a
perfectly reasonable proxy for economic dependency between countries. There is
some well established empirical evidence that countries with a mutual economic
dependence participate less often in international conflict with each other, both
military and by political means such as sanctioning, compared to countries who
don’t have a high or only a one directional economic dependence (Gartzke et al.,
2001; Wallace, 2013; Copeland, 1996; Krasner, 1976; Walentek et al., 2020; Dekker
et al., 2020). These mechanisms are more or less comparable with the mechanism
Durkheim describes as organic solidarity. When there is an economic dependency
between two actors, the cost of conflict is higher. When the economic dependency
goes both ways, this can act as a mutual insurance of the relation.

Although economic interdependency of occupations might be difficult to measure,
recently new methods have been developed that aim to quantify patterns of the
division of labor between countries economies (Hidalgo and Hausmann, 2009; Tac-
chella et al., 2012). The method introduced by Hidalgoand Hausmann (2009) tries
to measure what is called ‘the complexity of a countries economy’ and the ‘sophis-
tication’ or ‘complexity’ of the products these countries they export. The central
idea is that the complexity of an economy can be measured by the capabilities
that are required to produce complex products. Some products require more ca-
pabilities or sophistication than other products. However, the capabilities of an
economy cannot be measured directly, but the products an economy produces can
be measured. The method makes use of the idea that some products are related.
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For instance, in order to produce a personal computer, the producer must already
have the capability to produce a television. The screen of a personal computer
is related to a television screen. Economies that do not possess the capabilities
to produce a television are unlikely to produce a personal computer, because a
computer is related to a television, but the personal computer is more complex to
produce. This reasoning is used to infer the capabilities of economies and com-
plexity of products by analyzing which countries produce which products (Hidalgo
and Hausmann, 2009; Tacchella et al., 2012).

In the current study we will apply the same reasoning to determine the complexity
of occupations. The assumption made here is that complex occupations need other
complex occupations to do their specialized work. So complex occupations can only
occur in areas where other complex occupations occur. By means of census data of
which occupations occur in which area we infer the complexity of occupations and
study its effect on generalized trust. The details of the method will be described
in the data and methods section of this study.

5.2 Theory

Durkheim’s main proposition is that when societies become more specialized, more
‘organic’ solidarity will emerge because people will become more dependent on each
other. So the main independent variable is a division of labor (macro) or individual
specialization (micro), while the consequence of a division of labor/specialization
is solidarity. There are many different mechanisms one can think of that drive
Durkheim’s hypothesis and the term ‘solidarity’ can be interpreted in different
ways. We will focus on what we argue is the main mechanism driving this theory:
the economic interdependencies that ensure mutual relations between people.

Economic interdependencies ensure the mutual relations between people for the
simple reason that defecting is mutually costly (Cournot, 1897). Economic inter-
dependencies can be understood as the behavior needed from multiple individuals
in order to achieve a prespecified (economic) objective. The objective cannot be
completed as intended if one or more individuals would defect from this behav-
ior. Defection by one or more persons in this process will therefore be costly for
everybody involved in the process. The economic costs associated with defect-
ing on a relation someone is economically dependent on will serve as a buffer or
threshold for defection. The cost of defection will serve as a basis for mutual trust
and cooperative behavior, as the threshold for defection will be higher compared
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to relations without economic dependency. On the individual level one can hy-
pothesize that a mutual economic dependence between two individuals can enforce
trust between them. For instance, a wheat farmer is dependent on the baker for
turning his product into something valuable and the baker is dependent on the
wheat farmer to deliver the wheat to make bread. Defecting or non-cooperative
behavior between the wheat farmer and baker can be mutually costly because they
are economically dependent on each other. In this two person case, cooperative
behavior can still be explained in a relatively easy manner. For instance, coopera-
tion is a Pareto optimal equilibrium in a repeated interactions prisoner’s dilemma
(Axelrod and Hamilton, 1981). However, this is not limited to a two person case.
The more complex a situation becomes, the more interdependencies there are at
play (Nowak, 2006; Axelrod and Dion, 1988).

As the division of labor increases, also the number of dependency relations will
increase. On a small scale, lets say a community, these relations are still tractable
and manageable. However, as group size increases and societies become more
complex, the dependency relations become increasingly more abstract and less
manageable. A good functioning of oneself becomes dependent on the functioning
of your surrounding and visa versa. As the surrounding becomes more complex
and abstract, and oneself more specialized, it becomes in one’s own self-interest to
behave more cooperatively in general.

Another way of thinking about this is from a network perspective. As occupa-
tions are usually dependent on (or complementary to) multiple other occupations
for their economic performance, and the other occupations are in their turn also
dependent on other occupations as well, occupations can be nodes in an dependen-
cy/complementarity network. The dependency/complementarity network ensure
on a higher level mutual relations and therefore a higher level of general trust. So
the following hypothesis can be deduced:

Hypothesis 1: People working in occupations that are more dependent on other
occupations for their economic prosperity, will also show higher levels of trust and
cooperative behavior.

The problem is however: how to quantify this dependency? Although we cannot
measure dependency directly, we can measure several proxies for how specialized
and dependent one type of occupation is on others. As stated above, Portes
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and Vickstrom (2011) divide organic solidarity into three mechanisms. In this
study we focus on two of the three mechanisms namely, economic diversity and
specialization.

If we assume that occupations that are dependent on other occupations for their
economic performance also need to be close to each other in physical space (Bet-
tencourt et al., 2014), the follow statement can be deduced: The more dependent
an occupation is on other occupations for their economic performance, the higher
the diversity (number of different occupations) of the areas this occupation occurs
in. In other words, the more occupations are dependent on other occupations, the
more they will cluster in heterogeneous areas in physical space. So people with
occupations that only occur in highly heterogeneous areas will have higher forms
of economic dependency and therefore score higher on general trust. Therefore,
we test the following hypothesis:

Hypothesis 1a: People working in occupations that on average occur in areas
with more occupational diversity will show higher levels of general trust.

This hypothesis is in line with Durheim’s theory that societies that are more
heterogeneous should show more organic solidarity.

Furthermore, highly specialized occupations need a diverse set of other occupa-
tions for their economic performance, they can only occur in areas with other
occupations that are highly specialized themselves. This creates a nested struc-
ture where specialized occupations only occur in areas with other occupations. Or
as Hildalgo and Hausmann (2009) state it: ‘An occupation is as complex as the
places it occurs in’. We refer to these types of occupations as being ‘economically
complex’, as they need specialized skills and are dependent on other occupations
that require a specialized skill set as well. We therefore formulate the following
hypothesis:

Hypothesis 1b: People working in occupations with higher occupational com-
plexity, will show higher levels of general trust.

Note that ‘occupational diversity’ and ‘occupational complexity’ are related con-
cepts. In order to be specialized, an occupation needs a diverse set of other oc-
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cupations. However, specialized occupations tend to only occur in diverse areas,
where less specialized occupation can occur in diverse areas as well as less diverse
areas. So occupations with high diversity occur on average in diverse areas, while
occupations with high complexity occur only in diverse areas.

5.3 Data and methods

5.3.1 Data

We use data that is freely available from the Bureau of Labor Statistics (BLS)
in the United States to construct the independent variables to test hypotheses
1a and 1b (BLS, 2019). The data contains counts of people working in a cer-
tain occupation as classified by the Standard Occupations Classification (SOC) in
every Metropolitan Statistical Area (MSA) in the USA. The data contains 840

occupations on the six digit level and 400 MSA’s. Note that the data only takes
metropolitan areas into account. MSA’s are considered a standard working def-
inition of cities defined by the US Census Bureau, and considered to represent
integrated labor markets. The hypothesis will be tested on the General Social
Survey (GSS) data. The obtained independent variables from the BLS data are
matched to the GSS data by using the occupational codes in both data as an
identifier.

5.3.2 Occupational diversity

In order to test hypothesis 1a we need to measure the occupational diversity of
areas where occupations occur. The diversity can be measured by taking the num-
ber of other occupations in an area, where each occupation is weighted relatively
to the occurrence in other areas. Next, these occupations are weighted by the
relative share of the occupation for which the diversity measure is calculated in
that area.

We measure diversity of occupations within a city as the ‘effective number of
occupations’ (Jost, 2006). This measure can be seen as the number of occupations
present in a city, corrected for how unequal their distribution is. It is given by the
exponential of the Shannon entropy of the distribution of occupations within an
MSA. The occupational diversity of a city is thus given by

D(c) = e−
∑

o po|c log(po|c), (5.1)
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where po|c = qc,o/
∑

o qc,o is the share of people with occupation o in city c. The
average occupational diversity of the cities where a person with occupation o lives
is then given by a weighted average

D̄o =
∑
c

qc,o∑
c qc,o

D(c),

where the diversity of a city c is weighted by the relative share of that city in
occupation o.

5.3.3 Occupational complexity

In order to test hypothesis 1b we need to measure the how specialized an occu-
pation is. However, specialization cannot be measured directly. The level of spe-
cialization of different occupations will be operationalized using methods from the
literature of economic complexity (Hidalgo and Hausmann, 2009). This method
assumes that specialized occupations can only occur in areas with other specialized
occupations necessary to the occupation in the economic process. For instance, if
there a certain amount of lawyers in an area you can expect that there are also
judges in that area, the amount of which is relative to the share of lawyers. The
other way around, occupations that are less specialized are less bound by their
geographical location because they dependent less on other occupations. There-
fore, less specialized occupations are more uniformly divided over different areas,
while specialized occupations occur in specific places. For instance, a retailer could
be considered less specialized, therefore less dependent on other occupations and
therefore less bound by geographical location to do business. In what follows we
refer to the variable ‘occupational complexity’ as the empirical operationalization
of the level of specialization of an occupation.

The occurrence of an occupation in an area can be represented by means of a bi-
partite network graph. A bipartite graph contains two types of nodes where where
the nodes of one type can only connect to the other type. We construct a bipartite
city-occupation network where one type of node represents the occupations and
the other type of node represent the MSAs.

The algorithm designed by Hidalgo and Hausmann 2009 aims to summarize the
bipartite graph. The algorithm was originally proposed to measure the economic
complexity of countries’ economies and the level of sophistication for products from
world trade data Hidalgo and Hausmann (2009), and later refined by Tacchella et
al. (2012). Here we apply the first version to a bipartite city-occupations network
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to extract measures that, to our belief, capture the level of division of labor for
cities and occupations. Results for the second version can be found in Table A9
in the appendix of this dissertation.

We define an occurrence of an occupation in a city if the occupation has revealed
comparative advantage (RCA) in a certain city. The RCA measures whether
a cities’ share in a given occupation is higher than the national share of that
occupation. Denoting the number of people with occupation o in city c as qc,o, we
have

RCAc,o =
qc,o/

∑
o qc,o∑

c qc,o/
∑

c,o qc,o
.

A RCA> 1 tells us that a city specializes in a certain occupation.

Now we can define the city-occupation matrix Mco as

Mco = 1 if RCAc,o > 1

Mco = 0 if RCAc,o ≤ 1.

From this matrix, shown in Figure A16 of the appendix of this dissertation, we
can see an interesting feature: the most diverse cities (i.e. cities that specialize
in many occupations) specialize in the occupations that are most rare. In other
words, rare occupations only occur in the most diverse cities. On the other hand,
cities with low diversity tend to specialize only in occupations that occur in most
cities.

In order to construct the variable ‘occupational complexity’ we describe the bipar-
tite city-occupation network with the iterative algorithm described in Hidalgo and
Hausmann 2009. The algorithm is defined in Equations 5.2 and 5.3. We define
the ‘diversification of a city’ D̂c as the sum of all occupations present in that city,
weighed by their level of specialization. Hence D̂c is a measure of the ’division of
labor’ in a city. The level of specialization So of an occupation in turn is defined
in terms of the diversification of the cities it occurs in. Following Bettencourtet
al. (2014), we pose that a specialized occupation can only occur in a city with
many other occupations, as it can then externalize some of its functions to other
occupations while still being able to access these functions. This means that a low
diversification of a city is a restriction on the presence of a specialized occupation.
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D̂c,i =
1

D̂c,0

∑
o

McoSo,i−1, (5.2)

So,i =
1

So,0

∑
c

McoD̂c,i−1. (5.3)

Due to the nested structure of the city-occupation network, observing an occupa-
tion in a city with high diversification (and thus many different occupations) does
not give us much information about its level of specialization. On the other hand,
observing an occupation occurring in a city with low diversification D̂c means it
is unlikely to be highly specialized. Hence the level of specialization So is given
by the reciprocal of the sum of cities it occurs in, weighted by how not specialized
these cities are. In other words, the ’generalism’ of an occupation increases by its
occurrence in cities with low diversification D̂c, and the specialization So is defined
as the inverse of this. This results in a heavily discounted level of specialization
for occupation that occur in low fitness cities, and a high level of specialization for
occupation that only occur in cities with high fitness.

Note that ‘diversification of a city’ D̂c in Equation 5.2 is almost the same measure
as the function D(c) in Equation 5.1. However, Equation 5.2 is a very precise
measure of ‘occupational diversity’ because it does not rely on a binary matrix.
Instead, the measure uses the exact counts of occupations in a city. Because
both the measures of occupational diversity and occupational complexity rely on
the ‘diversification of a city’, the variables are highly correlated. The Pearson
correlation between ‘occupational diversity’ and ‘occupational complexity’ is r =

0.64. Because of their conceptual and empirical similarity we will use different
regression models in the analyses section of this study. Adding both measures to
the same regression model will cause difficult to interpret results.

Summarizing, we define an algorithm that gives a value of division of labor D̂c and
specialization So for every city and occupation respectively, under the assumption
that specialization of occupations requires division of labor, and division of labor
of a city is measured by the level of specialization of present occupations (Hidalgo
and Hausmann, 2009). This circular reasoning is expressed in Equations 5.2 and
5.3. Equations 5.2 and 5.3 are implemented by the EconGeo package in R, which
we used for calculation the occupational complexity (Balland, 2017).
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5.3.4 Analysis strategy

The hypotheses will be tested on the GSS for the year 2016 (Smith et al., 2018).
We use the variable called ‘generalized trust’ as a dependent variable. The question
in the GSS is stated:

• Generally speaking, would you say that most people can be trusted or that
you can’t be too careful in dealing with people?

The answer categories are:

• Can trust

• Cannot trust

• It depends.

Consistent with previous studies, generalized trust is converted into a binary vari-
able, where the variable is ‘1’ if the respondent answered “can trust” and ‘0’ if
the respondent answered “cannot trust” or “it depends” (Glaeser et al., 2000). We
think this question is well suited to measure trust emerging from ‘organic sol-
idarity’ mechanisms. Whereas mechanical solidarity should be correlated with
in-group trust, while organic solidarity should be correlated with general trust.

We use logistic regression to assess the relation between ‘generalized trust’ as a
dependent variable and ‘occupational diversity’ and ‘occupational complexity’ as
independent variables. Furthermore, several confounding variables are added to
the analyses that we consider to be theoretical confounding variables (Spector and
Brannick, 2011; Becker, 2005). All confounding variables are recoded as stated in
Glaeser et al. (2000). We add the variables ‘education’, ‘age’ and ‘sex’ as these are
confounding variables for job characteristics of the respondent. We add the income
of the respondent because the respondent might show higher levels of generalized
trust because of a higher economic status. And we add the size of the respondent’s
residence to the analyses, as city size might be related to generalized trust as well
as ‘occupational diversity’ and ‘occupational complexity’. Furthermore, we will
use random forest imputation to impute missings on all variables (Stekhoven and
Bühlmann, 2011).
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Table 5.1: Logistic regression with dependent variable generalized trust, N=2867.

(1) (2) (3) (4)

Occupational diversity 0.054∗∗∗ (0.006) 0.030∗∗∗ (0.006)
Occupational complexity 0.037∗∗∗ (0.004) 0.018∗∗∗ (0.004)
Age 0.033∗∗∗ (0.003) 0.035∗∗∗ (0.003)
College educated 1.463∗∗∗ (0.100) 1.520∗∗∗ (0.101)
School dropout −1.349∗∗∗ (0.188) −1.373∗∗∗ (0.190)
Income 0.120∗∗∗ (0.026) 0.102∗∗∗ (0.025)
Male 0.545∗∗∗ (0.091) 0.604∗∗∗ (0.092)
Town −0.399 (0.216) −0.247 (0.217)
Small city −1.069∗∗∗ (0.244) −0.992∗∗∗ (0.245)
Big city −0.808∗∗∗ (0.246) −0.719∗∗ (0.247)
Constant −11.418∗∗∗ (1.139) −1.631∗∗∗ (0.119) −9.693∗∗∗ (1.318) −4.263∗∗∗ (0.410)

Log Likelihood −1,835.838 −1,828.749 −1,503.230 −1,483.348
Akaike Inf. Crit. 3,675.676 3,661.498 3,026.460 2,986.696

Note: ∗p <0.5; ∗∗p <0.01; ∗∗∗p <0.001

5.4 Results

In Table 5.1 the logistic regression results are shown with dependent variable
self-reported general trust. In the first two models, the bi-variate relations be-
tween occupational diversity and occupational complexity are shown. In mod-
els 3 and 4 confounding variables are added to the models. In the first model
there is a statistical significant effect of occupational diversity on general trust,
b = 0.054, z = 9.569, p < 0.001. This indicates that respondents who have an
occupation that on average occurs in more diverse places are more likely to answer
the trust question positive. The odds for answering the trust question positive
is 43 times higher for the person with the highest score on occupational diversity
compared to the person with the lowest score in the data. In model 3, several
confounding variables are added. Also here there is a statistical significant effect
of occupational diversity on trust, b = 0.030, z = 4.786, p < 0.001. After adding
confounding variables the odds for answering the trust question positive is 8 times
higher for the person with the highest score on occupational diversity compared to
the person with the lowest score in the data. We therefore have evidence in favor
of hypothesis 1a.

In model 2, there is a statistically significant effect of occupational complexity on
general trust, b = 0.037, z = 9.519, p < 0.001. This indicates that respondents
that have an occupation that scores higher on occupational complexity are more
likely to answer the trust question positive. The odds for answering the trust
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question positive is 37 times higher for the person with the highest possible score
on occupational complexity compared to the person with the lowest possible score.
In model 4 several confounding variables are added. Also here there is a statistical
significant effect of occupational complexity on trust, b = 0.019, z = 4.365, p <

0.001. After adding the confounding variables the odds for answering the trust
question positive is 6 times higher for the person with the highest possible score
on occupational complexity compared to the person with the lowest possible score.
We therefore have evidence in favor of hypothesis 1b.

Furthermore we find positive effects of age, education, income, and being male.
All these effects are in line with previous literature.

The analyses are robust for the alternative formulation of the occupational com-
plexity measure by Tacchella et al., (2012), and other choices for the RCA value.
These results can be found in Table A9 and Table A10 of the appendix.

5.5 Conclusion and discussion

Portes and Vickstrom (2011) put forward three conditions that together form
organic solidarity. In this study we presented a first empirical test of two of those
conditions. The effect of institutions on different operationalizations of social
order, such as generalized trust and cooperation, have been extensively studied.
We studied the effect of two other aspects of organic solidarity on generalized
trust. We found a large effect of the occupational diversity of a respondent on self-
reported generalized trust. This indicates that respondents who have occupations
that occur in areas where there are on average many other occupations as well,
the respondent is more likely to trust. Second, we found a large effect of the
occupational complexity of an occupation on self-reported generalized trust. These
findings corroborate the hypotheses put forward by Portes and Vickstrom (2011).

We believe that a division of labor can serve as a key foundation of human co-
operation. Everyday life exhibits a wide spread of trust and cooperation that ex-
ceeds explanations of homogeneity, repeated interactions and community groups.
Economic differentiation and organic integration coordinates daily life, and is con-
trolled by an institutional context. They can provide explanations of trust and
cooperation in modern societies in which many interactions are incidental and not
with recurring partners.

The chosen operationalizations of diversity, complexity, and trust are still very
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abstract. Both dependent and independent variables lack empirical clarity and
theoretical rigor. The dependent variable ‘generalized trust’ cannot be explained
with ‘communitarian’ theories. Communitarian theories are inherently about re-
peated interactions and mechanisms within the community, while general trust
refers to interactions with people you do not know. So, generalized trust inher-
ently exceeds communitarian theories. However, if we choose to take the theory of
organic solidarity seriously, we need new micro models that explain how economic
embeddedness leads to generalized trust. An important part is to rethink how
generalized trust is different from other types of trust that are related to commu-
nitarian or in-group trust mechanisms. The operationalization of generalized trust
in the general social survey is a one-dimensional, superficial representation of trust-
ing behavior in every moment in the daily life of people. As Portes and Vickstrom
(2011) already point out, when an individual in any modern metropolis gets into
a crowded metro, that individual is exercising an tremendous amount of trusting
behavior without any previous interaction or communication. Yet, all these types
of interactions do not lead to problems in the vast majority of times. In order
to explain this, we need a multidimensional scale of generalized trust, or organic
trust. We need to theorize about how this type of trust differs from communitarian
or in-group based types of trust. Next, we need to formulate hypotheses on when
to expect communitarian trust mechanisms to happen and when to expect organic
trust mechanism to happen and test these hypotheses empirically.

Furthermore, on the side of the independent variables, this study is by no means
a causal test of the theory of organic solidarity. The chosen operationalizations
are operationalizations on the occupational or meso level. How exactly special-
ization of individuals can lead to higher general trust is unclear. It is difficult to
entangle what causes which effect, as institutions cause social relations to change,
but changing social relations also cause institutions to change. Furthermore, the
‘occupational complexity’ measure is far from a perfect proxy for specialization or
economic interdependence. It is hard to pinpoint what it exactly measures, al-
though there is some concept validity because it correlates highly with education,
income and the dependent variable. However, the measure ‘occupational diver-
sity’ makes use of population counts from census data. Occupational diversity is
therefore a near perfect measure of what we want it to measure. However, it is
unclear how ‘occupational diversity’ can cause more general trust directly. There-
fore, organic solidarity still is subject to underdetermination, both empirically and
theoretically.
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Future research needs to focus on getting better measures and theoretical clarity
of both dependent and independent variables. However, we do believe that the
current results indicate that organic solidarity is worth the reconsideration and
should be studied in more detail empirically.
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Table A1: Regression results, standardized, dependent variable Power, with determin-
istic myopic best response

ER SW p = 0.25 SW p = 0.20 SW p = 0.15 SW p = 0.1 SW p = 0.05 PA

Even 0.139 0.138 0.140 0.143 0.137 0.141 0.138
DegC 0.268 0.251 0.187 0.160 0.162 0.329
EVC 0.114
BetC 0.428
ClosC −10.997
Constant 0.829 0.605 0.611 0.612 0.609 0.592 0.586

N 20,000 4,000 4,000 4,000 4,000 4,000 20,000
R2 0.608 0.666 0.658 0.668 0.638 0.620 0.642

*Even = variable indicating an even degree, EVC= Eigenvector centrality, BetC= Betweenness centrality,
DegC = Degree centrality, ClosC= Closeness centrality. *Interaction in uncentered variables.
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Supplementary methods, Centrality measures

Degree centrality is the number of edges a node has. For a given graph G := (V,E)

comprising a set V of nodes together with a set E of edges, let A be the adjacency
matrix, i.e. (Aij) = 1 if node i is linked to node j, and (Aij) = 0 otherwise. Then
the degree centrality is defined as:

ki =
∑
j

Aij . (4)

Eigenvector centrality is the centrality score of a node weighted for the centrality
scores of the neighboring nodes. The relative centrality score of a node can be
defined as:

xi =
1

λ

∑
j∈G

Aijxj , (5)

where λ is a constant. With a rearrangement this can be written in vector notation
as the eigenvector equation:

Ax = λx, (6)

where the eigenvector centrality scores correspond to the largest eigenvector of the
graph adjacency matrix.

Betweenness centrality of node i measures the fraction of shortest paths that pass
through a node in the network defined as:

CB(i) =
1

(N − 1)(N − 2)

∑
s �=i �=r

σs,r(i)

σs,r
, (7)

where σs,r is the shortest paths between source node s and target node r, σs,r(i) is
the number of shortest paths between source node s and target node r that pass
through i, and N is the number of nodes in the network.

Closeness centrality measures the average shortest distance from one node to an-
other in a network, defined as:

CC(i) =
1

(N − 1)

1∑
r d(r, i)

, (8)

where d(r, i) is the distance between nodes i and r.
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Both degree centrality and betweenness centrality will be normalized over the
different networks to make between-network comparison possible. Normalization
is defined by:

normal(C(i)) =
C(i)− min(C)

max(C)− min(C)
, (9)

where max(C) is the maximum centrality value over all nodes in all networks in
the simulation and min(C) is the minimum centrality value over all nodes in all
networks in the simulation.
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Figure A1: Variance of the proportion of times a node converges to the preferred
equilibrium state, played on a network when the same initial distribution is played
100 times on the same network. A proportion of 1 indicates the node always
converges to the preferred equilibrium state, 0 indicates the node never converges
to the preferred equilibrium state.
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Figure A2: Left the network and right the estimate of node Power after playing
different starting conditions on the same network. The lines indicate the propor-
tion of times that the node ends in the preferred equilibrium.
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Figure A3: Average heterogeneity over 200 replications (except for N = 640: 50 repli-
cations; N = 1280: 10 replications*), network density = 0.1 The larger networks are
computationally very intensive, therefore we used less replications for the network sizes
N=640, N=1280. In addition, less replications are necessary because there is less varia-
tion between networks if network size is larger.

Avarage heterogeneity

Network size

He
te

ro
ge

ne
ity

N40 N80 N160 N320 N640 N1280

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

ER
SW p=0.25
SW p=0.2
SW p=0.15
SW p=0.1
sw p=0.05
PA

108



Appendices

Figure A4: Average heterogeneity over 200 replications (except for N = 640: 50 repli-
cations; N = 1280: 10 replications*), network density = 0.2. The larger networks are
computationally very intensive, therefore we used less replications for the network sizes
N=640, N=1280. In addition, less replications are necessary because there is less varia-
tion between networks if network size is larger.
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Figure A5: Average heterogeneity over 200 replications (except for N = 640: 50 repli-
cations; N = 1280: 10 replications*), network density = 0.3. The larger networks are
computationally very intensive, therefore we used less replications for the network sizes
N=640, N=1280. In addition, less replications are necessary because there is less varia-
tion between networks if network size is larger.
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Table A2: Regression results, standardized, dependent variable Power, N=40.

ER SW p = 0.25 SW p = 0.20 SW p = 0.15 SW p = 0.1 SW p = 0.05 PA

Even 0.053 0.061 0.071 0.078 0.091 0.023
DegC −0.006 0.210 0.215 0.190 0.116 0.065 0.316
EVC 0.153
BetC 0.117
Constant 0.424 0.409 0.421 0.466 0.517 0.554 0.452

N 20,000 4,000 4,000 4,000 4,000 4,000 20,000
R2 0.361 0.391 0.370 0.354 0.367 0.417 0.532

*Even = variable indicating an even degree, EVC= Eigenvector centrality, BetC= Betweenness centrality, DegC = Degree centrality,
ClosC= Closeness centrality. *Interaction in uncentered variables.

Table A3: Regression results, standardized, dependent variable Power, N=80.

ER SW p = 0.25 SW p = 0.20 SW p = 0.15 SW p = 0.1 SW p = 0.05 PA

Even 0.053 0.010 0.014 0.053 0.091
DegC 0.070 0.225 0.161 0.156 0.106 0.060 0.205
EVC 0.042
BetC 0.064
BetC:EVC 0.033
Constant 0.420 0.423 0.444 0.463 0.507 0.548 0.465

N 20,000 4,000 4,000 4,000 4,000 4,000 20,000
R2 0.272 0.211 0.182 0.161 0.158 0.152 0.401

*Even = variable indicating an even degree, EVC= Eigenvector centrality, BetC= Betweenness centrality, DegC = Degree centrality,
ClosC= Closeness centrality. *Interaction in uncentered variables.
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Figure A6: Proportion of α played in a network after convergence for S=0.7. (a)
for random ER-Networks, (b) for small-world Networks with rewiring probability
0.25, (c) for small-world Networks with rewiring probability 0.2, (d) for small-
world Networks with rewiring probability 0.15, (e) for small-world Networks with
rewiring probability 0.1, (f) for small-world Networks with rewiring probability
0.05, (g) for PA-networks, (h) within clusters of all types of networks.
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Figure A7: Proportion of α played in a network after convergence for S=0.5. (a)
for random ER-Networks, (b) for small-world Networks with rewiring probability
0.25, (c) for small-world Networks with rewiring probability 0.2, (d) for small-
world Networks with rewiring probability 0.15, (e) for small-world Networks with
rewiring probability 0.1, (f) for small-world Networks with rewiring probability
0.05, (g) for PA-networks, (h) within clusters of all types of networks.
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Small World, p=0.1, S=0.5
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Table A4: Regression results, standardized, dependent variable Power, with S=0.5

ER SW p = 0.25 SW p = 0.20 SW p = 0.15 SW p = 0.1 SW p = 0.05 PA

Even −0.041 −0.087 −0.096 −0.102 −0.106 −0.102 −0.082
DegC 1.179 0.225 −0.012 0.020 0.105 0.240
ClosC 0.324
BetC 0.211 0.246 0.270 0.202 0.141
EVC −0.132
DegC:ClosC −1.401
DegC:EVC 0.034
Constant 0.603 0.810 0.816 0.820 0.813 0.789 0.835

N 20,000 4,000 4,000 4,000 4,000 4,000 20,000
R2 0.407 0.371 0.412 0.475 0.483 0.428 0.535

*EVC= Eigenvector centrality, BetC= Betweenness centrality, DegC = Degree centrality, ClosC= Closeness centrality
*Interaction in uncentered variables

Table A5: Regression results, standardized, dependent variable Power, with S=0.7

ER SW p = 0.25 SW p = 0.20 SW p = 0.15 SW p = 0.1 SW p = 0.05 PA

Even 0.137 0.053 0.153 0.156 0.166 0.171 0.135
DegC −0.172 0.272 0.265 0.203 0.152 0.113 0.489
EVC −0.099
BetC 0.358
EVC:DegC 0.426
Constant 0.543 0.460 0.469 0.487 0.513 0.526 0.516

N 20,000 4,000 4,000 4,000 4,000 4,000 20,000
R2 0.546 0.614 0.632 0.627 0.652 0.650 0.522

*EVC= Eigenvector centrality, BetC= Betweenness centrality, DegC = Degree centrality, ClosC= Closeness centrality
*Interaction in uncentered variables
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Appendices Chapter 3

Specification computational model

The 2x2 game can be mapped on a network by pairwise interactions between nodes
who share an edge. In each round the nodes update their belief on what strategy
yields the highest payoff, α or β, by means probabilistic dynamic in which the
behavioral propensity changes towards the best response. Let i = 1...N be the
nodes in the population. Let sα, β} be the strategy of node i, πi the payoff of node
i and π̃i the payoff when the alternative strategy would have been played. Then,
the probability pts,i that a strategy s is played in round t, given the probability
pt−1
s,i that a strategy s is played in round t− 1 equals;

pts,i =

{
pt−1
s,i + 0.5 for πt−1

i ≥ π̃,t−1
i

pt−1
s,i − 0.5 for πt−1

i < π̃,t−1
i ,

(10)

where pts,i is the probability that strategy s is played at some time t by node i

(Buskens and Snijders, 2015). So, at every time t each node updates the probability
to play α or β towards a myopic best response reply strategy. If the best reply
at time t − 1 would have been α, the probability of playing α at time t increases
compared to time t − 1. If the best reply at time t − 1 would have been β,
the probability of playing α at time t decreases at time t (simultaneously the
probability to play β increases). The probabilities are naturally bounded by the
values 0 and 1. Note: We used a step of 0.5 instead of 0.1, because we think this
is more realistic for human subjects
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Table A6: Adjacency matrix of the random network

0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0
0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0
1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1
0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 1 1 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 1 0
0 1 1 0 1 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0

116



Appendices

Table A7: Adjacency matrix of the clustered network

0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
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Table A8: Adjacency matrix of the centralized network

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1
1 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 1 0
1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Figure A8: Instructions of the experiment in English

Instructions 
These are the instructions for the experiment. These instructions are the same as on the screen. The 
instructions will remain available during the experiment. Please read the instructions carefully. 
 
This experiment is divided into three main parts and an introduction part. In the introduction part three 
practice rounds will be played. During the three main parts of the experiment 20 rounds will be played. 
Before each part, you will be paired randomly and anonymously with 1 or more participants. The 
participants you are paired with will remain the same during the rounds of the different parts. So, in the 
main rounds the participants you are paired with will be the same for 20 rounds. After one part ends you 
will be randomly matched again. After the second random matching you probably play against other 
participants, but there is a chance they can also be the same. 
 
Before each part you will be randomly designated a type. Your type can be Blue or Yellow. Prior to the 
start of the part you will learn which type you are. You will remain the same type during the rounds of 
the different parts. But before each part you will be randomly assigned a type again. It will be clearly 
stated when a part ends and you will be assignment a new type and become randomly paired to new 
participants again. 
 
Each of you must independently and simultaneously make a decision between 'blue' and 'yellow'. Your 
payoffs will be determined by the choices of the players you are paired with and the type you are. 
Your type, Blue or Yellow, will indicate how many points you can earn with the decision 'blue' or 'yellow'. 
Below you find 2 tables, the table on the left for type Blue and the table on the right for type Yellow. In 
case you play against 1 other participant, when your type is Blue (left table), you choose 'blue' and the 
other participant also chooses 'blue', the payoff for that round is 10. When your type is Blue and you 
choose 'yellow' and the other participant also chooses 'yellow', the payoff for that round is 8. When you 
choose ‘blue' and the other participant chooses 'yellow' or the other way around, the payoff will be 0. 
When your type is Yellow (table on the right) you get the highest payoff of 10, when you and the other 
participant both choose yellow. 8 points when you both choose blue. And 0 point when you and the 
other participant don't choose the same colour. 
Figure 1: Overview of possible profit points 

Your type: Blue Your choice
Blue Yellow

Other 
participant’s 
choice

Blue 10 0
Yellow 0 8

 
Note that your type will remain the same during the rounds of a part of the experiment, but you can 
change your decision every round. In this experiment you are randomly paired with 1 or more players 
who may or may not have the same type as you have. You will not be able to see which type the others 
are. You make one decision that holds for all participants you are paired with. The payoff of a round will 
be the average of the payoffs you get from the participants you are paired with. Thus, if you are paired 
with two other participants and you payoff with one would be 10 according to the table above and the 
payoff with the other would be 0, you earn 5 points in that round. At the end of the experiment, the 
points you earned will be paid out to you at an exchange rate of 50 points per euro.  

Your type: Yellow Your choice
Blue Yellow

Other 
participant’s 
choice

Blue 8 0

Yellow 0 10
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Figure A9: Instructions of the experiment in Spanish

Instrucciones 

Estas son las instrucciones para el experimento. Estas instrucciones son las mismas que en la pantalla. 
Las instrucciones permanecerán disponibles durante el experimento. Por favor, lea atentamente las 
instrucciones. 

Este experimento se divide en tres partes principales y una parte de introducción. En la parte de 
introducción se jugarán tres rondas de práctica. Durante las tres partes principales del experimento se 
jugarán 20 rondas. Antes de cada parte, se le emparejará de forma aleatoria y anónima con uno o más 
participantes. Los participantes con los que estás emparejado seguirán siendo los mismos durante las 
rondas de las diferentes partes. Por lo tanto, en las rondas principales, los participantes con los que estés 
emparejado serán los mismos durante 20 rondas. Después de que una parte termina usted será 
emparejado al azar otra vez. Después de la segunda coincidencia aleatoria, es probable que juegues 
contra otros participantes, pero existe la posibilidad de que también sean iguales. 

Antes de cada parte se le designará un tipo al azar. Tu tipo puede ser azul o amarillo. Antes del comienzo 
de la parte usted aprenderá qué tipo usted es. Usted seguirá siendo del mismo tipo durante las rondas 
de las diferentes partes. Pero antes de cada parte se le asignará un tipo al azar de nuevo. Se indicará 
claramente cuando termine una parte y se le asignará un nuevo tipo y se le emparejará de nuevo al azar 
con nuevos participantes. 

Cada uno de ustedes debe tomar una decisión de forma independiente y simultánea entre "azul" y 
"amarillo". Tus ganancias serán determinadas por las elecciones de los jugadores con los que estás 
emparejado y el tipo de jugador que eres. Tu tipo, Azul o Amarillo, te indicará cuántos puntos puedes 
ganar con la decisión “azul” o “amarillo”. Debajo encontrará 2 tablas, la tabla de la izquierda para el tipo 
Azul y la tabla de la derecha para el tipo Amarillo. Durante los emparejamientos, cuando tu tipo es 
Azul (tabla de la izquierda), y eliges 'azul' y el otro participante también elige 'azul', el resultado 
de esa ronda es de 10 puntos, en cambio si ambos elegís  'amarillo' el resultado será de 8 puntos. De la 
misma forma, cuando tu tipo es Amarillo  (tabla de la derecha) obtienes la máxima puntuación de 10 
cuando ambos escogéis 'amarillo' y 8 cuando ambos elegís 'azul'. Si tú y el otro participante no escogéis 
el mismo color el resultado son 0 puntos. 

Figura 1: Resumen de los posibles puntos de beneficio

 Tu tipo: Azul Tu elección 
Azul Amarillo 

Elección de 
otro 
participante 

Azul 10 0 

Amarillo 0 8 

Tenga en cuenta que su tipo seguirá siendo el mismo durante las rondas de una parte del experimento, 
pero puede cambiar su decisión en cada ronda.  En este experimento usted es emparejado 
aleatoriamente con 1 o más jugadores que pueden o no tener el mismo tipo que usted tiene. No podrá 
ver de qué tipo son los otros. Tu elección en cada ronda se utilizará para resolver todos tus 
emparejamientos de esa ronda. El pago de cada ronda será el promedio de las recompensas obtenidas 
con todos tus emparejamientos. Por ejemplo, si usted está emparejado con otros dos participantes y en 
uno de los casos su recompensa es 10 puntos y en el otro es 0 su ganancia de esta ronda serian 5 puntos.  
Al final del experimento, los puntos ganados se le pagarán a un tipo de cambio de 50 puntos por euro. 

Tu tipo: Amarillo Tu  elección 
Azul Amarillo 

Elección de 
otro 
participante 

Azul 8 0 

Amarillo 0 10 
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Figure A10: Example computational and experimental results random network. First
round: Left computational model. Right: Experimental results
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Figure A11: Example computational and experimental results random network. Last
round: Left computational model. Right: Experimental results
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Figure A12: Example computational and experimental results small world network.
First round: Left computational model. Right: Experimental results
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Figure A13: Example computational and experimental results small world network.
Last round: Left computational model. Right: Experimental results
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Figure A14: Example computational and experimental results Network with central
node network. First round: Left computational model. Right: Experimental results
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Figure A15: Example computational and experimental results Network with central
node network. Last round: Left computational model. Right: Experimental results
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Appendices Chapter 5

Table A9: Logistic regression with dependent variable generalized trust with method
by of Tacchella et al., (2012)

(1) (2)

Occupational complexity 0.057∗∗∗ (0.006) 0.033∗∗∗ (0.006)
Age 0.033∗∗∗ (0.003)
College educated 1.423∗∗∗ (0.100)
School dropout −1.324∗∗∗ (0.188)
Income 0.124∗∗∗ (0.026)
Male 0.590∗∗∗ (0.091)
Town −0.312 (0.217)
Small city −1.026∗∗∗ (0.245)
bigcity1 −0.585∗∗ (0.246)
Constant −12.033∗∗∗ (1.151) −10.526∗∗∗ (1.329)

Observations 2,867 2,867
Log Likelihood −1,820.621 −1,496.204
Akaike Inf. Crit. 3,645.242 3,012.408

Note: ∗p <0.1; ∗∗p <0.05; ∗∗∗p <0.01
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Figure A16: City-occupation matrix. On the y-axis the 400 MSAs, on the x-axis the
840 occupations. The cell is red when an occupation has a RCA> 1 in that MSA. The
matrix is ordered by number of occupations in a MSA, where the MSA with the lowest
number of occupations is on top and the MSA with the highest number of occupations is
at he bottom. From left to right the matrix is order by the amount of times an occupation
occurs in an MSA. Left the occupations that occur the least and right the occupations
that occur the most.
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Table A10: Logistic regression with dependent variable generalized trust, for the cutoff
value RCA=1.5

(1) (2)

complcl 0.030∗∗∗ (0.003) 0.018∗∗∗ (0.003)
age 0.034∗∗∗ (0.003)
co_educ1 1.393∗∗∗ (0.100)
dropout1 −1.368∗∗∗ (0.190)
income 0.107∗∗∗ (0.026)
male1 0.569∗∗∗ (0.091)
town1 −0.453∗∗ (0.215)
smallcity1 −1.067∗∗∗ (0.242)
bigcity1 −0.963∗∗∗ (0.246)
Constant −1.412∗∗∗ (0.087) −3.993∗∗∗ (0.397)

Observations 2,867 2,867
Log Likelihood −1,811.438 −1,494.384
Akaike Inf. Crit. 3,626.875 3,008.769

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Netwerk structuur wordt vaak als oplossing gezien voor coöperatie problemen
en sociale dilemma’s. In het eerste deel van deze dissertatie wordt het effect
van netwerk structuur op sociaal dilemma genaamd asymmetrische coördinatie
bestudeerd. In de hoofstukken 2, 3 en 4 wordt het effect van netwerk eigenschap-
pen op deze coördinatie processen bestudeerd middels drie verschillende methoden.
In hoofdstuk 2 wordt een simulatie model gecreëerd. In hoofdstuk 3 worden de
voorspellingen die gedaan worden door het simulatie model uit hoofdstuk 2 getest
in een laboratorium experiment met 240 mensen. In hoofdstuk 4 proberen we de
resultaten verder te generaliseren door dezelfde asymmetrische coördinatie pro-
cessen te modeleren met methoden uit de statistische fysica. In het tweede deel
van deze dissertatie wordt de vraag gesteld hoe algemeen vertrouwen kan ontstaan
in een samenleving die steeds individualistischer wordt. In hoofdstuk 5 beargu-
menteren we dat een oude theorie genaamd “organische solidariteit” een belangrijke
rol kan spelen bij het beantwoorden van deze vraag. De theorie stelt dat verdeling
van arbeid één van de belangrijkste fundamenten is voor menselijke coöperatie.
In dit hoofdstuk bestuderen we aspecten van de arbeidsverdeling en laten we zien
dat deze sterk gecorreleerd zijn met algemeen vertrouwen.

Hoofdstuk 2

In de hoofdstukken 2, 3 en 4 staat een asymmetrisch coördinatie spel genaamd
“battle of the sexes” centraal. Het spel weergegeven in Table A11 schetst een
situatie met twee spelers. De rij speler en de kolom speler. Beide spelers kunnen
een keuze maken tussen twee opties, namelijk α en β. De twee keuze combinaties
vormen vier mogelijke uitkomsten, weergegeven in de matrix, waarbij het eerste
cijfer de gelukwaarde van de rijspeler betreft en het tweede cijfer de gelukwaarde
voor de kolom speler. Beide spelers hebben de hoogste gelukwaarde als ze hetzelfde
kiezen, echter de rij speler heeft een hogere gelukwaarde als beide spelers kiezen
voor α en de kolom speler heeft een hogere gelukwaarde als beide spelers kiezen
voor β.

Table A11: Tabel voor een asymmetrisch coördinatie spel

α β

α 2,1 0,0
β 0,0 1,2
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Table A12: Tabel voor een asymmetrisch coördinatie spel met drie speleres

Player 2 α β
Player 3 α β α β

Player 1 α 4,2,2 0,0,0 2,1,0 0,2,2
β 0,1,1 1,2,0 1,0,2 2,4,4

Het sociale dilemma is dat beide spelers willen coördineren op dezelfde keuze,
maar dat ze beide een voorkeur hebben om te coördineren op een andere optie. In
een experimentele laboratorium setting waarin mensen dit spel moeten spelen en
de resulterende gelukwaarde uitbetaalt krijgen, komt het meest voor dat het niet
lukt om hun keuzes te coördineren (Cooper et al., 1989; Binmore et al., 2007).
Dit komt omdat beide spelers vaak hun “favoriete” optie kiezen. Als dezelfde twee
spelers de kans krijgen om het spel vaker dan één keer te spelen, dan lukt het
vaak wel om tot coördinatie te komen, echter is het vooraf niet duidelijk op welke
van de twee evenwichten de spelers zullen eindigen. In enkele gevallen zullen de
spelers zelfs tegelijk wisselen tussen allebei α en allebei β op het moment dat het
spel meerdere keren gespeeld wordt (Duffy et al., 2017; De Kwaadsteniet et al.,
2012; Lau and Mui, 2008). Dit gedrag is het meest kosten efficiënt.

In Tabel A12 is dezelfde situatie geschetst met 2 keuze opties maar dan voor
drie spelers. In de drie speler situatie is het al makkelijker te voorspellen wat er
gekozen gaat worden, omdat het spel niet meer in balans is. Intuïtief wordt dit
duidelijk doordat als er drie mensen moeten kiezen tussen twee opties, er altijd
een meerderheid voor één van de twee opties is. In hoofdstuk 2 willen we weten
wat er gebeurd als je dit 2 × 2 spel speelt waarbij de spelers interacter middels een
netwerk. In het netwerk zijn dan de speler de knopen (nodes) en ze interacteren
met de andere knopen met wie ze verbonden zijn middels een lijn (edges). De
intuïtie is dat de structuur van het netwerk invloed zal hebben op de uiteindelijke
keuze van de spelers omdat er vaak een lokale meerderheid is voor één van de twee
opties, zoals te zien in Tabel A12. De structuur van het netwerk kan daarom van
cruciaal belang zijn om het keuze gedrag in (sociale) netwerken te begrijpen.

In hoofdstuk 2 maken we een simulatie model voor deze asymmetrische keuze
processen op netwerken. We simuleren de coordinatie processen voor drie type
netwerken en analyseren de patronen voor deze netwerken. We concluderen dat
de patronen sterk afhangen van het type netwerk. De patronen zijn het minst
sterk in random ‘Erdös-Rényi’ netwerken. Het gedrag laat zich hier het minst
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goed voorspellen omdat er weinig structuur zit in de netwerken. In geclusterde
‘small world’ netwerken zien we homogeen gedrag (dezelfde keuzes) binnen de
clusters van het netwerk, maar heterogeen (verschillende keuzes) tussen clusters.
Het gedrag laat zich al makkelijker voorspellen in dit type netwerk. In een derde
type netwerk, het gecentraliseerde netwerk, wordt het gedrag voor een groot deel
gedetermineerd door de meest centrale knoop. In dit type netwerk kan het gedrag
makkelijk voorspelt worden.

Hoofdstuk 3

In hoofdstuk 3 gebruiken we de resultaten van hoofdstuk 2 en testen deze in een
laboratorium experiment met 240 menselijke subjecten. De menselijke subjecten
spelen asymmetrische coördinatie spellen in groepen van 20. Met wie de subjecten
interacteren is afhankelijk van hun plaats in het netwerk. De subjecten spelen de
spellen in drie verschillende netwerken die de netwerken van hoofdstuk 2 represen-
teren. We onderzoeken of de simulatie resultaten van hoofdstuk 2 samenhangen
met de keuzes van de menselijke subjecten en dus hoe deze afhankelijk zijn van
het netwerk waarin de spelers zich bevinden. In lijn der verwachting laten de
menselijke keuzes zich moeilijk voorspellen in het random ‘Erdös-Rényi’ netwerk.
In het geclusterde ‘small world’ netwerk zijn de keuzes van de subjecten al meer
in lijn met de voorspellingen van het simulatie model. Tevens vinden we ook
hier homogeen gedrag binnen de clusters van het netwerk, maar heterogeen (ver-
schillende keuzes) tussen clusters. In het gecentraliseerde netwerk zijn de keuzes
van het simulatie model bijna geheel hetzelfde aan de keuzes van de menselijke
subjecten, omdat het gedrag vrijwel geheel gedetermineerd wordt door de meest
centrale speler.

Hoofdstuk 4

In hoofdstuk 4 proberen we de resultaten van de voorgaande hoofdstukken verder
te generaliseren door de evenwichten uit het asymetrische spel analytisch te bereke-
nen. Om de analysische uitkomsten te verkrijgen maken we gebruik van het ferro-
magnetische Ising model. We generaliseren het ferromagnetische Ising model zodat
deze ook de asymmetrische voorkeuren kan representeren. De asymmetrische inter-
acties worden gerealiseerd door de parameter die in het oorspronkelijke model het
‘extern magnetisch veld’ vertegenwoordigd, te laten variëren tussen de knooppun-
ten. De ‘externe’ magnetisatie kan in dit geval dus anders zijn voor de ene knoop
ten opzichte van de andere knoop. De asymmetrische voorkeuren kunnen dus
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gemodelleerd worden door middel van de magnetisatie van de individuele knoop-
punten. De resultaten laten een verschil zien in de gevonden evenwichten tussen
het simulatiemodel en het Ising-model. Met het Ising-model vinden we een rijkere
set van evenwichten in vergelijking tot het simulatiemodel. Deze bevinding ver-
sterkt eigenlijk ons vertrouwen in de resultaten van het simulatiemodel, omdat deze
resultaten lijken te suggereren dat als we het coördinatieprobleem in hoofdstuk 2
analytisch modelleren, de resultaten sterker worden. Een vermoedelijke reden dat
de resultaten sterker worden wanneer ze analytisch gemodelleerd worden, is dat
de update-regel die gebruikt wordt in het simulatiemodel waarschijnlijk geen in-
stabiele evenwichtspunten vindt. Er moet echter worden opgemerkt dat we niet in
staat waren om het Ising-model zo te formuleren dat het nauwkeurig overeenkomt
met de resultaten van het simulatiemodel in alle onderzochte netwerken.

Hoofdstuk 5

In hoofdstuk 5 erkennen we dat modellen van kleine groepen met herhaalde inter-
acties de sociale cohesie niet volledig kunnen verklaren. Moderne samenlevingen
functioneren niet alleen op basis van herhaalde interacties met bekenden. Hoe com-
plexer een samenleving wordt, hoe meer het dagelijks leven wordt bepaald door so-
ciale interacties met mensen die men niet kent. Mensen interacteren dagelijks met
mensen die ze nog niet eerder hebben ontmoet. Herhaalde interacties en de struc-
tuur van het sociale netwerk kunnen dus wel enige variatie in het cohesieprobleem
verklaren, maar niet alles. In hoofdstuk 5 stellen we dat sociale interacties voor
een belangrijk deel gevormd worden door arbeidsdeling en regelgevende instanties.
Hierbij gebruiken we een klassieke sociologische theorie genaamd ‘organische soli-
dariteit’. De theorie is lange tijd afwezig geweest in sociologische discussies, maar
is recent weer geintroduceerd.

Fenomenen als sociale cohesie, samenwerking en vertrouwen kunnen zeker deels
worden begrepen via de herhaalde interacties van kleine groepen. Maar in moderne
samenlevingen zijn deze interacties echter ingebed in een grotere maatschappelijke
structuur. De ‘grotere maatschappelijke structuur’ kan hier begrepen worden als
het geheel van formele en informele instituten. ‘Instituten’ kan hier opgevat worden
in de breedst mogelijke zin, gedefinieerd als ‘stabiele, terugkerende gedragspatro-
nen’. De gedragspatronen kunnen formeel geordend en afgedwongen worden, zoals
wetten en handhaving, of zelfregulerend en informeel, zoals verschillende vormen
van cultuur.

We stellen dat het effect van de arbeidsdeling, hoewel een instituut op zich, on-
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afhankelijk van andere soorten instituten moet worden bestudeerd. Zo veroorza-
akt iemands werk een krachtige (economische) inbedding die mensen dwingt om
zich dagelijks met anderen te verhouden. Als een klant bijvoorbeeld een winkel
binnenkomt, zijn de maatschappelijke rollen direct duidelijk. Zowel de winkeleige-
naar als de klant moet een bepaalde maatschappelijke standaard handhaven om
zijn economische positie te behouden. Daarmee helpen economische relaties de
maatschappelijke orde te bepalen. Hoe deze relaties zijn gestructureerd kan dus
van vitaal belang zijn voor verschillende sociale mechanismen die verder reiken
dan het economische domein.

In een recente studie, geïnspireerd door Durkheim’s theorie over organische soli-
dariteit, theoretiseren auteurs over de relevantie van deze theorie in het huidige
sociologische debat (Portes and Vickstrom, 2011; Durkheim, 1893). Ze schrijven
dat organische solidariteit afhankelijk is van drie voorwaarden, namelijk:

1. (Economische) Diversiteit onder de leden van een samenleving

2. Sterke coördinerende instituten

3. Complexe arbeidsdeling (specialisatie)

De invloed van formele instituten op positieve resultaten voor de samenleving,
zoals samenwerking en vertrouwen, is een breed bestudeerd onderwerp en onder-
werp van een voortdurend debat (Fehr and Gachter, 2000; Kosfeld et al., 2009;
Gürerk et al., 2006; Lo Iacono, 2019; IOS, 2019). Het effect van een complexe
arbeidsdeling en economische diversiteit is echter nog niet empirisch getest.

In hoofdstuk 5 gebruiken we recente methoden uit het veld van de economis-
che complexiteit die gericht zijn op het kwantificeren van de (economische) di-
versiteit onder de leden van een samenleving en de specialisatie van een beroep.
We gebruiken de verkregen variabelen en toetsen hoe deze zich verhouden tot
het zelf-gerapporteerde algemeen vertrouwen. We beargumenteren dat algemeen
vertrouwen niet kan worden verklaard door herhaalde interacties tussen individuen.
In de gebruikte enquêtevraag die generalized trust meet, wordt de respondent
gevraagd: ’Generally speaking, would you say that most people can be trusted or
that you can’t be too careful in dealing with people?’. De vraag is of mensen in
het algemeen te vertrouwen zijn en niet alleen mensen die men kent of met wie
men eerder interacties heeft gehad. Om algemeen vertrouwen zullen we daarom
gebruik moeten maken van andere verklaringen, zoals organische solidariteit. In
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hoofdstuk 5 laten we zien dat er een groot effect is van zowel beroepsmatige di-
versiteit als beroepsmatige complexiteit op het het zelfgerapporterede algemeen
vertrouwen van de respodent.
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Network structure has been put forward as a possible solution to 

cooperation problems and social dilemmas. In the first part of this 

dissertation, the effect of network structure is studied for a social 

dilemma situation involving asymmetric coordination. The effects 

of network properties on these coordination problems are studied 

by means of agent-based models, models of statistical physics, 

and a laboratory experiment. In the second part, we study the 

question on how general trust can be established in societies that 

are becoming more individualistic. The theory known as organic 

solidarity argues that division of labor is one of the key foundations 

of trust and solidarity between people. This proposition is studied 

by quantifying aspects of the division of labor. We show that these 

aspects are strongly related to general trust. 
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