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General introduction

1.1 Evidence derived from small populations
Clinical research in (very) rare diseases is challenging. One of the main reasons is the small

populations of patients suffering from each individual rare disease. However, since there are

more that 7000 known rare diseases, a 7% of people in total will suffer from a rare disease

at least once during their lifetime [1]. Small patient populations could also emerge from

stratification of ”common” diseases” on the basis of some biomarker, e.g. genomic markers.

Interventional research in small populations faces a substantial challenge; the limited number

of patients to be included in clinical trials, which naturally impacts the level of generated

evidence.

Randomized controlled clinical trials are considered the gold standard for assessing the

efficacy and safety of (innovative) medical interventions. Both exploratory and confirmatory

clinical trials in small populations risk producing non-conclusive evidence for the efficacy of a

treatment. Nonetheless, randomized controlled clinical trials are the preferred means for the

evaluation of treatments in rare diseases. This paradigm is in place both to ensure similar high

standards of evidence as common disease treatments and to protect the quality of approved

interventions [2].

The recognition of the shortcomings of available statistical methods to evaluate rare

disease interventions initiated efforts that provided approaches tailored specifically for

small populations [3, 4]. Nonetheless, additional suitable and innovative approaches need

to be developed for evaluating observational and randomized evidence for rare diseases

and this ongoing attempt is further recognised by both the research community and

regulatory authorities [2, 5]. Following this need, the European Commission supported

three international research projects towards this direction; namely ”Advances in Small Trials

Design for Regulatory Innovation and Excellence” [6], ”Integrated Design and Analysis

of Small Population Group Trials” [7] and ”Innovative Methodology for Small Population

Research” [8].

1.2 Evidence synthesis in small populations
In small populations, the very low prevalence of each disease often generates a limited pool

of small and possibly underpowered clinical trials. In such cases a synthesis of data across
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Chapter 1

clinical trials can generate a more informed, generalizable and usually more powerful result.

Utilizing all relevant available exploratory and/or confirmatory clinical trials, such a synthesis

can be conducted via a meta-analysis [9] or a network meta- analysis [10]. The synthesized

trials can differ in terms of methodological and clinical characteristics such as the study

designs, the trial populations or the definition of outcomes for each trial. These differences

may lead to variability in the true underlying effect which will manifest itself in between-

study variance – heterogeneity – of the observed effects. Quantifying heterogeneity in a

meta-analysis of a few small clinical trials poses a challenge for most statistical approaches.

In fact, the synthesis of two heterogeneous studies was recently presented as an unresolved

issue within a frequentist framework [11] and initiated the exploration of Bayesian evidence

synthesis approaches as more robust alternatives [12, 13].

Bayesian inference is often debated due to its subjective nature. Nevertheless, it offers an

appealing alternative for the synthesis of few and small clinical trials. The consideration of

Bayesian methods in small populations is recommended by international guidelines [2, 14, 15]

and published research [12, 13]. Nonetheless, Bayesian meta-analysis of a few small trials risks

resulting in prior-driven inferences and unknown frequentist operational characteristics. This

calls for rigorous evaluation of these characteristics during the design and meta-analysis of a

series of trials.

Either through a frequentist or a Bayesian framework, synthesis of all relevant data could

offer further insights. Under a frequentist framework, standard operational statistical

characteristics - such as: (1) type I error control at 5%, (2) 95% coverage of confidence intervals

and (3) minimal bias - are difficult to achieve without becoming (very) conservative due

to the small number of available trials. Likewise, under a Bayesian framework, inferences

can quickly become prior-driven. In such a small population setting, the sparsity of

available information makes existing frequentist and Bayesian evidence synthesis approaches

problematic.

In this thesis, I recognize and discuss the following themes: (1) small population clinical trials

may lead to deviations from asymptotic assumptions, (2) small population clinical trials may

lead to excessive zero events, (3) small population clinical trials may hamper estimation of

heterogeneity, (4) in small populations, evidence generation may benefit from the combination
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General introduction

of exploratory and confirmatory clinical trials and (5) informative missing outcome data may

impact meta-analysis, especially in the case of network meta-analysis, where study designs

are even more diverse.

1.3 Special issues in evidence synthesis of small populations
The methodological reviews of Chapter 2a and 2b identify a possible lack of available

sophisticated approaches and provide possible directions for further research on statistical

evidence synthesis. These directions partially shaped the contents of this thesis.

Small population clinical trials may lead to deviations from assumptions that are based

on asymptotic approximations, due to the limited sample size. A commonly encountered

assumption is that of the normality of test statistics, an assumption which most current

synthesis approaches are built upon. This assumption becomes more problematic in random-

effects models that assumes two levels of normality, one between trials and one between

patients. For dichotomous outcomes, most methodological research studies on meta-analysis

in rare diseases discuss and compare statistical approaches under a normal approximation of

the binomial distribution [11, 13, 16, 17]. Such an assumption is not suitable and often brakes

down in the case of small samples and/or small number of events. When these simulation

studies deviate from the normal approximation for the binomial distribution, even the set-up

of the data generation mechanism of their simulation becomes non trivial and each study often

deploys a different data generating model. Such practices may result in recommendations that

are based on different assumptions across several investigations. Chapter 3 focuses on the

consequences of applying different data generating models for the evaluation of a random-

effects meta-analysis for small populations with binomial outcome data.

Small population clinical trials may lead to zero events in one or more of the treatment arms if

the outcome is a clinical event, which induce additional methodological challenges for a meta-

analysis of these trials. Binary endpoints usually relate to events of clinical importance and

are commonly used in clinical trials. Due to the limited trial sample sizes in this setting, zero

cells are more likely to be observed in at least one of the treatment arms. As the number of

zero cells increases, the unbiased estimation of heterogeneity becomes infeasible and leads to

improper (interval) estimation of the overall treatment effect. Such methodological challenges
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Chapter 1

can occur both under a frequentist (Chapter 4) and a Bayesian (Chapter 5) meta-analysis of a

few small trials with sparse events.

Small population clinical trials may lead to the informal synthesis of exploratory and

confirmatory clinical trials, that do not both include the same clinical outcomes. In Chapter

6 I discuss the sample-based selection bias which appears when short-term outcomes from

a short-term exploratory trial are utilized as supportive evidence to the primary long-term

outcome of the current long-term confirmatory trial. I provide solutions for synthesis of such

trials that reduce or eliminate this selection bias.

Small population clinical trials may lead to missing outcomes that can be either missing-

at-random or missing-not-at-random. Missingness in a meta-analysis is often conveniently

modelled through the missing-at-random assumption. In Chapter 7 various modelling

options are suggested and explored for informative binary missing outcome data in a

Bayesian meta-analytical network of interventions under the missing-at-random assumption.

Moreover, building on the work of Chapter 3, a novel straightforward generalization of a data

generating mechanism for an network meta-analysis with informative missing outcome data

is developed.

The thesis concludes with a general discussion in Chapter 8.
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Chapter 2

Abstract

A randomized controlled trial is considered the gold standard in clinical research, also in rare

diseases. However, in small populations, single large scale well-powered trials are often not

possible. For valid decision-making, both on efficacy and on safety, evidence generated from

series of trials could be exploited. We conducted a review over a five-year period to identify

relevant methodology on combining results of series of trials. Out of a total of 8183 papers

found, 61 papers were included and summarized in this review. Its focus is on frequentist

methodology. Most papers deal with meta-analyses on aggregated data. Only few papers

discuss multivariate outcomes. We categorized the relevant methods according to the type of

(meta-) analysis. Only a few papers dealt directly with series of trials in small populations.

The results of the review lead to some directions for further investigation on evidence-based

decision-making from a (small) series of trials in small populations.
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Evidence synthesis for combining results of series of a few small trials

Introduction
Recently, the European Union funded the ASTeRIx project: Advances in Small Trials dEsign

for Regulatory Innovation and eXcellence (see also O’Connor and Hemmings [18]); to

develop and implement innovative statistical methodologies for the evaluation of orphan

drug treatments with clinical trials. Please note that the list of references is split into two

parts: 1) references to other publications and 2) references to papers in the review (‡).

Rare diseases influence only a small part of the human population with a prevalence below

5 per 10,000 people in the European Community [1]. To evaluate the effect of a (new)

intervention, a randomized controlled trial (RCT) is considered the gold standard also in

rare diseases. However, large-scale well-powered RCTs are often not possible. To obtain

sufficient, valid evidence for decision-making, both on efficacy and on safety, alternative

methodological approaches have to be sought. Existing guidance [5, 19, 20] discusses and

recommends designs that are suitable for single trials in small populations. To cope with the

problem of small numbers of patients available for a single trial, evidence generated from

series of trials in small populations could be exploited.

We performed a review to identify new frequentist methods for series of trials. We also

focused on existing methods for large-scale diseases that might be applicable in small

populations. In the Results section, we categorize the relevant methods according to the type

of (meta-)analysis. In the Discussion section, we will assess the usefulness and limitations of

the described methods in a small series of small clinical trials.

Methods
We conducted a review to identify relevant methodology on combining results of series of

trials as published between 1-1-2009 and 31-12-2013. Eligible studies were identified with

several search strategies. First, we created a list of landmark papers, i.e. specific papers

we wanted to be found and included in our final set of papers. Then we created a search

strategy for PubMed. Because of the methodological nature of our review, clearly papers were

missed by searching PubMed alone. We then extended our search to Web of Science (Science

Citation Index (SCI)), Scopus, JSTOR and, lastly, the Cochrane Library (see Appendix for the

search strategies). The search resulted in 8183 papers, of which 1031 from PubMed, 2438 from

21



Chapter 2

Scopus, 2230 from Web of Science, 2436 from JSTOR and 48 from Cochrane (considering only

methodological articles) (see Figure 2a.1 for the flow diagram of the search strategies). First of

all, duplicates were removed. Then papers were excluded by journal, title and abstract based

on their methodological relevance for the review. Two reviewers (KP, IvdT) independently

scored the 358 articles from the remaining studies by judging title and abstract to include (I),

probably include (PI), probably exclude (PE) and to exclude (E).

Articles with a concordant score from both reviewers were either included (I or PI) or excluded

(PE or E) from the pool. The discordant 52 ones were discussed with a third independent

colleague (GCMvB). From these 52, 38 were excluded and 14 were included into the final

set of articles. Some papers with no abstract were considered for full reading; when they

consisted of letters to the editor or commentaries on papers not included in the review they

were excluded. One review article to which we could not get access was excluded. We only

included papers written in English. Excluded were on-line abstracts only, books or book

chapters, papers describing applications of meta-analyses and papers on n-of-1 trials.

Finally, we split the included papers into those on Bayesian methods and those on frequentist

methods. The frequentist methods will be described and summarized in this review; the

Bayesian methods, including most of the papers on network meta-analysis are discussed

in Chapter 2b. Papers comparing frequentist and Bayesian methods were discussed in both

reviews.
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For Peer Review
________

Figure 2a.1: Chapter 2a - Flow diagram of the search strategy
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Results
Out of an initial 8183 papers, 61 were included in this review. Some descriptive characteristics

of the reviewed papers are presented in Table 2a.1. Most papers deal with methods on

summarized or aggregated data. Only few papers discuss multivariate outcomes. A number

of papers describe methods for more than one outcome type or discuss various forms of meta-

analysis.

Table 2a.1: Characteristics of the articles included in the review. *MA = meta-analysis, CMA
= cumulative meta-analysis, TSA = trial sequential meta-analysis, SMA = sequential meta-
analysis, PMA = prospective meta-analysis, NMA = network meta-analysis, MTC = mixed
treatment comparison, AD = aggregated data, IPD = individual patient data, n.s. = not
specified, n.a. = not applicable.

Characteristic Category* n

Year of publication

2009 15
2010 10
2011 15
2012 8
2013 13

Type of MA

General MA 37
CMA 14
TSA 13
SMA 6
PMA 9
NMA/MTC 8
Case series 3

Input data
AD 49
IPD 7
AD+IPD 5

Outcome
Univariate 50
Multivariate 8
Uni- and Multivariate 3

Type of outcome

Dichotomous 41
Continuous 14
Time-to-event 16
Other 2
n.s. 10

Approach

Frequentist 46
Frequentist and Bayes 9
Hybrid 5
Empirical Bayes 1

Program

WinBugs 11
Multiple platforms 7
R 2
Mathematica 1
n.a. 10

Total number of articles 61
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General meta-analysis (MA)

A meta-analysis (MA) of RCTs is a statistical method to pool the results of several individual

trials in a certain disease and summarize them into a point and its confidence interval (CI)

estimate. For these estimates distinction is made between a fixed effect (FE) and a random

effects (RE) approach. An FE model assumes that the unknown parameter value is the same

for all trials; an RE model assumes that parameter values for the pooled trials follow some

distribution. The between-trial variance or heterogeneity (τ2) has to be estimated for this

distribution.

Nowadays, MA methodology is widely implemented [9]. An important issue for the

reliability of the results of an MA is the similarity of patients and other trial characteristics

across the pooled set of RCTs. Trials can differ in patient-level and in study-level variables.

Aiello et al [21]‡ present graphical and analytical tools to identify quantitative criteria to detect

these covariate imbalances. These tools are, however, not feasible in an MA with only few

trials. Verbeek et al [22]‡ stress that the credibility of an MA depends on the conceptual

similarity of the studies and on the statistical heterogeneity.

An MA requires an extensive and complete systematic review (SR) of the medical literature

on the disease concerned. RCTs with ‘negative’ results, i.e. no significant difference between

the treatments compared, are less likely to be published, thus leading to publication bias.

Publication bias can lead to ‘biased’ priors for both frequentist and Bayesian analyses and

financial disclosure should be a covariate in meta-analyses to prevent investigator bias and

assess uncertainty about study effects [23]‡. MA using a FE approach can lead to substantial

inflation of the type I errors ([24]‡ and [25]). Both Higgins et al [26]‡ and Chung et al [27]‡

advise against the use of a FE or common model, but also against the testing of homogeneity.

They emphasize that the naive presentation of only the mean (µ) of the RE analysis is

misleading and estimation of the between-trial variance is just as important as well as its

incorporation in a CI for µ. Both for frequentist and Bayesian inference from k RCTs, Higgins

et al [26]‡ (as well as Borenstein et al [9]) propose the use of a prediction interval based on a

t-distribution with k − 2 degrees of freedom instead of a Normal distribution to account for

the uncertainty in the estimated τ2. Chung et al [27]‡ discuss the estimation of the between-

study variance for small numbers of studies. In such conditions, commonly used estimators
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frequently result in a value of 0, thereby underestimating the true heterogeneity. Chung et

al, following Borenstein et al [9] and Higgins et al [26]‡, prefer a Bayesian informative prior

distribution for the between-study variance based on plausible values from other, similar MAs

or on historical data. They propose a Bayes modal estimator and compare its properties to

those of other estimators. When study-level covariates are available, meta-regression analysis

can be applied to decrease the heterogeneity.

RE models have disadvantages and may add unnecessary complexity to the analysis. To judge

whether an RE or linear mixed effects model is appropriate, Demidenko et al [28]‡ propose

the RE coefficient of determination, the proportion of conditional variance explained by the

heterogeneity of the studies in an MA.

For normally distributed outcomes standard MA theory assumes that variances are known.

This theory is often applied to effect sizes with skewed distributions with variances to be

estimated. Malloy et al [29]‡ suggest to first apply a variance stabilizing transformation and

then estimate point and interval parameters of FE or RE models using stable weights or profile

approximate likelihood intervals. Further, a simple t-interval provides very good coverage of

an overall effect size without estimation of the heterogeneity [29]‡.

Viechtbauer [30]‡ provides an extensive overview of the capabilities of the ‘metafor’ package

for conducting meta-analyses with R.

Design

Journal guidelines state that a report of an RCT should include a summary of previous

research findings, preferable an SR and MA, and explain how the new trial affects this

summary. Such a summary should inform critical design issues such as sample size

determination [31]‡. Sutton et al [31]‡ stress that the existing evidence-base should be

analysed in a detailed way to be able to design future research more efficiently. They propose

mixed treatment comparisons (MTC) MA and individual patient data (IPD) MA methods.

The contribution of a newly planned RCT to the total evidence is evaluated through its

incorporation into an updated MA in various ways. A new trial can be designed and powered

in isolation based on the results of a MA or based on the statistical significance of the updated
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MA. Heterogeneity between RCTs can seriously influence the power of the updated MA. To

better estimate heterogeneity, multiple small new studies can be preferred to a single large

study containing the same number of subjects.

Goudie et al [32]‡ found that only few published RCTs reported the use of previous trials

to design a future trial and estimate its sample size. They also highlight the importance

of adequately considering heterogeneity among studies in an MA, but note that between-

study heterogeneity will often be estimated with poor precision. They point out that the

process of using evidence from related, but not identical, studies could be formalized by more

sophisticated modelling, such as the use of patient-level covariates. Ioannidis and Karassa

[33]‡ also emphasize the need to consider breadth, timing and depth of all evidence, including

unpublished and on-going studies, for an SR and MA. They consider results from single,

early stopped trials unreliable because of chance findings due to multiple testing and inflated

treatment effect estimates.

Rotondi and Donner [34]‡ describe estimation of an appropriate sample size for a planned

cluster randomized trial by considering the role of the planned trial in a future MA. Sample

size estimation can be based on power or reduction in variance or the perspective of non-

inferiority. Their approach is based on simulated data using prior distributions for the intra-

cluster correlation coefficient, the cluster size and the control event rate. An FE model with

dichotomous outcomes is assumed as well as the availability of IPD. They suggest that their

method ‘may prove particularly useful when dealing with a meta-analysis of a small number

of studies’.

Heterogeneity

Between-trial variability or heterogeneity can be tested and estimated. A commonly used

measure for heterogeneity between trials pooled in an MA is I2. Higgins and Thompson

[35] derived this measure assuming that all within-trial variances were equal, thus giving all

trials the same weight, an assumption that is not met in most MAs. As a better alternative,

Wetterslev et al [36]‡ propose a measure of diversityD2 to describe the reduction in the model

variance from an RE MA to an FE MA. They show that D2 ≥ I2 and thus, in general, this

will lead to a larger information size, i.e. the required number of participants in an MA.
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The derivation of D2, however, assumes that the FE population average is equal to the RE

population average, which requires additional information if this assumption is not met.

Standard meta-analysis methods ignore the uncertainty in the estimation of the heterogeneity

parameter [27, 31]‡. Chung et al [27]‡ describe the use of a profile likelihood function

(following [37]) to construct a CI for µ or a Wald-type interval based on the observed instead

of the expected information.

Turner et al [38]‡ present a method to adjust for differences in rigour (i.e. lack of internal

bias) and relevance (i.e. lack of external bias) between studies pooled in an MA. Their bias

modelling approach allows decisions to be based on all available evidence with less rigorous

or less relevant studies getting smaller weights. Their expectation is that bias adjustment will

remove much of the heterogeneity in an MA. Bias adjustment is based, however, on elicited

opinions rather than empirical evidence.

Differences in study quality may lead to heterogeneity in findings across studies. Ahn

and Becker [39]‡ compared inverse-variance weighting with weights composed from quality

scores on the estimated mean effect in an MA. They conclude that quality weighting adds

bias in many cases. They prefer to model the effects of components of quality rather than use

quality-score weights. Yuan and Little [40]‡ note that the DerSimonian-Laird (DL) estimate

for heterogeneity in an RE MA is in general biased when the patient attrition rate depends on

the study-specific effect size. Higher completion rates are associated with more extreme effect

sizes, i.e. more bias. They propose three methods to correct for this bias, two of which, the

re-weighted Bayesian RE model and the Bayesian shared-parameter model work well.

Statistical heterogeneity and small-study effects may affect the validity of an MA. Small-study

effects can be seen as a particular case of heterogeneity. To adjust treatment effect estimates

for this heterogeneity, Rücker et al [41]‡ introduce the limit MA as a new RE model-based

method which leads to shrunken, empirical Bayes estimators. This gives rise to a new measure

of heterogeneity, G2, i.e. the proportion of heterogeneity unexplained after allowance for

possible small-study effects in the limit MA.
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Rare events

An MA on dichotomous outcome data traditionally pools the summary measures of the

individual RCTs (e.g. log(OR) or log(RR)) and their standard errors. This assumes an

approximately Normal within-study likelihood with known standard errors, does not account

for correlation between the estimate and its standard error and necessitates the use of an

(arbitrary) continuity correction in case of zero events. To overcome these drawbacks, Stijnen

et al [42]‡ propose an exact likelihood approach leading to a generalized linear mixed model.

This approach may be especially advantageous for sparse (event) data.

Lane [43]‡ also notes the limitations of the traditional pooling methods and especially for trials

with rare events that are in general not primary outcomes, such as safety outcomes. For these

trials, results from an MA should be regarded as only exploratory and hypothesis-generating,

especially when there is much heterogeneity between the trials.

Naı̈ve pooling of cumulative proportions of adverse effects can suffer from Simpson’s

paradox when randomization ratios are not identical across studies. Chuang-Stein and

Beltangady [44]‡ discuss three approaches to report these cumulative proportions of safety

data. The inverse sample variance weighting is not recommended; Cochran-Mantel-Haenszel

weighting and a study size based method produce similar results.

Gruber and Van der Laan [45]‡ compared several estimators of the treatment effect on safety

outcomes in an MA for various missingness mechanisms. Their targeted ML estimator is

asymptotically efficient and unbiased and has good finite sample performance, also when

outcomes are missing at random or missingness is informative. Bennett et al [46]‡ compared

the standard Cox PH model to the Firth penalized Cox PH model and to a Bayesian PH model

in MAs with survival-type rare event outcome data. They conclude that the Firth model

gives less biased estimates of the (log) hazard ratios than the other two models in rare events

survival data.

Series of trials

Chambers et al [47]‡ investigated the inclusion of both RCTs and case series in an SR of a

rapidly developing technology. Results from non-randomized controlled clinical trials were
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also included as case series. The authors found no systematic differences in the primary

outcome between RCTs and case series and concluded that the evidence base of an SR can

be increased and its credibility strengthened by the inclusion of case series. However, they

note some clear drawbacks, such as the absence of a control group and several forms of

possible bias. Hee and Stallard [48]‡ propose a hybrid approach to optimally design an entire

development plan encompassing phase II and phase III trials by combining Bayesian decision-

theoretic elements and frequentist methods. The phase II trials are assumed to be conducted

(fully) sequentially with interim decision-making based on a Bayesian cost-utility approach.

From the phase II trials, the most promising treatment is identified and evaluated further in

a phase III setting. At the design stage, a prior distribution is assumed for the parameters

corresponding to the treatment effects for the experimental treatment. The proposed method

assumes that the phase II and III trials have the same patient population, primary endpoint

and treatment period.

In the context of a rare disease, often the sample size is retrofitted by adapting the desired

power and the relevant effect size to the available number of participants. Le Deley et al [49]‡

extended the work of Sposto and Stram [50] to evaluate the efficiency of a series of successive

phase III RCTs by performing an extensive simulation study. Parameters for the simulations

were, amongst others, the significance level α, the number and size of trials and the effect

size; each trial’s outcome was of survival type. When the number of available patients is

small, results indicate that designs using smaller sample sizes together with relaxed α values

yield greater expected survival benefits. The authors assumed that treatment aspects are

similar over trials, that many drugs are available for testing and they did not consider interim

analyses.

Multivariate outcomes

A multivariate MA of multiple correlated endpoints enables to borrow strength across the

endpoints and to calculate joint confidence and prediction intervals [51]‡. When only AD

of studies to be pooled are available, an estimate for the correlation between the endpoints

within a study is necessary. Riley [51]‡ shows that ignoring this within-study correlation leads

to inaccurate pooled estimates in a bivariate RE MA. Only when between-study variation

is very large relative to within-study variation, within-study correlation can be ignored. In
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general, availability of IPD for all studies to be pooled is desirable. When both IPD and

AD are available, a distribution for the correlation can be estimated from the IPD and used

as an informative prior distribution for the missing correlations from the AD. Otherwise,

sensitivity analyses over a range of values for within-study correlations can be performed. As

an alternative, a model with an overall correlation estimate has been proposed by the same

author [52].

Jackson et al [53]‡, commentaries [54, 55, 56, 57, 58]‡ and the rejoinder [53]‡ provide a

summary of a one day event on ‘Multivariate meta-analysis’ for the pooling of studies with

multiple, often correlated, outcomes of interest. They discuss the multivariate RE model and

its assumptions, describe and apply the estimation methods and discuss advantages and

limitations of the multivariate MA. The greatest practical difficulty is the estimation of the

within- and between-study correlations, for which the authors describe some solutions. The

multivariate Normality assumption is often hard to verify as is the linear relationship of the

effects between the studies. Multivariate MA can be useful, but also brings complications and

issues. One of the commentaries was that a Bayesian approach using prior information in case

of few studies with sparse data can be helpful, but will also show the (large) influence of the

prior distribution.

Camilli et al [24]‡ compared three multi-level meta-regression models for multiple effect sizes

per included study, i.e., a standard multi-level model and an iteratively weighted multi-level

model, both with weights based on a Normal approximation to the non-central t distribution,

and a multi-level model based on the exact non-central t distribution. The latter model seems

to perform better for larger samples. For small samples, however, it is unclear which estimator,

a REML- or an MCMC estimator for the between-study variance is better.

Cumulative meta-analysis (CMA)

A CMA evaluates the accumulating evidence of a series of independent RCTs on the same

intervention. Its value, amongst others, lies in the early identification of clinical efficacy or

harm, thereby discouraging unnecessary future research. However, periodic updating of MAs

can inflate the type I error rate substantially and should be accounted for by formal monitoring

procedures [31, 59, 60, 61, 62, 63]‡. Borm et al [59]‡ present a rule of thumb that relates the
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desired type I error and the P value of the MA to the maximum number of updates. This rule

of thumb does not strictly control the type I error, however.

Trends in effect sizes over time can be detected by visual inspection of cumulative plots

or by a test of equality of the estimate of the first RCT and the estimate based on the

subsequent RCTs or the overall MA. Bagos and Nikolopoulos [64]‡ propose a generalized

least squares regression approach to estimate a time trend in effect sizes with a first-order

autocorrelation coefficient to adjust for dependence between successive effect size estimates.

They applied this exploratory tool in genetic association studies, but also see its usefulness

for planning an update of an already published MA. Sutton et al [31]‡ compare two methods

to inform prioritization strategies for updating systematic reviews. These methods are only

in agreement in case of homogeneity. Although the authors recognize the need to adjust for

multiple updating of a CMA, they do not control for this. Herbison et al [65]‡ carried out a

number of CMAs to determine the number of trials needed to stable down and get a consistent

point estimate. Values for τ2 and I2 were no predictors for the number of trials needed nor

was the size of the trials. A median of 4 studies were enough to get within 10% of the final

point estimate.

Pereira and Ioannidis [66]‡ investigated the occurrence of the “winner’s curse phenomenon”,

i.e. the fact that crossing a significance threshold and at the same time estimating the effect

size can result in exaggerated effect size estimates, especially for smaller sample sizes. They

evaluated a large number of MAs and found that the magnitude of significant effects is often

inflated, but the opposite is also true: if a boundary is not crossed, the estimate may be too

small. They argue, following other publications, that CMAs should be adjusted for multiple

testing.

Trial sequential analysis (TSA)

TSA combines the a priori calculation of information size for an MA with O’Brien-Fleming

monitoring boundaries to evaluate the accumulating trial data and at the same time adjust

for the cumulative updating. Calculation of the necessary information size can be performed

in various ways, amongst others by adjusting for heterogeneity using I2 [60, 67]‡. These

various information sizes lead to as many sets of trial sequential monitoring boundaries.
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Thorlund et al [67]‡ show that the risk of false-positive results and inaccurate effect size

estimates can be reduced by the use of TSA. Brok et al [60]‡ find that many published,

conclusive MAs are potentially inconclusive when adjusted for the cumulative testing and

for heterogeneity. TSA does not allow stopping for futility, however. In a commentary on

the previous two papers, Nüesch and Jüni [68]‡ emphasize the need for diagnostic measures

(such as funnel plots, stratified analyses and interaction tests) to draw conclusions from an

MA. Miladinovic et al [62]‡ recommend to perform and report sensitivity analyses based

on acceptable thresholds for the type I error, power and clinically meaningful treatment

difference to prevent premature declaration of a significant MA. They note that three MAs

prematurely were declared statistically significant, but later turned out to be not. Imberger

et al [69]‡ points out that power for two of these three was clearly insufficient to draw

a conclusion. Miladinovic et al [63]‡ were the first to apply time-to-event TSA. Like the

originally proposed TSAs, they did not control for type II error, which made stopping

for futility impossible. As an additional comment they note that application of Bayesian

monitoring boundaries may result in narrower credibility intervals. For TSAs with count or

time-to-event data, software in R and in STATA is presented and described [70]‡.

Sequential meta-analysis (SMA)

An SMA can be implemented using a triangular test following Whitehead’s boundaries

approach [71]. With this approach, the type I error and power of a CMA can be guaranteed.

Van der Tweel and Bollen [61]‡ compared TSA and SMA by re-analysing a number of

published examples incorporating the Paule-Mandel estimator for heterogeneity between

trials in the SMA. They showed that for an SMA (1) no prior estimate for total information

size is necessary and thus one set of monitoring boundaries suffices; (2) stopping a CMA for

futility is an option; (3) the desired power can be specified in the design; (4) point and interval

estimates are adjusted for the multiple testing. The estimates for heterogeneity are, however,

unstable for a small number of trials. The paper raised some discussion about supposed

differences between TSA and SMA [72, 73]‡.

Novianti et al [74]‡ evaluated the properties of estimators of heterogeneity in an SMA. Their

simulation study showed that the well-known DL estimator largely underestimates the true

value for dichotomous outcomes. They recommend the two-step DL estimator and the
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Paule–Mandel estimator for use in an SMA with dichotomous or continuous outcomes.

Prospective meta-analysis (PMA)

A PMA can be designed and executed to combine evidence from new and on-going, similar

clinical trials in a prospective way. Its advantages are uniformity of the trial protocol, the

intervention, the data collection instruments and the reporting of specific outcomes while

allowing individual sites some independence with respect to the conduct of research. The

inclusion of several sites increases statistical power to address important clinical questions.

In PMA, analysis of pooled results is more facile because of homogeneity of study outcome

measures. Besides, IPD enable to conduct stratified analyses and to control for potentially

confounding variables. The diversity in study population improves the external validity [75]‡.

A PMA is, however, not able to control the generation of new evidence, so the amount, timing

and heterogeneity of future trials will not be known in advance. This makes traditional group

sequential methods not applicable, but SMA can be applied. Higgins et al [76]‡ propose an

informative prior distribution to produce a realistic estimate of the between-trial variance in

an early stage of an SMA when only a small number of studies is available. The point estimate

is then updated in subsequent stages of the SMA. This semi-Bayes approach incorporates

the DL estimator. The false-positive and coverage properties depend on the choice of prior

distribution for the between-trial variance. Imberger et al [77]‡ wonder how the parameters

for this prior distribution can be interpreted and how heterogeneity is incorporated.

Shuster and Neu [78]‡ argue that prospective group sequential MA methods (such as TSA and

SMA) need four essential qualities, i.e. the population effect sizes should be allowed to change

over time, independent increments of information from analysis to analysis, robustness

against incorrect specification of the information fraction and a physically interpretable effect

size. To meet these needs, they impose a separate prior distribution on the effect sizes for each

trial, weigh each trial only by sample size and not by the inverse of the variance and apply

Pocock’s approach to group sequential testing (i.e. a constant nominal type I error probability

at each interim analysis). There is no guarantee of power of the PMA, however.

For a recent, practical application of an IPD PMA see Askie et al [79].
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Network meta-analysis (NMA)
A single SR or MA of a treatment comparison for a single outcome offers a limited view if there

are many treatments or many important outcomes to consider. An umbrella review assembles

together several SRs on the same condition. If treatments in the SRs can be connected

directly or indirectly in a network, outcomes can be analysed with a multiple-treatment meta-

analysis/mixed treatment comparison meta-analysis/network MA (NMA). These analyses

can also rank the effectiveness of the treatments in a network, thereby determining the best

available treatment. An important issue in an NMA is to examine whether there is incoherence

or inconsistency, i.e. whether the effect estimated from indirect comparisons differs from

that estimated from direct comparisons. However, the power to detect incoherence is low

when there are only a few RCTs. Ioannidis [80]‡ provides key features in the critical reading

of umbrella reviews and key considerations for NMA. NMA requires more sophisticated

statistical expertise than simple umbrella reviews, but assumes that all data can be analysed

together. Most methods for MTMA follow a Bayesian approach. Stijnen et al [42]‡ applied

their exact method (see also above under General MA) in an example on NMA. Thorlund and

Mills [81]‡ propose flexible methods for estimating the sample size or statistical information

and the power in an NMA with both direct and indirect treatment comparisons. Their sample

size formulas correct for heterogeneity using I2.

To assess the effect of a particular combination of drugs, Thorlund and Mills [82]‡ propose an

NMA model with an additive-effect parameter. Such a model gains precision by assuming full

additivity of treatment effects, that is: when the effect of the treatment combination is equal to

the sum of the stand-alone effects. The additive-effects model is superior to the conventional

NMA model when full additivity holds. The two models are comparably advantageous (in

terms of a bias-precision trade-off) when additivity is mildly violated. When additivity is

strongly violated, the additive effects model is statistically inferior. When additivity can

be assumed, it seems reasonable to prefer the additive effects MTCMA model above the

conventional model.

An NMA assumes similarity across the pooled set of trials in terms of patient population and

trial characteristics. Naci and O’Connor [83]‡ describe the possible benefits of a prospective

NMA, such as access to IPD by regulatory agency statisticians, to evaluate comparative
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efficacy and safety of more than two drugs. Information from both direct and indirect

comparisons from a network of trials can provide (far) more information, especially on safety,

than just pairwise MA. They urge researchers, manufacturers and regulators to collaborate on

future trial designs and analyses. Regulators having access to IPD could also help to inform

patients more completely about new treatments. They note, however, that FDA and EMA

might not be allowed to use proprietary information from the marketing application of one

drug in the evaluation of another.

Bafeta et al [84]‡ performed a methodological review of reports of NMAs. They conclude

that essential methodological components of the review process, like conducting a literature

search and assessing risk of bias of individual studies, are frequently lacking in the reports.

They call for guidelines to improve the quality of reporting and conduct of NMAs. We refer

to the reader to Chapter 2b and Chapter 7 for a more elaborated discussion on NMA.

Aggregate data (AD) vs individual patient data (IPD)
Traditionally, an MA combines evidence from related RCTs based on aggregate study-level

data. Increasingly, IPD are used. Riley et al [85]‡ go into the rationale behind IPD MAs. IPD

are not needed if the required AD can be obtained in full from publications. However, IPD

MAs are potentially more reliable than AD MAs. Use of IPD can increase the power to detect a

differential treatment effect, allows adjustment for covariates on patient-level instead of study-

level and is particularly advantageous for time-to-event data. A disadvantage is that the IPD

approach can take lots of time and costs, and often requires advanced statistical expertise (like

FE and RE MA) to preserve the clustering of patients within studies. Increasing use of PMA

on IPD is advocated.

To identify a possible source of treatment effect heterogeneity, a treatment-covariate

interaction (with the covariate defining the subgroups of interest) can be estimated from a

regression analysis on IPD. Kovalchik [86]‡ presents an AD EM-algorithm that is equivalent to

the ML estimates for an IPD linear RE MA with a patient-level treatment-covariate interaction

term for a categorical covariate, when the model’s variance parameters are known. The

presented methodology does not replace an IPD MA, but provides a good AD approximation

to a specific kind of IPD interaction model when patient-level data cannot be obtained.
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Discussion

Research in rare diseases faces two problems. First, a small number of participants available

per trial, and second, usually only a small number of trials targeting the same (new) treatment

is possible. In this review we described statistical methods to combine results of series of

trials, as published in a recent period of five years. Various search engines were explored.

This is specifically important for a methodological review. For example, with the extension to

Scopus, 39 unique papers were identified. In total, 61 papers were included in this review. We

categorized the relevant methodology according to the type of (meta-)analysis and assessed its

usefulness and limitations in small populations. The focus of this review is on methodology.

Completeness is less of an issue in methodological research. A more extensive search could

identify additional papers, but is unlikely to provide new insights. In other words, our search

will reach a stage (‘theoretical saturation’) where identifying more articles will not render

further methodological perspectives [87].

In general, an MA is a well-accepted way of pooling results from a series of trials. Various

approaches to MA have been described and evaluated in the past. Herbison et al [65]‡

concluded that a median number of 4 studies are needed to get within 10% of the final pooled

point estimate, where they based this final value on a minimum of 10 trials and assumed it the

true value. They restricted themselves to FE estimates based on 95% CIs and did not adjust

the CIs for multiple testing. They recognize that it is impossible to predict which SRs with a

small number of studies will be correct in the long run.

Simulation studies with survival type outcomes showed that designs using smaller sample

sizes and relaxed α values yield greater expected survival benefits than traditional design

strategies that aimed to detect a small difference with high level of evidence [49]‡ with

reference to Sposto and Stram [50]. These studies focused on personalized medicine, but can

also be useful for RCTs in rare diseases. Research has to confirm the results for dichotomous

and continuous outcomes. O’Connor and Hemmings [18] also suggested relaxation of the

type I error.

Both Miladinovic et al [62]‡ and Nüesch and Jüni [68]‡ cite Egger and Davey Smith [88] that

’results of meta-analyses that are exclusively based on small trials should be distrusted - even if the
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combined effect is statistically highly significant. Several medium-sized trials of high quality seem

necessary to render results trustworthy.’ This citation is opposite to the suggestion by IntHout et

al [89] that ’evidence of efficacy based on a series of smaller trials may lower the error rates compared

with a single well-powered trial’.

Most research in MA acknowledges the need to incorporate heterogeneity into the effect point-

and interval estimates. The properties of the estimators are not well-known though for a small

number of trials. Various authors note that both I2 and τ2 as measures for heterogeneity can

be unreliable and unstable in an MA with a small number of trials. Estimating heterogeneity

is considered more important than testing it. To account for the uncertainty in the estimated

value of τ2 in a CI for the pooled effect size, the use of a t-distribution with k − 1 or k − 2

degrees of freedom (with k the number of trials pooled) instead of a Normal distribution in a

CI for the pooled effect size is proposed [26, 29, 62, 68]‡. This implies that the number of RCTs

to be pooled in an MA should be at least three.

For continuous outcomes a variance stabilizing transformation is advised [29]‡ before

estimating the confidence interval. The method-of-moments estimator according to

DerSimonian and Laird (DL) to estimate the between-study heterogeneity parameter τ2 is

widely applied ([9] and [28, 29, 38]‡) and is also standard in software such as Review Manager

[90] and Comprehensive Meta-analysis [91]. Yuan and Little [40]‡ observe a bias in the DL

estimator leading to too narrow CIs. Turner et al [38]‡ and Novianti et al [74]‡ note that

alternative estimators such as proposed by DerSimonian and Kacker [92] might be preferred.

Their properties, and those of other recently proposed estimators [16], in a small number of

RCTs have to be explored.

Case series of the use of therapeutic procedures or devices can be included to strengthen the

evidence in an SR, although Chambers et al [30] mention some drawbacks. The contribution

of case series of drug use for an SR and MA in rare diseases has to be further explored.

Hee and Stallard [48] propose an optimal decision-theoretic design of a series of phase II

clinical trials followed by a phase III RCT. Their approach is a hybrid one, in that it assumes

prior distributions for the success probabilities in the phase II trials, followed by a classical

frequentist hypothesis test. This proposal can be useful in rare diseases, but its application in

RCTs with non-dichotomous outcomes has to be investigated further.
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Frequently, an MA is updated with results of one or more newly published RCTs, leading to

a so-called CMA. In general, such an update does not control for multiple testing, thereby

risking an increase in the overall type I error. A TSA or SMA design, on the contrary,

guarantees the overall type I error. The use of a TSA, an SMA or a PMA enables to stop a

series of trials for efficacy or futility, thereby leading to efficiency gains and thus ethical and/or

economic benefits. Ideally, TSA should be applied prospectively with clinically relevant pre-

specified treatment differences, type I and type II errors [61]‡. These authors also see a role for

sensitivity analyses.

Thorlund and Mills [82]‡ use I2 to correct for heterogeneity in an NMA. Its use as a measure

of heterogeneity can, however, be debated. It is, for example, known to increase with the

number of patients included in the studies in a MA [93]. Wetterslev et al [36]‡ conclude that

their proposed measure D2 seems a better alternative for trial diversity and for adjustment of

the required information size. Demidenko et al [28]‡ developed a coefficient of determination

to measure the strength of the presence of random effects in a model. It is unclear what its

additional value is to I2. Higgins et al [76]‡ consider clinical research a sequential process

where SMA can play a role in the design of a new trial, since the amount of further information

that would be required can be determined. They notice, however, also some points of

attention. One is whether or not a correction for multiple looks to cumulative data is needed.

Another is the poor estimation of τ2 from a small number of studies. Then realistic prior

information is necessary, but the choice of the prior distribution is crucial in the early stages

of an SMA. Undertaking an MA in a fully Bayesian way has the advantage that no correction

for multiple looks is necessary for inference, but frequentist properties, such as type I errors,

can be inflated.

Rücker et al [41]‡ suggest to adjust treatment effect estimates for small-study effects, leading

to shrunken, empirical Bayes estimates. These estimates are approximately unbiased when

the number of trials in an MA is at least 10. The approach depends on the estimator for τ2,

which was the DL estimator, which is known to underestimate τ2for dichotomous outcomes.

The remaining amount of heterogeneity, termed G2, varies considerably depending on the

estimator used. Further research will be needed to investigate whether this approach is useful

for MAs with less than 10 RCTs and with other estimators.
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Especially in rare diseases, multiple outcomes will (have to) be examined simultaneously. In

that case a multivariate MA as proposed by Jackson et al [53, 54, 55, 56, 58, 57]‡ may show

potential, but also raises concerns. In particular, the statistical properties for a small number of

small samples, imprecise between-study (co)variances, unavailable within-study correlation

estimates, a possible large number of parameters to be estimated, and missing outcomes in

some but not all trials require further study. It also makes clear that IPD will have to be

available for RCTs in such MAs. Riley [94]‡ also points to the important role of a multivariate

MA in evidence-based decision making. His approach assumes the within-study correlation is

given and known, though. Comparison of this approach with an earlier proposed alternative

[52], a model with an overall correlation estimate, in small populations deserves further

investigation. Stijnen et al [42]‡ presented an extension of their exact likelihood method for

dichotomous outcomes into a multivariate MA. Their model can also be applied with rare

event outcomes.

Both frequentist and Bayesian approaches are applied to combine successfully the extracted

data from several trials. Their application in the field of rare diseases is one possible way

to sufficiently support a treatment effect. Measures for heterogeneity can be unreliable and

unstable in an MA based on a small number of trials. An option is to formulate an informative

prior distribution around τ2. This prior can be updated in an SMA with the result of a

new MA leading to a posterior distribution, which in turn forms a new prior. However, for

small data, Bayesian posterior probabilities may depend heavily on the choice of the prior

distribution. Higgins et al [76]‡ prefer a Bayesian approach, especially for prediction. They

note, however, that their approach does not lend itself well to rare events. Furthermore, it

is not clear that strict control over false-positive findings is important in this context, since a

small, non-statistically significant, signal should still be investigated when the adverse effect

is major. Both Higgins et al [26]‡ and Chung et al [27]‡ prefer a Bayesian informative prior

distribution for the heterogeneity parameter. The proposed Bayes modal estimator prevents

zero (i.e. boundary) estimates and shows good properties for a small number of studies. Most

methods for NMA follow a Bayesian approach. Ioannidis [80]‡ notes that the power to detect

inconsistency in an NMA is low when the network consists of only a few (small) trials.

In general, availability of IPD for all studies to be pooled is desirable, particularly in rare
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diseases. There, the role of regulators is a further point of attention, because of the remark

made by Naci and O’Connor [83]‡ that FDA and EMA might not be allowed to use proprietary

information from the marketing application of one drug in the evaluation of another.

Recently, several initiatives have been started to facilitate and promote the sharing of clinical

trial data. Members of three EU-FP7 projects on small populations (Asterix, Ideal and Inspire)

together with representatives from regulatory agencies, scientific journals and industry

addressed the arising intricate biostatistical questions such as the interpretation of multiple

statistical analyses, both prospective and retrospective as well as the issue of data protection

which is most prominent in the setting of rare diseases [95].

Conclusions

For evidence-based decision-making on a (small) series of trials in small populations, our

review has led to several directions for further investigation: 1) frequentist properties of

estimators for heterogeneity between trials; 2) use of exact (likelihood) methods; 3) value of

prospective meta-analysis in drug development; 4) combination of observational, historical

and trial data to ensure that every patient contributes as much information as possible; [18, 96]

5) relax the type I error probability; 6) focus on multiple outcomes per patient; 7) combination

of IPD with AD; 8) special attention for the evaluation of rare events, such as safety outcomes.
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Abstract

Classical and Network meta-analysis can play an important role in clinical research for rare

diseases, where it is difficult to conduct large randomized clinical trials and there is a large

unmet need for new treatments. This review aims to summarize Bayesian methodology

for meta-analysis specifically for small populations and to provide directions for application

in clinical drug development for rare diseases. We conducted a 9-year scoping review

and identified methodologies applicable for combining results for a series of a few small

available trials, excluding variations methods for the design of a new trial. We summarized

methodology divided in methodological domains of pairwise and network meta-analysis.

Secondly, by utilizing selected European Public Assessment Reports of approved drugs

with an orphan designation, we assessed Bayesian meta-analysis methods for application in

drug development of rare diseases. Only a few articles dealt with series of trials in small

populations directly and most of these focused on pairwise meta-analysis. Limited attention

is paid to adapt standard asymptotically valid approaches to the finite sample case of a small

number of small trials. Relevant methods facilitate the inclusion of data from prior trials or

meta-analyses through prior distributions for parameters that cannot be reliably estimated

(i.e. between-trial variance τ2). Our assessment of approved orphan drugs indicated that

non-zero between-trial variance can occur, even if these trials have identical design. Our

review did not identify clearly methods applicable for this particular setting. Bayesian meta-

analysis methods may overcome methodological difficulties that are inherent to evidence

scarcity. Nevertheless, currently available Bayesian meta-analysis methods tailored to small

populations are not common. Marketing authorization of orphan drugs could benefit from

Bayesian methods in the context of series of small trials but for the proper application of

Bayesian meta-analysis in an orphan drug evaluation more methodological developments are

needed.
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Background

Randomized controlled clinical trials (RCTs) are considered the gold standard for comparing

and evaluating the efficacy of medical interventions [97, 98]. Considering the number of

people affected by a rare disease (prevalence between 1/2500 and 1/1000 [1]), in general

a sufficiently sized RCT is not always feasible, while smaller trials produce underpowered

and non-conclusive evidence [5, 99]. When evaluating a novel intervention in rare diseases

(orphan drug) the number of available trials is small; usually the number of participants per

trial is limited as well [100]. Similarly to Chapter 2a, please note that the list of references

is split into two parts: 1) references to other publications and 2) references to papers in the

review (‡).

In 2006, the guideline on clinical trials in small populations was published and referred

to Bayesian methods as potentially “advantageous when faced with small datasets, although

introducing prior beliefs is often a concern in drug regulation” [19]. Specific features of Bayesian

methods (i.e. flexibility, incorporation of external evidence, easy implementation of complex

models) have led to the increasing use of this statistical framework, particularly for phase I

trials and adaptive designs [101]. Still, Bayesian methods are not established in confirmatory

trials yet and their use is often debated [19, 102].

Bayesian approaches for design and analysis of clinical trials in rare diseases have been

advocated by scholars extensively, as they can maximize information from a limited number

of subjects by combining external information with trial evidence [103, 104]. For example,

in paediatric trials, clinicians face the challenge of extrapolating results from adult trials to

a paediatric population. Bayesian approaches may be used to increase the efficiency of the

paediatric trial by borrowing strength from adult trial or series of trials [105, 106].

Several statistical methods for combining a series of trial results have been developed. These

methods infer on an intervention’s effectiveness or generate hypotheses for the planning of

new trials, among other purposes [107, 108]. Meta-analysis (MA), first defined by Glass in

the social science literature as ”the statistical analysis of a large collection of analysis results from

individual studies for the purpose of integrating the findings” [109], is established as a statistical tool

to integrate the results of several individual studies on two interventions. MA benefits include
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the possible increased power and/or the added generalizability of results in comparison to a

single study [9, 110].

According to international guidelines [102], drug licensing in large scale diseases requires two

pivotal phase III trials to be successful as part of the results that are submitted for a market

authorization application. Such a requirement may not always apply for rare diseases and

conditional approval is granted, in case of a large unmet clinical need [19]. Nevertheless, in

rare diseases a number of controlled or uncontrolled phase II trials often may exist, prior to

conducting a confirmatory phase III trial (i.e. [111, 112, 113]). Thus, a MA of these clinical

studies as part of a drug development plan for a rare disease deserves attention.

The classical pairwise meta-analysis (PMA) is restricted to comparing two interventions at a

time, which would typically suffice in a regular drug development plan. In rare diseases,

an increasing collaboration between sponsors (industry or academia) occurs, allowing for

the evaluation of several treatment options in parallel. Network meta-analysis (NMA), an

extension of classical PMA, evaluates the relative effectiveness of multiple interventions by

synthesizing the available evidence across a network of studies that compare different sets of

interventions. The ultimate goal of NMA is to provide a coherent ranking of interventions

and assist in decision-making. As in rare diseases the restricted number of patients prohibits

the conduct of a large number of RCTs, NMA may act as a bridge over evaluating multiple

intervention options; out of those options, all treatments need not be directly compared in

every RCT in the NMA.

The small sample restriction of rare diseases may make it more acceptable to consider

Bayesian methods for classical PMA and NMA in a regulatory setting [19]. Bayesian

techniques are used to facilitate the interpretation of results, since they allow for probabilistic

statements on the effectiveness of the compared interventions [114]. In addition, Bayesian

methods in MA might be able to tackle issues that are enhanced in small populations (i.e

the proper synthesis of few number of small trials [13]‡, the possibly problematic crude

synthesis of adverse rare events [115]) by incorporating historical evidence in the form of

prior distributions.

With this background, we assessed current Bayesian MA and NMA approaches in the context
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of new (pharmaceutical) treatments development for rare diseases. Thus, this article reviews

the methodology, draws examples from the European Medical Agency’s Public Assessment

Reports, and reflects on issues relevant to the application of Bayesian MA methodology in

drug development of rare diseases. First, we describe two general meta-analytical areas: (1)

pairwise meta-analysis (PMA), which includes multiple outcome meta-analysis (MMA), and

(2) network or mixed treatments meta-analysis (NMA) and we refer to them under the term

”meta-analysis“ in the remainder of this paper. Next, we focus on aspects (domains) of meta-

analysis that demand attention in case of orphan drug development: (3) heterogeneity – τ2,

(4) individual patient data (IPD) and (5) reporting and trial design biases and (6) rare events.

The article is organized as follows. We describe the search strategy, introduce the scope of

each meta-analytical area and summarize the eligible methodological articles as retrieved

from our literature review. Subsequently, we summarize available statistical approaches in

four domains that are particularly important for rare diseases. We reflect on our collected

methods and their suitability through a pragmatic evaluation of typical examples from rare

disease drug development. We conclude with a discussion and provide recommendations for

practice.

Methods

Search strategy

We conducted a scoping review of research published from 1.1.2009 until 30.12.2017. In order

to include articles from journals that were currently indexed in only a specific search engine

we performed a broad search including five search engines, namely, PubMed, Web of Science

(WOS), Scopus, JSTOR, and Cochrane collaboration Library (Supplementary material 1). A

brief description of the overlap among the 5 databases is provided in Supplementary material

1 (Figure 1).

We remained liberal at including articles in each step to avoid omitting important articles.

We included three main keywords and variations at each search, ”trial”, ”meta-analysis” and

”Bayes”. The only keywords that were used to limit the number of articles were, ”a meta-

analysis”, ”a systematic review”, ”Phase I” and ”phase IV”. Initially, a range of keywords

referring to small populations was utilized as an additional search term (i.e. rare diseases,
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small populations, few trials). However, we decided to exclude this term, as the number of

resulting articles was very limited. Once we were close to completing the review, we updated

the search by monitoring journals of methodological interest on the topic prospectively

(Supplementary material 1).

Eligible methodological articles

To exclude papers on applications of classical and network MA, we eliminated most clinical-

focused journals (a list of the journals we considered can be found in Supplementary material

1 (Table A2)). Then we excluded search entries if they: (1) were published in a different

language than English, (2) were included in conference posters or proceedings, (3) were

books / chapters, (4) consisted of applications of meta-analyses that did not have a specific

methodological interest (5) had no relevance to meta-analysis, (6) described meta-analysis in

a non ”clinical trial” context (i.e. genetics), (7) were discussing n-of-1 trials, (8) if their full text

was not available or (9) were utilizing a meta-analysis mostly for the design of a future trial.

Selection of methodological articles

One reviewer (KP) judged the initial selection of articles by title and excluded articles given

the above characteristics. Then, two reviewers (KP, LMS) independently judged the remaining

articles by title and abstract to (I) include, (PI) probably include, (PE) probably exclude or (E)

exclude. Articles with a concordant score from both reviewers were either included (I or

PI) or excluded (PE or E). The discordant articles were discussed with a third -independent-

colleague (KR) until consensus was reached. Finally, following a similar procedure, the

remaining articles were evaluated on the basis of their full text (Figure 2b.1).

Data extraction

Concerning the eligible methodological articles, we extracted information on the meta-

analytical area (i.e. PMA/MMA or NMA), the year of publication, the statistical software

used, the types of outcome (i.e. binary, continuous, time-to-event) and, if applicable, their

specific methodological components (i.e. heterogeneity, individual patient data).
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European Public Assesment Reports (EPARs)

Finally, we searched EPARs of the European Medicines Agency and selected specific examples

of approved orphan drugs to demonstrate conditions for which a Bayesian meta-analysis

could be utilized. We considered EPARs of approved orphan drugs, published from 2006

until today. Our selection of examples represents a range of rare conditions with different

characteristics [100].

Results

The search resulted in 15,767 articles, including duplicates, out of which 2,582 from PubMed,

5,449 from Scopus, 5,252 from WOS, 2,436 from JSTOR and 48 from the Cochrane Library

(Figure 2b.1). After evaluating the full text of 97 articles, in total 31 eligible articles were

included (Figure 2b.1). Table 2b.1 provides their descriptive characteristics. Most articles

concentrate on dichotomous outcomes. More than half describe methods of PMA via the

use of R or WinBUGS. NMA is mostly implemented via Bayesian hierarchical models [116],

which explains the use of WinBUGS / JAGS program by half of the articles. Since MAs that

utilize IPD are less prevalent due to the limited availability of data, as expected, the vast

majority of articles explores techniques that use (summary) aggregated data (AD). We provide

an analytical table of the 31 eligible articles, alongside their characteristics in Supplementary

material 2 (Table A1).

Pairwise univariate meta-analysis (PMA) - Multiple outcome meta-analysis

(MMA)

The frequently used Bayesian random-effects (RE) PMA model has a two-level hierarchical

structure [117]. In Bayesian inference all unknown parameters can be considered random

variables and need a prior distribution. The choice of prior distribution for the overall

treatment effect is not trivial. Usually a diffuse normal prior is placed on the overall treatment

effect among other choices [118]. However, since the choice of prior for the between-study

variance (heterogeneity - τ2) parameter may impact the posterior inferences, it remains a

controversial topic in a PMA of a few small studies [26].
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 Figure 2b.1: Chapter 2b - Flow diagram of the search strategy

Often in RCTs more than one outcome exists (i.e. improvement of symptoms, treatment

discontinuation ). When we suspect these outcomes to be correlated, employing an MMA

is recommended, in order to account for their correlation. Separate PMAs of correlated
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Table 2b.1: Characteristics of the articles included in the review. *MA = meta-analysis, PMA =
Pairwise meta-analysis, NMA = network meta-analysis, MTC = mixed treatment comparison,
AD = aggregated data, IPD = individual patient data, n.s. = not applicable / not specified.

Characteristic Category Count #

2009 2
2010 1

Year of publication

2011 2
2012 3
2013 8
2014 3
2015 2
2016 7
2017 3

Input data
AD 24
IPD 3
AD+IPD 4

Type of outcome

Dichotomous 17
Continuous 1
Time-to-event 1
Multiple 12

Type of analysis
Univariate 27
Multivariate 4

Type of MA
PMA 23
NMA 8

Model approach
Bayes 22
Frequentist and Bayes 9

Program

WinBugs/Jags 11
Multiple platforms 8
R 4
Mathematica 2
n.s. 6

Total number of articles 31

outcomes may lead to overestimated variances and biased estimates [94]. Compared to

a PMA, an MMA analyses multiple outcomes simultaneously [119]. A simple RE MMA

model assumes a multivariate normal distribution for the multiple outcomes and includes

a covariance matrix that consists of within- and between-study variances and correlations.

In rare diseases, the number of studies remains small, and usually not enough information

becomes available for estimating the variance-covariance matrix correctly [120]‡. For example,

Wei et al discuss that at least 15 studies may be needed to analyse their unstructured bivariate

model robustly [120]‡. Due to the limited number of studies, prior considerations might

highly impact the posterior estimates. In such a multiple outcome setting, as shown in the
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literature, the Bayesian approach may be particularly effective when synthesizing six or fewer

studies ([121] and [122]‡) via the use of informative priors on the between-study variance and

correlation parameters ([123] and [124, 125]‡ ).

MMA methods exist that simultaneously analyse outcomes, which are not reported by all

incorporated studies [120]‡. In addition, methods that are capable of combining different

types of outcome (i.e. continuous, dichotomous) could be beneficial in rare diseases [126]‡.

The success of such approaches rests in their ability to adjust for the missing outcomes by

borrowing information from the other studies. Nonetheless, when the number of outcomes

is relatively larger than the number of available studies, estimating the between-study

correlation becomes challenging and additional assumptions on the variance-covariance

matrix are commonly applied (i.e. homogeneity among within-study variances and/or

within-study correlations) [120]‡. For the special case of two correlated outcomes, a Bayesian

MMA can be employed without accounting explicitly for the within-study correlation, by

directly modelling their overall correlation and their within-study variances [52]. This

approach may become problematic in cases where the within-study variability becomes

relatively large [52]

Network meta-analysis (NMA)

NMA (also known as multiple treatment meta-analysis or mixed-treatment comparison) is

considered an extension of PMA [127, 128] and can be further extended to multiple outcome

NMA [10, 129]. NMA allows inferences to be made on interventions which are not directly

(head-to-head) compared in any trial, by examining the relative effects of these interventions

against (at least) a common comparator; hence, indirect evidence is produced. The validity

of the indirect evidence depends on the transitivity assumption which states that there are no

differences between directly observed and indirectly observed intervention effects beyond the

between-trial variance and consequently, any missing intervention in each trial is missing at

random [10]. The statistical manifestation of transitivity is known as consistency and refers

to the agreement between direct and indirect evidence (usually derived by more than one

routes) in a closed loop of evidence that comprises a “circuit” of connected interventions. If

consistency holds, then direct and indirect evidence can be pooled to obtain a mixed estimate

of a comparison. Salanti provides a description of transitivity and consistency in a more-
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detailed, fruitful discussion. [10].

Both a frequentist and a Bayesian perspective can be applied to NMA. Bayesian techniques

in NMA seem to dominate during the recent years, due to their ability to handle complicated

models and support probabilistic inferences, such as the ranking of competing interventions

[116, 129]. Nevertheless, the availability of only a few trials may negatively impact the

credibility of the NMA results, as elements of the covariance matrix become inestimable

[130]‡. Diffuse priors are usually placed on location and dispersion parameters, however,

weakly informative [131] and informative empirical priors [132] on the covariance matrix have

been recommended when the available evidence is sparse [133, 134]. In so sparse conditions,

NMA performs a ”borrowing of strength“ across both trials and the assumed NMA structure

[135]. Salanti et al [114] highlighted that ranking probabilities of the treatment effects are

prone to small changes of the posterior in case of a small number of trials, and therefore the

estimated ranks (and their uncertainty) should be reported, for example, together with the

effect size of each intervention relative to a reference treatment.

In rare diseases, networks of trials are poorly connected. Closed loops of intervention are

particularly scarce and indirect evidence dominates, rendering a thorough examination of the

consistency assumption and a formal synthesis of the evidence network challenging, if not

impossible ([136, 137] and [138]‡). Nonetheless, when facing a few studies, a Bayesian NMA

with the use of informative priors on the between-study variance might offer an alternative

over the unstable inferences of frequentist methods for detecting inconsistency [139]. A

Bayesian synthesis enables a more reliable estimation of heterogeneity [13]‡ and since extent

of heterogeneity and the likelihood to detect inconsistency are inversely related, the latter

can be identified more robustly [10]. In general, when less than five trials are synthesized or

when the network is poorly connected, the performance and the reliability of NMA deteriorate

[140, 141].

A fully Bayesian arm-based model has been developed to detect inconsistency in an NMA of

binary outcomes by the use of discrepancy factors [142]‡. This approach showed the ability to

handle sparse data more efficiently, in comparison to the Lu and Ades contrast-based model

[133].
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Heterogeneity – τ2

In the presence of a few trials, the accurate estimation of statistical heterogeneity becomes

challenging. Inaccurate estimation of heterogeneity may compromise the quality of inferences

obtained from the previously mentioned meta-analytical domains and result in unreliable

inferences. In this case, the use of plausible values for τ or the application of a fixed-effect

model has been suggested [26]. The latter assumes that studies estimate the same true

effect. This assumption may be realistic, if the main objective would be either to demonstrate

a treatment effect at least for a specific group and no unexplained heterogeneity exist or

to perform hypothesis testing [143]. However, the fixed-effect assumption becomes more

difficult to defend, i.e. if the main objective would be to estimate a treatment effect in a broader

population [9].

In order to remain objective and make data-driven inferences, vague or low informative priors

can be assigned on the heterogeneity. An extensive simulation study evaluated operational

characteristics of various priors on heterogeneity, based on vague priors for the heterogeneity

parameter. It showed that inference for the treatment effect can become unstable with

relatively sparse data (less than five trials and less than 100 patients per trial), therefore,

sensitivity analysis on the prior selection for the heterogeneity parameter should always

be considered [144]. The selection of the prior distribution for heterogeneity impacts the

prediction of the treatment effect in a future relevant clinical trial as well [145]‡. The half-t

family of priors is introduced as a valid and robust alternative when the available evidence

is scarce [146]. The half-normal prior, a member of this family, has been evaluated and is

suggested for a MA of a few small trials in comparison to standard frequentist alternatives (

[144] and [13, 147]‡). In such sparse conditions, plausible ranges for the heterogeneity priors

are usually suggested to aid inferences and to provide meaningful results [131]. Finally, one

could apply a reference prior which has the ability to maximize the data impact on inference

[148]‡ . Currently, this prior applies only to the basic normal-normal hierarchical model which

appeared to provide improper coverage in sparse conditions (i.e. zero events) under a number

of alternative hypotheses [149, 150].

As an alternate strategy for estimating heterogeneity, the idea of using historical MAs from the

same therapeutic area to inform a Bayesian MA was introduced by Higgins and Whitehead
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[135]. Recently, various attempts to summarize knowledge on existing MAs have been

initiated [151] and [152, 153, 154]‡). Turner et al and Rhodes et al used a large database of

Cochrane reviews in order to provide predictive distributions for the heterogeneity parameter

tailored to different medical settings depending on the nature of the outcomes (i.e. subjective)

and comparisons (i.e. pharmacological versus placebo) ([151] and [153, 155, 156]‡).

In the context of treatment comparisons with sparse data in NMA, authors advocated against

the use of the standard homogeneous model and they suggested the use of informative

variance priors instead [157]‡. Even under a frequentist pooling of study-specific effects,

heterogeneity estimators derived through Bayesian theory have been suggested as promising,

especially in the context of a few trials ([27] and [158, 159]‡).

Individual patient data

The use of IPD is regarded as the gold standard for performing a MA and is a special topic of

current research interest [160, 161]. Clinical and methodological sources of heterogeneity can

be best explored when having access to IPD by one-step (standard general linear regression)

or two-step (meta-regression) and subgroup analysis. In addition, several advantages, such

as the report of lower absolute biases, have been argued when conducting a Bayesian IPD MA

of survival endpoints [162]‡.

Often IPD are not widely available and as a result, methods that combine AD and IPD

for a subset of trials have been developed in the PMA [163] and NMA context ([164]

and [165, 166]‡). These methods are regarded as a way of creating precise estimates of

treatment effects and evaluating in depth sources of heterogeneity while eliminating the risk

of ecological bias observed in aggregated data. Although the sole use of AD data may be

misleading [164], NMA models that combine AD with IPD run the risk of becoming unstable

when the number of contributing trials per comparison is limited [166]‡. In such cases, specific

a-priori assumptions, such as a common interaction or exchangeable coefficients may provide

a gain in precision or allow for borrowing of strength across the trials [166]‡.
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Reporting and trial design biases

Biases can be introduced in a MA through the inclusion of studies with methodological and

reporting limitations. Inadequacies in the design characteristics of the contributing trials

(i.e. allocation concealment, missing data) and deficiencies on the reporting of results may

compromise the internal and external validity of an MA. A partially subjective resort to deal

with variation in the quality of the studies would be weighting, by using empirically-based

priors [167]‡. Studies are divided into low and high risk bias, based on a specific bias domain

(i.e. adequate or inadequate allocation concealment) and they are entered in the model. Unless

information from the low risk bias studies is really limited, the weighted inclusion of high risk

bias studies will provide only a small gain in precision [167]‡.

Publication bias is the most prominent type of bias in MA and has received attention from

clinicians and methodologists since the 1970s. Since in our context, studies are usually small,

non-significant results may be easily subject to the ”file drawer problem” (studies that do not

support the hypotheses of researchers often end up in the researchers’ file drawers) and

the risk of publication bias may be high in small population MAs. Selection models, such

as [168], may address missing studies more efficiently using probabilistic statements within

a sensitivity analysis framework, as opposed to full meta-regressions when applied in rare

diseases.

The Bayesian framework offers the flexibility to incorporate data from different study designs

through a three-level hierarchical model [169]‡. Such a model accounts not only for the

between-study variance within each design setting, but also for the between-design variance,

namely different information per trial design, resulting in possible reduction of selection biases.

Nonetheless, usually such multilevel models may become unidentifiable for a few small trials.

Often, individual trials with common endpoints have dissimilar treatment arms [170] or

report different effect measures (i.e. hazard ratios in some trials whereas odds ratios in others)

[171]‡. Methods that combine different type of data sources (i.e. variety of study designs,

variety of study effect measures) in order to minimize bias due to outcome restrictions are an

option for a MA of a few trials as well ([170] and [171]‡).
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Rare events

Despite its flexibility, the standard normal Bayesian hierarchical model may perform sub-

optimally when applied on dichotomous outcomes, especially in sparse conditions that

introduce zero events. Zero events can highly impact the estimation of both the overall

treatment effect and the heterogeneity. Robust methods tailored to deal with that issue via the

use of exact distributions have been introduced in a Bayesian framework ([172]‡ and [173]‡).

For example, Moreno et al refrain from using continuity corrections by utilizing exact binomial

distributions and suggest alternatives to the standard normal linking distribution between the

overall effect and the study-specific effects [172]‡.

Vazquez et al deviate from the common normal approximations and apply an automatic

sensitivity analysis to hyperparameters of the prior distributions [174]‡. Even though

their method can be readily extended to sparse and disconnected networks, it has not

been compared with other models and specifically in situations of small populations.

Another methodology to deal with rarity of events, the so-called B-Bird method, has been

introduced by Tang et al [175]‡. Their method has been designed for the risk difference and

utilizes historical information available on the rarity of events via the manipulation of the

hyperparameters of a Beta prior on a binomial likelihood. It is shown to outperform the

classical risk difference model of Warn et al [176], especially under a few rare event trial

settings [175]‡.

Examples of meta-analysis in orphan drug evaluation

Dealing with heterogeneity – (Bronchitol 2012)
Usually, in an orphan drug evaluation procedure, no more than two randomized trials

are available [100]. This was the case with the evaluation of Bronchitol® (mannitol) for

cystic fibrosis [177]. The pivotal study (DPM-CF-301) resulted in a significant effect of

absolute change from baseline in Forced Expiratory Volume1 over 26 weeks of 54.17 ml (95%

CI: 24.73,83.60), while the second pivotal study (DPM-CF-302) did not achieve statistical

significance (54.14 ml (95% CI: -1.97,110.26)) when compared to a sub-therapeutic dose of

mannitol. Concerns were raised upon the data quality due to high rates of drop-outs in

trial DPM-CF-301. A post-hoc baseline corrected analysis of trial DPM-CF-302 resulted
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in significant results (71.10 ml (95% CI: 19.11,123.09). The second study showed greater

uncertainty around the treatment effect [177]. Even though statistical heterogeneity was not

observed, Bronchitol indicates that methodological heterogeneity can be introduced between

two individual studies, in spite of their design being identical. In such cases, a pooled analysis

has to be performed with caution [108].

Individual patient data meta-analysis – (Wakix 2015)
Within a prospectively planned drug evaluation, IPD MA can facilitate a thorough

investigation of possible sources of heterogeneity through full regression and subgroup

analysis in the light of only a few trials. According to the Wakix® EMA report for the treatment

of narcolepsy, inferences were different between the two individual pivotal trials based on

significance testing [112]. It was suggested that this occurred due to the different maximum

dosage levels of the active treatment. A post-hoc individual patient data analysis was applied

and showed efficacy in all dosage levels of the active treatment. Wakix report does not indicate

whether the between-study variance was accounted for in the pooled analysis, but highlights

the well known advantages of exploring heterogeneity via IPD. Such an IPD analysis could

have been performed in all aforementioned examples but becomes more relevant in cases of

inconsistent inferences [108].

Meta-analysis of adverse events – (Mozobil 2009, Darzalex 2016)
Crude analysis of safety outcomes by using aggregated tables is a common procedure for a

drug evaluation [111, 113]. A formal meta-analysis is usually not performed. The Mozobil®

EMA report presents only crude safety tables of the two Phase III studies AMD3100-3101 and

AMD3100-3102. In both studies 600 patients enrolled and were equally allocated between

plerixafor and placebo. For example, during period 1, diarrhoea, a common adverse event,

and deep venous thrombosis, a serious adverse event, were both pooled and reported as

37.6% vs. 16.6% and 1.34% vs. 0.03% for plerixafor vs. placebo respectively. The same report

compares the average percentages of all serious adverse events (as reporting at least 1 serious

adverse event during period 1) and concludes that they are comparable between the two

treatment arms over the pooled studies (4% plerixafor vs. 5.8% placebo). The above change

in the treatment safety between individual adverse events and the simply pooled safety, may
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be the result of Simpson’s paradox [149].

Such a paradox could be produced under the naive pooling studies 3101 and 3102 or the

naive pooling of different adverse events, especially when adverse events are not very rare

[149]. This practice probably dominated since the combination of a few small studies with

zero events results in an unstable frequentist MA [43, 149, 150]. In this case, the Bayesian

framework offers a flexible alternative for synthesizing rare adverse events across a few small

trials, since it requires no continuity correction when zero-event studies are included and no

normal approximation of the data distribution as opposed to the frequentist MA ([172, 173]‡

and [178]).

Network meta-analysis – (Torisel 2007)
In most rare diseases multiple treatments are not available. A more relevant application

of NMA within an orphan drug evaluation may be the comparison of accumulated

evidence among alternative dosages or drug combinations. More specifically, the Torisel®

(temsirolimus) EMA report presents two randomized studies that compare different dosages

of the main intervention (Temsirolimus “25mg”, “75mg”, “250mg”, “Interferon-alpha” and

“Temsirolimus 15mg/Interferon-alpha”) for the treatment of renal cell carcinoma [179].

Treatment “Temsirolimus 25mg” is reported in both studies. In the same example, even

though a direct comparison between “Interferon-alpha” and “Temsirolimus 75mg” does

not exist, an indirect effect estimate could be calculated via their common comparator

“Temsirolimus 25mg”. However, this indirect estimate is produced solely by two trials, and

hence there might not be sufficient power to detect a treatment effect, as compared to a direct

estimate for the same comparison [139]. This practice has been described in the context of a

non-inferiority trial, where the standard treatment has been compared both with placebo and

the new treatment, but the latter has been compared only with the standard treatment [180]‡.

Discussion

We have identified 31 articles that describe methods of combining a series of trials for rare

diseases within the Bayesian framework. We focused on synthesis methods for available

studies, excluding the use of a meta-analysis for the design of a future study. As expected,
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very few studies dealt directly with small number of trials and/or small sample sizes. Since

research on meta-analysis methods that are specifically tailored to small populations were

only recently explored ([13, 147])‡, our goal was to illustrate potential directions and research

areas of interest for small populations and to comment on their applicability in a rare disease

drug evaluation.

In the light of a limited number of studies, conclusions based on a series of different yet

relevant trials (i.e. an implication of RE MA) have been regarded as particularly suboptimal

within a frequentist context [11]. Nonetheless, Bayesian methods are not frequently applied

and this seems to be the case for both large-scale and rare diseases. Especially for rare

diseases, the fixed-effects inverse-variance and the Mantel-Haenszel methods are commonly

applied instead [181, 182]. The assumption of fixed-effects for estimation contradicts the

usual heterogeneous nature of rare conditions that do work. Indeed, the proper estimation

of heterogeneity is an unresolved issue for classical MA that consists of only two trials

([11]‡ and [13]) and has led some to advocate against any formal synthesis ([26]‡ and

[183, 184]). This inability of frequentist methods to account for heterogeneity in such settings

led authors to advocate in favour of Bayesian approaches in MA instead [13, 147]‡. Bayesian

approaches, through Markov chain Monte Carlo (MCMC) computational methods, have

become even more popular by eliminating compromises when modelling (i.e. assuming

a normal distribution for data that are clearly non-normal), while they are availabe in

streamlined statistical programs [185, 186].

A Bayesian MA utilizes historical information through prior distributions on model

parameters. Such informative priors become necessary, particularly when evidence is sparse,

a setting that leads to the improper estimation of heterogeneity. The utilization of priors that

cover a plausible range for τ ([131] and [13, 147])‡ or published predictive distributions as

priors in a MA could be employed as a possible solution ([151]) and [152, 153, 154, 155, 156]‡).

Nonetheless, applying the latter prior distributions to rare diseases might be risky, as they

may not truly represent the degree of heterogeneity of such diseases. These priors are

produced mostly through Cochrane reviews which have been recently shown to provide

systematically different results from the non-Cochrane reviews in terms of magnitude and

significance [187]. We suggest either an investigation via simulation on -already proposed-
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predictive distributions in order to evaluate their performance in the light of rare diseases

or an approximate refinement (i.e. through variance downweighting), in order to improve

their performance in rare diseases. In addition, we suggest constructing similar predictive

distributions that are based on the disease’s prevalence, which is expected to impact the

degree of heterogeneity.

To our knowledge, NMA has not been incorporated yet in a rare disease evaluation of the

EMA. However, based on the method’s ability to synthesize direct and indirect evidence

of several competing treatments in a single analysis, NMA could play a role in the drug

development process. Even though it was outside from this review scope, for example,

prior to initiating a new trial, a formal synthesis of all treatments that are available for a

specific disease may be performed, so as to inform the design of new trials [188], namely, to

decide which pairwise comparison(s) needs (further) investigation and to inform the design

characteristics of the required trials (e.g. number of patient, clinically worthy treatment effect)

[189]. Recently, this concept was expanded to introduce the notion of living cumulative NMA,

which aims to provide a constantly updated meta-analysis of any available treatments in a

therapeutic area [190, 191]. Applications of NMA in rare diseases have already emerged in

the literature i.e. multiple myeloma [136] and cystic fibrosis [137].

Before applying complex methods, such as MMA or NMA, practitioners should consider that

the risk of decreased efficiency is higher than in a PMA due to the additional parameters

and the underlying assumptions ([26]‡ and [10, 141]). To evaluate the applicability of the

additional assumptions that characterize such models in rare diseases, simulation studies

are needed in scenarios of sparsely connected networks and limited available data. Similar

shortcomings appear for models that synthesize different study designs and add an extra

level of model complexity; for example, the synthesis of randomized and non-randomized

evidence, a topic that has been discussed extensively [192].

Based on this review, we did not identify any IPD MA methods that are tailored for small

populations. In general, when the size and number of trials are inadequate for conducting

subgroup analyses or exploring interaction effects, then inferences on the overall treatment

effect of an AD MA and an IPD MA are not expected to differ significantly [160, 161, 193].

IPD in MA and NMA offers several advantages, namely they; (1) provide the opportunity
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to explore differences between subgroups more efficiently, (2) facilitate a decent evaluation of

heterogeneity sources and (3) ensure a credible handling of missing outcome data [94, 161]. To

our knowledge, IPD MA in the context of rare diseases has never been evaluated in a single

simulation study. In such a study, the one- and two-stage principles would be compared

over a sensible set of simulation scenarios, that are tailored for characteristics of rare diseases.

Such a study could offer insight on the importance of a prospective IPD MA in a orphan

drug development process as opposed to a retrospective IPD MA (i.e. IPD availability is

attainable in the former). In case of no access to IPD for all studies, we could increase efficiency

in rare diseases by properly combining IPD, AD and relevant non-randomized study data.

To increase IPD availability, commercial companies should further initiate a data-sharing

mechanism. Such initiatives are either in discussion or already active [194, 195].

Finally, we should acknowledge a number of limitations in this article. This scoping review

was not meant to be extensive, nonetheless, we evaluated articles that came from 5 search

engines as this can provide insights on future search strategies for the interested readers

(Supplementary material 1). Our search was built on an 9-year time frame supplemented

by an ad-hoc monitoring of increased methodological interest journals, which we believe

provided us with enough articles and enabled us to formulate directions. Only a few articles

dealt directly with meta-analytical approaches in rare disease settings [13, 147]‡. Nonetheless,

the rest of the literature addressed issues of interest for rare diseases in an indirect manner (i.e.

rare events, few number of studies, estimation of heterogeneity). Throughout the manuscript,

the term ”small populations“ was used to refer to rare diseases, however, small population

conditions can appear in subgroups of common diseases. Thus, part of our findings could

apply to this setting as well.

In this scoping review we focused primarily on Bayesian methods for meta-analysis and

briefly discussed frequentist methods, mainly due to the reported deficiencies of frequentist

MA in rare diseases and appealing characteristics of a Bayesian MA ([11, 147]‡ and [150]).

Even though most approved orphan drugs show that the conduct of reasonably sized trials

is possible during an orphan drug development [100], this characteristic usually represents

only the most prevalent among rare diseases. In very and ultra rare diseases, no more than

two small trials become available. Our objective was to identify possibly relevant directions
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for Bayesian synthesis methods in orphan drug evaluations and we trust this has been

accomplished to a large extent despite the above limitations.

Conclusions

To our knowledge, this is the first review discussing aspects of Bayesian meta-analysis in

rare diseases. Bayesian meta-analysis methods may overcome efficiently methodological

difficulties inherent to evidence scarcity. Nevertheless, available Bayesian meta-analysis

methods tailored to small populations are currently not common. Marketing authorization

of orphan drugs could benefit from the Bayesian methods in the context of series of small

trials but more methodological developments are needed for the application of Bayesian meta-

analysis in an orphan drug evaluation.
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Abstract

Simulation studies to evaluate performance of statistical methods require a well specified Data

Generating Model. Details of these models are essential to interpret the results and arrive at

proper conclusions. A case in point is random-effects meta-analysis of dichotomous outcomes.

We reviewed a number of simulation studies that evaluated approximate normal models for

meta-analysis of dichotomous outcomes and we assessed the data generating models that

were used to generate events for a series of (heterogeneous) trials. We demonstrate that the

performance of the statistical methods, as assessed by simulation, differs between these three

alternative data generating models, with larger differences apparent in the small population

setting. Our findings are relevant to multilevel binomial models in general.
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3.1 Introduction

Increasingly, simulation studies are used to assess properties of statistical methods in more

complex settings. In addition to the statistical models used, the actual operational model

and methods with which data are generated can impact the results. The Data Generating

Model (DGM) [196] is essential to interpret the results, to arrive at proper conclusions and to

compare between different simulation studies. More often than not, in our simulation work

we returned to the details of this DGM to understand results and sometimes correct to better

fit the statistical model and realistic scenarios. A case in point is the random-effects meta-

analysis of dichotomous outcomes, towards which recently several simulation based research

papers addressed different questions, particularly for a few or small trials [11, 16, 197].

The standard model for random-effects meta-analysis assumes approximately normal effect

estimates Yi ∼ N(θi, s
2
i ), for trial i = 1, ...k for the study-specific effects θi and a normal-

normal hierarchical model around the study effects θi ∼ N(θ, τ2), where s2i are the

study-specific within-study variances and τ2 is the between-study variance. In the case

of dichotomous outcomes we can model the study-specific effects θi as the log(OR) =

logit(pT ) − logit(pC), where pT is the experimental treatment arm event rate and pC the

control arm event rate. Evidently, the normal approximation to the binomial distribution

breaks down in the case of small samples or small number of events and this can have

consequences for the DGM and its utilization in simulation studies.

Simulations of (individual) trial data in this setting, particularly for small trials, would

typically generate numbers of events per trial arm according to binomial distributions, given

pT and pC. However, the additional between-study variability implied by the (approximate)

normal-normal model in this case should now be incorporated in modelling pT and pC, which

a priori can be done in different ways. We reviewed a number of simulation studies that used

the normal-normal model for dichotomous outcomes [11, 16, 27, 74, 144, 147, 197, 198, 199, 200]

and assessed the DGMs used to produce event rates (pT , pC) and generate events for a series

of (heterogeneous) trials. In section 3.2 we present and discuss the DGMs. In section 3.3 we

perform a comparison of the DGMs under three widely applied meta-analytical models via a

simulation study. The manuscript concludes with a discussion in section 3.4.
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3.2 Data generating models

In the literature, so far, at least three alternative DGMs were utilized for generating individual

trial data. The first makes the assumption of homogeneity in the control arm and places

all the between-study variance in the event rate pT of the treatment arm [74, 144]; we refer

to this as ”pCFixed”. The second is based on the assumption of a fixed average trial risk

(pi0 = (piT + piC)/2), with which we calculate the event probability in each arm, based on

a simulated overall treatment effect [16, 200]; we refer to this as ”pAverage”. The third is

based on the incorporation of the between-study variance in both treatment arms via the use

of logits [11, 198]; we refer to this as ”pRandom”. The steps to generate events for each DGM

are presented below.

Algorithm 1 - Data Generating Model pCfixed

1: Set θ,τ , a range for piC and a range formi, i = 1, ..., k and j = (C)ontrol, (T )reatment.

2: mi ∼ Uniform(mlo,mup) - Generate study-arm sample sizes.

3: nij = mi - Set equal study-arm allocation ratios.

4: θi ∼ Normal(θ, τ) - Generate study-specific treatment effects.

5: piC ∼ Uniform(α, β) - Generate a study-specific control event probability.

6: piT = piC · exp(θi)/(1 − piC + piC · exp(θi)) - Compute the study-specific treatment

event probability.

7: rij ∼ Binomial(pij , nij) for j = C and T - Generate study events.

Algorithm 2 - Data Generating Model pAverage

1: Set θ,τ , a range for pi0 and a range formi, i = 1, ..., k and j = (C)ontrol, (T )reatment.

2: mi ∼ Uniform(mlo,mup) - Generate study-arm sample sizes.

3: nij = mi - Set equal study-arm allocation ratios.

4: θi ∼ Normal(θ, τ) - Generate study-specific treatment effects.

5: pi0 ∼ Uniform(α, β) - Generate a study-specific average event probability.

6: pi0 =
∑2
j=1 pij/2
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7: θi = log
( (piC) · (1− piT )

(piT ) · (1− piC)

)
.

8: Solving (6) and (7) we acquire pij .

9: rij ∼ Binomial(pij , nij) for j = C and T - Generate study events.

Algorithm 3 -Data Generating Model pRandom

1: Set θ, τ , piC,Init and a range for mi, i = 1, ..., k and j = (C)ontrol, (T )reatment.

2: piT,Init = piC,Init · exp(θ)/(1− piC,Init + piC,Init · exp(θ)) - Compute the initial study-

specific treatment event probability.

3: mi ∼ Uniform(mlo,mup) - Generate study-arm sample sizes.

4: nij = mi - Set equal study-arm allocation ratios.

5: µij = log(pij,Init/1 − pij,Init) - Compute mean logits given initial fixed event rates

pij,Init.

6: logitij ∼ Normal(µij , τ/
√
2) - Generate study-specific control and treatment logits.

7: pij =
1

1 + e−logitij
- Back-calculate the event rates for each trial arm.

8: rij ∼ Binomial(pij , nij) for j = C and T - Generate study events.

Note that for two of the DGMs discussed, the use of Uniform distributions is utilized

(pCFixed and pAverage). This is done in order to replicate their use in the literature

[16, 74, 200] . This adds an additional source of variability, not specifically modelled by the

normal-normal hierarchical model. We keep using the term ”fixed” and ”homogeneous” for

these DGMs, even if the probability of events is not kept fixed across studies. We retain the

term ”heterogeneous” for referring to heterogeneity resulting from the variance parameter of

the random-effects model.

As Figure 3.1 demonstrates, the primary difference among the three presented DGMs lies

in the joint distribution of the two model event rate parameters, as used in generating data.

Homogeneity of the control group event rates (pCFixed) has been discussed previously [201]

and can be observed in the densities of Figure 3.1. The study-specific control event rates

are homogeneous - coming from a Uniform(0.1, 0.3)- , while the study-specific treatment
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event rates are heterogeneous. The pAverage approach makes an intuitively restrictive

assumption since it constrains the simulated values of the control and treatment arm around

an average true risk rate. The pRandom approach places the between-study variability in

both treatment arms without imposing additional constraints. In this DGM, it is common to

assume equal between-study standard-deviation (τ/
√
2) in both arms, an assumption which

might not always hold in practice, but can be relaxed. For example, the standard of care -

control treatment- might be less variable between studies in comparison to the experimental

treatment; or more variable if the standard of care differs between regions or countries, a

flexibility that is not straightforward to implement in the other two DGMs discussed here.

Indeed, in the pCFixedDGM, the probability of events in the two arms is not fixed, but rather

randomly generated via a joint distribution at the study-parameter level, where the control

group rate is considered to be independent from the effect size. The pRandomDGM is largely

the same, except that the range of pC is not restricted, and its distribution is skewed within its

range. Naturally, after incorporating smaller heterogeneity in the control group, pCFixed can

be considered a special case of pRandom if the two parameters of the Uniform distribution

generating event rates in pCFixed are equal (Algorithm 3 - Step 6).

An important difference between the presented DGMs arises from their ability to

accommodate ranges of event rates. The pAverage directly defines the average event rate

(p0), the pCFixed directly defines the control group rate (pC), whereas the pRandom does

not allow a direct impact on event rates. These fundamental characteristics of the three DGMs

render their fair comparison through simulation less trivial. For the specific scenario studied

here, where probabilities of events on the control groups are smaller than 50%, whenever

the average effect size is positive, the control group event rate for pAverage is, on average,

smaller than the competing DGM’s simulations. This implies smaller numbers of events in the

two arms. The total number of events is related to power. Therefore differences in empirical

power of the pAverage method may appear partially due to this difference in the average

rate. Nonetheless, the constraints of the pAverage DGM inherently restrict the DGM from

jointly exploring very low event rates (Figure 3.1), which minimizes the event rate’s impact

on power. Thus, the pAverage DGM makes (empirical) very large effect sizes less probable.

This restriction becomes problematic particularly for studies in small populations where we
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Figure 3.1: Empirical numerically estimated joint event probability densities for the control
and treatment arm of the three Data Generating Models under the null and alternative
hypothesis with substantial between-study standard-deviation (τ = 2), small sample size
(nij = mi ∼ Uniform(20, 30), i = 1, 2 ; j = Control, T reatment) and an (average) event
rate, either as a fixed value of 0.20, or as a mean of 0.20 of a Uniform(0.1, 0.3) distribution.
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usually seek to observe very large effect sizes.

Ideally, results and conclusions of simulation studies are expected to hold for the statistical

model specified, and not to depend on the characteristics of the utilized DGM. Since they

all generate the same true overall treatment effect, when we use statistical methods in the

setting of many large trials and relatively frequent events, we may expect similar results under

different DGMs. However, in the case of a small number of trials with small sample sizes, the

normal approximation of the logOR might be insufficient and more sensitive to the choice

of DGM. Thus, possible differences between the observed performance of methods may be

enhanced.

Evidence from a few small trials would often become available or would be sufficiently similar

to be synthesized, during a drug development and evaluation in rare diseases [182, 202, 203].

Until recently, the evaluation of meta-analytical methods in this rare disease context was not

common. However, more attention has been drawn to this topic, especially since the initiation

of three European projects, focused on characteristics of statistical methodologies in small

populations (ASTERIX, IDeAl and InSPiRe). A number of articles have now been published

that evaluate methods for a meta-analysis of a few and even two small trials [11, 147, 197].

3.3 Simulation study and results
To compare the implications of the three DGMs for both a meta-analysis of two large trials

(nij = mi ∼ Uniform(230, 240), i = 1, 2 ; j = (C)ontrol, (T )reatment) and a meta-analysis

of two small trials (nij = mi ∼ Uniform(20, 30), i = 1, 2 ; j = C, T ), we follow Gonnermann

et al [11] to evaluate the statistical properties of three meta-analysis methods; (1) a fixed-effect

meta-analysis (FE), (2) a random-effects meta-analysis with the application of DerSimonian

and Laird heterogeneity estimator [204] (DL) and (3) a random-effects meta-analysis with the

Hartung and Knapp correction [198] (HK) for a meta-analysis of two trials. The (average)

event rate is assumed to be 0.20. This is, however, interpreted and implemented differently

between the DGMs used, i.e., either as a fixed value of 0.20 (pRandom), or as a mean of 0.20

of Uniform(0.1, 0.3) on either pC (pCFixed) or p0 (pAverage). We also apply a continuity

correction (0.5) in all cells of a trial with zero cells. We assume equal allocation ratios within

each trial. We present results under the null and the alternative hypothesis with varied

72



Data generating models of dichotomous outcomes: Heterogeneity in simulation studies for a
random-effects meta-analysis.

levels of true between-study standard-deviation τ ∈ {0.001, 0.5, 1, 2}, which corresponds to

relative heterogeneity of I2 ≈ {0.01%, 47%, 63%, 75%} for a small trial meta-analysis and

I2 ≈ {0.05%, 74%, 84%, 90%} for a large trial meta-analysis.

Table 3.1: Empirical type I error and empirical power based on 106 simulations. PR:
pRandom, PA: pAverage, PCF: pCFixed, FE: Fixed-effect approach, HK, Hartung and Knapp
approach, DL: DerSimonian Laird approach, θ: overall treatment effect (log odds ratio), τ :
between-study standard-deviation, Small sample size: nij = mi ∼ Uniform(20, 30), Large
sample size: nij = mi ∼ Uniform(230, 240), i = 1, 2 ; j = Control, T reatment

Empirical type I error Empirical power

(θ = 0) (θ = 1)

Method S.size τ PR PA PCF PR PA PCF

DL Small 0.001 0.029 0.028 0.028 0.482 0.340 0.465

0.5 0.062 0.058 0.060 0.417 0.311 0.420

1 0.133 0.118 0.125 0.341 0.280 0.357

2 0.224 0.210 0.205 0.297 0.278 0.298

Large 0.001 0.037 0.038 0.038 0.998 0.986 0.997

0.5 0.207 0.201 0.202 0.759 0.736 0.757

1 0.267 0.264 0.263 0.487 0.476 0.489

2 0.288 0.286 0.284 0.350 0.345 0.351

HK Small 0.001 0.047 0.048 0.048 0.132 0.114 0.129

0.5 0.047 0.049 0.049 0.106 0.098 0.107

1 0.050 0.050 0.051 0.080 0.081 0.083

2 0.056 0.059 0.059 0.065 0.078 0.066

Large 0.001 0.052 0.052 0.052 0.400 0.339 0.394

0.5 0.050 0.050 0.050 0.162 0.154 0.163

1 0.050 0.049 0.049 0.092 0.089 0.092

2 0.055 0.050 0.049 0.065 0.061 0.061

FE Small 0.001 0.033 0.032 0.032 0.572 0.388 0.547

0.5 0.075 0.070 0.075 0.532 0.369 0.539

1 0.186 0.151 0.191 0.486 0.345 0.537

2 0.373 0.270 0.391 0.480 0.346 0.553

Large 0.001 0.049 0.049 0.049 1.000 0.999 1.000

0.5 0.397 0.377 0.390 0.968 0.947 0.967

1 0.627 0.570 0.632 0.857 0.800 0.883

2 0.767 0.641 0.803 0.816 0.696 0.872
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Table 3.1 presents the differences between the empirical power curves when a treatment

effect is present (θ = 1) and under the null hypothesis (θ = 0) for each DGM and each

considered meta-analytical method. The pAverage DGM produces data that result in lower

power than the other two DGMs, especially for the FE and DL approach. This can be

explained by the constraints that are induced on the event probabilities (Figure 3.1), which

are in turn influenced by the specific choice of α = 0.1 and β = 0.3 for the Uniform

distributions. In addition, regarding high levels of true heterogeneity, the pCFixed tends

to increase the empirical power of the FE approach. This could be expected, as when τ2 > 0

and heterogeneity is only applied to the treatment group event rates, larger effect sizes are

produced compared to the other two DGMs. In terms of type I error, empirical values seem

to be heavily dependent on the DGM when the FE approach is assessed. Evaluation of the

Hartung and Knapp approach is less affected by the DGM, with small deviations in empirical

power, and mostly for the pAverage DGM. A graphical representation of the empirical power

curves can be found in Figures A1 and A2.

Figure 3.2 summarizes the performance of the three DGMs in terms of coverage of the 95%

confidence intervals for small sample sizes, mi ∼ Uniform(20, 30). Under heterogeneous

conditions (τ = 1), especially for the FE and DL approaches, the pRandom demonstrates

lower coverage than the pCFixed and pAverage, across the considered levels of overall

treatment effect. Regarding large sample sizes (mi ∼ Uniform(230, 240)), in terms of

coverage of the 95% confidence intervals, the three DGMs show similar behaviour for

homogeneous conditions (Figure A3). On the contrary, for heterogeneous conditions the

pAverage DGM starts to favour the FE and DL approaches when θ ≥ 2, bringing the three

methods 95% coverage relatively closer than pCFixed and pRandom.

3.4 Discussion

The choice of a DGM used in simulation studies is important and has to be consistent with the

assumed statistical model under realistic assumptions related to the issue in question. Our

simulations show that statistical methods perform differently across DGMs that were used to

investigate properties of random-effects meta-analyses. Our simulation is not extensive and

does not cover effects in other settings. Nonetheless, we noticed that the divergent behaviour
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Figure 3.2: Impact of data generating mechanism in a meta-analysis of two small studies
(nij = mi ∼ U(20, 30), i = 1, 2 ; j = Control, T reatment) on coverage of the 95% confidence
intervals. τ : between-study standard-deviation.

of DGMs is preserved when synthesizing many small trials, but is reduced when synthesizing

many large trials. In contrast to large study meta-analyses simulation studies, the choice of a

DGM can impact the conclusions of small study meta-analyses simulation studies to a greater

extent. The findings actually extend beyond the presented small population context and hold

more generally for multilevel binomial data settings.

The elaboration on the DGM articulates one of the crucial conceptual difficulties of the

random-effects model for meta-analysis. In all three random-effects DGM formulations and

assessments of type I errors, in the presence of heterogeneity, there is also heterogeneity under

the null hypothesis. Although all three DGMs are designed to produce the same true overall

effect, the properties of the modelled joint empirical distribution of the control and treatment
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event rates can differ dramatically.

As a consequence, simulation studies that use different DGMs for essentially the same overall

statistical model have the potential to result in different conclusions regarding performance

of the statistical methods investigated. For this reason, methodological reviews for meta-

analysis [205, 206] have to report in detail the DGM of each study they include and potential

consequences of the choice of DGM. If flexible assumptions on the event probability are

needed, the use of pRandom DGM might be recommended. We believe that not enough

emphasis is placed on the proper choice nor on the sufficient reporting of DGMs in both

individual simulation studies and methodological reviews.
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Figure A1: Impact of data generating mechanism in a meta-analysis of two small studies
(nij = mi ∼ Uniform(20, 30), i = 1, 2 ; j = Control, T reatment) on empirical power. τ :
between-study standard-deviation.
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Figure A2: Impact of data generating mechanism in a meta-analysis of two large studies
(nij = mi ∼ Uniform(230, 240), i = 1, 2 ; j = Control, T reatment) on empirical power.
τ : between-study standard-deviation.
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Figure A3: Impact of data generating mechanism in a meta-analysis of two large studies
(nij = mi ∼ Uniform(230, 240), i = 1, 2 ; j = Control, T reatment) on coverage of the
95% confidence intervals. τ : between-study standard-deviation.
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Abstract

When a meta-analysis consists of a few small trials that report zero events, accounting for

heterogeneity in the (interval) estimation of the overall effect is challenging. Typically, we

predefine meta-analytical methods to be employed. In practice, data poses restrictions that

lead to deviations from the pre-planned analysis, such as the presence of zero events in at

least one study arm. We aim to explore heterogeneity estimators behaviour in estimating

the overall effect across different levels of sparsity of events. We performed a simulation

study that consists of two evaluations. We considered an overall comparison of estimators

unconditional on the number of observed zero cells and an additional one by conditioning on

the number of observed zero cells. Estimators that performed modestly robust when (interval)

estimating the overall treatment effect across a range of heterogeneity assumptions were the

Sidik-Jonkman, Hartung-Makambi and improved Paul-Mandel. The relative performance

of estimators did not materially differ between making a predefined or data-driven choice.

Our investigations confirmed that heterogeneity in such settings cannot be estimated reliably.

Estimators whose performance depends strongly on the presence of heterogeneity should be

avoided. The choice of estimator does not need to depend on whether or not zero cells are

observed.
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4.1 Introduction

Meta-analyses (MAs) techniques are commonly employed in order to obtain a more precise

and more general effect estimate of a treatment. Heterogeneity (τ ) of treatment effects

measured in multiple Randomized Controlled Trials (RCTs) is a crucial part of the estimation

[26].

In MAs of RCTs, methodological challenges arise when the disease under examination is rare

and only a few small RCTs are available [99, 100]. This is mostly due to the large sample

assumptions on which most MA methods are based. In the case of rare diseases with binary

endpoints, zero cells are more likely to be observed in at least one of the treatment arms of at

least one contributing trial [182, 207, 208]. Zero cells in MAs pose challenges as they induce

bias in both the estimation of the overall effect and the between-study variance (heterogeneity)

[43, 149, 209, 210, 211, 212, 213, 214].

When conducting a MA, the estimation method might be adjusted conditionally on observing

zero cells. Corrections are typically introduced by adding a number to the zero cells observed;

furthermore, the heterogeneity estimator could change. The latter choice is by itself a

challenging task, given the large pool of options [92, 115, 159, 204, 215, 216, 217, 218, 219, 220].

Especially for dealing with a MA of a few RCTs, there is no straightforward answer to which

estimator would be robust across several heterogeneity assumptions [159]. Most estimators

face difficulties in case of a limited number of trials; they induce bias in the estimation

of τ [221, 222] and may result in inappropriate interval estimation of the treatment effect.

However, not much is known regarding their behaviour in the presence of zero cells and

small populations.

The primary objective of this work is to assess the robustness of heterogeneity estimators in

the (interval) estimation of treatment effect across ranges of sparsity of events and assumed

heterogeneity. The starting point is the acknowledged poor estimation of heterogeneity in this

setting. We evaluate the estimators in case they are predefined (unconditional), as well as

when they are chosen depending on the observed zero cells in contributing trials (conditional

on the observed data, in short: conditional).
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The paper is organized as follows. First we describe the standard random-effects (RE) model

and introduce the heterogeneity estimators briefly. Subsequently, we present two motivating

examples and their analysis. Then we describe the simulation study and evaluate the two

distinct approaches. We conclude with recommendations on evidence synthesis for a sparse-

events MA in small populations.

4.2 Methods

We consider a set of k trials with binary outcomes that compare an experimental treatment to

a control. Patients are randomized between two groups: treatment (T) and control (C).

By Yi we denote the log odds ratio (logOR) in the ith trial. Following standard theory (e.g.

[26]), we assume:

Yi|θi ∼ N(θi, σ
2
i ), i = 1, ..., k (4.1)

The study-specific treatment effect estimates are θ̂i = log
(rTi · (nCi − rCi)
rCi · (nTi − rTi)

)
, while their

variances are s2i =
1

rTi
+

1

nTi − rTi
+

1

rCi
+

1

nCi − rCi
, where ri and ni denote the number

of responders and the total number of subjects in each trial, respectively.

Assuming a fixed-effects (FE) model, θ is common for all studies (θi = θ). Assuming a RE

model, the θi are considered exchangeable and follow a normal distribution, that is,

θi|θ, τ2 ∼ N(θ, τ2) (4.2)

where θ is the overall effect and τ2 is the between-study variance. When τ2 = 0, then the

RE model reduces to the FE model. The pooled effect estimate is calculated as a weighted

average θ̂ =
∑
i wiYi/

∑
i wi. The inverse variance (IV) weights are then defined as wi,RE =

1/(s2i + τ̂2) for the RE model and as wi,FE = 1/s2i for the FE model.
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A standard confidence interval is calculated as, θ̂ ± σ̂θ z1−a/2, where z1−a/2 is the (1 − a/2)

quantile of the standard normal distribution and σ̂θ =
√

1/
∑
i wi.

To apply the RE model, estimation of heterogeneity is required. In the presence of zero cells,

heterogeneity estimators entail the addition of a small continuity correction (CC) on zero cells

in order to provide finite estimates. Several methods for estimating τ2 are proposed in the

literature. Table 4.1 presents a summary of the 15 estimators that are included in this study.

For a detailed overview of heterogeneity estimators, we refer the reader to two systematic

reviews [206, 223].

4.3 Motivating examples

Intravenous immunoglobulin (IVIG) for Guillain-Barre syndrome (GBS)

GBS syndrome has a prevalence of 1-9 /100.000 [224], the term is used to describe a number

of rare post-infection neuropathies. Patients may recover completely, remain unable to

walk 6 months after disease onset or have a fatal outcome. A recent Cochrane review

and MA summarized four RCTs that compared IVIG to plasma exchange [207]. Treatment

discontinuation was reported, as a secondary outcome. Trials which were relatively small

either failed to report any event or they only had one in each arm. On the contrary, the largest

of these trials reported a considerable number of events in both arms (Figure 4.1). For the

initial analysis the Mantel-Haenszel (MH) FE risk ratio 0.14 (95% 0.05-0.36) was used. By

using the MH, the authors excluded information from trials with no reported event, which

may resulted in a significant overall effect with moderate estimated heterogeneity.

Sapropterin dihydrochloride for Phenylketonuria (PHK)

PHK is a common inborn error of amino acid metabolism that causes mental disability (mild

to severe) to patients who are not treated properly. It is considered a rare child disorder with

a prevalence of 1-5 / 10.000 [224]. A Cochrane review consisted of two studies on sapropterin

dihydrochloride and reported on several adverse events, such as vomiting [182]. The two

studies produced contradictory but not significant results overall (Supplementary material A

- Table 1). Even though, the estimated heterogeneity was substantial, the studies were again

pooled using a FE MH on the risk ratio 1.04 (95% 0.28-3.91) [182].
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−1.60 [ −3.28 , 0.08 ]Sidik − Jonkman

Figure 4.1: Forest plot of the overall treatment effect (log odds ratio) for the Guillain-
Barre syndrome (GBS) example. The inverse-variance random-effects method is applied in
combination with the seven selected heterogeneity estimators. The confidence intervals are
calculated as θ̂±σ̂θ ·z1−α/2. The Mantel-Haenszel analysis is plotted as well. For abbreviations
see Table 4.1.

Analysis of motivating examples

In regards to our first example (GBS), the final conclusion is influenced considerably by the

choice of the heterogeneity estimators. Estimators that lead to a larger estimate value of τ fail

to reject the null hypothesis and therefore result in a more conservative conclusion (Figure

4.1).
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In the second example (PHK), the overall treatment effect changes direction, depending on the

choice of estimator (Supplementary material A - Table 2). The overall treatment effect remains

non-significant due to the contradictory results of the two available trials. When estimating

the heterogeneity, we observe a behaviour similar to the first example.

4.4 Simulation study

In order to assess the performance of a predefined versus a data-driven choice of analysis in

the aforementioned setting, we conducted a simulation study that is divided in two parts;

(1) evaluating the operational characteristics for the whole simulation, which represents the

”unconditional approach” strategy and (2) evaluating the operational characteristics for subsets

of the whole simulation that are defined by the number of observed zero cells in a simulated

MA. The second part represents the ”conditional approach” strategy.

Unconditional approach

Following the strategy of Hartung and Knapp [198] we simulated logORs from the null

and alternative hypothesis. We varied the overall treatment effect as θ ∈ {0, 1} and set

the heterogeneity equal to τ2 ∈ {0, 0.5, 1, 2}. These four values correspond to I2 '

{0%, 40%, 60%, 75%} levels of relative heterogeneity, which are calculated via simulation of

I2 = τ2/(τ2 + s̄2), s̄2 =
∑105

j=1 s
2
j /105 where j: number of simulations. The total number of

trials was set within k ∈ {2, 3, 4}. Eleven fixed values as of Pc ∈ {0.05, 0.06, ..., 0.15} were

used for the control group event rate of the outcome. By simulating a uniformly random

draw between (20, 30) for each trial arm, we varied the samples sizes between trials, while we

kept the allocation ratio within each trial equal to 1:1. The small sample sizes in combination

with different levels of control event rate lead to specific levels of expected zero-event arm

percentages (Supplementary material A - Table 3).

Conditional approach

For the second approach we focused on the evaluation of a four (k=4) trial MA, since the

relative performance of the heterogeneity estimators was similar across k=2,3,4 trials. The

conditional simulation theoretically leads up to a maximum of 9 distinct subsets, since a four
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trial MA results from a minimum of 0 to a maximum of 8 zero-event arms. Of course, the

latter ones are not useful to consider for a meta-analysis.

For the unconditional approach we based performance measures on 10,000 simulated MAs

and evaluated all 15 τ estimators, while for the conditional approach we based performance

measures on 1,000,000 simulated MAs and evaluated 7 selected τ estimators that we

considered important from the unconditional analysis. A constant CC of 0.5 was added to

all cells of a trial that reported at least one zero event. An overview of the varied parameters

for each simulation approach is presented in Supplementary material A (Table 4).

Performance measures

We assessed the bias of heterogeneity and overall treatment effect estimates. We calculated the

empirical type I error, the power and coverage of the 95% confidence interval of the overall

effect estimate. Finally, we computed the probability of each estimator to observe a non-zero

heterogeneity estimate (Pr(τ̂2) > 0) .

4.5 Results

In our small population settings, many heterogeneity estimators performed similarly.

More specifically, estimators can be grouped -based on their performance- in two groups.

Estimators dl, dl2, dlp, he, he2, mvvc, pm and rb0 displayed similar behaviour in our study.

Estimators ml and hs showed a similar insufficient performance in identifying heterogeneity

(Supplementary material B). Based on this we selected a key set of 7 estimators for detailed

evaluation; dl from the first group, ml from the second group and five estimators that

displayed the most divergent behaviour sj, ipm, rbp, hm and reml. In the case of two studies,

most heterogeneity estimators behaved similarly.

Regarding the unconditional approach, we summarize the results in two figures Figure 4.2

(τ2 = 0) and Figure 4.3 (τ2 = 1). The same two scenarios are presented for the conditional

approach in Figure 4.4 and 4.5. Interested readers can find the figures of the remaining

scenarios in Supplementary material B.
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Figure 4.2: Unconditional approach operational characteristics (Pr(τ̂2) > 0, mean bias of τ ,
coverage of the 95% confidence intervals, empirical power and type I error of θ) for two to
four studies and τ2 = 0. For abbreviations see Table 4.1.
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Figure 4.3: Unconditional approach operational characteristics (Pr(τ̂2) > 0, mean bias of τ ,
coverage of the 95% confidence intervals, empirical power and type I error of θ) for two to
four studies and τ2 = 1. For abbreviations see Table 4.1.
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Unconditional approach

Alternative heterogeneity estimators had little impact on the bias of θ̂. As the control event

rate (Pc) decreases, bias increases for all estimators. In addition, the point estimation of τ

is problematic as well. Under homogeneity (τ2 = 0), all estimators greatly overestimate τ ,

except for ml, while under heterogeneity (τ2 = 1) rbp, sj and ipm induce the least bias on τ

(Figures 4.2 and 4.3).

The presence of heterogeneity impacts the type I error heavily. In non-sparse conditions,

when τ2 = 0, all estimators behave conservatively in interval estimating the overall effect,

while in heterogeneous conditions (τ2 = 1) most of the estimators behave liberally. On the

contrary, all estimators display conservative behaviour in very sparse conditions, regardless

of the presence of heterogeneity (Figure 4.2 and 4.3). In addition, decreasing Pc levels impact

the 95% coverage. We also note that no estimator shows potential to control the coverage,

when only two or three small trials are available (Figures 4.2 and 4.3).

The properties of the estimators’ depend on the levels of true heterogeneity. As true

heterogeneity will not be known, nor very reliably estimated we seek some robustness. And

thus, we would prefer estimators that are less dependent on levels of true heterogeneity; for

example, sj, hm and ipm (Figures 4.2 and 4.3).

Conditional approach

The first row in Figures 4.4 and 4.5 represents simulations that produce a specific number of

zero cells. The first column refers to MAs with no observed zero cell. The rest refer to MAs

with an exact number of observed zero cells.

In terms of bias of θ̂, we notice similar properties across conditional subsets; hence, an increase

of negative bias, as the Pc decreases (Figures 4.4 and 4.5). In the particular case of exactly no

zero cell we observe an overall negative bias (Figures 4.4 and 4.5). The point estimation of τ

is impacted by zero cells as well. When no zero cell trial is observed in a MA, all estimators

produce values that are relatively close to each other. The increasing number of zero cells

makes the estimation of heterogeneity unstable (Figures 4.4 and 4.5).
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Figure 4.4: Conditional approach operational characteristics (Pr(τ̂2) > 0, mean bias of τ ,
mean bias, coverage of the 95% confidence intervals, empirical power and type I error of θ)
for four studies and τ2 = 0. For abbreviations see Table 4.1. First row y-axis - 1000: 1,000,000,
500: 500,000, 100: 100,000 simulations.
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Figure 4.5: Conditional approach operational characteristics (Pr(τ̂2) > 0, mean bias of τ ,
mean bias, coverage of the 95% confidence intervals, empirical power and type I error of θ)
for four studies and τ2 = 1. For abbreviations see Table 4.1. First row y-axis - 1000: 1,000,000,
500: 500,000, 100: 100,000 simulations.
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The performance of the estimators in terms of 95% coverage and type I error, depends again

on the levels of true heterogeneity. In homogeneous cases (τ2 = 0), independently of observed

zero cells, all estimators lead to conservative inferences. When no zero cell trial is observed

in a MA, and heterogeneity exists (τ2 = 1), then most estimators result in liberal inferences.

As the number of zero cells increases, estimators result in conservative inferences (Figure 4.5).

Again estimators whose performance is less dependent on levels of true heterogeneity are sj,

hm and ipm. In addition, ipm produces relative higher power in comparison to sj and hm

when one or two zero cells are observed in a MA (Figures 4.4 and 4.5).

In the case of no observed zero cells in a MA of heterogeneous settings (τ2 ≥ 1), all estimators

induce negative bias on the estimation of θ and the estimation of τ (Figure 4.5). When at least

one zero trial is observed, inference becomes unstable. Such a behaviour could be explained

by the impact of CCs on the study weights. When a zero cell trial is observed and a CC is

applied, this trial’s weight decreases. Therefore, RCTs with low event rates that probably

point towards a small or no treatment effect would be down-weighted.

Revisiting the motivating examples

According to our simulation study, the conditional selection of heterogeneity estimator, which

is based on the exact number of zero cells, would bring no added value, compared to the

unconditional selection of an estimator when a sparse-events MA in small populations is

expected. As heterogeneity cannot be reliably estimated in such sparse settings, the chosen

estimator should be robust against the level of true heterogeneity. For example, if we

had selected the sj, an estimator that was found to be less impacted by the levels of true

heterogeneity, we would not have rejected the null hypothesis for the GBS example (Figure

4.1).

Supplementary material A (Table 2) presents an extensive analysis that demonstrates the effect

of applying alternative heterogeneity estimators on the overall treatment effect for the two

motivating examples.
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4.6 Discussion

In this paper we assess and discuss the problematic (interval) estimation of the overall

treatment effect, in the presence of heterogeneity for a MA of a few small RCTs with

zero events. In this context a truly robust estimation of heterogeneity appears not

feasible. Neither can we recommend a single heterogeneity estimator which provides overall

satisfactory performance in our small population sparse-event setting. In addition, the

comparison between the two simulation approaches showed that the relative performance

of heterogeneity estimators did not differ. Therefore, there is no material issue between

making a predefined (unconditional) or a data-driven (conditional) choice. Further insights

are provided by the conditional approach, which showed that even one observed zero cell has

a considerable impact on the inference.

When performing a MA of rare diseases with anticipated or reported zero cells, regardless of

a predefined or a data-driven analysis choice, one should avoid methods whose performance

depends strongly on the presence of heterogeneity. Following this context, we identify and

suggest estimators that perform modestly robust in (interval) estimating the overall treatment

effect across a range of heterogeneity assumptions such as sj, hm and ipm. On the contrary,

estimators whose performance depends heavily on the true level of heterogeneity, such as rbp

and ml, should be avoided. In such a setting, one strategy might be to apply the key set of

heterogeneity estimators. If this leads to treatment effect estimates and confidence intervals,

which are not comfortably in the same direction, we should probably be cautious to draw firm

conclusions.

With few events, the estimated study effects are biased, a bias which reveals itself in between-

study variance. Few events also result in large within-study variance which masks between-

study variance. Therefore, a trade-off exists; due to the biased effect estimates, heterogeneity

increases but due to large within-study variances, heterogeneity decreases. Hence, we

conclude the following; (i) when no heterogeneity exists it can only be overestimated due to

the biased estimates but (ii) when large heterogeneity exists, it is masked and underestimated.

The simulation study results pair with previous research. In our small population setting, a

number of heterogeneity estimators showed small differences in performance [158]. In the
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particular case of two studies, most of the heterogeneity estimators behaved similarly as also

was theoretically expected [158]. As noted already, a considerable difference was observed on

the (interval) estimation of the overall treatment effect among heterogeneity estimators that

are known to overestimate (rbp) or underestimate (ml) the true heterogeneity [206, 215, 221].

Such choices should be avoided in our setting as their performance is dependent on the level

of true heterogeneity, which cannot be properly estimated.

We only considered a simple Wald test for hypothesis testing via the IV method. We note

the existence of an alternative test [198], which has the ability to control the type I error, in a

more effective manner than the Wald test for a small number of trials. However, this test does

not have sufficient power to detect a true effect [11, 16]. In addition, the simple IV RE model

might underperform in a few trials MA, thus sophisticated techniques that control type I error

might be preferred. In this context a sensitivity analysis based on a variety of techniques is

suggested [225].

Simulation studies have evaluated several other meta-analytical methods regarding their

ability to account for zero cells [149, 211, 213, 214]. Among others, they include: (1) the

evaluated IV method with alternative CCs [211], (2) the Peto method, which excludes trials

with zero events in both arms internally from a MA [214], (3) the MH method for the OR

[214], (4) methods that use alternative effect measures, such as the arcsine difference [213]

and (5) multilevel models or with alternations in their likelihood [149]. The latter are prone

to convergence issues when the number of levels (groups or trials) and the number of events

or patients is limited [42, 149]. These studies [149, 211, 213, 214] focused on sparse-events

MA, particularly in cases of relatively large sample sizes and large numbers of available

studies. Hence, results could not be generalized directly to rare diseases, as the latter have

both a limited number of trials and small sample sizes. Further research could focus on the

aforementioned methods’ behaviour, on the basis of the exact number of observed zero cells

in a MA when only a few trials are available.

Further, by utilizing historical data, experts’ opinions or priors that cover plausible

heterogeneity values, Bayesian inference might provide a suitable alternative for cases of small

populations [13, 173, 226]. Although it was not our primary focus, initial evaluations showed

that a similar two-level normal Bayesian hierarchical model combined with informative priors
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[13] produces smaller biases on the estimation of heterogeneity but similarly problematic 95%

coverage for very low control event rates.

In this study, we did not evaluate heterogeneity estimation within complex meta-analytical

methods, such as a multiple outcome MA [123] or a network MA [10, 227]. However, we

expect that the impact of zero cells in small MAs could be relevant for this context as well,

and a similar conditional examination could offer further insight.

Concluding, the choice of heterogeneity estimator does not need to depend on whether or

not zero cells are observed in a MA of few small trials. Therefore, regardless of a predefined

or data-driven analysis choice, when dealing with zero cells in a MA of rare diseases, we

recommend methods with performance that does not strongly depend on the presence or

absence of heterogeneity.

Supplementary material and higher resolution images can be found at http://dx.doi.

org/10.1016/j.conctc.2017.11.012 X
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Abstract

In rare diseases, typically only a small number of patients is available for a randomized

clinical trial. Nevertheless, it is not uncommon that more than one study is performed to

evaluate a (new) treatment. Scarcity of available evidence makes it particularly valuable to

pool the data in a meta-analysis. When the primary outcome is binary, the small sample

sizes increase the chance of observing zero events. The frequentist random-effects model is

known to induce bias and to result in improper interval estimation of the overall treatment

effect in a meta-analysis with zero events. Bayesian hierarchical modelling could be a

promising alternative. Bayesian models are known for being sensitive to the choice of prior

distributions for between-study variance (heterogeneity) in sparse settings. In a rare disease

setting, only limited data will be available to base the prior on, therefore, robustness of

estimation is desirable. We performed an extensive and diverse simulation study, in terms

of prior densities, aiming to provide practitioners with advice on the choice of a sufficiently

robust prior distribution shape for the heterogeneity parameter. Our results show that priors

that place some concentrated mass on small τ values but do not restrict the density, e.g.

the Uniform(−10, 10) heterogeneity prior on the log(τ2) scale, show robust 95% coverage

combined with less overestimation of the overall treatment effect, across a wide range of

heterogeneity levels. We illustrate the results with meta-analyses of a few small trials.
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Prior distributions for variance parameters in a sparse-event meta-analysis of a few small
trials.

5.1 Introduction

To reach firm conclusions, randomized controlled trials (RCTs) commonly require large

enough sample sizes, but this is not always feasible for (very) rare diseases [1] in which

the limited patient population leads naturally to small RCTs [100]. In RCTs, dichotomous

outcomes are common as they facilitate straightforward clinical interpretation for both efficacy

and safety. When combined with small sample sizes and low to moderate event rates, such

outcomes lead to a large probability of observing zero events on one or more trial arms.

Even in rare diseases usually more than one trial is available for evaluating a (new) treatment

[207, 228]. The small sample sizes make it particularly valuable to pool the data in a meta-

analysis (MA). To synthesize available RCTs, the standard random-effects MA model is

usually applied, also known as the normal-normal hierarchical model.

When zero events are observed, a complication arises for commonly employed frequentist

MA methods. Continuity corrections are needed, usually through adding a constant number

to the zero cells. These corrections may affect the study-specific treatment effect estimates

and inflate their variances [211]. Kuss evaluated likelihood-based MA methods [149], which

incorporate information from trials with zero events in one or both treatment arms without the

use of such corrections and showed that these performed adequately in a non-small sample

and a sufficiently numbered meta-analysis setting. In a similar setting, either variations on the

type of treatment effect measure or the use of the Mantel-Haenszel method has been suggested

in previous simulation studies [149, 211, 213, 214].

Bayesian MA methods were shown to perform more robustly in MAs with only a few small

trials [13, 147, 148, 229]. When synthesizing conveniently large trials, the choice of prior

distributions does not impact inference materially [140, 146, 172, 230, 231]. On the contrary,

when pooling a few small trials, only a small number of observations contribute to the

model likelihood, therefore, inference becomes prior driven [232]. For the normal-normal

hierarchical model, a reference prior was suggested that has the ability to maximize the data

impact on inference [148]. Under a normal-normal hierarchical model, the use of priors that

cover plausible heterogeneity (τ ) ranges has been advocated for a Bayesian MA of a few trials

[131, 144, 147]. Such priors may not behave similarly when there are zero events in one or
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both arms, and specific choices of prior shapes may be preferable; i.e. according to the way

they distribute prior mass across τ−values. The normal-normal hierarchical model has been

shown to perform poorly in the presence of zero events in a meta-analysis of rare diseases

[150]. The use of different distributional model assumptions such as the binomial-normal

hierarchical model may be preferable as (a) it avoids the need for continuity corrections, (b)

it directly models the events through a logit link function and (c) it can impose dissimilar

baseline effects.

The focus of this paper is to investigate the impact of alternative heterogeneity priors on the

(interval) estimation of the overall treatment effect and to provide suggestions for a robust

Bayesian MA of a few small sparse-event trials. Robust priors should retain sensible and

predictable operational characteristics throughout a range of unknown parameter values. The

paper is organized as follows. In section 5.2 we describe a basic Bayesian MA hierarchical

model, along with the different priors and prior groups on heterogeneity parameter. Section

5.3 presents two motivating examples and their analysis. In sections 5.4 and 5.5 we describe

a simulation study that evaluates the selection of priors. In section 5.6 we revisit the

examples. Finally, in section 5.7, we summarize the main findings, while the paper ends with

a discussion, as well as recommendations for practitioners.

5.2 Bayesian inference in meta-analysis

Bayesian hierarchical model for meta-analysis

We consider a set of k two-armed RCTs with a binary outcome; patients are randomized over

two groups: treatment (T) and control (C) resulting in a 2x2 table (Table 5.1).

Table 5.1: Two way table for notation of the ith trial of a meta-analysis.

Treatment Control Total

Events riC riT mi

Non Events niC − riC niT − riT Ni −mi

Total niC niT Ni

In each trial i ∈ (1, 2, ...k) and treatment group j ∈ {C, T}, the number of events is modelled

to follow a binomial distribution rij ∼ Binomial(πij , nij). By πij we denote the probability of

102



Prior distributions for variance parameters in a sparse-event meta-analysis of a few small
trials.

an event and by nij the number of subjects of treatment arm j of trial i [233]. Under a random-

effects assumption, a commonly-used Bayesian two-level binomial-normal hierarchical model

[132, 234] can be written, using the control group as reference, as follows:

rij ∼ Binomial(πij , nij) (5.1)

logit(πiT )= µi + 0.5 ∗ δi

logit(πiC)= µi − 0.5 ∗ δi

where δi ∼ N(δ, τ2), so that τ2 denotes the between-study variance and δi denotes the study-

specific effects of treatment vs. control on the log odds ratio (logOR) scale.

We assume a fixed weakly diffuse normal prior on the overall treatment effect δ ∼ N(0, 100)

throughout and a diffuse normal prior on µi ∼ N(µ0, 100) centred around µ0 =
∑k
i=1 µi/k

[173]. In comparison to another common choice of hyper-parameter variance value δ ∼

N(0, 1000), we lowered the assumed prior variance to produce more stable inferences [160].

The chosen prior on δ has a 95% range of (-19.6,19.6) in the logOR scale. The heterogeneity

parameter can be modelled through alternative prior distributions so that for a transformation

of τ , g(τ) ∼ f(.), where g(τ) denotes a transformation of τ and f(.) denotes a probability

density function.

Priors on heterogeneity

While conducting a meta-analysis, the estimation of heterogeneity is rarely of primary interest.

In cases of small and sparse meta-analyses, estimation of τ can quickly become infeasible.

Therefore, the choice of heterogeneity priors shall also be driven by its ability to aid the proper

estimation of the treatment effect. Different priors have been suggested in the literature, for

several functions of τ (Table 5.2). In such sparse settings, the impact and behaviour of each

prior is based primarily on its distributional shape. Therefore, a sensible manner of clustering

such priors would be to evaluate the way they distribute prior mass on the same scale, i.e. on

τ scale. In this context, priors can be clustered in, at least, the following four groups. First,

Type A priors place more mass close to 0 but support very large values of τ as well [146, 231]

( see Figure 5.1). The Gamma(α, β) prior distributions (AG, ag) on the precision (vτ = 1/τ2)

and a less restrictive prior on Uniform(−10, 10) on the log(τ2) scale (AU) can be gathered in
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this category. Type B priors place more mass in larger values of τ ; i.e. Uniform on τ2 scale

(C, c). Type C priors place mass uniformly in a selected range of τ (i.e. Uniform on τ scale

(B, b)). Finally, Type D priors place most of the mass in small values of τ but naturally bound

the range to more plausible values than Type A priors; i.e. Half -normal priors (DN, dn) on

τ and a more informative prior version of Uniform(−10, 1.386) on the log(τ2) (du). Type D

prior distributions are advocated for MA of a few trials [144, 145, 146, 235]. Within each prior

we examine two options based on the informativeness provided by their hyper-parameters,

one less restrictive (AG, AU, B, C, DN) and one more restrictive (ag, b, c, dn, du) alternative

(Table 5.2).

Table 5.2: Description of considered priors on the heterogeneity τ of a Bayesian meta-analysis.

s0 =
√
k/
∑

(s−2
i ) and s2i are the within-study variances. ID - Abbr. : Identification letter and

abbreviation for each prior.

ID - Abbr. g(τ) ∼ f(.) Restrictive τ Median τ (95% range)

AG 1/τ2 ∼ Gamma(0.001, 0.001) Less > 100 (> 100,+∞)

ag 1/τ2 ∼ Gamma(0.1, 0.1) More 0.3 (12.9, > 100)

AU log(τ2) ∼ Uniform(−10, 10) Less 1 (0.01, > 100)

du log(τ2) ∼ Uniform(−10, 1.386) More 0.1 (0.01, 1.7)

B τ2 ∼ Uniform(0, 1000) Less 22.4 (5, 31.2)

b τ2 ∼ Uniform(0, 4) More 1.4 (0.3, 2)

C τ ∼ Uniform(0, 100) Less 50 (2.5, 97.5)

c τ ∼ Uniform(0, 2) More 1 (0.05, 1.95)

DN τ ∼ Half -normal(0, 100), Less 6.75 (0.3, 22.4)

dn τ ∼ Half -normal(0, 1), More 0.7 (0.03, 2.24)

E s0/(s0 + τ) ∼ Uniform(0, 1) – – –

e τ2 ∼ Half -normal(0,Φ(0.75)/s0), – – –

Finally, we use the estimates of the within-study variances (s2i ) to examine two data-driven

priors (E, e) that both incorporate the harmonic mean (s0 =
√
k/
∑

(1/s2i ) , i = 1, 2, ...k) of

the s2i of the trials included in the MA [131, 236]. More specifically, prior E, also known as

the DuMouchel prior has been suggested for very small sample sizes and, by utilizing s0, it

induces shrinkage on the τ prior distribution [237]. Small values of s0 result in a narrow-tailed

prior distribution on τ and more shrinkage, while large values of s0 result in a wide-tailed

prior distribution on τ and less shrinkage.
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In the following section we introduce two motivating examples, illustrate the results when

different priors are used and discuss the implications.
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Figure 5.1: Prior density shape considered. The less restrictive options per prior are presented
in this figure. Type A priors include both Gammas on vτ (AG, ag) and the less restrictive
Uniform(−10, 10) on log(τ2) (AU). TheGamma prior has a very small peak near zero, while
the peak of the Uniform type A prior is higher both support very large τ -values. Type B
priors include, while both Uniform on τ2 (B, b), Type C priors include the Uniforms on
τ priors (C, c), Type D include both the Half -normal on τ priors (DN, dn) and the more
informative Uniform(−10, 1.386) on log(τ2) prior (du). All other more informative options
within each prior, except for the Uniform(−10, 1.386) on log(τ2), retain a similar shape but
cover a smaller range of values. The latter more informative prior retains a form closer to
Type D priors. For clarity of results the x−axis is graphically truncated for values larger than
100. Figure 3 in Supplementary material I provides a comparison between the less and more
restrictive prior.
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5.3 Motivating examples

Multifocal motor neuropathy is a progressive rare disorder in which the muscles weaken

gradually. Multifocal motor neuropathy is not often fatal but can lead to a significant degree

of disability for the patient. Prevalence is estimated at 1-2 cases per 100,000 [238]. A

literature review and MA assessed the efficacy and safety of intravenous immunoglobulin

in multifocal motor neuropathy [228]. The same evidence was presented in the European

Medicines Agency Public Assessment Report of Kiovig [239]. The primary outcome was the

improvement in disability scale using MRC (Medical Research Council) scores that evaluate

the muscle strength. Three two-arm studies reported the outcome, accounting for a total of

36 recruited patients with 7 reported events in the intravenous immunoglobulin arm and 2 in

the placebo arm. The original MA reported no heterogeneity [228].

For the second example, we consider Guillain-Barre syndrome with a MA of four available

studies. Guillain-Barre syndrome has a prevalence of 1-9 cases per 100,000 [238] and refers

to a number of rare post-infection neuropathies. A literature review and MA summarized

RCTs that compared intravenous immunoglobulin to control (plasma exchange) [207]. For

one of the secondary outcomes, treatment discontinuation, a few arms reported zero events.

This example has been used for evaluating a number of heterogeneity estimators under the

inverse-variance method and has been shown to produce conflicting inferences [150] (Chapter

4). Data for both examples are illustrated in Table 5.3.

Analysis of motivating examples

A robust choice of prior is not trivial for our examples. To examine the behaviour of the priors,

we use Rjags [185, 240] to fit 3 chains of 850,000 samples after a burn-in of 150,000 samples

and a thinning interval of 35 samples for each model. Figure 5.2 presents the posterior median

(as a point estimate) and credible intervals of δ and τ for the two motivating examples under

different priors. The letters in Figure 5.2 correspond to the letters in Table 5.2.
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Table 5.3: Motivating examples; (a) Efficacy endpoint: Improvement in disability, Therapy:
Intravenous immunoglobulin vs Placebo, Condition: Multifocal motor neuropathy (b)
Efficacy endpoint: Treatment discontinuation, Therapy: Intravenous immunoglobulin vs
Plasma Exchange, Condition: Guillain-Barre syndrome. ri,j event in control / treatment
group, ni,j − ri,j non-event in control / treatment group π̂i. = Observed probability of event
in each trial, wi,in = Weight of initial analysis.

(a) Multifocal motor neuropathy - Improvement in disability [228]

Author riT niT − riT riC niC − riC π̂i. wi,in

Azulay 0 5 0 5 0 –

Berg 3 3 0 6 0.25 0.20

Lger 4 3 2 5 0.43 0.80

(b) Guillain-Barre syndrome - Treatment discontinuation [207]

Author riT niT − riT riC niC − riC π̂i. wi,in

Meche 0 74 12 61 0.08 0.39

Bril 0 26 0 24 0 –

PSGBS 3 127 18 103 0.09 0.58

Nomura 1 22 1 23 0.04 0.03

The choice of prior for τ has substantial impact on the posterior credible intervals for δ. The

posterior median for δ varies substantially as well. More specifically, in the multifocal motor

neuropathy example, the posterior median δ has a range of (2.31, 3.27) depending on the τ

prior choice (Figure 5.2a). In the Guillain-Barre syndrome example, the posterior median δ

has a range of (-2.52, -2.80) (Figure 5.2b). The posterior mean of δ in both examples shows

even greater diversity. Interval estimation of δ also varies substantially. Different priors and

types of priors lead to considerably divergent inference (Figure 5.2). All Type A priors show

a similar behaviour upon the estimation of δ in both examples.
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Figure 5.2: Posterior medians and 95% credible intervals of the overall effect (log odds ratio)
and the between-study standard deviation (τ ) for the two motivating examples (a) Multifocal
motor neuropathy and (b) Guillain-Barre syndrome. (AG, ag) - Gamma on vτ , (AU, du) -
Uniform on log(τ2), (B, b) - Uniform on τ2, (C, c) - Uniform on τ , (DN, dn) - Half -normal
on τ , (e) Half -normal on τ2, (E) - DuMouchel prior. (AG, AU, B, C, DN) are less restrictive
priors on τ and (ag, dn, b, c, dn) are more informative priors on τ .

5.4 Simulation study

To incorporate heterogeneity successfully in both study arms, we simulated study-specific

logits for each arm, following the simulation strategy of Hartung and Knapp ([198] , pRandom

in [241]). Hence, we assumed an initial fixed event probability in the control group and we

calculated the event probability in the treatment group, based on a true overall treatment

effect. Further, we simulated study-specific logits from a normal distribution with between-
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study standard deviation equal to τ/
√

2 for the control and treatment arm. We utilized the

simulated logits to compute the study-arm event probabilities by back-calculating and finally

we simulated events for each study arm [241].

We evaluated a number of scenarios by varying the number of trials (k), the number of

patients per trial arm (nij), the control event rate (πc), the between-study standard deviation

(τ ) and the overall treatment effect (δ). More specifically, the number of trials varied as

k ∈ {2, 4, 6} while patients per trial arm were assumed equally allocated (niC = niT ) and

uniformly sampled either between 40 to 50 or between 5 to 10. These sample sizes were

selected to represent realistic scenarios for efficacy and safety endpoints of rare and ultra-rare

diseases [100]. The control event rate (πc) in each trial took set values as follows; very low

event rate (0.05), low event rate (0.1), moderate event rate (0.3). Specific combinations of

sample size and control group event rates lead to particular percentages of zero-event trials in

MAs of the simulated data (Supplementary material I - Table 1). The between-study standard

deviation took values between τ ∈ {0.01, 0.5, 1}. Finally, we examined three values for the

overall treatment effect on the logOR scale, δ ∈ {0, 0.5, 3}.

First, the 12 clustered priors above are evaluated for all scenarios and then a number is selected

for further evaluation. Therefore, the number of scenarios is in total 1,994. For each scenario

we generated 1,000 simulated datasets. We performed simulations using JAGS [185] and R

[242] via a High Performance Cluster. We fitted every model via three parallel chains of 30,000

samples, a burn-in of 4,500 samples and a thinning interval of 5 samples.

In sparse settings the parameters’ Markov chain Monte Carlo sampling convergence is of

concern. We conducted selective convergence checks on the Markov chain Monte Carlo

algorithms via trace plots, convergence diagnostics via the CODA package [243] and focused

on the most extreme scenarios of sparsity. We fitted every model via 3 parallel chains and

we accounted for autocorrelation by applying a thinning interval of 5 samples. Overall,

convergence was achieved. We analytically report on diagnostics in the Supplementary

material III, where we compare the convergence of different priors. Diagnostic assessment

was performed for both the examples (via generation of 1,000,000 Markov chain Monte Carlo

samples) and the simulation study (via generation of 34,500 Markov chain Monte Carlo

samples).
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Each scenario was mainly evaluated by the following performance measures: (1) average

posterior median for δ, (2) coverage of the 95% credible interval (CrI). We also discuss the

mean square error of δ and the average posterior median estimates of τ for exploratory

purposes and completeness. Prior robustness was defined by the adequate overall measures

and small observed fluctuations in coverage of the 95% credible interval among the scenarios

considered.

5.5 Results of simulation study
For relatively large sample sizes and higher πc, regarding the posterior estimation of δ, all

priors perform similarly (Figures 5.3 and 5.4). The overall priors performance deteriorates

at a low control group event rate (πc = 0.05) for a few small RCTs MA, as the average

posterior median of δ is overestimated (Figures 5.3 and 5.4) at all levels of true heterogeneity.

Furthermore, we observe an overall positive bias in the posterior median estimation of δ,

when δ is large.

All Type A priors retain more robust 95% coverage in comparison to other prior groups

(Figures 5.3 and 5.4). More specifically, the Uniform(−10, 10) on log(τ2) scale prior (AU)

retains a more robust 95% coverage at small values of πc, independently of sample size and it

properly estimates the posterior median logOR on average as well (Figures 5.3 and 5.4). The

DuMouchel empirical prior (E) shows a comparable behaviour. The 95% coverage of Type B,

C and D priors varies throughout the evaluated scenarios from conservative in larger sample

sizes to liberal 95% coverage in smaller sample sizes (Figures 5.3 and 5.4). All priors encounter

issues regarding the 95% coverage when the treatment effect is large (δ = 3), the sample size

is limited and the control event rate very small (πC = 0.05) (Figure 5.4).

More informative priors for τ (b, c, dn, du) tend to produce a less variant posterior point

estimate of δ, while less restrictive priors that mostly support larger values for τ (B, C, DN)

tend to overestimate δ heavily (Figures 5.3 and 5.4). Moreover, the use of the latter group of

priors at any level of πc results in conservative inference for δ (Figures 5.3 & 5.4). This set of

less restrictive priors and (du), a prior that also has the smallest prior τ median of all selected

(Table 5.2), these four priors performed poorly in terms of 95% coverage irrespective of the

sparseness of events.
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Prior distributions for variance parameters in a sparse-event meta-analysis of a few small
trials.

It should be noted that even though Figures 5.3 and 5.4 only provide a general view of all

simulated scenarios, we did not observe deviations regarding the average posterior median

of the overall treatment effect (δ) when investigating specific scenarios. Additional averaged

and scenario-specific simulations are presented in Supplementary material II.

For clarity of results, after studying all priors (Figures 5.3, 5.4 and Supplementary material

II), we focus on four priors (AG, AU, dn, E) which either (1) performed more robustly in

the current simulation study (AU, E), (2) are commonly used in the literature (AG) and/or

(3) have been suggested in recent literature for meta-analysis of rare diseases (dn) [13]. We

present selected scenarios for δ = 3 in the main manuscript (Figures 5.5 and 5.6).

Coverage of the 95% CrI for the overall treatment effect (δ)

The value of the treatment effect does not heavily affect the coverage of the 95% CrI.

Specifically, for a MA of four trials, most robust coverage is generally produced by the two

Type A priors, the Gamma(0.001, 0.001) prior on vτ (AG) and (AU), alongside with (E)

empirical prior (Figure 5.5). However, in a MA of less than four trials, prior (AG) induces

systematically larger deviations from the nominal 95% coverage in comparison to priors

(AU) and (E) (Figure 5.5). The Type D Half -normal(0, 1) prior (dn) prior either induce (1)

overcoverage for low levels of true heterogeneity (τ ≤ 1) or low event rates or (2) large

undercoverage for large true heterogeneity (τ = 1), regardless of the event rate. In comparison

to the three priors described above the (dn) prior, show the least robust coverage throughout

all scenarios and more particularly for varying sample sizes or levels of τ (Figure 5.5 and

Supplementary material II).

Mean square error of the overall treatment effect (δ)

All priors produce comparable levels of mean square error (Supplementary II - Figures 1-3 and

12-15). The priors that produce the least optimal and most divergent behaviour in comparison

to the rest are the (DN) and (B) priors.
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Figure 5.5: Coverage of the 95% CrI line plots of the overall effect (log odds ratio) on
different control group event rate levels for a large true overall effect (δ = 3), three values
of τ ∈ {0.01, 0.5, 1} and small sample size trials (nij ∼ Uniform(5, 10)) or large sample sized
trials (nij ∼ Uniform(40, 50)). (AG): Gamma(0.001, 0.001) on vτ , (AU): Uniform(−10, 10)
on log(τ2), (dn): Half -normal(0, 1) on τ , (E): DuMouchel prior. Results for 6 trials can be
found in Supplementary Material II.
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Figure 5.6: Average posterior median line plots of the between-study standard deviation
(τ ) on different control group event rate levels for a large true overall effect (δ = 3)
and small sample size trials (nij ∼ Uniform(5, 10)) or large sample sized trials (nij ∼
Uniform(40, 50)). The grey lines represent 3 levels of heterogeneity, namely, light grey:
τ = 0.01, grey: τ = 0.5, dark grey: τ = 1. (AG): Gamma(0.001, 0.001) on vτ , (AU):
Uniform(−10, 10) on log(τ2), (dn): Half -normal(0, 1) on τ , (E): DuMouchel prior. Results
for 6 trials can be found in Supplementary Material II.

115



Chapter 5

Exploring the heterogeneity estimate behaviour (τ )

All 12 priors produced biased results. In less sparse scenarios (nij ∼ U(40, 50)), k = 4, 6) the

type A priors (AU) and (AG) show the least bias on τ , irrespective of the true heterogeneity

level (Figure 5.6 & Supplementary material II). Prior (dn), behaved similarly to all other more

informative prior choices and showed difficulty in identifying any level of true heterogeneity

(Figure 5.6).

5.6 Revisiting the motivating examples

Following the results of the simulation study, prior type A Uniform(−10, 10) on the log(τ2)

prior (AU) is preferred for the Guillain-Barre syndrome example (4 trials, low event rates,

relatively large sample size). When we apply this prior, the primary inference of these studies

would produce a posterior probability of δ > 0 equal to 96%. This is less than the 99%

posterior probability which is produced by the Type D Half -normal(0, 1) prior (dn) on τ , a

prior that showed non robust overall but sufficient coverage at low to moderate πc combined

with low to moderate τ settings (Figure 5.5). Therefore, inference with both priors suggests

efficacy of intravenous immunoglobulin in comparison with plasma exchange in terms of

treatment discontinuation and result in comparable posterior distributions (Figure 5.7) and

medians for the logOR (δAU = −2.51 - δdn = −2.49).

Likewise, for the more sparse multifocal motor neuropathy example (3 trials, moderate event

rates, relatively small sample size), prior (AU) would also be preferred. When we apply this

prior, the primary inference for these studies would produce a posterior probability of δ > 0

equal to 93%, but when prior (dn) is applied, the posterior probability becomes 97%, which

would have overstated our confidence in the effectiveness of intravenous immunoglobulin

regarding improvement in MRC scale, based on results of the simulation study. Similarly to

the Guillain-Barre syndrome case study, relying on priors (AU) or (dn) produces comparable

posterior median logORs (δAU = 2.32 - δdn = 2.31), as expected by the reported simulation

study (Figures 5.3 and 5.4).
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Figure 5.7: Posterior summaries for the overall effect (δ) and the between-study standard
deviation (τ ) of the Multifocal motor neuropathy and Guillain-Barre syndrome examples
for (AU): Uniform(−10, 10) on log(τ2), (dn): Half -normal(0, 1) on τ and (E): DuMouchel
empirical prior based on 850,000 iterations with a burn-in of 150,000 iterations and a thinning
interval of 35 iterations.

In both examples, data-driven prior (E) produces similar probability statements and posterior

median logORs to the Type A (AU) prior, a behaviour which is aligned with the results of the

simulation (Figure 5.5). Based on the simulation study, a Type A prior (i.e. AU) that showed

robust 95% coverage should be chosen as it provides less variable behaviour in comparison to

the studied alternatives under both known and unknown parameters (Types B, C and D), as

well.

A comparison between the two priors that performed robustly through the simulation study
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(AU and E) and the commonly used half-normal prior (dn) is presented in Figure 5.7 for

the multifocal motor neuropathy and Guilen-Barre syndrome examples respectively. In both

examples, when prior (AU) is applied, the posterior distribution of τ differs considerably

from its prior. However, when prior (dn) is applied, the posterior distribution of τ becomes

more prior-driven, a behaviour which is also depicted in our simulation (Figure 5.6). In

Supplementary Material I (Table 2), interested readers can find the extended results of all

considered prior choices.

5.7 Main findings
(i) The choice of type of prior and prior distribution for τ heavily influences not only the

posterior mean/median estimates of τ but also the posterior mean/median estimates

of δ in a sparse-events MA of a few small trials.

(ii) In a sparse meta-analysis of a few small (nij ∼ (5, 10)) studies, priors that place most of

the mass in small values of τ but naturally restrict the range to more plausible values

(D) (i.e. dn, du) should be avoided as they do not provide robust point and proper

interval estimation of δ.

(iii) Type A priors that place more mass on small values without excluding very large τ

prior values (AU) are suggested as a robust choice for a sparse-events MA of a few

small trials.

(iv) In many scenarios and even for very sparse settings, the Type A prior

Uniform(−10, 10) on the log(τ2) scale prior (AU) shows good coverage overall

combined with less overestimation of δ or τ in comparison to other prior choices. The

DuMouchel prior (E) shows a similar behaviour.

(v) The less restrictive prior choices of priors that place mass uniformly in a selected range

(B) and/or priors that place more mass in larger values of τ (C) and the empirical

prior (DN) are not appropriate for a sparse-events MA of a few small trials, as

they overestimate τ and produce conservative inferences, while resulting in improper

estimation of δ. Their more informative alternatives (b, c and dn) produce more reliable

inferences at high πc, but they result in liberal inferences when combined with large

true heterogeneity (τ = 1) and low πc. All six prior choices have difficulties to identify

varying levels of τ .
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5.8 Discussion
Based on previous research, it is generally accepted that the choice of prior distribution on τ

largely impacts the posterior interval estimation of δ in a meta-analysis of a few small trials

[13, 131, 144, 145]. We demonstrated that in very sparse settings measures, such as the overall

posterior median of δ, can become very inconsistent under alternative priors on τ as well.

Even though, the final choice of prior should take into account the specific characteristics of

each conducted meta-analysis, a solution in such sparse conditions would be to identify prior

shapes that show robustness in the operational features of the posterior estimation of δ.

In this study we demonstrated that priors which place mass on small values of τ but

sufficiently support larger value as well (Type A priors, eg. AU - Uniform(−10, 10) prior

on log(τ2) scale) showed on average robust behaviour in most scenarios, followed by the

DuMouchel empirical prior (E), in comparison to other choices. Type D priors such as the dn -

Half -normal(0, 1) on τ , a prior that has been compared under an approximate normal setting

and has been evaluated in settings of a few small trials [13, 147], did not perform satisfactorily

neither under large levels of true heterogeneity nor under different settings of trial size and

number of trials. Type A priors and DuMouchel empirical prior place larger uncertainty

around τ (Table 5.2) and produce a more data-driven inference on δ, in comparison to Type D

priors such as the Half -Normal (dn) prior or the more informative Uniform(−10, 1.386) on

log(τ2) scale prior (du), which produces a more prior-driven inference on δ. Furthermore, we

demonstrated that the use of priors with either a less restrictive or very confining prior range

may be equally problematic, in terms of operational features and robustness.

Findings in perspective

Our study extends previous research on Bayesian hierarchical models’ evaluations [131, 144,

145] in sparse-events MA of small populations. Contrary to previous evaluations on priors

for heterogeneity [13, 144, 145, 147], we focused on a sparse-event setting, we then grouped

the evaluated priors based on their shape. Except for observing the expected variations in the

posterior intervals of δ, we observed a variation in the posterior medians of δ as well. Namely,

priors that favour small τ are the ones that misestimate δ the least at very low event rates.

We further noticed a general overestimation when δ is large, as well as to a smaller extent
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when δ takes smaller values. The primary reason for the overestimation of δ is the nature

of a dichotomous outcome. For positive δ, more events are observed in the treatment arm,

especially when δ is large [241]. Events in the treatment arm combined with zero events in

the control arm result in overestimation. We also applied an alternative model that applies

larger variance to logit(πT ) than to logit(πC) in comparison to model 5.1 ([144] and Model 2

in [234]). Conclusions remained comparable, though when the alternative model was applied

an underestimation of δ was observed when πc was very low.

The variance within a single study relative to the estimated heterogeneity between studies

determines this study’s impact on the overall inference for δ. Naturally, small studies with

zero events would produce a large within-study variability (standard errors) around the

logOR study-specific effect which decreases the study’s impact on the posterior overall effect.

However, prior distributions that favour large values for τ allow small studies to have a larger

weight. As a result, the contribution of small studies with one or two reported zero arms

in a MA is enhanced when considering priors that support large τ . In both examples we

reviewed herein, the increasing weight of studies with no observed events, mostly in a single

arm, explains why the posterior median of δ are overestimated when less restrictive priors are

applied (Figure 5.2 and Supplementary material I - Table 2). Therefore, in combination with

the observed unstable study-specific treatment effect issues, alternative prior assumptions

may enhance the impact of zero events in a few small trials MA, inducing a ”small MA zero-

event” bias on δ.

Main limitations

This work is subject to the assumption of normality for the study-specific effects and the

overall treatment effect, by placing a weakly diffused normal prior on δi and δ; instead other

dependence structures between δ and δi may be preferred [174]. Despite its common use, this

assumption may not be appropriate considering the small number of studies and sparsity of

events. Model 5.1 further assumes that the logit(πiT ) and logit(πiC) have equal variances.

This can be a restrictive assumption for which alternatives have been discussed [244]. In

addition, other priors forms on µi, δi or δ may be considered such as: a Uniform, a Student-

t, a Truncated-t or a Cauchy prior [118]. After partially evaluating these options through

simulation, we did not observe changes in our conclusions. In the setting of a few small trials,
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informative empirical priors that are based on published MAs of the Cochrane database can

be used in a new MA of binary outcomes [152, 154]. However, such empirical priors have not

been yet tailored for meta-analyses in rare diseases and therefore, may not be representative

of heterogeneity commonly observed in such cases [152, 153, 199]. Based on preliminary non-

reported results, such priors are expected to result in suboptimal frequentist characteristics

similar to the very informative priors studied herein. Another restrictive option, given the

small sample sizes, would be to model the studies as covariates and avoid the normal random-

effects assumption.

In the simulation study we focused on positive treatment effects with low control event rates

but not negative treatment effects with larger control event rates assuming that such effects

are symmetric and their probabilities of success are reversed between the treatment arms.

The behaviour of a Bayesian MA might depend on the type of binary effect measure (log odds

ratio, log risk ratio, risk difference). Such alternative measures could be of importance with

sparse events MAs when normal approximations do not hold or when the logOR is undefined

[149, 214].

Finally, one should consider the issue of inefficient Markov chain Monte Carlo sampling for

rare events [245, 246]. In such extremely sparse settings, our findings might be sensitive to the

sampling engine of the simulation study. Regardless of the sampler applied, we recommend

conducting a formal convergence analysis in such sparse settings.

5.8 Conclusion

To conclude, a random-effects MA using a Bayesian binomial-normal hierarchical model has

the potential to deal with high levels of zero events. The sensitivity of Bayesian models to the

choice of priors is confirmed and produces not only diverse credible intervals but also diverse

posterior medians for the overall treatment effect (δ). We showed that when performing

a Bayesian binomial-normal MA under such sparse conditions, robust priors should have

more mass close to zero, while supporting very large values as well (i.e. a less informative

Uniform(−10, 10) prior on log(τ2)). Priors that support only large or only mainly small

values of heterogeneity (τ ) result in substantial misestimation of δ in such sparse settings and
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should be avoided. Except for robustness researchers should aim to account for the specific

characteristics of each conducted meta-analysis before choosing a prior and setting prior levels

of expected heterogeneity.

Supplementary material can be found at https://doi.org/10.1002/pst.20539.
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Abstract

In drug development programs, proof-of-concept Phase II clinical trials typically have a

biomarker as a primary outcome, or an outcome that can be observed with relatively short

follow-up. Subsequently, the Phase III clinical trials aim to demonstrate the treatment effect

based on a clinical outcome, that often needs a longer follow-up to be assessed. Short-term

outcomes or biomarkers are typically associated with long-term outcomes and they are often

included in Phase III trials. The decision to proceed to Phase III development is based on

analysis of the short term outcome data from Phase II. In rare diseases, it is likely that only

one Phase II trial and one Phase III trial are available. Positive results of the short term

outcome Phase II trial are then likely seen as supporting (or even replicating) positive Phase

III results on the long term outcome, without formal assessment and without accounting for

between-study variability. We used double regression modelling applied to the Phase II and

Phase III results to numerically mimic this informal assessment. We provide an analytical

solution for the bias and mean square error of the overall effect that leads to a corrected

double-regression. We further introduce a flexible Bayesian double-regression approach that also

accounts for additional variance between the Phase II and Phase III trials. Such an approach

includes the Phase II short term outcomes in the overall effect estimate of the primary outcome

weighted by the extent to which they are in line with the Phase III short-term outcome results.

We illustrate all methods with an orphan drug example for Fabry disease.
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6.1 Introduction

Drug development programs typically include exploratory (Phase II) and confirmatory (Phase

III) Randomized Controlled Trials (RCTs) to assess the efficacy, safety and appropriate dosages

of an experimental (new) treatment. For regular ”large disease” drug development programs

decisions to conduct a Phase III trial are based on positive Phase II trials. If evaluated together

they may induce a form of sampling-based selection bias (the succeeding trials are only

conducted when the first trials were positive). Such a bias is usually not an issue, as more

than one pivotal Phase III RCT will be required, such that the confirmatory evidence from

Phase III can stand fully on its own.

Commonly in rare diseases, no more than two RCTs are conducted, one exploratory and one

confirmatory [100]. The duration of the first exploratory trial is usually shorter than the

duration of the succeeding confirmatory trial [247], hence Phase II primary endpoints are

biomarkers or short-term clinical outcomes. Phase III primary clinical outcomes are often

observed after a considerable time (long-term outcomes), therefore, even if N = N1 + N2

number of patients participate in both trials, onlyN2 patients will be observed long enough to

provide responses for the primary clinical outcome of interest. Biomarkers and secondary

clinical outcomes are often observed earlier (short-term outcomes) and, therefore, easily

included in both trials and, hence, available for all N patients. After both trials have been

conducted, inference on the treatment efficacy is typically performed by evaluating the long-

term responses ofN2 patients. In a rare disease setting, N2 may not be large enough to solidly

confirm treatment efficacy. In assessing the totality of evidence, the positive results from the

Phase II trial could be then seen as supportive, as typically the short term outcome would be

assumed to be associated with the long term outcome.

For example, Galafold (migalastat) acquired marketing authorization as an orphan drug for

the treatment of Fabry disease in 2016 within Europe. Fabry disease is a rare, progressive

disorder with an estimated prevalence of 1:117,000 to 1:40,000 [248]. The condition affect

major organs and may result in life-threatening events. Until then, standard treatment for

Fabry disease consisted of Enzyme Replacement Therapy [248]. Two main studies were

submitted during the marketing authorization of migalastat; one randomized, placebo-

controlled (AT1001-011, migalastat vs. Placebo) superiority study and one active comparison

125



Chapter 6

randomized trial (AT1001-012, migalastat vs. Enzyme Replacement Therapy), with a non-

inferiority design.

0 Months     6 Months   18 months 

Time

β 

B

γ 
Fabry Disease Short-term outcome Long-term outcome 

Migalastat 

Figure 6.1: Relation between treatment vs. short-term outcome, treatment vs. long-term
outcome and short-term vs. long-term outcome in Fabry disease example.

In trial 011 patients switched to migalastat 6 months post-randomization, while in trial

012 primary follow-up was considerably longer, with switching taking place 18 months

post-randomization. In the first trial, the change in average globotriaosylceramide (GL-

3) inclusions from baseline to six months was the primary outcome which produced non-

conclusive evidence. The second trial utilized the annualized change in glomerular filtration

rate (eGFR) at month 18 as the primary clinical outcome (Table 6.1). Both GL-3 and the

annualized change in eGFR at month 6 were collected in both trials. No strong correlation

has been established in the literature between the GL-3 outcome and the change in glomerular

filtration rate (eGFR) [249]. In study 011 after 6 months of treatment with migalastat 150 mg,

eGFR values increased, whereas in the placebo treated group eGFR values declined [248].

This outcome among other secondary results led to the conduct of study 012. In trial 011, all

patients treatment switched to migalastat at 6 months, an action that restricts the observation

of a treatment effect on the primary long-term outcome. Given the limited available data,

evidence from both trials were used for the final approval decision.
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Table 6.1: Main randomized studies described in the European Public Assessment Report of
Galafold

Annualised rates of change in eGFR Annualised rates of change in eGFR Sample Start
Study Number Duration from baseline to month 6 from baseline to month 18 size date

AT1001-011 6 months Collected Not Collected 67 Aug 2009
AT1001-012 18 months Collected Collected 52 Dec 2010

Analysis methods that use the relation between short and long-term outcomes may be applied

to formally synthesize the evidence on treatment efficacy across the two trials. Engel and

Walstra [250] formulated a double-regression (DR) approach, which can aid in more precise

treatment effect estimation, by accounting for unobserved long-term outcome responses via

observed short-term outcome responses. Their method utilizes the correlation to inform

the point and variance estimates of the treatment effect on the long-term outcomes. For

large samples their method has the proven potential to increase precision. However, for

small sample sizes this may not be necessarily true [251]. Previously, in RCTs the double-

regression approaches have been suggested mainly to inform treatment selection during

interim analysis in seamless Phase II/III designs [252, 253, 254]. A Bayesian double-regression

(BDR) analogue can be readily constructed [255] which maintains similar limitations to the

frequentist alternative but could flexibly model the two Phase III outcomes’ data and it can

include additional historical trial data (i.e. Phase II short-term outcome data) as a prior

distribution [256].

In this article we investigate how to model and estimate the efficacy of a new treatment on

the long-term clinical outcome, using the data on short-term outcomes from both trials. We

investigate methods that either account or do not account for the potential sampling-based

selection bias when combining the Phase II and Phase III trials. We investigate a bias corrected

double-regression approach and a flexible Bayesian approach regarding their performance to

estimate the treatment effect on the long-term outcomes.

We focus on two related key problems: (1) the magnitude of the type 1 error inflation and bias

when combining results from Phase II and III and (2) how to estimate the treatment effect on

the long term outcome, using results from both studies and assess this estimate in terms of

bias and variance.

The paper is organized as follows. First, we formalize the problem with a bivariate linear
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model, then we introduce its conditional form and briefly discuss specific model variations,

e.g., the single-regression approach. We provide an approximate analytical solution to the

problem of sampling-based selection bias moving from Phase II to Phase III based on the

Phase II short-term outcome in section 6.3. In section 6.4, we propose a Bayesian solution

to the estimation problem, a model that down-weights the impact of short-term data via

a historical power prior. This prior dynamically accounts for the bias in estimating the

same treatment effect across the two trials, while accounting for additional between-trial

variance (heterogeneity - τ ) around the short-term outcome effect. Finally, we illustrate the

applicability of methods, using a simulation study, in section 6.5. The article ends with a

discussion and steps for further research.

6.2 Models for the joint Phase II and III data
Consider a Phase II trial of total sample sizeN1 and a Phase III trial of total sample sizeN2. For

both trials it is assumed that equal number of patients (nk = Nk/2, k = 1, 2) are randomized

to the control and experimental treatment. Let us denote Yk the long-term treatment response

for patients in trial k and Xk the short-term treatment response in trial k, k = 1, 2. For

the remainder of the manuscript we use bold letters to denote patients’ dimension vectors

Y = {Yi} where i = 1, ...Nk. We denote as Y and X the long-term or short-term outcome

data which correspond to patients of both Phase II and Phase III trials. Of these, X1, X2 and

Y2 are observed, while Y1 is not observed.

Bivariate modelling for short-term and long-term outcomes between studies

The long-term and short-term outcomes are assumed to follow a bivariate normal distribution

and are modelled as (X,Y),

(
X

Y

)
∼ N

[(
α+ βt

A+Bt

)
,
∑(

σ2
x ρσxσy

ρσxσy σ2
y

)]
(6.1)

where σ2
x and σ2

y denote the true outcomes variances, ρ the true correlation between the two

outcomes and t a vector indicating whether the ith patient receives control or experimental
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treatment. Throughout the manuscript we assume that the between-study correlation equals

to zero (Online supplementary - A3).

The above bivariate model can be conditionally expressed as

X|t ∼ N(α+ βt, σ2
x) (6.2)

Y|t,x ∼ N(a + bt + γx, σ2
0)

where σ2
0 = σ2

y − γ2σ2
x, a = A− γα, b = B − γβ and γ = ρσy/σx

Double-regression to estimate the effect of primary long-term outcome

At the end of both trials short-term outcome data X for N = N1 +N2 patients and long-term

outcome data Y2 for only N2 patients are observed. Y corresponds to the outcome of interest

related to which estimation and hypothesis testing will be performed. The double-regression

utilizes the relation between short-term and long-term outcomes and allows estimation of the

long-term outcome parameter B.

Based on the double-regression method, parameters α, β and σ2
x are estimated via the regression

of X|t on N patients, as α̂, β̂, s2x and parameters a, b, γ and σ2
0 are estimated via the regression

of Y2|X2, t on N2 patients, as â, b̂, γ̂, s20, s2y = s20 + γ̂2s2x, Â = â + γ̂α̂, ρ̂ = γ̂sx/sy [250, 253].

The primary effect of interest B is then estimated via:

B = b+ γβ (eq1)

The variance of B̂ is shown in [250] to be equal to

var(b̂) + γ2 var(β̂) + β var(γ̂) + 2β cov(b̂, γ̂)
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estimates of the above can be obtained by using the individual estimates acquired from

the regression analyses (model 6.2). Under model 6.2, hypothesis testing is performed as

H0 : B̂ ≤ 0 vs. H1 : B̂ > 0 via Zy1−α < B̂/

√
var(B̂) ,where Zy1−α is the (1 − α)th standard

normal critical quantile. A direct Bayesian analogue to the conditional model 6.2 has been

discussed elsewhere [255]. This Bayesian model has been shown to produce comparable

results to model 6.2 under diffuse ”non-informative” priors for each parameter in general

settings.

Flexible Bayesian (double-) regression

We can model the Phase II short-term outcome data (X1) via a Bayesian single-regression and

we can utilize the posterior distribution as prior on a Bayesian double-regression model on the

Phase III short-term outcome data as follows. Let us assume a bivariate variable (X2,Y2) of

dimensionsN2 · 2 with a covariance matrix Σ2. Barnard et al suggested decomposing Σ2 and

applying independent priors on ρ, σx2 and σy2 [255, 257]. In our two-dimensional scenario, a

multivariate normal likelihood could be specified on the short-term and long-term Phase III

outcome data by conditional distributions as follows

X2|t ∼ N(α+ βt, σ2
x2) (6.3)

α ∼ N(µα, σ
2
α), β ∼ N(µβ , σ

2
β)

Y2|t,x2 ∼ N(A+Bt + ρ
σy2
σx2

(x2 − µx2), (1− ρ2)σ2
y2)

a ∼ N(0, 102), b ∼ N(0, 102)

where µx2 denotes the mean value of the short-term Phase III outcome data. A prior has

to be placed on ρ parameter, e.g. prior ρ ∼ Uniform(−1, 1) uniformly weights our prior

considerations around the correlation parameter. We can further assume simply two half-

normal priors on σx2 , σy2 ∼ HN(0, 1). To mimic model 6.2 we inform the σx2 prior based

on the posterior model variance from Phase II short-term outcome data i.e. fitting them

over an optimized log-normal prior distribution. In order to further mimic model 6.2 we
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have set normal distribution priors based on Phase II posterior effect and variance mean

estimates of the short-term outcome parameters (µα, µβ , σ2
α, σ

2
β). In comparison to the direct

Bayesian analogue of model 6.2, where the strength of the relationship between short and

long-term endpoints becomes clear only after combining the posterior mean estimates via the

γ parameter, model 6.3 is more intuitive, as it directly models the correlation (ρ) between

the two outcomes and it directly produces posterior Markov Chain Monte Carlo draws

from B. Therefore, under such a fully Bayesian approach there is no need for numerical

addition of treatment effect mean estimates. Posterior inference can be obtained via traditional

Markov Chain Monte Carlo application software (i.e. JAGS [185]) or even analytically under

convenient prior distributions [256]. In this Bayesian model we assume that hypothesis testing

forH0 vsH1 will be performed by utilizing posterior probabilities as Pr(B > 0|Y) > ω where

ω = 0.95.

If we set the correlation very close to zero; i.e. ρ ∼ U(−0.01, 0.01), then, the Phase III trial

long-term outcome data are evaluated individually under a standard (Bayesian) linear single-

regression model. In comparison to the single-regression models, the advantage of models 6.2,

Bayesian 6.2 and 6.3 rest in their ability to numerically calculate the impact of accounting for

the Phase II short-term outcome data in analysing the long-term outcome. Additional details

of the (Bayesian) single-regression models can be found in the online supplementary (A1).

6.3 Type 1 error inflation and bias due to selection based on short term

outcome results

Usually, a Phase II decision leads to the initiation of a Phase III trial. This decision can be based

on a test statistic for the early short-term outcome and an imposed critical value; i.e. z1−α. This

is clearly an oversimplification of the actual Phase II to Phase III transition decision, but used

here to illustrate the potential impact on type 1 error and bias if the results are combined.

In this simplified model, the distribution of the available Phase II trial short-term outcome

f(X|ZX1 > z1−α), will be truncated, where ZX1 denotes the standardized difference of the

short-term Phase II trial outcome. If the analysis of Phase III data occurs independently from

earlier Phase trial data, we expect no increase of Type I error and bias, though the power might

remain low due to the limited trial sample size. In the assessment of totality of evidence
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in this rare disease setting, however, positive results from both the Phase II trial and Phase

III trial may well be seen as reinforcing. This informally combines evidence between trials

which often results in positively biased inferences in favour of the long-term treatment effect

B, while an error inflation is observed in the double-regression long-term outcome inference

(models 6.2, 6.3 and Figure 6.2). In such situations, the bias on B̂ estimate, based on model 6.2

is given by the following approximation (Appendix of Chapter 6 - A2),

Bias(B̂) = σ
′
y
w1ρλσx1
σ′
x

√
N1/2

(eq2)

where σ
′2
y = σ2

y + γ2D, σ
′2
x = σ2

x + D, λ =
φ(ω)

1− Φ(ω)
, ω =

Z1−α − µx1
σx1/

√
N1/2

, w1 = N1/N. φ

and Φ are probability density and cumulative functions of the standard normal distribution

respectively, D = w1

(
(2σ2

1/N1)ζ + A2(1 − w2
1 − w2

2) + 2A(µx1 − µx)
)

, A = (σ1/
√
N1/2)λ,

ζ = aλ− (λ)2 and N1 denotes the sample size of the Phase II trial.

An approximate value forMSE(B̂) of the double-regression is equal to (Appendix of Chapter

6 - A2)

MSE(B̂) = 2σ
′2
y

(w1ρλσx1

σ′
x

√
N1

)2
︸ ︷︷ ︸

Bias(B̂)2

+ 2σ
′2
y

(1− ρ2

N2
+
ρ2

N

)
︸ ︷︷ ︸

V ar(B̂)

(eq3)

As we observe in eq3, the inflation in MSE depends on (i) the decision threshold to initiate

the Phase III trial through λ parameter, (ii) the Phase II short-term outcome mean (µx1 ) and

variance (σx1/
√
N1/2)2, (iii) the number of patients in the Phase II trial (N1) and (iv) and the

magnitude of the correlation (ρ). An increase in σx1 results in an increase of MSE, while as N1

decreases, the MSE increases as well. A similar behaviour is observed in terms of Type I error

(Figure 6.2). More specifically, Type I error rates increase considerably with higher ρ, while

the power curves, in general, increase with more patients being allocated to the Phase III trial

(N2) (Figure 6.2).
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Based on the aforementioned bias and mean square error expressions and by replacing

parameters with their estimates, the long-term outcome effect and variance of a (bias)

corrected double-regression model are estimated as (Appendix of Chapter 6 - A2),

B̂
′

=B̂ − ˜Bias(B̂) (6.4)

˜var(B̂)
′

=2(s2y − γ̂2D̂)
(1− ρ̂2

N2
+
ρ̂2

N

)

6.4 Effect of additional short-term outcome heterogeneity (τ )

All above models assume that the between-study variability of the short and long-term

outcomes equal to zero (τx = τy = 0) and therefore, all N observations are derived from

the same population. Phase II vs. Phase III trials typically do not have similar protocols,

as the Phase II trials are usually more restrictive in patient inclusions, therefore, exploring

additional between-study variance becomes important, especially in a rare disease setting

where each disease contains highly heterogeneous patient populations. Such between-study

variability is expected to influence the short-term and long-term treatment effect estimates. A

proper estimation of τ with just two available studies is not likely reliable [11, 178, 241].

We utilize a mechanism based on power priors to account for the between-study variability

within a Bayesian framework [258]. By estimating a power parameter η that represents the

conflict between the short-term outcome data of the two available trials, model 6.3 can be

further extended to account for the short-term outcome excess between-study variance (τ ),

along with the bias [258, 259, 260].

Bayesian flexible double-regression

Let us assume that data X1 exist for the short-term outcome from the Phase II study and B are

a set of linear regression parameters. Given the definition of a power prior [261], the posterior

distribution after observing the Phase II short-term outcome data would be
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π(B|X1, η) ∝ L(B|X1)ηπ0(B)

Then, the posterior for B after observing the Phase III study’s short-term outcome data (X2)

would be

π(B|X, η) ∝ L(B|X2)L(B|X1)ηπ1(B)

The posterior distribution of B|X1 in the normal case ([262]) is know to be equal to

B|X1, η ∼ N
(

(T
′
1T1)−1T

′
1Y1,

σ2
x1

η
(T

′
1T1)−1

)
(eq4)

, where T1 is the design matrix with column vectors 1, t. We consider the following

conditional model

X2|t ∼ N(α+ βt, σ2
x2) (6.5)

α ∼ N(µα, σ
2
α/η̂), β ∼ N(µβ , σ

2
β/η̂)

Y2|t,x2 ∼ N(A+Bt + ρ
σy2
σx2

(x2 − µx2), (1− ρ2)σ2
y2)

A ∼ N(0, 102), B ∼ N(0, 102)

The conditional set-up of model 6.5 remains similar to 6.3. Now dynamic informative power

priors based on eq4 are placed on the short-term endpoint’s parameters α and β. Such

priors control the borrowing of the historical data and discount the short-term prior in case of

treatment effect’s disagreement.
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Estimation of η

A number of power prior (guided-value) formulations have been suggested [258, 259, 260].

Among the above alternatives, we chose one that selects a guided-value that maximizes the

marginal likelihood [260]. The guide value of η based on the marginal likelihood criterion has

an estimate of

η̂ = argmin
0<η≤1

[−2log{m(η)}] (eq5)

where m(η) is the marginal likelihood. Ibrahim et al [262] provided an analytical expression

of −2log{m(η)} for the normal outcome case. Figure 1 in the online supplementary (A4)

presents the empirically calculated relationship between η and varying levels of β1.

In model 6.5, similarly to model 6.3, we are interested in the overall long-term outcome effect

B and we assume that hypothesis testing forH0 vsH1 will be performed by utilizing posterior

probabilities as Pr(B > 0|Y ) > ω where ω = 0.95.

6.5 Simulation study

A simulation study was conducted to assess the relative performance of the suggested

methods, in the analysis of the Phase III long-term outcome data. For illustrative purposes,

we assume that the two available Phase II and Phase III trials had a similar control treatment,

therefore, the second trial would have been designed as a placebo-controlled trial. In this

section, we assume that the decision to conduct the second Phase III trial was taken on the

basis of available evidence in the first Phase II trial on a single short-term outcome. At the end

of the second trial, individual data of N patients are available on the short-term and data of

N2 are available on the long-term outcomes. The simulation study results were derived from

a bivariate normal model simulation strategy as described in the online supplementary (A3).

The single-regression (SR), double-regression (DR), corrected double-regression (DRC) methods

ignore τx and therefore assume a different underlying data generating model in comparison
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to the Bayesian flexible double-regression (BFDR) approach. Even though, they are not directly

comparable (Table 6.2), we empirically compared the four aforementioned statistical methods

by generating at least 10,000 simulated combinations of the two available trials data. To do so,

we simulated scenarios of the final trial analysis on the primary long-term endpoint assuming

a variety of combinations between the short (β) and long-term (B) outcome treatment effects.

The latter were varied as (Scenario I) B = β = 0, (Scenario II) B = β = 0.6 (Scenario

III) B1 = 0, B2 = 0.2, β1 = 0, β2 = 0.2 and (Scenario IV) B = 0.6, β = 0, we assumed

that ρ = 0.9, αx ∈ {0.05, 0.1, 0.2}, the between-study standard deviation equal to τ = 0,

while all variances were set equal to 1. Specific alternative versions of scenarios I and II were

produced by varying ρ and τ . The first (I) scenario describes variations of the strict null (τ = 0)

and null hypothesis under heterogeneity (τ = 1), while the second (II) scenario describes a

common alternative hypothesis on both outcomes and trials. Scenario III can occur when

heterogeneous populations are selected for the Phase II and Phase III trial, while the fourth

(IV) scenario describes a situation where the long-term outcome true effect exists but the short-

term outcome equals to 0. All remaining settings (ie. number of trials (k), total sample sizes

N, sample size ratio between trials N1 : N2) were reflective of a typical rare disease setting

and based on the Galafold example (Table 6.1). All simulations were performed via R [263]

and JAGS [185].

6.6 Results

(Strict) null hypothesis scenario (I: B = β = 0)

The Bayesian flexible double-regression (BFDR) results in treatment effects closer to the single-

regression (SR) estimates than the double-regression (DR) approach under the null hypothesis

simulation (Scenario I - Table 6.3). The corrected double-regression (DRC) approach presents a

similar behaviour producing long-term effect estimates even closer to the SR than the BFDR

approach. In the three null hypothesis scenarios I(b-d) (B = β = 0), DR results in the largest

estimated treatment effect and produces the largest type I error inflation while DRC generally

inflates the Type I error the least among the three investigated methods. An interesting

exception, that we further discuss in section 6.7, is observed in scenario Ia, where the BFDR

approach produces stricter error rates than the DRC approach. In general, the SR method

controls type I error the most, while the DR method controls type I error the least.
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Table 6.3: Long-term conditional average treatment effect estimates (means, posterior
means, confidence intervals, credible intervals) and average treatment efficacy p-values and
probabilities of the four models (Table 6.2) given that ρ = 0.9, τ = 0.01, ρB = 0 and σs=1,
except where noted otherwise, based on at least 10.000 simulations.The first line SR of each
scenario (I) presents a frequentist single-regression on the Phase III long-term outcome data.
DR correspond to the frequentist double-regression. Last, the DRC lines present the result for
the bias corrected double-regression approach and the BFDR lines present the results for the
Bayesian flexible double-regression approach.

Scenario Model Mean/Posterior mean B Error/Power

αx: (0.05 · 0.1 · 0.2) (0.05 · 0.1 · 0.2)

Ia. B = β = 0 SR 0.001 · 0.003 · 0.002 0.057 · 0.054 · 0.053
DR 0.256 · 0.220 · 0.178 0.318 · 0.247 · 0.183
DRC 0.087 · 0.075 · 0.063 0.079 · 0.066 · 0.060
BFDR 0.170 · 0.156 · 0.133 0.054 · 0.037 · 0.022

b. B = β = 0 SR 0.000 · 0.003 · 0.002 0.055 · 0.053 · 0.054
ρ = 0.5 DR 0.141 · 0.123 · 0.100 0.148 · 0.130 · 0.114

DRC -0.028 · -0.022 · -0.015 0.045 · 0.047 · 0.048
BFDR 0.089 · 0.083 · 0.071 0.070 · 0.066 · 0.056

c. B = β = 0 SR 0.001 · 0.004 · 0.003 0.057 · 0.056 · 0.054
τ = 0.5 DR 0.228 · 0.198 · 0.160 0.215 · 0.177 · 0.142

DRC 0.059 · 0.053 · 0.045 0.073 · 0.069 · 0.066
BFDR 0.150 · 0.141 · 0.120 0.102 · 0.088 · 0.069

d. B = β = 0 SR 0.000 · 0.003 · 0.002 0.054 · 0.054 · 0.054
τ = 0.5 DR 0.126 · 0.110 · 0.090 0.127 · 0.113 · 0.104
ρ = 0.5 DRC 0.032 · 0.030 · 0.026 0.072 · 0.069 · 0.071

BFDR 0.078 · 0.075 · 0.064 0.095 · 0.092 · 0.086

Alternative hypothesis scenario (II: B = β = 0.6)

In scenario II (B = β = 0.6), all methods identified a treatment effect close to the true value

(Table 6.4). The empirical power to identify a treatment effect is usually large for the BFDR,

and considerably larger for the DRC than SR approach. Among the DRC and BFDR methods,

BFDR produces treatment effect means closest to the true value. In scenario IIa (τ = 0), DRC

performs better in terms of 95% coverage whereas in scenario IIb where τ = 0.5, BFDR results

in coverage closest to 95%.
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Scenarios III and IV

In scenario III (B1 = 0, B2 = 0.2, β1 = 0, β2 = 0.2), the BFDR produces similar findings to

the DR approach, while the DRC method discards most Phase II information and its results

are close to the SR approach (Table 6.4). DRC retains a comparable behaviour in scenario IV

(B = 0.6, β = 0), where it discards most of the sample-based selection bias and it produces

results closer to the analysis of the Phase III study alone. Though in the same scenario DRC

produces very suboptimal 95% coverage in comparison to the other methods. In scenarios III,

IV, as well as I, the naive pooling represented via the formal DR method, systematically and

largely overstates our confidence in treatment efficacy.

6.7 Discussion
In a drug development procedure, it is not uncommon that positive Phase II results on short-

term (biomarker) outcomes are not predictive of a Phase III success on long-term clinical

outcomes. If Phase II and Phase III results are then assessed (perhaps informally) jointly to

support efficacy, this assessment may be subject to selection bias and may increase uncertainty

of the true treatment effect. Such an informal combination of results may increase to a

great extent (more than 3 times) the Type I error rate of null hypothesis, rendering the

combined true long-term treatment effect misleading. Especially in rare diseases, where

the validation of short-term surrogate endpoints can become problematic, due to the small

and often heterogeneous populations, the small sample sizes and the insufficient number of

available trials, only long-term hard endpoints are usually appropriate to prove treatment

efficacy.

In this manuscript, in addition to identifying and investigating the above issue, we explored

methods that could be utilized in order for early and late Phase trial data to be combined while

accounting for the underlying sampling-based selection bias. The flexible Bayesian double-

regression includes the borrowing of historical information, while this model downgrades the

historical prior upon short-term outcome data conflict. The corrected double-regression method

approximately corrects the biased long-term mean effect and variance estimate.

In most explored scenarios, the corrected double-regression method inflates the Type I error

and the incorporated bias the least in comparison to the double-regression and Bayesian flexible
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double-regression methods. This behaviour is not observed in scenario Ia, where the Bayesian

flexible double-regression controls better the Type I error. This possibly happens because

the Bayesian flexible double-regression approach completely downgrades the impact of Phase

II trial when its short-term treatment effect is different than the Phase III trial short-term

treatment effect. Therefore, on average the Bayesian approach becomes less prone to false-

positive results based on possible very positive Phase II short-term outcome trial effects when

τ is low and/or ρ is high (see, black dots of inner right panel of Figure 6.2). On the contrary, the

corrected double-regression method corrects the Phase II effects and then utilizes both Phase II

and Phase III effects without heavily downgrading the Phase II results data upon data conflict.

Both the Bayesian flexible double-regression and the corrected double-regression methods would

be an attractive solution to the increased Type I error of the informal combination of two

small available trials. The consideration of these methods was shown to be rather important

when, (i) the preceding Phase II trial conservatively resulted to the Phase III trial and/or (ii)

the association of utilized short and long-term outcomes is high. An informal combination

of results accross Phases often happens when both of the above hold, though, when neither

holds then the complexity of suggested methods may outweigh the gains of their application.

Further optimized versions of the Bayesian flexible double-regression model could be

developed and they may perform more optimally in comparison to the current. For instance,

different and more optimal guided values could be applied on the flexible Bayesian double-

regression [258, 259, 260]. All guided value formulations are expected to be somehow

comparable and less of an issue as the power parameter is imposed on the short-term endpoint

and indirectly affects the long-term primary endpoint. An alternative approach that controls

type I error on the long-term outcome, while borrowing historical information, may also

provide a more formal solution [259]. Future research could compare these alternatives vis-

á-vis each other or with other methods. More covariates could be included, and then their

performance could be tested with ease as all presented models are readily generalizable to

full regressions. Lastly, in this work, we accounted for but did not estimate τ . Due to the only

two available studies, a proper estimation of τ is currently known to be almost non-feasible

[11, 150, 178, 241].

In the motivating example we assumed that both trials were superiority trials, while if
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we had kept the initial designs, different strategies may have been more appropriate.

Nonetheless, examples of two superiority trials, one Phase II and one Phase III, exist in the

literature. For example, the drug development program of thalidomide for the treatment of

multiple myeloma contained two randomized superiortiy clinical studies of similar design,

a supportive (GISMM2001) and a main study (IFM 99-06), that compared melphalan-

prednisone (control treatment) to thalidomide (experimental treatment) [247]. The supportive

study was shorter and it reported clinical response rates and event free survival as primary

endpoints. The main study was longer in duration and it reported overall survival, as main

endpoint and clinical response rates and event free survival, as secondary endpoints. The

suggested methodology could be tailored to account for the possibility of sampling-based

selection bias under survival and other types of outcomes and even to combine different study

designs.

Throughout the manuscript normality was assumed, an assumption that could be challenged

with rare diseases sample sizes [100, 247, 248]. We approximated a truncated normal with

a normal distribution with mean and variance equal to that of the former. This decision

was made to aid calculations on the distribution mixture (Appendix of Chapter 6 - A2).

Better approximations for the truncated normal distribution may exist, such as the chi-square

distribution and their performance could be explored as well [264]. We should note that for

moderately sized N2 in comparison to N and small correlation between the two outcomes, a

single-regression might be more efficient than a double-regression, due to the noise introduced

by the short-term outcome [250].

In this article we performed a post-hoc combination of available information after the conduct

of the Phase II and Phase III trial. However, it may be very relevant to (prospectively) plan

to pool the data from both studies and to use the short term outcomes of the Phase II study

to increase the precision, with which the efficacy on long term outcome is estimated overall

[252, 253, 254]. An alternative strategy could be to conduct one single trial with interim

analysis, then, based on the observed treatment effects on the short-term endpoints, to decide

whether to proceed following up the patients [253].

To conclude, the often naive retrospective pooling of Phase II short-term outcome data to

support the true long-term outcome data inference at the end of confirmatory Phase III trials
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should be performed via formal numerical approaches. Such approaches should control the

sampling-based selection bias, in order to avoid inflating the Type I error under the null

hypothesis and prevent overestimating our beliefs on the treatment effect, especially in a small

population context. We hope that this manuscript, except for introducing possible solutions,

raises awareness of potential mishaps with ad-hoc combinations of trial outcome results.
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Appendix - Derivation of MSE(B̂) - (A2)

The MSE(B̂) of the long-term outcome equals to

MSE(B̂) = Bias(B̂)2 + V ar(B̂)

Appendix - Derivation of Bias(B̂) ( A2.1)

Let assume that σx1 , σx2 are known for the Phase II and Phase III trials, then the short-

term outcome treatment effect estimates are distributed as β̂2 ∼ N(µx2 ,
2σ2

x2

N∗2
) and β̂1 ∼

N(µx1 ,
2σ2

x1

N1
). In practice the Phase II short-term outcomes would follow an one-sided

truncated normal distribution. The adjusted mean (µx1 ) and variance (σ2
x1 ) of this short-term

outcome one-sided truncated normal distribution β̂1 ∼ Nα(µ
′
x1 ,

2σ
′2
x1

N1
) equal to

µ
′
x1 =µx1 +

σx1√
N1/2

λ (eq3)

σ
′2
x1 =σ2

x1

[
1 + ζ

]
(eq4)

where λ =
φ(ω)

1− Φ(ω)
, ζ = aλ −

(
λ
)2 and ω =

Zx1−α − µ
′
1

σ
′
1/
√
N1/2

and φ and Φ are the probability

density and the cumulative function of the standard normal distribution.

We assume that we can approximate a truncated normal with a normal distribution with

updated mean and variance as follows β̂1
approx∼ N(µ

′
x1 ,

2σ
′2
x1

N1
) ([265]). The overall β̂ would

be a mixture of the above density functions.

Given the set of two densities and weights (w1 and w2), such that wi ≤ 0 and
∑
wi = 1 the

mixture can be represented as
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f(x) =

2∑
k=1

wkpk(x)

The mean and variance of the above normal mixture of two distributions equal to µx =
2∑
k=1

wkµxk and σ2
x =

2∑
k=1

wk(µ2
xk+

2σ2
xk

Ni
−µ2

x) withwk = nk/n [266]. Therefore, β̂ ∼ N(µx, σ
2
x).

Position of Figure A1.1

Therefore, the updated mean and variance of β̂, are equal to

µ
′
x = w1µ

′
x1 + w2µx2

= w1µx1 + w2µx2 + w1λ
σx1√
N1/2

= µx + w1λ
σx1√
N1/2

σ
′2
x =

2∑
k=1

wk(µ2
xk +

2σ2
xk

Nk
− µ2

x) +D

= σ2
x +D

(6.6)

where D = w1

(
(2σ2

1/N1)ζ + A2(1 − w2
1 − w2

2) + 2A(µx1 − µx)
)

, A = (σ1/
√
N1/2)λ and

ζ = aλ−
(
λ
)2.

A bias is introduced after combining the Phase II and III trial short-term outcome effect

estimates as
σx1λ · w1√

N1/2
[266]. Then based on equation eq1 and assuming that σx = σy = 1, the

bias of B equals to

Bias(B) =
w1λ ρσx1√

N1/2
(6.7)
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Appendix - Derivation of V ar(B̂) (A2.2)

The variance of long-term outcome B is equal to [250],

V ar(B̂) = var(b̂) + γ2var(β̂) + β2var(γ̂) + 2βcov(b̂, γ̂) (eqA1)

An estimate of V ar(B̂) can be obtain via estimates of the relevant parameters which can be

obtained directly via the regression of Xi|ti and Yi2|Xi2, ti2.

Assuming that tik is an indicator variable and Nk corresponds to the total sample size of the

kth trial, the q-dependent variance of (α̂, β̂) can be derived as σ
′2
x (T

′
T )−1, where X is the

design matrix of Xi|ti as follows

(T
′
T )−1 =

(
2N1 N1

N1 N1

)−1

=

(
(1/N1) −(1/N1)

−(1/N1) (2/N1)

)
=

1

n

(
1 −1

−1 2

)
(eqA2)

and as a mixture of two distributions σ
′2
x = σ2

x +D

From eqA2, var(β) =
2σ

′2
x

N
, an estimate of which can be derived as ˆvar(β̂) =

2s
′2
x

N
, where s2x

follows from the regression of Xi|ti.

Subsequently, the variance of (â, b̂, γ̂) can be derived as σ2
o(1 − ρ2)(T

′
T )−1, where T is the

design matrix of Y2i|X2i, t2i.
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E(T
′
T ) =E


2N2 N2

∑
C,E

x2i

N2 N2

∑
E

x2i∑
C,E

x2i
∑
E

x2i
∑
C,T

x22i

 = nIII


2 1 µC + µE

1 1 µE

µC + µE µE 2σ2
2z + (µ2

C + µ2
E)


(eqA3)

The variance estimates are derived by inverting matrix eqA3 and replacing σ2
o with σ

′2
y =

σ2
0 + γ2σ

′2
x [253].

var(γ̂) =
σ

′2
y (1− ρ2)

2N2σ
′2
x

(eqA4)

var(b̂) =
2σ

′2
y (1− ρ2)

N2
+
σ

′2
y (1− ρ2)

2N2σ
′2
x

β2 (eqA5)

cov(b̂, γ̂) = −
σ

′2
y (1− ρ2)

2N2σ
′2
x

β (eqA6)

Replacing eqA4, eqA5 and eqA6 in eqA1 we obtain var(B̂)

V ar(B̂) = var(b̂) + γ2var(β̂) + β2var(γ̂) + 2βcov(b̂, γ̂)

2σ
′2
y (1− ρ2)

N2
+
σ

′2
y (1− ρ2)

2N2σ
′2
x

β2 +
2σ

′2
y ρ

2

N
+

β2 σ
′2
y (1− ρ2)

2N2σ
′2
x

+ 2β(−
σ

′2
y (1− ρ2)

2N2σ
′2
x

β)

= 2σ
′2
y

( (1− ρ2)

N2
+
ρ2

N

)
σ

′2
y = σ2

y + γ2 D
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Appendix - Derivation of MSE(B̂) (A2.3)

Based on the calculated alternative variance of the overall long-term effect V ar(B̂) and the

method of moments, the MSE(B̂) is given by

MSE(B̂) = Bias(B̂)2 + V ar(B̂)

=
(w1λ ρσ

′
yσx1

σ′
x

√
N1/2

)2
+ 2σ

′2
y

(1− ρ2

N2
+
ρ2

N

)
= 2σ

′2
y

(w1ρλσx1
σ′
x

√
N1

)2
+ 2σ

′2
y

(1− ρ2

N2
+
ρ2

N

)
σ

′2
y =σ2

y + γ2D
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Supplementary material can be found at figshare.com/s/fa5b0f8059b392f34a8a -

10.6084/m9.figshare.11977791 or/and at the online manuscript.
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Abstract

To investigate the implications of addressing informative missing binary outcome data (MOD)

on network meta-analysis (NMA) estimates while applying the missing at random (MAR)

assumption under different prior structures of the missingness parameter. In three motivating

examples, we compared six different prior structures of the informative missingness odds

ratio (IMOR) parameter in logarithmic scale under pattern-mixture and selection models.

Then, we simulated 1000 triangle networks of two-arm trials assuming informative MOD

related to interventions. We extended the Bayesian random-effects NMA model for binary

outcomes and node-splitting approach to incorporate these 12 models in total. With interval

plots, we illustrated the posterior distribution of log OR, common between-trial variance

(τ2), inconsistency factor and probability of being best per intervention under each model.

All models gave similar point estimates for all NMA estimates regard-less of simulation

scenario. For moderate and large MOD, intervention-specific prior structure of log IMOR

led to larger posterior standard deviation of log ORs compared to trial-specific and common-

within-network prior structures. Hierarchical prior structure led to slightly more precise τ2

compared to identical prior structure, particularly for moderate inconsistency and large MOD.

Pattern-mixture and selection models agreed for all NMA estimates. Analyzing informative

MOD assuming MAR with different prior structures of log IMOR affected mainly the precision

of NMA estimates. Reviewers should decide in advance on the prior structure of log IMOR

that best aligns with the condition and interventions investigated.
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7.1 Introduction
Plenty of empirical studies on reporting quality of systematic reviews with conventional meta-

analyses have revealed several shortcomings in the reporting and administration of missing

binary outcome data (MOD) [267, 268, 269, 270]. Recommendations aiming to improve

reporting of systematic reviews with regards to MOD already exist and are built upon this

comprehensive empirical evidence. Contrariwise, proposed guidelines for the administration

of MOD in systematic reviews have evolved in the absence of simulation studies using only

intuitive argumentations [117, 271]; for example, in the Cochrane Handbook, it is stated that

”[imputing the missing data with replacement values] fails to acknowledge uncertainty in the imputed

values and results, typically, in confidence intervals that are too narrow” (see chapter 16.1.2 in

the work of Higgins and Green [117]). Current directions to deal with MOD in systematic

reviews include (i) analysis of observed outcomes as a primary analysis, (ii) imputation of

MOD under plausible scenarios as a sensitivity analysis, and (iii) statistical modelling of

missingness mechanisms (ie, reasons that triggered MOD) [117]. The first two options are

the most commonly adopted in systematic reviews [267, 268, 269]. Nonetheless, they have

been criticized for being employed inefficiently through data elimination or augmentation

before analysis, respectively, and hence for ignoring the uncertainty induced by the scenarios

considered [117, 272, 273]. In turn, these options may compromise the conclusions of the

systematic review [274].

Statistical modeling of MOD has received little attention in systematic reviews with two (for

example, the works of Ejere et al [275], Mayo-Wilson et al[276], and Virgili et al [277]) or more

interventions (for example, the works of Watt et al [278] and Veroniki et al [279]). As opposed

to imputation or exclusion, modeling MOD comprises an elegant framework that adjusts for

bias due to MOD and fully acknowledges the uncertainty about the scenarios considered

for the missingness mechanism. This is achieved by modelling the joint distribution of the

outcomes (observed and missing) and missingness indicator [280]. This joint distribution is

further factorized in two ways: a distribution of the outcome, given the missingness indicator,

and a distribution of that indicator (pattern-mixture model) [281] or a distribution of the

missingness indicator, given the underlying outcome, and a distribution of the underlying

outcome (selection model) [282]. Selection model is more prevalent in the literature for

clinical trials [283], while pattern-mixture model has been most frequently described in the
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analysis of series of trials [269]. Modelling MOD using either pattern-mixture or selection

models offers a thorough investigation of the underlying missingness mechanisms across

different trials and interventions [273, 284, 285]. These mechanisms can be naturally explored

using Bayesian approaches, where the reviewer assigns an informative prior distribution on

the missingness parameter (ie, an absolute or relative measure of the relationship between

outcome and missingness indicator) to indicate a specific scenario alongside the uncertainty

for that scenario [273].

The existing directions on reporting and handling MOD in conventional systematic reviews

are of great relevance and importance also for systematic reviews with network meta-analysis

(NMA). NMA offers an in-depth exploration of the missingness mechanisms in the network as

interventions may carry a different degree of and reasons for MOD in different comparisons

and this information cannot be located in isolated conventional meta-analyses. Moreover,

due to the addition of interventions, assumptions, and model parameters that structure this

framework, addressing MOD in NMA can reveal their implications on model parameters

beyond the standard meta-analytic ones. Since the statistical methodology of NMA has

been refined and implemented mainly within the Bayesian framework, [116, 286, 287] we

view statistical modeling with the assignment of carefully selected prior distribution on the

missingness parameter as a natural way to handle MOD in a network of interventions.

To our knowledge, there is currently no published empirical or simulation study on the

comparative performance of models for MOD using Bayesian approaches in terms of meta-

analysis or NMA estimates. Consequently, the analyst misses the knowledge of the overall

performance of models for aggregated MOD to critically decide on the proper models to

apply. To shed light on this knowledge gap, we set up a comprehensive simulation study

using empirical evidence from published NMAs in a wide range of health-related fields to

inform the simulation setting for a triangle network of two-arm trials. This simulation study

aims to designate the factors that may affect the performance of modelling informative MOD

(ie, the missingness mechanism depends on the unobserved outcomes [288]) on the basis

of core NMA estimates while assuming missing at random (MAR) for analysis as a starting

point [272, 284, 289]. Furthermore, the simulation results supplement the observations from

a relevant empirical study [290] in order to provide empirically-based recommendations for a
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proper modelling of MOD in systematic reviews.

This article is organized as follows. In Section 6.2, we present the Bayesian random-effects

NMA model for binary outcomes in the absence of MOD (as described by Dias et al [291]),

and then, we expand the model to incorporate MOD through pattern-mixture and selection

models [273, 285]. Then, we present the prior structures for the missingness parameter that we

considered in the simulation study. In Section 6.3, we illustrate these prior structures under

pattern-mixture and selection models in three published systematic reviews with NMA. In

Section 6.4, we describe a novel simulation set-up that combines already established data

generation models for conventional meta-analysis with specific algorithms to incorporate

MOD in NMA, and we present the results in Section 6.5; in Section 6.6, we discuss the findings

and limitations of the study and we provide recommendations, and we conclude in Section

6.7.

7.2 Missing outcome data in network meta-analysis

Bayesian random-effects NMA model
Consider a network of N trials that investigate different sets of T interventions for a specific

condition. The outcome of interest is binary and the frequency of outcome in arm k =

1, 2, . . . , αi of trial i = 1, 2, . . . , N is assumed to be a realization from the binomial distribution

ri,k ∼ Bin(pi,k, ni,k)

with pi,k being the underlying risk of an event (the parameter of interest) and ni,k the

randomized sample in arm k of trial i. Then, using a logit function, as described by Dias

et al [291], the log odds of event in arm k of trial i are defined as follows:

logit(pi,k) = ui + θi,k1 (7.1)
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ui = logit(pi,1) is the log odds of event in the baseline arm of trial i and θi,k1 is the log

odds ratio (OR) of event in arm k relative to the baseline arm that typically follows a normal

distribution with mean µti,kti,1 and variance τ2 commonly assumed to be constant across

different comparisons. Index ti,k indicates the intervention studied in arm k of trial i.

Incorporating multi-arm trials

In a trial i with ai > 2 arms, log ORs are correlated since they share the same comparator, and

therefore, the vector θi of αi − 1 log ORs follows a multivariate normal distribution [291, 292]

θi =


θi,21

...

θi,αi1

 ∼MVNαi−1




µti,2ti,1

...

µti,αi ti,1

,


τ2 τ2/2
... τ2/2

τ2/2 τ2
... τ2/2

...
...

. . .
...

τ2/2 τ2/2
... τ2





which, under the consistency assumption, is equivalent to conditional univariate normal

distributions as follows [291]:

θi,k1|


θi,21

...

θi,(αi−1)1

 ∼ N
[
(µti,kA − µti,1A) +

1

αi

∑αi−1
j=2 (θi,j1 − µti,jA − µti,1A),

αi

2 · (αi − 1)
· τ2
]

where µtA reflects the relative treatment effects of the comparisons with the reference

intervention of the network, A (known as basic parameters [293]). Then, using the consistency

equation, the relative treatments effects of all possible non-reference comparisons can be

obtained as functions of the basic parameters

µtl = µtA − µlA,
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with t, l = {B,C, . . . , T} 63 A and t 6= l.

In the Bayesian framework, all parameters of the model are random variables that need

proper prior distributions. In the present study, we used non-informative normal prior

distribution with mean 0 and variance 10000 for the location parameters (ie, ui and µtA),

whereas we considered HN(0, 1) (median: 0.98, interquartile range [IQR]: 0.51-1.96) as a

weakly informative prior distribution on τ due to trial sparsity in the investigated networks

that may compromise a proper estimation of τ .

Rank probabilities for each intervention

To facilitate decision-making, we can estimate for each intervention the probability of being

first, second, third, and so on for a specific outcome [294]. These rank probabilities are

estimated by ordering the basic parameters in each iteration of the Markov chain Monte Carlo

(MCMC) simulation and then, for each intervention, calculating the frequency to achieve a

specific rank out of the number of iterations.

Node-splitting approach to assessing local inconsistency

To assess possible inconsistency locally while using the whole network to obtain an indirect

effect for a comparison of a closed loop, Dias et al [295] proposed the node-splitting approach

within a Bayesian framework. Specifically, a comparison from a closed loop is isolated

(split) and random-effects meta-analysis is applied, whereas the remaining network is used

to estimate an indirect effect for the split comparison. Then, the difference between direct

and indirect effect for that comparison yields a posterior distribution for the inconsistency

between these two effects, known as inconsistency factor (IF). A large posterior probability of

IF being different from zero (eg, above 95%) provides sufficient evidence that inconsistency

may be present in a specific loop. To improve the estimation of τ2, a common τ2 is assumed

for both meta-analysis and NMA model after removing the trials of the split comparison.
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Modelling missing outcome data

Pattern-mixture model

Suppose that mi,k participants were missing (for reasons related or not to the design and

conduct of the trial) in arm k of trial i with probability qi,k, whereas among those noi,k =

ni,k −mi,k participants who were observed, only roi,k experienced the studied outcome with

probability poi,k. It follows that the number of MOD and the number of observed events in

arm k of trial i are realizations from the respective binomial distributions

mi,k ∼ Bin(qi,k, ni,k) and roi,k ∼ Bin(poi,k, n
o
i,k)

In the presence of MOD, a pattern-mixture model can be considered, where pi,k is modelled

conditional on whether the underlying event is observed or missing

pi,k = poi,k · (1− qi,k) + pmi,k · qi,k (7.2)

where pmi,k is the missingness parameter and indicates the probability of event conditional

on MOD in arm k of trial i. The parameters poi,k and qi,k can be estimated directly from the

data, whereas we need a proper prior distribution on pmi,k to describe a plausible missingness

mechanism.

Following thework of Turner et al [273] after rearranging Equation (7.2) to link poi,k with the

remaining parameters, we obtain the following:

poi,k =
pi,k − pmi,k · qi,k

1− qi,k

Subsequently, we use Equation (7.1) with a random-effects model for θi,k1 to apply the NMA

model.
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Selection model

Instead of applying separate binomial distributions, we can jointly model all observed data

via the following multinomial distribution [284, 285]:

L1,i,k ∼M(p1,i,k, p2,i,k, p3,i,k, ni,k)

where L1,i,k is a vector of all data observed in arm k of trial i, namely, (roi,k, ni,k − roi,k −

mi,k,mi,k)T and

p1,i,k =(1− c1,i,k) · pi,k

p2,i,k =(1− c0,i,k) · (1− pi,k)

q1,i,k = p3,i,k =c1,i,k · pi,k + c0,i,k · (1− pi,k) (7.3)

where p1,i,k reflects the marginal probability of observing the underlying event, p2,i,k reflects

the marginal probability of observing the underlying non-event, and qi,k is the probability

of MOD out of the randomized sample in arm k of trial i, respectively. The latter equation

actually describes the selection model that has already been proposed in a conventional meta-

analysis [284] and extended to operate in NMA [285]. Then, parameters c1,i,k and c0,i,k

indicate the probability of MOD conditional on those participants with the underlying event

and the probability of MOD conditional on those participants without the underlying event,

respectively. Apart from qi,k, all other parameters are not estimable from the data, and hence,

we need to assign proper prior distributions for precise inference to be possible.

Informative missingness odds ratio as missingness parameter

In the present study, we focus on the informative missingness odds ratio (IMOR) parameter,

which, under the pattern-mixture model, is defined as follows [272, 273, 296]:
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δPMi,k =
pmi,k/(1− pmi,k)

poi,k/(1− poi,k)

while under the selection model, it is defined as [284, 285]

δSi,k =
c1,i,k/(1− c1,i,k)

c0,i,k/(1− c0,i,k)

Similar to OR, IMOR takes non-negative values; nevertheless, due to different factorizations of

the same joint distribution of outcome and missingness indicator under pattern-mixture (PM)

and selection (S) models, IMOR has different interpretation with respect to these models:

• δPMi,k > 1, the odds of underlying event among those participants being missing is more

likely than the odds of underlying event among those participants being observed in

arm k of trial i;

• δSi,k > 1, the odds of MOD among participants with underlying event is more likely

than the odds of MOD among participants without underlying event in arm k of trial

i;

• δPMi,k < 1, the odds of underlying event among those participants being observed is

more likely than the odds of underlying event among those participants being missing

in arm k of trial i;

• δSi,k < 1, the odds of MOD among participants without underlying event is more likely

than the odds of MOD among participants with underlying event in arm k of trial i;

• δPMi,k = 1, the outcome is similarly distributed between those participants being

missing and those being observed in arm k of trial i (ie, MAR assumption);

• δSi,k = 1, MOD are equally likely to occur among participants with underlying event

and those without underlying event in arm k of trial i (ie, MAR assumption).

Like OR, IMOR is applied in the logarithmic scale but it is back-transformed to facilitate in the

interpretation
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log(δPMi,k ) =φPMi,k = logit(pmi,k)− logit(poi,k)

log(δSi,k) =φSi,k = logit(c1,i,k)− logit(c0,i,k)

under pattern-mixture model and selection model, respectively.

Structural assumptions to model informative missingness odds ratio

To investigate the underlying missingness mechanisms while acknowledging the uncertainty

regarding our prior belief, normal prior distributions are assigned on φli,k with carefully

selected values for the mean (µφi,k) and variance (σ2
i,k) that reflect a plausible belief about the

missingness mechanism on average and make φli,k identifiable, respectively,

φli,k ∼ N(µφi,k, σ
2
i,k) for l = PM,S

Following the work of White et al [284], we considered φli,k’s to be on average MAR (as

recommended by relevant published literature to address MOD in the primary analysis

[272, 284, 288]) and exchangeable across trials and interventions, that is, µφi,k = 0 and

σ2
i,k = σ2. White et al [284, 296], recommended choosing σ2 ∈ [0.25, 4], which covers a range

of values for log IMOR reflecting liberal to conservative uncertainty about the missingness

scenario considered. In the present study, we used σ2 = 1:

φli,k ∼ N(0, 1) for l = PM,S (7.4)

The prior distribution (4) can be shaped further to accommodate our prior beliefs regarding

how different φli,k’s can be related within the network [273, 284]. Following our empirical

study [290], we considered identical and hierarchical prior structure for φli,k. Under identical

structure, φli,k is assumed to be the same across trials that investigate the same interventions
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but different across interventions (intervention-specific)

φli,k = φlti,k , φ
l
ti,k ∼ N(0, 1)

or the same across interventions compared in a trial but different across trials (trial-specific)

φli,k = φli, φ
l
i ∼ N(0, 1)

or identical across all trials and interventions (common-within-network)

φli,k = φl, φl ∼ N(0, 1)

Hierarchical structure “relaxes” the identical structure by assuming φli,k’s to be different yet

related to each other. Then, intervention-specific φli,k under on average MAR is defined as

φli,k ∼ N(µφtik , σ
2
tik ) with µφtik ∼ N(0, 1), σ2

tik ∼ U(0, 1)

trial-specific φli,k on average MAR is defined as

φli,k ∼ N(µφi , σ
2
i ) with µφi ∼ N(0, 1), σ2

i ∼ U(0, 1)

and common-within-network φli,k on average MAR is defined as
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φli,k ∼ N(µφ, σ2) with µφ ∼ N(0, 1), σ2 ∼ U(0, 1)

We assigned a uniform distribution on σ, σi, and σtik ; however, other appropriate prior

distributions for variance components can be also considered [144, 160].

7.3 Illustrative examples

Example 1: low missing outcome data

Bottomley et al [297] investigated the effectiveness of seven interventions measured as the

investigator’s global assessment response at 4 weeks in patients with moderately severe scalp

psoriasis. A total of 9 trials (7 two-arm, 1 three-arm, and 1 four-arm trials) with 5889 patients

(median per trial: 237, IQR: 136-419) formed the network (Figure 7.1A). For this outcome,

MOD were low (median per trial: 3%, IQR: 1%-6%) in the included trials. Positive log OR

indicated a beneficial effect of the first intervention of the comparison.

Overall, results on log ORs were almost identical for all missingness models (pattern-mixture

or selection model) and prior structures of log IMOR (Supporting Information S.2; Figure

S1). As a result, the ranking curves were indistinguishable for different prior structures

of log IMOR in both missingness models (Supporting Information S.2; Figure S2). Results

were also similar for τ2, although the 95% credible intervals (CrIs) were slightly narrower

for hierarchical, trial-specific prior structure of log IMORs in both missingness models

(Supporting Information S.2; Figure S1). Results on node-splitting were in line with those

on basic parameters (Supporting Information S.2; Figure S3).
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Figure 7.1: A series of network plots on (A) the effectiveness of topical therapies for
moderately severe scalp psoriasis [297], (B) the efficacy of antidepressants in Parkinson’s
disease [298], and (C) the prevention of a stroke episode in patients with atrial fibrillation
using oral antithrombotics [299]. The thickness of the lines and the size of the nodes are
proportional to the number of trials and the number of patients randomized in the respective
treatments, respectively. ASA+, aspirin plus clopidogrel; Dab110, dabigatran 110 mg; Dab150,
dabigatran 150 mg; BDP, betamethasone dipropionate; BMV, betamethasone valerate; SNRI,
serotonin–norepinephrine reuptake inhibitor; SSRI, selective serotonin reuptake inhibitor;
TCA, tricyclic antidepressant; TCF, two-compound formulation; VKA, vitamin K antagonist.

Example 2: moderate and balanced missing outcome data

Liu et al [298] assessed the comparative effectiveness of four antidepressants and placebo in

Parkinson’s disease measured as the proportion of patients who had a reduction of at least
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50% from the baseline score (Figure 7.1B). For this outcome,the authors included a total of 11

trials (8 two-arm and 3 three-arm trials) with 801 patients (median per trial: 19, IQR: 17-33).

MOD were moderate (median per trial: 16%, IQR: 12%-24%) and balanced (median per trial:

4%, IQR: 2%-11%) in the included trials. Positive log OR indicated beneficial effect of the first

intervention of the comparison.

Results on log ORs were similar overall, albeit the 95% CrIs were slightly wider for (identical

and hierarchical) intervention-specific prior structure of log IMORs in both missingness

models (Supporting Information S.3; Figure S4). Nevertheless, τ2 was slightly lower (and

with slightly narrower 95% CrIs) for hierarchical as compared to identical prior structure of

log IMOR regardless of further structural assumptions or missingness model. No profound

differences were observed on rank probabilities (Supporting Information S.3; Figure S5) and

the results from node-splitting approach (Supporting Information S.3; Figure S6).

Example 3: moderate and unbalanced missing outcome data

Dogliotti et al [299] assessed the comparative effectiveness of seven antithrombotic therapies

and placebo in terms of preventing a stroke episode in patients with atrial fibrillation (Figure

7.1C). The authors included 16 trials (12 two-arm and 4 three-arm trials) with 79808 patients

(median per trial: 391, IQR: 211-2940). MOD were moderate (median per trial: 19%, IQR:

13%-23%) and slightly unbalanced (median per trial: 7%, IQR: 3%-10%). Negative log OR

indicated a beneficial effect of the first intervention in the comparison. Different assumptions

about the prior structure of log IMOR appeared to implicate mostly on the width of 95% CrIs

for all NMA estimates.
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Figure 7.2: Interval plots on log ORs for basic parameters (posterior mean and 95%
credible interval) and between-trial variance (τ2; posterior median and 95% credible interval)
when there are moderate and unbalanced missing outcome data (MOD) in the network
[299]. Results are compared in terms of model for MOD (pattern-mixture, model selection
model), structure (hierarchical, identical), and assumption (intervention-specific, trial-specific,
common-within-network) for prior normal distribution on log IMOR assuming missing at
random. IMOR, informative missingness odds ratio; OR, odds ratio.

Overall, intervention-specific prior of log IMOR led to wider 95% CrIs for log ORs in both

missingness models, whereas common-within-network prior led to narrower 95% CrIs for log

ORs to some extent. In fact, 95% CrI for log ORs were slightly wider under hierarchical than

identical structure. Consequently, the superiority of dabigatran at 110 mg and rivaroxaban

against placebo turned into inconclusive when log IMOR was assumed to have intervention-

specific prior structure (Figure 7.2). Furthermore, τ2 was relatively lower and slightly more

precise under hierarchical structure, especially, for common-within-network log IMORs.
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Since, the common-within-network structure provided the narrowest 95% CrIs for logORs,

it led to relatively larger rank probabilities as opposed to intervention-specific prior structure,

especially for aspirin, aspirin plus clopidogrel, and VKA (Figure 7.3). Results on node-

splitting were in line with those on basic parameters (Supporting Information S.4; Figure S7).

7.4 Simulation setting

Data generation without missing outcome data

We simulated a triangle network of two-arm trials and three interventions: placebo,

new intervention, and old intervention. The comparison of interest was new versus old

intervention. We assumed a typical loop like that in the work of Veroniki et al [200] with four

trials for old intervention versus placebo, three trials for new intervention versus placebo,

and one trial for new versus old intervention. To determine the sample size in each arm of

every trial, we used information directly from the networks that we collected in our previous

empirical work [288]. For each trial, we considered equally sized arms with sample size

generated from a uniform distribution with support in the range defined by the second and

third quartile of the arm sizes (Supporting Information S.5; Figure S8(a))

nEi,k = nCi,P ∼ U(102, 187), k = N,O (placebo-controlled trials)

nEi,N = nCi,O ∼ U(128, 241) (old-controlled trials)

where N , O, and P stand for new intervention, old intervention and placebo, respectively,

whereas E and C stand for experimental and control arm, respectively. We considered a

binary (beneficial) outcome measured in the logOR scale. We assumed µNP = log(2) and

µOP = log(1.5) to be the underlying log OR for new and old intervention against placebo,

respectively, whereas we obtained the underlying log OR for new versus old intervention

through the consistency equation
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µNO = µNP − µOP + IF

with IF being sampled from the t-distributions t(µ = 0, σ2 = 0.442, df = 3) and t(µ = 1, σ2 =

0.442, df = 3) to reflect low and moderate inconsistency on average, respectively, according

to our empirical work (Supporting Information S.5; Figure S8(b)) [288].

We generated the number of events in each arm of every trial using the data-generating

model (DGM) described by Hartung and Knapp for a random-effects pairwise meta-analysis

[198, 241]. The description of this DGM is available as in Supporting Information (S.6). Using

information from our network collection [288], initial event risks for the control arms were

generated from a uniform distribution with support in the range defined by the second and

third quartile of the event risks (Supporting Information S.5; Figure S8(c))

pC,0i,P ∼ U(0.27, 0.40) and pC,0i,O ∼ U(0.63, 0.76)

for placebo-controlled and old-controlled trials, respectively.

We incorporated τ2 (assumed common-within-network) in the DGM assuming smaller

variability in log odds for placebo (Supporting Information S.5; Figure S8(d)) but equal in log

odds for active arms, respectively. In terms of scenarios for τ2, we selected the predictive log-

normal distributions LN(−3.95, 1.342) (median: 0.02; IQR: 0.01-0.04) and LN(−2.56, 1.742)

(median: 0.08; IQR: 0.03-0.26) to reflect small and substantial τ2, respectively. These predictive

distributions referred to the expected τ2 in a future meta-analysis for all-cause mortality and

a generic healthcare setting, respectively [153]. Finally, we generated the true probability

of being best for each intervention by ordering the simulated true log ORs of placebo

comparisons as generated from the normal distribution N(µkP , τ2) with k = N,O and then

calculating the number of times each intervention ranked first out of the total simulations.
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Figure 7.3: Rankograms of seven interventions when there are moderate and unbalanced
missing outcome data (MOD) in the network [299]. Posterior mean rank probabilities are
compared in terms of model for MOD (pattern-mixture model, selection model), structure
(hierarchical, identical) and assumption (intervention-specific, trial-specific, common-within-
network) for prior normal distribution on log IMOR under missing at random. IMOR,
informative missingness odds ratio.

Data generation while incorporating missing outcome data

Following the motivating examples (Section 7.3), we focused only on moderate and large

MOD as they affected the performance of the modelling strategies to some extent, contrary

to low MOD. Note that, under low MOD, we found that all modelling strategies had almost

the same performance for log OR, IF and probability of being best but similar performance for

τ2 (results not shown). To ensure balance in MOD between the compared arms, we generated

%MOD in the experimental arm, qEi,k with k = N,O, from U(0.05, 0.20) and U(0.21, 0.40) to
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indicate moderate and large MOD, respectively (in line with the “five-and-twenty rule,” as

described in Supporting Information S.1), and we considered qCi,P = qEi,k with k = N,O and

qCi,O = qEi,N for the control arms in placebo-controlled and old-controlled trials, respectively. In

another scenario, to capture the imbalance in MOD between the compared arms, we assumed

placebo to have more MOD than the active arms following our empirical study (Supporting

Information S.5; Figure S8(e)) and old intervention to have more MOD in the old-controlled

trials [290]. Details on the generation of unbalanced MOD are available as in Supporting

Information (S.7).

Then, we generated the number of MOD in each arm of every trial through the following

binomial distributions:

mE
i,k ∼ Bin(qEi,k, n

E
i,k), k = N,O

mC
i,k ∼ Bin(qCi,k, n

C
i,k), k = O,P

for the experimental and control arm, respectively. We used intervention-specific log IMORs

under the pattern-mixture model to indicate the outcome among the missing participants in

each arm of every trial. Specifically, for each trial, we assumed patients randomized in the

new or old intervention to be twice more likely to be missing due to the improvement of their

outcome as opposed to patients receiving placebo. We considered σ2 = 1 for the variance of

log IMORs. As another scenario, we assumed MAR on average (ie, µφi,k = 0) with σ2 = 1.

Details on the generation of log IMORs are available as in Supporting Information (S.8). Then,

we used the linkage function as described by Turner et al [273] (equation 7, there) to obtain

the probability of events given observed outcomes, pE,obsi,k and pC,obsi,k in arm k of trial i for the

experimental and control arm, respectively. The formula to obtain the probability of observed

events in each arm is available as in Supporting Information (S.9).
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Table 7.1: Scenarios for the simulation setup. Note: C: control; E: experimental arm; IF:
inconsistency factor; IMOR: informative missingness odds ratio; LOR: log odds ratio; N: new
intervention; O: old intervention; P: placebo. Typical loop as defined by Veroniki et al [200].
Using predictive log-normal distributions that correspond to all-cause mortality and generic
health setting for small and substantial between-trial variance, respectively [153].

Number of trials per comparison

NO = 1, NP = 3, OP = 4

Trial size (nEi,k = nCi,k) = ni in trial i

Placebo-controlled trials ni ∼ U(102, 187)

Old-controlled trials ni ∼ U(128, 241)

Initial event rates of control arm in trial i

Placebo-controlled trials pC,0i,P ∼ U(0.27, 0.40)

Old-controlled trials pC,0i,O ∼ U(0.63, 0.76)

Balanced risk of missing outcome data (qEi,k = qCi,k = qi in trial i)

Moderate qi ∼ U(0.05, 0.20)

Large qi ∼ U(0.21, 0.40)

Unbalanced risk of missing outcome data (qEi,k < qCi,k in trial i)

Moderate qEi ∼ U(0.05, 0.10), qCi ∼ U(0.11, 0.20)

Large qEi ∼ U(0.21, 0.30), qCi ∼ U(0.31, 0.40)

Missing mechanisms via log (IMOR)

Informative φi,P ∼ TN(µ = −log(2), σ2 = 1, α = log(1))

φi,k ∼ TN(µ = log(2), σ2 = 1, α = log(1)), k = N,O

Missing at random φi,k ∼ N(0, 1), k = N,O, P

Treatment effects

Basic parameters LORNP = log(2), LOROP = log(1.5)

Functional parameters LORNO = LORNP − LOROP + IF

Loop inconsistency

Inconsistency factor (IF) IF ∼ t(µ = 0, σ2 = 0.442, df = 3)(low)

IF ∼ t(µ = 1, σ2 = 0.442, df = 3)(moderate)

Common between-trial variance

Predictive distribution τ2 ∼ LN(−3.95, 1.342)(small)

τ2 ∼ LN(−2.56, 1.742)(moderate)

Probability of being best

New intervention 93% and 76% for small and substantial τ2, respectively

Old intervention 7.3% and 24% for small and substantial τ2, respectively

Placebo 0% and 0.1% for small and substantial τ2, respectively
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Finally, we generated the number of events given the observed outcomes in each arm of every

trial as follows:

rE,obsi,k ∼ Bin(pE,obsi,k , nEi,k −mE
i,k), k = N,O

rC,obsi,k ∼ Bin(pC,obsi,k , nCi,k −mC
i,k), k = O,P

for the experimental and control arm, respectively. Table 1 summarizes all simulation

scenarios considered in the present study.

Figure 7.4: Posterior distribution of log OR (between new and old intervention) under
informative missingness while using pattern-mixture model and accounting for the extent
of missing outcome data (moderate, large), balance of missing outcome data (balance,
imbalance), extent of τ2 (small, substantial), and extent of inconsistency (low, moderate).
The horizontal dotted lines reflect the 95% interval and mean of the simulated distribution
of log OR under low and moderate true inconsistency. IF, inconsistency factor; MOD, missing
outcome data.
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Results presentation and model specification

For each scenario, we simulated 1000 triangle networks and, for each scenario, we evaluated

the posterior distribution of µNO , τ2, IF and probability of being best for each intervention.

For each NMA estimate, we used interval plots to present the simulation results in order to

fully reflect the dispersion of the results for each scenario. We decided to present in the main

text only results on prior structures of log IMOR under pattern-mixture model as it is the

most frequently reported model in systematic reviews [269]. Results on prior structures of log

IMOR under selection model are available in Supporting Information (S.11; Figures S10-S13).

Furthermore, we focused on informative MOD with moderate and large extent for being the

most plausible scenarios in a medical setting. Results on prior structures of log IMOR when

MOD are MAR can be found in Supporting Information (S.12; Figures S14-S17). Simulations

and analyses were performed in the line with the motivating examples (Section 7.3). For each

of the 1000 simulations, thinning equal to 3 was used for 20 000 updates and a burn-in of 2000

MCMC samples [300].

7.5 Results

Posterior distribution of log OR (µNO)

Under low inconsistency, the posterior mean of log OR almost converged with the simulated

distribution for all prior structures of log IMOR regardless of extent and balance of MOD

(Figure 7.4). Credible intervals were broadly similar for moderate MOD. Subtle differences

in the CrIs were observed for large MOD: assuming intervention-specific log IMORs led

to slightly wider CrIs (similarly for identical and hierarchical structure) compared to trial-

specific and common-within-network prior structure. Substantial τ2 naturally led to wider

CrIs compared to small τ2 without affecting the point estimate. With moderate inconsistency,

the posterior distribution of log ORs deviated from the simulated distribution in all prior

structures of log IMOR.

Posterior distribution of τ2

Posterior median of τ2 was close to zero in all prior structures of log IMOR for low

inconsistency and small τ2, whereas, as expected, it increased for moderate inconsistency

and/or substantial τ2. For moderate MOD and low inconsistency, posterior median and CrI
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for τ2 were quite similar across all prior structures of log IMOR, whereas for large MOD,

posterior median for τ2 increased slightly with wider widths of CrIs that slightly differed

for different assumptions of log IMOR within the hierarchical and identical structure (Figure

7.5). Identical structure led systematically to slightly wider CrIs in most prior structures of

log IMOR as compared to hierarchical structure. In addition, the point estimates were slightly

larger for identical structure, particularly, for moderate inconsistency and large MOD.

Figure 7.5: Posterior distribution of τ2 under informative missingness while using pattern-
mixture model and accounting for the extent of missing outcome data (moderate, large),
balance of missing outcome data (balance, imbalance), extent of τ2 (small, substantial), and
extent of inconsistency (low, moderate). The horizontal dotted lines reflect the 95% interval
and median of the simulated distribution of small and substantial τ2. IF, inconsistency factor;
MOD, missing outcome data.

Posterior distribution of IF

Under low inconsistency, the posterior mean of IF was almost zero (ie, evidence of consistency

on average) in all prior structures of log IMOR and for all scenarios (Figure 7.6). Overall,

CrIs were similarly wider in the presence of substantial τ2. In the presence of moderate

inconsistency, all prior structures of IMOR estimated the true IF, and hence, the point estimates

deviated from zero irrespective of extent and balance of MOD.
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Figure 7.6: Posterior distribution of inconsistency factor (IF) under informative missingness
while using pattern-mixture model and accounting for the extent of missing outcome data
(moderate, large), balance of missing outcome data (balance, imbalance), extent of τ2 (small,
substantial) and extent of inconsistency (low, moderate). The horizontal dotted lines reflect the
95% interval and mean of the simulated distribution of low and moderate IF. MOD, missing
outcome data.

Posterior distribution of probability of being best

The posterior mean of the probability of being best for new intervention was consistently

below the simulated values for all prior structures of log IMOR, especially, for large

MOD and low inconsistency (Supporting Information S.10; Figure S9). Interestingly,

contrary to low inconsistency, moderate inconsistency lowered the posterior mean of the

probability of being best the least for all prior structures. Within each scenario, the

posterior mean of the probability of being best was similar across all prior structures but

slightly larger for unbalanced MOD. Nevertheless, intervention-specific log IMORs led to

slightly smaller posterior mean of the probability of being best, especially, for large MOD,

moderate inconsistency and small τ2. The posterior mean of the probability of being best

almost overlapped with the simulated values for moderate MOD, small τ2, and moderate

inconsistency. Results on the posterior mean of the probability of being best for old
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intervention and placebo can be found in the Supporting Information (results not shown).

Overall, different scenarios and prior structures of log IMOR did not impact on the hierarchy

of the interventions.

7.6 Discussion
Using three published networks with different extent of MOD as motivating examples,

we compared pattern-mixture with selection model while considering six different prior

structures of log IMOR that reflected our prior beliefs about the (dis)similarity of log IMORs

within the network. Then, on the basis of the results from the motivating examples, we set up a

simulation study using empirical-based scenarios to evaluate more in-depth the performance

of these prior structures of log IMOR in terms of posterior distribution of log OR, τ2, IF and

probability of being best per intervention. We focused on the performance of prior structures

when informative MOD (the most plausible scenario in a medical setting) were analysed

under MAR (the recommended primary analysis for MOD). To our knowledge, this is the

first simulation study that evaluates statistical modeling of aggregated MOD using Bayesian

approaches.

Ultimate goal of the present study was to supplement our observations from our empirical

study on these modelling strategies [290]. In our empirical study [290], we used Bland-

Altman plots to investigate the degree of agreement among these strategies in terms of NMA

estimates. The majority of the networks considered had either low or moderate and balanced

MOD. Therefore, we were not able to conclude on the agreement of the strategies when MOD

were large or moderate and unbalanced. Furthermore, with an empirical study, we cannot

infer on performance measures, such as bias. Consequently, the present simulation study

addressed the aforementioned limitations and, additionally, allowed us to investigate the

performance of the strategies under different scenarios for the NMA estimates in order to

understand the circumstances that may compromise the performance of the strategies.

The last two motivating examples agreed with our empirical study [290], which indicated that,

for moderate and large MOD, (hierarchical and identical) intervention-specific prior structure

of log IMOR led to larger posterior standard deviation of log ORs as compared to trial-specific

and common-within-network prior structures – the latter two led overall to similar posterior
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distributions of log ORs. White et al also noticed that the uncertainty around meta-analysis

log OR was larger for intervention-specific prior structure while similar for trial-specific and

common-within-network prior structures [284]. Our simulation revealed this pattern for

large MOD only, regardless of balance of MOD. This performance of intervention-specific

prior structure was anticipated as it assumes MOD to be differently informative in different

interventions, and therefore, it substantially down-weights trials with moderate or large MOD

leading to larger posterior standard deviation of summary log OR [296].

Furthermore, both the present study and our empirical study [290] demonstrated that

hierarchical prior structure of log IMOR led to slightly more precise τ2 compared to identical

prior structure, particularly for moderate, unbalanced MOD (Section 7.3). According to our

simulation study, this performance was more profound for large MOD with concurrence

of inconsistent evidence and/or substantial τ2. The extent of informative missingness (as

quantified via log IMOR) was simulated to vary across the included trials for the same

intervention (Equation (7.1) in Supporting Information S.8); however, the identical structure

did not capture this variability yielding spuriously narrower CrIs for the study-specific log

ORs as compared to hierarchical structure which, in turn, led to relatively larger τ2 and

uncertainty thereof.

The third motivating example indicated that common-within-network prior structure

provided slightly more precise estimation of τ2 compared to intervention- and trial-specific

prior structures. Nevertheless, in the simulation study, this pattern was less obvious for

moderate, unbalanced MOD, and small τ2. Possible explanation may be that the motivating

example had almost three times more trials than the simulated networks, and in conjunction

with the common-within-network being the least data demanding structure of log IMOR,

τ2 was estimated with relatively more precision for this prior structure in the motivating

example.

We found that pattern-mixture and selection models gave almost identical results for each

prior structure of log IMOR in the motivating examples and simulation study (Supporting

Information S.12). While these two models lead to fundamentally opposite factorizations of

the joint distribution of the missingness indicator and outcome, the parameter of interest pli,k

is not affected by this factorization, because, in both models, pi,k is function of qli,k and φli,k
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(see Equations (7.2) and (7.3)) with the same informative prior distribution being assigned on

φli,k. Where these models differ is on the conditional probabilities that define φli,k (Section

7.2 ”Informative missingness odds ratio as missingness parameter”). Nevertheless, if one is

interested in investigating the interventions to subgroups of trials that are believed to have

different measurement patterns, then pattern-mixture model may be the proper option [283].

For example, (as judged, for instance, by the Cochrane’s risk of bias tool; chapter 8 in the work

of Higgins and Green [117]), if poorly conducted trials have more MOD than well-conducted

trials – and the researcher believes that compared to those leaving poorly conducted trials,

patients completing these trials may be more likely to have experienced the beneficial outcome

– the researcher should investigate whether the pattern of outcomes in these two trial settings

may affect differently the interventions compared. To our knowledge, pattern-mixture model

has not been applied yet in series of trials with the aim to provide further insights on the

effectiveness of the interventions on subgroups of different patterns of outcome. Instead,

if one is interested in the effectiveness of the interventions in the whole population, then

pattern-mixture and selection models may be used interchangeably in the analysis of series

of trials – although, in principle, the latter is a more natural option [283] as it directly reflects

the taxonomy of missingness mechanisms as described by Little and Rubin [280].

Deciding on the assumption for log IMOR shall be primarily tailored to empirical knowledge

about the intervention and trial characteristics for the condition under investigation [273, 285].

For example, contrary to active-controlled trials in schizophrenia, placebo-controlled trials

lead to greater drop-out rate among patients without improvement in their outcomes

[301, 302]. Then, the researcher can consider placebo- and active-specific priors on log IMOR

and further investigate the sensitivity of results to using identical and hierarchical structures.

In another example, multi-center trials in psychiatry tend to have higher drop-out rate (and

hence log IMOR in these trials is more likely to be different from 0) than single-center trials;

if log IMORs are believed not to differ among the compared interventions, and the researcher

has collected for each trial information on the number of centers, then he/she should assign

hierarchical, multi-center-specific, and single-center-specific priors on log IMOR so that log

IMORs are different yet related in the corresponding trials. In our simulation study, the

proper prior structure of log IMOR was intervention-specific because we assumed placebo to
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trigger different missingness mechanisms as opposed to new and old intervention. However,

by misspecifying the prior structure using trial-specific or common-within-network prior

structure appeared to affect the uncertainty around the log OR leading to narrower CrIs of log

OR when MOD were moderate or large. While the inferences about the relative effectiveness

of the interventions were not affected in our simulations, the robustness of the inferences for

dabigatran 110 mg and rivaroxaban against placebo (third motivating example) were sensible

to the prior structure of log IMOR.

In the present study, we addressed aggregated MOD using two popular models for MOD

and six different prior structures of log IMOR without accounting, in addition, for important

effect modifiers. Van Buuren et al [303] developed a multiple imputation (MI) model

that incorporates a delta parameter like IMOR under pattern-mixture model to investigate

the degree of departure from MAR in survival analysis in a clinical trial. Extending this

model to operate in a collection of trials investigating two or more interventions is an

interesting yet unexplored area (to our knowledge) for further work. Provided that we

had access to individual patient data (IPD) and enough studies in the network to allow for

effect-modification adjustments, MI based on missing not at random (MNAR) assumptions

would be a more elegant modelling strategy – though computationally more intensive. This

is because MI is already increasingly used for offering a relatively simply and attractive

way to account also for the uncertainty induced by imputations (commonly applied under

MAR) while adjusting the model for important predictors. In addition, IPD has been often

considered as gold standard for synthesizing series of trials as it allows a more rigorous

investigation of statistical heterogeneity that – contrary to standard aggregated analysis

– protects against the risk for ecological bias, particularly for subject-level characteristics

[160]. Since addressing MOD is based on untestable assumptions about missing outcomes

(the popular MAR assumption cannot be tested from the observed outcomes), extending

’standard’ MI to investigate the sensitivity to MAR via MNAR models offers more flexibility.

The limitations of our study pertain mostly to the simulation setup. Firstly, we used Bayesian

approaches as we intended to compare different Bayesian modelling strategies for binary

MOD in terms of NMA estimates. Consequently, we preferred not to infer on the performance

of the models in terms of frequentist measures, such as type I error, efficiency, and coverage;
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contrariwise, our inferences stemmed from the posterior distribution of the NMA estimates

for different scenarios and models. Secondly, we considered a simple network of three

interventions and two-arm trials with binary outcome data (the most prevalent outcome type

in systematic reviews [287]). A more complex network with the addition of multi-arm trials

– a ’typical’ network in practice [116] – will shed more light on the implications of network

complexity on the NMA estimates across different prior structures of log IMOR. For instance,

in a complex yet sparse network (where the number of trials and observed comparisons are

limited), identical prior structure may perform better to hierarchical structure as it is the least

data demanding (alike the common-within-network prior structure). Thirdly, we did not

investigate the impact of event frequency since we considered only frequent events. As noted

in the work of Carpenter and Kenward, [304] ’if an event (eg, death or a serious side effect) is

rare, missing (outcome) data on very few patients can markedly alter estimated event rates,’

and therefore, affect substantially the NMA estimates. Fourthly, the degree of unbalanced

MOD considered in the simulation setup was much smaller than the total extent of MOD in

each trial (Supporting Information S.7).

Consequently, the width of CrI for log OR under common-within-network and trial-specific

prior structures (they assume MOD to be equally informative in the whole network and

within each trial, respectively, and hence, they down-weight trials with unbalanced MOD

in the compared arms [296]) remained narrower than the width of CrI for log OR under

intervention-specific prior structure when MOD were unbalanced. A much larger imbalance

of MOD may have resulted in more imprecise log OR under common-within-network and

trial-specific prior structures. However, we did not observe such extent of imbalance in our

empirical study (Supporting Information S.5; Figure S8(f)). Lastly, we dealt with convergence

issues (via inspection of the trace and autocorrelation plots) after applying identical common-

within-network in both pattern-mixture and selection models; this issue was not tackled after

we increased thinning at 6 and 10 (Figures not shown).

Recommendations for the reviewer
• The reviewer should decide in advance on the proper prior structure of log IMOR

to address aggregated MOD that best aligns with the condition investigated and the
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interventions forming the network; otherwise, misspecification of the prior structure

may lead to spurious estimation of the uncertainty around log OR with implications

for the conclusions—as shown in the motivating examples and simulation study.

• Pattern-mixture and selection models can be applied interchangeably to infer on the

effectiveness of the compared interventions on the whole population.

• Both identical and hierarchical structure may be considered in the context of a

sensitivity analysis; though, we expect log IMORs to be different (since the extent of

MOD will differ across trial-arms, among other reasons) yet related to each other, and

hence, we regard hierarchical structure to be more plausible in practice.

7.7 Conclusions

Assuming MAR on average as a starting point to analyse informative MOD under different

prior structures of log IMOR appeared to implicate mainly the precision of the NMA

estimates without affecting our conclusions about the effectiveness and the hierarchy of the

interventions. Nevertheless, the inferences from the present simulation study were greatly

restricted by the scenarios considered. Reviewers should decide already at the protocol of

the systematic review on the prior structure of log IMOR according to the condition and

interventions investigated. Our results may be also generalized to conventional meta-analyses

with binary outcome.
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Supplementary material and coloured figures 1 − 6 can be found at https://

onlinelibrary.wiley.com/doi/abs/10.1002/sim.8207
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General Discussion
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Clinical trials are not isolated experiments, therefore, their synthesis via meta- analysis

has naturally become common and highly valued practice. In rare diseases, due to the

small number of available patients, individual trials are often indecisive and, in some cases,

contradictory. Thus, for a rare disease, the synthesis of these few clinical trials as part

of an exploratory step or a formal drug development plan becomes highly relevant. In

such a synthesis, between-study variability (heterogeneity) may be introduced even between

two similar trials, due to design, methods and other types of discordances. Accounting

for heterogeneity between clinical trials in rare diseases becomes almost infeasible due to

the limited number of conducted trials. In order to properly estimate and account for

this additional variability, using only a handful of available patient data, robust statistical

approaches need to be identified and explored.

In this thesis, I developed and evaluated statistical approaches for evidence synthesis in rare

diseases under both a frequentist and a Bayesian framework. Efficiency issues are common

under both frameworks within the meta-analytical context of small populations. While the

Bayesian framework is often debated, it has been shown to produce robust evidence during

the synthesis of summary measures from a few small available trials [12, 13, 178].

Evidence synthesis in small populations
The frequentist and Bayesian scoping literature reviews of the thesis were initially designed to

summarize and illustrate available methodologies in evidence synthesis of small populations.

The motivation for summarizing evidence-synthesis methods originated from the suboptimal

characteristics of a meta-analysis in the presence of a few small (heterogeneous) trials, also

shown in Gonnermann et al [11]. Unfortunately, after conducting preliminary searches for

both reviews, within the year 2014, only a handful of fitting methodological articles were

identified [158, 159].

More specifically, by examining the included methodological articles alongside their titles, one

may observe that key terms such as ”rare diseases“, ”small populations“, ”few small trials“

only appeared in the literature after the year 2014; up until then, most meta-analytical, useful

for small populations, approaches were either non-existing or they were based on already

existing approximate approaches, which were being re-purposed for the design of a new trial
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[305, 306]. The three European research projects (ASTERIX, IDeAl and InSPiRe) redirected

the focus on small populations’ methodology research. Since then, a number of articles have

been published, evaluating methods for a meta-analysis of a few and even two small trials

[11, 12, 147, 150, 197, 241, 178, 307, 308]. Moreover, even general simulation-based research

on evidence synthesis explicitly accounts for very few trials or small population scenarios

[309, 310].

Most of the aforementioned recent methodological studies in rare diseases are being

conducted through simulation; often authors assume approximate normal effect estimates of

dichotomous outcomes on modelling the meta-analysis. Chapter 3 of this thesis conducted

a critical evaluation of applied data generating models for a random-effect meta-analysis

of dichotomous outcomes in such studies. Even though all evaluated data generating

mechanisms were designed to produce the same overall effect, the properties of resulting joint

empirical distributions heavily differed, making direct comparisons between methodological

studies unreliable [241]. Such concerns extend beyond the small population context, hold

broadly for multilevel binomial data studies and may become even more relevant for sparse-

event settings (Chapter 4 and 5). The algorithms presented in Chapter 3 can be further

generalized to multiple outcome meta-analysis [51], while they have already been generalized

in network meta-analysis by Seide et al [311] (pCFixed algorithm) and by Chapter 7 of this

thesis [312] (pRandom algorithm).

The latter algorithm - pRandom - has already been (directly) applied on another comparison

of modelling strategies of missing outcome data under a frequentist network meta-analysis

[313]. Together with Chapter 7, they provide an overall evaluation of missing outcome

data modelling strategies under a network meta-analysis. Even though the empirical and

simulative characteristics of Chapter 7 were based on prevalent diseases, in a rare disease

setting, where often sparsely connected networks of trials exist, it is expected that inferences

would become even more prior-driven [136, 137, 314].

Evidence synthesis of a few small clinical trials with rare events
Additionally this thesis points out the improper estimation of the between-study variability

when zero event arms increase in a meta-analysis, a situation which may lead to increased
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or decreased confidence in treatment efficacy. We further focused on the evaluation of

heterogeneity in such settings. Three promising heterogeneity estimators were identified

under the frequentist framework (Chapter 4). Under a Bayesian framework (Chapter 5) our

results contradicted recent publications in Bayesian meta-analysis of small populations. These

publications suggested ”weakly“ informative priors to stabilize inference and produce robust

treatment effects intervals in a meta-analysis of a few small trials. Recommendations on priors

to be applied in such small population settings should be made, subject to the special clinical

and statistical characteristics of a (network) meta-analysis (such as; sparsity of events, sparsity

of network connections), if not completely in a case by case basis.

As no head-to-head comparison of synthesis methods with regards to a few small trials with

rare events currently exists, I present a brief re-analysis of example (b) of Chapter 5, based

on a number of alternative Bayesian and frequentist strategies, which are explored in either

Chapters 3, 4 or 5 (Figure 8.1).

If a practitioner chooses to rely on the frequentist framework, then the simple DerSimonian-

Laird estimator risks producing a false positive result as it tends to underestimate true

heterogeneity [150, 241, 206]. The Sidik-Jonkman estimator would be a more appropriate

choice as shown in Chapter 4 [150]. It should be noted that more sophisticated frequentist

models were recently shown to perform very poorly in a few trial meta-analysis of sparse

events scenarios [310].

If a practitioner relies on the Bayesian framework, priors that place most of the mass in small

values of τ but naturally restrict the range to more plausible values should be preferred, for

example a Uniform(−10, 10) on the log(τ2) scale [178]. The usual half-normal prior on τ

was shown to underestimate true heterogeneity in sparse-event settings; and should not be

preferred in such a context [178].

Lastly, future methodological studies in a sparse event meta-analysis in small populations

setting should also consider how much importance should be placed in the strict control

over operational characteristics and false-positive findings. Especially in the context of major

adverse events even the smallest and non-significant signal should be explored.
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Figure 8.1: Forest plot for the Intravenous immunoglobulin treatment for Guillaine-Barre
syndrome [207] reporting the overall effect on endpoint ”treatment discontinuation” in terms
of log odds ratios. Different modelling options [150, 176, 204, 241, 178] are presented,
alongside the resulting trial-specific estimates and their 95% confidence/credible intervals.
The 5th row shows the overall effect estimate based on a random-effect model with the
DerSimonian Laird estimator. The next lines show a random-effect model with the Sidik and
Jonkman estimator and a random effect model with Hartung-Knapp correction, while the last
two lines present two binomial-normal hierarchical Bayesian models, one with a half-normal
prior on τ and one with a uniform prior on log(τ2).

Evidence synthesis accounting for sample-based selection bias
Chapter 6 focused on a pragmatic situation in the evaluation and development of orphan

drugs; the informal extrapolation that can occur when results of early phase clinical trials are

seen as strengthening the evidence from small Phase III trials. More specifically, the increasing
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type I errors and ”sample-based” selection biases caused by such an informal combination of

exploratory and confirmatory evidence was the main issues addressed. Even though such

a combination/extrapolation of historical trial data, which can be considered as part of the

design of a new clinical trial, was explored in Chapter 6, the design of a new clinical trial was

not directly considered in this thesis.

Except for the above setting, this ”sample-based” selection bias could be of general interest for

a meta-analysis of two trials, as the conduct of a succeeding clinical trial is usually conditional

on previously observed positive trial results. In such a situation a simple meta-analysis of

two (or even three) trials may yield positively biased overall effects and alternative statistical

approaches, such as variations of those described in Chapter 6, may be needed.

Conclusion

Meta-analysis in small populations faces certain issues that derive mostly from the limited

number of available and often heterogeneous small trials to be synthesized. When such an

analysis is conducted within a small population context, it should be applied with caution

and even further tailored to account for specific small population characteristics, a few of

which were extensively discussed in this thesis.
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List of Abbreviations

AD: Aggregate study-level data

BDR: Bayesian double-regression

BFDR: Bayesian flexible double-regression

CC: Continuity correction

CI: Confidence Interval

CMA: Cumulative meta-analysis
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DGM: Data generating model

DR: Double-regression

DRC: Corrected double-regression

EMA: European Medicines Agency

EU-FP7: European Union - Framework project 7
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FE: Fixed-effect

GBS: Guillain-Barre syndrome
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IMOR: Informative missingness odds ratio

HK: Hartung and Knapp

IPD: Individual patient data

IQR: Interquartile range

IVIG: Intravenous immunoglobulin

LOR: Log odds ratio
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MA: Meta-analysis

MAR: Missing at random

MCMC: Markov chain Monte Carlo

MH: Mantel-Haenszel

MMA: Multiple outcome meta-analysis / multivariate meta-analysis

MOD: Missing outcome data

MSE: Mean square error

NMA/MTC: Network meta-analysis / mixed treatments meta-analysis

OR: Odd-ratio

PA: pAverage

PCF: pCFixed

PH: Proportional hazards

PHK: Phenylketonuria

PMA: Pairwise meta-analysis

PR: pRandom

RCT: Randomized controlled trial

RE: Random-effects

REML: Restricted maximum-likelihood

RR: Risk-ratio

SMA: Sequential meta-analysis

SR: Systematic review

TSA: Trial sequential meta-analysis
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Heterogeneity estimators
dl: DerSimonian-Laird

dlp: Positive DerSimonian Laird

dl2: Two-step Der Simonian Laird

he: Hedges

he2: Two step Hedges

hm: Hartung - Makambi

hs: Hunter-Schmidt

ipm: Improved Paul-Mandel

ml: Maximum Likelihood

mvvc: Model error variance - vc

pm: Paul-Mandel

rb0: Rukhin Bayes zero estimator

rbp: Rukhin Bayesian positive

reml: Restricted Maximum likelihood

sj: Positive Sidik-Jonkman
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[229] Burak Kürsad Günhan, Christian Röver, and Tim Friede. Research Synthesis Methods.

[230] William J Browne and David Draper. A comparison of Bayesian and likelihood-based

methods for fitting multilevel models. Bayesian Analysis, 1(3):473–514, 2006.

[231] Małgorzata Roos and Leonhard Held. Sensitivity analysis in Bayesian generalized

linear mixed models for binary data. Bayesian Analysis, 6(2):259–278, 2011.

[232] George E P Box and George C Tiao. Bayesian inference in statistical analysis, volume 40.

John Wiley & Sons, 2011.

[233] Elizabeth Stojanovski and KerrieL Mengersen. Bayesian Methods in Meta-Analysis. In

Encyclopedia of Biopharmaceutical Statistics, Third Edition, pages 116–121. CRC Press, 2012.

[234] Dan Jackson, Martin Law, Theo Stijnen, Wolfgang Viechtbauer, and Ian R White.

A comparison of seven random-effects models for meta-analyses that estimate the

summary odds ratio. Statistics in medicine, 37(7):1059–1085, 2018.

[235] Nicholas G Polson and James G Scott. On the half-cauchy prior for a global scale

parameter. Bayesian Analysis, 7(4):887–902, 2012.

[236] William DuMouchel and Sharon-Lise Normand. Computer-modeling and graphical

strategies for meta-analysis. Meta-analysis in medicine and health policy, pages 119–164,

2000.

[237] Mj Daniels. A prior for the variance in hierarchical models. The Canadian Journal of

Statistics, 27(3):567–578, 1999.

230



Bibliography

[238] Orphanet: About Rare Diseases. http://www.orpha.net/consor/cgi-

bin/Education AboutRareDiseases.php?lng=EN, Accessed: 2020-03-12.

[239] European Medicines Agency. Kiovig (Motor neuropathy) - Assessment report.

Technical report, 2011.

[240] M Plummer and A Stukalov. Package ’rjags’, 2015.

[241] Konstantinos Pateras, Stavros Nikolakopoulos, and Kit CB Roes. Data-generating

models of dichotomous outcomes: Heterogeneity in simulation studies for a random-

effects meta-analysis. Statistics in medicine, 37(7):1115–1124, 2018.

[242] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for

Statistical Computing, Vienna, Austria, 2015.

[243] Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines. CODA: Convergence

Diagnosis and Output Analysis for MCMC. R News, 6(1):7–11, 2006.

[244] Lie Li and Xinlei Wang. Meta-Analysis of Rare Binary Events in Treatment Groups with

Unequal Variability. Statistical Methods in Medical Research, 28(1):263–274, 2019.

[245] Frédéric Cérou, Pierre Del Moral, Teddy Furon, and Arnaud Guyader. Sequential

Monte Carlo for rare event estimation. Statistics and Computing, 22(3):795–808, 2012.

[246] Zdravko I Botev and Dirk P Kroese. Efficient Monte Carlo simulation via the

generalized splitting method. Statistics and Computing, 22(1):1–16, 2012.

[247] European Medicines Agency. Thalidomide celgene (previously thalidomide pharmion,

thalidomide) - assessment report. pages 1–91, 2008.

[248] European Medicines Agency. Galafold (migalastat) - assesment report. pages 1–91,

2012.

[249] Raphael Schiffmann, Markus Ries, Derek Blankenship, Kathy Nicholls, Atul Mehta,

Joe TR Clarke, Robert D Steiner, Michael Beck, Bruce A Barshop, William Rhead, et al.

Changes in plasma and urine globotriaosylceramide levels do not predict fabry disease

progression over 1 year of agalsidase alfa. Genetics in Medicine, 15(12):983, 2013.

231



Bibliography

[250] B Engel and P Walstra. Increasing precision or reducing expense in regression

experiments by using information from a concomitant variable. Biometrics, pages 13–20,

1991.

[251] D Conniffe and MA Moran. Double sampling with regression in comparative studies

of carcass composition. Biometrics, pages 1011–1023, 1972.

[252] Cornelia Ursula Kunz, Tim Friede, Nicholas Parsons, Susan Todd, and Nigel Stallard.

A comparison of methods for treatment selection in seamless phase ii/iii clinical trials

incorporating information on short-term endpoints. Journal of biopharmaceutical statistics,

25(1):170–189, 2015.

[253] Nigel Stallard. A confirmatory seamless phase ii/iii clinical trial design incorporating

short-term endpoint information. Statistics in medicine, 29(9):959–971, 2010.

[254] Lisa V Hampson and Christopher Jennison. Optimizing the data combination rule for

seamless phase ii/iii clinical trials. Statistics in medicine, 34(1):39–58, 2015.

[255] David Manner, John W Seaman Jr, and Dean M Young. Bayesian methods for regression

using surrogate variables. Biometrical Journal: Journal of Mathematical Methods in

Biosciences, 46(6):750–759, 2004.

[256] Andrew Gelman, John B Carlin, Hal S Stern, and Donald B Rubin. Bayesian data analysis,

volume 2. Chapman & Hall/CRC, 2014.

[257] John Barnard, Robert McCulloch, and Xiao-Li Meng. Modeling covariance matrices in

terms of standard deviations and correlations, with application to shrinkage. Statistica

Sinica, pages 1281–1311, 2000.

[258] Joseph G Ibrahim, Ming-Hui Chen, and Debajyoti Sinha. On optimality properties of

the power prior. Journal of the American Statistical Association, 98(461):204–213, 2003.

[259] Stavros Nikolakopoulos, Ingeborg van der Tweel, and Kit CB Roes. Dynamic borrowing

through empirical power priors that control type i error. Biometrics, 74(3):874–880, 2018.

232



Bibliography

[260] Isaac Gravestock, Leonhard Held, and COMBACTE-Net consortium. Adaptive power

priors with empirical bayes for clinical trials. Pharmaceutical statistics, 16(5):349–360,

2017.

[261] Joseph G Ibrahim and Ming-Hui Chen. Power prior distributions for regression models.

Statistical Science, 15(1):46–60, 2000.

[262] Joseph G Ibrahim, Ming-Hui Chen, Yeongjin Gwon, and Fang Chen. The power prior:

theory and applications. Statistics in medicine, 34(28):3724–3749, 2015.

[263] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for

Statistical Computing, Vienna, Austria, 2019.

[264] Donald R Barr and E Todd Sherrill. Mean and variance of truncated normal

distributions. The American Statistician, 53(4):357–361, 1999.
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”Patients in rare diseases should be entitled to the same quality of treatment as other patients”

[315]. The recent implementation of international and national strategy plans for rare diseases

has led to an incredible increase of data quantity. As is generally known, such data become

available through various sources, for instance; claim databases, e-health records, national

registries and experimental studies. Information provided from either of these sources can be

utilized during the evaluation of a (new) treatment.

Depending on the stakeholder, we often need to evaluate multiple questions; such as, (i) do

the treatment’s risks outweigh the added benefit?, (ii) does the treatment’s added benefit

outweigh the costs?, (iii) does the treatment help each and every individual patient or (iv)

does the treatment actually work? The latter question is often evaluated by a randomized

controlled trial. According to Orphanet, more than 1829 trials among 29 countries focus on

more than 800 rare conditions [316]. This number of historical and ongoing trials explains

the urgent need for evaluating and developing tailor-made statistical methods for small

populations and so far, three recent large European projects have responded to materializing

this need [6, 7, 8].

Statisticians, methodologists, clinicians and patients, all interested parties recognize the

specific issue of the increased presence of heterogeneity among the patients that suffer from

a specific rare condition. Heterogeneity introduces further complexity during the evaluation

of a (new) treatment within a single randomized clinical trial, where the limited availability

of sample sizes restricts practitioners from evaluating subgroups of patients within each trial.

Although counter-intuitive, as sample sizes per trial become smaller, conducting more than

one trial might provide a clearer overview of the treatment efficacy [89].

Orphan drugs for rare diseases are often investigated through multinational randomized

controlled trials. Investigations in such a global setting may lead to increased inconsistency,

given that the clinical expertise, the standards of care and the used facilities vary e.g. between

each country. Non-homogeneous data makes single trials less reliable, which means that the

need to explore synthesis methods of a few small studies through meta-analysis is even more

necessary. This thesis focuses on the latter.

More specifically, Chapters 2a and 2b report scoping reviews that identified (i) recent
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developments in frequentist and Bayesian evidence synthesis of small populations and

(ii) opportunities during an orphan drug authorization, where such methods could offer

attractive alternatives to the current practice. One of the main findings of these reviews

was that meta-analytical methods tailored for small population meta-analyses have not been

thoroughly researched as of then. The lack of sufficient existing methods, combined with their

improper evaluation is considered the underlying rationale for this thesis which hopefully

provides grounds for further research development in the area.

Chapter 3 focuses on the binomial data generating mechanisms that are utilized to evaluate

the performance of meta-analytical methods. We have showed that often no rationale exists as

regards to the choice of such models among individual simulation studies. When alternative

data-generating mechanisms are applied, we have observed heavy discrepancies among the

evaluated statistical methods performance, especially in situations of a synthesis of a few

small trials.

Chapter 4 deals with the problematic estimation of heterogeneity when synthesizing a few

small trials with reported zero events. Such a setting offered the opportunity to compare the

behaviour of heterogeneity estimation techniques under the exact number of observed zero

events. When accounting for the exact number of observed zero events in small population

settings, we found no obvious discrepancies among the applied techniques.

Chapter 5 builds on the problematic nature of frequentist random-effects methods, which

were previously explored in Chapter 4, now assuming a Bayesian binomial-normal random-

effects model. We applied alternative prior distributions on the heterogeneity and we

observed deviations both on the point and the interval estimation of the overall effect.

If possible given the clinical question at hand, our recommendation is that priors on the

heterogeneity parameter, except for clinically relevant, they should neither be non-informative

nor very informative. Given the above recommendation, inferences of sparse-events meta-

analyses should provide sensible but not prior-driven inferences.

Chapter 6 focuses on the situation where only one phase II and one phase III trial are available

to assess the efficacy of a (new) intervention. Due to limited time and overall resources, phase

II clinical trials may only observe short-term outcomes, while the Phase III trial often contains
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results for both the short and long-term outcomes, thus, quantification of their relationship

and borrowing of strength could take place when appropriate based on statistical approaches

suggested in this Chapter.

Chapter 7 explores the behaviour of different proposed and/or existing Bayesian modelling

options for handling binomial missing-outcome data in a network meta-analysis. The

overall suggestion is that, prior to conducting a network meta-analysis, researchers should

set a sensible prior assumption on the missing outcome mechanism. We expect the prior

specification to be a far more crucial matter within a sparsely connected meta-analysis

network of a few small trials.

245



246



Περίληψη στα Ελληνικά

247



Περίληψη στα Ελληνικά

248



Περίληψη στα Ελληνικά

¨Οι ασθενείς με σπάνια νοσήματα δικαιούνται την ίδια θεραπευτική ποιότητα όπως και οι

υπόλοιποι ασθενείς.’ [315]. Η πρόσφατη υλοποίηση διεθνών και εθνικών στρατηγικών σχεδίων

για τα σπάνια νοσήματα έχει φέρει μία μεγάλη αύξηση στο μέγεθος των διαθέσιμων δεδομένων.

΄Οπως είναι γνωστό, τέτοια δεδομένα γίνονται διαθέσιμα μέσω διαφόρων πηγών, για παράδειγμα·

βάσεις δεδομένων, ηλεκτρονικά μητρώα υγείας, εθνικά μητρώα αλλά και κλινικές πειραματικές

μελέτες. Πληροφορία που προέρχεται από οποιαδήποτε από τις παραπάνω πηγές μπορεί να

χρησιμοποιηθεί κατά την αξιολόγηση μίας (νέας) θεραπευτικής αγωγής.

Ανάλογα τα ενδιαφερόμενα μέρη, συνήθως αξιολογούμε πολλαπλά ερωτήματα όπως, (i) οι

κίνδυνοι λήψης της φαρμακευτικής αγωγής υπερισχύουν του πρόσθετου κέρδους;, (ii) το

κέρδος της λήψης θεραπείας υπερισχύει του οικονομικού βάρους;, (iii) βοηθάει η θεραπεία

όλους τους ασθενείς; ή/και (iv) λειτουργεί όντως η νέα θεραπεία; Το τελευταίο ερώτημα

συχνά αξιολογείται με τη χρήση μίας τυχαιοποιημένης κλινικής δοκιμής. Σύμφωνα με τη βάση

Orphanet, τρέχουν περισσότερες από 1829 κλινικές δοκιμές μεταξύ 29 χωρών για περισσότερα

από 800 φάρμακα [316]. Αυτός ο αριθμός ιστορικών και τρεχόντων κλινικών δοκιμών εξηγεί

την άμεση ανάγκη να αξιολογηθούν και να υλοποιηθούν νέες στοχευμένες στατιστικές μέθοδοι

για μικρούς πληθυσμούς. Τουλάχιστον τρία μεγάλα ευρωπαϊκά προγράμματα υλοποιήθηκαν για

να καλύψουν αυτή την ανάγκη [6, 7, 8].

Στατιστικοί, επιδημιολόγοι, ιατροί και ασθενείς, όλα τα ενδιαφερόμενα μέρη, αναγνωρίζουν

το θέμα της αυξημένης ετερογένειας ανάμεσα σε ασθενείς που πάσχουν από κάποιο σπάνιο

νόσημα. Η ετερογένεια αυτή φέρνει επιπλέον πολυπλοκότητα κατά την αξιολόγηση μίας (νέας)

θεραπείας μέσα σε μία μοναδική τυχαιοποιημένη κλινική δοκιμή, όπου το μέγεθος του δείγματος

περιορίζει τους ερευνητές να πραγματοποιήσουν ανάλυση σε υποομάδες ασθενών.

Τα ορφανά φάρμακα στα σπάνια νοσήματα συνήθως ερευνούνται μέσω μικρών κλινικών δοκιμών

ή μέσω μεγαλύτερων πολυεθνικών τυχαιοποιημένων κλινικών δοκιμών. Η έρευνα σε τέτοιο

παγκόσμιο επίπεδο μπορεί να επιφέρει αύξηση της ασυνέπειας και της ετερογένειας εφόσον, π.χ.

η κλινική γνώση, η καθιερωμένη φροντίδα αλλά και οι υπάρχουσες εγκαταστάσεις διαφέρουν

από χώρα σε χώρα. Τέτοιου είδους μη ομογενοποιημένα δεδομένα μειώνουν την εμπιστοσύνη

των ερευνητών σε μεμονωμένες (μικρές) κλινικές δοκιμές, κάτι που σημαίνει ότι η σύνθεση

τέτοιων μελετών μέσω μίας μέτα-ανάλυσης είναι αναγκαία. Η διατριβή αυτή συγκεντρώνεται

στο τελευταίο σημείο εκ των παραπάνω.
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Συγκεκριμένα, τα κεφάλαια 2α και 2β παρουσιάζουν διερευνητικές ανασκοπήσεις οι οποίες

εντόπισαν (i) πρόσφατες εξελίξεις σε κλασσικές και Μπεϋζιανές στατιστικές μεθόδους

σύνθεσης δεδομένων σε μικρούς πληθυσμούς και (ii) ευκαιρίες που παρουσιάζονται εντός

μίας αξιολόγησης ορφανού φαρμάκου, στις οποίες τέτοιες μέθοδοι μπορούν να προσφέρουν

εναλλακτικές σε σύγκριση με τη πάγιες τακτικές. ΄Ενα από τα κύρια ευρήματα των

ανασκοπήσεων είναι ότι μετα-αναλυτικές μέθοδοι φτιαγμένοι για μικρούς πληθυσμούς δεν είχαν

αρχίσει να ερευνούνται με συστηματικότητα μέχρι τότε. Η έλλειψη επαρκών τεχνικών, όπως

επίσης και ο συχνά ακατάλληλος τρόπος αξιολόγησής τους είναι τα θέματα στα οποία βασίστηκε

αυτή η διατριβή αυτή.

Το κεφάλαιο 3 επικεντρώνεται σε διωνυμικούς μηχανισμούς παραγωγής δεδομένων οι οποίοι

χρησιμοποιούνται για να αξιολογήσουν την απόδοση μετα-αναλυτικών μεθόδων. Παρουσιάζεται

ότι συχνά δεν υπάρχει επαρκής δικαιολόγηση για την επιλογή τέτοιων μηχανισμών μεταξύ

των μελετών προσομοίωσης. ΄Οταν διαφορετικοί μηχανισμοί εφαρμόζονται παρατηρούνται

ουσιαστικές διαφοροποιήσεις στην απόδοση των στατιστικών μεθόδων που αξιολογούνται,

αυτές οι διαφοροποιήσεις ήταν έντονες σε περιπτώσεις σύνθεσης λίγων μικρών κλινικών

δοκιμών.

Το κεφάλαιο 4 αντιμετωπίζει το θέμα της προβληματικής εκτίμησης της ετερογένειας όταν

συνθέτονται δυωνυμικά καταληκτικά σημεία λίγων μικρών κλινικών δοκιμών με μηδενικά

παρατηρηθέντα γεγονότα (zero events). Οι συνθήκες μικρών πληθυσμών προσέφεραν την

ευκαιρία να συγκρίνουμε τη συμπεριφορά των τεχνικών εκτίμησης ετερογένειας σε σχέση με

τον ακριβή αριθμό παρατηρηθέντων μηδενικών γεγονότων (zero events). Μεταξύ διαφορετικών

συχνοτήτων ύπαρξης μηδενικών, σε μία τέτοια μέτα-ανάλυση μικρών πληθυσμών, δεν

εντοπίστηκαν εμφανείς αποκλίσεις μεταξύ των εφαρμοζόμενων τεχνικών.

Το Κεφάλαιο 5 χτίζει πάνω στην προβληματική φύση των κλασσικών μεθόδων τυχαίων

επιδράσεων, οι οποίες είχαν προηγουμένως διερευνηθεί στο Κεφάλαιο 4, τώρα υποθέτοντας ένα

Μπεϋζιανό διωνυμικό-κανονικό μοντέλο τυχαίων επιδράσεων. Εφαρμόστηκαν εναλλακτικές

εκ των προτέρων κατανομές πάνω στην παράμετρος της ετερογένειας και παρατηρήθηκαν

αποκλίσεις τόσο στο σημειακό εκ των υστέρων διάμεσο της παραμέτρου όσο και στο διάστημα

αξιοπιστίας του. Σε αυτό το κεφάλαιο προτάθηκε, δεδομένης της κλινικής ερώτησης, να γίνεται

χρήση εκ των προτέρων κατανομών ετερογένειας οι οποίες δεν είναι πολύ αλλά ούτε και λίγο
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πληροφοριακές. Με τη χρήση των παραπάνω προτάσεων τα αποτελέσματα μίας Μπεϋζιανής

μέτα-ανάλυσης θα παρέχουν λογικά αποτελέσματα, τα οποία είναι ανεξάρτητα από τις υποθέσεις

στις εκ των προτέρων κατανομές ετερογένειας.

Το Κεφάλαιο 6 επικεντρώνεται στην περίπτωση όπου μόνο μία δοκιμή Φάση ΙΙ και μία δοκιμή

Φάση ΙΙΙ είναι διαθέσιμες για την αξιολόγηση της αποτελεσματικότητας μιας (νέας) παρέμβασης.

Λόγω του περιορισμένου χρόνου και των συνολικών πόρων, οι κλινικές δοκιμές Φάσης ΙΙ

μπορούν να προσφέρουν μόνο βραχυπρόθεσμα καταληκτικά σημεία, ενώ η δοκιμή Φάσης ΙΙΙ

συχνά περιέχει αποτελέσματα τόσο για τα βραχυπρόθεσμα όσο και για τα μακροπρόθεσμα

καταληκτικά σημεία. Ο ποσοτικός προσδιορισμός της σχέσης των σημείων αυτών και ο

δανεισμός δύναμης από τη δοκιμή Φάσης ΙΙ κατά την αξιολόγηση των ορφανών φαρμακευτικών

αγωγών (orphan drugs) θα μπορούσαν να πραγματοποιηθούν όποτε ενδείκνυται βάσει των

στατιστικών προσεγγίσεων που προτείνονται στο παρόν κεφάλαιο.

Το Κεφάλαιο 7 διερευνά τη συμπεριφορά προτεινόμενων ή/και υπαρχουσών Μπεϋζιανων

μοντέλων για το χειρισμό διωνυμικών δεδομένων με ελλιπείς παρατηρήσεις (missing outcome

data) σε μία μετα-ανάλυση δικτύου (network meta-analysis). Στο κεφάλαιο αυτό προτείνεται

ότι, πριν από τη διεξαγωγή μετα-ανάλυσης δικτύου, οι ερευνητές θα πρέπει να θέσουν

μια λογική εκ των προτέρων κατανομή σχετικά με τον μηχανισμό εμφάνισης ελλιπών

παρατηρήσεων. Αναμένεται ότι η τοποθέτηση εκ των προτέρων κατανομής στο μηχανισμό

εμφάνισης ελλιπών παρατηρήσεων θα είναι πολύ πιο καίριο ζήτημα σε ένα αραιά συνδεδεμένο

δίκτυο μετα-ανάλυσης μερικών μικρών δοκιμών.
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”Patiënten met zeldzame ziekten moeten recht hebben op dezelfde kwaliteit van behandeling

als andere patiënten” [315]. De recente implementatie van internationale en nationale

strategieplannen voor zeldzame ziekten hebben geleid tot een ongelooflijke toename van

de hoeveelheid gegevens. Zoals bekend komen dergelijke gegevens via verschillende

bronnen beschikbaar: bijvoorbeeld via claim-databases, e-health-records, nationale registers

en experimentele studies –(klinische proeven)-. Informatie uit deze bronnen kan worden

gebruikt tijdens de evaluatie van een (nieuwe) behandeling.

Afhankelijk van de belanghebbende moeten we vaak meerdere vragen evalueren,

bijvoorbeeld: a) wegen de risico’s van de behandeling zwaarder dan het toegevoegde

voordeel?, (b) weegt het toegevoegde voordeel van de behandeling zwaarder dan de

kosten?, (iii) helpt de behandeling elke individuele patiënt of (c) werkt de behandeling

ook daadwerkelijk? De laatste vraag wordt vaak geëvalueerd door een gerandomiseerde

gecontroleerde proef. Volgens Orphanet richten meer dan 1829 proefnemingen onder 29

landen zich op meer dan 800 zeldzame aandoeningen [316]. Het aantal historische en lopende

proeven verklaart de noodzaak om op maat gemaakte statistische methoden voor kleine

populaties te evalueren en te ontwikkelen. Tot nu toe hebben minstens drie grote Europese

projecten gereageerd op het materialiseren van deze behoefte [6, 7, 8].

Statistici, methodologen, artsen en patiënten, alle belanghebbenden, erkennen het specifieke

probleem van de toegenomen aanwezigheid van heterogeniteit bij patiënten die lijden aan een

zeldzame aandoening. Heterogeniteit introduceert verdere complexiteit tijdens de evaluatie

van een (nieuwe) behandeling binnen één willekeurig verdeelde klinische proef, waarbij

de beperkte beschikbaarheid van steekproefomvang beoefenaars erin beperkt subgroepen

patiënten binnen elke studie te evalueren.

Weesgeneesmiddelen (’Orphan Drugs’) voor zeldzame ziekten worden vaak onderzocht

door middel van kleine klinische proeven en/of door multinationale gerandomiseerde

gecontroleerde proeven. Onderzoek in een mondiale setting kan leiden tot een grotere

inconsistentie, gezien het feit dat de klinische expertise, de zorgstandaarden en de gebruikte

faciliteiten b.v. per land verschillen. Niet-homogene data maakt afzonderlijke kleine proeven

minder betrouwbaar, wat betekent dat de noodzaak om synthesemethoden van een paar

kleine proeven te onderzoeken door middel van meta-analyse nog noodzakelijker is. Dit
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proefschrift richt zich op het laatste.

Meer specifiek rapporteren hoofdstukken 2a en 2b een aantal onderzoeken die (i) recente

ontwikkelingen in de frequentist en Bayesiaanse bewijssynthese van kleine populaties

en (II) mogelijkheden tijdens de ontwikkeling van weesgeneesmiddelen identificeerden,

waar dergelijke methoden aantrekkelijke alternatieven voor de huidige praktijk zouden

kunnen bieden. Een van de belangrijkste bevindingen van deze reviews was dat meta-

analytische methoden die zijn toegesneden op meta-analyses van kleine populaties, vanaf dat

moment niet grondig zijn onderzocht. Het ontbreken van voldoende bestaande methoden,

gecombineerd met hun ondeugdelijke evaluatie, wordt beschouwd als de onderliggende

reden voor dit proefschrift.

Hoofdstuk 3 richt zich op de binomiale data genererende mechanismen die worden gebruikt

om de prestaties van meta-analytische methoden te evalueren. Hoofdstuk 3 laat zien

dat er vaak geen reden bestaat voor de keuze van dergelijke modellen in individuele

simulatiestudies. Wanneer alternatieve gegevensgenererende mechanismen worden

toegepast, worden zware verschillen tussen de geëvalueerde statistische methodeprestaties

waargenomen, vooral in de synthese van een paar kleine proeven.

Hoofdstuk 4 behandelt de problematische inschatting van heterogeniteit bij het synthetiseren

van binomaire resultaten van een paar kleine proeven met gerapporteerde nul-voorvallen.

Zo’n setting bood de mogelijkheid om het gedrag van heterogeniteitsschattingen te

vergelijken onder een exact aantal waargenomen nul-voorvallen. Bij het berekenen

van het exacte aantal waargenomen nul-voorvallen in kleine populaties werden geen

duidelijke verschillen gevonden tussen het geschatte behandelingseffect bij het toepassen van

verschillende heterogeniteitsschattingen.

Hoofdstuk 5 bouwt voort op de problematische aard van het frequentist random-effects model

voor een schaars-event meta-analyse, die eerder in hoofdstuk 4 werd onderzocht. Hoofdstuk 5

gaat nu uit van een Bayesiaans binomiaal-normaal willekeurig-effect model. In dit hoofdstuk

worden alternatieve eerdere distributies toegepast op de parameter heterogeniteit en worden

afwijkingen zowel op het punt als op de intervalschatting van het algehele behandelingseffect

waargenomen. Indien mogelijk is de aanbeveling, gegeven de klinische vraag die hier

256



Nederlandse samenvatting

ter discussie staat, dat eerdere onderzoeken op de heterogene parameter, behalve klinisch

relevant, niet informatief of zeer informatief mogen zijn. Gezien de bovenstaande aanbeveling

kunnen de conclusies van de meta-analyses van spaargebeurtenissen verstandige maar niet

van tevoren gedreven conclusies opleveren.

Hoofdstuk 6 richt zich op de situatie waarin slechts één fase II- en één fase III-proef

beschikbaar is om de werkzaamheid van een (nieuwe) interventie te beoordelen. Vanwege

beperkte tijd en algemene middelen kunnen klinische proeven in fase II alleen resultaten op

de korte termijn waarnemen, terwijl de fase III-studie vaak resultaten bevat voor zowel de

resultaten op de korte als de lange termijn, wanneer een passende kwantificering van de

relatie tussen de resultaten en het lenen van kracht zou kunnen plaatsvinden op basis van

de statistische benaderingen die daarin worden voorgesteld.

Hoofdstuk 7 onderzoekt het gedrag

van verschillende voorgestelde en/of bestaande Bayesiaanse modelleringsopties voor het

verwerken van binomiale ontbrekende-resultaatgegevens in een netwerk meta-analyse. De

algemene suggestie is dat, voordat een netwerk meta-analyse wordt uitgevoerd; onderzoekers

moeten een verstandige vooronderstelling geven over het ontbrekende resultaatmechanisme.

Je zou kunnen verwachten dat de voorgaande specificatie een veel belangrijkere zaak is

binnen een spaarzaam verbonden meta-analysis netwerk van een paar kleine proeven.
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except for here, you were both there for me in peculiar times and places. Hvala, σας ευχαριστώ.

Γονίδια, αδερφέ, θείοι, ξαδέρφια και παππούδια, σας ευχαριστώ και θα σας ευχαριστώ για

κάθε βήμα της ζωής μου. Χωρίς το δομημένο και ασφαλές περιβάλλον που γενναιόδωρα μου

παρείχατε, το βιβλίο αυτό δε θα υπήρχε.

274



Acknowledgements

275



Acknowledgements

276



Acknowledgements

My dear Mary, without your constant support, infinite patience and meaningful contribution

(textual reviewing), this journey will not have started, will not have continued and would not

have taken this path. Thank you for the last 14 years and for reminding me that ”We don’t have

time to be timid. We must be bold and daring”‡ .

Αγαπημένη μου Μαίρη, σε ευχαριστώ για τα τελευταία 14 χρόνια. Χωρίς τη στήριξή, την

υπομονή, την επιμονή και την ουσιαστική συνδρομή σου, η διαδρομή αυτή δε θα ξεκινούσε, δε

θα συνέχιζε και φυσικά δε θα τελειώνε ποτέ με αυτόν τον τρόπο. Ελπίζω να μπορέσω να στο

ανταποδώσω κάποτε. Α, και κάτι για σένα, θ(σΛ)γΠ.

‡Lumière

277



278
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Μεθύστε χωρίς διακοπή. Be continually drunk.

Με κρασί, With wine,

με ποίηση, with poetry,

ή με αρετή. or with virtue.

΄Οπως σας αρέσει. As you choose.

Αλλά μεθύστε! But be drunk.

Σὰρλ Μπωντλαίρ Charles Baudelaire
(Μεθύστε, Μελοποίηση - Διάφανα Κρίνα) (Be Drunk X)
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