
Constructing Parallel Algorithms for

Discrete Transforms:

From FFTs to Fast Legendre Transforms

Constructie van Parallelle Algoritmen voor Discrete Transformaties:

Van FFT's tot Snelle Legendre Transformaties

(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor aan de Universiteit Utrecht

op gezag van de Rector Magni�cus, Prof. dr. H. O. Voorma, inge-

volge het besluit van het College voor Promoties in het openbaar

te verdedigen op woensdag 29 maart 2000 des middags te 4.15 uur

door

M�arcia Alves de Inda

geboren op 19 augustus 1969 te Porto Alegre, Brazili

�

e



Promotor: Prof. dr. Henk A. van der Vorst

Co-promotor: Dr. Rob H. Bisseling

Faculteit Wiskunde en Informatica

Universiteit Utrecht

2000 Mathematics Subject Classi�cation: 65T50, 65Y05, 42C15.

Inda, M�arcia Alves de

Constructing Parallel Algorithms for Discrete Transforms:

From FFTs to Fast Legendre Transforms

Proefschrift Universiteit Utrecht | Met samenvatting in het Nederlands.

ISBN 90-393-2330-5

The work described in this thesis was carried out at the Mathematics Department of

Utrecht University, The Netherlands, with �nancial support by the Funda�c~ao Coor-

dena�c~ao de Aperfei�coamento de Pessoal de N

�

ivel Superior (CAPES).



Aos carvoeiros

�

�

In my grandmother's Ega words: a family that is always together : : : my family.





Preface

The initial target of my doctoral research with parallel discrete transforms was to

develop a parallel fast Legendre transform (FLT) algorithm based on the sequential

Driscoll-Healy algorithm [21, 22]. To do this, I had to study their algorithm in

depth. This task was greatly simpli�ed thanks to previous work done by David K.

Maslen [35], with whom Rob H. Bisseling and I worked together to crack this nut.

After understanding and implementing the sequential FLT algorithm, I aimed

at developing a parallel distributed memory version. Using the bulk synchronous

parallel (BSP) model [32, 54], and assuming that a parallel fast cosine transform

(FCT) algorithm was available, it was easy to devise a basic parallel FLT algorithm.

Such a basic parallel algorithm was already known [30, 45], though, to my knowledge,

it had never been implemented. With the basic parallel algorithm at hand, I still had

two things to do: develop a parallel FCT algorithm and investigate the possibility of

improving the basic parallel FLT algorithm.

Developing a parallel FCT algorithm involved searching for a suitable sequential

FCT algorithm, i.e., an algorithm that could be parallelized with a minimum of

communication overhead. Since there is substantial knowledge of parallel fast Fourier

transforms (FFT), we chose to restrict our search to the class of FCT algorithms

that are based on FFTs, i.e., algorithms which (1) pack the input data, (2) transform

them using an FFT, and then (3) extract the cosine transform from the transformed

data. After going through many of those algorithms I �nally decided to implement

Narasimha and Peterson's algorithm [37], which I had found in van Loan's book [55].

The transform phase of this FCT algorithm consists of a real FFT (i.e., an FFT for

real input data). In turn, a real FFT can be carried out using a complex FFT.

At this point, I had to deal with four di�erent parallel discrete transform algo-

rithms: FFTs, real FFTs, FCTs, and FLTs. After implementing basic versions of

those four transforms, we turned to the problem of improving the basic parallel FLT

algorithm. With the introduction of a new data distribution, which we call the zig-zag

cyclic distribution, we were able to reduce the communication cost of the parallel real

FFT and of the parallel FCT to the same cost as that of a parallel complex FFT

v



vi Preface

of half the size. (Thus, obtaining the data packing and extract phases at no extra

communication cost.) Breaking open the FCT module inside the FLT algorithm,

further reduced the communication cost of the basic parallel FLT algorithm by a fac-

tor of three. This last optimization step was greatly facilitated by the introduction

of the FCT2 algorithm, an algorithm that computes two discrete cosine transforms

simultaneously.

A project that started with the aim of developing a parallel fast Legendre trans-

form, ended up creating a collection of useful parallel transforms that can be used

throughout in computational sciences. From solving numerical di�erential equations

to signal processing, FFTs are among the most used numerical tools in computa-

tional sciences. As \real versions" of the FFT, the RFFT and the FCT are also very

much in use. The FLT is still young and has to conquer its space between its better

known cousins. The discrete Legendre transform, however, is widely used as part

of two-dimensional Legendre transforms or (three-dimensional) spherical harmonic

transforms. My parallel FLT is only a �rst step in developing parallel two-dimensional

FLTs and parallel fast spherical harmonic transforms.

Together with this thesis, I intend to release a version of the Bulk Synchronous

Parallel Fast Transform package (BSPFTpack) that I developed with the hope to bring

parallel transforms within easy reach of anyone interested in parallel computing. This

package was written in ANSI C and uses BSPlib as communication library, which

is freely available. (An alternative would be to adapt the program to use another

communication library such as MPI.) Together with the parallel package I also intend

to release its sequential version.

My thesis has the following structure. In Chapter 1, I describe the BSP model

and discuss relevant aspects of parallel computing. In Chapter 2, I derive a parallel

FFT algorithm which serves as the basis for the rest of my thesis. In Chapter 3,

I derive parallel algorithms for the RFFT, the FCT, and the FCT2. In Chapter 4,

I introduce the Driscoll-Healy algorithm and derive a parallel FLT algorithm. Appen-

dix A describes the BSP parameters for the Cray T3E, which is the parallel computer

used for the numerical experiments. Appendix B presents the sine/cosine table used

in my programs, and Appendices C and D contain material supplementary to the

FLT chapter.
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1
Basic Concepts in

Parallel Computation

In this chapter, we establish a basic notation for presenting and discussing algorithms.

We pay special attention to the case of parallel algorithms where the need to specify

what each processor does at each moment poses an extra di�culty.

1.1. Terminology

The computational methods presented in this thesis can be divided into two

classes:

1. Low level of detail algorithms: close to the mathematical notation; do not

specify data structures.

2. High level of detail algorithms or templates : close to a programming language

notation; make explicit use of data structures.

Low level of detail algorithms (or simply algorithms) will be used to explain ideas and

methods; templates will be used to expose implementation aspects. The templates

given are not necessarily completely optimized; the main objective is to present them

in a clear, easy to understand, way.

Unless stated otherwise, we estimate the theoretical (time) complexity of an algo-

rithm by counting the number of oating point operations (ops) it performs. Regard-

less of its type: addition, multiplication, or division, all ops have the same weight

(equal to one). The op count is summarized into a cost function that depends on

the size of the input and, if applicable, on the number of processors. We designate

the cost functions by a capital C with a subscript that indicates the algorithm. For

example,

C

FFT-2

= C

FFT-2

(N) = 5N log

2

N

1



2 1.2. Bulk synchronous parallel model
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CPU

MEMORY

CPU

MEMORY
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. . .

COMMUNICATION NETWORK

PROCESSOR p-1

Figure 1.1. Schematic representation of a BSP computer.

is the cost of a radix-2 FFT algorithm for an input vector of N complex elements.

Measuring the complexity of an algorithm in ops is convenient because this measure

does not depend on the actual implementation or on the computer being used. Fur-

thermore, a op can be seen as a time unit (de�ned as the time needed to perform

one op). To estimate the execution time (in seconds) of an algorithm on a computer

with speed v op/s we just divide its cost function by v.

1.2. Bulk synchronous parallel model

The bulk synchronous parallel (BSP) model [54] is a parallel programming model

which gives a simple and e�ective way to produce portable parallel algorithms. It does

not depend on a speci�c computer architecture, and it provides a simple cost function

that enables us to choose between algorithms without actually having to implement

them. In the BSP model, a computer consists of a set of p processors, each with its

own memory, connected by a communication network that allows processors to access

the private memories of other processors (see Figure 1.1). Accessing local memory

(the processor's own memory) is faster than accessing remote memory (memory owned

by other processors), but access time is considered to be independent from the com-

puter architecture. In this model, algorithms consist of a sequence of supersteps and

synchronization barriers. The use of supersteps and synchronization barriers imposes

a sequential structure on parallel algorithms, and this greatly simpli�es the design

process.

The variant of the BSP model that we use is a single program multiple data

(SPMD) model, i.e., each one of the p processors executes a copy of the same program,
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though each processor has its own data. The program distinguishes between the

processors through a parameter s (the processor identi�cation number). Special cases

are treated using \if" statements. In our model, a superstep is either a computation

superstep, or a communication superstep. A computation superstep is a sequence of

local computations carried out on data already available locally before the start of the

superstep. A communication superstep consists of communication of data between

processors. To ensure the correct execution of the algorithm, global synchronization

barriers (i.e., places of the algorithm where all processors must synchronize with each

other) precede and/or follow a communication superstep.

Communication between processors is carried out by two types of one sided

communication primitives: put and get. We assume that both procedures are fully

bu�ered [32], which means that all the data to be copied are read into a bu�er before

any write operation is performed:

� In a bu�ered put procedure, a processor copies data from an area of its local

memory into a bu�er, and then, after all copy-to-bu�er operations have been

performed, remotely writes the data into a memory area of another processor.

� In a bu�ered get procedure, a processor causes remote copying of data from

a memory area of another processor into a bu�er, and then, after all copy-to-

bu�er operations have been performed, writes the data into an area of its own

local memory.

The following fragment (to be executed by processors s = 0; 1; 2) exempli�es a commu-

nication superstep containing both gets and puts. Figure 1.2 illustrates the sequence

of events.

1. Synchronize

2. Put a in a of processor (s+ 1) mod 3.

if s = 0 then

for j = 0 to 2 do

Get b from processor j and write it into c

j

.

3. Synchronize

The following rules are basic guidelines on where to use synchronization barriers.

1. A communication superstep containing put procedures must be followed by a

synchronization barrier, so that the transferred data can be used in the next

superstep.

2. A communication superstep containing get procedures must be preceded and

followed by a synchronization barrier. The extra synchronization, before the

superstep, is needed to ensure that the data being fetched is in place.
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Figure 1.2. Schematic representation of a communication super-

step. (A) First the data is copied into a bu�er and then (B) it is

written into the destination.

Using these two rules and ensuring that no two di�erent sources write data into the

same destination memory area ensures a well behaved BSP algorithm.

For further details and some basic techniques, see [9, 32]. The second reference

describes BSPlib, a standard library de�ned in May 1997 which enables parallel pro-

gramming in BSP style. The Paderborn University BSP (PUB) library [12] is another

library that permits programming in BSP style; it provides the extra feature of subset

synchronization.

1.3. Measuring the performance of a parallel algorithm:

the BSP cost function

A BSP computer is characterized by four global parameters which depend on the

speci�c machine being used:

� p, the number of processors;

� v, the computing velocity in op/s;

� g, the communication time per data element sent or received, measured in op

time units;

� l, the synchronization time, also measured in op time units.
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Algorithms can be analyzed by using the parameters p; g, and l. The parameter

v is used to estimate the total execution time after the cost function is computed.

The op count of a computation superstep is simply the maximum amount of work

(in ops) of any processor. The op count of a communication superstep is hg + l or

hg+2l (depending on the number of global synchronizations). Here h is the maximum

number of data elements sent or received by any processor in that superstep. The cost

function of an algorithm is obtained by adding the ops of the separate supersteps.

This yields an expression of the form a + bg + cl. This cost function can be used to

predict the execution time of a BSP algorithm in di�erent parallel computers and to

compare di�erent parallel algorithms.

Scalability is an important concept when analyzing the performance of paral-

lel algorithms. The scalability of a parallel algorithm refers to the performance of

that algorithm as a function of the number of processors p. There are basically two

approaches to the problem:

1. keep the problem size constant and increase the number of processors;

2. increase the problem size as a function of the number of processors.

The �rst approach deals with practical questions such as: \How many processors

should I use to solve a problem of a certain size as fast as possible?" The second

approach, also referred to as isoscalability analysis, deals with the \asymptotic" be-

havior of the algorithm.

A deep analysis of this issue is beyond the scope of this thesis. However, we need

a minimal background to be able to evaluate the quality of our algorithms. To study

the scalability of a parallel algorithm we compare its execution time (or estimated

execution time) with the execution time of a good sequential algorithm that does

the same job. For a fair comparison, one must choose a sequential algorithm that

is practical and performs well on a sequential computer, but is also similar to the

parallel algorithm being tested. For this reason, in this thesis we always compare

optimized sequential and parallel versions of the same basic algorithm.

The absolute speedup of a parallel algorithm is de�ned by

S

abs

(N; p) =

Time(N; seq)

Time(N; p)

; (1.1)

where Time(N; seq) is the execution time of the sequential algorithm for a certain in-

put size N and Time(N; p) is the execution time of the parallel algorithm for the same

size on p processors. When estimating the scalability using the BSP cost function,

Time(N; seq) may be replaced by the cost of the sequential algorithm C

seq

(N) and

Time(N; p) by the cost of the parallel algorithm C

par

(N; p). The absolute e�ciency
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of a parallel algorithm is de�ned by

E

abs

(N; p) =

S

abs

(N; p)

p

: (1.2)

Ideally, Time(N; p) = Time(N; seq)=p, giving S

abs

(N; p) = p and E

abs

(N; p) = 1.

Though in theory superlinear speedups, i.e., S

abs

(N; p) > p, are impossible, in practice

the cache e�ect (or other causes) can lead to superlinear speedups, see Section 2.5 for

a de�nition of cache e�ect and a discussion of superlinear speedups.

Information about the practical scalability of an algorithm can be obtained by

considering its absolute speedup (or absolute e�ciency) as a function of p for a �xed

problem size. In general the absolute speedups will increase with p up to a certain

number of processors p

�

and then they will start to decrease. Our goal when designing

a parallel algorithm is to achieve absolute speedups as close to p as possible (or

absolute e�ciencies as close to 1 as possible) for p as large as possible. An ideal p to run

a certain problem size would be, for example, the largest p for which E

abs

(N; p) � a,

with 0 < a < 1. In the overall picture, a parallel algorithm which scales well is an

algorithm which can maintain high levels of e�ciency

1

for various combinations of

the problem size and the number of processors.

Of course small problems will never scale well on a large number of processors.

For this reason, the notion of isoe�ciency (or isoscalability) can be used to predict

the overall (and asymptotic) behavior of a parallel algorithm. The idea is to predict

how the problem size N depends on p if the e�ciency level is maintained constant,

i.e., in BSP terms,

E

abs

(N; p) =

C

seq

(N)

p � C

par

(N; p)

= a; with 0 < a < 1: (1.3)

Since the parallel algorithms presented in this thesis are perfectly load balanced with

respect to computation and do not contain redundant computations, the computation

cost of our algorithms is C

par;Comp

(N; p) = C

seq

(N)=p, so that (1.3) can be rewritten

as

E

abs

(N; p) = (1 +

p � C

par;Comm

(N; p)

C

seq

(N)

)

�1

= a; (1.4)

where C

par;Comm

(N; p) is the total of both communication and synchronization costs.

De�ning W = C

seq

(N) to be the total amount of work done by the algorithm and

rearranging (1.4) gives

W = b � p � C

par;Comm

(N; p); (1.5)

1

The notion of what are high levels of e�ciency can vary according to the di�culty of the

problem being solved. But, in general, one could de�ne it to be E

abs

(N; p) � 0:5.
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where b = a=(1 � a). Relation (1.5) implicitly de�nes the isoe�ciency function

W = f(p) [34]. In simple cases, this function can be explicitly computed. Other-

wise, we have to be contented with an asymptotic analysis. With this function, it is

possible to compare the level of scalability of two algorithms independently of their

purpose. We do this by classifying them by their asymptotic behavior. An ideal

isoscalable parallel algorithm has W = O(p), which means that a certain e�ciency

level a can be maintained if W grows (at least) linearly with p. We use the term f(p)

isoscalable to designate a parallel algorithm for which W = O(f(p)).

Note that in theory the BSP parameters g and l are constant, but in practice

they may vary with p. This means that the theoretical isoe�ciency function is only

an indicator of the practical isoe�ciency function, which will depend on the spe-

ci�c computer used. In Chapter 2, we give an example by deriving the asymptotic

isoe�ciency function for our parallel FFT algorithm (Section 2.3.5) and comparing

theoretical predictions with experimental data (Section 2.5).

1.4. Data distributions and permutations

In the description of parallel algorithms it is important to specify how to distribute

the elements of the data structures used in the algorithm over the processors. When

distributing a vector of sizeN over p processors, it is often desirable that all processors

receive the same number of elements. Obviously, this only happens if p divides N .

Otherwise, our goal is to minimize the maximum number of elements in a processor.

(This lowest maximum is achieved if the maximum number of elements in a processor

is dN=pe.) Two common data distributions used to achieve this goal are the following.

Let f be a vector of size N .

Definition 1.1 (Block distribution, B(p;N)). We say that f is block distributed

over p processors if, for all j, the element f

j

is stored in processor s = j div b and has

local index j

0

= j mod b, where b = dN=pe is the block size.

Definition 1.2 (Cyclic distribution, C(p;N)). We say that f is cyclically dis-

tributed over p processors if, for all j, the element f

j

is stored in processor s = j mod p

and has local index j

0

= j div p.

The operators \div" and \mod" are the quotient operator and remainder opera-

tor, respectively. To the extent used in this thesis, these two operators are de�ned as

follows.

Definition 1.3 (Quotient and remainder operators). Let j be an integer and m

be a positive integer. Then
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proc. 0
proc. 1

proc. 2

proc. 3

0 4 8 12 16 20 24 28

(A)

(B)

Figure 1.3. (A) Block distribution and (B) cyclic distribution for

a vector of size 32 distributed over 4 processors. The block size b is 8.

1. the quotient operator, div, is de�ned by j divm = b

j

m

c; and

2. the remainder operator, mod, is de�ned by j mod m = j � b

j

m

c �m:

Though we often use brackets for clarity, in our notation we assume the following

precedence order: (1) unary negation; (2) multiplication, division, quotient, and re-

mainder; (3) addition and subtraction. Within the same category, evaluation is from

left to right. This precedence rules are the same as used in the programming language

ANSI C.

2

Figure 1.3 gives an example of both the block and the cyclic distribution. Other,

less trivial distributions can, and should, be used when the usual ones are not suit-

able. This is done, for instance, in Chapter 3 where we introduce the zig-zag cyclic

distribution in connection with the computation of parallel fast cosine transforms.

There are basically two ways of looking at the same data distribution: the logical

view, and the storage view. The logical view emphasizes the logical sequence of the

elements in the vector while the storage view emphasizes the way the elements are

actually stored. For the block distribution, both views are the same. Figure 1.4

illustrates the di�erence between the two views for the case of the cyclic distribution.

Definition 1.4. Let u and N be integers such that u divides N . Then the

(perfect) shu�e permutation �

u;N

is de�ned by

�

u;N

: f0; : : : ; N � 1g ! f0; : : : ; N � 1g

j 7! k = (j mod u) �

N

u

+ j div u:

(1.6)

2

The precedence rules imply the following:

1. �a mod b = (�a) mod b (note that �a mod b = [b� (a mod b)] mod b = (bd� a) mod b, for

any integer d);

2. �a div b = (�a) div b, which di�ers from�(adiv b);

3. a � b div c = (a � b) div c, and a div b � c = (a div b) � c;

4. a div b mod c = (a div b) mod c, and a mod b div c = (a mod b) div c;

5. a � b mod c = (a � b) mod c, and a mod b � c = (a mod b) � c;

6. a+ b mod c = a+ (b mod c), a� b mod c = a� (b mod c), and a mod b+ c = (a mod b) + c.
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proc. 0
proc. 1
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proc. 3
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Figure 1.4. (A) Logical view and (B) storage view for a vector of

size 32 cyclically distributed over 4 processors.

The name `shu�e' comes from card games.

3

The inverse of �

u;N

is �N

u

;N

.

There exists an equivalence between redistributing a vector and permuting it. For

example, if a vector f is permuted by moving each component j into the new position

�

p;N

(j), then the resulting distributed array can be seen as storing the permuted

vector in the block distribution or, alternatively, storing the original vector in the

cyclic distribution.

In general, it is easier to develop and understand the ideas behind a parallel

algorithm by using the terminology of distributions and visualizing the vectors and

other data structures involved in the logical view. But the terminology of distributions

is too vague to be used when writing down a parallel template, since it does not

directly specify where the element with global index j is stored. For this reason, in

a template it is better to use the terminology of permutations (thus, maintaining the

block distribution throughout the template) and visualizing the data structures in the

storage view.

The distribution of other types of data structures such as matrices is done in a

similar way. For example, we could distribute the rows (or columns) of a matrix using

the block (or cyclic) distribution, or we could distribute both rows and columns using

a two dimensional Cartesian distribution as illustrated in Figure 1.5.

1.5. BSP algorithms

Besides specifying the data distribution, the description of a BSP algorithm re-

quires identifying the processors by a unique name and exposing the superstep struc-

ture. In the list that follows we introduce the terminology used in our parallel algo-

rithms.

� Processor identi�cation. The total number of processors is p. The processor

identi�cation number is s, with 0 � s < p.

3

Suppose that you want to permute a vector by �

u;N

. A nice mental picture for remembering

this permutation is to imagine that each element of the vector to be permuted is a card, and that you

need to cyclically redistribute those cards between u players. You reserve a fraction of

N

u

consecutive

spaces of the vector for each player, and then redistribute the elements as if cyclically dealing the

cards between the u players.
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proc. 0

proc. 1

proc. 2

proc. 3

proc. 4

proc. 5

0 3 1296

0

2

4

6

8

Figure 1.5. Two-dimensional Cartesian distribution over 2�3 pro-

cessors (logical view). The rows of the matrix are cyclically dis-

tributed over 2 processor groups. In each row, the elements are cycli-

cally distributed over the 3 processors of its group.

� Supersteps. Each superstep is numbered textually and labeled according

to its type: (Comp) computation superstep, (Comm) communication superstep,

(CpCm) subroutine containing both computation and communication super-

steps. Global synchronizations are explicitly indicated by the keyword Syn-

chronize. Supersteps inside loops are executed repeatedly, though they are

numbered only once.

� Indexing. All the indices of vectors or array structures are global. This means

that array elements have a unique index which is independent of the processor

that owns it. This property enables us to describe variables and gain access to

arrays in an unambiguous manner, even though the array is distributed and

each processor has only part of it. (In an actual implementation, it is more

convenient to convert the indexing scheme to a local one.)

� Data distributions. When explaining ideas or describing parallel algorithms,

we use the terminology of distributions. When describing parallel templates,

we use the terminology of permutations so that the global indices of the data

structures always refer to a block distribution.

� Communication. Communication between processors is indicated using

g

j

 Put(pid; n; f

i

)

and

f

i

 Get(pid; n;g

j

)

The �rst operation puts n elements of array f , starting from element i, into

processor pid and stores them there in array g starting from element j. The

second operation gets n elements of array g starting from element j from
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processor pid and stores them locally in vector f starting from element i.

Subscripts are not needed when the �rst element of the array is 0 or when

communicating scalars. When communicating more than one element, we use

boldface to emphasize that we are dealing with a vector and not with a scalar.

1.6. Implementation issues

In the BSP model, as with any other model, the transition from theory to practice

can bring up additional issues. When implementing a BSP algorithm, it is good

practice to exploit the possibilities of sending data in large packets and of using

unbu�ered communication instead of bu�ered communication.

In the BSP model, the cost of a communication superstep is determined by the

maximum amount of data sent or received by a processor. This de�nition implies

that a code that communicates data in small packets, e.g.,

for j = 0 to n� k step k do

g

i+j

 Put(pid; k; f

j

)

has the same cost as a code that communicates larger packets,

g

i

 Put(pid; n; f)

In an actual implementation, this assumption may not be true. Depending on the

BSP implementation and on the computer being used, the overhead of sending the

corresponding address information together with the actual data is signi�cant for

small k. Figure 1.6 shows an example of the inuence of packet size using the Oxford

BSPlib library

4

on a Cray T3E. The communication time per word drops from � 1:70

�s/word to � 0:19 �s/word when k increases from 1 to 10, and continues dropping,

though less intensively (to � 0:08 �s/word for p = 64, or to � 0:03 �s/word for p = 4),

for k up to 500. For this reason, implementations that communicate data using large

packets are, in general, much faster than implementations that communicate single

elements. In cases where the data to be sent is non-contiguous, but still regular, the

extra e�ort of packing the data before sending them, and unpacking the data after

receiving them generally pays o�. In the irregular case, where address information

must be sent togheter with the data, this is not true.

The use of bu�ered communication is not always necessary to guarantee the

correctness of an algorithm. For example, no bu�er is needed if a processor wants

to read data from a memory area and it knows that this area will not be modi�ed

4

Freely available at http://www.bsp-worldwide/implements/oxtool
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Figure 1.6. Inuence of packet size when using the Oxford BSPlib

library on a Cray T3E. The total message size is maintained at 10000

while the packet size is increased from k = 1 to 5000. Times measured

using bsp hpputs.

by any other processor in the same superstep. In such a case, the use of unbu�ered

communication is always cheaper, since bu�ered communication implies an intrinsic

overhead: extra memory space is needed and extra time is required to copy the data

to the bu�er.

Unbu�ered communication is naturally connected to the use of packing (or un-

packing) operations. Generally speaking, packing (or unpacking) an array cannot be

done in place, thus it requires an auxiliary array. The same auxiliary array can be

used in writing a program that uses unbu�ered communication.

Since the two aspects discussed above can signi�cantly a�ect an implementation,

whenever appropriate, we discuss methods of sending data in packets. We also write

our templates in a style that permits unbu�ered communication, whenever this does

not compromise the clarity of the resulting template.



2

Fast Fourier

Transform

2.1. Introduction

The discrete Fourier transform (DFT) plays an important role in computational

science. DFT applications ranges from solving numerical di�erential equations to

signal processing. (For an introduction to DFT applications see e.g. [13, 19].) The

widespread use of DFTs in computational science is mainly due to the existence of

fast algorithms, known by the general name of fast Fourier transform (FFT), which

compute the DFT of an input vector of size N in O(N logN) operations instead of the

O(N

2

) operations needed by a direct approach, i.e., by a matrix-vector multiplication.

In 1965, Cooley and Tukey [16] published a paper describing the FFT idea (giving

special attention to the so called Radix-2 FFT ). Since then, many variants of the

algorithm have appeared. For an extensive discussion of the family of FFT algorithms,

see Van Loan [55]. In recent years, after the dawn of parallel computing, the originally

sequential FFT algorithms have been modi�ed and adapted to the needs of parallel

computation (see e.g. [4, 5, 15, 23, 25, 26, 31, 34, 36, 50]).

The lack of a uni�ed parallel computing model and the existence of many di�erent

parallel architectures has made it rather di�cult to develop e�cient and portable

parallel FFTs. Recently, however, as the parallel programming environments have

become less machine dependent, examples of such algorithms have appeared. Typical

examples are the 6-pass (or 6-step) approach (see, e.g., [4, 26, 31]) and the transpose

approach [25, 34]. Those algorithms regard the input vector of size N = N

0

N

1

as

an N

0

� N

1

matrix, and carry out the computations in a similar way as done for

13
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two-dimensional FFTs. Since those algorithms require the number of processors p to

be a divisor of N

0

and N

1

, they can only be used if p �

p

N .

As the number of available processors grows and the communication speed in-

creases, it is important to develop parallel algorithms that can handle more than

p

N processors. Though generalized algorithms have already been proposed, they

only work for very speci�c combinations of N and p such as p = N

(m�1)=m

=k, where

1 � k �

p

N [34, Chap. 10.3] or N = (N=p)

k

[36], and both N and p are powers of

two. Furthermore, to our knowledge none of those algorithms were implemented.

Our main aim in this chapter is to present a new parallel FFT algorithm and

its implementation. Our parallel algorithm works for any p < N as long as both are

powers of two (which is required because of the radix-2 framework). We dedicate

the remainder of this section to giving a brief introduction to the basic framework of

radix-2 and radix-4 FFTs. In Section 2.2, we derive our parallel FFT algorithm by

inserting suitable permutation matrices into the basic radix-2 decomposition of the

Fourier matrix. This approach leads to a simple and easy to implement distributed

memory parallel FFT algorithm. In Section 2.3, we present a set of templates that

are used in the implementation of the algorithm. In Section 2.4, we present variants

of our FFT algorithm. We show how to modify the algorithm to accept vectors that

are not in the block distribution. We also show how to obtain a cache-friendly version

of our algorithm, that is, an algorithm that takes advantage of the cache memory of

a computer (i.e. a small but very fast memory) by breaking up the computations

into small sections in such a way that the data stored in the cache is completely

used before new data is brought in. In Section 2.5, we present results regarding the

performance of our implementation and discuss aspects such as the cache e�ect. In

Section 2.6, we discuss the 6-pass approach and the transpose approach as alternative

approaches for the case that N is not a power of two. We also introduce the parallel

mixed-radix FFT algorithm, which can be seen as a generalized 6-pass algorithm. We

believe that our algorithm, which is based on the work of Agarwal and Cooley [1] for

vector processors, is most promising, since it can compute FFTs of any combination

of p and N = N

0

N

1

: : : N

H�1

as long p divides each N=N

l

and sequential FFTs of

size N

l

are available. We conclude the chapter with Section 2.7.

2.1.1. Background. The DFT of a complex vector z of size N is de�ned as the

complex vector Z, also of size N , with components

Z

k

=

N�1

X

j=0

z

j

e

2�ijk

N

; 0 � k < N: (2.1)
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The inverse DFT, which transforms the complex vector Z back into the vector z, is

then de�ned by

z

j

=

1

N

N�1

X

k=0

Z

k

e

�

2�ijk

N

; 0 � k < N: (2.2)

Alternatively, the DFT can be seen as a matrix-vector multiplication:

Z = F

N

� z: (2.3)

The complex matrix F

N

is known as the N � N Fourier matrix; it has elements

(F

N

)

jk

= w

j

k

, where

w

k

= e

2�i

k

: (2.4)

Note that

F

�1

N

=

1

N

�

F

N

: (2.5)

Though it is possible to develop FFT algorithms that compute the DFT of a vector

of arbitrary size, the radix-2 FFT algorithm only works for N 's that are powers of

two. For simplicity, we will restrict our discussion to such values of N . The sequential

iterative radix-2 FFT algorithm starts with the so-called bit reversal permutation of

the input vector (see Section 2.3.2), and proceeds in log

2

N buttery stages, numbered

K = 2; 4; : : : ; N , which modify the vector. Each buttery stage consists of N=K times

a buttery computation:

 

z

t+j

z

t+j+K=2

!

 

 

z

t+j

+ w

j

K

� z

t+j+K=2

z

t+j

� w

j

K

� z

t+j+K=2

!

; for j = 0; 1; : : : ;K=2� 1, (2.6)

where t = 0;K; : : : ; N �K indicates the beginning of a buttery block in the vector.

These operations cost one complex multiplication and two additions, or 10 real ops,

per pair. The total op count of the radix-2 FFT is therefore

C

FFT-2

(N) = 10 �

K

2

�

N

K

� log

2

N = 5N log

2

N:

Algorithm 2.1 is an in-place version of this algorithm.

Following van Loan's matrix approach [55], Algorithm 2.1 can be described as

a sequence of sparse matrix-vector multiplications which correspond to the following

decomposition of the Fourier matrix

1

F

N

= A

N;N

� � �A

8;N

A

4;N

A

2;N

P

N

; (2.7)

1

Actually, the matrix decomposition corresponding to the algorithm of Cooley and Tukey [16]

is F

N

= P

N

~

A

N;N

� � �

~

A

8;N

~

A

4;N

~

A

2;N

; where

~

A

K;N

= P

�1

N

A

K;N

P

N

.
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Algorithm 2.1 Sequential radix-2 FFT algorithm.

CALL Seq CFFT(N;y).

ARGUMENTS

N : Vector size; N is a power of 2 with N � 2.

y = (y

in

0

; : : : ; y

in

N�1

): Complex vector of size N .

OUTPUT y (y

out

0

; : : : ; y

out

N�1

), where y

out

k

=

P

N�1

j=0

y

in

j

exp(2�ikj=N).

DESCRIPTION

1. Perform a bit reversal on y.

2. Perform log

2

N buttery stages A

K;N

on y.

K  2

while K � N do

for t = 0 to N �K step K do

for j = 0 to K=2� 1 do

a w

j

K

� y

t+j+K=2

y

t+j+K=2

 y

t+j

� a

y

t+j

 y

t+j

+ a

K  2 �K

where P

N

is an N �N permutation matrix corresponding to the bit reversal permu-

tation (step 1 of Algorithm 2.1), and the N � N matrices A

K;N

correspond to the

buttery stages (step 2 of Algorithm 2.1). The block structure of the buttery stages

leads to block-diagonal matrices of the form

A

K;N

= I

N=K


B

K

; (2.8)

which is shorthand for a block-diagonal matrix diag(B

K

; : : : ; B

K

) with N=K copies

of the K �K matrix B

K

on the diagonal. The symbol 
 represents the direct (or

Kronecker) product of two matrices, which is formally de�ned at the end of this sub-

section. The matrix B

K

is known as the K�K 2-buttery matrix which corresponds

to the buttery computation (2.6). This matrix can be written as

B

K

=

"

I

K=2




K=2

I

K=2

�


K=2

#

: (2.9)

Here, the matrix I

K=2

is the K=2�K=2 identity matrix and 


K=2

is the K=2�K=2

diagonal matrix




K=2

= diag(w

0

K

; w

1

K

; : : : ; w

K=2�1

K

): (2.10)

Later on we will also need generalized versions of A

K;N

:

A

�

K;N

= I

N=K


B

�

K

; (2.11)
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where B

�

K

is the generalized 2-buttery matrix [5, 11, 18]

B

�

K

=

"

I

K=2




�

K=2

I

K=2

�


�

K=2

#

; (2.12)

which has the same form as the original B

k

, but the weights w

j

k

in (2.10) are replaced

by w

j+�

k

, where � can be any real number.

In practice, often a radix-4 FFT is used. A radix-4 algorithm can be derived com-

pletely analogously to the radix-2 algorithm, yielding a similar matrix decomposition.

The algorithm starts with a reversal of pairs of bits instead of a reversal of single

bits, and proceeds in log

4

N 4-butteries stages which involve quadruples of vector

components instead of pairs. Since 34 ops are performed per quadruple, this brings

the op count down to

C

FFT-4

(N) = 34 �

K

4

�

N

K

� log

4

N = 4:25N log

2

N:

The resulting algorithm has the disadvantage that either it must be assumed that N is

a power of four, or special precautions must be taken which complicate the algorithm.

We take a slightly di�erent approach: wherever possible we take pairs of stages

A

K;N

A

K=2;N

together and perform them as one operation. Our K � K 4-buttery

matrix has the form

D

K

= B

K

(I

2


B

K=2

) =

2

6

6

6

6

4

I

K=4

�

2

K=4

�

K=4

�

3

K=4

I

K=4

��

2

K=4

i�

K=4

�i�

3

K=4

I

K=4

�

2

K=4

��

K=4

��

3

K=4

I

K=4

��

2

K=4

�i�

K=4

i�

3

K=4

3

7

7

7

7

5

; (2.13)

where �

K=4

is the K=4�K=4 diagonal matrix

�

K=4

= diag(w

0

K

; w

1

K

; : : : ; w

K=4�1

K

): (2.14)

This matrix is a symmetrically permuted version of the radix-4 buttery matrix [55].

2

This approach gives the e�ciency of a radix-4 FFT algorithm, and the exibility of

treating a parallel FFT within the radix-2 framework. For example, if we wish to

permute the data sometime during the computation, for reasons of data locality, this

can happen after any stage, and not only after an even number of stages.

The property (2.5) is often used to obtain an algorithm for the inverse FFT:

F

�1

N

=

1

N

�

F

N

=

�

A

N;N

� � �

�

A

4;N

�

A

2;N

P

N

: (2.15)

2

In verifying this, note that van Loan de�nes the weights to be w

K

= exp(�

2�i

K

).
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The backward algorithm is basically the same as the forward one, the only di�erence

being that the powers of w

K

are replaced by their conjugates and that the �nal result

must be rescaled.

Since F

T

N

= F

N

, it is also possible to compute the FFT and its inverse using a

transposed algorithm:

F

N

= P

N

A

T

2;N

A

T

4;N

� � �A

T

N;N

; (2.16)

and

F

�1

N

=

1

N

�

F

T

N

=

1

N

P

N

�

A

T

2;N

�

A

T

4;N

� � �

�

A

T

N;N

: (2.17)

FFT algorithms obtained using (2.16) and (2.17) are commonly classi�ed as decima-

tion in frequency (DIF) FFTs, whereas algorithms obtained using (2.7) and (2.15) are

classi�ed as decimation in time (DIT) FFTs. These names come from applications in

signal processing. See e.g. [55, Chap 1.9.4] for more details.

To �nish this subsection we de�ne the direct product of two matrices and give

some properties that will be used in the course of the chapter.

Definition 2.1 (Direct product). Let A be a q � r matrix and B be an m � n

matrix. Then the direct product (or Kronecker product) of A and B is the qm � rn

matrix de�ned by

A
B =

2

6

6

4

a

0;0

B � � � a

0;r�1

B

.

.

.

.

.

.

.

.

.

a

q�1;0

B � � � a

q�1;r�1

B

3

7

7

5

:

As one would expect, the direct product is associative, but it is not commutative.

Lemma 2.2 summarizes some direct product properties that follow directly from the

de�nition. (See [43, 55] for other useful properties).

Lemma 2.2 (Properties of the direct product). The following holds.

1. (A
B)(C 
D) = (AC) 
 (BD), as long as the products are de�ned.

2. (I

m


 I

n

) = I

mn

.

3. If A and B are square matrices of order m and n, respectively,

then (A
 I

n

)(I

m


B) = (A
B) = (I

m


B)(A
 I

n

).

4. If A and B are square matrices of order n such that AB = BA,

then (I

m


A)(I

m


B) = (I

m


B)(I

m


A).

2.1.2. Brief introduction to parallel radix-2 FFTs. Since the introduction

of parallel computers, and even before that, methods for parallelizing FFT algorithms

have been proposed. The earliest methods produced parallel algorithms that, using p

processors, carry out an FFT of size N in O(log p) computation supersteps, which are
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interleaved by O(log p) communication supersteps that need to communicate O(

N

p

)

data elements (see e.g. [15, 23, 50], [34, Chap. 10.2]). Such methods appeared as a

direct consequence of the divide and conquer structure of the radix-2 FFT algorithm.

The paper [15] by Chu and George discusses several existing parallel algorithms of this

type including three variants of their own. Restricting the discussion to the DIF FFT

class and vector sizes that are powers of two, they present a common framework in

which all the algorithms they discuss are reorderings from one another in the following

sense.

Each buttery stage K of an FFT of size N , performs pairwise operations that

combine elements j and j +K=2 from the vector being transformed using the weight

w

jmodK

K

. Writing j in its binary representation j = (j

m�1

; : : : ; j

0

)

2

, where m =

log

2

N , we observe that elements j and j +K=2 di�er only in bit log

2

K � 1 and that

w

jmodK

K

= w

(j

log

2

K�1

;:::;j

0

)

2

K

. If the ordering of the vector is changed, so that original

element j is stored as element l, the buttery stages must be modi�ed to carry out

the same operations. Since we can represent the new ordering using a permutation

of the original bits, it is easy to know which elements to combine and what weights

to use. For example, if N = 16 a possible reordering of the input vector could be

l = (j

0

; j

2

; j

1

; j

3

)

2

, where j = (j

3

; j

2

; j

1

; j

0

)

2

. The buttery stage corresponding to

K = 16 should then combine elements l = (j

0

; j

2

; j

1

; 0)

2

with l + 1 = (j

0

; j

2

; j

1

; 1)

2

using weights w

(j

2

;j

1

;j

0

)

2

16

.

In the parallel scenario, any group of log

2

p bits can be used to represent the

processor number, while the remaining log

2

(N=p) bits are used to represent the local

index. If the bit corresponding to the next buttery stage is one of the log

2

(N=p)

bits that represent the local index, then the next buttery stage is local, otherwise

communication is needed.

Swarztrauber [50] carries out a similar discussion. He starts with a more general

formulation of the problem, where N is not restricted to powers of two and both DIF

and DIT FFTs are discussed, but when discussing the distributed memory framework,

he only considers FFTs on a hypercube, restricting both p and N to powers of two.

The problem of the algorithms discussed in [15, 23, 50] and [34, Chap. 10.2] is that

reorderings are carried out by means of exchanging one bit at a time. Since there are

log

2

p bits in the processor part, log

2

p communication supersteps of size O(

N

p

g + l)

are needed. A less expensive solution to the problem is to exchange all the processor

bits with a group of local bits corresponding to buttery stages that were already

performed. Since the communication cost of the permutation that exchanges many

bits is the same as for exchanging one bit, the reduction in the communication cost

is huge.
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The basic idea for such algorithms already appears in the original Cooley and

Tukey paper [16]. In their derivation of the FFT algorithm, they start by considering

the case where N can be decomposed as N = N

0

N

1

, and rewrite (2.1) as

Z

k

1

;k

0

=

N

1

�1

X

j

1

=0

0

@

N

0

�1

X

j

0

=0

z

j

0

;j

1

w

j

0

k

0

N

1

N

1

A

w

j

1

(k

1

N

0

+k

0

)

N

; 0 � k

1

< N

1

; 0 � k

0

< N

0

;

(2.18)

where Z

k

1

;k

0

= Z

k

1

N

0

+k

0

= Z

k

, and z

j

0

;j

1

= z

j

0

N

1

+j

1

= z

j

. Since w

j

0

k

0

N

1

N

= w

j

0

k

0

N

0

,

the inner sum of (2.18) corresponds to a DFT of size N

0

, which can be computed

by the same process as before if N

0

is not prime. They remark that this process

can be applied to any possible factorization of N , N = N

0

: : : N

H�1

and that, if N

is composite enough, real gains (over the O(N

2

) direct approach) can be achieved.

Afterwards they derive the radix-2 algorithm by choosing N to be a power of two. If

instead of decomposing N into its prime factors, we stop at a higher level, we obtain a

decomposition for the FFT into a sequence of shorter FFTs that, in the parallel case,

can be spread out over the processors. This is what happens in our FFT algorithm

presented in the next section and in the algorithms discussed in Section 2.6.

2.2. The parallel algorithm

2.2.1. Basic idea. Since our parallel FFT algorithm is based on the radix-2

decomposition (2.7) of the Fourier matrix, N must be a power of two. For practical

reasons N=p must be integer and therefore p must also be power of two.

Suppose, for simplicity, that p �

p

N (in other words, p � N=p). In this case,

our parallel FFT algorithm has two phases: in phase 0, it uses the block distribution

to perform the �rst log

2

(N=p) stages, i.e., those involving butteries with K � N=p

(which we call short distance butteries), and in phase 1, it uses the cyclic distribution

to perform the remaining log

2

p stages, i.e., those involving butteries with K > N=p

(the long distance butteries).

The general case, where p can be larger than

p

N , is a simple extension of the

previous case. A total of H = dlog

2

(N)= log

2

(N=p)e = dlogN

p

Ne phases is performed.

(The number of phases H is the largest integer for which (N=p)

H�1

� N .) In phase

0, the short distance butteries are performed in the block distribution. Afterwards,

in each intermediate phase 1 � J < H � 1 a group of log

2

(N=p) buttery stages

(the medium distance butteries) is performed in the cyclic distribution restricted to

a subgroup of processors of size (N=p)

J

. Note that, if p � N=p, then logN

p

H � 2,

which means that no intermediate phase is performed. Finally, in phase H � 1,
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the remaining long distance butteries are performed in the cyclic distribution over p

processors. The distributions mentioned above are de�ned in the following subsection.

Our algorithm has only O(logN= log p) communication supersteps of size

O(

N

p

g + l) which is a signi�cant improvement over the O(log p) communication su-

persteps also of size O(

N

p

g + l) of the algorithms discussed in the previous section.

McColl [36] outlined a parallel FFT algorithm which is a special case of the FFT

algorithm we present here. His algorithm only works for N = (N=p)

H

. Furthermore,

his algorithm sends the indices corresponding to the weights together with the data

vector, increasing the communication costs unnecessarily.

2.2.2. Group-cyclic distribution family.

Definition 2.3 (Cyclic distribution in r groups, C

r

(p;N)). Let r, p, and N be

integers with 1 � r � p � N , such that r divides both p and N . Let f be a vector of

size N to be distributed over p processors organized in r groups. De�ne M = N=r to

be the size of the subvector of a group and u = p=r to be the number of processors in

a group. We say that f is cyclically distributed in r groups (or r-cyclically distributed)

over p processors if, for all j, the element f

j

has local index j

0

= (j mod M) divu,

and is stored in processor s

0

+ s

1

, where s

0

= (j divM) � u is the number of the �rst

processor in the group (i.e., the processor o�set) and s

1

= (j mod M) mod u is the

processor identi�cation within the group.

We use the name group-cyclic distribution family to designate all the r-cyclic

distributions generated by the same N and p. This family includes both the cyclic and

the block distribution as extreme cases, C(p;N) = C

1

(p;N) and B(p;N) = C

p

(p;N).

Figure 2.1 illustrates the use of the group-cyclic distribution family in a parallel FFT.

Let u, v, and N be integers such that u divides v and v divides N . We de�ne the

following permutation:



u;v;N

: f0; : : : ; N � 1g ! f0; : : : ; N � 1g

j = j

0

�M + j

1

� u+ j

2

7! l = j

0

�M + j

2

�

N

v

+ j

1

;

(2.19)

where M =

N

v

u, j

0

= j divM , j

1

= (j modM) div u, and j

2

= j mod u. Note that



�1

u;v;N

= N

v

;

N

u

;N

and that 

1;v;N

= 

N;N;N

is the identity permutation. Permutations

 and � are closely related, cf. (1.6). Permuting a vector of size N by 

u;v;N

can be

achieved by dividing the vector into r = v=u subvectors of size M = N=r, then

performing a shu�e permutation �

u;M

on each of the subvectors. This relation is

expressed by



u;v;N

(j) = j divM �M + �

u;M

(j modM); (2.20)
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(B) Phase 0: Short distance butterflies
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.

Figure 2.1. Buttery operations using the group-cyclic distribution

family C

r

(p;N) = C

r

(8; 32). (A) Logical view, (B) storage view.

The short distance butteries (A

2;32

and A

4;32

) are performed using

the C

8

(8; 32) distribution (block distribution). The medium distance

butteries (A

8;32

and A

16;32

) are performed using the C

2

(8; 32) dis-

tribution. The long distance butteries (A

32;32

) are performed using

the C

1

(8; 32) distribution (cyclic distribution). For clarity, not all

buttery pairs are shown.

which implies that 

u;u;N

= �

u;N

.

In the case that p divides N , redistributing a vector of size N from block dis-

tribution to r-cyclic distribution over p processors is equivalent to permuting it by



u;p;N

, where u = p=r. Using matrix notation, this permutation is expressed by the

N �N permutation matrix:

(�

u;p;N

)

lj

=

8

<

:

1; if l = 

u;p;N

(j);

0; otherwise:

(2.21)
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Multiplying a vector y by �

u;p;N

results in a vector with components (�

u;p;N

y)

l

=

y



�1

u;p;N

(l)

, for all l; in other words, this multiplication corresponds to redistributing the

vector from block distribution to cyclic distribution in r = p=u groups. The matrix

corresponding to the inverse permutation 

�1

u;p;N

is �

�1

u;p;N

= �

T

u;p;N

= �N

p

;

N

u

;N

. From

now on, we use the abbreviations �

u

and 

u

to denote �

u;p;N

and 

u;p;N

, respectively.

We restrict the use of subscripts p and N to cases where they are not obvious from

the context. We also use S

u;M

to denote �

u;u;M

. Note that �

u;p;N

= (I

r


 S

u;

N

p

u

),

cf. (2.20).

2.2.3. Fourier matrix decomposition. To obtain the parallel FFT template,

we modify the original radix-2 decomposition of the Fourier matrix (2.7) by inserting

identity permutation matrices I

N

= �

�1

u;p;N

�

u;p;N

= �

�1

u

�

u

corresponding to the

changes of distribution, and regrouping the matrices in the resulting decomposition.

In the case that p <

p

N this is done as follows:

F

N

= �

�1

p

�

p

� A

N;N

� �

�1

p

�

p

� � ��

�1

p

�

p

� A

2

N

p

;N

� �

�1

p

�

p

�AN

p

;N

: : : A

2;N

P

N

= �

�1

p

� �

p

A

N;N

�

�1

p

� �

p

� � ��

�1

p

� �

p

A

2

N

p

;N

�

�1

p

� �

p

�AN

p

;N

: : : A

2;N

P

N

:

(2.22)

Since �

1

is the identity permutation, by de�ning

^

A

k;u;p;N

= �

u;p;N

A

ku;N

�

�1

u;p;N

; (2.23)

we can rewrite (2.22) as

F

N

= �

�1

p

�

^

AN

p

;p;p;N

� � �

^

A

2

N

p

2

;p;p;N

| {z }

phase 1

��

p

�

�1

1

�

^

AN

p

;1;p;N

� � �

^

A

2;1;p;N

| {z }

phase 0

��

1

P

N

: (2.24)

As we did with the permutations , from now on we denote

^

A

k;u;p;N

by

^

A

k;u

, reserving

the indices p and N for when they are not obvious from the context. Following the

same procedure as above, in the general case, we arrive to the following decomposition

of the Fourier matrix:

F

N

= �

�1

p

^

AN

p

;p

: : :

^

A

2

(N=p)

H�1

p

;p

| {z }

phaseH�1

�

p

��

�1

(

N

p

)

H�2

^

AN

p

;(

N

p

)

H�2

: : :

^

A

2;(

N

p

)

H�2

| {z }

phaseH�2

�

(

N

p

)

H�2

� : : :

: : : � �

�1

N

p

^

AN

p

;

N

p

: : :

^

A

2;

N

p

| {z }

phase 1

�N

p

� �

�1

1

^

AN

p

;1

: : :

^

A

2;1

| {z }

phase 0

�

1

� P

N

: (2.25)

Matrices

^

A

k;u

are block diagonal matrices with block size

N

p

:

^

A

k;u;p;N

= I

r


 diag(A

0=u

k;n

; A

1=u

k;n

; : : : ; A

(u�1)=u

k;n

); (2.26)
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where r = p=u, n = N=p, and A

�

k;n

was de�ned previously, cf. (2.11). We shall

formally state this as Corollary 2.6 which follows from Theorem 2.5. The proof of

Theorem 2.5 uses the following lemma.

Lemma 2.4. Let u,M , and k be powers of two such that u �M and 2 � k �M=u.

De�ne K = ku. Let j be an index, 0 � j < M . Then

1. If j mod K < K=2, then �

u;M

(j) mod k < k=2.

2. If j +K=2 < M , then �

u;M

(j +K=2) = �

u;M

(j) + k=2.

3. If j

1

= j mod

M

u

, and j

0

= j div

M

u

, then

�

�1

u;M

(j) mod K

K

=

j

1

mod k + j

0

=u

k

:

Proof. Part 1: �

u;M

(j) mod k = (j mod u�

M

u

+j div u) mod k = (j div u) mod k.

Now, j div u = (j divK � K + j mod K) div u = j divK � k + (j mod K) divu: As a

consequence �

u;M

(j) mod k = (j mod K) div u < (K=2) div u = k=2.

Part 2: �

u;M

(j+K=2) = (j+K=2) mod u �

M

u

+(j+K=2) divu = j mod u �

M

u

+

j div u+ k=2 = �

u;M

(j) + k=2:

Part 3: �

�1

u;M

(j) mod K = (j mod

M

u

� u+ j div

M

u

) mod K = (j

1

� u+ j

0

) mod K

= (j

1

div k � K + j

1

mod k � u + j

0

) mod K = j

1

mod k � u + j

0

; which gives

(�

�1

u;M

(j) mod K)=K = (j

1

mod k � u+ j

0

)=K = (j

1

mod k + j

0

=u)=k:

Theorem 2.5. Let u,M , and k be powers of two such that u �M and 2 � k �M=u.

De�ne K = ku and n =M=u. Then

S

u;M

A

K;M

S

�1

u;M

= diag(A

0=u

k;n

; A

1=u

k;n

; : : : ; A

(u�1)=u

k;n

):

Proof. To prove the theorem, it is su�cient to prove that

S

u;M

A

K;M

S

�1

u;M

y = diag(A

0=u

k;n

; : : : ; A

(u�1)=u

k;n

)y; for all y:

First note that the vector A

K;M

x can be described by

8

<

:

(A

K;M

x)

j

= x

j

+ w

jmodK

K

x

j+K=2

;

(A

K;M

x)

j+K=2

= x

j

� w

jmodK

K

x

j+K=2

; 0 � j mod K < K=2:

(2.27)

Let x = S

�1

u;M

y and S

u;M

(A

K;M

x) = z, and substitute x

j

= y

�

u;M

(j)

and z

�

u;M

(j)

=

(A

K;M

x)

j

in (2.27). This gives

8

<

:

z

�

u;M

(j)

= y

�

u;M

(j)

+ w

jmodK

K

y

�

u;M

(j+K=2)

;

z

�

u;M

(j+K=2)

= y

�

u;M

(j)

� w

jmodK

K

y

�

u;M

(j+K=2)

; 0 � j mod K < K=2:

(2.28)
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De�ning l = �

u;M

(j) and applying Lemma 2.4 to j gives the following. Part 1 of

Lemma 2.4 says that, if j mod K < K=2 then l mod k < k=2. Furthermore, by Part 2,

�

u;M

(j+K=2) = l+k=2. Finally, applying Part 3 to l gives w

jmodK

K

= w

�

�1

u;M

(l)modK

K

=

w

u(l

0

modk)+s

1

K

= w

l

0

modk+s

1

=u

k

; where l

0

= l mod

M

u

and s

1

= l div

M

u

.

Substituting the above results in (2.28) gives the following description of vector

z = S

u;M

A

K;M

S

�1

u;M

y:

8

<

:

z

l

= y

l

+ w

l

0

modk+s

1

=u

k

y

l+k=2

;

z

l+k=2

= y

l

� w

l

0

modk+s

1

=u

k

y

l+k=2

; 0 � l mod k < k=2:

(2.29)

Writing the index l = s

1

� n + (l

0

div k) � k + l

0

mod k, it is easy to see that z

l

=

(diag(A

0=u

k;n

; A

1=u

k;n

; : : : ; A

(u�1)=u

k;n

) � y)

l

, proving the theorem. (See Figure 2.2B.)

Corollary 2.6. Let r, p, and N be powers of two with 1 � r � p < N . De�ne

u = p=r and n = N=p. Let k be a power of two with 2 � k � n. Then

^

A

k;u;p;N

= I

r


 diag(A

0=u

k;n

; A

1=u

k;n

; : : : ; A

(u�1)=u

k;n

):

Proof. De�ne K = ku and M = N=r. Then

^

A

k;u;p;N

= �

u;p;N

A

K;N

�

�1

u;p;N

= (I

r


 S

u;M

)(I

r


A

K;M

)(I

r


 S

�1

u;M

)

= I

r


 (S

u;M

A

K;M

S

�1

u;M

) = I

r


 diag(A

0=u

k;n

; A

1=u

k;n

; : : : ; A

(u�1)=u

k;n

):

Starting from the Fourier matrix decomposition (2.25), it is easy to develop a

parallel (BSP) FFT algorithm. Since all the matrices

^

A

k;u

are block diagonal matri-

ces with block size equal to N=p, any multiplication

^

A

k;u

� y can be handled locally,

provided that the vector y is in the block distribution. This property guarantees

that matrix decomposition (2.25) detaches communication and computation com-

pletely. On the one hand, each generalized buttery phase (

^

AN

p

;u

: : :

^

A

2;u

) � y, is a

strict computation superstep. On the other hand, each permutation �

u

is a strict

communication superstep. In the next section we give a complete description of the

resulting parallel algorithm.

2.3. Implementation of the parallel algorithm

Algorithm 2.2 is a direct implementation of the matrix decomposition (2.25).

The input vector y is transformed in place. Superstep 1 permutes the input vector

by a bit reversal: y  P

N

� y: Superstep 2 carries out the short distance butteries:

y  (AN

p

;N

: : : A

2;N

) � y. (Since 

1

is the identity permutation,

^

A

k;1

= A

k;N

, for

k = 2; : : : ; N=p.) Superstep 3 permutes y to the r-cyclic distribution, with r =
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Figure 2.2. (A) Structure of the N � N matrix

^

A

k;u

= I

r




diag(A

0=u

k;n

; A

1=u

k;n

; : : : ; A

(u�1)=u

k;n

). Example with N = 128, p = 8,

r = 2, k = 8, and hence u = 4, K = 32, and n = 16. (For clarity, the

A

�

k;n

are depicted as A

�

k

) (B) Matrix diag(A

0=u

k;n

; A

1=u

k;n

; : : : ; A

(u�1)=u

k;n

).

Note that s

1

is constant in each block A

s

1

=u

k;n

and l

0

div k is constant

in each block B

s

1

=u

k

. (C) Matrices B

s

1

=u

k

, with s

1

= 0; : : : ; u�1. The

values s

1

and l

0

mod k determine the exponent of the weights

w

l

0

modk+s

1

=u

k

.

max(1; p=(N=p)): y  �

p=r

� y: Each time superstep 4 is executed, it computes a

group of medium distance butteries: y (

^

AN

p

;(

N

p

)

J

: : :

^

A

2;(

N

p

)

J

) � y; 1 � J � H � 2:

Superstep 5 prepares the vector for the next buttery phase by permuting it to the

r-cyclic distribution, with r = max(1; p=(N=p)

J+1

): y  (�

p

r

�

�1

(

N

p

)

J

) � y: Superstep 6
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Algorithm 2.2 Template for the parallel fast Fourier transform, using the group-

cyclic distribution family.

CALL BSP CFFT(s; p; sign;N;y).

ARGUMENTS

s: Processor identi�cation; 0 � s < p.

p: Number of processors; p is a power of 2 with p < N .

sign: Transform direction; +1 for forward, �1 for backward.

N : Transform size; N is a power of 2 with N � 2.

y = (y

in

0

; : : : ; y

in

N�1

): Complex vector of size N (block distributed).

OUTPUT y (y

out

0

; : : : ; y

out

N�1

), where y

out

k

=

P

N�1

j=0

y

in

j

exp(sign � 2�ikj=N).

DESCRIPTION

1

CpCm

Parallel bit reversal permutation.

BSP BitRev(s; p;N;y)

2

Comp

Short distance butteries.

BTFLY(0; sign;

N

p

; 4;y

s

N

p

)

3

CpCm

Permutation to C

max(1;p=(N=p))

(p;N) distribution.

BSP BlockToCyclic(s � s mod

N

p

; s mod

N

p

;min(p;

N

p

);

N

p

;y

(s�smod

N

p

)

N

p

)

H  dlog

N

p

Ne

for J = 1 to H � 2 do

4

Comp

Medium distance butteries.

BTFLY(

smod(N=p)

J

(N=p)

J

; sign;

N

p

; 4;y

s

N

p

)

5

Comm

Permutation to C

max(1;p=(N=p)

J+1

)

(p;N) distribution.

BSP CyclicToCyclic(s; p;N; (N=p)

J

;min(p; (N=p)

J+1

);y)

6

Comp

Long distance butteries.

BTFLY(

s

p

; sign;

N

p

; 4

(N=p)

H�1

p

;y

s

N

p

)

7

CpCm

Permutation to B(p;N) distribution.

BSP CyclicToBlock(0; s; p;

N

p

;y)

carries out the long distance butteries: y  (

^

AN

p

;p

: : :

^

A

2

(N=p)

H�1

p

;p

) � y: Finally,

superstep 7 permutes the vector back to the block distribution: y  �

�1

p

� y: Note

that, to obtain the normalized inverse transform, the output vector must be divided

by N . The subroutines used in the FFT template are described in the following

subsections.

2.3.1. Generalized butteries. The subroutine BTFLY (Algorithm 2.3) is a

sequential subroutine that multiplies the input vector by A

�

n;n

: : : A

�

k

0

;n

A

�

k

0

=2;n

. Step 1

performs pairs of generalized buttery operations. The k � th iteration of the out-

ermost while-loop performs the pair of generalized butteries stages A

�

k;n

A

�

k=2;n

, the

intermediate for-loop corresponds to the t-th repetition of the generalized 4-buttery



28 2.3. Implementation of the parallel algorithm

D

�

k

= B

�

k

(I

2


B

�

k=2

), cf. (2.13), which is computed by the innermost for-loop. Step 2

is only executed if the number of buttery stages is odd. It computes the last gen-

eralized 2-buttery A

�

n;n

. The FFT algorithm computes the desired (short, medium,

or long distance) buttery stages corresponding to phase J , 0 � J < H , by de�ning

the input parameter � = (s mod u)=u, where u = min(p; (N=p)

J

), and performing

the generalized buttery stages on the local part of the (permuted) vector y (i.e., the

subvector y

s

N

p

of size N=p that starts at element sN=p).

Algorithm 2.3 Template for the sequential generalized buttery operations.

CALL BTFLY(�; sign; n; k

0

;y).

ARGUMENTS

�: Buttery parameter, used to compute the correct weights; 0 � � < 1.

sign: Transform direction; +1 for forward, �1 for backward.

n: Vector size; n is a power of 2 with n � 2.

k

0

: Smaller 4-buttery size; k

0

is a power of 2 with 4 � k

0

� 2n.

y = (y

0

; : : : ; y

n�1

): Complex vector of size n.

OUTPUT y A

�

n;n

: : : A

�

k

0

;n

A

�

k

0

=2;n

y.

DESCRIPTION

1. Perform pairs of buttery stages A

�

k;n

A

�

k=2;n

.

k k

0

while k � n do

for t = 0 to n � k step k do

for j = 0 to k=4� 1 do

yw1 w

sign�(j+�)

k

� y

t+j+k=2

yw2 w

sign�2(j+�)

k

� y

t+j+k=4

yw3 w

sign�3(j+�)

k

� y

t+j+3k=4

a y

t+j

+ yw2

b y

t+j

� yw2

c yw1 + yw3

d yw1� yw3

y

t+j

 a+ c

y

t+j+k=4

 b+ sign � id

y

t+j+k=2

 a� c

y

t+j+3k=4

 b� sign � id

k 4 � k

2. Perform the last buttery stage A

�

n;n

.

if k = 2n then

for j = 0 to n=2� 1 do

a w

sign�(j+�)

n

� y

j+n=2

y

j+n=2

 y

j

� a

y

j

 y

j

+ a

Using a lookup table (see Appendix B), the cost of an A

�

k;n

A

�

k=2;n

buttery oper-

ation is 34 �

k

4

�

n

k

=

17

2

n. Summing over all pairs A

�

k;n

A

�

k=2;n

and adding 5n ops for
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the last buttery (if necessary) gives a cost of

C

BTFLY

(n; k

0

) =

=

17

2

n � [(log

2

n� log

2

k

0

+ 2) div 2] + 5n � [(log

2

n� log

2

k

0

+ 2) mod 2]

=

17

4

n � [log

2

n� log

2

k

0

+ 2] +

3

4

n � [(log

2

n� log

2

k

0

+ 2) mod 2] ;

(2.30)

for the generalized buttery algorithm (Algorithm 2.3).

The total computation cost of our parallel FFT (Algorithm 2.2) is obtained by

adding the costs of the buttery phases:

C

BTFLY

(

N

p

; 4) =

17

4

N

p

log

2

N

p

+

3

4

N

p

(log

2

N

p

mod 2);

for phases J = 0 to H � 2, where H = dlogN

p

Ne, and for the last phase H � 1 if

(N=p)

H�1

= p, i.e., H = logN

p

N . Otherwise, the cost for the last phase is

C

BTFLY

(

N

p

; 4

(N=p)

H�1

p

) =

17

4

N

p

(log

2

N mod log

2

N

p

)

+

3

4

N

p

[(log

2

N mod log

2

N

p

) mod 2]:

This gives

C

FFT;par;Comp

(N; p) =

17

4

N

p

log

2

N +

3

4

N

p

[(log

2

N

p

mod 2)(log

2

N div log

2

N

p

)

+ (log

2

N mod log

2

N

p

) mod 2];

(2.31)

where the second term corresponds to the extra cost we have to pay for performing

2-butteries. The communication and synchronization costs of our parallel FFT are

discussed in Section 2.3.5 after we discuss the parallel permutation subroutines.

2.3.2. Parallel bit reversal. The bit reversal matrix P

N

is de�ned by

(P

N

)

jk

=

8

<

:

1; if j = rev

N

(k);

0; otherwise:

(2.32)

Here, rev

N

is the bit reversal permutation

rev

N

: f0; : : : ; N � 1g ! f0; : : : ; N � 1g

j =

m�1

X

l=0

b

l

2

l

7! k =

m�1

X

l=0

b

m�l�1

2

l

;

(2.33)
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where m = log

2

N and (b

m�1

: : : b

0

)

2

is the binary representation of j. Note that

rev

�1

N

= rev

N

, which means that P

�1

N

= P

N

.

The bit reversal permutation has the following very useful property.

Lemma 2.7. Let u = 2

q

, N = 2

m

, with q � m, and de�ne v = N=u. Then

rev

N

(j) = rev

v

(j div u) + v � rev

u

(j mod u); 0 � j < N:

Proof. Let d = m � q, so that v = 2

d

. If the binary representation of j is

(b

m�1

: : : b

0

)

2

, then

j = j mod u+ u � (j div u) =

q�1

X

l=0

b

l

2

l

+ 2

q

d�1

X

l=0

b

l+q

2

l

:

Now,

rev

N

(j) =

m�1

X

l=0

b

m�l�1

2

l

=

d�1

X

l=0

b

m�l�1

2

l

+ 2

d

�

q�1

X

l=0

b

q�l�1

2

l

= a+ v � b:

If we show that a = rev

v

(j div u) and b = rev

u

(j mod u), we are done. In fact,

a =

d�1

X

l=0

b

m�l�1

2

l

=

d�1

X

l=0

b

m�q�l�1+q

2

l

= (substituting c

l

= b

l+q

)

=

d�1

X

l=0

c

d�l�1

2

l

= rev

v

 

d�1

X

l=0

c

l

2

l

!

= rev

v

 

d�1

X

l=0

b

l+q

2

l

!

= rev

v

(j div u)

and

b =

q�1

X

l=0

b

q�l�1

2

l

= rev

u

 

q�1

X

l=0

b

l

2

l

!

= rev

u

(j mod u):

Corollary 2.8. Let u � N be powers of two. De�ne v = N=u. Then

P

N

= (I

u


 P

v

)(P

u


 I

v

)S

u;N

Proof. The matrix (I

u


 P

v

)(P

u


 I

v

)S

u;N

corresponds to a sequence of three

permutations:

1. j ! l = �

u;N

(j) = j mod u � v + j div u

2. l! t = rev

u

(l div v) � v + l mod v = rev

u

(j mod u) � v + j div u

3. t! k = t div v �v+rev

v

(t mod v) = rev

u

(j mod u) �v+rev

v

(j div u) = rev

N

(j)
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Let y be a vector of size N = 2

m

block distributed over p = 2

q

processors.

Suppose that we want to permute it by a bit reversal permutation, i.e., perform

y  P

N

� y. Applying Corollary 2.8 with u = p, it is possible to split the parallel bit

reversal permutation in two parts as follows.

1. y (P

p


 IN

p

)S

p;N

� y, which is a global permutation that sends the elements

to the correct processors, but with local indices still in the original order:

j ! t = rev

p

(j mod p)

| {z }

Proc(t)

�

N

p

+ j div p

| {z }

t

0

:

Having as basis the block distribution, from now on, we use Proc(k) = k div

N

p

to denote the processor in which element k is stored, and k

0

= k mod

N

p

to

denote the local index of the element.

2. y (I

p


PN

p

) � y, which is a local bit reversal permutation in the local index

t

0

:

t

0

! k

0

= revN

p

(t

0

)

Algorithm 2.4 carries out a parallel bit reversal using this idea. If we combine the

local bit reversal (superstep 2 from Algorithm 2.4) with the short distance buttery

phase (superstep 2 of Algorithm 2.2) we have a complete local sequential FFT. This

means that we can easily replace the two supersteps by any optimized FFT subroutine

we can lay our hands on.

Algorithm 2.4 Template for the parallel bit reversal.

CALL BSP BitRev(s; p; n;y).

ARGUMENTS

s: Processor identi�cation; 0 � s < p.

p: Number of processors; p is a power of 2 with p < N .

N : Vector size; N is a power of 2 with N � 2.

y = (y

0

; : : : ; y

N�1

): Complex vector of size N (block distributed).

OUTPUT y P

N

y.

DESCRIPTION

1

Comm

Global permutation.

for j = s

N

p

to s

N

p

+

N

p

� 1 do

dest rev

p

(j mod p)

x

dest�

N

p

+j div p

 Put(dest; 1; y

j

)

Synchronize

2

Comp

Local bit reversal.

for t

0

= 0 to

N

p

� 1 do

y

s

N

p

+rev

N

p

(t

0

)

 x

s

N

p

+t

0
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If p < N=p, it is possible to optimize communication superstep 1 of Algorithm 2.4

by sending packets of data. This is done in a similar way as when permuting from

block to cyclic distribution (see Section 2.3.4); the only di�erence is in the destination

processor, which is rev

p

(j mod p) instead of j mod p.

2.3.3. Permutations involving the group-cyclic family. Permuting a vec-

tor from the C

r

1

(p;N) distribution to the C

r

2

(p;N) distribution, where r

1

= p=u

1

and r

2

= p=u

2

may be any possible group size, can be done as follows: �rst, use 

�1

u

1

to permute the vector to the block distribution, and then use 

u

2

to permute it to the

C

r

2

(p;N) distribution. This operation is expensive if performed in parallel, because

all the data have to be moved twice around the processors. The best approach is to

combine both permutations into one:



u

2

u

1

: f0; : : : ; N � 1g ! f0; : : : ; N � 1g

j 7! l = 

u

2

(

�1

u

1

(j)):

(2.34)

(Note that (

u

2

u

1

)

�1

= 

u

1

u

2

, and that 

u

2

u

1

is an abbreviation for 

u

2

u

1

;p;N

.) In the

general case, there is no simple formula for computing the destination index l. Some

combinations of the parameters r

1

; r

2

; p; and N , however, lead to simpler expressions

for the destination index. The simplest case is when r

1

or r

2

is equal to p, i.e.,

one of the distributions involved is the block distribution. This situation occurs

in supersteps 3 and 7 of the FFT algorithm (Algorithm 2.2) and is discussed in

Section 2.3.4. Here, we discuss the special case r

2

< r

1

< p, with

r

1

r

2

�

N

p

< p, which

occurs in superstep 5 of the FFT algorithm. We also assume that N and p (and as a

consequence M

1

= N=r

1

;M

2

= N=r

2

; u

1

; and u

2

) are powers of two.

Since p > r

1

> r

2

, it follows that

N

p

< M

1

< M

2

and the original index j can be

decomposed in the following way:

j = j

0

�M

2

+ j

1

�M

1

+ j

2

�

N

p

+ j

3

;

where j

0

= j divM

2

; j

1

= (j modM

2

) divM

1

; j

2

= (j modM

1

) div

N

p

; and j

3

=

j mod

N

p

. The intermediate index k = 

�1

u

1

(j) is then

k = j

0

�M

2

+ j

1

�M

1

+ j

3

� u

1

+ j

2

:

In turn, k can be decomposed as

k = k

0

�M

2

+ k

1

� u

2

+ k

2

;

where k

0

= k divM

2

= j

0

, k

1

= (k modM

2

) div u

2

= j

1

�

M

1

u

2

+ (j

3

� u

1

) div u

2

=

j

1

�

M

1

u

2

+ j

3

div

u

2

u

1

, and k

2

= k mod u

2

= (j

3

�u

1

) mod u

2

+ j

2

= (j

3

mod

u

2

u

1

) �u

1

+ j

2

.
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The destination index l is then

l = k

0

�M

2

+ k

2

�

N

p

+ k

1

= j

0

�M

2

+ (j

3

mod

u

2

u

1

� u

1

+ j

2

) �

N

p

+ j

1

�

M

1

u

2

+ j

3

div

u

2

u

1

= (j

0

� u

2

+ j

3

mod

u

2

u

1

� u

1

+ j

2

)

| {z }

Proc(l)

�

N

p

+ j

1

�

M

1

u

2

+ j

3

div

u

2

u

1

| {z }

l

0

:

Algorithm 2.5 describes this permutation.

Algorithm 2.5 Template for the parallel permutation from r

1

-cyclic to r

2

-cyclic

distribution.

CALL BSP CyclicToCyclic(s; p;N; u

1

; u

2

;y).

ARGUMENTS

s: Processor identi�cation; 0 � s < p.

p: Number of processors; p is a power of 2 with p < N .

N : Vector size; N is a power of 2 with N � 2.

u

1

: Number of processors in the old group; u

1

= p=r

1

.

u

2

: Number of processors in the new group; u

2

= p=r

2

.

Here r

1

and r

2

are powers of two with 1 � r

2

< r

1

< p and r

1

=r

2

� N=p < p.

y = (y

0

; : : : ; y

N�1

): Complex vector of size N (block distributed).

OUTPUT y �

u

2

�

�1

u

1

� y.

DESCRIPTION

1

Comm

Global permutation 

u

2

u

1

.

M

1

 u

1

�

N

p

M

2

 u

2

�

N

p

j

0

 s

N

p

divM

2

j

1

 (s

N

p

modM

2

) divM

1

j

2

 (s

N

p

modM

1

) div

N

p

for j = s

N

p

to s

N

p

+

N

p

� 1 do

j

3

 j mod

N

p

dest j

0

� u

2

+ j

3

mod

u

2

u

1

� u

1

+ j

2

y

dest�

N

p

+j

1

�

M

1

u

2

+j

3

div

u

2

u

1

 Put(dest; 1; y

j

)

Synchronize

2.3.4. Permutation from block to cyclic distribution. The permutations

�

p;N

and �

�1

p;N

are the permutations that convert a vector from block to cyclic dis-

tribution and vice versa. In the case that p < b = N=p, both �

p;N

and �

�1

p;N

can be

optimized by sending packets of size b=p (here we assume that p divides b).
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Figure 2.3. Schematic representation of a two stage permutation

from cyclic to block distribution (storage view). Example with

N = 32 and p = 4. (A) Global cyclic permutation of packets of

size 2. (B) Local permutation from virtual C(4; 8) distribution to

virtual B(4; 8) distribution.

For �

�1

p;N

, this is done as follows. First perform a global cyclic permutation of

packets on the global index j.

j ! t = j

1

|{z}

Proc(t)

�b+ j

0

�

b

p

+ j

2

| {z }

t

0

; (2.35)

where j

0

= j div b; j

1

= (j mod b) div

b

p

; and j

2

= j mod

b

p

. Then perform a local

permutation �

�1

p;b

on the local index t

0

t

0

! k

0

= t

0

mod

b

p

� p+ t

0

div

b

p

:

Assuming that each local subvector of size b is distributed over p virtual processors,

this last permutation can be seen as permuting the subvector from a virtual C(p; b)

distribution to a virtual B(p; b) distribution, see Figure 2.3. The resulting global index

k is then

k = j

1

� b+ k

0

= j

1

� b+ t

0

mod

b

p

� p+ t

0

div

b

p

= j

1

� b+ j

2

� p+ j

0

= (j

1

�

b

p

+ j

2

) � p+ j

0

= [(j mod b) div

b

p

�

b

p

+ (j mod b) mod

b

p

] � p+ j div b = j mod b � p+ j div b;

which is indeed �

�1

p;N

(j). For �

p;N

, a similar result is achieved by �rst performing a

local permutation �

p;b

, and then a global cyclic permutation of packets.
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Algorithms 2.6 and 2.7 are templates describing the implementation of permu-

tations �

�1

p;N

and �

p;N

, respectively. Both templates perform the permutations on a

vector y of size N = pb which is block distributed over p processors. The parameter

s

1

= s is the processor identi�cation number. The extra parameter s

0

= 0 is the

processor o�set; it is introduced for later use.

Algorithm 2.7 can also be used to carry out the permutation 

p;rp;rN

. This is

possible because permuting a vector of size rN by 

p;rp;rN

is the same as dividing it

into r subgroups of vectors of size N , then performing a shu�e permutation �

u;N

,

on each of the subvectors, cf. (2.20). In this case s

1

= s mod p, s

0

= s � s

1

, and

y is a subvector starting at element s

0

b of the original vector. For the same reason,

Algorithm 2.6 can also be used to carry out permutation 

�1

p;rp;rN

.

Algorithm 2.6 Template for the parallel permutation from cyclic to block distribu-

tion.

CALL BSP CyclicToBlock(s

0

; s

1

; p; b;y).

ARGUMENTS

s

0

; s

1

: Processor o�set and processor identi�cation within group; 0 � s

1

< p.

p: Number of processors in group.

b: Block size; p divides b, if b > p.

y = (y

0

; : : : ; y

pb�1

): Complex vector of size p � b (block distributed within group).

OUTPUT y S

�1

p;pb

y.

DESCRIPTION

if p � b then

1

Comm

Global �

�1

p;pb

permutation.

for j = s

1

� b to (s

1

+ 1) � b� 1 do

k j mod b � p+ j div b

y

k

 Put(s

0

+ k div b; 1; y

j

)

Synchronize

else

2

Comm

Global cyclic permutation of packets.

for proc = 0 to p� 1 do

x

proc�b+s

1

�

b

p

 Put(s

0

+ proc;

b

p

; y

s

1

�b+proc�

b

p

)

Synchronize

3

Comp

Local �

�1

p;b

permutation.

for j

0

= 0 to b� 1 do

k

0

 j

0

mod

b

p

� p+ j

0

div

b

p

y

s

1

�b+k

0

 x

s

1

�b+j

0

2.3.5. BSP cost. To compute the total cost of our parallel FFT algorithm (Al-

gorithm 2.2) we need to sum the computation, communication, and synchronization

costs. The computation costs were already computed in Section 2.3.1. To simplify
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Algorithm 2.7 Template for the parallel permutation from block to cyclic distribu-

tion.

CALL BSP BlockToCyclic(s

0

; s

1

; p; b;y).

ARGUMENTS

s

0

; s

1

: Processor o�set and processor identi�cation within group; 0 � s

1

< p.

p: Number of processors in group.

b: Block size; p divides b, if b > p.

y = (y

0

; : : : ; y

pb�1

): Complex vector of size pb (block distributed within group).

OUTPUT y S

p;pb

y.

DESCRIPTION

if p � b then

1

Comm

Global �

p;pb

permutation.

for j = s

1

� b to (s

1

+ 1) � b� 1 do

dest j mod p

y

dest�b+j div p

 Put(s

0

+ dest; 1; y

j

)

Synchronize

else

2

Comp

Local �

p;b

permutation.

for j

0

= 0 to b� 1 do

k

0

 j

0

mod p �

b

p

+ j

0

div p

x

s

1

�b+k

0

 y

s

1

�b+j

0

3

Comm

Global cyclic permutation of packets.

for proc = 0 to p� 1 do

y

proc�b+s

1

�

b

p

 Put(s

0

+ proc;

b

p

; x

s

1

�b+proc�

b

p

)

Synchronize

the �nal result we only include the higher order term of the total computation cost

(2.31),

C

FFT;par;Comp

(N; p) =

17

4

N

p

log

2

N; (2.36)

which is exact when only 4-butteries are performed.

The communication and synchronization costs are the costs involved in perform-

ing the bit reversal and the permutations related to the group-cyclic distribution

family. The maximum amount of data sent or received during a permutation involv-

ing complex numbers is equal to N=p complex values (or 2N=p real values). If the

permutation is performed with puts, the number of synchronizations is 1, giving a

total cost of

C

permut

(N; p) = 2

N

p

� g + l (2.37)
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for each of the dlogN

p

Ne + 1 permutations performed in the FFT algorithm. The

total cost of the FFT algorithm is

C

FFT, par

(N; p) =

17

4

N

p

log

2

N + 2

N

p

(dlogN

p

Ne+ 1) � g + (dlogN

p

Ne+ 1) � l: (2.38)

In Section 2.5, we discuss the validity of cost function (2.38) as a fair estimator of the

true cost of the FFT algorithm.

The asymptotic isoe�ciency function (see Section 1.3) of the parallel FFT can

be computed as follows. Suppose that N � lp=(2g) and that p > 1. Then the total

communication cost of the algorithm is

C

FFT;par;Comm

(N; p) = 2

N

p

(dlogN

p

Ne+ 1) � g + (dlogN

p

Ne+ 1) � l

� 4

N

p

(dlogN

p

Ne+ 1) � g < 8

N

p

dlogN

p

Ne � g

< 16

N

p

log

2

N

log

2

N � log

2

p

� g:

The total amount of work of the parallel FFT algorithm is W = (17=4)N log

2

N .

From (1.5) it is clear that the e�ciency level of the algorithm can be maintained

above a certain value a if

W � 16 � b � p

N

p

log

2

N

log

2

N � log

2

p

� g; (2.39)

where b = a=(1� a), which is equivalent to

N � 2

64

17

bg

p: (2.40)

This linear dependence of N on p implies that W should grow at least as fast as

W = O(p log p); which means that our FFT parallel algorithm is O(p log p) isoscalable.

In other words, isoe�ciency can be maintained if N=p is large enough.

2.4. Variants of the algorithm

2.4.1. Parallel FFT using other data distributions. Up to now, we dis-

cussed an FFT algorithm where the input and output (I/O) vector must be block

distributed. There exist many applications of the FFT where the it would be better

if the I/O vector would be distributed by other distributions (see e.g. Chapters 3

and 4). Here, we discuss how to modify our parallel FFT algorithm to accept I/O

vectors that are not distributed by the block distribution.

The �rst and the last supersteps of Algorithm 2.2 are permutations. Because

of this, the algorithm can be modi�ed to accept any I/O data distribution without

any extra communication cost, or even at a smaller communication cost depending

on the desired distributions. If the input vector is not in the block distribution, this
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modi�cation is done by combining the redistribution to block distribution with the

bit reversal permutation. If the output vector is expected to be in a distribution other

than the block distribution, this is done by substituting the permutation from cyclic

to block distribution by a permutation from the cyclic to the desired distribution.

If the desired distribution for the output vector is the cyclic distribution, the last

communication superstep can be completely skipped. The �rst permutation can also

be skipped if the input vector is stored by the distribution associated with the bit

reversal permutation. Applications where the input vector is bit reversed and the

output vector is cyclically distributed are advantageous, because, in such cases, two

complete permutations can be skipped.

3

This saves two thirds of the total communi-

cation cost in the common case that p � N=p.

While the cyclic distribution is simple and widely used, the distribution asso-

ciated with the bit reversal permutation is awkward. Fortunately, it is possible to

modify Algorithm 2.2 so that the natural input distribution, i.e., the distribution

that does not involve any communication as the �rst superstep, is the cyclic distri-

bution. The �rst three supersteps of Algorithm 2.2 are described by the following

matrix decomposition.

�

u

�AN

p

;N

: : : A

2;N

� P

N

; (2.41)

where u = min(p;N=p). Knowing that A

K;N

= I

p


A

K;

N

p

, and that the bit reversal

matrix can be decomposed as P

N

= (I

p


 PN

p

) � (P

p


 IN

p

) � S

p;N

(cf. Corollary 2.8),

we rewrite matrix (2.41) as

�

u

� (I

p


AN

p

;

N

p

) : : : (I

p


A

2;

N

p

) � (I

p


 PN

p

) � (P

p


 IN

p

) � S

p;N

= �

u

� (I

p


 FN

p

) � (P

p


 IN

p

) � S

p;N

= �

u

� (P

p


 IN

p

) � (I

p


 FN

p

) � S

p;N

: (2.42)

Here we used Lemma 2.2. The �rst three supersteps of the parallel FFT algorithm

derived from this new decomposition are: (1

Comm

) permutation from block to cyclic

distribution, (2

Comp

) local FFT, (3

Comm

) permutation de�ned by �

min(p;N=p)

� (P

p


IN

p

).

In the case that the input vector is already cyclically distributed, the �rst superstep

can be skipped.

2.4.2. Generalized buttery phase with adjustable size. In our original

algorithm, we chose to insert the permutation matrices �

u

in the leftmost possible

position. This procedure corresponds to factoring N as N =

N

(N=p)

H�1

(N=p)

H�1

, and

3

The idea of skipping permutations to save communication time or to reduce the overhead

caused by local permutations is known. Cooley and Tukey [16] already suggested this in order to

save local bit reversals. Other authors (e.g., [26, 33, 56], see also Chapters 3 and 4) give examples

where skipping permutations saves communication time.
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gives an algorithm with a minimum of permutations. However, if p 6= (N=p)

H�1

, it is

possible to insert the permutation matrices at an earlier position without increasing

the number of permutations. The resulting algorithm would correspond to a di�erent

factorization of N .

We can use this exibility to reduce the computation cost of some combinations

of p and N by inserting the permutations so that a maximal number of generalized

buttery stages are paired o�. Another reason to permute the vector at an earlier

stage is that the sizes of the buttery phases can be better balanced (i.e., choose all

factorsN

L

having approximately the same size). This would enhance the performance

on a cache-sensitive computer (see the discussion in Section 2.5). However, a more

e�ective way of enhancing the performance on a cache-sensitive computer is to reduce

the buttery sizes so that they always �t completely into the cache. We suggest a

method in the following subsection.

2.4.3. Cache-friendly parallel FFT. Each computation superstep of our par-

allel FFT algorithm performs a buttery phase which consists of a sequence of gen-

eralized buttery stages represented by the operation y  R

�

l;n

y, where l and n are

powers of two with 2 � l � n, and

R

�

l;n

= A

�

n;n

� � �A

�

2l;n

A

�

l;n

; (2.43)

is an n � n matrix. Suppose that the cache memory of a computer is such that the

data needed by a buttery phase of size n=v, where v < n is a power of two, �ts totally

in the computer cache. We can view v as the number of virtual processors available

in each processor. If we decompose (2.43) into a sequence of smaller buttery phases

of size less or equal to n=v which can be carried out independently from each other,

we can get the most out of the cache of the computer.

De�ne h = dlog

n

v

ne and j = dlog

n

v

le� 1, so that l > (

n

v

)

j

. Similarly to (2.25), if

we denote �

u;v;n

by �

u

, we can write

R

�

l;n

= �

�1

v

^

A

�

n

v

;v

: : :

^

A

�

2

(n=v)

h�1

v

;v

| {z }

phase h�j�1

�

v

� �

�1

(

n

v

)

h�2

^

A

�

n

v

;(

n

v

)

h�2

: : :

^

A

�

2;(

n

v

)

h�2

| {z }

phase h�j�2

�

(

n

v

)

h�2 � : : :

: : : � �

�1

(

n

v

)

j+1

^

A

�

n

v

;(

n

v

)

j+1

: : :

^

A

�

2;(

n

v

)

j+1

| {z }

phase 1

�

(

n

v

)

j+1
� �

�1

(

n

v

)

j

^

A

�

n

v

;(

n

v

)

j

: : :

^

A

�

l

(n=v)

j

;(

n

v

)

j

| {z }

phase 0

�

(

n

v

)

j
;

(2.44)
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where the n � n matrix

^

A

�

k

u

;u

is an abbreviation for

^

A

�

k

u

;u;v;n

= �

u;v;n

A

�

k;n

�

�1

u;v;n

.

Generalized versions of Theorem 2.5 and Corollary 2.6 can be used to proof that

^

A

�

k

u

;u;v;n

= I

v

u


 diag(A

�=u

k

u

;

n

v

; A

(�+1)=u

k

u

;

n

v

; : : : ; A

(�+u�1)=u

k

u

;

n

v

): (2.45)

The matrix decomposition (2.44) can be used to construct an alternative algo-

rithm for the computation of the generalized buttery phases. One way of imple-

menting this alternative sequential algorithm is by replacing the permutations  by

operations that gather the elements corresponding to a generalized buttery phase

in an auxiliary vector of size n=v, perform the generalized buttery phase, and then

store the elements back in their original place. Note that if � = 0 then the resulting

algorithm can be used to construct a cache-friendly FFT algorithm.

2.5. Experimental results and discussion

In this section, we present results on the performance of our implementation of

the FFT. We implemented the FFT algorithm in ANSI C using the BSPlib commu-

nications library [32]. Our programs are completely self-contained, and we did not

rely on any system-provided numerical software such as BLAS, FFTs, etc.

We tested our implementation on a Cray T3E with up to 64 processors, each

having a theoretical peak speed of 600 Mop/s. The accuracy of double precision

(64-bit) arithmetic is 1:0 � 10

�15

. We also give accuracy results from calculations

on a SUN workstation using IEEE 754 oating point arithmetic, which has a double

precision accuracy of 2:2 � 10

�16

, and which is the standard used in many comput-

ers. To make a consistent comparison of the results, we compiled all test programs

using the bspfront driver with options -O3 -flibrary-level 2 -fcombine-puts

and measured the elapsed execution times on exclusively dedicated CPUs using the

system clock. The times given correspond to an average of the execution times of a

forward FFT and (normalized) backward FFT.

2.5.1. Accuracy. We tested the overall accuracy of our implementation by mea-

suring the error obtained when transforming a random complex vector f with values

Re(f

j

) and Im(f

j

) uniformly distributed between 0 and 1. The relative error is de�ned

as

jjF

�

� Fjj

2

jjFjj

2

; (2.46)

where F

�

is the vector obtained by transforming the original vector f by a forward

(or backward) FFT, and F is the exact transform, which we computed using the same

algorithm but using quadruple precision. jj � jj

2

indicates the L

2

-norm.
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Table 2.1 shows the relative errors of the sequential algorithm for various problem

sizes. Since the error for the forward and backward FFT are approximately the same,

we present only the results for the forward transform. The errors of the parallel

implementation are of the same order as in the sequential case. In fact, the error of

the parallel implementation only di�ers from the error of the sequential one if the

buttery stages are not paired in the same way.

Table 2.1. Relative errors for the sequential FFT algorithm.

N CRAY T3E IEEE 754

512 2:4� 10

�16

1:9� 10

�16

1024 5:2� 10

�16

1:6� 10

�16

2048 8:4� 10

�16

1:8� 10

�16

4096 2:1� 10

�15

1:9� 10

�16

8192 3:2� 10

�15

2:0� 10

�16

16384 6:5� 10

�15

2:2� 10

�16

32768 2:3� 10

�14

2:3� 10

�16

65536 3:4� 10

�14

2:3� 10

�16

2.5.2. Performance of the sequential implementation: the need for

cache-friendly algorithms. Our sequential FFT algorithm was implemented us-

ing Algorithm 2.3 with � = 0. Its performance can be analyzed by looking at its

execution times or its (FFT) op rates :

FFT

rate

(N) =

5N log

2

N

Time(N)

; (2.47)

where Time(N) is the execution time. Analyzing the performance of an FFT algo-

rithm by using the number of ops of the radix-2 FFT as basis is a standard and

useful procedure. By doing so, it is possible to compare di�erent algorithms with

di�erent cost functions and also evaluate the overall performance of the algorithm as

a function of N .

Table 2.2 gives timing results and FFT op rates for various problem sizes. The

op rates show that the performance of the algorithm increases until N = 4096, when

it suddenly drops. This sudden decrease in performance happens because the data
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Table 2.2. Timing results (in ms) and FFT op rates (in Mop/s)

of the sequential FFT on the Cray T3E.

N Time FFT

rate

32 0:02 33:4

64 0:03 56:9

128 0:10 47:3

256 0:15 69:6

512 0:41 56:5

1024 0:66 77:5

2048 1:82 62:1

4096 2:94 83:5

8192 19:95 26:7

16384 58:91 19:5

32768 149:79 16:4

65536 318:28 16:5

space allocated by the program becomes too large to �t completely in the cache mem-

ory of the CRAY T3E,

4

which means that the computation becomes more expensive,

because more accesses to the main memory are needed.

Degradation of performance is characteristic of any computer that uses a cache.

Since this type of architecture is common, it is important to develop sequential al-

gorithms that can take advantage of the cache of such processors. Such algorithms

should divide the computation load into blocks small enough to �t in the cache mem-

ory of the computer. For more details see the discussion on Section 2.4.3.

2.5.3. Scalability of the parallel implementation. The timing results ob-

tained by our parallel algorithm are summarized in Table 2.3. We also present the

theoretical predictions using the cost function (2.38) and the values of the BSP pa-

rameters v, g, and l obtained by a benchmark program (see Table A.1 in Appendix A

for their values).

Except for the out-of-cache computations (boldface entries in the table), the tim-

ings show that the BSP cost function predicts well the behavior of the parallel imple-

mentation. The discrepancy between experimental and theoretical results for out-of-

cache computations was expected, since the computation speed, which we assumed

to be constant, suddenly drops when the computations cannot be done completely

4

The cache size of the CRAY T3E is 96 Kbytes, which means that a sequential FFT of size up

to N = 4096 �ts completely in the cache (64 Kbytes for the data vector + 8 Kbytes for the weights

table).
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Table 2.3. Predicted and obtained execution times (in ms) for the

FFT on a Cray T3E. Boldface entries indicate out-of-cache compu-

tations.

p 512 1024 2048 4096

pred exp pred exp pred exp pred exp

seq 0:56 0:41 1:25 0:66 2:74 1:82 5:99 2:94

1 0:58 0:40 1:28 0:66 2:81 1:81 6:12 2:95

2 0:37 0:42 0:77 0:90 1:61 1:66 3:44 3:90

4 0:25 0:28 0:45 0:47 0:89 0:99 1:83 1:81

8 0:21 0:21 0:32 0:33 0:56 0:69 1:06 1:22

16 0:20 0:22 0:25 0:26 0:37 0:39 0:63 0:56

32 0:26 0:29 0:23 0:33 0:29 0:37 0:42 0:53

64 0:46 0:31 0:48 0:38 0:51 0:55 0:46 0:63

p 8192 16384 32768 65536

pred exp pred exp pred exp pred exp

seq 12:97 19:95 27:93 58:91 59:9 149:8 127:7 318:3

1 13:23 19:95 28:46 58:98 60:9 149:8 129:8 315:8

2 7:33 8:93 15:61 33:65 33:2 87:1 70:3 207:3

4 3:83 4:40 8:09 9:72 17:1 39:7 36:1 101:1

8 2:12 2:33 4:36 5:28 9:1 12:5 19:1 46:7

16 1:16 1:20 2:30 2:26 4:7 5:4 9:8 12:7

32 0:70 0:75 1:29 1:43 2:5 2:9 5:1 7:1

64 0:61 0:76 0:91 0:98 1:5 1:7 2:9 3:2

in-cache. These results show that the BSP model is a valid tool for analyzing and

predicting parallel performance.

Figure 2.4 shows the absolute speedups obtained for various input sizes on up to 64

processors. The �gure shows moderate speedups for small problem sizes (N � 4096), if

p � 8. ForN � 8192, speedups of up to 1:5 times the ideal speedup are achieved. Such

amazing speedups are possible because of the so called cache e�ect : when N � 8192

the total amount of memory needed by the FFT is too large to �t in the cache memory

of one processor, but, if the problem is executed using a su�ciently large number of

processors, the memory required by each processor becomes small enough to �t in the

cache. This e�ect is welcome, but it masks the real scalability of the algorithm.

Another way of analyzing the scalability of our parallel implementation is to look

at the FFT op rate per processor, as done in Figure 2.5. Note that there is a sudden

rise in the op rate when the local problem size becomes small enough to �t in the
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Figure 2.4. Scalability of the FFT on a Cray T3E measured as

speedup.

cache. In this way the cache e�ect can be easily spotted and the scalability of the

algorithm better judged. FFT sizes that �t completely in the cache (N � 4096) have

a completely di�erent behavior than larger problems. For small sizes (N � 4096) the

op rate decreases suddenly in going from one to two processors, then it is somewhat

constant up to 8{16 processors and after that it decreases steadily. For large sizes

(N > 8192) the op rate is nearly constant, both before and after the transition out-

of-cache/in-cache, indicating a good scalability. The caseN = 8192 is an intermediate

case where there is an increase in the op rate in going from one to two processors,

but a deterioration of performance when the number of processors becomes too large.

We can also examine the scalability of our parallel algorithm using its cost func-

tion. Here we have two conicting goals: on the one hand, we want to use the cost

function of our algorithm to analyze its theoretical complexity (making sure no ma-

chine speci�c characteristics, such as the cache e�ect, masks the results); on the other

hand, we want our cost model to be as close to reality as possible. In other words, we

want to use a theoretical cost model that can, for example, compare two algorithms

and decide which is better independently of the speci�c implementation or the speci�c
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Figure 2.5. Scalability of the FFT on a Cray T3E measured as FFT

op rate per processor.

machine, but we also want to be able to predict the performance of our algorithm

on a speci�c machine. A good cost model should capture the essence of these two

distinct goals.

As already pointed out, the BSP cost model proves to be reliable when there is

no cache e�ect involved. With this assurance, we can analyze the speedups achieved

by our algorithm without worrying about the cache e�ect.

5

The theoretical speedups

are shown in Figure 2.6. Comparing them with the speedups of Figure 2.4, we obtain

the same kind of results for N < 4096. For larger N , the speedups are smaller, as

expected, but they remain at high levels. We expect that a cache-friendly implemen-

tation, as proposed in Section 2.4.3, would yield similar speedup results. Note that

the curves are smooth, because the theoretical cost function assumes the computation

cost to be 4:25

N

p

log

2

N regardless of whether exclusively 4-butteries are executed.

This is in contrast with the experiments, where 2-butteries occur occasionally for

5

If we want to predict the cache e�ect, we need to re�ne our cost model, by allowing di�erent

computation speeds according to the local problem size.
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Figure 2.6. Predicted scalability of the FFT on a Cray T3E mea-

sured as speedup.

certain values of N and p, increasing the computation time, and causing oscillations

in the curves.

In Section 2.3.5 we carried out an asymptotic analysis of the isoe�ciency func-

tion of our FFT algorithm. We concluded that, for N=p large enough, isoe�ciency is

achieved. Figure 2.7 shows the predicted and obtained e�ciencies as a function of p

for various values of N=p. As expected, the predicted values converge to a horizontal

line as N=p increases. The experimental results must be analyzed keeping in mind

the cache e�ect, which causes the sudden increase in the e�ciency. It is clear that

e�ciency can be maintained at reasonable levels for N=p as small as 256, and at very

good levels for N=p = 4096 which indicates that isoe�ciency is already achieved for

N=p considerably smaller than the lower bound N=p � max(l=(2g); 2

64

17

bg

) guarantee-

ing isoe�ciency that was computed in Section 2.3.5.

2.6. Alternative algorithms

Up to now, we studied the problem of parallelizing an FFT based on the radix-2

framework. This restriction on N may be undesired in some practical cases, mainly
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obtained values.

when computing multidimensional transforms. This happens because the small num-

ber of choices of N can lead to prohibitively large problems. Suppose, for example,

that we need to compute a two-dimensional FFT and that both dimensions need a

minimum of 10

4

points. Since the �rst power of two larger than 10

4

is 2

14

, instead of

a total of 10

8

points we will have to use 2

28

points, which means approximately 2:6

times more work and storage space. Since DFTs of arbitrary size cannot always be

carried out using fast algorithms, a compromise solution is to allow sizes of the form

such as N = 2

m

1

� 3

m

2

� 5

m

3

[46, 52, 53].

We dedicate this section to deriving a parallel mixed radix FFT algorithm that

works for any problem size N = N

0

N

1

: : : N

H�1

and number of processors p as long

as p divides each N

l

, 0 � l < H , and sequential FFTs of size N

l

are available. Before

deriving our algorithm, which is based on the work of Agarwal and Cooley [1], we

describe the 6-pass approach (see e.g. [4, 26, 31]) and the transpose approach [25],

[34, Chap. 10.3] for computing parallel FFTs.
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2.6.1. Six-pass algorithms and transpose algorithms. A 6-pass (or 6-step)

FFT algorithm can be obtained by rewriting (2.18) as

Z

k

1

;k

0

=

N

1

�1

X

j

1

=0

0

@

N

0

�1

X

j

0

=0

z

j

0

;j

1

w

j

0

k

0

N

0

1

A

w

j

1

k

0

N

w

j

1

k

1

N

1

: (2.48)

As the double indices suggest, the 6-pass framework is generally presented by viewing

the vectors z and Z as matrices. Here, we propose a di�erent approach. It can be

shown that (2.48) corresponds to the following decomposition of the Fourier matrix:

F

N

= S

N

1

;N

(I

N

0


 F

N

1

)C

N

1

;N

S

N

0

;N

(I

N

1


 F

N

0

)S

N

1

;N

: (2.49)

Here, C

N

1

;N

is the N �N diagonal matrix diag(c

0

; : : : ; c

N�1

), with

c

j

= w

(jmodN

1

)(j divN

1

)

N

= w

(jmodN

1

)(j divN

1

)=N

0

N

1

: (2.50)

Suppose that p is a divisor of N

0

and of N

1

and that the input vector z is block

distributed over p processors. An in-place 6-pass FFT algorithm that delivers the

output in natural order, also in the block distribution, is the following:

1

Comm

Permutation �

N

1

;N

: z S

N

1

;N

� z

2

Comp

N

1

FFTs of size N

0

: z (I

N

1


 F

N

0

) � z

3

Comm

Permutation �

N

0

;N

: z S

N

0

;N

� z

4

Comp

Multiplication by twiddle factors: z C

N

1

;N

� z

5

Comp

N

0

FFTs of size N

1

: z (I

N

0


 F

N

1

) � z

6

Comm

Permutation �

N

1

;N

: z S

N

1

;N

� z

In superstep 1, permutation �

N

1

;N

brings together the elements z

j

0

;j

1

, 0 � j

0

< N

0

,

which are needed to perform the j

1

-th FFT of superstep 2. (If the vector z is viewed

as an N

0

� N

1

matrix, this permutation can be viewed as a matrix transposition.)

In superstep 3, vector z is brought back to its original order, so that the FFTs of

superstep 5 can be computed locally. But �rst, in superstep 4, vector z is multiplied

by a set of twiddle factors. The permutation of superstep 6 is needed to bring the

vector back to block distribution in its natural ordering. A 6-pass algorithm has a BSP

cost of O(

N

p

logN)+3

N

p

g+3l, which is of the same order as the cost of Algorithm 2.2

for the case H = 2. Note that, if we do not require that the input/output vector be

block distributed, permutation supersteps 1 and 6 can be dropped. In those cases,

the 6-pass approach is known as the 4-step approach (see e.g. [31]).

We use the name transpose FFT algorithm to designate parallel FFT algorithms,

similar to the one above, where supersteps 4 and 5 are replaced by a single calculation

which has the same cost as the FFT (superstep 5). Gupta and Kumar [25] developed
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a transpose algorithm for an unordered radix-2 FFT

6

which works in the speci�c

case that N = M

2

and p divides M . In their book [34, Chap. 10.3], Kumar and

collaborators proposed a generalized transpose (radix-2) FFT algorithm for the case

that N =M

H

and p divides M .

Because the multiplication by twiddle factors costs O(N) ops, the transpose FFT

approach is less expensive than the 6-pass approach. Nevertheless, a parallel FFT

implementation that uses the 6-pass approach can easily be optimized by replacing

the sequential FFT subroutine used by a faster one.

A 6-pass FFT algorithm can be transformed into a transpose FFT algorithm by

replacing the multiplication by twiddle factors and the sequence of FFTs, given as

supersteps 4 and 5 in the description above, by a sequence of generalized fast Fourier

transforms (GFFTs), which are fast algorithms for computing the generalized discrete

Fourier transform (GDFT) [5, 11, 18]:

Z = F

�

N

z; (2.51)

where F

�

N

is the generalized Fourier matrix, de�ned by (F

�

N

)

jk

= w

(j+�)k

N

. A GFFT

algorithm is derived in a similar way as the FFT algorithm. For example, if N is a

power of two, F

�

N

can be decomposed as

F

�

N

= A

�

N;N

� � �A

�

8;N

A

�

4;N

A

�

2;N

P

N

; (2.52)

and, therefore, Algorithms 2.3 and 2.4 can be used to compute the GDFT of a vector

of size N in 4:25N log

2

N ops.

To see the connection between the 6-pass approach and the GFFT approach,

de�ne

E

�

N

= diag(w

0

N

; w

�

N

; : : : ; w

(N�1)�

N

); (2.53)

so that C

N

1

;N

= diag(E

0

N

1

; E

1=N

0

N

1

; : : : ; E

(N

0

�1)=N
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N

1

), where N

0

= N=N
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; (2.54)

this gives
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(2.55)

For the case thatN = N

0

N

1

: : : N

H�1

, successive substitution of (2.48) (or (2.49))

into itself leads to generalized 6-pass algorithms. Though it is easy to guess what to

do to derive a generalized 6-pass algorithm, getting the details right can be laborious.

6

An unordered radix-2 FFT is an FFT that takes either the input or the output vector in bit

reversed order.
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Agarwal and Cooley [1] introduced a generalized 6-pass algorithm to be used on a

vector computer. Though their algorithm works for a general N , they only report

implementing it for powers of two. Based on [1], Averbuch and collaborators [5]

derived the corresponding transpose FFT algorithm. Here again, the algorithm works

for a general N , but the implementation only works for N =M

H

that are powers of

two. Their parallel implementation, which was designed for a shared memory machine,

can handle any number of processors by assigning a group of GFFTs to each available

processor. If N=p is not a multiple ofM , then load imbalance is created because some

processors receive more GFFTs than others. Cormen and Nicol [17] also implemented

a radix-2 version of this algorithm to be used in the computation of out-of-core FFTs.

2.6.2. Parallel mixed-radix FFT: a generalized 6-pass algorithm. The

algorithm by Agarwal and Cooley [1] can be seen as a generalized 6-pass algorithm.

Their algorithm is a mixed-radix FFT which was originally developed with a vector

processor architecture in mind. In this subsection, we propose a parallel distributed

memory version of their algorithm.

Agarwal and Cooley's idea was to develop a method that could make use of long

vectors throughout the computation, so that the pipelines of the vector processor could

be used e�ciently. To achieve this, they used the following generalization of (2.48).

Let N = N

0

N

1

: : : N

H�1

. De�ne N

�1

= N

H

= 1, L

l

= N

�1

N

0

: : : N

l

, and

M

l

= N

l

: : : N
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N

H

. Let (k
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0
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= (k mod L
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) divL
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0

with the ordered sequence of radices N
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; N
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; : : : ; N
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, and let (j

0
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; : : : j
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= (j modM
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, be the mixed-radix representation of an index j =
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; : : : ; N
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.

The discrete Fourier transform of a vector of size N = N

0

N

1

: : :N

H�1

can be written

as
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(2.56)

for 0 � k

l

< N

l

; 0 � l < H , where k

�

l

= k

l

� L

l�1

+ � � �+ k

1

� L

0

+ k

0

= k mod L

l

.

In (2.56) each sum over j

l

, for 0 � l < H , corresponds to a multiplication by

twiddle factors (w

j

l

k

�

l�1

L

l

= w

j

l

k

�

l�1

=L

l�1

N

l

) followed by an FFT of size N

l

. Since the

same operation is repeated N=N

l

times (though with di�erent twiddle factors), each

summing phase can be carried out using long vectors.
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In the parallel case, instead of long vectors, we want the computation to have

independent parts which can be computed in parallel. We choose the number of

processors p so that all the N

l

's divide N=p, which is equivalent to the requirement

that p divides all the N=N

l

. In each phase we haveN=N

l

FFT computations which are

independent from each other, hence they can be distributed over the processors. The

requirement that all the N

l

's divide N=p ensures that each processor gets the same

number of FFTs, achieving perfect load balance. For example, if N = 2

m

0

3

m

1

5

m

2

,

then p must be of the form 2

q

0

3

q

1

5

q

2

, with q

j

< m

j

, to satisfy the requirement.

Now we have to tackle the problem of how to redistribute the working vector

before each computation phase, so that the data needed are locally available. Suppose

that the input vector is in the block distribution. The �rst phase involves computing

FFTs over the index j

0

. This means that all elements for which the global index j

di�ers only in the j

0

-th N

0

-ary digit (or, simply, digit), must be in the same processor.

Since the vector is block distributed, the processor to which element j belongs is

Proc(j) = j div
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= (j
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+ j
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:

Unless p = 1, j

0

helps determining the processor number, and, therefore, di�erent j

0

can imply di�erent processors.

To guarantee that all elements for which the global index j di�ers only in the

j

0

-th digit are in the same processor we have to submit the vector to a permutation
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;

where � : f0; 1; : : : ; H � 1g ! f0; 1; : : : ; H � 1g is a permutation over the radix digits,

with �(H � 1) = 0. Note that t is well de�ned, because 0 � j

�(l)

< N

�(l)

. To see that

all the needed elements are in the same processor note that
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i.e., j

0

does not inuence the processor number. (Here we have used the fact that

N

0

divides N=p.) Note that if (t
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) is the mixed-radix representation of
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) = j
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:

Here, we de�ned �(H) = H so that N

�(H)

= 1.

The same reasoning applies to the other phases of the algorithm: at each phase

l, the vector must be permuted so that the original index j

l

is the least signi�cant.

This leaves much freedom in the choice of permutations to use. Each possible choice

of permutations leads to a slightly di�erent algorithm, in which the ordering of the

twiddle factors is changed.
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Our template, which is given as Algorithm 2.8 uses the sequence of permutations

suggested by [1]. That is,

� Start with an index reversal permutation

irev
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;:::;N
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(2.57)

where j

l

= (j modM

l

) divM

l+1

. (The index reversal permutation is a gener-

alization of the bit reversal permutation.)

� After each computation phase l, permute the vector by �

N

l

;N

.

This sequence of permutations takes a vector which is block distributed and transforms

it so that the result is also block distributed (in natural order). It is possible to show

that this sequence of permutations corresponds to the following decomposition of the

Fourier matrix:
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where
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and P

N
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is the N �N permutation matrix:
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1; if l = irev
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(2.60)

which corresponds to the index reversal.

In Algorithm 2.8, the vector z of sizeN , which must be in the block distribution, is

transformed in place. The factors of N should have been chosen previously. Note that

when l = 0, the multiplication by twiddle factors can be skipped, since all the weights

are equal to 1. The algorithm uses subroutine FFT(sign;M;y), which computes the

forward FFT of a vector y of size M , if sign = 1, or the backward FFT, otherwise.

This means that sequential FFT algorithms for vector sizes N

0

; N

1

; : : : ; N

H�1

must

be available. As an alternative, the multiplication by twiddle factors and FFTs can

be replaced by suitable GFFTs. Cache-friendly versions of Algorithm 2.8 can readily

be obtained by further substitution of (2.58) in each of the F

N

l

. If the I/O vector is

needed in a di�erent distribution than the block distribution, then the �rst and the

last permutations can be replaced without increasing the cost of the algorithm.

As important as designing the algorithm itself is choosing the factorization of

N to be used. To achieve the best results, with the fewest extra ops caused by
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Algorithm 2.8 Template for the parallel mixed-radix FFT.

CALL BSP CFFT Mix(s; p; sign;N;H;N

0

; : : : ; N

H�1

;y).

INPUT

s: Processor identi�cation number; 0 � s < p.

p: Number of processors; p divides all N=N

l

.

sign: Transform direction; +1 for forward, �1 for backward.

N : Transform size.

H;N

0

; : : : ; N

H�1

: H-dimensional factorization of N ; 1 < N

l

� N=p.

z = (z

in

0

; : : : ; z

in

N�1

): Complex vector of size N (block distributed).

OUTPUT z (z

out

0

; : : : ; z

out

N�1

), where z

out

k

=

P

N�1

j=0

z

in

j

exp(sign

2�ikj

N

).

DESCRIPTION

N

�1

 1

N

H

 1

1

Comm

Perform an index reversal permutation irev

N

0

;:::;N

H�1

on z.

for j = s

N

p

to s

N

p

+

N

p

� 1 do

k irev

N

0

;:::;N

H�1

(j)

z

k

 Put(k div

N

p

; 1; z

j

)

Synchronize

for l = 0 to H � 1 do

L

l�1

 N

�1

N

0

: : : N

l�1

M

l+1

 N

l+1

: : : N

H

2

Comp

Multiply by twiddle factors and perform local FFTs of size N

l

.

for m

1

= 0 to L

l�1

� 1

� m

1

=L

l�1

for m

0

= 0 to M

l+1

� 1

k (m

1

M

l+1

+m

0

)N

l

if k div

N

p

= s then

for j = 0 to N

l

� 1 do

z

k+j

 z

k+j

� w

sign(j�)

N

l

FFT(sign;N

l

; z

k

)

3

Comm

Perform a �

N

l

;N

permutation on z.

for j = s

N

p

to s

N

p

+

N

p

� 1 do

k �

N

l

;N

(j)

z

k

 Put(k div

N

p

; 1; z

j

)

Synchronize

twidle factor multiplications and the smallest number of communication supersteps,

we want to factor N in as few factors as possible. In the case that N is a power

of two this is easy: since all the N

l

's and p must be powers of two, we choose N =

(N=p)

H�1

N

(N=p)

H�1

, where H = dlogN

p

Ne. In the general case, matters become more

complicated. Suppose that N = 2

m

0

3

m

1

5

m

2

, and p = 2

q

0

3

q

1

5

q

2

, where q

j

< m

j

.

Then N=p = 2

d

0

3

d

1

5

d

2

, where d

j

= m

j

� q

j

. Now, we use c

l;0

; c

l;1

, and c

l;2

to express
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M

l

by M

l

= 2

c

l;0

3

c

l;1

5

c

l;2

. The following method can be used to decompose N in

suitable factors.

� Start by choosing N

0

= N=p, so that M

1

= p.

� De�ne H = 1.

� While M

H

> 1

{ Choose N

H

= 2

min(d

0

;c

H;0

)

3

min(d

1

;c

H;1

)

5

min(d

2

;c

H;2

)

.

{ H  H + 1.

The same method can also be used for N 's that have larger primes in their prime

factorization. If, however, the factorization of N has many di�erent prime factors

with small multiplicity, the choices of p are limited. Furthermore, the number of

permutations may become large.

2.7. Conclusions and future work

In Section 2.2, we presented a new parallel FFT algorithm, Algorithm 2.2. This

algorithm is a mixed radix-2 and radix-4 FFT. It was derived based on the matrix de-

composition corresponding to the radix-2 algorithm by inserting suitable permutation

matrices corresponding to the group-cyclic distribution family. The use of the group-

cyclic distribution family gives a parallel algorithm which is simple to understand and

easy to implement.

The use of matrix notation proved to be a powerful tool for deriving and adapt-

ing the parallel FFT algorithms according to one's needs. With the help of matrix

notation, we showed how to modify our original algorithm to accept I/O vectors that

are not in block distribution, without incurring extra communication cost. Indeed, if

the vector is cyclically distributed, we showed how to eliminate the �rst and the last

permutation altogether, reducing the communication cost to one third of the original

cost. Since the cyclic distribution is simple and widely used, this property can be ex-

ploited to obtain faster applications. We also used matrices to derive a cache-friendly

variant of our parallel algorithm, and to give a simple proof of the equivalence between

algorithms that use twiddle factors and algorithms that use generalized DFTs.

We presented results concerning the performance of our implementation of Algo-

rithm 2.2. The tests were carried out on a Cray T3E with up to 64 processors. Our

implementation proved to scale reasonably well for small problem sizes (N � 4096)

with up to 8 processors, and to scale very well for larger problem sizes (N � 16384).

In part, the very favorable results obtained for larger N are due to the cache e�ect.

Because of this e�ect, we analyzed our results in terms of FFT op rate per processor,
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and also using the theoretical cost function. Both analyses con�rmed the previous

results.

Because the cache-based architecture of the Cray T3E inuences our results so

much, and there are many other computers with a similar architecture, we proposed

the use of cache-friendly FFT algorithms. A cache-friendly sequential algorithm can

be derived from our parallel algorithm by substituting the processors by virtual pro-

cessors. It is also possible to derive a cache-friendly parallel FFT algorithm by writing

each generalized buttery phase as a sequence of smaller generalized buttery phases.

We expect the scalability of such an algorithm to be similar to the theoretical scala-

bility of our algorithm. Though cache-friendly algorithms could also use the twiddle

factor approach, the amount of extra computation required by the extra multipli-

cation phases can increase considerably, depending on the ratio between cache and

problem size.

We also analyzed the asymptotic behavior of our algorithm using its isoe�ciency

function. We concluded that our FFT parallel algorithm is O(p log p) isoscalable.

This is to say that the e�ciency level is maintained as long as N=p is large enough. A

study of the experimental data obtained on the Cray T3E indicates that reasonable

e�ciency levels (E(p;N) � 0:5) are already maintained for N=p as small as 256, and

good e�ciency levels are maintained for N=p > 4096.

We also presented the parallel mixed-radix FFT algorithm, Algorithm 2.8. This

algorithm is based on [1], and can be seen as a generalization of the 6-pass FFT

approach. This algorithm is valid for any vector size N = N

0

: : :N

H�1

and processor

number p as long as p divides all the N=N

l

's, and sequential FFTs for the sizes

N

0

; : : : ; N

H�1

are available. (Sequential versions of Algorithm 2.8 can be used for

this purpose.) Though the algorithm was presented using twiddle factors (the 6-pass

approach), it can also be performed using generalized FFTs (the transpose approach).

The reverse is valid for Algorithm 2.2 in which the generalized butteries can be

replaced by a multiplication by twiddle factors followed by an unordered FFT. While

the generalized buttery approach is cheaper than the twiddle factor approach, the

latter is based on FFT routines and hence can easily be optimized by plugging in

faster sequential FFT implementations.

For an e�cient parallel implementations of Algorithm 2.8 it is necessary to factor

N in as few factors as possible, so that a minimum number of communication super-

steps is needed. We proposed a method to do so in the case that N = 2

m

0

3

m

1

5

m

2

,

and p = 2

q

0

3

q

1

5

q

2

, where q

j

< m

j

. This method can easily be extended for N which

have larger primes in its prime factorization.
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In order to e�ciently implement the mixed FFT algorithm (Algorithm 2.8), it is

necessary to implement the permutations involved taking care that large packets of

data are being sent. Another important issue is the development of scalable lookup

tables.



3

Real Fast Fourier

Transform and Fast

Cosine Transform

3.1. Introduction

In this chapter we discuss fast algorithms for discrete Fourier-like transforms

of real vectors. More speci�cally, we derive new parallel algorithms for computing

the DFT of a real vector and for computing the discrete cosine transform (DCT,

or DCT-II in the terminology of [55]). As with the complex DFT, real DFTs and

DCTs have many practical applications, ranging from solving numerical di�erential

equations to signal processing. An introduction to applications of the RFFT can be

found in [13, 19]. The book [42] is an excellent survey of the DCT; it treats de�nition,

algorithms, and applications.

The DFT of a real vector y of size N is the complex vector Y, also of size N ,

de�ned by (2.1). Vector Y is conjugate even, which means that it has the following

property:

Y

N�k

=

�

Y

k

: (3.1)

This property allows the vector to be packed as a real vector of size N in the following

way

(

f

0

= Re(Y

0

); f

1

= Re(Y

N=2

);

f

2k

= Re(Y

k

); f

2k+1

= Im(Y

k

); 1 � k < N=2;

(3.2)

57
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where f is the storage vector. Note that the real part of element Y

N=2

is stored in

the place that would, in �rst instance, be reserved for the imaginary part of element

Y

0

. Since Y

0

=

�

Y

N

=

�

Y

0

and Y

N=2

=

�

Y

N=2

imply that both Im(Y

0

) and Im(Y

N=2

) are

zero, no information is lost.

1

Any complex vector can be packed as a real vector of double the size where the

real parts of the elements of the complex vector are the even elements of the real

vector and the imaginary parts are the odd elements of the real vector. From now on

we assume this packing for all complex vectors. This assumption will be useful for

the design of the templates of this chapter, because it allows two ways of accessing

vectors, by reals or by complex numbers. To avoid confusion, we always indicate that

the complex vector is packed as real when we explicitly make use of this packing.

The DCT of a real vector x of size N is the real vector
~
x, also of size N , de�ned

by

~x

k

=

N�1

X

j=0

x

j

cos

(2j + 1)k�

2N

; k = 0; : : : ; N � 1: (3.3)

Its inverse is

x

j

=

1

N

N�1

X

k=0

�

k

~x

k

cos

(2j + 1)k�

2N

; j = 0; : : : ; N � 1; (3.4)

where

�

k

=

8

<

:

1 if k = 0;

2 if k > 0:

(3.5)

Both the DFT of a real vector and the DCT can be carried out using approxi-

mately half the number of ops needed by an FFT of a complex vector of the same

size. The corresponding algorithms are generally called real FFT (RFFT) algorithms

in the case of the DFT of a real vector, and fast cosine transform (FCT) algorithms in

the case of the DCT. There exists a substantial amount of literature on the RFFT and

many implementations of sequential RFFTs are available, see e.g. [41, 49, 51, 55].

The same holds for the FCT, see e.g. [2, 41, 42, 47, 49, 55]. In both cases, parallel

algorithms or implementations have been less intensively studied, see [31, 40] for a

recent discussion on RFFTs and [33, 44] for a recent discussion on FCTs.

1

The equality

�

Y

N

=

�

Y

0

is obtained by extending de�nition (2.1) to any integer k. Because the

extended de�nition is N-periodic, it is possible to obtain any value Y

k

from the computed values

Y

0

; : : : ; Y

N�1

.
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The sequential algorithms on which we base our parallel RFFT and FCT algo-

rithms use complex FFTs as their kernel. Such algorithms have a pack-transform-

extract structure:

1. PACK the input vector as an auxiliary complex vector of half the size.

2. TRANSFORM the auxiliary vector using a complex FFT.

3. EXTRACT the desired transform from the transformed auxiliary vector.

The pack and extract phase of such algorithms are either a permutation or a simple

O(N) operation that computes the new vector by combining the elements of the

old vector in a pairwise fashion. This means that the bulk of the computation is

in the complex FFT (CFFT). Though the cost of CFFT-based algorithms tends to

be a slightly higher than non-CFFT-based algorithms [44, 47, 49, 51, 55], the

use of CFFT-based algorithms is advantageous, because as a separate module, the

CFFT can easily be replaced, for instance by a new, more e�cient, CFFT subroutine.

Even in the cases that the parallel CFFT module needs to be modi�ed to reduce the

communication cost, we can still make use of the techniques developed for the parallel

CFFT and reuse parts of the code.

Our parallel algorithms are optimal in the sense that no extra communication

(besides the communication already needed for the transform phase) is needed. Such

optimality is achieved because of the introduction of a new data distribution scheme

that we call the zig-zag cyclic distribution.

This chapter has the following structure. In Section 3.2, we describe the charac-

teristics that a CFFT-based algorithm should have in order to be suitable for paral-

lelization. We also introduce the zig-zag cyclic distribution and discuss the properties

that lead to communication-optimal algorithms. In Section 3.3, we present parallel

templates for the RFFT and the FCT of a single vector and discuss how to invert

such algorithms. In Section 3.4, we derive a new algorithm for the simultaneous com-

putation of two FCTs, and present parallel templates for the forward and backward

transforms. In Section 3.5, we present results concerning the accuracy, e�ciency, and

scalability of both algorithms. We conclude with Section 3.6.

3.2. Parallel CFFT-based algorithms and

the zig-zag cyclic distribution

3.2.1. Selection of a suitable sequential algorithm. The �rst step in par-

allelizing a CFFT-based algorithm is to choose a sequential algorithm that is suitable

for parallelization. The pack-transform-extract structure of such an algorithm sug-

gests that a suitable sequential algorithm would be one where both the pack and

extract phases can be performed locally in the block distribution. If that were the
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case, the parallelization would be straightforward: perform the pack phase locally in

the block distribution, use Algorithm 2.2 to perform the transform phase, and per-

form the extract phase locally in the block distribution. Unfortunately, however, this

is not the case. In all currently known CFFT-based algorithms either the pack phase

or the extract phase (or both) cannot be performed locally in the block distribution.

Because of this, an e�cient parallel CFFT-based algorithm will require using a

modi�ed version of Algorithm 2.2 to perform the transform phase. If, for example,

the pack phase is a mere permutation, it can be performed for free by combining it

with the bit reversal permutation at the beginning of the CFFT algorithm. A similar

combination can be done if the extract phase is a permutation. Furthermore, if the

extract phase can be performed locally in the cyclic distribution, the permutation

back to block distribution can be postponed until after the extract phase so that no

extra communication is needed. Another possibility is to modify the distribution in

which the long distance buttery phase of the CFFT algorithm is performed in such

a way that both the long distance butteries and the extract phase can be performed

locally.

The sequential RFFT algorithm we selected as the basis for our parallel RFFT

algorithm has the following structure.

1. PACK the input vector y as an auxiliary complex vector z of half the size:

z

j

= (y

2j

+ i y

2j+1

); 0 � j < N=2: (3.6)

2. TRANSFORM the auxiliary complex vector using a CFFT of half the size:

Z

k

=

N=2�1

X

j=0

z

j

e

2�ijk

N=2

; 0 � k < N=2:

3. EXTRACT the desired RFFT from the transformed auxiliary vector:

Y

k

= Z

k

�

1

2

(1 + ie

2�ik

N

)(Z

k

�

�

Z

N=2�k

); 0 � k � N=2: (3.7)

(To compute Y

0

and Y

N=2

we use Z

N=2

= Z

0

.)

The algorithm described above is a standard RFFT algorithm (see e.g. [41, Chap.

12.3]) except for a small modi�cation in the extract phase which we adopted from

Ooura's FFT package [38]. It has the advantage that the pack phase can be skipped,

since the complex vector z is already packed as a real vector of double the size. The

extract phase, however, cannot be performed locally in the block distribution or in the

cyclic distribution.

2

This means that we need to modify the distribution of the long

2

Actually, all the CFFT-based algorithms for computing real DFTs and DCTs use some form

of reection symmetry in the pack or extract phase.
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distance buttery stages of the CFFT algorithm in order to get an e�cient parallel

algorithm.

The sequential FCT algorithm we selected as the basis for our parallel FCT

algorithm has the following structure.

1. PACK the real input vector x as an auxiliary real vector y:

(

y

j

= x

2j

;

y

N�j�1

= x

2j+1

; 0 � j < N=2:

(3.8)

2. TRANSFORM the auxiliary vector using an RFFT algorithm:

Y

k

=

N�1

X

j=0

y

j

e

2�ijk

N

; 0 � k � N=2:

3. EXTRACT the desired cosine transform from the transformed auxiliary com-

plex vector:

8

<

:

~x

k

= Re(e

�ik

2N

� Y

k

);

~x

N�k

= Im(e

�ik

2N

� Y

k

); 0 � k � N=2:

(3.9)

(For simplicity, we extended de�nition (3.3) to all integers, so that element

~x

N

= 0 is de�ned.)

This algorithm was introduced by Narasimha and Peterson [37]. The pack phase of

the FCT is a permutation that can be combined with the trivial packing of the RFFT

and the bit reversal of the CFFT inside the RFFT. The extract phase is composed

of two steps: �rst extract the RFFT and then extract the FCT. Since the right hand

side of (3.9) only depends on one element, any distribution that allows the extract

phase of the RFFT to be performed locally will also allow the extract phase of the

FCT to be performed locally.

As a consequence, both algorithms can be e�ciently parallelized if we �nd a data

distribution where both the long distance butteries of a CFFT of size N=2 and the

extract operation of the RFFT can be handled locally. In the following subsection we

introduce such a distribution.

3.2.2. Zig-zag cyclic distribution.

Definition 3.1 (Zig-zag cyclic distribution, Z(p;N)). Let y be a vector of size

N . We say that y is zig-zag cyclically distributed over p processors if, for all j, the

element y

j

is stored in processor j mod p if j div p is even and in processor �j mod p

otherwise, and if it has local index j div p.
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proc. 0
proc. 1

proc. 2

proc. 3

0 4 8 12 16 20 24 28

(A)

(B)

Figure 3.1. (A) Cyclic distribution and (B) zig-zag cyclic distri-

bution for a vector of size 32 distributed over 4 processors (logical

view).

The zig-zag cyclic distribution is a variant of the cyclic distribution. Both distri-

butions arrange the elements of a vector in a cyclic fashion, but with di�erent periods.

While the cyclic distribution has period p, the zig-zag cyclic distribution has period

2p. Figure 3.1 illustrates the di�erence between the two distributions.

Lemma 3.2. Let n and p be powers of two. Suppose that vector y of size n is

zig-zag cyclically distributed over p processors. Then, the following holds.

1. If p < n and l < n is a multiple of 2p, then elements with indices j and j + l,

0 � j < n� l are in the same processor.

2. If p < m, where m � n is a power of two, then elements with indices k and

m� k, 0 � k � m=2, are in the same processor. (In the case m = n, element

m� 0 = n does not exist, and the range of k should be read as 0 < k � m=2.)

Proof. For any j 2 Z, (j+ l) div p = j div p+ l=p. Since l=p is even, (j+ l) div p

is even if and only if j div p is even. Furthermore, (j + l) mod p = j mod p and

�(j+l) mod p = �j mod p. As a consequence, if a vector is zig-zag cyclic distributed,

elements with indices j and j + l, 0 � j < n � l, are in the same processor, proving

Part 1 of the lemma.

To prove Part 2 of the lemma �rst suppose that k mod p = 0 so that also

�k mod p = 0. In this case (m � k) mod p = �k mod p = 0, which implies that

elements k and m � k are in the same processor, namely processor 0. On the other

hand, if k mod p 6= 0, then (m � k) div p =

m

p

� (k div p) � 1, which implies that

(m� k) div p is odd if and only if k div p is even. This observation and the equalities

(m � k) mod p = �k mod p and �(m � k) mod p = k mod p, imply that elements k

and m� k are in the same processor.

We use Lemma 3.2 to verify that the zig-zag cyclic distribution is capable of

handling the long distance buttery stages of a CFFT of size N=2 and the extract

phase of an RFFT of size N for almost any combination of p and N . Part 1 of

Lemma 3.2 says that a vector of size N=2 that is zig-zag cyclically distributed has

elements j and j +K=2 on the same processor as long as K is a power of two with

K � 4p (and, of course, 0 � j < N=2�K=2). This means that any buttery stage
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with K � 4p can be performed locally. The long distance buttery stages of a CFFT

of size N=2 start from K = 2(

N

2p

)

H�1

, where H = dlog N

2p

N

2

e. Since 2(

N

2p

)

H�1

< 4p if

and only if p = (

N

2p

)

H�1

, the long distance buttery phase can always be carried out

locally unless p = (

N

2p

)

H�1

. In this exceptional case, extra communication cannot be

avoided. Part 2 of Lemma 3.2 says that elements k and N=2� k of the vector are on

the same processor, which guarantees that the extract phase of the RFFT can also

be performed locally provided that p < N=2.

From now on, we assume that p <

p

N=2 (i.e., p <

N

2p

). This assumption

simpli�es the discussion that follows, because in this case H = 1 or 2. If H = 1,

there is no communication involved. If H = 2, the modi�ed CFFT algorithm of

the transform phase of the RFFT consists only of the short distance buttery phase

and the long distance buttery phase, and the latter can be performed locally in

the zig-zag cyclic distribution. Furthermore, restricting the number of processors by

p <

N

2p

reduces the communication cost to a minimum of 3(

N

p

g+ l), corresponding to

the three permutations of the resulting parallel algorithms, which have the following

structure.

1

Comm

Combined pack/bit reversal permutation.

2

Comp

Short distance butteries.

3

Comm

Permutation to zig-zag cyclic distribution.

4

Comp

Long distance butteries.

5

Comp

Extraction.

6

Comm

Permutation to block distribution.

Note, however, that extending the algorithm to the general case is straightforward.

Since the medium distance buttery phases were already discussed in connection

with the CFFT, the only missing part is the permutation from the last C

r

(N=2; p)

distribution to the zig-zag cyclic distribution. In the following subsections we discuss

practical aspects related to the zig-zag cyclic distribution.

3.2.3. Permutation from block to zig-zag cyclic distribution. The per-

mutation that redistributes a vector from block to zig-zag cyclic distribution is de�ned

by

�

p;N

: f0; : : : ; N � 1g ! f0; : : : ; N � 1g

j = j

0

� p+ j

1

7! k =

8

<

:

j

1

�

N

p

+ j

0

; if j

0

is even;

�j

1

mod p �

N

p

+ j

0

; otherwise;

(3.10)
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Figure 3.2. Schematic representation of a two stage permutation

from zig-zag cyclic to block distribution (storage view). Example

with N = 32 and p = 4. (A) Global cyclic permutation of packets

of size 2. (B) Local permutation from virtual Z(4; 8) distribution to

virtual B(4; 8) distribution. (Cf. Figure 2.3.)

where j

0

= j div p, j

1

= j mod p. Note that �j

1

mod p = �j mod p. The inverse of

�

p;N

is

�

�1

p;N

: f0; : : : ; N � 1g ! f0; : : : ; N � 1g

l = l

0

�

N

p

+ l

1

7! j =

8

<

:

l

1

� p+ l

0

; if l

1

is even;

l

1

� p+ (�l

0

mod p); otherwise;

(3.11)

where l

0

= l div

N

p

, l

1

= l mod

N

p

. (Note that l

1

is even if and only if l is even, provided

that p < N .) These two permutations are closely related to the corresponding cyclic

distribution versions, the shu�e permutations �

p;N

and �

�1

p;N

, cf. (1.6).

In the permutation �

p;N

, the destination local index l

0

= j

0

is the same as for the

permutation �

p;N

, but, if j

0

is odd, the destination processor is Proc(l) = �j

1

mod p,

instead of Proc(l) = j

1

. Conversely, in the permutation �

�1

p;N

the destination processor

Proc(j) = l

1

� p div

N

p

is the same as for �

�1

p;N

, but, if l

1

is odd, the destination local

index is j

0

= [l

1

� p+ (�l

0

) mod p] mod

N

p

, instead of j

0

= (l

1

� p+ l

0

) mod

N

p

.

This similarity permits us to treat �

p;N

and �

�1

p;N

in the same way as we treated

�

p;N

and �

�1

p;N

(see Section 2.3.4). Since it is possible to send packets if p < N=p and

we assumed that p < N=(2p), we only consider sending packets. In the case of the

permutation �

p;N

, a local permutation �

p;

N

p

is followed by a global cyclic permutation

of packets of size b=p, where b = N=p (here we assume that p divides b). In the case

of the permutation �

�1

p;N

, a global cyclic permutation of packets of size b=p is followed

by a local permutation �

�1

p;

N

p

(see Figure 3.2).
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Algorithm 3.1 is a template for permuting a vector from block to zig-zag cyclic

distribution and vice versa. We included the parameter type to indicate the type of

the input vector, which can be real or complex.

Algorithm 3.1 Template for the parallel permutation from block to zig-zag cyclic

distribution.

CALL BSP BlockToZig(s; p; sign; b; type;y).

ARGUMENTS

s: Processor identi�cation; 0 � s < p.

p: Number of processors.

sign: Permutation direction; +1 for �, �1 for �

�1

.

b: Block size; p divides b.

type: Vector type; real or complex.

y = (y

0

; : : : ; y

p�b�1

): Vector of size p � b (block distributed).

OUTPUT y

k

 y

j

, 0 � j < p � b, k = �

p;p�b

(j) if sign = 1, or k = �

�1

p;p�b

(j) if sign = �1.

DESCRIPTION

if sign = 1 then

1

Comp

Local �

p;b

permutation.

for j

0

= 0 to b� 1 do

j

0

 j

0

div p

if j

0

is even then

k

0

 j

0

mod p �

b

p

+ j

0

else

k

0

 �j

0

mod p �

b

p

+ j

0

x

s�b+k

0

 y

s�b+j

0

2

Comm

Global cyclic permutation of packets.

for proc = 0 to p� 1 do

y

proc�b+s�

b

p

 Put(proc;

b

p

; x

s�b+proc�

b

p

)

else

3

Comm

Global cyclic permutation of packets.

for proc = 0 to p� 1 do

x

proc�b+s�

b

p

 Put(proc;

b

p

; y

s�b+proc�

b

p

)

Synchronize

4

Comp

Local �

�1

p;b

permutation.

for j

0

= 0 to b� 1 do

j

0

 j

0

div

b

p

j

1

 j

0

mod

b

p

if j

1

is even then

k

0

 j

1

� p+ j

0

else

k

0

 j

1

� p+ (�j

0

mod p)

y

s�b+k

0

 x

s�b+j

0
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3.2.4. Pairwise operations using the zig-zag cyclic distribution. The

lemmas that follow prove relations that are useful for the construction of the sub-

routines that carry out the long distance butteries of the CFFT and the extract

phases of the RFFT and of the FCT.

Lemma 3.3. Let p, K, and N be powers of two such that 4p � K � N . De�ne

k = K=p. Let j be an index, 0 � j < N .

1. If j mod K < K=2, then �

p;N

(j) mod k < k=2.

2. If j < N �K=2, then �

p;N

(j +K=2) = �

p;N

(j) + k=2:

Proof. Part 1: Since k divides

N

p

it follows that

�

p;N

(j) mod k = (j div p) mod k = [(j divK �K + j mod K) div p] mod k

= [j divK �

K

p

+ (j mod K) div p] mod k = (j mod K

| {z }

<K=2

) div p < k=2:

Part 2: (j +K=2) mod p = j mod p, and (j +K=2) div p = j div p + k=2, which

implies that �

p;N

(j +K=2) = �

p;N

(j) + k=2.

Lemma 3.4. Let p, m, and N be powers of two such that p < m � N . Let j be

an index, 0 � j � m=2. De�ne s = �

p;N

(j) div

N

p

, and k

0

= �

p;N

(j) mod

N

p

.

Then

�

p;N

(m� j) =

8

<

:

s �

N

p

+

m

p

� k

0

; if s = 0;

s �

N

p

+

m

p

� k

0

� 1; otherwise:

Proof. First note that k

0

= j div p and that s = 0 if and only if j mod p = 0.

If j mod p = 0, then s = 0 = (m � j) mod p = �(m � j) mod p, and �

p;N

(m � j) =

(m � j) div p =

m

p

�

j

p

= s �

N

p

+

m

p

� k

0

. On the other hand, if j mod p 6= 0,

s can assume two values: s = j mod p = �(m � j) mod p, if j div p is even, or

s = �j mod p = (m � j) mod p, otherwise. Furthermore, if j mod p 6= 0, then

(m� j) div p is odd if and only if j div p is even. It follows that in both cases

�

p;N

(m� j) = s �

N

p

+ (m� j) div p = s �

N

p

+

m

p

� j div p� 1:

Lemma 3.5. Let p, K, and N be powers of two such that 4p � K � N . De�ne

k = K=p. Let l be an index, 0 � l < N . De�ne s = l div

N

p

and l

0

= l mod

N

p

. Then

�

�1

p;N

(l) mod K

K

=

8

<

:

l

0

modk+s=p

k

; if l

0

is even or s = 0;

l

0

modk+1�s=p

k

; otherwise:
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Proof. If l

0

is even or s = 0, then �

�1

p;N

(l) mod K = (l

0

� p + s) mod K =

l

0

mod k � p+ s, giving

�

�1

p;N

(l) mod K

K

=

l

0

mod k � p+ s

k p

=

l

0

mod k + s=p

k

:

If l

0

is odd and s > 0, then �

�1

p;N

(l) mod K = [l

0

� p + (�s mod p)] mod K =

l

0

mod k � p+ (�s mod p), giving

�

�1

p;N

(l) mod K

K

=

l

0

mod k � p+ (�s mod p)

k p

=

l

0

mod k � p+ p� s

k p

=

l

0

mod k + 1� s=p

k

:

In the following subsections, we discuss how to use the lemmas above to construct

templates for the generalized butteries of the CFFT algorithm used inside the RFFT,

and for the extract phases of the RFFT and the FCT algorithms.

3.2.4.1. Generalized butteries for the zig-zag cyclic distribution. With the help

of Lemma 3.3 and Lemma 3.5 it is easy to construct a local generalized buttery

~

B

�

k

to be used in the new long distance buttery stages. Lemma 3.3 states that a pair

originally stored as elements j and j+K=2 corresponds to the new pair l and l+k=2,

where l = �

p;

N

2

(j), and Lemma 3.5 enables us to compute the corresponding weight

w

jmodK

K

, based only on the local index l

0

and the parameter � = s=p. The resulting

generalized buttery

~

B

�

k

is similar to the old B

�

k

; the only di�erence being that the

weights w

j+�

k

are replaced by w

j+1��

k

if j is odd and � 6= 0. Figure 3.3 shows why

we constructed the matrix

~

B

�

k

in this way.

3

Subroutine BTFLY ZIG (Algorithm 3.2) carries out the buttery operations in

the zig-zag cyclic distribution. It multiplies the input vector by

~

A

�

n;n

: : :

~

A

�

k

0

;n

~

A

�

k

0

=2;n

,

where

~

A

�

k;n

= I

n=k




~

B

�

k

is a generalized zig-zag buttery stage. The new parallel

CFFT algorithm carries out the long distance buttery stages of a CFFT of size

N=2 by �rst permuting the vector being transformed to the zig-zag cyclic distribution

Z(p;N=2), and then executing subroutine BTFLY ZIG using � = s=p, n = N=(2p),

and the local part of the vector being transformed as arguments. (Since the subrou-

tine is only used for the forward transform, argument sign is omitted.) Note that

3

In fact, it is possible to generalize the zig-zag cyclic distribution by constructing a group zig-zag

cyclic family of distributions in the same way we did with the cyclic distribution. Using this family

we could factor the Fourier matrix F

N

in a similar way as we did in (2.25) (because of Lemma 3.2, the

maximum number of buttery stages between permutations would be smaller), and prove a theorem

and a corollary similar to Theorem 2.5 and Corollary 2.6.
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Figure 3.3. Schematic representation of buttery stage K = kp

with the input vector of size N zig-zag cyclically distributed over

p processors (storage view). Example with N = K = 32; p = 4,

and k = 8. The arrows indicate the pairs to be combined and the

corresponding weights.

subroutine BTFLY ZIG can also be used for computing the short distance buttery

stages in the block distribution by de�ning � = 0. Algorithm 3.2 has the same cost

function as Algorithm 2.3, which is C

BTFLY

(n; k

0

), cf. (2.30).

3.2.4.2. Extract phase of the RFFT. The extract phase of the RFFT algorithm

is a pairwise operation involving complex elements originally stored as j and N=2� j,

and weights exp(2�ij=N). Lemma 3.4 with m = N=2 states that the original pair j

and N=2 � j is transformed into the new pair k and s �

N

2p

+

N

2p

� k

0

� d

s

p

e, where

k = �

p;

N

2

(j); s = k div

N

2p

is the processor where element k is stored, and k

0

= k mod

N

2p

is the local index of k, whereas Lemma 3.5 gives a formula to compute the weight

exp(2�ij=N), based only on the local index k

0

and the parameter � = s=p.

Consider the local operation on a complex vector of size n:

8

<

:

y

k

0

 y

k

0

�

1

2

(1 + ie

2�ik

0

2n

)(y

k

0

� �y

n�k

0

); 0 � k

0

� n; if � = 0,

y

k

0

 y

k

0

�

1

2

(1 + ie

2�i(k

0

+�

1

)

2n

)(y

k

0

� �y

n�k

0

�1

); 0 � k

0

< n; otherwise,

(3.12)

where

�

1

=

8

<

:

�; if k

0

is even or � = 0,

1� �; otherwise.

(3.13)

If n = N=(2p), � = s=p, and y is the local part of the complex vector being trans-

formed, (3.12) corresponds to the local part of the extract phase (3.7) of the RFFT

algorithm. Subroutine RFFT EXTRACT (Algorithm 3.3) is a sequential subroutine

that performs (3.12), provided that sign = 1. (We introduced the argument sign

because the same subroutine will be used in the inverse RFFT, but with sign = �1,
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Algorithm 3.2 Template for the sequential generalized zig-zag buttery operations.

CALL BTFLY ZIG(�; n; k

0

;y).

ARGUMENTS

�: Buttery parameter, used to compute the correct weights; 0 � � < 1.

n: Vector size; n is a power of 2 with n � 2.

k

0

: Smaller 4-buttery size; k

0

is a power of 2 with 4 � k

0

� 2n.

y = (y

0

; : : : ; y

n�1

): Complex vector of size n.

OUTPUT y 

~

A

�

n;n

: : :

~

A

�

k

0

;n

~

A

�

k

0

=2;n

y.

DESCRIPTION

1. Perform pairs of buttery stages

~

A

�

k;n

~

A

�

k=2;n

.

k k

0

while k � n do

for t = 0 to n � k step k do

for j = 0 to k=4� 1 do

if j is even or � = 0 then �

1

 � else �

1

 1� �

yw1 w

j+�

1

k

� y

t+j+k=2

yw2 w

2(j+�

1

)

k

� y

t+j+k=4

yw3 w

3(j+�

1

)

k

� y

t+j+3k=4

a y

t+j

+ yw2

b y

t+j

� yw2

c yw1 + yw3

d yw1� yw3

y

t+j

 a+ c

y

t+j+k=4

 b+ id

y

t+j+k=2

 a� c

y

t+j+3k=4

 b� id

k 4 � k

2. Perform the last buttery stage

~

A

�

n;n

.

if k = 2n then

for j = 0 to n=2� 1 do

if j is even or � = 0 then �

1

 � else �

1

 1� �

a w

j+�

1

n

� y

j+n=2

y

j+n=2

 y

j

� a

y

j

 y

j

+ a

see Section 3.3.3.) Subroutine RFFT EXTRACT uses the complex-packed-as-real no-

tation. Note that the special packing of the global complex output vector y, given by

(3.2), requires that elements y

0

and y

N=2

of the global vector be stored at processor

0 as elements f

0

and f

1

of the local vector. The algorithm exploits the symmetries of

expression (3.12) to perform the extract operation with cost

C

RFFT EXTRACT

(n) =

15

2

n; (3.14)
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provided that the weights sin(�(k

0

+ �

1

)=n) and cos(�(k

0

+ �

1

)=n) are stored in a

table.

Algorithm 3.3 Template for the sequential extract/pack phase of the RFFT.

CALL RFFT EXTRACT(�; sign; n; f).

ARGUMENTS

�: Parameter used to compute the correct weights; 0 � � < 1.

sign: Transform direction; +1 for forward, �1 for backward.

n: Vector size; n is a power of 2 with n � 2.

f = (f

0

; : : : ; f

2n�1

): Complex vector of size n packed as real.

OUTPUT f , computed using (3.12).

DESCRIPTION

1. Special case � = 0.

if � = 0 then

if sign = 1 then

a. Forward transform.

aux f

0

� f

1

f

0

 f

0

+ f

1

f

1

 aux

else

b. Inverse transform.

f

0

 

1

2

(f

0

+ f

1

)

f

1

 f

0

� f

1

k

0

 1

else k

0

 0

2. Perform extract operation.

for k

0

= k

0

to n=2 � 1 do

if k

0

is even or � = 0 then �

1

 � else �

1

 1� �

rdiff  f

2k

0

� f

2(n�k

0

�d�e)

isum f

2k

0

+1

+ f

2(n�k

0

�d�e)+1

raux 

1

2

((1� sin(

2�(k

0

+�

1

)

2n

)) � rdiff � sign cos(

2�(k

0

+�

1

)

2n

) � isum)

iaux 

1

2

((1� sin(

2�(k

0

+�

1

)

2n

)) � isum+ sign cos(

2�(k

0

+�

1

)

2n

) � rdiff)

f

2k

0

 f

2k

0

� raux

f

2k

0

+1

 f

2k

0

+1

� iaux

f

2(n�k

0

�d�e)

 f

2(n�k

0

�d�e)

+ raux

f

2(n�k

0

�d�e)+1

 f

2(n�k

0

�d�e)+1

� iaux

Note 1: If � = 0, (f

n

+ if

n+1

) (f

n

+ if

n+1

) does not need to be computed.

Note 2: For � > 0, k

0

is even if and only if n�k

0

�d�e is odd, so that the value �

1

= �

1

(k

0

)

used in the algorithm is correct both for k

0

and n � k

0

� d�e.

3.2.4.3. Extract phase of the FCT. It is no problem to perform the extract phase

(3.9) of the FCT locally in the zig-zag cyclic distribution, since only one element

Y

j

; 0 � j � N=2, of the complex vector computed in the extract phase of the RFFT

is used to compute the real elements ~x

j

and ~x

N�j

of the output vector
~
x. The
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Figure 3.4. Extract phase of the FCT (logical view). Example with

N = 32 and p = 4. The real part of EY is used to compute the �rst

half of
~
x and the imaginary part of EY is used to compute the second

half of
~
x. Here EY is the vector with elements e

�ik

2N

� Y

k

.

correct weights exp(�ij=(2N)) are also easily found using Lemma 3.5. (Note that

j corresponds to the original index, before the permutation to the zig-zag cyclic

distribution.) There is only one point which still needs our attention: vector Y is a

complex vector of size N=2 and vector
~
x is a real vector of size N . Therefore, it is

not immediately clear how to store the output vector
~
x. The elements ~x

j

and ~x

N�j

become available on the same processor, namely the processor of Y

j

. Because Y is

distributed in the zig-zag cyclic distribution of lengthN=2, it is possible to distribute
~
x

without communication by the zig-zag cyclic distribution of length N , see Figure 3.4.

This is done by de�ning � = s=p and n = N=p, and computing the local part of

the output vector
~
x from the local part of the transformed auxiliary vector Y using

the local extract operation

8

>

>

>

>

>

<

>

>

>

>

>

:

~x

k

0

 Re(e

�ik

0

2n

� Y

k

0

)

~x

n�k

0

 Im(e

�ik

0

2n

� Y

k

0

)

; 0 � k

0

� n=2; if � = 0;

~x

k

0

 Re(e

�i(k

0

+�

1

)

2n

� Y

k

0

)

~x

n�k

0

�1

 Im(e

�i(k

0

+�

1

)

2n

� Y

k

0

)

; 0 � k

0

< n=2; otherwise;

(3.15)

where �

1

is de�ned by (3.13). (For simplicity of notation in the case � = 0, we

included global element ~x

N

= 0.)

Subroutine FCT EXTRACT (Algorithm 3.4) carries out the local extract phase.

The local part of the complex vector Y is packed as real using the vector f . Once

again, if � = 0, elements f

0

and f

1

must be treated as exceptions. The cost of the

algorithm is

C

FCT EXTRACT

(n) = 3n; (3.16)

provided that the sines and cosines are stored in a table.
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Algorithm 3.4 Template for the sequential extract phase of the FCT.

CALL FCT EXTRACT(�; n; f ;
~
x).

ARGUMENTS

�: Parameter used to compute the correct weights; 0 � � < 1.

n: Vector size; n is a power of 2 with n � 2.

f = (f

0

; : : : ; f

n�1

): Complex vector of size n=2 packed as real.

~
x = (~x

0

; : : : ; ~x

n�1

): Real vector of size n.

OUTPUT
~
x, computed using (3.15).

DESCRIPTION

if � = 0 then

~x

0

 f

0

~x

n=2

 cos(

�

4

) � f

1

k

0

 1

else k

0

 0

for k

0

= k

0

to n=2 � 1 do

if k

0

is even or � = 0 then �

1

 � else �

1

 1� �

~x

k

0

 cos(

�(k

0

+�

1

)

2n

) � f

2k

0

� sin(

�(k

0

+�

1

)

2n

) � f

2k

0

+1

~x

n�k

0

�d�e

 sin(

�(k

0

+�

1

)

2n

) � f

2k

0

+ cos(

�(k

0

+�

1

)

2n

) � f

2k

0

+1

3.3. Parallel algorithms and their inverses

In the previous section we discussed almost all the parts needed to construct the

parallel templates for the RFFT and FCT algorithms. In the case of the RFFT, the

work of writing the actual template is now just a simple assembling job. In the case

of the FCT, we still need to explain how to compose the pack permutation (3.8) with

the bit reversal.

3.3.1. Parallel real fast Fourier transform algorithm. The RFFT tem-

plate (Algorithm 3.5) works as a mere coordinator that hands over the work to be

executed by its subroutines. The parallel bit reversal and the short distance but-

teries are carried out by subroutines BSP BitRev and BTFLY (Algorithms 2.4 and

2.3). Subroutine BSP BlockToZig (Algorithm 3.1) permutes the vector from block to

zig-zag cyclic distribution and vice versa. Subroutine BTFLY ZIG (Algorithm 3.2)

computes the long distance butteries corresponding to a vector that is zig-zag cycli-

cally distributed, and subroutine RFFT EXTRACT (Algorithm 3.3) performs the

extract phase. As already said, the template only works when p <

p

N=2. Its cost

can be computed by summing the costs of each subroutine, or even simpler by adding

the cost C

FFT;par

(

N

2

; p) =

17

4

N

2p

log

2

N

2

+ 6

N

2p

� g + 3 � l of a complex FFT (given by
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(2.38)) to the cost C

RFFT EXTRACT

(

N

2p

) =

15

2

N

2p

of the local extract phase (3.12),

C

RFFT,par

(N; p) =

17

8

N

p

log

2

N +

13

8

N

p

+ 3

N

p

� g + 3 � l: (3.17)

Algorithm 3.5 Template for the parallel forward real fast Fourier transform.

CALL BSP RFFT(s; p; sign = 1; N;y).

ARGUMENTS

s: Processor identi�cation; 0 � s < p.

p: Number of processors; p is a power of 2 with p <

p

N=2.

sign = 1: Transform direction is forward.

N : Transform size; N is a power of 2 with N � 2.

y = (y

0

; : : : ; y

N�1

): Real vector of size N (block distributed).

OUTPUT y (Re(Y

0

);Re(Y

N=2

);Re(Y

1

); Im(Y

1

); : : : ;Re(Y

N=2�1

); Im(Y

N=2�1

)),

where Y

k

=

P

N�1

j=0

y

j

exp(2�ijk=N), 0 � k � N=2 (Y

N�k

=

�

Y

k

is not explicitly computed).

DESCRIPTION

1

CpCm

Parallel complex bit reversal permutation.

BSP BitRev(s; p;N=2;y)

2

Comp

Short distance butteries.

BTFLY(0; 1;

N

2p

; 4;y

s

N

p

)

3

CpCm

Permutation from block to zig-zag cyclic distribution.

BSP BlockToZig(s; p; 1;

N

2p

; complex;y)

4

Comp

Long distance butteries.

BTFLY ZIG(

s

p

;

N

2p

; 4

N

2p

2

;y

s

N

p

)

5

Comp

RFFT extract phase.

RFFT EXTRACT(

s

p

; 1;

N

2p

;y

s

N

p

)

6

CpCm

Permutation from zig-zag cyclic to block distribution.

BSP BlockToZig(s; p;�1;

N

2p

; complex;y)

Note : In the main routine, vector y is always addressed as real. Hence we use y

s

N

p

and

not y

s

N

2p

to denote the beginning of the local vector.

3.3.2. Parallel fast cosine transform algorithm. The bit reversal permuta-

tion of a complex vector of size N=2 packed as real can be formulated as the following

real permutation

Rrev

N=2

: f0; : : : ; N � 1g ! f0; : : : ; N � 1g

j 7! l = rev

N

(�

2;N

(j)):

(3.18)
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Lemma 3.6. Let N be a power of two, and j be an index 0 � j < N . Then

1. �

2;N

(N � j � 1) = N � �

2;N

(j)� 1.

2. rev

N

(N � j � 1) = N � rev

N

(j)� 1.

Proof. Straightforward from the de�nitions.

With the help of (3.18) and of Lemma 3.6 we obtain the following description for

the composition of the pack phase (3.8) and the complex bit reversal of size N=2.

�

N

: f0; : : : ; N � 1g ! f0; : : : ; N � 1g

j 7! l =

8

<

:

rev

N

(�

2;N

(j div 2)); if j is even;

N � rev

N

(�

2;N

(j div 2))� 1; otherwise:

(3.19)

Using Lemma 2.7 we obtain the corresponding destination processor and the destina-

tion index:

l = Proc(l) �

N

p

+ l

0

; (3.20)

where

Proc(l) =

8

<

:

rev

p

(�

2;N

(j div 2) mod p); if j is even,

(p� rev

p

(�

2;N

(j div 2) mod p)� 1); otherwise.

(3.21)

and

l

0

=

8

<

:

revN

p

(�

2;N

(j div 2) div p); if j is even,

N

p

� revN

p

(�

2;N

(j div 2) div p)� 1; otherwise.

(3.22)

Starting with (3.20), we derived a parallel version of this permutation based on pack-

ets, which practically halved the execution time of the implementation. The resulting

pack, send packet, and unpack phases are quite complicated, and we will omit the de-

tails here. (The �nal template of the permutation would be similar to Algorithm 3.10

and is not presented here.)

The template for the parallel FCT algorithm is presented as Algorithm 3.6. Ex-

cept for the permutation �, all the phases are carried out by previously discussed

subroutines; these are BTFLY, BSP BlockToZig, BTFLY ZIG, RFFT EXTRACT,

and FCT EXTRACT (Algorithms 2.3, 3.1, 3.2, 3.3, and 3.4, respectively). The cost

of the algorithm is

C

FCT,par

(N; p) =

17

8

N

p

log

2

N +

37

8

N

p

+ 3

N

p

� g + 3 � l; (3.23)

which is obtained by adding the cost C

RFFT;par

(N; p) of a parallel RFFT to the cost

C

FCT EXTRACT

(N=p) = 3N=p of the local extract phase (3.15).
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Algorithm 3.6 Template for the parallel forward fast cosine transform.

CALL BSP FCT(s; p; sign = 1; N;x).

ARGUMENTS

s: Processor identi�cation; 0 � s < p.

p: Number of processors; p is a power of 2 with p <

p

N=2.

sign = 1: Transform direction is forward.

N : Transform size; N is a power of 2 with N � 2.

x = (x

0

; : : : ; x

N�1

): Real vector of size N (block distributed).

OUTPUT x (~x

0

; : : : ; ~x

N�1

), where ~x

k

=

P

N�1

j=0

x

j

cos(�(j +

1

2

)k=N).

DESCRIPTION

1

Comm

Parallel � permutation.

for j = s

N

p

to (s+1)

N

p

�1 step 2 do

l

0

 rev

N

p

(�

2;N

(j div 2) div p)

proc rev

p

(�

2;N

(j div 2) mod p)

y

proc

N

p

+l

0

 Put(proc; 1; x

j

)

y

(p�proc�1)

N

p

+

N

p

�l

0

�1

 Put(p� proc� 1; 1; x

j+1

)

Synchronize

2

Comp

Short distance butteries.

BTFLY(0; 1;

N

2p

; 4;y

s

N

p

)

3

CpCm

Complex permutation from block to zig-zag cyclic distribution.

BSP BlockToZig(s; p; 1;

N

2p

; complex;y)

4

Comp

Long distance butteries.

BTFLY ZIG(

s

p

;

N

2p

; 4

N

2p

2

;y

s

N

p

)

5

Comp

RFFT extract phase.

RFFT EXTRACT(

s

p

; 1;

N

2p

;y

s

N

p

)

6

Comp

FCT extract phase.

FCT EXTRACT(

s

p

;

N

p

;y

s

N

p

;x

s

N

p

)

7

CpCm

Real permutation from zig-zag cyclic to block distribution.

BSP BlockToZig(s; p;�1;

N

p

; real;x)

Note : In the main routine, vector y is always addressed as real. Hence we use y

s

N

p

and

not y

s

N

2p

to denote the beginning of the local vector.

3.3.3. Inverse transforms. The inverse RFFT, i.e., the inverse FFT of a con-

jugate even complex vector, is obtained by inverting the phases of the forward RFFT

and executing them in reversed order. The inverse RFFT algorithm has the following

phases.
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1. PACK the complex input vector Y as an auxiliary complex vector Z of half

the size:

Z

k

= Y

k

�

1

2

(1� ie

�

2�ik

N

)(Y

k

�

�

Y

N=2�k

); 0 � k < N=2: (3.24)

(To compute Z

0

use the special packing of Y.)

2. TRANSFORM the auxiliary vector using an inverse CFFT of half the size:

z

j

=

1

N=2

N=2�1

X

k=0

Z

k

e

�

2�ijk

N=2

; 0 � j < N=2:

3. EXTRACT the desired inverse RFFT from the transformed auxiliary vector:

y

2j

= Re(z

j

); y

2j+1

= Im(z

j

); 0 � j < N=2: (3.25)

The pack phase (3.24), which is similar to the extract phase (3.7) of the RFFT,

is carried out in two phases: phase one permutes the input vector to the zig-zag

cyclic distribution; phase two executes the local part of (3.24) by calling subroutine

RFFT EXTRACT with sign = �1, � = s=p, n = N=(2p), and the local part of the

(� permuted) complex vector y as parameters. To reduce the communication to a

minimum, the transform phase is carried out using a transposed version of the inverse

CFFT algorithm (see below). The extract phase can be skipped since the complex

vector was packed as real.

The transposed version of the inverse CFFT algorithm is obtained by the following

decomposition of the inverse Fourier matrix F

�1

N

:

NF

�1

N

=

�

F

T

N

= P

N

�

A

T

2;N

�

A

T

4;N

�

A

T

8;N

� � �

�

A

T

N;N

: (3.26)

Note that

�

A

T

K;N

= I

N=K




�

B

T

K

and

�

B

T

K

=

"

I

K=2

I

K=2

�




K=2

�

�




K=2

#

: (3.27)

(

�

B

T

K

is also known as Gentleman-Sande buttery.) Computing the inverse CFFT

using (3.26) amounts to reversing the order of the stages of the CFFT and transposing

each stage. This means that no permutation back to block distribution is needed after

the pack phase, because the long distance butteries can be locally performed on a

vector that is already zig-zag cyclically distributed. (If we had used the same CFFT

algorithm as in the forward transform, but with di�erent sign, i.e., conjugated weights,

an extra permutation would have been needed.)

Algorithm 3.7 is a template for the inverse RFFT. As in the forward version,

the template only hands over the work to its subroutines. Note that the resulting

vector still needs to be scaled by dividing it by N=2. To complete the description
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of the inverse RFFT we give a template for the transposed generalized butteries,

subroutine TBTFLY ZIG, as Algorithm 3.8.

Similarly to the inverse RFFT algorithm, the inverse FCT algorithm is obtained

by inverting the various phases and performing them in reversed order. We do not

give a template.

Algorithm 3.7 Template for the parallel backward real fast Fourier transform.

CALL BSP RFFT(s; p; sign = �1; N;y).

ARGUMENTS

s: Processor identi�cation; 0 � s < p.

p: Number of processors; p is a power of 2 with p <

p

N=2.

sign = �1: Transform direction is backward.

N : Transform size; N is a power of 2 with N � 2.

y = (Re(Y

0

);Re(Y

N=2

);Re(Y

1

); Im(Y

1

); : : : ;Re(Y

N=2�1

); Im(Y

N=2�1

)): Complex vector

of size N , such that Y

N�k

=

�

Y

k

, packed as real using (3.2) (block distributed).

OUTPUT y  (y

0

; y

1

; : : : ; y

N�1

), where y

j

=

P

N�1

k=0

Y

k

exp(�2�ijk=N), 0 � j � N � 1,

(y

j

2 R).

DESCRIPTION

1

CpCm

Permutation to zig-zag cyclic distribution.

BSP BlockToZig(s; p; 1;

N

2p

; complex;y)

2

Comp

Inverse RFFT pack phase.

RFFT EXTRACT(

s

p

;�1;

N

2p

;y

s

N

p

)

3

Comp

Long distance transposed butteries.

TBTFLY ZIG(

s

p

;

N

2p

; 4

N

2p

2

;y

s

N

p

)

4

CpCm

Permutation to block distribution.

BSP BlockToZig(s; p;�1;

N

2p

; complex;y)

5

Comp

Short distance transposed butteries.

TBTFLY ZIG(0;

N

2p

; 4;y

s

N

p

)

6

CpCm

Parallel complex bit reversal permutation.

BSP BitRev(s; p;N=2;y)

Note : In the main routine, vector y is always addressed as real. Hence we use y

s

N

p

and

not y

s

N

2p

to denote the beginning of the local vector.

3.4. Simultaneous fast cosine transform of two vectors

Our main motivation in developing an algorithm that computes the FCT of two

vectors simultaneously (FCT2) was to apply it in the fast Legendre transform algo-

rithm discussed in the following chapter. However, such an algorithm can be used in

other applications that need to compute the FCT of more than one vector at a time,
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Algorithm 3.8 Template for the sequential transposed conjugate generalized zig-zag

buttery operations.

CALL TBTFLY ZIG(�; n; k

0

;y).

ARGUMENTS

�: Buttery parameter, used to compute the correct weights; 0 � � < 1.

n: Vector size; n is a power of 2 with n � 2.

k

0

: Smallest 4-buttery size; k

0

is a power of 2 with 4 � k

0

� 2n.

y = (y

0

; : : : ; y

n�1

): Complex vector of size n.

OUTPUT y (

~

A

�

k

0

=2;n

)

T

(

~

A

�

k

0

;n

)

T

: : : (

~

A

�

n;n

)

T

y.

DESCRIPTION

1. Perform pairs of buttery stages (

~

A

�

k=2;n

)

T

(

~

A

�

k;n

)

T

.

k n

while k � k

0

do

for t = 0 to n � k step k do

for j = 0 to k=4� 1 do

if j is even or � = 0 then �

1

 � else �

1

 1� �

a y

t+j

+ y

t+j+k=2

b y

t+j

� y

t+j+k=2

c y

t+j+k=4

+ y

t+j+3k=4

d y

t+j+k=4

� y

t+j+3k=4

y

t+j

 a+ c

y

t+j+k=4

 �w

2(j+�

1

)

k

(a� c)

y

t+j+k=2

 �w

j+�

1

k

(b� id)

y

t+j+3k=4

 �w

3(j+�

1

)

k

(b+ id)

k k=4

2. Perform the last buttery stage (

~

A

�

k

0

=2;n

)

T

.

if k = k

0

=2 then

for t = 0 to n � k step k do

for j = 0 to k=2� 1 do

if j is even or � = 0 then �

1

 � else �

1

 1� �

a y

t+j

� y

t+j+k=2

y

t+j

 y

t+j

+ y

t+j+k=2

y

t+j+k=2

 �w

j+�

1

k

� a

for instance a two-dimensional FCT. The new algorithm is based on the same FCT

algorithm we used as the basis for our parallel FCT algorithm [37], and on standard

techniques for computing the FFTs of two real input vectors at the same time (see

e.g. [41]).

3.4.1. Derivation. The FCT2 is computed as follows. Let x and y be the input

vectors of length N . We view x and y as the real and imaginary part of a complex

vector (x+ i y). The pack-transform-extract phases are described below.
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1. PACK the input data into an auxiliary complex vector z of length N :

(

z

j

= (x

2j

+ i y

2j

);

z

N�j�1

= (x

2j+1

+ i y

2j+1

); 0 � j < N=2:

(3.28)

2. TRANSFORM the auxiliary complex vector using a CFFT of size N :

Z

k

=

N�1

X

j=0

z

j

e

2�ijk

N

; 0 � k < N:

3. EXTRACT the two FCTs from the transformed vector:

(~x

k

+ i~y

k

) =

1

2

(e

�ik

2N

Z

k

+ e

�

�ik

2N

Z

N�k

); 0 � k < N: (3.29)

(To compute ~x

0

+ i~y

0

remember that Z

N

= Z

0

.)

To verify that the procedure above indeed produces the desired FCTs, we �rst

compute

e

�ik

2N

Z

k

=

N=2�1

X

j=0

[(x

2j

+ iy

2j

)e

�ik(4j+1)

2N

+ (x

2j+1

+ iy

2j+1

)e

�

�ik(4j+3)

2N

]; (3.30)

and

e

�

�ik

2N

Z

N�k

=

N=2�1

X

j=0

[(x

2j

+ iy

2j

)e

�

�ik(4j+1)

2N

+ (x

2j+1

+ iy

2j+1

)e

�ik(4j+3)

2N

]: (3.31)

Now, by adding (3.30) to (3.31), and dividing the result by 2 we obtain (3.29):

1

2

(e

�ik

2N

Z

k

+ e

�

�ik

2N

Z

N�k

) =

=

1

2

N=2�1

X

j=0

[(x

2j

+ iy

2j

)(e

�ik(4j+1)

2N

+ e

�

�ik(4j+1)

2N

)

+ (x

2j+1

+ iy

2j+1

)(e

�

�ik(4j+3)

2N

+ e

�ik(4j+3)

2N

)]

=

N=2�1

X

j=0

[(x

2j

+ iy

2j

) cos

2 � 2j + 1

2N

k� + (x

2j+1

+ iy

2j+1

) cos

2 � (2j + 1) + 1

2N

k�]

=

N�1

X

j=0

(x

j

+ iy

j

) cos

2j + 1

2N

k� = ~x

k

+ i~y

k

:

The inverse FCT2 transform is obtained by inverting the procedure described

above. The inverted phases are performed in the reverse order, which gives the fol-

lowing result.
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1. PACK the input data into the auxiliary complex vector Z:

Z

k

= e

�

�ik

2N

[(~x

k

+ i ~y

k

) + i(~x

N�k

+ i ~y

N�k

)]; 0 � k < N: (3.32)

(Z

0

is obtained using ~x

N

= ~y

N

= 0.)

2. TRANSFORM the auxiliary vector using an inverse CFFT of size N :

z

k

=

1

N

N�1

X

j=0

Z

j

e

�

2�ijk

N

; 0 � k < N:

3. EXTRACT the two inverse FCTs from the transformed vector:

(

(x

2j

+ iy

2j

) = z

j

;

(x

2j+1

+ iy

2j+1

) = z

N�j�1

; 0 � j < N=2:

(3.33)

3.4.2. Parallel forward transform. The template for the forward FCT2 is

shown as Algorithm 3.9. Throughout the algorithm, the real vectors x and y (to be

transformed) are viewed as the complex vector z = x+ iy of size N . The algorithm is

given in terms of complex numbers, because using the complex-packed-as-real notation

could lead to confusion. Note that formulating the algorithm using the two real vectors

x and y as input and output does not imply any extra overhead as long as the two

permutations at the beginning and at the end of the algorithm are modi�ed to serve

this purpose.

The pack phase combined with the bit reversal gives the permutation

% : f0; : : : ; N � 1g ! f0; : : : ; N � 1g

j 7! l =

8

<

:

rev

N

(j div 2); if j is even;

N � rev

N

(j div 2)� 1; otherwise:

(3.34)

Note that %

�1

= %. This is easily proven using the binary representation of j. The

property %

�1

= % implies that the permutation % can be performed by a sequence of

independent swaps of pairs (j; %(j)). This implies that, in the sequential case, this

permutation can easily be performed in place, and, therefore, the sequential FCT2 al-

gorithm can also be easily performed in place. Subroutine BSP Rho (Algorithm 3.10)

is a parallel version of permutation %. It consists of a local modi�ed �

2;

N

p

permutation,

followed by a global permutation of packets and a local bit reversal.

The short and long distance buttery phases of the CFFT are performed by the

subroutine BTFLY ZIG (Algorithm 3.2). Note that, since the transform phase is a

CFFT of size N , the restriction on p is relaxed to p <

p

N .
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Algorithm 3.9 Template for the parallel forward fast cosine transform of two vectors.

CALL BSP FCT2(s; p; sign = 1; N; z).

ARGUMENTS

s: Processor identi�cation; 0 � s < p.

p: Number of processors; p is a power of 2 with p <

p

N .

sign = 1: Transform direction is forward.

N : Transform size; N is a power of 2 with N � 2.

z = (x

0

+ iy

0

; : : : ; x

N�1

+ iy

N�1

): Two real vectors of size N packed as complex (block

distributed).

OUTPUT z (~x

0

+ i~y

0

; : : : ; ~x

N�1

+ i~y

N�1

), where ~x

k

=

P

N�1

j=0

x

j

cos(�(j +

1

2

)k=N),

and ~y

k

=

P

N�1

j=0

y

j

cos(�(j +

1

2

)k=N).

DESCRIPTION

1

Comm

Parallel % permutation.

BSP Rho(s; p;

N

p

; z)

2

Comp

Short distance butteries.

BTFLY ZIG(0;

N

p

; 4; z

s

N

p

)

3

CpCm

Complex permutation to zig-zag cyclic distribution.

BSP BlockToZig(s; p; 1;

N

p

; complex; z)

4

Comp

Long distance butteries.

BTFLY ZIG(

s

p

;

N

p

; 4

N

p

2

; z

s

N

p

)

5

Comp

FCT2 extract phase.

FCT2 EXTRACT(

s

p

;

N

p

; z

s

N

p

)

6

CpCm

Complex permutation to block distribution.

BSP BlockToZig(s; p;�1;

N

p

; complex; z)

The extract phase is performed by subroutine FCT2 EXTRACT (Algorithm 3.11)

which executes the following local extract operation

~z

k

0

 

1

2

(e

�i(k

0

+�

1

)

2n

Z

k

0

+ e

�

�i(k

0

+�

1

)

2n

Z

n�k

0

�d�e

); 0 � k

0

< n; (3.35)

where n = N=p, � = s=p, and �

1

is de�ned by (3.13). If the global vectors z and Z

used in the extract phase (3.29) are both permuted by �

p;N

, it is possible to prove

that (3.35) corresponds to the local part of the extract phase (3.29). This is done

with the help of Lemmas 3.4 and 3.5. Exploiting the symmetries in (3.35), subroutine

FCT2 EXTRACT has cost

C

FCT2 EXTRACT

(n) = 10n; (3.36)

provided that the sines and cosines are stored in a table. The total cost of the FCT2

algorithm is the cost of a CFFT of size N (C

FFT;par

(N; p), cf. (2.38)) plus the cost
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Algorithm 3.10 Template for the parallel % permutation.

CALL BSP Rho(s; p; b;y).

ARGUMENTS

s: Processor identi�cation; 0 � s < p.

p: Number of processors.

b: Block size; 2p divides b.

y = (y

0

; : : : ; y

p�b�1

): Vector of size p � b (block distributed).

OUTPUT y

%(j)

 y

j

, 0 � j < p � b.

DESCRIPTION

1

Comp

Local permutation.

for j

0

= 0 to b� 1 do

if j

0

is even then j

0

 j

0

div(2p) else j

0

 

b

2p

� j

0

div(2p)� 1

x

s�b+j

0

mod(2p)�

b

2p

+j

0

 y

s�b+j

0

2

Comm

Global permutation of packets.

for j

0

= 0 to b� 1 step

b

p

do

proc = rev

p

(j

0

div

b

p

)

y

proc�b+s�

b

2p

 Put(proc;

b

2p

; x

s�b+j

0

)

y

(p�proc�1)�b+(2p�s�1)�

b

2p

 Put(p� proc� 1;

b

2p

; x

s�b+j

0

+

b

2p

)

Synchronize

3

Comp

Local bit reversal permutation.

for j

0

= 0 to b� 1 do

if j

0

< rev

b

(j

0

) then y

s�b+rev

b

(j

0

)

$ y

s�b+j

0

Algorithm 3.11 Template for the sequential extract phase of the FCT2.

CALL FCT2 EXTRACT(�; n; z).

ARGUMENTS

�: Parameter used to compute the correct weights; 0 � � < 1.

n: Vector size; n is a power of 2 with n � 2.

z = (Z

0

; : : : ; Z

n�1

): Complex vector of size n.

OUTPUT z (~z

0

; : : : ; ~z

n�1

), computed using (3.35).

DESCRIPTION

if � = 0 then

z

n=2

 cos(

�

4

) � z

n=2

k

0

 1

else k

0

 0

for k

0

= k

0

to n=2 � 1 do

if k

0

is even or � = 0 then �

1

 � else �

1

 1� �

sum 

1

2

(z

k

0

+ z

n�k

0

�d�e

)

diff  

1

2

(z

k

0

� z

n�k

0

�d�e

)

z

k

0

 cos(

�(k

0

+�

1

)

2n

) � sum+ i sin(

�(k

0

+�

1

)

2n

) � diff

z

n�k

0

�d�e

 sin(

�(k

0

+�

1

)

2n

) � sum� i cos(

�(k

0

+�

1

)

2n

) � diff
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of the extract phase (C

FCT2 EXTRACT

(N=p) = 10N=p):

C

FCT2,par

(N; p) =

17

4

N

p

log

2

N + 10

N

p

+ 6

N

p

� g + 3 � l: (3.37)

3.4.3. Parallel backward transform. The template for the backward FCT2

is shown as Algorithm 3.12. It works as follows. Before executing the pack phase,

the input vector is permuted to the zig-zag cyclic distribution. The pack phase is

carried out by the subroutine FCT2 PACK (Algorithm 3.13) which performs the

local operation:

Z

k

 e

�

�i(k

0

+�

1

)

2n

(~z

k

0

+ i~z

n�k

0

�d�e

); 0 � k

0

< n; (3.38)

Algorithm 3.12 Template for the parallel backward fast cosine transform of two

vectors.

CALL BSP FCT2(s; p; sign = �1; N; z).

ARGUMENTS

s: Processor identi�cation; 0 � s < p.

p: Number of processors; p is a power of 2 with p <

p

N .

sign = �1: Transform direction is backward.

N : Transform size; N is a power of 2 with N � 2.

z = (~x

0

+ i~y

0

; : : : ; ~x

N�1

+ i~y

N�1

): Two real vectors of size N packed as complex (block

distributed).

OUTPUT z (x

0

+ iy

0

; : : : ; x

N�1

+ iy

N�1

), where x

j

=

1

N

P

N�1

k=0

�

k

~x

k

cos(�(j+

1

2

)k=N),

and y

j

=

1

N

P

N�1

k=0

�

k

~y

k

cos(�(j +

1

2

)k=N).

DESCRIPTION

1

CpCm

Complex permutation from block to zig-zag cyclic distribution.

BSP BlockToZig(s; p; 1;

N

p

; complex; z)

2

Comp

Backward FCT2 pack phase.

FCT2 PACK(

s

p

;

N

p

; z

s

N

p

)

3

Comp

Long distance butteries.

TBTFLY ZIG(

s

p

;

N

p

; 4

N

p

2

; z

s

N

p

)

4

CpCm

Complex permutation from zig-zag cyclic to block distribution.

BSP BlockToZig(s; p;�1;

N

p

; complex; z)

5

Comp

Short distance butteries.

TBTFLY ZIG(0;

N

p

; 4; z

s

N

p

)

6

Comp

Normalization of the CFFT.

for j = s

N

p

to (s+1)

N

p

�1 do

z

j

 

1

N

� z

j

7

Comm

Parallel %

�1

permutation.

BSP Rho(s; p;

N

p

; z)
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Algorithm 3.13 Template for the sequential pack phase of the backward FCT2.

CALL FCT2 PACK(�; n; z).

ARGUMENTS

�: Parameter used to compute the correct weights; 0 � � < 1.

n: Vector size; n is a power of 2 with n � 2.

z = (~z

0

; : : : ; ~z

n�1

): Complex vector of size n.

OUTPUT z (Z

0

; : : : ; Z

n�1

), computed using (3.38).

DESCRIPTION

if � = 0 then

z

n=2

 2 � cos(

�

4

) � z

n=2

k

0

 1

else k

0

 0

for k

0

= k

0

to n=2 � 1 do

if k

0

is even or � = 0 then �

1

 � else �

1

 1� �

sum z

k

0

+ iz

n�k

0

�d�e

diff  z

k

0

� iz

n�k

0

�d�e

z

k

0

 exp(�

�i(k

0

+�

1

)

2n

) � sum

z

n�k

0

�d�e

 exp(

�i(k

0

+�

1

)

2n

) � diff

where �

1

is de�ned by (3.13). (Here we used ~z

n

= ~x

n

+ i~y

n

= 0 if � = 0.)

With the help of Lemmas 3.4 and 3.5 it is possible to prove that (3.38) corresponds

to the local part of the pack operation (3.32), provided that � = s=p and n = N=p.

Subroutine FCT2 PACK has cost

C

FCT2 PACK

(n) = 8n; (3.39)

provided that the sines and cosines used are stored in a table.

The transform phase is executed using a transposed CFFT algorithm. The extract

phase is combined with the bit reversal giving the permutation %

�1

which is the same

as %. The total cost of the inverse FCT2 is the same as for the forward algorithm.

3.5. Results and discussion

In this section, we present results concerning the performance of our implemen-

tations of the RFFT, FCT, and FCT2 algorithms. Our implementations follow the

same conventions as described in Section 2.5, and were tested on the same machine

(i.e., a Cray T3E with up to 64 processors, with double precision (64-bit) accuracy of

1:0 � 10

�15

). Accuracy results are also given using the more commonly used IEEE

754 oating point arithmetic for which the double precision accuracy is 2:2� 10

�16

.

The execution times represent the time to perform the forward transform followed by

the (normalized) backward transform divided by two.
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3.5.1. Accuracy. We tested the overall accuracy of our implementations by

measuring the relative error (2.46) obtained when transforming a random real vector

f with values uniformly distributed between 0 and 1. In the case of the inverse RFFT,

the same input vector is used, but it is viewed as a conjugate even vector packed

using (3.2). In the case of the FCT2, two di�erent random vectors are transformed,

but we present only the error in the �rst one, which is the same vector as the one

transformed by the FCT.

Table 3.1. Relative errors for the sequential forward RFFT, forward

FCT, and forward FCT2 implementations using a Cray T3E.

N Forward RFFT Forward FCT Forward FCT2

512 2:3� 10

�16

1:2� 10

�15

1:2� 10

�15

1024 5:5� 10

�16

3:0� 10

�15

2:9� 10

�15

2048 8:5� 10

�16

4:1� 10

�15

4:1� 10

�15

4096 2:2� 10

�15

9:0� 10

�15

8:7� 10

�15

8192 3:2� 10

�15

3:0� 10

�14

3:0� 10

�14

16384 6:8� 10

�15

4:8� 10

�14

4:6� 10

�14

32768 2:3� 10

�14

6:8� 10

�14

6:8� 10

�14

65536 3:6� 10

�14

1:6� 10

�13

1:5� 10

�13

Table 3.2. Relative errors for the sequential forward RFFT, forward

FCT, and forward FCT2 implementations using IEEE 754 oating

point arithmetic.

N Forward RFFT Forward FCT Forward FCT2

512 1:5� 10

�16

1:9� 10

�16

1:9� 10

�16

1024 1:8� 10

�16

3:1� 10

�16

3:2� 10

�16

2048 1:8� 10

�16

2:3� 10

�16

2:3� 10

�16

4096 1:8� 10

�16

2:6� 10

�16

2:6� 10

�16

8192 2:0� 10

�16

2:6� 10

�16

2:6� 10

�16

16384 2:1� 10

�16

2:7� 10

�16

2:7� 10

�16

32768 2:2� 10

�16

3:0� 10

�16

3:0� 10

�16

65536 2:2� 10

�16

3:0� 10

�16

3:1� 10

�16

Tables 3.1 and 3.2 show the relative errors of the sequential implementations for

various problem sizes. Only the errors corresponding to the forward transforms are

shown. The errors corresponding to the backward transforms and to the parallel

(forward and backward) transforms are of the same order. Note that the errors
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Table 3.3. Timing results (in ms) obtained for the sequential RFFT

and the sequential CFFT on the Cray T3E.

N Time RFFT Time CFFT/2

32 0:011 0:012

64 0:027 0:017

128 0:039 0:047

256 0:106 0:074

512 0:173 0:204

1024 0:454 0:330

2048 0:756 0:908

4096 2:017 1:471

8192 3:428 9:975

16384 21:947 29:457

32768 63:308 74:895

65536 159:740 159:140

131072 338:350 370:990

corresponding to the sequential and parallel implementations of a transform of a

certain size N are the same, as long as the buttery stages are paired in the same

way. The results show that all the FFT and FFT-like algorithms have about the same

accuracy. Furthermore, the IEEE 754 arithmetic is clearly superior.

3.5.2. Performance of the real FFT. We examine the performance of our

sequential RFFT implementation by comparing it with our sequential CFFT imple-

mentation (see Section 2.5). Table 3.3 con�rms the theoretical prediction that the

execution time of an RFFT should be about half the execution time of a CFFT of the

same length. It is also noticeable that the RFFT performs better when the problem

size N is an odd power of two. In that case, the RFFT is computed using a CFFT of

size N=2, where all buttery stages are paired. This is also the situation where the

CFFT of size N performs worse, since its last buttery stage is not paired.

The timing results obtained by our parallel RFFT implementation are summa-

rized in Table 3.4. As in the sequential case, the execution times are roughly half the

execution times of the corresponding parallel CFFT (cf. Table 2.3), and the RFFT

implementation performs better when all the buttery stages are paired. Note that

the execution times of the parallel RFFT implementation for one processor are larger

than those of the sequential implementation. This happens because, in the parallel

implementation, the permutations from block to zig-zag cyclic distribution and vice
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Table 3.4. Timing results (in ms) obtained for the parallel RFFT

on a Cray T3E.

N seq p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64

512 0:17 0:19 0:26 0:16 0:18 �� �� ��

1024 0:45 0:44 0:45 0:29 0:23 0:24 �� ��

2048 0:76 0:84 0:91 0:50 0:35 0:28 �� ��

4096 2:02 2:05 1:78 1:02 0:60 0:41 0:42 ��

8192 3:43 4:83 4:06 2:00 1:22 0:61 0:53 ��

16384 21:95 25:23 9:88 4:66 2:45 1:27 0:81 0:81

32768 63:31 72:03 37:51 11:86 5:74 2:66 1:50 1:07

65536 159:74 173:99 97:63 44:16 15:32 6:80 3:43 1:92

131072 338:35 376:66 227:13 111:80 52:53 15:61 7:93 3:72

versa, which correspond to the identity permutation when p = 1, are not treated as

special cases, causing a certain overhead.

Comparing the cost functions of the parallel RFFT algorithm (3.17) and of the

parallel CFFT algorithm (2.38) we notice that the computation cost and the com-

munication cost of the RFFT are approximately half those of the CFFT, but the

synchronization costs of both algorithms are the same. From this, we would expect

smaller speedups for the RFFT implementation than for the CFFT implementation, in

particular for small N , which can be veri�ed by comparing Figure 2.4 with Figure 3.5.

The superlinear speedups in Figure 3.5 indicate that the cache e�ect plays an

important role in the scalability results. In the previous chapter, we used FFT op

rates as a way to �lter out the cache e�ect. Since FFT op rates are speci�c to one

algorithm, we do not use them in this chapter, but we use absolute e�ciencies instead.

The absolute e�ciency measure behaves in a similar way as the measure of op rate

per processor. As with the op rate per processor, the ideal e�ciency is a constant

(in this case, equal to one). Theoretically, the e�ciency is a number between zero

and one. In practice, the cache e�ect (or other causes) can lead to e�ciencies larger

than one.

Figure 3.6 shows e�ciency data for the RFFT. For N � 8192, the problem �ts

completely in the cache. Since there is no cache e�ect, the e�ciency is always less

than one and decreases with p. For p � 8, an e�ciency of approximately 50% is

achieved, indicating reasonable scalability. For N � 65536, the cache e�ect can

clearly be identi�ed by the sudden increase in the e�ciency values. After identifying

the critical number of processors for the cache e�ect we can analyze the e�ciency

below and above the critical value. Below this point, the e�ciency is nearly constant
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Figure 3.5. Scalability of the RFFT on a Cray T3E measured as

speedup.

at a value of about 80% indicating a very good scalability. Well above this point,

the e�ciency also remains nearly constant, again suggesting a very good scalability.

The dashed lines indicate intermediate cases where the e�ciency initially remains

constant, indicating a very good scalability, but then starts dropping for larger p.

3.5.3. Performance of the FCT and FCT2. The timing results obtained by

our FCT and FCT2 implementations are summarized in Tables 3.5 and 3.6, respec-

tively. The execution times given for the FCT2 implementation are normalized, i.e.,

divided by two, so that they can directly be compared with the execution times of

the FCT implementation. For convenience, we also express the di�erence between the

two transforms as a percentage, (Time

FCT

(N)�Time

FCT2

(N))=Time

FCT

(N)� 100.

The results are presented as Table 3.7. Negative values indicate that the FCT2 im-

plementation performs worse than the FCT implementation.

From Table 3.7 it is clear that in general the FCT2 performs better than the

FCT, with two exceptions. The �rst exception occurs when N and p are such that

the FCT �ts totally (or almost totally) into the cache memory, while the FCT2 does
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Figure 3.6. Scalability of the FFT on a Cray T3E measured as

e�ciency.

not. This means that the FCT implementation already bene�ts from the cache e�ect,

but the FCT2 does not (these cases are marked by the small boxes of the table). The

second exception occurs in the sequential case, and in the parallel case when p = 1.

In these cases, the FCT implementation tends to be better than the FCT2 when N is

an odd power of two. This happens because all the butteries of the FCT algorithm

are paired, but the last buttery of the FCT2 algorithm is not, which means that

the real computational cost of the FCT2 algorithm is larger by 3N=4 (or 3N=8 if the

cost function is normalized), than the cost (3.37), derived for the ideal, all-paired

situation. The reverse is valid when N is an even power of two. In that case the real

computational cost of the FCT algorithm is larger than the cost (3.23) by 3=8N .

In the truly parallel case, with p > 1, the theoretical di�erence between the cost

of the FCT algorithm (3.23) and half the cost of the FCT2 algorithm (3.37) is:

T

FCT

(N; p)�

1

2

T

FCT2

(N; p) =

8

<

:

1

2

N

p

+

3

2

l; if

N

p

is an even power of two,

�

1

4

N

p

+

3

2

l; otherwise:
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Table 3.5. Execution times (in ms) for the FCT on a Cray T3E.

The line indicates the threshold between in-cache computations and

out-of-cache computations.

N seq p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64

512 0:20 0:23 0:29 0:19 0:24 �� �� ��

1024 0:48 0:54 0:49 0:33 0:28 0:31 �� ��

2048 0:91 1:07 1:01 0:56 0:43 0:42 �� ��

4096 2:28 2:71 2:03 1:19 0:71 0:56 0:60 ��

8192 6:63 8:99 5:24 2:54 1:55 0:85 0:82 ��

16384 28:53 39:34 14:39 6:97 3:69 1:96 1:30 1:35

32768 77:59 104:49 50:88 16:81 8:69 4:05 2:41 1:87

65536 183:54 237:29 129:96 57:77 19:38 8:91 4:81 3:01

131072 393:52 500:65 287:75 145:39 64:59 19:21 10:08 5:16

Table 3.6. Normalized execution times (in ms) for the FCT2 on a

Cray T3E.

N seq p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64

512 0:21 0:23 0:22 0:14 0:12 0:15 �� ��

1024 0:40 0:44 0:45 0:25 0:18 0:15 �� ��

2048 0:99 1:11 0:89 0:51 0:30 0:22 0:23 ��

4096 1:88 3:05 2:09 1:01 0:64 0:32 0:30 ��

8192 11:42 14:60 5:60 2:50 1:34 0:67 0:44 0:48

16384 33:61 40:03 19:74 6:51 3:40 1:53 0:88 0:64

32768 82:82 95:29 50:64 22:67 7:96 3:62 1:89 1:11

65536 180:71 204:93 115:52 56:21 26:17 7:86 4:08 1:98

131072 406:39 454:20 244:40 126:32 67:62 26:19 8:63 4:13

Table 3.7. Comparison between the FCT2 and the FCT implemen-

tations. The entries (in percentage) indicate how much faster (posi-

tive values) or slower (negative values) the FCT2 is compared to the

FCT.

N seq p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64

512 �5 2 23 27 52 �� �� ��

1024 16 19 8 26 34 51 �� ��

2048 �8 �4 11 9 30 48 �� ��

4096 18 �13 �3 16 10 42 50 ��

8192 �72 �62 �7 1 14 21 46 ��

16384 �18 �2 �37 7 8 22 32 53

32768 �7 9 0 �35 8 10 21 41

65536 2 14 11 3 �35 12 15 34

131072 �3 9 15 13 �5 �36 14 20
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Figure 3.7. Scalability of the FCT and FCT2 on a Cray T3E.

Note that we added

1

2

N

p

to (3.23) to account for the normalization of the inverse

transform. Since l is often larger than N=p the FCT2 algorithm is, in most cases,

cheaper than the FCT algorithm. Furthermore, the FCT2 algorithm should scale bet-

ter than the FCT algorithm. Figure 3.7 presents the absolute speedups and absolute

e�ciencies obtained for the FCT and FCT2 implementations. As with the RFFT

and CFFT implementations, large problem sizes scale very well with an increase in

the, both before and after the transition from out-of-cache computations to in-cache

computations. Intermediate problem sizes (dashed lines) scale very well before the

transition but poorly for larger p. Small problem sizes scale relatively well for small

p (p � 8; 16).

As an alternative to the FCT2 algorithm we could use a hybrid FCT2 algorithm

which would use the FCT2 algorithm when N=p is an even power of two and the

FCT algorithm when N=p is an odd power of two. The FCT algorithm would have
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to be modi�ed to handle the two transforms at the same time, so that no extra

synchronizations would be needed.

3.6. Conclusions

In this chapter we showed how to construct e�cient CFFT-based parallel algo-

rithms for the discrete Fourier transform of a real vector and for the discrete cosine

transform. By introducing the zig-zag cyclic distribution we were able to develop

parallel algorithms for these transforms that are optimal in the sense that no extra

communication (besides the communication already needed by the CFFT phase) is

needed. The zig-zag cyclic distribution can also be used to develop CFFT-based par-

allel algorithms for other discrete transforms, such as the discrete sine transform (see

e.g. [55]), or to parallelize a similar problem that needs to combine elements which

are at a �xed distance (e.g., j and j +K) and, also, mirror image pairs of elements

such as j and N � j.

Though we only presented algorithms that work for p <

p

N=2 (or p <

p

N for the

FCT2), it is easy to extend them to any p < N that is a power of two, by computing

the medium distance buttery stages in the same way as we did in the CFFT algorithm

of Chapter 2. However, the resulting algorithms are not always optimal as they do

need extra communication when p = (n=p)

H�1

, where H = dlog

n=p

ne, and n = N=2

for the RFFT and for the FCT, or n = N for the FCT2.

To develop e�cient inverse algorithms, we replaced the CFFT algorithm used in

the forward transform by its transposed version. In this way no extra communication

is needed.

We introduced the FCT2 algorithm which computes the DCT of two vectors si-

multaneously. This algorithm is simpler and easier to parallelize than the correspond-

ing FCT algorithm. This was particularly useful in the development of an e�cient

parallel FLT algorithm (see Chapter 4). Though the performance of the sequential

FCT2 algorithm is practically the same as the sequential FCT2 algorithm, the parallel

FCT2 algorithm is in most cases superior to the parallel FCT algorithm.

We presented results concerning the accuracy, e�ciency, and scalability of our

implementations. In general, the implementations of all three algorithms and their

inverses perform very well on the Cray T3E with up to 64 processors. Due to the

cache e�ect, absolute speedups of up to 1:5p were observed. To �lter out the cache

e�ect, we also examined the scalability in terms of absolute e�ciency. We determined

that problems of size N � 32768 (or N � 16384 for the FCT2) scale very well, and

we also determined that smaller problems with size N � 8192 (or N � 4096 for the

FCT2) scale reasonably well up to 8 processors.



4

Fast Legendre

Transform

4.1. Introduction

Discrete Legendre transforms are widely used tools in applied science, commonly

arising in problems associated with spherical geometries. Examples of their applica-

tion include spectral methods for the solution of partial di�erential equations (e.g.,

in global weather forecasting [6, 14]), shape analysis of molecular surfaces [24], sta-

tistical analysis of directional data [28], and geometric quality assurance [27].

A direct method for computing a discrete orthogonal polynomial transform such

as the discrete Legendre transform forN data values requires a matrix-vector multipli-

cation of O(N

2

) arithmetic operations, though several authors [3, 39] have proposed

faster algorithms based on approximate methods. In 1989, Driscoll and Healy intro-

duced an exact algorithm that computes such transforms in O(N log

2

N) arithmetic

operations [21, 22]. They implemented the algorithm and analyzed its stability,

which depends on the speci�c orthogonal polynomial sequence used.

Discrete polynomial transforms are computationally intensive, so for large prob-

lem sizes the ability to use multiprocessor computers is important; at least two reports

discussing the theoretical parallelizability of the algorithm have already been written

[30, 45]. We are, however, unaware of any parallel implementation of the Driscoll-

Healy algorithm at the time of writing.

In this chapter, we derive a new parallel algorithm that has a lower theoretical

time complexity than those of [30, 45], and present a full implementation of this

algorithm. Another contribution is the method used to derive the algorithm. We

93



94 4.2. Driscoll-Healy algorithm

present a method based on polynomial arithmetic to clarify the properties of orthogo-

nal polynomials used by the algorithm, and to remove some unnecessary assumptions

made in [21] and [22].

The remainder of this chapter is organized as follows. In Section 4.2, we de-

scribe some important properties of orthogonal polynomials and orthogonal poly-

nomial transforms, and present a derivation of the Driscoll-Healy algorithm. In Sec-

tion 4.3, we describe a basic parallel algorithm and its implementation. In Section 4.4,

we re�ne the basic algorithm by introducing an intermediate data distribution that

reduces the communication to a minimum. In Section 4.5, we present results on the

accuracy, e�ciency, and scalability of our implementation. We conclude with Sec-

tion 4.6. Appendices C and D describe a generalization of the algorithm and the

precomputation of the data needed by the algorithm.

This chapter is a result of joint work with David K. Maslen and Rob H. Bisseling.

A preliminary version was published in [33], and the full paper has been submitted

to SIAM Journal of Scienti�c Computing.

4.2. Driscoll-Healy algorithm

First, we briey review some basic concepts from the theory of orthogonal poly-

nomials, that we use in the derivation of the Driscoll-Healy algorithm.

4.2.1. Orthogonal polynomials. A sequence of polynomials p

0

; p

1

; p

2

; : : : is

said to be an orthogonal polynomial sequence on the interval [�1; 1] with respect to

the weight function !(x), if deg p

i

= i, and

Z

1

�1

p

i

(x)p

j

(x)!(x)dx = 0; for i 6= j;

Z

1

�1

p

i

(x)

2

!(x)dx 6= 0; for i � 0:

The weight function !(x) is usually nonnegative and continuous on (�1; 1).

Given an orthogonal polynomial sequence fp

i

g, a positive integer N , and two

sequences of numbers x

0

; : : : ; x

N�1

and w

0

; : : : ; w

N�1

called sample points and sample

weights, respectively, we may de�ne the discrete orthogonal polynomial transform of

a data vector (f

0

; : : : ; f

N�1

) to be the vector of sums (

^

f

0

; : : : ;

^

f

N�1

), where

^

f

l

=

^

f(p

l

) =

N�1

X

j=0

f

j

p

l

(x

j

)w

j

: (4.1)

This computation may also be formulated as the multiplication of the matrix with

elements p

l

(x

j

)w

j

in position (l; j) by the column vector (f

0

; : : : ; f

N�1

).
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There are at least four distinct transforms that may be associated with an or-

thogonal polynomial sequence:

1. Given a sequence of function values f

j

= f(x

j

) of a polynomial f of degree less

than N , compute the coe�cients of the expansion of f in the basis fp

k

g. This

expansion transform can also be viewed as a matrix-vector multiplication.

2. Given the coe�cients of a polynomial f in the basis fp

k

g, evaluate f at the

points x

j

. This is the inverse of 1.

3. The transpose of 1. In matrix terms, this is de�ned by the multiplication of

the transpose matrix of 1 and the input vector.

4. The inverse transpose of 1.

The discrete orthogonal polynomial transform (4.1) is equivalent to transform 4 pro-

vided the weights w

j

are identically 1.

Example 4.1 (Legendre polynomials). The Legendre polynomials are orthogo-

nal with respect to the uniform weight function 1 on [�1; 1], and may be de�ned

recursively by

P

l+1

(x) =

2l + 1

l + 1

x � P

l

�

l

l + 1

P

l�1

; P

0

(x) = 1; P

1

(x) = x: (4.2)

The Legendre polynomials are one of the most important examples of orthogonal

polynomials, as they occur as zonal polynomials in the spherical harmonic expan-

sion of functions on the sphere. Our parallel implementation of the Driscoll-Healy

algorithm, to be described later, focuses on the case of Legendre polynomials. For ef-

�ciency reasons, we sample these polynomials at the Chebyshev points, which will be

de�ned below. In this work, we call the discrete orthogonal polynomial transform for

the Legendre polynomials, with sample weights 1=N and with the Chebyshev points

as sample points, the discrete Legendre transform (DLT).

Example 4.2 (Discrete cosine transform and Chebyshev transform). The Cheby-

shev polynomials of the �rst kind are the sequence of orthogonal polynomials de�ned

recursively by

T

k+1

(x) = 2x � T

k

(x) � T

k�1

(x); T

0

(x) = 1; T

1

(x) = x: (4.3)

These are orthogonal with respect to the weight function !(x) = �

�1

(1 � x

2

)

�

1

2

on

[�1; 1], and satisfy T

k

(cos �) = cos(k�) for all real �.

The DCT (discrete cosine transform, cf. (3.3)) of size N is the discrete orthogonal

polynomial transform for the Chebyshev polynomials, with sample weights 1, and

sample points

x

N

j

= cos

(2j + 1)�

2N

; j = 0; : : : ; N � 1; (4.4)
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which are called the Chebyshev points, and are the roots of T

N

. The DCT is num-

bered 4 in the list above.

The Chebyshev transform is the expansion transform (numbered 1 above) for

the Chebyshev polynomials at the Chebyshev points. The Chebyshev transform is

the inverse transpose of the DCT, but the relationship between Chebyshev points

and Chebyshev polynomials implies that the cosine and Chebyshev transforms are

even more closely related. Speci�cally, the coe�cient of T

k

in the expansion of a

polynomial f with degree less than N and with function values f

j

= f(x

N

j

), 0 �

j < N , is �

k

^

f(T

k

)=N , where �

k

is de�ned by (3.5). Thus, to compute the Chebyshev

transform, we can use a DCT and multiply the k-th coe�cient by �

k

=N . Therefore,

the Chebyshev transform is de�ned by

~

f

k

=

�

k

N

N�1

X

j=0

f

j

T

k

(x

N

j

) =

�

k

N

N�1

X

j=0

f

j

cos

(2j + 1)k�

2N

; k = 0; : : : ; N � 1: (4.5)

(In this chapter we use the tilde to denote the Chebyshev transform instead of the

DCT.) The inverse Chebyshev transform, numbered 2 above, is

f

j

=

N�1

X

k=0

~

f

k

T

k

(x

N

j

) =

N�1

X

k=0

~

f

k

cos

(2j + 1)k�

2N

; j = 0; : : : ; N � 1: (4.6)

Compare the de�nition of the Chebyshev transform (4.5) and its inverse (4.6) with

the de�nition of the DCT (3.3) and its inverse (3.4). A DCT can be carried out

in O(N logN) ops by using an FCT algorithm (for an FFT-based algorithm see

Chapter 3 or [2, 55], for a non-FFT-based algorithm see [47]). This also provides us

with a fast Chebyshev Transform (FChT) algorithm. In the discussion that follows

we use a cost function of the form

C

FChT

(N) = �N log

2

N + �N (4.7)

for one FChT of size N , or its inverse. The lower order term is included because we

are often interested in small size transforms, for which this term may be dominant.

One of the important properties of orthogonal polynomials we will use is:

Lemma 4.3 (Gaussian quadrature). Let fp

k

g be an orthogonal polynomial se-

quence for a nonnegative weight function !(x), and z

N

0

; : : : ; z

N

N�1

be the roots of p

N

(which are all real). Then there exist numbers w

N

0

; : : : ; w

N

N�1

> 0, such that for any

polynomial f of degree less than 2N we have

Z

1

�1

f(x)!(x)dx =

N�1

X

j=0

w

N

j

f(z

N

j

):
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The numbers w

N

j

are unique, and are called the Gaussian weights for the sequence

fp

k

g.

Proof. See e.g. [48, Theorem 3.6.12].

Example 4.4. The Gaussian weights for the Chebyshev polynomials with weight

function �

�1

(1� x

2

)

�

1

2

are w

N

j

= 1=N . So, for any polynomial f of degree less than

2N we have

1

�

Z

1

�1

f(x)dx

p

1� x

2

=

1

N

N�1

X

j=0

f(x

N

j

); (4.8)

where x

N

j

= cos

(2j+1)�

2N

are the Chebyshev points.

Another property of orthogonal polynomials that we will need is the existence of

a three-term recurrence relation, such as (4.2) for the Legendre polynomials and (4.3)

for the Chebyshev polynomials.

Lemma 4.5 (Three-term recurrence). Let fp

k

g be an orthogonal polynomial se-

quence for a nonnegative weight function. Then fp

k

g satis�es a three-term recurrence

relation

p

k+1

(x) = (A

k

x+B

k

)p

k

(x) + C

k

p

k�1

(x); (4.9)

where A

k

; B

k

; C

k

are real numbers with A

k

6= 0 and C

k

6= 0.

Proof. See e.g. [48, Theorem 3.6.3].

The Clebsch-Gordan property follows from, and is similar to, the three-term

recurrence.

Corollary 4.6 (Clebsch-Gordan). Let fp

k

g be an orthogonal polynomial se-

quence for a nonnegative weight function. Then for any polynomial Q of degree m we

have

p

l

�Q 2 span

R

fp

l�m

; : : : ; p

l+m

g:

Proof. Rewrite the recurrence (4.9) in the form x�p

l

= A

�1

l

(p

l+1

�B

l

p

l

�C

l

p

l�1

),

and use induction on m.

Iterating the three-term recurrence also gives a more general recurrence between

polynomials in an orthogonal polynomial sequence. De�ne the associated polynomials
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Q

l;m

; R

l;m

for the orthogonal polynomial sequence fp

l

g by the following recurrences

on m, which are shifted versions of the recurrence for p

l

. See e.g. [7, 8].

Q

l;m

(x) = (A

l+m�1

x+B

l+m�1

)Q

l;m�1

(x) + C

l+m�1

Q

l;m�2

(x);

Q

l;0

(x) = 1; Q

l;1

(x) = A

l

x+B

l

;

R

l;m

(x) = (A

l+m�1

x+B

l+m�1

)R

l;m�1

(x) + C

l+m�1

R

l;m�2

(x);

R

l;0

(x) = 0; R

l;1

(x) = C

l

:

(4.10)

Lemma 4.7 (Generalized three-term recurrence). The associated polynomials sat-

isfy degQ

l;m

= m, degR

l;m

� m� 1, and for l � 1 and m � 0,

p

l+m

= Q

l;m

� p

l

+R

l;m

� p

l�1

: (4.11)

Proof. Equation (4.11) follows by induction on m, with the case m = 1 being

the original three-term recurrence (4.9).

In the case where the p

l

are the Legendre polynomials, the associated polynomials

should not be confused with the associated Legendre functions, which in general are

not polynomials.

4.2.2. Derivation of the Driscoll-Healy algorithm. The Driscoll-Healy al-

gorithm [21, 22] allows one to compute orthogonal polynomial transforms at any set

of N sample points, in O(N log

2

N) arithmetic operations. The core of this algorithm

consists of an algorithm to compute orthogonal polynomial transforms in the special

case where the sample points are the Chebyshev points and the sample weights are

identically 1=N . For simplicity we restrict ourselves to this special case, and further-

more we assume that N is a power of 2. In Appendix C, we sketch extensions to more

general problems.

Our derivation of the Driscoll-Healy algorithm relies on the interpretation of the

input data f

j

of the transform (4.1) as the function values of a polynomial f of degree

less than the problem size N . Thus f is de�ned to be the unique polynomial of degree

less than N such that

f(x

N

j

) = f

j

; j = 0; : : : ; N � 1: (4.12)

Using this notation and the relation

f � p

l+m

= Q

l;m

� (f � p

l

) +R

l;m

� (f � p

l�1

); (4.13)

derived from the three-term recurrence (4.11), we may formulate a strategy for com-

puting all the polynomials f � p

l

, 0 � l < N , in log

2

N stages:
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� At stage 0, compute f � p

0

and f � p

1

.

� At stage 1, use (4.13) with l = 1 and m = N=2� 1 or m = N=2, to compute

f � pN

2

= Q

1;

N

2

�1

� (f � p

1

) +R

1;

N

2

�1

� (f � p

0

) and

f � pN

2

+1

= Q

1;

N

2

� (f � p

1

) +R

1;

N

2

� (f � p

0

).

� In general, at each stage k; 1 � k < log

2

N , similarly as before use (4.13) with

l = 2q(N=2

k

) + 1, 0 � q < 2

k�1

, and m = N=2

k

� 1 or N=2

k

, to compute the

polynomial pairs

f � p N

2

k

; f � p N

2

k

+1

; f � p 3N

2

k

; f � p 3N

2

k

+1

; � � � ; f � p

(2

k

�1)N

2

k

; f � p

(2

k

�1)N

2

k

+1

.

The problem with this strategy is that computing a full representation of each

polynomial f �p

l

generates much more data, at each stage, than is needed to compute

the �nal output. To overcome this problem the Driscoll-Healy algorithm uses Cheby-

shev truncation operators to discard unneeded information at the end of each stage.

Let f =

P

k�0

b

k

T

k

be a polynomial, of any degree, written in the basis of Chebyshev

polynomials, and let n be a positive integer. Then the truncation operator T

n

applied

to f is de�ned by

T

n

f =

n�1

X

k=0

b

k

T

k

: (4.14)

The important properties of T

n

are given in Lemma 4.8.

Lemma 4.8. Let f and Q be polynomials. Then, the following holds.

1. T

1

f =

R

1

�1

f(x)!(x)dx, where !(x) = �

�1

(1� x

2

)

�

1

2

.

2. If M � K, then T

M

T

K

= T

M

.

3. If degQ � m � K, then T

K�m

(f �Q) = T

K�m

[(T

K

f) �Q].

Proof. Part 1 follows from the orthogonality of Chebyshev polynomials, as T

1

f

is just the constant term of f in its expansion in Chebyshev polynomials. Part 2 is

a trivial consequence of the de�nition of truncation operators. For Part 3 we assume

that f =

P

k�0

b

k

T

k

is a polynomial, and that degQ � m � K. By Corollary 4.6,

T

k

� Q is in the linear span of T

k�m

; : : : ; T

k+m

, so T

K�m

(T

k

� Q) = 0 for k � K.

Therefore

T

K�m

(f �Q) = T

K�m

0

@

X

k�0

b

k

T

k

�Q

1

A

= T

K�m

 

K�1

X

k=0

b

k

T

k

�Q

!

= T

K�m

[(T

K

f) �Q]:

As a corollary of Part 1 of Lemma 4.8, we see how we can retrieve the discrete

orthogonal polynomial transform from the f � p

l

's computed by the strategy above,

by a simple truncation.
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Corollary 4.9. Let f be the unique polynomial of degree less than N such that

f(x

N

j

) = f

j

, 0 � j < N . Let fp

k

g be an orthogonal polynomial sequence. Then

^

f

l

= T

1

(f � p

l

); 0 � l < N;

where the

^

f

l

form the discrete orthogonal polynomial transform of f of size N with

respect to the sample points x

N

j

and sample weights 1=N .

Proof. This follows from the de�nition of discrete orthogonal polynomial trans-

forms, the Gaussian quadrature rule (4.8) for Chebyshev polynomials applied to the

function f � p

l

, and Lemma 4.8,

^

f

l

=

1

N

N�1

X

j=0

f(x

N

j

)p

l

(x

N

j

) =

1

�

Z

1

�1

f(x)p

l

(x)

p

1� x

2

dx = T

1

(f � p

l

):

The key property of the truncation operators T

n

is the `aliasing' property (Part 3

of Lemma 4.8), which states that we may use a truncated version of f when computing

a truncated product of f and Q. For example, if we wish to compute the truncated

product T

1

(f � p

l

) with l; deg f < N then, because deg p

l

= l, we may apply Part 3 of

Lemma 4.8 with m = l and K = l + 1 to get

^

f

l

= T

1

(f � p

l

) = T

1

[(T

l+1

f) � p

l

]:

Thus, we only need to know the �rst l+1 Chebyshev coe�cients of f to compute

^

f

l

.

The Driscoll-Healy algorithm follows the strategy described above, but computes

truncated polynomials

Z

K

l

= T

K

(f � p

l

) (4.15)

for various values of l and K, instead of the original polynomials f � p

l

. The input is

the polynomial f and the output is

^

f

l

= T

1

(f � p

l

) = Z

1

l

, 0 � l < N .

Each stage of the algorithm uses truncation operators to discard unneeded in-

formation, which keeps the problem size down. Instead of using the generalized

three-term recurrence (4.13) directly, each stage uses truncated versions. Speci�cally,

(4.13) and Part 3 of Lemma 4.8 imply the following recurrences for the Z

K

l

:

Z

K�m

l+m�1

= T

K�m

[Z

K

l

�Q

l;m�1

+ Z

K

l�1

� R

l;m�1

]; (4.16)

Z

K�m

l+m

= T

K�m

[Z

K

l

�Q

l;m

+ Z

K

l�1

� R

l;m

]; (4.17)

for K � m. We will use the special case with 2K instead of K and m = K,

Z

K

l+K�1

= T

K

[Z

2K

l

�Q

l;K�1

+ Z

2K

l�1

�R

l;K�1

]; (4.18)

Z

K

l+K

= T

K

[Z

2K

l

�Q

l;K

+ Z

2K

l�1

�R

l;K

]: (4.19)
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4 6 8

stage 4: output

stage 3

stage 2

stage 1

stage 0

1

4

8

2

16

K

0 2

l

10 12 14

Figure 4.1. The computation of Z

K

l

for N = 16.

The algorithm proceeds in log

2

N +1 stages, as shown in Algorithm 4.1. The or-

ganization of the computation is illustrated in Figure 4.1. The vertical lines represent

the truncated polynomials Z

K

l

and their height indicates the number of Chebyshev

coe�cients initially appearing. At each stage the polynomials computed are truncated

at the height indicated by the grayscales.

Algorithm 4.1 Polynomial version of the Driscoll-Healy algorithm.

INPUT (f

0

; : : : ; f

N�1

): Polynomial de�ned by f

j

= f(x

N

j

); N is a power of 2.

OUTPUT (

^

f

0

; : : : ;

^

f

N�1

): Transformed polynomial with

^

f

l

= T

1

(f � p

l

) = Z

1

l

.

STAGES

0. Compute Z

N

0

 f � p

0

and Z

N

1

 T

N

(f � p

1

).

k. for k = 1 to log

2

N � 1 do

K  

N

2

k

for l = 1 to N � 2K + 1 step 2K do

(a) Use recurrence (4.18) and (4.19) to compute new polynomials.

Z

K

l+K�1

 T

K

�

Z

2K

l

�Q

l;K�1

+ Z

2K

l�1

�R

l;K�1

�

Z

K

l+K

 T

K

�

Z

2K

l

�Q

l;K

+ Z

2K

l�1

�R

l;K

�

(b) Truncate old polynomials.

Z

K

l�1

 T

K

Z

2K

l�1

Z

K

l

 T

K

Z

2K

l

log

2

N . for l = 0 to N � 1 do

^

f

l

 Z

1

l

4.2.3. Data representation and recurrence procedure. The description of

the Driscoll-Healy algorithm we have given is incomplete. We still need to specify

how to represent the polynomials in the algorithm, and describe the methods used to
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multiply two polynomials and to apply the truncation operators T

K

. This is done in

the following subsections.

4.2.3.1. Chebyshev representation of polynomials. Truncation of a polynomial

requires no computation if the polynomial is represented by the coe�cients of its

expansion in Chebyshev polynomials. Therefore we use the Chebyshev coe�cients z

l

n

de�ned by

Z

K

l

=

K�1

X

n=0

z

l

n

T

n

; (4.20)

to represent all the polynomials Z

K

l

appearing in the algorithm. Such a representation

of a polynomial is called the Chebyshev representation.

The input polynomial f of degree less than N is given as the vector f =

(f

0

; : : : ; f

N�1

) of values f

j

= f(x

N

j

). This is called the point value representation

of f . In stage 0, we convert Z

N

0

= T

N

(f � p

0

) = f � p

0

and Z

N

1

= T

N

(f � p

1

) to their

Chebyshev representation. For f � p

0

this can be done by a Chebyshev transform on

the vector of function values, with the input values multiplied by the constant p

0

. For

f � p

1

we also use a Chebyshev transform of size N , though f � p

1

may have degree N ,

rather than N � 1. This poses no problem, because applying Part 4 of Lemma 4.10

from the next subsection with h = f � p

1

and K = N proves that f � p

1

agrees with

Z

N

1

at the sampling points x

N

j

. Stage 0 becomes:

Stage 0. Compute the Chebyshev representation of Z

N

0

and Z

N

1

.

(a) (z

0

0

; : : : ; z

0

N�1

) Chebyshev(f

0

p

0

; : : : ; f

N�1

p

0

)

(b) (z

1

0

; : : : ; z

1

N�1

) Chebyshev(f

0

p

1

(x

N

0

); : : : ; f

N�1

p

1

(x

N

N�1

))

Stage 0 takes a total of 2�N log

2

N + 2�N + 2N ops, where the third term

represents the 2N ops needed to multiply f with p

0

and p

1

.

4.2.3.2. Recurrence using Chebyshev transforms. To apply the recurrences (4.18)

and (4.19) e�ciently, we do the following.

1. Apply inverse Chebyshev transforms of size 2K to bring the polynomials

Z

2K

l�1

; Z

2K

l

into point value representation at the points x

2K

j

, 0 � j < 2K.

2. Perform the multiplications and additions.

3. Apply a forward Chebyshev transform of size 2K to bring the result into

Chebyshev representation.

4. Truncate the results to degree less than K.

This procedure replaces the polynomial multiplications in the recurrences (4.18)

and (4.19) by a slightly di�erent operation. Because the multiplications are made

in only 2K points whereas the degree of the resulting polynomial could be 3K � 1,
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we must verify that the end result is the same. To describe the operation formally,

we introduce the Lagrange interpolation operators S

K

, for positive integers K. For

any polynomial h, the Lagrange interpolation polynomial S

K

h is the polynomial of

degree less than K which agrees with h at the points x

K

0

; : : : ; x

K

K�1

. The important

properties of S

K

are given in Lemma 4.10.

Lemma 4.10. Let g and h be polynomials. Then, the following holds.

1. If degh < K, then S

K

h = h.

2. S

K

(g � h) = S

K

((S

K

g) � (S

K

h)).

3. Let K � m. If degh � K +m, then T

K�m

h = T

K�m

S

K

h.

4. If degh = K, then S

K

h = T

K

h.

Proof. Parts 1 and 2 are easy. To prove Part 3 assume that degh � K+m. By

long division, there is a polynomial Q of degree at mostm such that h = S

K

h+T

K

�Q.

Applying T

K�m

, and using Part 3 of Lemma 4.8, we obtain

T

K�m

S

K

h = T

K�m

h� T

K�m

[T

K

�Q] = T

K�m

h� T

K�m

[(T

K

T

K

) �Q] = T

K�m

h;

since T

K

T

K

= 0. For Part 4 we note that degS

K

h < K, and use Part 3 with m = 0

to get S

K

h = T

K

S

K

h = T

K

h.

From the recurrences (4.18) and (4.19) and Part 3 of Lemma 4.10 with 2K instead

of K and m = K it follows that

Z

K

l+K�1

= T

K

[S

2K

(Z

2K

l

�Q

l;K�1

) + S

2K

(Z

2K

l�1

� R

l;K�1

)]; (4.21)

Z

K

l+K

= T

K

[S

2K

(Z

2K

l

�Q

l;K

) + S

2K

(Z

2K

l�1

�R

l;K

)]: (4.22)

These equations are exactly the procedure described above. The inner loop of stage

k of Algorithm 4.1 becomes:

(a) Compute the Chebyshev representation of Z

K

l+K�1

and Z

K

l+K

.

(z

l+K�1

0

; : : : ; z

l+K�1

K�1

; z

l+K

0

; : : : ; z

l+K

K�1

)

 Recurrence

K

l

(z

l�1

0

; : : : ; z

l�1

2K�1

; z

l

0

; : : : ; z

l

2K�1

)

(b) Compute the Chebyshev representation of Z

K

l�1

and Z

K

l

.

Discard (z

l�1

K

; : : : ; z

l�1

2K�1

) and (z

l

K

; : : : ; z

l

2K�1

).

Algorithm 4.2 describes in detail the recurrence procedure, which costs

C

Recurrence

(K) = 4(� � 2K log

2

2K + � � 2K) + 12K

= 8�K log

2

K + (8�+ 8� + 12)K:

(4.23)
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Algorithm 4.2 Recurrence procedure using the Chebyshev transform.

CALL Recurrence

K

l

(

~

f

0

; : : : ;

~

f

2K�1

; ~g

0

; : : : ; ~g

2K�1

).

INPUT

~

f = (

~

f

0

; : : : ;

~

f

2K�1

) and
~
g = (~g

0

; : : : ; ~g

2K�1

): First 2K Chebyshev coe�cients of

input polynomials Z

2K

l�1

and Z

2K

l

; K is a power of 2.

OUTPUT
~
u = (~u

0

; : : : ; ~u

K�1

) and
~
v = (~v

0

; : : : ; ~v

K�1

): First K Chebyshev coe�cients of

output polynomials Z

K

l+K�1

and Z

K

l+K

.

STEPS

1. Transform

~

f and
~
g to point-value representation.

(f

0

; : : : ; f

2K�1

) Chebyshev

�1

(

~

f

0

; : : : ;

~

f

2K�1

)

(g

0

; : : : ; g

2K�1

) Chebyshev

�1

(~g

0

; : : : ; ~g

2K�1

)

2. Perform the recurrence.

for j = 0 to 2K � 1 do

u

j

 Q

l;K�1

(x

2K

j

) g

j

+R

l;K�1

(x

2K

j

) f

j

v

j

 Q

l;K

(x

2K

j

) g

j

+R

l;K

(x

2K

j

) f

j

3. Transform u and v to Chebyshev representation.

(~u

0

; : : : ; ~u

2K�1

) Chebyshev(u

0

; : : : ; u

2K�1

)

(~v

0

; : : : ; ~v

2K�1

) Chebyshev(v

0

; : : : ; v

2K�1

)

4. Discard (~u

K

; : : : ; ~u

2K�1

) and (~v

K

; : : : ; ~v

2K�1

).

4.2.4. Early termination. At late stages in the Driscoll-Healy algorithm, the

work required to apply the recursion amongst the Z

K

l

is larger than that required to

�nish the computation using a naive matrix-vector multiplication. It is then more

e�cient to use the vectors Z

K

l

computed so far directly to obtain the �nal result, as

follows.

Let q

n

l;m

and r

n

l;m

denote the Chebyshev coe�cients of the polynomials Q

l;m

and

R

l;m

respectively, so that

Q

l;m

=

m

X

n=0

q

n

l;m

T

n

; R

l;m

=

m�1

X

n=0

r

n

l;m

T

n

: (4.24)

The problem of �nishing the computation at the end of stage k = log

2

(N=M),

when K = M , is equivalent to �nding

^

f

l

= z

l

0

, for 0 � l < N , given the data z

l

n

,

z

l�1

n

, 0 � n < M , l = 1;M + 1; 2M + 1; : : : ; N �M + 1. Our method of �nishing

the computation is to use Part 1 of Lemma 4.11, which follows. Part 2 of this lemma

can be used to halve the number of computations in the common case where the

polynomial recurrence (4.9) has a coe�cient B

k

= 0 for all k.

Lemma 4.11. 1. If l � 1 and 0 � m < M , then

^

f

l+m

=

m

X

n=0

1

�

n

(z

l

n

q

n

l;m

+ z

l�1

n

r

n

l;m

): (4.25)
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2. If p

l

satis�es a recurrence of the form p

l+1

(x) = A

l

xp

l

(x) + C

l

p

l�1

(x), then

q

n

l;m

= 0; if n�m is odd, and

r

n

l;m

= 0; if n�m is even.

Proof. By (4.17) with K = M ,

^

f

l+m

= Z

1

l+m

is the constant term of the

Chebyshev expansion of Z

M

l

�Q

l;m

+ Z

M

l�1

�R

l;m

. To �nd this constant term in terms

of the Chebyshev coe�cients of Z

M

l

; Z

M

l�1

and of Q

l;m

; R

l;m

, we substitute the ex-

pansions (4.20) and (4.24), and rewrite the product of sums by using the identity

T

j

� T

k

=

1

2

(T

jj�kj

+ T

j+k

). For the second part, we assume that p

l

satis�es the given

recurrence. Then Q

l;m

is odd or even according to whether m is odd or even, and

R

l;m

is even or odd according to whether m is odd or even, which can be veri�ed by

induction on m. This implies that the Chebyshev expansion of Q

l;m

must contain

only odd or even coe�cients, respectively, and the reverse must hold for R

l;m

.

Assuming that the assumptions of the Part 2 of the lemma are valid, i.e., each

term of (4.25) has either q

n

l;m

= 0 or r

n

l;m

= 0, and that the factor 1=�

n

is absorbed in

the precomputed values q

n

l;m

and r

n

l;m

, the total number of ops needed to compute

^

f

l+m

is 2m+ 1.

4.2.5. Complexity of the algorithm. Algorithm 4.3 gives the Driscoll-Healy

algorithm in its �nal form. The total number of ops can be computed as follows.

Stage 0 takes 2�N log

2

N + (2� + 2)N ops. Stage k invokes N=(2K) times the

recurrence procedure, which has cost C

Recurrence

(K), cf. (4.23), so that the total cost

of that stage is

4�N log

2

K + (4�+ 4� + 6)N ops:

Adding the costs for K = N=2; : : : ;M gives

2�N [log

2

2

N � log

2

2

M ] + (2�+ 4� + 6)N [log

2

N � log

2

M ] ops:

In the last stage, output values have to be computed for m = 1; : : : ;M � 2, for each

of the N=M values of l. This gives a total of

N

M

M�2

X

m=1

(2m+ 1) = NM � 2N ops:

Summing the costs gives

C

Driscoll-Healy

(N) = N [2�(log

2

2

N � log

2

2

M) + (4�+ 4� + 6) log

2

N

� (2�+ 4� + 6) log

2

M +M + 2�]:

(4.26)
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Algorithm 4.3 Driscoll-Healy algorithm.

INPUT f = (f

0

; : : : ; f

N�1

): Real vector with N a power of 2.

OUTPUT

^

f = (

^

f

0

; : : : ;

^

f

N�1

): Discrete orthogonal polynomial transform of f .

STAGES

0. Compute the Chebyshev representation of Z

N

0

and Z

N

1

.

(a) (z

0

0

; : : : ; z

0

N�1

) Chebyshev(f

0

p

0

; : : : ; f

N�1

p

0

).

(b) (z

1

0

; : : : ; z

1

N�1

) Chebyshev(f

0

p

1

(x

N

0

); : : : ; f

N�1

p

1

(x

N

N�1

)).

k. for k = 1 to log

2

N

M

do

K  

N

2

k

for l = 1 to N � 2K + 1 step 2K do

(a) Compute the Chebyshev representation of Z

K

l+K�1

and Z

K

l+K

.

(z

l+K�1

0

; : : : ; z

l+K�1

K�1

; z

l+K

0

; : : : ; z

l+K

K�1

)

 Recurrence

K

l

(z

l�1

0

; : : : ; z

l�1

2K�1

; z

l

0

; : : : ; z

l

2K�1

)

(b) Compute the Chebyshev representation of Z

K

l�1

and Z

K

l

.

Discard (z

l�1

K

; : : : ; z

l�1

2K�1

) and (z

l

K

; : : : ; z

l

2K�1

).

log

2

N

M

+ 1. Compute the remaining values.

for l = 1 to N �M + 1 step M do

^

f

l�1

 z

l�1

0

^

f

l

 z

l

0

for m = 1 to M � 2 do

^

f

l+m

 z

l

0

q

0

l;m

+ z

l�1

0

r

0

l;m

+

1

2

P

m

n=1

(z

l

n

q

n

l;m

+ z

l�1

n

r

n

l;m

)

The optimal stage at which to halt the Driscoll-Healy algorithm and complete the

computation using Lemma 4.11 depends on � and � and can be obtained theoretically.

The derivative of (4.26) as a function of M equals zero if and only if

M ln

2

2� 4� lnM = (2�+ 4� + 6) ln 2: (4.27)

In our implementation � = 2:125 and � = 5, cf. (3.37), thus the minimum is

M = 64. In practice, the optimal choice of M may also depend on the architecture

of the machine used.

4.3. Basic parallel algorithm and its implementation

In the following subsections, we present the framework in which we develop our

parallel algorithm, including the data structures and data distributions used. This

leads to a basic parallel algorithm. From now on we concentrate on the Legendre

transform, instead of the more general discrete orthogonal polynomial transform.

4.3.1. Data structures and data distributions. At each stage k, with

1 � k � log

2

(N=M), the number of intermediate polynomial pairs doubles as the

number of expansion coe�cients halves. Thus, at every stage of the computation,

all the intermediate polynomials can be stored in two arrays of size N . We use an
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copy copycopycopy

P
A

R
A

L
L

E
L

S
E

Q
U

E
N

T
IA

L

.

.

.

.

.

.

.

.

.

.

.

.

Z

N

N=2

Z

N=2

0

Z

N=2

N=4

Z

N=4

0

Z

N=8

0

Z

N=8

N=8

Z

N=4

N=4

Z

N=4

3N=8
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Figure 4.2. Main data structure and data distribution in the par-

allel FLT algorithm for p = 4. Arrays f and g contain the Cheby-

shev coe�cients of the polynomials Z

2K

l

and Z

2K

l+1

, which are already

available at the start of the stage. Arrays u and v contain Z

2K

l+K

and Z

2K

l+K+1

, which become available at the end of the stage. Ar-

rays g and v are not depicted. Each array is divided into four local

subarrays by using the block distribution.

array f to store the Chebyshev coe�cients of the polynomials Z

2K

l

and an array g to

store the coe�cients of Z

2K

l+1

, for l = 0; 2K; : : : ; N � 2K, with K = N=2

k

in stage k.

We also need some extra work space to compute the coe�cients of the polynomials

Z

2K

l+K

and Z

2K

l+K+1

. For this we use two auxiliary arrays, u and v, of size N .

The data ow of the algorithm, see Figure 4.2, suggests that we distribute all the

vectors by the block distribution. This works well if p is a power of two, which we will

assume from now on. Since both N and p are powers of two, the block size b = N=p

is also a power of two.

The precomputed data required to perform the recurrence of stage k are stored

in two two-dimensional arrays Q and R, each of size 2 log

2

(N=M)�N . Each pair of

rows in Q stores data needed for one stage k, by

Q[2k � 2; l+ j] = Q

l+1;K�1

(x

2K

j

);

Q[2k � 1; l+ j] = Q

l+1;K

(x

2K

j

);

(4.28)
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Figure 4.3. Data structure and distribution of the precomputed

data needed in the recurrence with N = 64, M = 8, and p = 4. Data

are stored in two two-dimensional arraysQ and R. Each pair of rows

in an array stores the data needed for one stage k.
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Figure 4.4. Data structure and distribution of the precomputed

data for termination with N = 64, M = 8, and p = 4. The coe�-

cients q

n

l;m

and r

n

l;m

are stored in a two-dimensional array T. In the

picture, q

n

denotes q

n

l;m

and r

n

denotes r

n

l;m

.

for l = 0; 2K; : : : ; N�2K, j = 0; 1; : : : ; 2K�1, where K = N=2

k

. Thus, polynomials

Q

l+1;K�1

are stored in row 2k � 2 and polynomials Q

l+1;K

in row 2k � 1. This is

shown in Figure 4.3. The polynomials R

l+1;K�1

and R

l+1;K

are stored in the same

way in array R. Note that the indexing of the implementation arrays starts at zero.

Each row of Q and R is distributed by the block distribution, i.e., Q[i; j];R[i; j] 2

Proc(j) = j div

N

p

, so that the recurrence is a local operation.

The termination coe�cients q

n

l;m

and r

n

l;m

, for l = 1;M+1; 2M+1; : : : ; N�M+1,

m = 1; 2; : : : ;M � 2, and n = 0; 1; : : : ;m are stored in a two-dimensional array T of

size N=M � (M(M � 1)=2� 1). The coe�cients for one value of l are stored in row

(l� 1)=M of T. Each row has the same internal structure: the coe�cients are stored

in increasing order of m, and coe�cients with the same m are ordered by increasing

n. This format is similar to that commonly used to store lower triangular matrices.

By the Part 2 of Lemma 4.11, either q

n

l;m

= 0 or r

n

l;m

= 0 for each n and m, so we

only need to store the value that can be nonzero. Since this depends on whether
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n�m is even or odd, we obtain an alternating pattern of q

n

l;m

's and r

n

l;m

's. Figure 4.4

illustrates this data structure.

The termination stage is local if M � N=p. This means that each row of T

must be assigned to one processor, namely to the processor that holds the subvectors

for the corresponding value of l. Each column of T is in the block distribution, i.e.,

T[i; j] 2 Proc(i) = i div

N

pM

. As a result, the N=M rows of T are distributed in

consecutive blocks of rows.

4.3.2. Basic parallel template. In order to formulate our basic parallel algo-

rithm we introduce the following conventions:

� Copying a vector. The operation

g

j

 Copy(n; f

i

)

denotes the copy of n elements of vector f , starting from element i, to a vector

g starting from element j.

� Subroutine name ending in 2. Subroutines with a name ending in 2 per-

form an operation on 2 vectors instead of one. For example

(f

i

;g

j

) Copy2(n;u

k

;v

l

)

is an abbreviation for

f

i

 Copy(n;u

k

)

g

j

 Copy(n;v

l

)

� Fast Chebyshev transform. The subroutine

BSP FChT(s

0

; s

1

; p

1

; sign; n; f)

replaces the input vector f of size n by its Chebyshev transform if sign = 1

or by its inverse Chebyshev transform if sign = �1. A group of p

1

processors

starting from processor s

0

work together; s

1

with 0 � s

1

< p

1

denotes the

local processor number within the group. For a group of size p

1

= 1, this sub-

routine reduces to the sequential fast Chebyshev transform algorithm. Since

the Chebyshev transforms come in pairs, Algorithms 3.9 and 3.12 can be used

in the implementation of the BSP FChT2 algorithm. The cost of the resulting

algorithm is

C

FChT2,par

(N; p) = 2�

N

p

log

2

N + 2�

N

p

+ 6

N

p

� g + 3l; (4.29)

where � = 2:125 and � = 5, cf. (3.37).
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� Truncation. The operation

f  BSP Trunc(s; p;N; p

1

;K;u)

denotes the truncation of all the N=(2K) polynomials stored in f and u by

copying the �rst K Chebyshev coe�cients of the polynomials stored in u into

the memory space of the last K Chebyshev coe�cients of the corresponding

polynomials stored in f . A group of p

1

processors starting from processor

s

0

= s� s

1

work together to truncate one polynomial; s

1

= s mod p

1

denotes

the local processor number within the group. When p

1

= 1 the block size

N=p � 2K and one processor is in charge of the truncation of one or more

complete polynomials. In Figure 4.2, the truncation operation is depicted by

arrows. Algorithm 4.4 describes subroutine BSP Trunc2 which carries out two

truncation operations simultaneously. In doing so, we save one synchroniza-

tion. The cost of Algorithm 4.4 is

C

Trunc2,par

(N; p) = 2

N

p

g + l; (4.30)

if p

1

> 1. If p

1

= 1, the truncation is a simple copy operation which costs

nothing.

Algorithm 4.4 Truncation procedure for the FLT.

CALL (f ;g) BSP Trunc2(s; p;N; p

1

; K;u;v).

ARGUMENTS

s: Processor identi�cation; 0 � s < p.

p: Total number of processors, p is a power of 2 with p < N .

N : Vector size; N is a power of 2.

p

1

: Number of processors in group.

K: Subvector size; K is a power of 2 with K < N .

u = (u

0

; : : : ; u

N�1

): Real vector of size N (block distributed).

v = (v

0

; : : : ; v

N�1

): Real vector of size N (block distributed).

OUTPUT (f ;g).

DESCRIPTION

if p

1

= 1 then

1

comp

Sequential truncation.

for l = s

N

p

to (s+ 1)

N

p

� 2K step 2K do

(f

l+K

;g

l+K

) Copy2(K;u

l

;v

l

)

else

2

comm

Parallel truncation.

if s mod p

1

<

p

1

2

then

(f

s

N

p

+K

;g

s

N

p

+K

) Put2(s+

p

1

2

;

N

p

;u

s

N

p

;v

s

N

p

)

Synchronize
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The basic template for the fast Legendre transform is presented as Algorithm 4.5.

At each stage k � log

2

(N=M), there are 2

k�1

independent problems. For k � log

2

p,

there are more processors than problems, so that the processors will have to work

in groups. Each group of p

1

= p=2

k�1

> 1 processors handles one subvector of size

2K, K = N=2

k

; each processor handles a block of 2K=p

1

= N=p vector components.

In this case, the l-loop has only one iteration, namely l = s

0

� N=p, and the j-loop

has N=p iterations, starting with j = s

1

� N=p, so that the indices l + j start with

(s

0

+ s

1

)N=p = s � N=p, and end with (s

0

+ s

1

)N=p + N=p � 1 = (s + 1)N=p � 1.

Inter-processor communication is needed, but it occurs only in two instances:

� Inside the parallel FChTs (in supersteps 2, 5, 7), see Chapter 3.

� At the end of each stage (in supersteps 3, 8).

For k > log

2

p, the length of the subvectors involved becomes 2K � N=p. In that

case, p

1

= 1, s

0

= s, and s

1

= 0, and each processor has one or more problems to

deal with, so that the processors can work independently and without communica-

tion. Note that the index l runs only over the local values sN=p, sN=p + 2K, : : : ,

(s+ 1)N=p� 2K, instead of over all values of l.

The original stages 0 and 1 of Algorithm 4.3 are combined into one stage and

then performed e�ciently, as follows. First, in superstep 1, the polynomials Z

N

1

,

Z

N

N=2

, and Z

N

N=2+1

are computed directly from the input vector f . This is possible

because the point-value representation of Z

N

1

= T

N

(f �P

1

) = T

N

(f �x) needed by the

recurrences is the vector of f

j

�x

N

j

; 0 � j < N , see Subsection 4.2.3.1. In superstep 2,

polynomials Z

N

0

= f ; Z

N

1

= g; Z

N

N=2

= u, and Z

N

N=2+1

= v are transformed to Cheby-

shev representation; then, in superstep 3, they are truncated to obtain the input for

stage 2.

The main loop works as follows. In superstep 4, the polynomials Z

2K

l

, with

K = N=2

k

and l = 0; 2K; : : : ; N � 2K, are copied from the array f into the auxiliary

array u, where they are transformed into the polynomials Z

2K

l+K

, in supersteps 5 to 7.

Similarly, the polynomials Z

2K

l+1

are copied from g into v and then transformed into the

polynomials Z

2K

l+K+1

. Note that u corresponds to the lower value of l, so that in the

recurrence the components of u must be multiplied by values from R. In superstep 8,

all the polynomials are truncated by copying the �rst K Chebyshev coe�cients of

Z

2K

l+K

into the memory space of the last K Chebyshev coe�cients of Z

2K

l

. The same

happens to polynomials Z

2K

l+K+1

and Z

2K

l+1

.

The termination procedure, superstep 9, is described separately as Algorithm 4.6.

The template is a direct implementation of Lemma 4.11 using the data structure T

described in Subsection 4.3.1. Note that it is convenient to regard each row l=M in

the arrayT as a triangular matrix, and process the elements of each matrix using 2�2
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Algorithm 4.5 Basic template for the parallel fast Legendre transform.

CALL BSP FLT(s; p;N;M; f).

ARGUMENTS

s: Processor identi�cation; 0 � s < p.

p: Number of processors; p is a power of 2 with p < N .

N : Transform size; N is a power of 2 with N � 4.

M : Termination block size; M is a power of 2 with M � min(N=2; N=p).

f = (f

0

; : : : ; f

N�1

): Real vector of size N (block distributed).

OUTPUT f  

^

f .

DESCRIPTION

1

Comp

Stage 1: Initialization.

for j = s

N

p

to (s+1)

N

p

� 1 do

g

j

 x

N

j

f

j

u

j

 (Q[0; j] � x

N

j

+R[0; j]) � f

j

v

j

 (Q[1; j] � x

N

j

+R[1; j]) � f

j

2

CpCm

Stage 1: Chebyshev transform.

BSP FChT2(0; s; p; 1; N; f ;g)

BSP FChT2(0; s; p; 1; N;u;v)

3

CpCm

Stage 1: Truncation.

(f ;g) BSP Trunc2(s; p;N; p;

N

2

;u;v)

for k = 2 to log

2

N

M

do

K  

N

2

k

p

1

 max(

p

2

k�1

; 1)

s

0

 (s div p

1

)p

1

s

1

 s mod p

1

4

Comp

Stage k: Copy.

(u

s

N

p

;v

s

N

p

) Copy2(

N

p

; f

s

N

p

;g

s

N

p

)

for l = s

0

N

p

to (s

0

+ 1)

N

p

�

2K

p

1

step

2K

p

1

do

5

CpCm

Stage k: Inverse Chebyshev transform.

BSP FChT2(s

0

; s

1

; p

1

;�1; 2K;u

l

;v

l

)

6

Comp

Stage k: Recurrence.

for j = s

1

N

p

to s

1

N

p

+

2K

p

1

� 1 do

a1 Q[2k � 2; l+ j] � v

l+j

+R[2k � 2; l + j] � u

l+j

a2 Q[2k � 1; l+ j] � v

l+j

+R[2k � 1; l + j] � u

l+j

u

l+j

 a1

v

l+j

 a2

7

CpCm

Stage k: Chebyshev Transform.

BSP FChT2(s

0

; s

1

; p

1

; 1; 2K;u

l

;v

l

)

8

CpCm

Stage k: Truncation.

(f ;g) BSP Trunc2(s; p;N; p

1

; K;u;v)

9

Comp

Stage log

2

N

M

+ 1: Termination.

for l = s

N

p

to (s+1)

N

p

�M step M do

f

l

 Terminate(l;M; f

l

;g

l

)
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Algorithm 4.6 Termination procedure for the FLT.

CALL Terminate(l;M; f ;g).

INPUT

l: Block identi�er.

M : Termination block size; M is a power of 2; l modM = 0.

f = (f

0

; : : : ; f

M�1

): Chebyshev coe�cients of polynomial Z

M

l

.

g = (g

0

; : : : ; g

M�1

): Chebyshev coe�cients of polynomial Z

M

l+1

.

OUTPUT h = (h

0

; : : : ; h

M�1

): h

i

=

^

f

l+i

; 0 � i < M .

DESCRIPTION

h

0

 f

0

h

1

 g

0

b 0

for m = 1 to M � 3 step 2 do

h

m+1

 f

0

T[l; b] +

1

2

g

1

T[l; b+ 1]

h

m+2

 g

0

T[l; b+m+ 1] +

1

2

f

1

T[l; b+m+ 2]

for n = 2 to m� 1 step 2 do

h

m+1

 h

m+1

+

1

2

(f

n

�T[l; b+ n] + g

n+1

�T[l; b+ n + 1])

h

m+2

 h

m+2

+

1

2

(g

n

�T[l; b+ n+m+ 1] + f

n+1

�T[l; b+ n+m+ 2])

h

m+2

 h

m+2

+

1

2

� g

m+1

�T[l; b+ 2m+ 2]

b b+ 2m+ 3

Note 1: The index b indicates where coe�cient r

0

l+1;m

is stored.

Note 2: The factors 1=2 can be stored in the precomputed table.

blocks. This leads to a step size of two in the loops of the algorithm. Superstep 9 is

a computation superstep, provided the condition M � N=p is satis�ed. This usually

holds for the desired termination block size M . In certain situations, however, one

would like to terminate even earlier, with a block size larger than N=p. This extension

will be discussed in Section 4.4.3.

The cost of the basic parallel FLT algorithm can be computed as follows. Each

parallel stage k, 2 � k � log

2

p, of the algorithm costs

C

FLTstage,par

(N; p; k) = 6 �

N

p

+ 2 � C

FChT2,par

(

N

2

k�1

;

p

2

k�1

) + C

Trunc2,par

(N; p):

(4.31)

Note that the �rst term corresponds to the cost of the recurrence (superstep 6).

Adding the cost of all parallel stages of the basic FLT algorithm, including the �rst,
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gives

N

p

+

log

2

p

X

k=1

C

FLTstage,par

(N; p; k) =

[2�(2 log

2

N � log

2

p+ 1) + 4� + 6]

N

p

log

2

p+

N

p

+ 14

N

p

log

2

p � g + 7 log

2

p � l;

cf. 4.29. Here we had to add an extra N=p ops corresponding to the extra computa-

tions of the initialization (superstep 1). The cost of the remaining sequential stages,

k > log

2

p, is equal to the cost of a sequential FLT of size N=p, which is given by

C

Driscoll-Healy

(N=p), cf. (4.26), but without its stage 0. The total cost of the basic

FLT algorithm is

C

FLT,par,basic

(N;M; p) =

N

p

[2�(log

2

2

N � log

2

2

M)

+ (2�+ 4� + 6)(log

2

N � log

2

M)] +

NM

p

�

N

p

+ 14

N

p

log

2

p � g + 7 log

2

p � l

� 4:25

N

p

(log

2

2

N � log

2

2

M) + 30:25

N

p

(log

2

N � log

2

M) +

NM

p

+ 14

N

p

log

2

p � g + 7 log

2

p � l:

(4.32)

4.4. Improvements of the parallel algorithm

In this section we show how to transform the basic parallel FLT algorithm into

an optimized parallel FLT algorithm. The optimizations carried out reduce the com-

munication and synchronization costs of the algorithm to about one third.

The optimized algorithm needs two auxiliary complex vectors, both of size N .

Vector h stores the data previously stored in vectors f and g: h = f + ig. Vector w

stores the data previously stored in vectors u and v: w = u+ iv. Besides simplifying

the notation, this convention also makes it easier to construct the template for the

optimized FLT algorithm by using the subroutines developed in the previous chapters.

4.4.1. Optimization of the main loop. The basic FLT algorithm is a mod-

ular algorithm based on the block distribution. Though useful for didactic purposes,

the block distribution is not the best choice for the main loop of the FLT algorithm.
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Breaking open the FChT module inside the main loop and merging it with the sur-

rounding computations allows us to radically reduce the amount of communication

involved in the parallel FLT algorithm.

4.4.1.1. Moving permutations to precomputation. The recurrence (superstep 6 of

Algorithm 4.5) is an element by element operation and thus it can be performed in any

data distribution as long as the recurrence coe�cients are also permuted to the desired

distribution. Because of this, it is possible to completely skip the permutations %,

cf. (3.34), which immediately precede and follow the recurrence, saving 4

N

p

g + 2l in

communication costs for each parallel stage of the main loop.

To carry out this modi�cation, arrays Q and R used in the template for the

basic FLT algorithm must be replaced by the permuted versions Q

0

and R

0

which are

de�ned as follows. The �rst pair of rows is not permuted. The coe�cients necessary

for the initial stage k = 1 can be stored in Q

0

by

Q

0

[0; j] = Q

1;

N

2

�1

(x

N

j

) � x

N

j

+R

1;

N

2

�1

(x

N

j

);

Q

0

[1; j] = Q

1;

N

2

(x

N

j

) � x

N

j

+R

1;

N

2

(x

N

j

); 0 � j < N:

The �rst two rows of R

0

can remain empty. Each remaining pair of rows in Q

0

stores

the data needed for one stage k � 2, by

Q

0

[2k � 2; l+ j] = Q

l+1;K�1

(x

2K

%

2K

(j)

);

Q

0

[2k � 1; l+ j] = Q

l+1;K

(x

2K

%

2K

(j)

);

for l = 0; 2K; : : : ; N � 2K, j = 0; 1; : : : ; 2K � 1, where K = N=2

k

. The polynomials

R

l+1;K�1

and R

l+1;K

are stored in the same way in array R

0

.

4.4.1.2. Modifying the truncation operation. As with the recurrence, the trunca-

tion operation does not need to be done in the block distribution. This means that

we can skip the permutation back to block distribution at the end of superstep 7 of

Algorithm 4.5, and proceed directly to the truncation, which now becomes merely

freeing of storage.

As a result of the new truncation, at the end of stage k � 1, with 2 � k �

log

2

(N=M), the complex vectors h and w stores the Chebyshev coe�cients of poly-

nomials Z

2K

l

, Z

2K

l+1

, with K = N=2

k

and l = 0; 2K; : : : ; N � 2K in the following

way. Polynomials Z

2K

l

, Z

2K

l+1

, with l = 0; 4K; : : : ; N � 4K, are stored as the real and

imaginary parts of the �rst half of subvector h

l

of size 4K, and polynomials Z

2K

l+2K

,

Z

2K

l+2K+1

are stored as the real and imaginary parts of the �rst half of subvector

w

l

which is also of size 4K. The second half of both vectors stores junk data. If

k � log

2

2p, vectors h

l

and w

l

are both zig-zag cyclically distributed over a group of
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2p

1

processors, where p

1

= p=2

k�1

, with processor o�set s

0

= l div

N

p

. In other words,

vectors h and w are zig-zag cyclically distributed in r = p=(2p

1

) = 2

k�2

groups.

Definition 4.12 (Zig-zag cyclic distribution in r groups, Z

r

(p;N)). Let r, p,

and N be integers with 1 � r � p � N , such that r divides p and N . Let h be

a vector of size N to be distributed over p processors organized in r groups. De�ne

M = N=r to be the size of the subvector of a group and u = p=r to be the number

of processors in a group. We say that h is zig-zag cyclically distributed in r groups

over p processors if, for all j, the element h

j

has local index j

0

= (j mod M) divu,

and is stored in processor s

0

+ s

1

, where s

0

= (j divM) � u is the number of the �rst

processor in the group (i.e., the processor o�set) and s

1

is the processor identi�cation

within the group, which is de�ned by s

1

= (j modM) mod u if j mod M is even, or

by s

1

= �(j modM) mod u otherwise.

As with the r-cyclic distribution, the zig-zag cyclic distribution in r groups forms

a family of distributions that contains the block distribution and the zig-zag cyclic

distribution as extremes: Z

p

(p;N) = B(p;N) and Z

1

(p;N) = Z(p;N). Figure 4.5

illustrates the use of this family of distributions in the optimized FLT algorithm.

At the beginning of stage k, the input data (i.e., the Chebyshev coe�cients of

polynomials Z

2K

l

, Z

2K

l+1

, with l = 0; 2K; : : : ; N � 2K) which are stored in vectors h

and w must be rearranged so that the polynomials Z

K

l

, Z

K

l+1

, Z

K

l+K

, and Z

K

l+K+1

can

be computed e�ciently. The rearrange procedure consists of two phases which are

illustrated in Figure 4.6 for the simple case of stage 2. Phase 1 is a local operation

that prepares the polynomials Z

2K

l

, Z

2K

l+1

, with l = 0; 2K; : : : ; N � 2K, for use in the

recurrence operation. This is done in two steps: (a) copy the �rst half of subvector

w

l

of size 4K, with l = 0; 4K; : : : ; N � 4K, into its second half; (b) copy the �rst half

of subvector h

l

of size 4K into the �rst half of subvector w

l

. After Phase 1, vector

w contains all the data needed by the recurrence procedure, which will compute

polynomials Z

K

l+K

, Z

K

l+K+1

, with l = 0; 2K; : : : ; N � 2K.

Phase 2 computes polynomials Z

K

l

, Z

K

l+1

, with l = 0; 2K; : : : ; N � 2K, simply by

truncating Z

2K

l

, Z

2K

l+1

. Since, by now, vector w contains all the input data, Phase 2

consists of redistributing a partial copy of vector w from distribution Z

r

2

(p;N), with

r

2

= min(p; 2

k�2

), to distribution Z

r

1

(p;N), with r

1

= min(p; 2

k�1

), and storing it in

vector h. If k � log

2

(2p), then r

2

= r

1

=2 and this phase consists of a global permu-

tation. Because polynomials Z

2K

l

, Z

2K

l+1

are being truncated, half the data contained

in vector w does not need to be redistributed, which means that this permutation

will only cost

N

p

g + l (instead of 2

N

p

g + l). If k > log

2

(2p), then r

2

= r

1

= p and the

permutation reduces to a local copy operation which costs nothing.
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Figure 4.5. Use of the zig-zag cyclic distribution in r groups in

the optimized FLT algorithm (logical view). Example with p = 4,

N = 32, and M = 2. At the beginning of stage k, complex ar-

ray h contains the Chebyshev coe�cients of the polynomials Z

2K

l

,

Z

2K

l+1

, with K = N=2

k

and l = 0; 4K; : : : ; N � 4K, packed as com-

plex; and complex array w contains the Chebyshev coe�cients of

the polynomials Z

2K

l+2K

, Z

2K

l+2K+1

packed as complex. Both h and w

are zig-zag cyclically distributed in r = min(p; 2

k�2

) groups. In the

�gure, Z

2K

l

+ iZ

2K

l+1

is depicted as Z

2K

l;l+1

.

Subroutine BSP Rearrange (Algorithm 4.7) is a template for the parallel part of

the rearrange procedure, which is illustrated in Figure 4.6. Note that the block distri-

bution is used throughout the template, which means that the changes of distribution

are replaced by permutations. The template consists of three supersteps. Superstep 1

performs Phase 1 of the new procedure. Phase 2 is carried out by supersteps 2 and 3.

Superstep 2 sends packets of data, and superstep 3 locally rearranges the data. This

subroutine replaces the permutation to block distribution at the end of superstep 7,

the truncation operation (superstep 8), the copy operation (superstep 4), and the

permutation to zig-zag cyclic distribution at the beginning of superstep 5 of the basic
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Figure 4.6. Rearrange operation (storage view). Example with

N = 32; p = 4; k = 2, thus K = 8, p

1

= 2, and l = 0. At the

beginning, subvectors h

l

and w

l

of size 4K are zig-zag cyclically dis-

tributed over 2p

1

processors. The �rst half of subvector h

l

contains

polynomials Z

2K

l

, Z

2K

l+1

, and the �rst half of subvector w

l

contains

polynomials Z

2K

l+2K

, Z

2K

l+2K+1

. At the end, subvector w

l

remains in

distribution Z(2p

1

; 4K), but now its �rst half contains polynomials

Z

2K

l

, Z

2K

l+1

and its second half contains polynomials Z

2K

l+2K

, Z

2K

l+2K+1

.

Subvector h

l

is now redistributed by Z

2

(2p

1

; 4K). Its �rst quarter

contains polynomials Z

K

l

, Z

K

l+1

, and its third quarter contains poly-

nomials Z

K

l+2K

, Z

K

l+2K+1

. (The second and fourth quarters of the

vector contain junk data). The thick arrows correspond to the puts

in the algorithm.

algorithm, saving another 5

N

p

g + 2l ops in communication costs for each parallel

stage of the main loop. The cost of the rearrange operation is

C

Rearrange,par

(N; p; k) =

8

<

:

N

2p

� g + l; if k = log

2

(2p);

N

p

� g + l; otherwise:

(4.33)

4.4.1.3. Modifying the Chebyshev transform. After the rearrange operation, in

stages k � log

2

(2p), each subvector w

l

of size 4K, with l = 0; 4K; : : : ; N � 4K,

which is distributed by Z(2p

1

; 4K), with p

1

= p=2

k�1

, contains two distinct data

sets. Polynomials Z

2K

l

, Z

2K

l+1

are stored in its �rst half, and polynomials Z

2K

l+2K

,

Z

2K

l+2K+1

are stored in its second half (cf. Figure 4.6). Because of this, the inverse
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Algorithm 4.7 Template for the optimized redistribution operation of the FLT.

CALL BSP Rearrange(s; p; k;N;h;w).

ARGUMENTS

s: Processor identi�cation; 0 � s < p.

p: Number of processors; p is a power of 2 with 2 � p < N .

k: FLT stage; 2 � k � log

2

(2p).

N : Vector size; N is a power of 2 with N � 4.

h = (h

0

; : : : ; h

N�1

): Complex vector of size N (block distributed).

w = (w

0

; : : : ; w

N�1

): Complex vector of size N (block distributed).

OUTPUT

w: data needed at stage k.

h: half the data needed at stage k + 1.

DESCRIPTION

1

Comp

Keep the data needed at stage k.

w

s

N

p

+

N

2p

 Copy(

N

2p

; w

s

N

p

)

w

s

N

p

 Copy(

N

2p

; h

s

N

p

)

2

Comm

Redistribute the data needed at stage k + 1: send packets.

p

1

 

p

2

k�1

s

1

 s mod (2p

1

)

s

0

 s� s

1

if s

1

< p

1

then

aux

s

N

p

 Copy(

N

4p

; w

s

N

p

)

aux

(s+p

1

)

N

p

 Put(s+ p

1

;

N

4p

; w

s

N

p

+

N

2p

)

else

if s

1

= p

1

then proc s

0

else proc s

0

+ 2p

1

� s

1

aux

proc

N

p

+

N

4p

 Put(proc;

N

4p

; w

s

N

p

)

aux

(proc+p

1

)

N

p

+

N

4p

 Put(proc+ p

1

;

N

4p

; w

s

N

p

+

N

2p

)

Synchronize

3

Comp

Redistribute the data needed at stage k + 1: local rearrange.

if s

1

= 0 or s

1

= p

1

then

for j

0

= 0 to

N

4p

� 1 do

h

s

N

p

+2j

0

 aux

s

N

p

+j

0

h

s

N

p

+2j

0

+1

 aux

s

N

p

+j

0

+

N

4p

else

for j

0

= 0 to

N

4p

� 2 step 2 do

h

s

N

p

+2j

0

 aux

s

N

p

+j

0

h

s

N

p

+2j

0

+3

 aux

s

N

p

+j

0

+1

h

s

N

p

+2j

0

+1

 aux

s

N

p

+j

0

+

N

4p

h

s

N

p

+2j

0

+2

 aux

s

N

p

+j

0

+1+

N

4p
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Figure 4.7. Data ow of the modi�ed recurrence algorithm (log-

ical view). Example with 2K = 16 and p

1

= 2, for a certain

l 2 f0; 4K; : : : ; N�4Kg. (A) At the beginning, vectorsw

l

andw

l+2K

of size 2K are zig-zag cyclically distributed over the 2p

1

processors.

(B) After the permutation to block distribution the two vectors are

separated. Vector w

l

is block distributed over the �rst p

1

processors

and vector w

l+2K

is block distributed over the next p

1

processors.

(C) After the recurrence and the forward FChT2, vectorw

l

is zig-zag

cyclically distributed over the �rst p

1

processors and vector w

l+2K

is zig-zag cyclically distributed over the next p

1

processors.

FChT2 algorithm must be modi�ed so that it can handle the two distinct data sets

simultaneously.

With the help of Lemma 3.2 we can prove that the pack phase (3.32) of the

inverse FChT2 and the long distance buttery phase of the inverse CFFT, starting

at buttery size 2K down to size 8p

1

, can always be performed locally, given that

the input vector is distributed by Z(2p

1

; 2K). For simplicity, we assume from now

on that p <

p

N . With this assumption no medium distance butteries are needed,

because the next buttery stage to be performed has size 4p

1

� 2p � N=p.

1

Algorithm 4.8 is a template for the parallel modi�ed recurrence procedure, which

consists of the backward Chebyshev transform, the recurrence itself, and the forward

Chebyshev transform. Figure 4.7 illustrates the data distributions used. Since each

group of 2p

1

processors contains two distinct data sets, packed as the �rst and second

half of subvector w

l

(see Figure 4.7A), Algorithm 4.8 regards each input subvector

w

l

of size 4K as two distinct subvectors of size 2K: subvectors w

l

and w

l+2K

, both

distributed by Z(2p

1

; 2K), with processor o�set s

0

= l div

N

p

.

1

Contrary to the previous chapter, here we compute as many buttery stages as possible in

the zig-zag cyclic distribution, and then change to the block distribution in order to compute the

remaining stages.
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Algorithm 4.8 Template for the (parallel) modi�ed recurrence.

CALL BSP Recurrence2(s; p; k; N;w).

ARGUMENTS

s: Processor identi�cation; 0 � s < p.

p: Number of processors; p is a power of 2 with 2 � p <

p

N .

k: FLT stage; 2 � k � log

2

(2p).

N : Vector size; N is a power of 2 with N � 4.

w = (w

0

; : : : ; w

N�1

): Complex vector of size N containing the Chebyshev coe�-

cients of the polynomial pairs Z

2K

l

, Z

2K

l+1

packed as complex. Here K = N=2

k

and l = 0; 2K; : : : ; N � 2K. The vector has been permuted to distribution

Z

2

k�2

(p;N).

OUTPUT w: Chebyshev coe�cients of the polynomial pairs Z

K

l+K

, Z

K

l+K+1

packed as

complex in subvectors of size K. Each second subvector of size K contains junk data. The

vector has been permuted to distribution Z

2

k�1

(p;N).

DESCRIPTION

K  

N

2

k

p

1

 

p

2

k�1

s

1

 s mod (2p

1

)

1

Comp

Modi�ed backward FChT2: pack phase and

long distance butteries (sizes 2K down to 8p

1

).

if s

1

= 0 then

w

s

N

p

 

1

2

� w

s

N

p

w

s

N

p

+

N

2p

 

1

2

� w

s

N

p

+

N

2p

FCT2 PACK2(

s

1

2p

1

;

N

2p

;w

s

N

p

;w

s

N

p

+

N

2p

)

TBTFLY ZIG2(

s

1

2p

1

;

N

2p

; 4;w

s

N

p

;w

s

N

p

+

N

2p

)

2

CmCp

Modi�ed backward FChT2: complex permutation to block distribution.

BSP BlockToZig(s � s

1

; s

1

; 2p

1

;�1;

N

p

; complex;w)

3

Comp

Modi�ed backward FChT2: short distance butteries (sizes 4p

1

down to 2).

TBTFLY ZIG(0; 4p

1

; 4;w

s

N

p

)

4

Comp

Recurrence.

for j = s

N

p

to s

N

p

+

N

p

� 1 do

a1 Q

0

[2k � 2; j] � Im(w

j

) +R

0

[2k � 2; j] �Re(w

j

)

a2 Q

0

[2k � 1; j] � Im(w

j

) +R

0

[2k � 1; j] �Re(w

j

)

w

j

 a1 + ia2

s

1

 s mod p

1

5

CmCp

Modi�ed forward FChT2.

BSP FChT2 mod(s� s

1

; s

1

; p

1

; 1; K;w

(s�s

1

)

N

p

)

Note : The call to BSP BlockToZig was modi�ed so that the permutation can be done

in a subgroup of processors; the original template (Algorithm 3.1) must be modi�ed to use

s� s

1

+ proc instead of proc as the destination processor when communicating.
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Algorithm 4.9 Template for the modi�ed parallel forward FChT2.

CALL BSP FChT2 mod(s

0

; s

1

; p

1

; sign = 1; K;w).

ARGUMENTS

s

0

; s

1

: Processor o�set and processor identi�cation within group; 0 � s

1

< p

1

.

p

1

: Number of processors in the group; p

1

is a power of 2 with 1 � p

1

<

p

2K.

sign = 1: Transform direction is forward.

2K: Vector size; K is a power of 2 with K � 2.

w = (w

0

; : : : ; w

2K�1

): Complex vector of size 2K permuted by %

2K

(block distributed).

OUTPUT w: truncated forward Chebyshev transform of the input vector permuted

by �

p

1

;2K

.

DESCRIPTION

1

Comp

Short distance butteries.

BTFLY ZIG(0;

2K

p

1

; 4;w

s

1

2K

p

1

)

2

CpCm

Complex permutation to zig-zag cyclic distribution.

BSP BlockToZig(s

0

; s

1

; p

1

; 1;

2K

p

1

; complex;w)

3

Comp

Long distance butteries.

BTFLY ZIG(

s

1

p

1

;

2K

p

1

; 4

2K

p

2

1

;w

s

1

2K

p

1

)

4

Comp

Extract phase and normalization.

if s

1

= 0 then

j

0

 1

j

1

 0

w

0

 

1

2K

� w

0

else

j

0

 0

j

1

 1

for j

0

= j

0

to

K

p

1

� 1 do

if j

0

is even or s

1

= 0 then j  j

0

� p

1

+ s

1

else j  j

0

� p

1

+ p

1

� s

1

sum w

s

1

2K

p

1

+j

0

+w

s

1

2K

p

1

+

2K

p

1

�j

0

�j

1

diff  w

s

1

2K

p

1

+j

0

� w

s

1

2K

p

1

+

2K

p

1

�j

0

�j

1

w

s

1

2K

p

1

+j

0

 

1

2K

� [cos(

�j

4K

) � sum+ i sin(

�j

4K

) � diff ]

Because of this, subroutines FCT2 PACK and TBTFLY ZIG, which carry out the

pack phase of the FChT2 and the long distance butteries of the transposed CFFT,

must be called twice, once for each data set. Note that the �rst element of each

vector must be multiplied by two because the normalization constants of the DCT

are di�erent than the normalization constants of the Chebyshev transform.

After the long distance buttery phase, the data sets must be permuted to the

block distribution. After this permutation (Figure 4.7B) the two data sets become

separated. The �rst data set is stored by B(p

1

; 2K) in the �rst group of p

1

processors

and the second data set is stored by B(p

1

; 2K) in the second group of p

1

processors,
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which means that processor o�set s

0

and processor identi�cation numbers s

1

must

be recomputed. The short distance butteries are then carried out by subroutine

TBTFLY ZIG. The permutation %

�1

which combines the bit reversal with the extract

phase of the FChT2 is skipped (cf. Section 4.4.1.1).

After the recurrence, subvectorsw

l

and w

l+2K

must be transformed by a forward

FChT2, so that the newly computed polynomials pairs Z

2K

l+K

, Z

2K

l+K+1

, which are

stored in w

l

, and polynomial pairs Z

2K

l+3K

, Z

2K

l+3K+1

, which are stored in w

l+2K

, can

be transformed to their Chebyshev representation. Since the subvectors are already

separated into two groups of p

1

processors, no special care needs to be taken. Note,

however, that the permutation % must be skipped. Furthermore, since the second half

of both vectors will be discarded, we can alter the algorithm to avoid computing them.

Figure 4.7C shows the situation after the forward FChT2 is carried out. The modi�ed

forward transform is presented as a separate subroutine, see Algorithm 4.9, because

it is also needed in stage 1 of the main algorithm. The total cost of Algorithm 4.8 is

C

Recurrence2,par

(N; p; k) =

8

<

:

8:5

N

p

log

2

N

2

k

+ 28:5

N

p

+ 2

N

p

� g + l; if k = log

2

(2p);

8:5

N

p

log

2

N

2

k

+ 28:5

N

p

+ 4

N

p

� g + 2 � l; otherwise:

(4.34)

The case k = log

2

(2p) is special because 2K = N=p, which means that the forward

FChT2 (superstep 5) can be computed locally without communication.

4.4.2. Optimized template. The template for the optimized FLT algorithm

is given as Algorithm 4.10. For simplicity, we assume that M � min(N=2; N=(2p)).

The algorithm works as follows. In stage 1, the auxiliary complex vectors h and w

are initialized and transformed so that the Chebyshev coe�cients of the polynomial

pairs Z

N=2

0

, Z

N=2

1

are stored as the real and complex parts of the �rst half of vector

h, and the Chebyshev coe�cients of the polynomial pairs Z

N=2

N=2

, Z

N=2

N=2+1

are stored as

the real and complex parts of the �rst half of vector w.

At each subsequent stage k = 2; : : : ; log

2

(N=M), the polynomials Z

2K

l

, Z

2K

l+1

,

with K = N=2

k

and l = 0; 2K; : : : ; N � 2K (which are stored in vector h if

l = 0; 4K; : : : ; N � 4K, otherwise they are stored in vector w), are transformed into

the polynomials Z

K

l

, Z

K

l+1

, Z

K

l+K

, and Z

K

l+K+1

as follows. In superstep 3 (and

5a), the polynomials Z

2K

l

, Z

2K

l+1

are copied and further truncated using subroutine

BSP Rearrange (or copy statements), so that vector h receives the truncated poly-

nomials Z

K

l

, Z

K

l+1

, and vector w keeps a copy of the polynomials Z

2K

l

, Z

2K

l+1

. In su-

persteps 4 (and 5b), the polynomials Z

2K

l

, Z

2K

l+1

are transformed into Z

2K

l+K

, Z

2K

l+K+1

and further truncated to obtain the polynomials Z

K

l+K

, Z

K

l+K+1

. Note that the mod-

i�ed sequential recurrence (Algorithm 4.11) must be called twice, once for l and once
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Algorithm 4.10 Template for the optimized parallel fast Legendre transform.

CALL BSP FLT(s; p;N;M; f).

ARGUMENTS

s: Processor identi�cation; 0 � s < p.

p: Number of processors; p is a power of 2 with p <

p

N .

N : Transform size; N is a power of 2 with N � 4.

M : Termination block size; M is a power of 2 with M � min(N=2; N=(2p)).

f = (f

0

; : : : ; f

N�1

): Real vector of size N (block distributed).

OUTPUT f  

^

f

DESCRIPTION

1

Comp

Stage 1: Initialization.

for j = s

N

p

to s

N

p

+

N

p

� 1 do

h

j

 (1 + ix

N

j

) � f

j

w

j

 (Q

0

[0; j] + iQ

0

[1; j]) � f

j

2

CpCm

Chebyshev Transform.

BSP Rho2(s; p;

N

p

;h;w)

BSP FChT2 mod2(0; s; p; 1;

N

2

;h;w)

for k = 2 to log

2

(2p) do

3

Comm

Parallel rearrange.

BSP Rearrange(s; p; k;N;h;w)

4

CpCm

Parallel recurrence.

BSP Recurrence2(s; p; k; N;w)

5

Comp

Sequential stages.

for k = log

2

(4p) to log

2

N

M

do

K  

N

2

k

for l = s

N

p

to s

N

p

+

N

p

� 4K step 4K do

(a). Sequential rearrange.

w

l+2K

 Copy(2K;w

l

)

w

l

 Copy(2K;h

l

)

h

l+2K

 Copy(K;w

l+2K

)

(b). Sequential recurrence.

Seq Recurrence2(l;K;w

l

)

Seq Recurrence2(l+ 2K;K;w

l+2K

)

6

Comp

Stage log

2

N

M

+ 1: Termination.

for l = s

N

p

to s

N

p

+

N

p

� 2M step 2M do

f

l

 Terminate(l;M;Re(h

l

); Im(h

l

))

f

l+M

 Terminate(l+M;M;Re(w

l

); Im(w

l

))

for l + 2K. The termination stage is carried out by subroutine Terminate (Algo-

rithm 4.6); this subroutine must also be called twice, because the polynomials Z

M

l

,

Z

M

l+1

, l = 0; 2M; : : : ; N�2M , are stored in the auxiliary vector h, and the polynomials

Z

M

l+M

, Z

M

l+M+1

are stored in the auxiliary vector w.
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Algorithm 4.11 Template for the (sequential) modi�ed recurrence.

CALL Seq Recurrence2(l;K;w).

ARGUMENTS

l; K: Polynomial parameters.

w = (w

0

; : : : ; w

2K�1

): Complex vector of size 2K containing the Chebyshev coe�cients

of the polynomial pair Z

2K

l

, Z

2K

l+1

, packed as complex.

OUTPUT w: Chebyshev coe�cients of the polynomial pair Z

K

l+K

, Z

K

l+K+1

, packed as

complex. The second half of the vector contains junk data.

DESCRIPTION

1. Backward modi�ed FChT2.

w

0

 

1

2

� w

0

FCT2 PACK(0; 2K;w)

TBTFLY ZIG(0; 2K; 4;w)

2. Recurrence.

for j = 0 to 2K � 1 do

a1 Q

0

[2k � 2; l+ j] � Im(w

j

) +R

0

[2k � 2; l+ j] �Re(w

j

)

a2 Q

0

[2k � 1; l+ j] � Im(w

j

) +R

0

[2k � 1; l+ j] �Re(w

j

)

w

j

 a1 + ia2

3. Forward modi�ed FChT2.

BTFLY ZIG(0; 2K; 4;w)

w

0

 

1

2K

� w

0

for j = 1 to K � 1 do

w

j

 

1

2K

� [cos(

�j

4K

) � (w

j

+ w

2K�j

) + i sin(

�j

4K

) � (w

j

� w

2K�j

)]

After all the optimizations, only three communication supersteps remain: the

permutation from zig-zag cyclic to block distribution inside the inverse FFT, the per-

mutation from block to zig-zag cyclic distribution inside the FFT, and the rearrange

operation. The total communication cost is (5

N

p

log

2

p+5:5

N

p

) � g+3 � (log

2

p+1) � l.

Algorithm 4.10 is the template for the optimized FLT. Its approximate cost is

C

FLT,par

(N;M; p) � 4:25

N

p

(log

2

2

N � log

2

2

M) + 24:25

N

p

(log

2

N � log

2

M) + 2

NM

p

+ 5

N

p

log

2

p � g + 3 log

2

p � l:

(4.35)

Note that there is relatively less communication in the parallel FLT algorithm com-

pared with the parallel FFT algorithm, for p <

p

N , cf. (2.38). This means that one

should expect a better scalability behavior for the FLT algorithm.

4.4.3. Parallel termination. Sometimes, it is useful to be able to perform the

termination procedure of the Driscoll-Healy algorithm in parallel. In particular, this
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would enable the use of direct methods of O(N

2

) complexity, such as the so-called

semi-naive method [20], which may be faster for small problem sizes. The termination

as expressed by Lemma 4.11 is similar to the multiplication of a dense lower triangular

matrix and a vector.

4.4.3.1. Lower triangular matrix-vector multiplication. Let us �rst consider how

to multiply an n�n lower triangular matrix L by a vector x of length n on p processors,

giving h = Lx. Assume for simplicity that p is square. A parallel algorithm for

matrix-vector multiplication was proposed in [10]. This algorithm is based on a two-

dimensional distribution of the matrix over the processors, which are numbered (s; t),

0 � s < p

0

, 0 � t < p

1

, where p = p

0

p

1

. Often, it is best to choose p

0

= p

1

=

p

p.

This scheme assigns matrix rows to processor rows (s; �), and matrix columns to

processor columns. Vectors are distributed in the same way as the matrix diagonal.

Since our matrix is lower triangular, we cannot adopt the simplest possible distri-

bution method in this scheme, which is distributing the matrix diagonal, and hence

the vectors, by blocks over all the processors. The increase of the row size with the

row index would then lead to severe load imbalance in the computation. A bet-

ter method is to distribute the diagonal cyclically over the processors. Translated

into a two-dimensional numbering this means assigning matrix element L

ij

to pro-

cessor (i mod

p

p; (j div

p

p) mod

p

p). The rows of the matrix are thus cyclically

distributed, and blocks of

p

p columns are also cyclically distributed. The algorithm

�rst broadcasts input components x

j

to processors (�; (j div

p

p) mod

p

p), then com-

putes and accumulates the local contributions L

ij

x

j

and sends the resulting local

partial sum to the processor responsible for y

i

; this processor then adds the partial

sums to compute y

i

. The cost of the algorithm is about

n

2

p

+ 2

n

p

p

g + 2l.

4.4.3.2. Application to termination. We assume that a suitable truncation has

been performed at the end of the main loop of the FLT algorithm. This truncation

halves the group size to p

1

=

pM

N

and redistributes the data to the input distribution

of the termination. We assume, for simplicity of exposition, that p

1

is square. We

adapt the lower triangular matrix-vector multiplication algorithm to the context of

the termination, as follows. Let the termination index l � 1 be �xed. We replace n by

M�1 and p by p

1

, and de�ne L using Lemma 4.11, for instance by L

ij

= q

j

l;i

=2 for i �

j, i� j even, and j > 0. Here, we include the trivial case i = 0. The two-dimensional

processor numbering is created by the identi�cation (s; t) � s0+ s+ t

p

p

1

, where the

o�set s0 denotes the �rst processor of the group that handles the termination for l.

Figure 4.8 illustrates the data distribution. In the �rst superstep, z

l

j

is sent by its

owner to the processor column that needs it, but only to half the processors, namely

those that store q

j

l;i

's. The value z

l�1

j

is sent to the other half. There is no need to
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proc. 0

proc. 1

proc. 2

proc. 3

m = 6

m = 5

m = 4

m = 3

m = 2

m = 1

m = 0

4

q

0

r

0

q

1

q

0

r

1

q

2

r

0

q

1

r

2

q

3

q

4

r

3

q

2

r

1

q

0

r

0

q

1

r

2

q

3

r

4

q

5

q

6

r

5

q

4

r

3

q

2

r

1

q

0

0n = 1 52 3 6

Figure 4.8. Data structure and distribution of the precomputed

data needed for parallel termination with M = 8. The picture shows

the data needed for one value of l, which is handled by p

1

= 4 proces-

sors. The coe�cients q

n

= q

n

l;m

and r

n

= r

n

l;m

are stored in a lower

triangular matrix fashion.

redistribute the output vector, because it can be accumulated directly in the desired

distribution, which is by blocks.

The total time of the parallel termination is about

C

term, par

(N;M; p) �

MN

p

+

2

p

MN

p

p

g + 2l: (4.36)

4.5. Experimental results and discussion

In this section, we present results on the accuracy and scalability of the imple-

mentation of the Legendre transform algorithm for various problem sizes N . We also

investigate the optimal termination block size M .

Our implementations follow the same conventions as described in Section 2.5, and

were tested on the same machine, i.e., a Cray T3E with up to 64 processors, with

double precision (64-bit) accuracy of 1:0 � 10

�15

. Accuracy results are also given

using the more commonly used IEEE 754 oating point arithmetic for which the

double precision accuracy is 2:2� 10

�16

.

4.5.1. Accuracy. We tested the accuracy of our implementation by measuring

the relative error (2.46) obtained when transforming a random input vector f with

elements uniformly distributed between 0 and 1. The exact DLT was computed by

(4.1), using the stable three-term recurrence (4.2) and quadruple precision.

Table 4.1 shows the relative errors of the sequential algorithm for various prob-

lem sizes using double precision except in the precomputation of the third column,

which is carried out in quadruple precision. This could not be done for the Cray T3E
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Table 4.1. Relative errors for the sequential FLT algorithm. (QP

indicates that the precomputation is carried out in quadruple preci-

sion.)

N IEEE 754 Cray T3E

DLT FLT FLT-QP DLT FLT

512 7:7� 10

�14

4:3� 10

�12

1:5� 10

�14

7:0� 10

�14

1:4� 10

�12

1024 3:0� 10

�13

3:1� 10

�11

2:3� 10

�13

3:5� 10

�13

2:1� 10

�11

8192 1:3� 10

�11

3:5� 10

�9

1:3� 10

�11

1:2� 10

�11

5:4� 10

�9

65536 2:7� 10

�10

9:4� 10

�8

1:6� 10

�10

2:7� 10

�10

5:5� 10

�7

because quadruple precision is not available there. Note, however, that it is possible

to precompute the values on another computer. The results show that the error of

the FLT algorithm is comparable with the error of the DLT provided that the pre-

computed values are accurate. Therefore it is best to perform the precomputation in

increased precision. This can be done at little extra cost, because the precomputation

is done only once and its cost can be amortized over many FLTs. We believe that it

is possible to improve the accuracy of the precomputation by exploiting the symme-

tries of the associated polynomials (that are either odd or even). As an additional

advantage the sizes of the arrays Q and R can be halved. We will not address this

issue here. See [30, 29] for a discussion of other techniques that can be used to get

more accurate results.

The errors of the parallel implementation are of the same order as in the sequential

case. The only part of the parallel implementation that di�ers from the sequential

implementation in this respect is the FFT, and then only if the buttery stages cannot

be paired in the same way. Varying the termination block size between 2 and 128

also does not signi�cantly change the magnitude of the error.

4.5.2. E�ciency of the sequential implementation. We measured the ef-

�ciency of our optimized FLT algorithm by comparing its execution time with the

execution time of the direct DLT algorithm (i.e., a matrix-vector multiplication). Ta-

ble 4.2 shows the times obtained by the direct algorithm and the FLT with various

termination values: M = 2 yields the pure FLT algorithm without early termination;

M = 64 is the empirically determined value that makes the algorithm perform best

for N � 8192; M = N=2 is the maximum termination value that our program can

handle, and the resulting algorithm is similar to the semi-naive algorithm [20]. The

results indicate that the pure FLT algorithm becomes faster than the DLT algorithm

at N = 128. Choosing M = 64 (or M as large as possible if N < 128) further

decreases the break-even point.
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Table 4.2. Execution time (in ms) of various Legendre transform

algorithms on one processor of a CRAY T3E.

N DLT FLT FLT FLT

M = N=2 M = 64 M = 2

16 0:0176 0:0317 �� 0:0880

32 0:0668 0:0647 �� 0:2018

64 0:2836 0:1263 �� 0:4697

128 1:4640 0:3563 0:3563 1:1362

256 6:8996 1:4302 1:1369 2:5533

512 27:4952 5:7674 3:4048 6:2110

Though we opened the modules of the FLT algorithm, in principle it is still

possible to use highly optimized or even machine speci�c, assembler coded, FFT

subroutines in both the sequential and the parallel versions. This would yield an even

faster program.

4.5.3. Scalability of the parallel implementation. We tested the scalability

of our optimized parallel implementation using our optimized sequential implementa-

tion as basis for comparison.

Tables 4.3 and 4.4 show the timing results obtained for the sequential and parallel

versions executed on up to 64 processors, with p <

p

N , for M = 2; 64; 128. The

termination parameters M = 64 and M = 128 are the empirically determined values

that make the algorithm perform best for N � 8192 and N > 8192, respectively.

These empirical values are in accordance with the theoretical optimum M = 64, see

Section 4.2.4.

Table 4.3. Execution times (in ms) for the pure FLT algorithm

(M = 2) on a Cray T3E.

N seq p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64

512 6:23 6:47 3:72 2:77 1:81 2:16 �� ��

1024 14:68 15:03 8:36 4:72 3:23 2:54 �� ��

2048 35:52 34:95 18:66 10:30 6:01 4:37 3:88 ��

4096 83:79 81:57 43:53 22:61 12:85 7:63 5:94 ��

8192 212:79 211:54 105:71 54:46 29:15 16:05 9:72 9:10

16384 669:61 669:10 336:68 161:18 82:74 44:87 23:69 15:77

32768 1841:50 1843:20 941:74 469:40 209:09 108:20 55:28 32:09

65536 4560:50 4558:70 2345:00 1206:70 569:25 247:63 128:73 67:84
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Table 4.4. Execution times (in ms) for the FLT algorithm with op-

timal early termination values on a Cray T3E.M = 64 for N � 8192,

M = 128 forN > 8192.

N seq p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64

512 3:40 3:62 2:32 1:70 �� �� �� ��

1024 8:79 9:06 5:51 3:26 2:43 �� �� ��

2048 22:06 22:49 12:50 7:41 4:57 3:65 �� ��

4096 54:30 56:52 30:57 16:49 9:82 6:31 5:13 ��

8192 154:29 157:31 78:37 41:41 22:10 13:21 8:39 8:26

16384 494:25 504:03 253:94 116:88 62:28 32:86 18:89 13:15

32768 1400:30 1434:90 731:54 358:12 155:87 81:84 42:78 26:19

65536 3621:00 3673:10 1900:50 967:43 454:33 190:45 100:97 54:60

Figure 4.9 shows the absolute speedups and absolute e�ciencies obtained for var-

ious input sizes with M = 2 on up to 64 processors. The speedups for M = 64; 128

(not shown) are somewhat lower than for M = 2 because sequential early termi-

nation does not reduce the parallel overhead of the algorithm; it improves only the

computation part.

The DLT is normally used as part of a two-dimensional Legendre transform or

as part of a three-dimensional spherical harmonic transform. This means that, in

practical applications, many independent FLTs of small size will be performed by a

group of processors which could be only slightly larger than the number of transforms.

For this reason it is important that the FLT algorithm scales well for small N on a

small number of processors. Figure 4.9 (A) and (B) show that our algorithm scales

well to very well on up to 8 processors with N as small as 512. When p is larger, our

FLT implementation scales well for intermediate problem sizes (4096 � N � 16384),

and very well for large problem sizes (N � 32768).

Since the parallel FLT algorithm has relatively less communication than the par-

allel FFT algorithm, the FLT implementation should scale better than the FFT im-

plementation. Comparing the scalability results of both algorithms (cf. Figure 2.4 and

Figure 4.9), we verify that the FLT indeed scales better than the FFT for completely

in-cache computations, i.e. N � 4096. However, for out-of-cache computations, i.e.,

N > 4096, the FFT implementation achieves e�ciencies up to 1:5 times larger than

the ideal e�ciency, while the maximum e�ciency obtained by the FLT implementa-

tion is 1:15. This happens because the FLT algorithm is more cache-friendly than the

FFT algorithm. At each stage k of the FLT algorithm, the size of the subproblems
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Figure 4.9. Scalability of the FLT on a Cray T3E.

halves as the number of subproblems doubles. After a certain stage k

�

, the subprob-

lem size will be small enough to �t in cache. This means that both the sequential

and the parallel FLT implementations use the cache memory more e�ciently and

therefore the ratio Time(seq)=Time(p) will be smaller making the cache e�ect less

pronunciated.

4.6. Conclusions and future work

In this chapter, we developed and implemented a sequential algorithm for the dis-

crete Legendre transform, based on the Driscoll-Healy algorithm. This implementa-

tion is competitive for large problem sizes. Its complexity O(N log

2

N) is considerably

lower than the O(N

2

) matrix-vector multiplication algorithms which are still much

in use today for the computation of Legendre transforms. Its accuracy is similar,

provided the precomputation is performed in increased precision. The new algorithm

promises to be useful in compute-intensive applications such as weather forecasting.
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To obtain an e�cient parallel algorithm we started with a basic algorithm, and

then optimized this algorithm by removing permutations and redistributions wherever

possible. To carry out the optimizations we used all the tools developed in the previous

chapters. In particular, the choice of the FCT2 algorithm introduced in Section 3.4

simpli�ed the optimization work, because the pack-transform-extract structure of the

FCT2 algorithm leads to a simpler parallel algorithm than the algorithm obtained for

single FCTs. The overhead of our parallel program consists mainly of communication,

and this is limited to two redistributions of the full data set and one redistribution of

half the set in each of the �rst log

2

p stages of the algorithm. Two full redistributions

are already required by an FFT and an inverse FFT, indicating that our result is

close to optimal.

Our experimental results show that the performance of our parallel algorithm

scales very well with the number of processors, for medium to large problem sizes.

For small problem sizes the FLT scales very well on a small number of processors, say

p � 8; 16. This situation is the most likely to occur in practical applications, since

the DLT is most used as part of a two-dimensional Legendre transform or as part of

a spherical harmonic transform.

We view the present FLT as a good starting point for the use of fast Legendre

algorithms in practical applications. However, to make our FLT algorithm directly

useful in such applications further work must be done: an inverse FLT must be devel-

oped; the FLT must be adapted to the more general case of the spherical harmonic

transform where associated Legendre functions are used (this can be done by changing

the initial values of the recurrences of the precomputed values, and multiplying the

results by normalization factors); and alternative choices of sampling points must be

made possible. Driscoll, Healy, and Rockmore [22] have already shown how a variant

of the Driscoll-Healy algorithm may be used to compute such transforms at any set of

sample points, though the set of points chosen a�ects the stability of the algorithm.



Final Remarks and

Future Work

The subject of this thesis was the development of new parallel algorithms for com-

puting discrete transforms. More speci�cally, we derived and implemented parallel

algorithms for the fast Fourier transform (of complex data { CFFT, and real data

{ RFFT), the fast cosine transform (FCT), and the fast Legendre transform (FLT).

These algorithms compute the corresponding discrete transform of an input vector of

size N in O(N logN) arithmetic operations (CFFT, RFFT, FCT), or O(N log

2

N)

arithmetic operations (FLT).

In Chapter 1, we introduced the BSP model and discussed relevant aspects of

parallel computing. In Chapters 2 to 4 we presented the algorithms. Besides deriving

the algorithms, we presented them in the form of templates, which give a complete

description of the algorithms and facilitate their implementation. We also presented

results concerning their accuracy and scalability. Here, we conclude the thesis with

some general remarks; speci�c conclusions can be found at the end of each chapter.

We chose the BSP model because it gives a simple and e�ective way of producing

portable parallel algorithms: it does not depend on a speci�c computer architecture

and it provides a simple cost function that enables us to choose between algorithms

without actually having to implement them. This choice turned out to be the right

one for the kind of algorithms discussed in this thesis.

We presented our parallel algorithms using templates in which the block distribu-

tion is maintained throughout the procedure: changes in distribution are e�ectuated

by permutations. In this way the algorithms can be readily implemented, because it is

easy to compute where each data element is stored. For example, the j-th element of

a vector of size N which is distributed over p processors is always stored in processor

Proc(j) = j div

N

p

and has local index j

0

= j mod

N

p

. The way we presented our

algorithms can be viewed as a methodology for formulating parallel algorithms.

133
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In most cases, our computation subroutines are local subroutines which are para-

metrized by a parameter �. This parametrization is useful when designing cache-

friendly algorithms (sequential or parallel), since the resulting cache-friendly algo-

rithms can use the same computation subroutines, although with a di�erent �.

All the algorithms were implemented and tested on a Cray T3E with up to 64

processors. The tests showed that the algorithms scale well to very well as long as

the ratio problem size/number of processors is not very small (N=p should be at least

larger than 128). Note that such good results were only possible because we commu-

nicate data in large packets. In principle, it is possible to run our implementations

on a large variety of parallel computers without having to change one line of pro-

gram code. Though we did not test our implementations on other parallel machines,

the BSP cost function can be used to predict their performance as long as the BSP

parameters g, l, and v are available.

The Bulk Synchronous Parallel Fast Transform package (BSPFTpack) contains

the implementations of the algorithms discussed in this thesis. This package was

written in ANSI C and uses BSPlib as communication library, which is freely available.

Though this package was originaly written using BSPlib, it can be easily adapted to

use another communication library such as MPI. In that case only the communication

supersteps would have to be modi�ed.

Though this package is ready and will soon be available on the World Wide Web,

2

there is still much work to be done. The parallel FFT is optimized to a large extent,

and works for any p that is a power of two. The parallel RFFT, FCT, FCT2, and

FLT algorithms have additional restrictions. The mixed-radix parallel FFT algorithm

should be implemented. Cache-friendly versions of the same algorithms should be

developed as well. The possibility of implementing mixed-radix parallel algorithms

for the RFFT, FCT, FCT2, and FLT should also be investigated. In the speci�c case

of the FLT, an inverse FLT must be developed and the FLT must be adapted to the

more general case of the spherical harmonic transform.

2

http://www.math.uu.nl/people/bisseling/software.html



Appendix A

BSP Parameters on

the Cray T3E

The BSP parameters we use were measured using a modi�ed version of the program

bspbench that comes with the package BSPEDUpack.

1

The modi�cations we made are

the following.

� We use bsp hpput instead of bsp put.

� We communicate data using packets instead of single elements.

� We use h-relations with h = 1; 32; 64; : : : ; 8495, thus at intervals of size 31.

Table A.1 shows the values of s, g, and l as a function of the number of processors.

Table A.1. BSP parameters for the CRAY T3E, with s = 34:9

Mops/s. The value of s is based on in-cache dot product computa-

tions.

p g l

(ops) (�s) (ops) (�s)

1 0:28 0:00804 3 0:09

2 1:14 0:03279 479 13:72

4 1:46 0:04175 858 24:57

8 2:14 0:06133 1377 39:48

16 2:30 0:06600 1754 50:26

32 2:77 0:07940 2024 58:00

64 3:05 0:08758 3861 110:88

1

http://www.math.uu.nl/people/bisseling/software.html
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Appendix B

Lookup Table

Our implementations use the array w de�ned below as a lookup table for sines and

cosines. Let L be a power of two and de�ne the array w of size L+ 1 by:

w[l] = cos(

� � l

2L

); for l = 0; : : : ; L; (B.1)

(by symmetry, w[L� l] = sin(

��l

2L

)). This table contains all the weights needed by the

CFFT and RFFT of size N , provided that L � N=4, and all the weights needed by

the FCT, FCT2, and FLT of size N , provided that L � N .

As an example, we compute the index corresponding to weight

w

j+�

k

= cos(2�(j + �)=k) + i sin(2�(j + �)=k);

with 0 � j < k=2, needed by a forward generalized 2-buttery, where � =

(s mod u)=u, for some u needed in Algorithm 2.2. De�ne s

1

= s mod u. Then the

angle in question is

2�(j + s

1

=u)

k

=

4�(u � j + s

1

)

2ku

=

� � l

2L

;

where l = (u � j + s

1

) � 4L=(ku). The fact that ku � N � 4L and that ku and 4L are

both powers of two implies that 4L=(ku) is an integer. Furthermore, u �j+s

1

< ku=2,

and this implies l 2 f0; 1; : : : ; 2L�1g. Therefore, the required values can be obtained

directly from the table:

cos(

� � l

2L

) = w[l]; and sin(

� � l

2L

) = w[L� l]; for l � L; (B.2)

and, by symmetry of the trigonometric functions,

cos(

� � l

2L

) = �w[2L� l]; and sin(

� � l

2L

) = w[l � L]; for l > L: (B.3)

It is easy to access this lookup table by means of a stride. The index of the �rst

needed weight, w

s

1

=u

k

, is s

1

� 4L=(ku). To compute the index l of the next needed
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phase 0 u = 1; s

1

= 0

K= 4 � 1 w

0

4

; w

0

4

; w

0

4

;

K= 16 � 1 w
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1
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K= 4 � 16 w
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4
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4
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;

phase 2 u = 32; s

1

= 19

K=16 � 32 w

19

32

32

; w

1+

19

32

32

; w

2+

19

32

32

;

w

3+

19

32

32

; w

4+

19

32

32

; w

5+

19

32

32

;

w

6+

19

32

32

; w

7+

19

32

32

Figure B.1. Alternative lookup table for computing a parallel FFT

of size N = 512 with p = 32 and s = 19.

weight just add the stride 4L=k to the preceding index (this follows from the relation

l = (s

1

+ u � j) � 4L=(ku)). To �nd the value needed use (B.2){(B.3). The indices of

the weights used in the other algorithms can be computed and accessed in a similar

way.

The table described above is simple to use, and it provides all the weights needed

for any CFFT or RFFT of size N � 4L, and for any number of processors p < N ,

provided that N and p are powers of two. It can also be used for FCTs, FCT2s, and

FLTs, provided that the problem size does not exceed L. In the case of the FLT,

the property that it can be used for any p and N is useful, because the parallel FLT

algorithm needs to compute FFTs for various combinations of p and N .

The wide applicability of this table does not come without a price. The table

is not scalable, since its size depends only on N , and does not decrease with p.
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Nevertheless, it is possible to construct a scalable table for the parallel algorithms of

this book. For example, a simple way of constructing a table for the FFT is to store

the weights one after another in the order they are needed, so that they can be easily

accessed, see Figure B.1. Suppose, for simplicity, that N=p is an even power of two.

Since a generalized 4-buttery stage D

�

k

needs 3k=4 complex weights, each complete

buttery phase (i.e., k = 4; 16; : : : ; N=p) needs N=p�1 weight values.

1

Since there are

a total of H = dlogN

p

Ne phases, the total size of the table cannot exceed H(N=p�1)

complex values. Note that for phase 0 it is possible to use table w, with L = N=(4p).

1

If N=p is not an even power of two, we arrive at the same result.
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Appendix C

Related Polynomial

Transforms and

Algorithms

The derivation of the Driscoll-Healy algorithm given in Section 4.2 has the feature

that it only depends on the properties of truncation operators T

K

given in Lemma 4.8,

and on the existence of an e�cient algorithm for applying the truncation operators.

In particular, Lemma 4.8 and Lemma 4.10 hold as stated when the weight function

!(x) = �

�1

(1 � x

2

)

1

2

is changed, the truncation operators are de�ned using a poly-

nomial sequence which is orthogonal with respect to the new weight function and

which starts with the polynomial 1, and the Lagrange interpolation operators are

de�ned using the roots of the polynomials from the sequence. In theory, this can

be used to develop new algorithms for computing orthogonal polynomial transforms,

though with di�erent sample weights w

j

. In practice, however, the existence of ef-

�cient Chebyshev and cosine transform algorithms makes these the only reasonable

choice in the de�nition of the truncation operators. This situation may change with

the advent of other fast transforms.

Theoretically, the basic algorithm works, with minor modi�cations, in the follow-

ing general situation. We are given operators T

K

M

, for 1 �M � K, such that

1. T

K

M

is a mapping from the space of polynomials of degree less than 2K to the

space of polynomials of degree less than M .

2. If M � L � K then T

L

M

T

K

L

= T

K

M

.

3. If degQ � m � K � L then T

L

K�m

(f �Q) = T

K

K�m

��

T

L

K

f

�

�Q

�

.

The problem now is, given an input polynomial f of degree less thanN , to compute the

quantities T

N

1

(f �p

l

) for 0 � l < N , where fp

l

g is a sequence of orthogonal polynomials.

This problem may be treated using the same algorithms as in Section 4.2, but with

the truncation operators T

M

replaced by T

K

M

, where K � N depends on the stage
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of the algorithm. Using K = N retrieves our original algorithm. The generalized

algorithm uses the quantities Z

K

l

= T

N

K

(f � p

l

), and the recurrences in this context

are

Z

K�m

l+m�1

= T

K

K�m

�

Z

K

l

�Q

l;m�1

+ Z

K

l�1

� R

l;m�1

�

;

Z

K�m

l+m

= T

K

K�m

�

Z

K

l

�Q

l;m

+ Z

K

l�1

� R

l;m

�

;

(C.1)

cf. (4.16) and (4.17).

This generalization of the approach we have presented may be used to derive the

original algorithm of Driscoll and Healy in the exact form it was presented [21], which

uses the cosine transforms in the points cos(j�=K).

Driscoll, Healy, and Rockmore [22] described another variant of the Driscoll-Healy

algorithm that may be used to compute the Legendre transform of a polynomial

sampled at the Gaussian points, i.e., at the roots of the Legendre polynomial P

N

.

Their method replaces the initial Chebyshev transform used to �nd polynomial Z

N

0

in Chebyshev representation, by a Chebyshev transform taken at the Gaussian points.

Once Z

N

0

has been found in Chebyshev representation, the rest of the computation

is the same.

The Driscoll-Healy algorithm can also be used for input vectors of arbitrary size,

not only powers of two. Furthermore, at each stage, we can split the problem into an

arbitrary number of subproblems, not only into two. This requires that Chebyshev

transforms of suitable sizes are available.



Appendix D

Precomputation

Algorithm for the FLT

In this appendix we describe algorithms for generating the point values of Q

l;m

; R

l;m

used in the recurrence of the FLT algorithm, and for generating the coe�cients

q

n

l;m

; r

n

l;m

used in its termination stage.

The precomputation of the point values is based on the following recurrences.

Lemma D.1. Let l � 1, j � 0, and k � 1. Then the associated polynomials

Q

l;m

; R

l;m

satisfy the recurrences

Q

l;j+k

= Q

l+k;j

Q

l;k

+R

l+k;j

Q

l;k�1

;

R

l;j+k

= Q

l+k;j

R

l;k

+R

l+k;j

R

l;k�1

:

(D.1)

Proof. By induction on j. The proof for j = 0 follows immediately from the

de�nition (4.10), since Q

l+k;0

Q

l;k

+ R

l+k;0

Q

l;k�1

= 1 � Q

l;k

+ 0 = Q

l;k

and similarly

for R

l;k

. The case j = 1 also follows immediately from the de�nition. For j > 1, we

have

Q

l+k;j

Q

l;k

+R

l+k;j

Q

l;k�1

= [Q

l+k+j�1;1

Q

l+k;j�1

+R

l+k+j�1;1

Q

l+k;j�2

]Q

l;k

+ [Q

l+k+j�1;1

R

l+k;j�1

+R

l+k+j�1;1

R

l+k;j�2

]Q

l;k�1

= Q

l+k+j�1;1

[Q

l+k;j�1

Q

l;k

+R

l+k;j�1

Q

l;k�1

]

+R

l+k+j�1;1

[Q

l+k;j�2

Q

l;k

+R

l+k;j�2

Q

l;k�1

]

= Q

l+k+j�1;1

Q

l;k+j�1

+R

l+k+j�1;1

Q

l;k+j�2

= Q

l;k+j

;

where we have used the case j = 1 to prove the �rst and last equality and the induction

hypothesis for the cases j � 1; j � 2 to prove the third equality. In the same way we

may show that Q

l+k;j

R

l;k

+R

l+k;j

R

l;k�1

= R

l;k+j

.
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This lemma is the basis for the computation of the data needed in the recurrences

of the Driscoll-Healy algorithm. The basic idea of the Algorithm D.1 is to start with

polynomials of degree 0; 1, given in only one point, and then repeatedly double the

number of points by performing a Chebyshev transform, adding zero terms to the

Chebyshev expansion, and transforming back, and also double the maximum degree

of the polynomials by applying the lemma, with j = K � 1;K and k = K.

Algorithm D.1 Precomputation of the point values needed by the FLT.

INPUT N : a power of 2.

OUTPUT Q

l;m

(x

2

k

j

); R

l;m

(x

2

k

j

), for 1 � k � log

2

N , 0 � j < 2

k

, m = 2

k�1

; 2

k�1

� 1, and

l = 1; 2

k�1

+ 1; : : : ; N � 2

k�1

+ 1.

STAGES

0. for l = 1 to N do

Q

l;0

(0) 1; R

l;0

(0) 0; Q

l;1

(0) B

l

; R

l;1

(0) C

l

k. for k = 1 to log

2

N do

K  2

k�1

for m = K � 1 to K do

for l = 1 to N �K + 1 step K do

(q

0

l;m

; : : : ; q

K�1

l;m

) Chebyshev(Q

l;m

(x

K

0

); : : : ; Q

l;m

(x

K

K�1

))

(r

0

l;m

; : : : ; r

K�1

l;m

) Chebyshev(R

l;m

(x

K

0

); : : : ; R

l;m

(x

K

K�1

))

(q

K

l;m

; : : : ; q

2K�1

l;m

) (0; : : : ; 0)

if m = K then q

K

l;m

 A

l

A

l+1

� � �A

l+m�1

=2

m�1

(r

K

l;m

; : : : ; r

2K�1

l;m

) (0; : : : ; 0)

(Q

l;m

(x

2K

0

); : : : ; Q

l;m

(x

2K

2K�1

)) Chebyshev

�1

(q

0

l;m

; : : : ; q

2K�1

l;m

)

(R

l;m

(x

2K

0

); : : : ; R

l;m

(x

2K

2K�1

)) Chebyshev

�1

(r

0

l;m

; : : : ; r

2K�1

l;m

)

for l = 1 to N � 2K + 1 step 2K do

for j = 0 to 2K � 1 do

Q

l;2K

(x

2K

j

) Q

l+K;K

(x

2K

j

)Q

l;K

(x

2K

j

) +R

l+K;K

(x

2K

j

)Q

l;K�1

(x

2K

j

)

R

l;2K

(x

2K

j

) Q

l+K;K

(x

2K

j

)R

l;K

(x

2K

j

) +R

l+K;K

(x

2K

j

)R

l;K�1

(x

2K

j

)

Q

l;2K�1

(x

2K

j

) Q

l+K;K�1

(x

2K

j

)Q

l;K

(x

2K

j

) +R

l+K;K�1

(x

2K

j

)Q

l;K�1

(x

2K

j

)

R

l;2K�1

(x

2K

j

) Q

l+K;K�1

(x

2K

j

)R

l;K

(x

2K

j

) +R

l+K;K�1

(x

2K

j

)R

l;K�1

(x

2K

j

)

Note that deg R

l;m

� m� 1, so the Chebyshev coe�cients r

n

l;m

with n � m are

zero, which means that the polynomial is fully represented by its �rst m Chebyshev

coe�cients. In the case of the Q

l;m

, the coe�cients are zero for n > m. If n = m,

however, the coe�cient is nonzero, and this is a problem if m = K. The K-th

coe�cient which was set to zero must then be corrected and set to its true value,

which can be computed easily by using (4.10) and (4.3).

The point values needed can be retrieved as follows. The FLT algorithm requires

the numbers

Q

l;K

(x

2K

j

); Q

l;K�1

(x

2K

j

); R

l;K

(x

2K

j

); R

l;K�1

(x

2K

j

); 0 � j < 2K;
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for l = r � 2K + 1, 0 � r <

N

2K

, for all K with M � K � N=2. After the m-loop in

stage k = log

2

K +1 of Algorithm D.1, we have obtained these values for l = rK +1,

0 � r < N=K. We only need the values for even r, so the others can be discarded.

The algorithm must be continued until K = N=2, i.e., k = log

2

N .

The total number of ops of the precomputation of the point values is

C

precomp, point

(N) = 6�N log

2

2

N + (2�+ 12� + 12)N log

2

N: (D.2)

Comparing with the cost (4.26) of the Driscoll-Healy algorithm itself, and considering

only the highest order term, we see that the precomputation costs about three times

as much as the Driscoll-Healy algorithm without early termination. This one-time

cost, however, can be amortized over many subsequent executions of the algorithm.

Parallelizing the precomputation of the point values can be done most easily by

using the block distribution. This is similar to our approach in deriving a basic parallel

version of the Driscoll-Healy algorithm. In the early stages of the precomputation,

each processor handles a number of independent problems, one for each l. At the

start of stage k, such a problem involves K points. In the later stages, each problem

is assigned to one processor group. The polynomials Q

l;K

, Q

l;K�1

, R

l;K

, R

l;K�1

,

and Q

l+K;K

, Q

l+K;K�1

, R

l+K;K

, R

l+K;K�1

are all distributed in the same manner,

so that the recurrences are local. The Chebyshev transforms and the addition of

zeros may require communication. For the addition of zeros, this is caused by the

desire to maintain a block distribution while doubling the number of points. The

parallel precomputation algorithm can be optimized following similar ideas as in the

optimized main algorithm. We did not do this yet, because optimizing the one-time

precomputation is much less important than optimizing the Driscoll-Healy algorithm

itself.

The precomputation of the coe�cients q

n

l;m

; r

n

l;m

required to terminate the Driscoll-

Healy algorithm early, as in Lemma 4.11, is based on the following recurrences.

Lemma D.2. Let l � 1 and m � 2. The coe�cients q

n

l;m

satisfy the recurrences

q

n

l;m

=

1

2

A

l+m�1

(q

n+1

l;m�1

+ q

n�1

l;m�1

) +B

l+m�1

q

n

l;m�1

+ C

l+m�1

q

n

l;m�2

; for n � 2;

q

1

l;m

= A

l+m�1

(q

0

l;m�1

+

1

2

q

2

l;m�1

) +B

l+m�1

q

1

l;m�1

+ C

l+m�1

q

1

l;m�2

;

q

0

l;m

=

1

2

A

l+m�1

q

1

l;m�1

+B

l+m�1

q

0

l;m�1

+ C

l+m�1

q

0

l;m�2

;

subject to the boundary conditions q

0

l;0

= 1; q

0

l;1

= B

l

; q

1

l;1

= A

l

, and q

n

l;m

= 0 for

n > m. The r

n

l;m

satisfy the same recurrences, but with boundary conditions r

0

l;1

= C

l

and r

n

l;m

= 0 for n � m.
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Proof. These recurrences are the shifted three-term recurrences (4.10) rewritten

in terms of the Chebyshev coe�cients of the polynomials by using the equations

x � T

n

= (T

n+1

+ T

n�1

)=2 for n > 0 and x � T

0

= T

1

.

For a �xed l, we can compute the q

n

l;m

and r

n

l;m

by increasing m, starting with

the known values for m = 0; 1 and �nishing with m = M � 2. For each m, we only

need to compute the q

n

l;m

with n � m, and the r

n

l;m

with n < m. The total number

of ops of the precomputation of the Chebyshev coe�cients in the general case is

C

precomp, term

(M) = 7M

2

� 16M � 15: (D.3)

When the initial values B

l

are identically zero, the coe�cients can be packed in alter-

nating fashion into array T, as shown in Fig. 4.4. In that case the cost is considerably

lower, namely 2:5M

2

� 3:5M � 12.

The precomputed Chebyshev coe�cients can be used to save the early stages in

Algorithm D.1. If we continue the precomputation of the Chebyshev coe�cients two

steps more, and �nish with m = M , instead of m = M � 2, we can then switch

directly to the precomputation of the point values at stage K = M , just after the

forward Chebyshev transforms.

Parallelizing the precomputation of the Chebyshev coe�cients is straightforward,

since the computation for each l is independent. Therefore, if M � N=p, both the

termination and its precomputation are local operations.
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Summary

In this thesis we develop new parallel algorithms for discrete transforms. More specif-

ically, we derive parallel algorithms for the fast Fourier transform (of complex data {

CFFT, and real data { RFFT), the fast cosine transform (FCT), and the fast Legendre

transform (FLT). These algorithms compute the corresponding discrete transform of

an input vector of size N in O(N logN) arithmetic operations (CFFT, RFFT, FCT)

or O(N log

2

N) arithmetic operations (FLT). A discrete transform can be seen as a

matrix-vector multiplication of the form

^

f = W

N

� f ; where f = (f

0

; : : : ; f

N�1

) and

^

f = (

^

f

0

; : : : ;

^

f

N�1

) are column vectors of size N and W

N

= fw

(k;j)

N

g is an N � N

matrix. The vector f contains the data to be transformed and the vector

^

f contains

the transformed data. In the case of the Fourier transform, W

N

= F

N

is known as

the Fourier matrix and has elements w

(k;j)

N

= exp(2�ijk=N). In the case of the co-

sine transform w

(k;j)

N

= cos(�(j +

1

2

)k=N), and in the case of the Legendre transform

w

(j;k)

N

=

1

N

P

k

(cos(�(j +

1

2

)=N)), where P

k

is the k-th Legendre polynomial.

We design our parallel algorithms using the bulk synchronous parallel (BSP)

model. The BSP model gives a simple and e�ective way to produce portable parallel

algorithms: it does not depend on a speci�c computer architecture and it provides a

simple cost function that enables us to choose between algorithms without actually

having to implement them. In the BSP model [54], a computer consists of a set of p

processors, each with its own memory, connected by a communication network that

allows processors to access the private memories of other processors. In this model,

algorithms consist of a sequence of supersteps. In the variant of the model we use, a su-

perstep is either a number of computation steps, or a number of communication steps.

To ensure the correct execution of the algorithm, global synchronization barriers (i.e.,

places of the algorithm where all processors must wait for each other) precede and/or

follow a communication superstep. Using supersteps imposes a sequential structure

on parallel algorithms, and this greatly simpli�es the design process.

In Chapter 1 we describe the BSP model in more detail and also discuss aspects

relevant to parallel computing. Chapters 2 to 4 are dedicated to deriving the par-

allel discrete transform algorithms. Each algorithm is presented in the form of a
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152 Summary

template, which is a high level of detail algorithm that can be readily implemented.

Furthermore, results concerning accuracy and scalability are presented.

Our CFFT algorithm is a parallel version of the well-known radix-2 FFT algo-

rithm [16, 55], which assumes N to be a power of two. The sequential radix-2 FFT

algorithm starts with a bit reversal permutation of the input vector, and proceeds in

log

2

N buttery stages, numbered K = 2; 4; : : : ; N . Each buttery stage consists of

N=K times a buttery computation, which modi�esK=2 pairs (f

j

; f

j+K=2

) at distance

K=2 by the following computation:

 

f

j

f

j+K=2

!

 

 

f

j

+ e

2�ij=K

� f

j+K=2

f

j

� e

2�ij=K

� f

j+K=2

!

:

Assuming that the number of processors p < N is a power of two, and that the

input/output vector is in the block distribution (i.e., divide the vector in p subvectors

of the same size and give one subvector to each processor), the parallel algorithm

starts with a parallel bit reversal permutation (which is a communication superstep)

and carries out the buttery stages by interleaving communication and computation

supersteps. The communication supersteps redistribute the data vector so that the

data needed by the next computation superstep is local. The distributions used in the

algorithm are members of a family which we call the group-cyclic distribution family

C

r

(p;N). This family includes the well-known cyclic and the block distribution as

extreme cases, C

1

(p;N) and C

p

(p;N). Each computation superstep, which consists

of at most log

2

(N=p) buttery stages, is called a buttery phase. A total of H =

dlog

2

N= log

2

(N=p)e = dlogN

p

Ne buttery phases is performed. (H is the largest

integer for which (N=p)

H�1

� N .) In phase 0, the �rst log

2

(N=p) stages are performed

in the block distribution. This phase consists of buttery stages with K � N=p

(which we call short distance butteries). Afterwards, in each intermediate phase J ,

1 � J < H�1, a group of log

2

(N=p) buttery stages (the medium distance butteries)

is performed in the cyclic distribution restricted to a subgroup of processors of size

(N=p)

J

. Note that, if p � N=p, then logN

p

H � 2, which means that no intermediate

phase is performed. Finally, in phase H � 1, the remaining long distance butteries

are performed in the cyclic distribution over p processors. This process is illustrated

in Figure 1.

In Chapter 2 we derive the FFT algorithm sketched above. Furthermore, we show

how to modify the algorithm to accept vectors which are not in the block distribution;

speci�cally, in the case of the cyclic distribution we show that the communication cost

can be drastically reduced. We also show how to obtain a cache-friendly version of

our algorithm, that is, an algorithm that takes advantage of the cache memory of

a computer (i.e. a small but very fast memory) by breaking up the computations
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.proc. 1
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proc. 0

0 4 8 12 16 20 24 28
Phase 0: Short distance butterflies

Phase 1: Medium distance  butterflies

Phase 3: Long distance butterflies

Figure 1. Buttery operations using the group-cyclic distribution

family C

r

(p;N) = C

r

(8; 32). The short distance butteries are car-

ried out using the block distribution. The medium distance but-

teries are performed using the C

2

(8; 32) distribution. The long

distance butteries are performed using the cyclic distribution. For

clarity, not all buttery pairs are shown.

in small sections in such a way that the data stored in the cache is completely used

before new data is brought in. As a �nal topic in this chapter we introduce the parallel

mixed-radix FFT algorithm which is based on the work of Agarwal and Cooley [1]

for vector computers. This last algorithm is most promising, since it can solve FFTs

of any combination of p and N = N

0

N

1

: : :N

H�1

as long as p divides each N

l

and

sequential FFTs of size N

l

are available.

Algorithms for the RFFT and for the FCT can be derived by: (1) packing the N

real input data elements into a complex vector of size N=2, (2) transforming the com-

plex vector using a CFFT of size N=2, and then (3) extracting the desired transform

from the transformed data. Such algorithms have a computational cost of roughly

half the computational cost of a CFFT of the same size. The packing phase of both

algorithms is a permutation, which can be carried out without extra communication

cost by combining it with the bit reversal permutation of the CFFT. The extract

operation is a pair-wise operation that combines element pairs (j;N � j). In order to

perform this operation without any extra communication cost we perform the long

distance butteries in the zig-zag cyclic distribution, which is a variant of the cyclic

distribution that contains element pairs (j;N�j) in the same processor. In Chapter 3

we describe the parallel RFFT and FCT algorithms for the case that p <

p

N=2. We

also show how to invert the algorithms and we derive a new algorithm that computes

the FCT of two vectors at the same time.
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In 1989, Driscoll and Healy introduced a fast polynomial transform algorithm

that computes the discrete Legendre transform in O(N log

2

N) arithmetic opera-

tions [21, 22]. The algorithm starts by computing the Chebyshev coe�cients of

the input vector by a discrete Chebyshev transform, and then it proceeds in log

2

N

stages, assuming that N is a power of two. (The discrete Chebyshev transform is

similar to the DCT and can be computed in O(N logN) arithmetic operations by

using the FCT algorithm.) Each stage k, 1 � k < log

2

N , of the FLT algorithm,

takes a set of 2

k�1

polynomials of degree less than N=2

k�1

as input data and com-

putes a new set of polynomials by means of a recurrence procedure which involves

forward and backward FCTs. At the end of the stage, both the input polynomials

and the newly computed ones are truncated to half their original size so that the total

amount of data remains constant. Designing a basic parallel version of this algorithm

is straightforward [30, 45]. In the initial stages, k � log

2

p, there are 2

k�1

< p in-

dependent problems and a group of p=2

k�1

processors must deal with one problem.

Inter-processor communication is needed, but it occurs only in two instances: (1) in-

side the parallel FCTs, and (2) during the truncation. In the �nal stages, k > log

2

p,

there are 2

k�1

� p independent problems and one processor must deal with a group

of problems, which means that no inter-processor communication is needed. In Chap-

ter 4 we derive the sequential FLT algorithm and the basic parallel algorithm. Having

the parallel algorithm sketched above as basis, we derive an improved version which

reduces the communication cost by a factor of three.



Samenvatting

In dit proefschrift ontwikkelen we nieuwe parallelle algoritmen voor discrete trans-

formaties. In het bijzonder leiden we algoritmen af voor de snelle Fourier transfor-

matie (van complexe gegevens - CFFT, en re

�

ele gegevens - RFFT), de snelle cosinus

transformatie (FCT) en de snelle Legendre transformatie (FLT). Deze algoritmen be-

rekenen de bijbehorende discrete transformatie in O(N logN) rekenkundige operaties

(CFFT, RFFT, FCT) of O(N log

2

N) rekenkundige operaties (FLT). Een discrete

transformatie kan beschouwd worden als een matrix-vector vermenigvuldiging van de

vorm

^

f = W

N

f , waarbij f = (f

0

; : : : ; f

N�1

) en

^

f = (

^

f

0

; : : : ;

^

f

N�1

) vectoren zijn van

lengte N en W

N

= fw

(k;j)

N

g een N � N matrix is. De vector f bevat de gegevens

die getransformeerd moeten worden en de vector

^

f bevat de getransformeerde gege-

vens. In het geval van de Fourier transformatie is W

N

= F

N

de zogenaamde Fourier

matrix met elementen w

(k;j)

N

= exp(2�ijk=N). In het geval van de cosinus transfor-

matie is w

(k;j)

N

= cos(�(j +

1

2

)k=N) en in het geval van de Legendre transformatie is

w

(k;j)

N

=

1

N

P

k

(cos(�(j +

1

2

)=N)), waarbij P

k

het k-de Legendre polynoom is.

We hebben onze parallelle algoritmen ontworpen met behulp van het bulk syn-

chrone parallelle (BSP) model. Het BSP model geeft ons een eenvoudige en e�ectieve

manier om overdraagbare parallelle algoritmen te construeren: het model hangt niet

af van een speci�eke computerarchitectuur en het bevat een eenvoudige kostenfunc-

tie die het mogelijk maakt tussen algoritmen te kiezen zonder deze daadwerkelijk te

moeten implementeren. In het BSP model [54] bestaat een computer uit een col-

lectie van p processoren, ieder met een eigen geheugen, die verbonden zijn door een

communicatienetwerk dat de processoren toegang verleent tot de geheugens van de

andere processoren. In dit model bestaan algoritmen uit een aantal opeenvolgende

superstappen. In de modelvariant die wij gebruiken bestaat een superstap ofwel uit

een aantal rekenstappen, ofwel uit een aantal communicatiestappen. Om de correcte

uitvoering van het algoritme te garanderen wordt elke communicatiesuperstap voor-

afgegaan en/of gevolgd door een globale synchronisatiebarri�ere, d.w.z. een moment in
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het algoritme waar de processoren op elkaar moeten wachten. Het gebruik van super-

stappen legt een sequenti

�

ele structuur op aan parallelle algoritmen. Dit vereenvoudigt

het ontwerpproces aanmerkelijk.

In Hoofdstuk 1 beschrijven we het BSP model meer gedetailleerd en tevens be-

handelen we de meest relevante aspecten van parallel rekenen. Hoofdstukken 2 t/m

4 zijn gewijd aan het aeiden van parallelle algoritmen voor discrete transformaties.

In de aeiding van ieder algoritme worden de aspecten aan de orde gesteld die leiden

tot een e�ci

�

ente implementatie. Ieder algoritme wordt gepresenteerd in de vorm van

een sjabloon, een zeer gedetailleerd algoritme dat z�o ge

�

�mplementeerd kan worden.

Verder worden er resultaten betre�ende nauwkeurigheid, e�ci

�

entie en schaalbaarheid

gepresenteerd.

Ons CFFT algoritme is een parallelle versie van het bekende radix-2 FFT algo-

ritme [16, 55], dat aanneemt dat N een macht van twee is. Het sequenti

�

ele radix-2

FFT algoritme begint met een bitomkeringspermutatie van de invoervector en ver-

volgt met log

2

N zogenaamde buttery stappen. Elk van deze stappen bestaat uit

N=K maal een buttery berekening dieK=2 paren (f

j

; f

j+K=2

) op afstandK=2 wijzigt

volgens de formule

 

f

j

f

j+K=2

!

 

 

f

j

+ e

2�ij=K

� f

j+K=2

f

j

� e

2�ij=K

� f

j+K=2

!

:

We nemen aan dat het aantal processoren p < N een macht van twee is en dat de

invoer/uitvoer vector in de blokdistributie is (d.w.z. de vector is in p stukken van

gelijke lengte opgehakt en elk stuk is aan een processor toegekend). Het parallelle

algoritme begint in deze situatie met een parallelle bitomkeringspermutatie (die een

communicatiesuperstap vormt) en vervolgens voert het de buttery stappen uit door

reken- en communicatie-superstappen af te wisselen. In een communicatiesuperstap

worden de gegevens hergedistribueerd zodanig dat de daaropvolgende rekensuperstap

lokaal is. De distributies die in het algoritme voorkomen behoren tot de familie die wij

de groep-cyclische distributiefamilie hebben genoemd, genoteerd als C

r

(p;N). Deze

familie bevat de bekende cyclische en blok-distributie als speciale gevallen, C

1

(p;N) en

C

p

(p;N). Elke rekensuperstap is een fase; deze bevat tot log

2

(N=p) buttery stappen.

In totaal worden er H = dlog

2

N= log

2

(N=p)e = dlogN

p

Ne fases uitgevoerd. (Het

aantal fasesH is het grootste gehele getal waarvoor (N=p)

H�1

� N .) In fase 0 worden

de eerste log

2

(N=p) stappen uitgevoerd in de blokdistributie. Deze fase bestaat uit de

buttery stappen met K � N=p (die we de korte-afstand butteries noemen). Daarna

wordt in elke middenfase 1 � J < H � 1 een serie van log

2

(N=p) buttery stappen

met middellange-afstand butteries uitgevoerd in de cyclische distributie beperkt tot

een groep van telkens (N=p)

J

processoren. Tot slot worden in fase H�1 de resterende
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Figuur 1. Buttery operaties met gebruik van de groep-cyclische

distributie familie C

r

(p;N) = C

r

(8; 32). De korte-afstand butterf-

lies worden uitgevoerd in de blokdistributie, de middellange-afstand

butteries in de C

2

(8; 32) distributie en de lange-afstand butteries

in de cyclische distributie. Voor de duidelijkheid worden slechts een

aantal buttery-paren getoond.

lange-afstand butteries uitgevoerd in de cyclische distributie over p processoren. Dit

proces wordt ge

�

�llustreerd in Figuur 1.

In Hoofdstuk 2 leiden we het bovengeschetste algoritme af. Verder laten we

zien hoe het algoritme gewijzigd kan worden om invoervectoren te accepteren die

niet in de blokdistributie zijn. In het bijzonder laten we in het geval van de cyclische

distributie zien dat de communicatiekosten drastisch gereduceerd kunnen worden. We

behandelen tevens de vraag hoe we een cache-vriendelijke versie van ons algoritme

kunnen verkrijgen, d.w.z. een algoritme dat de cache (een klein maar snel extra

geheugen) van de computer optimaal benut door de berekening in kleine stukjes op te

breken zodat de gegevens die in de cache zijn volledig worden benut voordat nieuwe

gegevens worden binnengebracht. Als laatste onderwerp in dit hoofdstuk introduceren

we een nieuw gemengde-radix parallel FFT algoritme dat gebaseerd is op werk van

Agarwal en Cooley [1] voor vectorcomputers. Dit algoritme is veelbelovend omdat

het FFT's met elke combinatie van p en N = N

0

N

1

: : : N

H�1

aankan mits p een deler

is van iedere factor N

l

en sequenti

�

ele FFT's van lengte N

l

beschikbaar zijn.

Algoritmen voor de RFFT en de FCT kunnen afgeleid worden door: (1) de N

re

�

ele invoergegevens in te pakken in een complexe vector van lengte N=2, (2) deze

vector te transformeren door middel van een CFFT van lengte N=2, en daarna (3)

de gewenste uitvoer uit de getransformeerde data te halen. Dergelijke algoritmen

hebben rekenkosten die ruwweg de helft zijn van die van een CFFT van lengte N . De

inpakfase van beide algoritmen is een permutatie, die uitgevoerd kan worden zonder
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extra communicatiekosten door deze te combineren met de bitomkeringsoperatie van

de CFFT. De uitpakfase is een paarsgewijze operatie die elementenparen (j;N � j)

combineert. Om deze operatie zonder extra communicatiekosten uit te voeren laten we

de lange-afstand butteries geschieden in de zig-zag cyclische distributie, een variant

van de cyclische distributie die elementenparen (j;N � j) op dezelfde processor zet.

In Hoofdstuk 3 beschrijven we parallelle RFFT en FCT algoritmen voor het geval

p <

p

N=2. We laten ook zien hoe we de transformaties kunnen inverteren en we

leiden een nieuw algoritme af dat de FCT van twee vectoren tegelijkertijd berekent.

Driscoll en Healy introduceerden in 1989 een snel polynomiaal transformatie-

algoritme dat de discrete Legendre transformatie berekent in O(N log

2

N) rekenkun-

dige operaties [21, 22]. Het algoritme start met het berekenen van de Chebyshev

co

�

e�ci

�

enten van de invoervector door middel van een discrete Chebyshev transfor-

matie en voert daarna de eigenlijke berekening uit in log

2

N stappen, waarbij N een

macht van twee is. (De discrete Chebyshev transformatie lijkt op de DCT en kan in

O(N logN) rekenkundige operaties berekend worden gebruik makend van een FCT.)

Elk stap k, 1 � k < log

2

N , van het FLT algoritme heeft als invoer 2

k�1

polynomen

van graad minder dan N=2

k�1

en berekent als uitvoer een even grote nieuwe collectie

van polynomen. Dit gebeurt door middel van een recurrentie procedure, een FCT en

een inverse FCT. Aan het eind van elk stap worden de oude en de nieuwe polynomen

afgekapt tot de helft van de oorspronkelijke grootte. De totale hoeveelheid gegevens

blijft dus constant. Een basis parallelle versie kan nu op de voor de hand liggende

wijze worden ontworpen [30, 45]. In de eerste stappen, met k � log

2

p, zijn er

2

k�1

< p onafhankelijke problemen zodat een groep van p=2

k�1

processoren zich met

een probleem moet bezighouden. Communicatie tussen de processoren is nodig maar

beperkt zich tot twee instanties: (1) in de parallelle FCT's en (2) bij het afkappen.

In de latere stappen, met k > log

2

p, zijn er 2

k�1

� p onafhankelijke problemen zodat

elke processor zich kan wijden aan zijn eigen problemen, zonder te hoeven communi-

ceren. In Hoofdstuk 4 leiden we het sequenti

�

ele en basis parallelle FLT algoritme af

en vervolgens verbeteren we de parallelle versie door de communicatie met een factor

drie te verminderen.
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