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1 Introduction

This thesis is concerned with the electronic properties of insulating crystals.
In a conventional insulating crystal, the electrons are trapped in a deep
potential well, usually created by the atom to which they are bound. These
electrons cannot tunnel to the next potential well, since all states are already
occupied, and thus no electrons can move through the material, and no
conduction is possible. Why then would one devote an entire thesis to this
topic? The answer is that there exists a class of peculiar insulators, which
are insulating in the interior of the material, but conducting at the edges.

Dubbed topological insulators, the first of these remarkable phases of mat-
ter was discovered in 1980 by Klaus von Klitzing when he applied a strong
perpendicular magnetic field to a very thin piece of semiconductor. This
turned the interior of the metal into an insulator, but Von Klitzing never-
theless measured a conductance perpendicular to an applied current, coming
from conducting edge states [1]. This so-called Hall conductance showed a
remarkable quantization. It exhibited plateaus very clearly at an integer
times e2/h, where e is the electron charge and h is the Planck constant, sug-
gesting that by performing this experiment on an ordinary semiconductor,
one can determine the Planck constant (assuming we know the value of e).
This quantization of the Hall conductance is known as the integer quantum
Hall effect.

The appearance of integers, together with the fact that this effect has been
seen in many materials, suggests that the origin of this effect is topological.
In contrast to the geometry, the topology of the system does not change
under small perturbations. Changing the strength of the magnetic field
slightly, applying small uniform strain, or taking a sample with a different
shape: all this does not alter the Hall conductance. The quantum Hall effect
comes from a material in the quantum Hall phase, and this phase is very
stable.

While the bulk of the quantum Hall phase is insulating, it is completely
different from that of a conventional insulator. In a conventional insulator
the electrons can be essentially viewed as charged point particles. In topo-
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1 Introduction

logical insulators, this picture breaks down, and the wave-like nature of the
electron is necessary to describe the electronic properties of the insulator, a
hint that these phases are quantum mechanical in nature.

In 2005, another important topological insulator was discovered [2–4]: the
quantum spin Hall insulator, which features two counter-propagating con-
ducting edge states, of opposite spin. The spin-up electron propagating in
one direction cannot scatter into the spin-down electron coming its way,
as long as the system has time-reversal symmetry. Playing a movie of the
system backwards is indistinguishable from playing it forward. Each edge
state then propagates in the other direction, but the spin also changes, such
that the entire system remains the same. The nature of this topological
phase is thus different from the quantum Hall phase as here a symmetry is
responsible for the protection of the edge states.

Many different symmetries exist in nature, and after the quantum spin Hall
phase, many topological phases protected by many different symmetries have
been discovered and continue to be discovered to this day. In this thesis,
the focus will lie on crystalline symmetries, which are symmetries of the
underlying lattice, such as a rotation or mirror symmetry. Our aim is broadly
to answer two questions. First, given a crystalline symmetry, what are the
possible topological phases protected by this symmetry? Second, given a
system with a crystalline symmetry, how can we determine its topology?

In the remainder of this introductory chapter, we give a brief introduction
to crystalline topology and an overview of a few important concepts that
will be expanded on in later chapters. We end this chapter with a detailed
outline of this thesis.

1.1 The atomic insulator

To understand topology in crystals, it is instructive to introduce the concept
of the atomic insulator. An atomic insulator is an insulator in the atomic
limit, where the wavefunction of each electron is completely localized at
a point. Put differently, the electrons can be thought of as charged point
particles. The electronic properties of such an insulator are then known once
we know the set of points where the electrons are localized. While an ideal
limit, such a situation is approached if electrons are very strongly bound to
an atom.

2



1.1 The atomic insulator

No symmetry

Inversion symmetry

a)

b)

c)

Figure 1.1: One-dimensional chains with (a) one electron at a non-symmetric
point, (b) one electron at 1a and (c) two electrons at λ and −λ per
unit cell, that transform into each other under inversion symmetry.

A question to which we will return many times throughout this thesis, is
whether two atomic insulators are topologically equivalent. We say that two
atomic insulators are topologically equivalent if we can slowly (adiabatically)
go from one to the other while (i) preserving all symmetries of the system
and (ii) not closing the bandgap in the bulk of the system.

To make this clearer, consider a one-dimensional atomic insulator, where
we find exactly one point-like electron within each unit cell, as shown in
Fig. 1.1(a). Since we have imposed no symmetries whatsoever on this crys-
tal yet, apart from translation symmetry, we can move the electron slowly
to anywhere within this unit cell without breaking the symmetry of the
crystal (there are none to break!). This leads us to conclude that with no
symmetries, all atomic insulators are topologically equivalent.

This situation changes when we impose a symmetry on the crystal. Take
for example a one-dimensional atomic insulator with inversion symmetry.
This symmetry sends the coordinate x→ −x and there are now two special
positions in the unit cell, namely the middle and the edge of the unit cell,
which we will refer to as Wyckoff positions 1a and 1b. These positions are
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1 Introduction

special because they are mapped onto themselves under inversion symmetry,
up to a translation by an integer number of unit cells.

Consider again placing a point-like electron in this crystal. We must now
take care to not break the inversion symmetry of the crystal. Therefore, we
can only place this point-like electron at a position that is invariant under the
symmetry: the middle or the edge of the unit cell. Any other position is not
invariant under inversion symmetry, and hence would break the symmetry of
the crystal. Furthermore, if we have a point-like electron at say the middle of
the unit cell [1.1(b)], we cannot slowly move it away from its position while
preserving inversion symmetry. In particular, we cannot move the electron
from 1a to 1b without breaking the symmetry, and thus these two atomic
insulators are topologically distinct.

Adding a second localized electron to the system, its wavefunction again
must be centered at 1a or 1b. There is however a third option now. The
wavefunction of the electron must, by inversion symmetry, either be even
or odd. If an even and an odd electron wavefunction are localized at say
1a, they can move away pairwise [1.1(c)]. This means that we will have
one electron localized +λ away from 1a, while the other will be localized at
−λ. Inversion symmetry is now still respected, since the two electrons will
transform into each other under inversion.

This also means that we can take the two electrons at 1a, and move them
away (in opposite directions) until they are now localized at 1b. Hence, two
electrons localized at 1a, one with an even and one with an odd wavefunction,
correspond to the same atomic limit as two electrons localized at 1b. Even in
this simple case of a one-dimensional crystal with inversion symmetry, there
are thus already topologically distinct phases to be found.

The above analysis in terms of atomic limits (and thus completely localized
electrons), may seem to have little applicability to real materials. In reality,
electrons are described by wavefunctions and are not localized at a single
point. Even in such systems, however, one can often reach an atomic limit
by slowly deforming the system without breaking any symmetries. In other
words, many insulators are topologically equivalent to an atomic limit. For
convenience, we will broaden our definition of atomic insulator a bit and refer
to all insulators that are topologically equivalent to an atomic insulator as
atomic insulators.

It turns out that in one dimension all insulators are atomic insulators.
By a Fourier transformation, we are always able to construct localized and
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1.2 Edge charges

symmetric wavefunctions (Wannier functions), that can then be deformed
to an atomic limit. In two and three dimensions, this is not always possible.

This forms the basis of the definition non-trivial topology that we will
use throughout this thesis: a phase is topologically non-trivial if it is not
deformable to any atomic limit [5]. This means that for a topologically
non-trivial phase, one cannot construct Wannier functions that are expo-
nentially localized and respect the symmetry of the system. Put another
way, atomic insulators are topologically trivial, while non-atomic insulators
are topologically non-trivial.

Returning to our example of the one-dimensional crystal with inversion
symmetry, we saw that putting an electron at 1a or 1b results in two topolog-
ically different phases. However, both phases are deformable to (different)
atomic limits, and hence both are topologically trivial. Two phases might
thus be topologically distinct, while still being topologically trivial.

We can also look at this distinction between trivial and non-trivial phases
by noting that topologically trivial phases (atomic insulators) are essentially
classical phases. Their electronic properties can be described in terms of
localized charged point particles. For non-trivial topological phases, this
picture breaks down. They require extended electronic wavefunctions to
describe them, and hence are truly quantum phases.

1.2 Edge charges

In the previous section, we have seen that crystalline symmetries lead to
topologically different phases. A natural question to then ask is: how can
we probe this topology? In other words, what are the physical consequences
of crystalline topology? One such class of observables are edge and corner
charges. While they are in principle measurable, this is very difficult to
do in actual materials. Yet, they are still very useful in determining the
topology of a phase and provide an intuitive understanding of the appearance
of protected edge and surface states, as we will see in the next sections.

To understand what edge charges are, let us return to the one-dimensional
crystal with inversion symmetry, and imagine a chain of finite length. Clearly,
the total number of electrons in the finite chain is an integer. If we divide
the chain precisely in half, and sum the charge density in one half of the
chain, this must then add up to either an integer, or half-integer. This is
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Figure 1.2: Schematic drawing of a one-dimensional inversion symmetric chain
with a length of 50 unit cells. Below is a plot of the charge density
per unit cell with no applied edge potential, and with an applied edge
potential.
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1.2 Edge charges

because the left-half of the chain must be exactly equal to the right-half in
order to respect the inversion symmetry, under which x → −x. Inside the
bulk of the chain, far enough from the edges, there will be an integer amount
of electron charge per unit cell. Near the edges however, this charge density
may fluctuate, and it follows that a possible excess of charge can only be
localized at the edge.

In Fig. 1.2, we show the charge density for a simple tight-binding model
of a finite one-dimensional inversion symmetric chain with a length of 50
unit cells, and we see indeed that the charge per unit cell deviates from 1
near the edges. Taking the sum of the charge in the leftmost 5 unit cells,
we find a charge of 4.50, and thus Qedge = 0.50 mod 1. Instead we could
have summed over the leftmost 7 or 10 unit cells, but this would not have
changed value of the edge charge modulo 1. If we pick the region to be too
small, for example 2, we will not exactly find an edge charge of 0.5, since
we are then not terminating the region in the bulk. The charge fluctuations
will fall off exponentially, but how quickly it decays is determined by the
microscopic details of the model.

What makes these edge charges interesting, is that they are related to the
bulk topology. This means that they are determined by the bulk, and not
dependent on the details at the edge. Picking an edge region terminated at
the edge or middle of a unit cell, the charge in this region cannot change
by symmetric perturbations at the edge. Returning to the chain, we can for
example turn on a potential −V just at the edges of the chain. This will
lower the energy of the states at the edge of the chain, and two additional
states will be occupied. Summing again the charge in the first five unit cells,
we now find 5.5. We see that the charge distribution has changed, but the
value Qedge mod 1 has not. As long as we do not change the symmetry in
the bulk, or close the bandgap, the edge charge cannot change.

By choosing to sum the charge in an integer number of unit cells, we have
picked a region that terminates at the edge of the unit cell, Wyckoff position
1b. Now suppose that we pick a region that terminates in the middle of the
unit cell, Wyckoff position 1a, what would the charge in this region be? The
difference between these two regions is half a bulk unit cell. In the bulk,
each unit cell contains an integer amount of charge, and the charge density
within a bulk unit cell is inversion symmetric around Wyckoff position 1a.
Hence, in the left half of a bulk unit cell there will be either an integer of
half-integer charge.
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1 Introduction

.....
Figure 1.3: Schematic drawing of the left edge of a one-dimensional inversion sym-

metric chain. The chain features one occupied electron per unit cell,
with a wavefunction centered around the middle of the unit cell (1a).
Summing the charge in an edge region terminated 1b will yield an inte-
ger edge charge Q1b, while summing the charge in a region terminated
in 1a will yield an edge charge Q1a that is half-integer.

It follows from this observation that the difference in charge between the
two regions is either 0 or 1/2 mod 1. Hence, also the charge in the region
that terminates at 1a is quantized. Let us call this edge charge Q1a, and the
edge charge with respect to 1b, Q1b.

Now that we have two bulk quantities, Q1a and Q1b, we would like to relate
them to the topology of the crystal. Let us again consider a one-dimensional
crystal with an electron localized at Wyckoff position 1a, the middle of the
unit cell (Fig. 1.3). What will the edge charges be of such a crystal? Let
us start by picking an edge region that terminates at 1b, thus containing
an integer number of unit cells. Looking at the electron wavefunctions,
we see that this region contains an integer number of electrons, and hence
Q1b = 3 = 0 mod 1. If instead we consider a region terminated at 1a, we
see that the region terminates exactly where an electron is localized, which
will contribute half an electron charge and thus Q1a = 5/2 = 1/2 mod 1.

Hence, the localized electron at position 1a contributes a charge of 1/2
to Q1a. This correspondence between localized electrons and edge charge is
general, and for one-dimensional chains with inversion symmetry we have

Q1a =
1

2
×# electrons localized at 1a mod 1,

Q1b =
1

2
×# electrons localized at 1b mod 1.

Thus, the edge charges are directly determined by the topology of the system.

8



1.3 Corner charges

Vice versa, if we know the corner charges, we know if there are an even or
odd amount of electrons localized at the corresponding Wyckoff position.

1.3 Corner charges

In one-dimensional insulators, the edge charges thus provide physical observ-
ables that are directly related to the topology of the crystal. How does this
compare to two-dimensional insulators? Analogous to one dimension, edge
charges can be quantized by rotation, mirror or inversion symmetry in two
dimensions. But are there any new probes of topology in two dimensions?

The answer is yes, corner charges are precisely such a new probe of topol-
ogy, not found in one dimension. To understand this quantity, let us consider
a fourfold-rotation (C4) symmetric crystal, meaning the crystal is invariant
under quarter rotations. A C4 symmetric unit cell has four symmetric Wyck-
off positions [Fig. 1.4(a)], in contrast to the two for the one-dimensional
inversion symmetric chain. The origin (1a) and the corner (1b) are C4 sym-
metric points. There are two other points (2c), located at the middle of the
edges of the unit cell, that are not C4 symmetric, but they do transform into
each other under a quarter rotation.

A finite sample of such a crystal can now be divided into three regions, the
bulk, the edges and the corners [Fig. 1.4(b)], where we terminate the corner
regions in the corners of the unit cells. In the bulk, each unit cell will again
contain an integer number of electrons, and hence the total bulk region will
contain an integer number of electrons. Following similar reasoning as for the
one-dimensional inversion symmetric chain, by fourfold rotation symmetry
the edge charge is quantized to be 0 or 1/2 mod 1. This means that the
total charge in the two opposite edge regions will be an integer. Since the
total charge is integer and the bulk plus edge charge is integer, the sum
of the charge in the corner regions must also be integer. Furthermore, all
corner regions must contain an equal amount of charge, since the crystal is
C4 symmetric. Four times the charge in one corner must thus be an integer,
and thus the charge in one corner must be a multiple of 1/4.

Again following the example of the one-dimensional inversion symmetric
chain, we can apply a potential to all four corners. In this way, four addi-
tional states can be occupied at the corners, and the corner charge in one
corner changes by 1. Therefore, as with the edge charge, the corner charge is

9



1 Introduction

a) b)

Figure 1.4: (a) Unit cell of a fourfold rotation symmetric unit cell, containing
two C4-symmetric (1a and 1b), and two C2-symmetric (2c) Wyckoff
positions. (b) Schematic drawing of a finite geometry of such a crys-
tal, divided into three regions: the bulk (gray), the edges (blue) and
the corners (red). In the zoom in, we see that the corner region is
terminated at Wyckoff position 1b (the red triangle). To calculate
the charge with respect to 1a, we should instead sum the charge in
a corner region terminated at the green circle (1a). The difference
between these two charges will be a quarter of a bulk unit cell (the
gray square), and one strip from the edge to the bulk (the two striped
regions together).

10



1.3 Corner charges

only well defined modulo 1. So far, we have considered a region terminated
at the corner of the unit cell, Wyckoff position 1b. We could also terminate
the corner region in the center of the unit cell 1a, the other C4 symmetric
point. This will give the corner charge Q1a with respect to position 1a.

A closer look at the difference between the two regions shows that the
difference between Q1a and Q1b is one quarter of a bulk unit cell, and one
strip of the edge region terminated at 1b [Fig. 1.4(b)]. The charge in the edge
strip is quantized by the rotation symmetry, and the charge in a quarter of
the bulk unit cell will be an integer divided by four. In this way we see that
the charge with respect to 1a is also quantized to a multiple of 1/4.

For atomic insulators, a non-trivial corner charge is due to localized elec-
trons at the corresponding Wyckoff position. Looking at the zoom-in of
Fig. 1.4(b), imagine an electron localized at 1b. The red corner region will
include a quarter of the electron localized at the red triangle. Along the
edge, it will cut electrons in half, but this is compensated by the electrons
cut by the other edge. Any non-integer part of the corner charge, for an
atomic insulator, must thus come from electrons localized at 1b. Hence,
for fourfold rotation symmetry, we again find a relation between the corner
charges and atomic insulators

Q1a =
1

4
×# electrons localized at 1a mod 1,

Q1b =
1

4
×# electrons localized at 1b mod 1, (1.1)

where Q1a is now the corner charge with respect to 1a.

This provides us with a relation between the corner charges and the topol-
ogy of atomic insulators. But as already alluded to above, in two dimensions
there are not just additional physical observables, but also additional topo-
logical phases of matter. In two dimensions, it is no longer true that every
insulator is deformable to an atomic limit, and there exist also non-atomic
insulators.

The relations between corner charges and the number of localized electrons
of Eq. (1.1) are derived under the assumption that the insulator is atomic
and for non-atomic insulators these relations thus do not necessarily hold.
This allows us to combine the two relations into an inequality that is always
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1 Introduction

satisfied for atomic insulators, namely

4(Q1a +Q1b) ≤ NF ,

where NF is the number of electrons per unit cell in the bulk. Suppose,
for example, that we have a crystal with a corner charge Q1b of 1. If the
crystal is an atomic insulator, this corner charge must be due to two localized
electrons at 1b, and thus NF must be at least two.

If this inequality is not satisfied, we are sure that the insulator for which
this is the case is non-atomic, and hence a topologically non-trivial insulator.
Such phases are called fragile topological phases [6, 7], since they can become
an atomic insulator when additional atomic bands are occupied. We will
investigate fragile topological phases in more detail in Chapters 3, and 4.

1.4 Edge and hinge states

We have found that in two dimensions, the corner charge can not only tell
us something about the topology of atomic insulators, but sometimes also
diagnose an insulator as non-atomic. While it is interesting that these corner
charges, being physical observables, reflect the bulk topology, they are very
difficult to measure. We are therefore left wondering if crystalline topological
phases can protect something more interesting.

Conducting edge states are an obvious candidate, as the very first topo-
logical insulator that we discussed, the quantum Hall phase, protects exactly
such states. In this section, we will show that the quantum Hall phase can be
understood by considering the two-dimensional system as a collection of one-
dimensional systems. By analyzing the edge charges of the one-dimensional
systems, we can predict the existence of protected edge states. We then
show that we can similarly consider a three-dimensional system as a collec-
tion of two-dimensional systems, and by analyzing their corner charges we
can predict one-dimensional conducting hinge states in three-dimensional
systems.

To start, consider a two-dimensional insulating crystal with inversion sym-
metry. In two dimensions, inversion symmetry changes the sign of the co-
ordinates, x → −x and y → −y. Instead of a finite square sample, we now
consider a ribbon geometry, which is finite in the x direction, but infinite
in the y direction. Since this direction is infinite, we can apply a Fourier

12



1.4 Edge and hinge states

transformation to the y coordinate, which yields the periodic momentum
coordinate ky. Under inversion, the momentum also changes sign ky → −ky.
We now have a crystal described by the coordinate and momentum (x, ky).
This can be viewed as a collection of finite 1D crystals, one for each ky.
Only two of these one-dimensional chains are inversion symmetric however,
the ones at ky = 0 and at ky = π (since ky is 2π-periodic). These two
inversion-symmetric chains have, as we have seen in the previous section,
quantized edge charges.

Suppose now that at ky = 0 the 1D chain has an edge charge of Q1b = 0,
while the one-dimensional chain at ky = π has Q1b = 1/2 [Figs. 1.5(a)-(b)].
Away from ky = 0, π, the one-dimensional chains will not have inversion
symmetry, and hence the edge charge will not be quantized. We now consider
the left edge charge of such a system as a function of ky, as plotted in
Fig. 1.5(c). The edge charge will also not be equal in both ends of the chain,
but the sum will still be integer. By inversion, the chain at ky will be equal to
the one at −ky, but reversed (since x→ −x). Therefore, the corner charges
are related, Q(ky) = −Q(−ky). Following a cycle of ky from 0 to 2π, one
unit of charge has been added to the left edge of the chain.

Hence, as a function of ky, this system realizes a charge pump. At ky = 2π
the charge at the left edge has increased by 1, and the charge at the right edge
has decreased by 1. However, the momentum ky is 2π-periodic. This means
that the system at ky = 0 and ky = 2π must have the same edge charge.
Yet we saw that the edge charge increased by 1, how is this possible? The
explanation is that somewhere the edge charge made a jump of 1. Note that
since we are plotting the edge charge modulo 1, this jump does not show up
in Fig. 1.5(c).

Such a jump in the edge charge can only come from a state, localized at
the edge, crossing the Fermi energy (the energy below which all states are
occupied). This can be seen by plotting the energy spectrum of the ribbon
as a function of ky [Fig. 1.5(d)]. We see that indeed two states cross the
gap, one right-moving and one left-moving. Each of these states is localized
at a different edge. If we consider a finite square geometry, there will be one
edge state moving around the edge of the system. This is an example of a
Chern insulator, which falls into the same class as the quantum Hall phase.

We repeat this construction, but now with corner charges instead of edge
charges. Hence, we take a three-dimensional system, infinitely extended in
the z direction, and consider it as a collection of C4-symmetric 2D systems
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Figure 1.5: (a) Charge density per unit cell of the 1D chain at ky = 0. (b) Charge
density per unit cell of the 1D chain at ky = π. (c) The edge charge
modulo 1 of the bottom five unit cells as a function of ky. Between
0 and 2π the edge charge increases by 1. (d) Energy spectrum for a
ribbon geometry with a width of 50 unit cells. Two bands cross the
gap of the spectrum, each localized at opposite edges of the ribbon.
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1.4 Edge and hinge states
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Figure 1.6: Charge density per unit cell of the two-dimensional system at (a) kz =
0 and (b) kz = π. (b) The corner charge of the bottom-left corner as
a function of kz. (d) Energy spectrum as a function of kz, with the x
and y directions finite. (e) Schematic of the hinge states present in a
finite geometry of the system.

parametrized by kz. For each kz, we then have a C4 symmetric crystal, and
at kz = 0 we take a crystal with Q1b = 0 [Fig. 1.6(a)], while at kz = π we
take Q1b = 1/2 [Fig. 1.6(b)]. If we plot the corner charge in the lower-left
corner Q1b as a function of kz, it will flow from 0 at kz = 0 to 1/2 at kz = π.

In order to realize a corner charge pump, we want the corner charge to
go to 1 as a function of kz, and to guarantee this we need the relation
Q1b(kz) = −Q1b(−kz). We can get this relation if we alter the symmetry
slightly: instead of considering a crystal with C4 symmetry, we consider
C4 ×Mz symmetry [8]. Mz is a mirror symmetry in the z direction, which
sends z → −z and kz → −kz. This does not affect the kz = 0, π planes, but
now relates the two-dimensional crystal at kz to the one at −kz, and leads
to the corner charge flow in Fig. 1.6(c).

This corner charge then leads to four states that cross the Fermi energy,
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1 Introduction

as can be seen in Fig. 1.6(d). These states are localized at the corners of
the two-dimensional systems. If we consider this system in a cube geometry
(finite in all directions), we will find hinge states in the configuration as seen
in Fig. 1.6(e). Note that this pattern of hinge states also respects C4 ×Mz

symmetry. In order for these hinge states to be protected, the geometry of
the system should respect the symmetry of the crystal.

This is an example of a higher-order topological insulator [9], since it fea-
tures one-dimensional protected edge states in a three-dimensional system.
In contrast, first-order topological insulators (such as the quantum spin Hall
phase), feature protected edge states in a dimension only one lower than the
bulk (one-dimensional protected edge states in a two-dimensional system).
Higher-order topological insulators will be extensively discussed in Chapters
2 and 4.

1.5 Outline

This introductory Chapter has been purely theoretical, and has made little
reference to actual materials. Indeed, one of the challenges is to find mate-
rial platforms where protected hinge states can be measured. In Chapter 2,
we propose a model of a higher-order topological insulator featuring inver-
sion symmetric chiral hinge states consisting of a coupled layer construction.
In particular, we show that a homogeneous external magnetic field slightly
tilted away from the stacking direction drives alternating p- and n-doped
honeycomb sheets into a higher-order topological phase, characterized by a
nontrivial three-dimensional Z2 invariant. We identify graphene, silicene,
and phosphorene multilayers as potential material platforms for the experi-
mental detection of this second-order topological insulating phase.

Another challenge is classifying topological phases, and especially finding a
bulk formulation of the topological invariants for systems with time-reversal
symmetry. In Chapter 3, we give such a classification for 2D crystalline insu-
lators that are twofold-rotation and time-reversal symmetric. These systems
cannot be classified using symmetry indicators, and we instead identify a set
of three Z2 topological invariants, which correspond to nested quantized
partial Berry phases. By considering which phases correspond to atomic
insulators, we infer the existence of new fragile topological insulating phases
that are diagnosed as trivial by symmetry indicators, and construct a num-
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1.5 Outline

ber of microscopic models exhibiting this phase.
In Chapter 4, we ask the question whether crystalline symmetries can lead

to new topological phases in quantum spin Hall phases. We show that indeed
two-fold rotation symmetry protects a novel crystalline topological invariant
that can neither be revealed by symmetry indicators, nor by Wilson loop
invariants. By exploiting this invariant, we are able to construct a three-
dimensional hybrid-order topological insulator, which features Dirac cones
on the side surfaces protected by time-reversal symmetry and translation
symmetry, and cones on the top and bottom surfaces protected by two-fold
rotation and time-reversal symmetry.

Finally, in Chapter 5 we investigate theoretically the spectrum of a graphene-
like sample (honeycomb lattice) subjected to a perpendicular magnetic field
and irradiated by circularly polarized light. This system is studied using the
Floquet formalism, and the resulting Hofstadter spectrum is analyzed for
different regimes of the driving frequency.
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2 Chiral hinge states in stacks of doped
quantum Hall layers

A free-fermion symmetry protected topological (SPT) insulator is a quantum
state of matter that cannot be adiabatically deformed to a trivial atomic
insulator without either closing the insulating bulk band gap or breaking
the protecting symmetry [5, 10]. Its topological nature is reflected in the
general appearance of gapless boundary modes in one dimension lower [11,
12]. However, when the protecting symmetry is a crystalline symmetry the
gapless boundary modes appear only on surfaces which are left invariant
under the protecting symmetry operation [13, 14]. Most importantly, these
gapless boundary modes are “anomalous”: on a single surface the number
of fermion flavors explicitly violates the fermion doubling theorem [15] or
stronger versions of it [16].

Very recently, it has been shown that point-group symmetries can stabilize
insulating states of matter in bulk crystals with conventional gapped sur-
faces, but with gapless modes at the hinges connecting two surfaces related
by the protecting crystalline symmetry [9, 16–31]. For systems of spinless
electrons (negligible spin-orbit coupling) the hinge modes are chiral. Hence,
they represent anomalous one-dimensional (1D) modes – they cannot be
encountered in any conventional 1D atomic chain – but now embedded in
a three-dimensional crystal. These novel topological crystalline insulators,
which have been dubbed higher-order topological insulators, have started to
be classified in systems possessing different crystalline symmetries, including
rotational and rotoinversion symmetries [8, 17, 18, 27, 29].

In inversion-symmetric crystals, higher-order topological insulators can
also exist [25]. However, in this case, inversion symmetry-related surfaces are
connected via two hinges, one of which will host a chiral gapless mode. This,
in turn, gives rise to an additional modulo two ambiguity in the microscopic
hinge location of the chiral modes, reminiscent of the ambiguity in the Fermi
arcs connectivity of Weyl semimetals [32].

The aim of this chapter is to show that such an inversion-symmetry pro-
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2 Chiral hinge states in stacks of doped quantum Hall layers

tected higher-order topological insulator can be in principle obtained in
stacks of doped honeycomb layers (e.g. graphene, silicene, and phospho-
rene) subject to an external magnetic field tilted away from the stacking
direction. Two factors conspire to render this possible. First, the quan-
tum Hall states in p- and n-doped layers generally have opposite sign of the
Hall conductance and hence are characterized by opposite Chern numbers
C [33]. Second, a finite component of the magnetic field in the layer planes
intrinsically breaks both the reflection symmetry in the stacking direction
and the twofold rotation about the stacking direction, but still preserves the
three-dimensional bulk inversion symmetry. We first give an intuitive argu-
ment for the existence of an inversion- symmetric higher-order topological
insulator in stacks of Chern insulators with alternating C = ±1 integer in-
variants, and show that this insulating phase can be derived from a parent
mirror Chern insulator [34] by adding crystalline symmetry-breaking terms.
Then, we introduce a corresponding minimal tight-binding model consisting
of quantum anomalous Hall layer stacks [35], and verify its topological nature
by computing the corresponding bulk Z2 invariant [8]. Finally, we perform a
full Hofstadter [36] calculation in three-dimensions [37] for honeycomb lay-
ers doped in an alternating fashion to show the existence of topologically
protected chiral hinge states.

2.1 Effective surface theory

Let us start out with an effective low-energy approach for stacks of Chern
insulating layers of alternating C = ±1 integer topological invariant [c.f.
Fig. 4.2(a)]. At any edge perpendicular to the stacking direction, each Chern
insulating layer is characterized by an anomalous chiral edge mode whose
dispersion can be considered to be linear. For completely uncoupled lay-
ers, the effective surface Hamiltonian in the primitive two-layer surface unit
cell then reads H0 = kxσz, where the Pauli matrix acts in the layer space
and we explicitly considered a (010) surface. We next introduce an inter-
layer coupling between consecutive layers with a coupling strength, which,
for simplicity, we assume to be real. The effective surface Hamiltonian is
then modified accordingly to HS = H0 + t [1 + cos (kz)]σx − t sin (kz)σy. It
preserves mirror symmetry in the stacking direction around one layer [34]
with the reflection operator that acquires an explicit momentum depen-
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2.1 Effective surface theory

Figure 2.1: a) Sketch of stacked Chern insulators with alternating Chern numbers.
We also indicate the effective inversion-symmetric coupling between
the chiral edge states. b) Corresponding surface energy spectrum for
mirror symmetric couplings (t1 = t2) and inversion-symmetric cou-
plings (t1 6= t2). c) Schematic figure of the inversion symmetric hinge
states in a cube geometry.
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2 Chiral hinge states in stacks of doped quantum Hall layers

dence and reads M(kz) = diag
(
1, e−ikz

)
. The mirror symmetry constraint

M(kz)HSM(kz)
−1 ≡ HS (kz → −kz) implies a decoupling of the chiral

modes on the kz = π line. Hence, the three-dimensional system is char-
acterized by gapless surfaces with a mirror-symmetry protected single Dirac
cone with the Dirac point at {kx, kz} = {0, π}.

The presence of this single surface Dirac cone can also be seen as a con-
sequence of the fact that the bulk three-dimensional Hamiltonian is charac-
terized by a non-zero mirror Chern number [38] CM = 1 at kz = π. When
considering systems with a finite number of layers still preserving reflection
symmetry in the stacking direction – this constraint is fulfilled for stacks
with an odd number of layers – the surface spectrum in the remaining trans-
lational invariant kx direction will therefore display a single uncoupled chiral
mode as schematically shown in Fig. 4.2(b). We emphasize that this chiral
anomaly is regularized by the presence of a chiral mode partner with opposite
chirality at the opposite (01̄0) surface.

We next “trivialize” our system by introducing a perturbation that explic-
itly breaks the mirror symmetry along the stacking direction. To this end,
we consider a dimerization pattern in the interlayer coupling which further
modifies the effective surface Hamiltonian asHS = H0+[t1 + t2 cos (kz)]σx−
t2 sin (kz)σy [c.f. Fig. 4.2(a)]. This, in turn, implies that the single surface
Dirac cone acquires a mass ∝ t1− t2 and the surface becomes a conventional
gapped one. When considering, as before, a finite system with an odd num-
ber of layers there will be a single chiral mode traversing the full surface
gap [c.f. Fig. 4.2(c)] localized at one of the two boundary layers depending
upon the specific dimerization pattern. The existence of this chiral hinge
mode can be understood by considering the effective surface Hamiltonian as
a collection of one-dimensional Rice-Mele models [39, 40], parametrized by
kx. For a chain with an odd number of sites, the latter displays an in-gap
boundary state at an energy corresponding precisely to the staggered chem-
ical potential ≡ kx. If we assume the dimerization pattern to be equivalent
at all the four surfaces perpendicular to the layer planes, the hinge modes at
the boundary layer will be connected to create a circulating planar current,
which is in agreement with the fact that a dimerized stack of an odd number
of layers defines a (thicker) two-dimensional Chern insulating state [41].

Let us now instead assume that the dimerization patterns at the two
opposite surfaces (010) and (01̄0) are designed to be opposite to each other
as shown in Fig. 4.2(a). Although still breaking mirror symmetry along

22



2.2 Quantum anomalous Hall stacks

the stacking direction, this configuration preserves bulk inversion symmetry
with the inversion center lying at the center of one layer. The presence
of inversion symmetry also implies that the chiral hinge modes related to
the (010) and (01̄0) surfaces will be localized on opposite boundary layers.
The same clearly holds true at the (100) and (1̄00) surfaces. Moreover, the
Jackiw-Rebbi mechanism [42] guarantees the existence of an additional chiral
hinge mode at two inversion- symmetry related hinges between the x and y
planes, and thus the configuration of in-gap hinge states schematically shown
in Fig. 4.2(c) is realized. The latter represents nothing but the hallmark of a
second-order topological insulator in three-dimensions protected by inversion
symmetry.

2.2 Quantum anomalous Hall stacks

Having presented our coupled-layer low-energy approach, we next introduce
a microscopic model that features an inversion-symmetric higher-order topo-
logical insulating state. Specifically, we consider stacks of honeycomb layers,
each of which possesses chiral orbital currents leading to a quantum anoma-
lous Hall (QAH) insulating state [35]. In order to have alternating Chern
numbers on the honeycomb layers, we further assume the direction of the
orbital currents to be opposite in two consecutive layers. For uncoupled
layers, the corresponding tight-binding Hamiltonian reads

H‖ = −t
∑
〈i,j〉,α

c†iαcjα − it2
∑
〈〈i,j〉〉,α

(−1)ανijc
†
iαcjα,

where c†iα (ciα) creates (annihilates) an electron on site i in layer α, t is the
intralayer nearest-neighbor hopping amplitude and t2 is the next-nearest
neighbor hopping amplitude. As usual, the factor νij = 1 if the next-nearest
neighbor hopping path rotates counterclockwise, and −1 if it rotates clock-
wise. We next introduce an interlayer coupling that explicitly breaks the
mirror symmetry in the stacking direction but still preserves bulk inversion
symmetry with the inversion center in one layer at the center of the bond
between the two A and B honeycomb sublattices. In its simplest form the
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2 Chiral hinge states in stacks of doped quantum Hall layers

Figure 2.2: a) Edge spectra of the QAH model with periodic boundary conditions
in the x- and z-direction for stacks of zigzag-terminated honeycomb
flakes. The tight-binding Hamiltonian parameters have been chosen
as t2/t = 0.2 and tz/t = 0.3. b) The hexagonal 3D Brillouin zone
with the inversion symmetric points labeled. c) Table specifying the
number of bands with inversion eigenvalue +1 and -1 at the inversion
symmetric points in the Brillouin zone.
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2.2 Quantum anomalous Hall stacks

interlayer Hamiltonian is then

H⊥ = − tz
2

∑
i∈A,α

[
1− eiπα

]
c†iαciα+1−

tz
2

∑
i∈B,α

[
1 + eiπα

]
c†iαciα+1 +h.c. (2.1)

As discussed in Appendices B and C, this interlayer Hamiltonian is natu-
rally realized assuming buckled honeycomb layers. Fig. 2.2(a) shows the
edge energy spectrum as obtained by diagonalizing the full Hamiltonian
H = H‖ +H⊥ for stacks of zigzag terminated ribbons with an odd number
of layers. It agrees perfectly with the foregoing low-energy description. In-
side the gapped bulk energy bands, we clearly observe conventional surface
states, corresponding to a massive surface Dirac cone, in the gap of which
two chiral hinge modes localized on opposite layers appear. Precisely the
same features occur considering periodic boundary conditions in the stack-
ing direction and zigzag terminations in the other two directions. We point
out that we excluded from our analysis ribbons with armchair terminations
since the latter would yield an unprotected single massless surface Dirac
cone. This is due to the fundamental difference between the chiral edge
states of a QAH insulator for zigzag and armchair terminated ribbons [43].
For the latter, the chiral edge states have an equal amplitude on both the
two honeycomb sublattices. The interlayer coupling Hamiltonian introduced
above thus yields an effective mirror-symmetric coupling between the QAH
chiral edge states. However, additional symmetry- allowed terms in the
bulk Hamiltonian, e.g. intralayer real next- nearest-neighbor hopping am-
plitudes, will gap the surface Dirac cone leading to the observation of chiral
hinge modes even for stacks of armchair terminated ribbons.

To prove the topological origin of these chiral hinge states, we have cal-
culated the bulk Z2 topological invariant for a second-order topological in-
sulator with inversion symmetry [8]. It can be derived using the bulk for-
mulation of the quantized corner charges for the effective two-dimensional
inversion-symmetric Hamiltonians at kz = 0, π, and thereafter considering
the corresponding corner charge flow. When expressing the corner charges
in terms of the multiplicities of the inversion symmetry eigenvalues ±1 of
the occupied bands at the inversion-symmetric momenta of the 3D Brillouin
zone [c.f. Fig. 2.2(b)], we then find the following expression for the bulk Z2

invariant:
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2 Chiral hinge states in stacks of doped quantum Hall layers

Figure 2.3: Energy versus magnetic flux φ (measured in units of the magnetic flux
quantum φ0) for the Hofstadter model on a honeycomb lattice. The
gaps are coloured according to their Chern number. The two largest
gaps have C = ±1.

ν =

[
−Γ1 −

1

2
Γ−1 +

1

2

[
(M1)−1 + (M2)−1 + (M3)−1

]
+A1 +

1

2
A−1 −

1

2

[
(L1)−1 + (L2)−1 + (L3)−1

]]
(2.2)

A non-trivial value ν = 1 mod 2 of this invariant guarantees the presence
of chiral hinge modes provided the bulk and the surfaces are gapped. For our
model at half-filling, the inversion symmetry labels [c.f. Fig. 2.2(c)] directly
imply an higher-order topology. Therefore the chiral hinge states shown in
Fig. 2.2(a) are the direct manifestation of a bulk-hinge correspondence.
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2.2 Quantum anomalous Hall stacks

Figure 2.4: a) Schematic side-view of an AA stacked honeycomb lattice in a canted
magnetic field. b) Spectrum for a zigzag ribbon of alternately doped
stacks of graphene with t/tz = 0.2, φ/φ0 = 1/8, V0 = 0.5 and φ2/φ0 =
φ3/φ0 = 0, where φ/φ0, φ/φ1 and φ/φ2 are the flux per plaquette in
the z, x and y direction respectively. c) Same as (b), but now with
a magnetic field in the x-direction φ2/φ0 = 0.05. d) Same as (b),
but now with a magnetic field in the x-direction φ2/φ0 = 0.05, and
y-direction φ3/φ0 = 0.01.
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2 Chiral hinge states in stacks of doped quantum Hall layers

2.3 Stacks of quantum Hall layers

With these results in hand, we next introduce our main result: the possi-
bility to engineer an inversion symmetry protected second-order topological
insulator in stacks of doped quantum Hall layers with a honeycomb lattice
structure. To show this, we first recall that the quantum Hall effect on the
honeycomb lattice exhibits a zeroth Landau level above (below) which the
total Chern number C = +1(−1) for relatively weak magnetic fluxes per
plaquette [see Fig. 2.3]. This also implies that the sign of the Hall con-
ductance is opposite in p- and n-doped layers. We then take advantage of
this property to realize a quantum Hall analogue of the quantum anomalous
Hall model introduced above. For the intralayer part of the Hamiltonian
we thus consider layers with an alternating bias ±V0. The corresponding
Hamiltonian is then

H‖ = −t
∑
〈i,j〉,α

c†i,αcj,α + V0

∑
i,α

(−1)α c†i,αci,α.

The effect of the perpendicular magnetic field is taken into account via the
usual Peierls substitution t → t eie

´
ds·A/~, where ds is the line integral be-

tween the bonds, e is the electron charge, and we took the vector potential in
the Landau gauge A = (−By, 0, 0) with B the magnetic field strength. The
interlayer Hamiltonian can be taken to be the same as in Eq. (2.1) when con-
sidering the buckled honeycomb layers realized in silicene [44]. However, to
describe stacks of graphene layers we will consider a mirror-symmetric inter-
layer Hamiltonian of the formH⊥ = −tz

∑
α c
†
i,αci,α+1+h.c. [c.f. Fig. 2.4(a)].

Since the external perpendicular magnetic field does not break the mirror
symmetry in the stacking direction, we expect the presence of protected sur-
face Dirac cones inside the bulk band gap ∝ V0. This is verified in Fig. 2.4(b)
where we show the energy spectrum for stacks of zigzag terminated ribbons
with an odd number of layers. Note that due to the remaining chiral sym-
metry of our microscopic tight-binding model the surface energy spectrum
features Dirac nodal lines. which underline the absence of an effective inter-
layer coupling between the quantum Hall edge states.

In order to drive the system from a mirror Chern insulating phase to a
second-order topological insulating phase, we next introduce an additional
component of the magnetic field in the layer plane, which breaks the mirror
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2.3 Stacks of quantum Hall layers

Γ M1 M2 M3 A L1 L2 L3

+1 5 3 3 3 3 3 3 3

-1 1 3 3 3 3 3 3 3

Table 2.1: Inversion eigenvalues at half-filling at inversion-symmetric points in the
Brillouin zone for φ/φ0 = 1/3, V0 = 0.8t.

symmetry in the stacking direction but preserves the bulk inversion sym-
metry of our AA-stacked graphene multilayers. Fig. 2.4(c) shows the edge
spectrum when superimposing a finite component of the magnetic field par-
allel to the zigzag direction. The nodal degeneracies are removed but the
surface still features an unprotected surface Dirac cone signalling a coupling
between the quantum Hall edge states that is still effectively mirror symmet-
ric. We get rid of this additional unprotected degeneracy by further adding a
magnetic field component in the layer plane but perpendicular to the zigzag
direction. This leads to surface gap openings with the edge spectrum [c.f.
Fig. 2.4(d)] that is now composed of surface Landau levels and addition-
ally features chiral states localized at opposite hinges. Moreover, the chiral
hinge states at positive and negative energies are separated by a zeroth sur-
face Landau level, and therefore live on different hinges [see Appendix A].
As discussed above, this change in the location of the chiral hinge modes
by tuning the Fermi level is perfectly compatible with the topology of our
system.

Finally, to verify the bulk non-trivial topology of our microscopic tight-
binding model, we have computed the multiplicities of the inversion sym-
metry eigenvalues at the inversion-symmetric momenta of the BZ [see Table
2.1]. When computing Eq. (2.2) we then find a non- trivial value of the
Z2 topological invariant in perfect agreement with the foregoing analysis.
As shown in Appendices B and C, the existence of an inversion-symmetric
second-order topological insulator in stacks of doped quantum Hall layers is
not restricted to graphene layers but can be also extended to buckled struc-
tures, e.g. silicene, and even multilayer phosphorene [45], thus strengthening
the generality of our design principle.
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2 Chiral hinge states in stacks of doped quantum Hall layers

2.4 Conclusion

To sum up, we have proved the existence of a second-order topological insula-
tor protected by inversion symmetry using a coupled layer approach in which
the layers have alternating Chern numbers. It can be derived from a parent
topological mirror Chern insulator by crystalline symmetry breaking terms
that retain the bulk inversion symmetry of the bulk crystal. The presence of
the topologically protected chiral hinge modes can be inferred from a three-
dimensional Z2 invariant. We have shown that a non-trivial value of this
invariant can be encountered in stacks of doped honeycomb layers subject
to an external magnetic field slightly tilted away from the stacking direction.
The required alternating doping of the honeycomb sheets can be obtained for
instance by separating the monolayers with two-dimensional polar spacers
[46]. As a result, we believe that graphene, silicene, and phosphorene multi-
layers provide an excellent platform to engineer chiral inversion-symmetric
higher-order topological insulators.
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2.4 Conclusion

Appendix A: Localization of hinge states

In Fig. 2.5 we show the localization of hing states in alternately doped
graphene layers in a canted magnetic field.

Figure 2.5: Figure showing the localization of the hinge states of stacks of alter-
nately doped graphene layers in a canted magnetic field, in a zigzag
ribbon geometry for t/tz = 0.2, φ/φ0 = 1/8, V0 = 0.5, φ2/φ0 = 0.05
and φ3/φ0 = 0.01 (the same parameters as Fig. 4(c) of the main
text). Going from the gap above the zeroth LL of the surface to the
one below it, the chiral hinge states localize on different hinges. This
realizes both inversion symmetric configurations, as alluded to in the
main text.

31



2 Chiral hinge states in stacks of doped quantum Hall layers

Appendix B: Silicene multilayers

Silicene, a single layer of silicon, has a buckled honeycomb structure (see
Fig. 2.6(d)). In AA stacking the interlayer coupling naturally breaks the
mirror symmetry implying the existence of larger surface gaps and hence
enhanced stability of the hinge states. This is demonstrated in Fig. 2.6(a)-
(c) where we show the spectrum of stacked alternately doped silicene using
the same parameter set adopted in the main text for the case of graphene
layers. Notice that the buckled silicene structure shown in Fig. 2.6(d) leads
to an interlayer Hamiltonian that can be taken in the form of Eq.(1) of the
main text.

Appendix C: Multilayer phosphorene

Phosphorene, a single layer of black phosphorus, consists of phosphor atoms
arranged in a puckered honeycomb lattice (see Fig. 2.7(d)), and when
stacked the layers are displaced by half a unit cell in the zigzag direction.
Here, we show that in principle one can realize chiral hinge states in al-
ternately doped multilayer phosphorene. To show this we take the tight-
binding model of Ref. [39] of the main text, and apply alternating doping
and a magnetic field. To simplify the calculation we use only the three dom-
inant hopping terms (c.f. Fig. 2.7(d)), which give a qualitatively correct
energy spectrum in the asbence of external magnetic fields. The spectrum
for a zigzag ribbon of multilayer phosphorene is shown in Figs. 2.7(a)-(c),
for a perpendicular and canted magnetic field. Again we see the appearance
of a Dirac cone, and chiral edge states when completely canting the magnetic
field. Phosphorene has a gap of about 2 eV, hence one would need to apply
much stronger doping than in graphene or silicene. Although this could be
impractical, the results show the generality of our approach in engineering
chiral hinge states.
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2.4 Conclusion

Figure 2.6: Spectra for a zigzag ribbon of alternately doped stacks of silicene with
a) t/tz = 0.2, φ/φ0 = 1/8, V0 = 0.5 and φ2/φ0 = φ3/φ0 = 0, where
φ/φ0, φ/φ1 and φ/φ2 are the flux per plaquette in the z, x and y di-
rection respectively. (b) Same as (a), but now with a magnetic field in
the x-direction φ2/φ0 = 0.05. c) Same as (a), but now with a magnetic
field in the x-direction φ2/φ0 = 0.05, and y-direction φ3/φ0 = 0.01.
d) Schematic side-view of an AA stacked buckled honeycomb lattice.
In the first layer the A sublattice is connected to the next layer, while
in the second layer the B sublattice is connected to the next layer.
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2 Chiral hinge states in stacks of doped quantum Hall layers

Figure 2.7: a) Spectrum for alternately doped stacked phosphorene with t1 =
−1.486 eV, t2 = 3.729 eV, tz = 0.524 eV, φ/φ0 = 1/8, V0 = 2.1 and
φ2/φ0 = φ3/φ0 = 0, where φ/φ0, φ/φ1 and φ/φ2 are the flux per
plaquette in the z, x and y direction respectively. b) Same as (a),
but now with a magnetic field in the x-direction φ2/φ0 = 0.02. c)
Same as (a), but now with a magnetic field in the x-direction φ2/φ0 =
0.02, and y-direction φ3/φ0 = 0.04. d) Schematic figure of multilayer
phosphorene.
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3 Classification of crystalline insulators
without symmetry indicators

Atomic and fragile topological phases in twofold rotation
symmetric systems

Since the discovery of the quantum Hall effect [1], and its theoretical expla-
nation in terms of the topological properties of the Landau levels [47–49],
topological phases of matter have become a rich playground for the theo-
retical prediction and experimental verification of new quantum phenom-
ena. From the birth of topological insulators [2–4, 41, 50–53], to topological
superconductors supporting Majorana zero modes [54–58], to topological
semimetals [32, 59–69], new types of topological phases keep arising. It is
fair to say that the major theoretical effort in the field has been to clas-
sify, using appropriate mathematical schemes, all possible topologically dis-
tinct gapped phases and subsequently relate them to topological indices. In
the presence of internal symmetries – time-reversal, particle-hole and chiral
symmetry – alone, the classification of free-fermion gapped phases has been
obtained in all ten symmetry classes and arbitrary number of dimensions
[70–72]. The corresponding phases with non-trivial topology feature, by the
bulk-boundary correspondence, protected gapless modes that are anomalous
[11, 12]. The chiral (helical) edge states of quantum (spin) Hall insulators, as
well as the single surface Dirac cones of strong three-dimensional topological
insulators violating the fermion doubling theorem, are prime realizations of
such anomalies.

In crystalline systems characterized by an additional set of spatial sym-
metries, new topologically distinct phases emerge [13, 14, 73–75]. The non-
trivial topology of a system is then manifested in the appearance of anoma-
lous gapless surface modes, which are present only on surfaces that are left
invariant under the protecting spatial symmetry and violate stronger ver-
sions of the fermion doubling theorem [16, 25]. Furthermore, crystalline
symmetries can also yield non-trivial topological phases, dubbed higher-
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3 Classification of crystalline insulators without symmetry indicators

order topological states [8, 9, 17, 19–23, 26, 26–29, 76–81], characterized by
conventional gapped surfaces but with gapless anomalous one-dimensional
modes at the hinges connecting two surfaces related by the protecting spatial
symmetry.

As long as insulating systems are concerned, the existence of anomalous
surface or hinge boundary modes is deeply connected to the fact that non-
trivial topological phases cannot be adiabatically connected to atomic insu-
lators, whose insulating nature can be understood considering electrons as
trapped classical point particles. In other words, a topological non-trivial
insulator only arises when there is an obstruction in describing the system
using an atomic picture. Therefore, the ground state of a topological non-
trivial insulator cannot be represented using exponentially localized Wannier
functions respecting the internal and/or the set of spatial symmetries of the
system [82]. This obstruction to a “Wannier-representability”, the classifica-
tion in terms of topological invariants and the existence of gapless anomalous
boundary modes can be formulated in a unique consistent framework for sys-
tems equipped only with internal symmetries [82, 83]. When adding spatial
symmetries, however, different complications arise.

First, distinct atomic insulators, which are by definition topologically triv-
ial, generally possess different crystalline topological invariants. This, in
turn, requires a careful inspection of such topological indices to identify
the criteria dictating the appearance of topologically non-trivial crystalline
phases. Second, there can exist “non-Wannierazible” topological phases in
crystals which do not possess boundaries that are left invariant under the
protecting spatial symmetry. As a result, the surfaces of these systems are
fully gapped even if the bulk is topological. Notwithstanding these compli-
cations, substantial progresses has been made with the theory of topological
quantum chemistry [5] and that of symmetry-based indicators [10, 84, 85],
which allows one to discriminate all different atomic insulators from genuine
topological non-trivial phases using the spatial symmetry character of the
valence bands and their connectivity throughout the Brillouin zone. Com-
bining these theories with density-functional-theory calculations has very
recently led to catalogues containing a huge number of topological materials
[86–88].

Nonetheless, there exist topological phases that are not detectable using
the symmetry labels of the valence bands. An extreme case is a system
with only translation symmetry: it can be in a topological “tenfold-way”
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phase due to its internal symmetries, but it is signaled as being topolog-
ically trivial using spatial symmetry indicators. More importantly, there
can exist topological crystalline phases in low-symmetric crystals that are
neither characterizable by the symmetry content of the valence bands nor
by the tenfold-way [89]. To date, these phases lack any classification and
consequently any material realization.

In this work, we achieve the first of such classifications. Specifically, we
consider the paradigmatic example of two-dimensional crystals with twofold
rotation symmetry, i.e. in the wallpaper group p2, where the gapped phases
of time-reversal symmetric (non-magnetic) systems with sizable spin-orbit
coupling cannot be classified with the symmetry data of the valence bands.
Instead, we construct Berry phase related Z2 invariants to first isolate and
remove topologically non-trivial quantum spin-Hall phases from the set of
distinct gapped phases. Thereafter, we enumerate all distinct atomic in-
sulating phases and classify them using a trio of Z2 topological invariants.
Using our Berry phase based classification, we are able to determine: i) in
systems with two occupied valence bands, the existence of topological non-
trivial crystalline phases similar in nature to the fragile phases detected by
symmetry eigenvalues in other wallpaper groups [6, 7, 90, 91]. ii) with four
occupied valence bands, the emergence of an additional fragile topological
crystalline phase, whose possible existence has been overlooked so far. To
underline the importance of these findings, we point out that topological
crystalline phases of the fragile type have been predicted to occur in magic-
angle twisted bilayer graphene [92–96].

This chapter is organized as follows. In Section 3.1 we first present the ex-
ample of a time-reversal symmetric one-dimensional atomic chain where the
symmetry character of the bands is not able to classify the distinct gapped
phases, and show that such a classification becomes instead possible intro-
ducing a “partial” Berry phase Z2 invariant. We then show in Section 3.2
that these Z2 invariants can be also defined on high-symmetry lines in the
Brillouin zone of a two-dimensional crystal in the p2 wallpaper group, and
can be used to first remove topological phases protected by time-reversal
symmetry, and then classify atomic and fragile topological phases when two
valence bands are occupied. In Section 3.3 we introduce a new Z2 invariant
corresponding to a “nested” quantized partial Berry phase, thanks to which
we are able to diagnose the atomic insulating phases realized with four oc-
cupied valence bands and establish the existence of our novel NF = 4 fragile
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3 Classification of crystalline insulators without symmetry indicators

topological insulator. The trio of Z2 invariants is then used to classify all
atomic insulating phases for a generic number of occupied Kramers pairs of
bands in Section 3.4. Finally, we present our conclusions and comment on
extensions of our work in Section 3.5.

3.1 Motivation and warmup in 1D: mirror-symmetric
chains

We start out by considering an atomic chain of spin one-half electrons with
time-reversal symmetry and an additional mirror symmetry with respect to
a one-dimensional (1D) mirror point. Moreover, we will assume inversion
symmetry to be explicitly broken. The space group G for this atomic chain
is generated by

G = 〈{E|t} , {M|0}〉,

where E is the identity, t the lattice translation vector, and M the mirror
symmetry with respect to the 1D mirror point. In the unit cell of this
1D crystal, there are two distinct maximal Wyckoff positions whose site
symmetry group, or stabilizer group, is isomorphic to the point group Cs.
The first, labelled 1a, has coordinate x = 0 and corresponds to the origin of
the unit cell. Its stabilizer group is simply generated by {M|0}. Similarly,
the second maximal Wyckoff position, labelled 1b, corresponds to the edge of
the unit cell with coordinate x = 1/2 in units of the lattice constant, and its
stabilizer group is generated by {M|1}, which is also isomorphic to Cs. For all
other positions in the unit cell, the stabilizer group only contains the identity.
Therefore these Wyckoff positions have multiplicity two and coordinates
(x,−x). Let us now enumerate the elementary band representations [97]
for exponentially localized Wannier functions (WFs) sitting at the maximal
Wyckoff positions 1a and 1b. They can be induced by considering that in
reciprocal space there are two mirror-symmetric momenta in the Brillouin
zone (BZ), i.e. Γ = 0 and X = π. Moreover, since the stabilizer group of 1a
does not contain any translation, the mirror eigenvalues ±i at Γ and X must
be identical. On the contrary, the stabilizer group of 1b contains a lattice
translation of half a unit cell and therefore the mirror eigenvalues at Γ and X
are opposite. The elementary band representations can then be summarized
as in Table 3.1. Note that the “composite” band representation for two
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Wyckoff position Representation Γ X

1a ρ1a
i ↑ G i i
ρ1a
−i ↑ G −i −i

1b ρ1b
i ↑ G i −i
ρ1b
−i ↑ G −i i

Table 3.1: Elementary band representation for the one-dimensional space group
of a mirror symmetric chain. The first column indicates the maximal
Wyckoff positions. The second column the corresponding induced band
representation, and the last two columns the mirror eigenvalues at the
center and edge of the 1D BZ.

symmetric WFs [8] at the same position with opposite mirror eigenvalues ±i
have a representation content in momentum space that is independent on
whether they are centered at 1a or 1b. This yields the equivalence ρ1a

i ⊕ρ1a
−i ↑

G ' ρ1b
i ⊕ ρ1b

−i ↑ G, which simply states that the corresponding pairs of
exponentially localized WFs can be moved anywhere along the line between
the 1a and the 1b sites in opposite directions.

The aforementioned composite band representation becomes a physical el-
ementary band representation (PEBR) [5] when time-reversal symmetry Θ is
taken into account. This is because Θ requires the complex irreducible one-
dimensional representations at Γ and X to double. The corresponding pairs
of energy bands, however, do not derive from Wannier states with charge
centers at arbitrary positions along the chain. Kramers theorem indeed guar-
antees that exponentially localized WFs come in Kramers degenerate pairs,
in which each pair has the same center. Moreover, while an even number of
Wannier Kramers pairs centered at the maximal Wyckoff positions 1a or 1b
can be freely moved away without breaking either the mirror or time-reversal
symmetry, with an odd number of Wannier Kramers pairs sitting at 1a or
1b the center of at least one pair of Wannier states is unmovable [29]. Put
differently, the parity of Wannier Kramers pairs centered at the maximal
Wyckoff positions 1a and 1b represent stable topological Z2 indices char-
acterizing a one-dimensional time-reversal and mirror-symmetric insulator.
More importantly, these stable topological indices cannot be read off from
the symmetry character of the bands since only one PEBR exists. The dis-
crepancy between the existence of real space stable topological indices and
the absence of distinct PEBRs can be overcome using the recent finding that
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3 Classification of crystalline insulators without symmetry indicators

Kramers pairs of bands in a mirror symmetric [98], or equivalently C2 twofold
rotation symmetric [99], atomic chain possess a Z2 topological index defined
in terms of the “partial” polarization introduced by Fu and Kane [100], which
is quantized by the presence of these point group symmetries. In its U(NF )
gauge invariant form it can be written as

νM :=
1

π

[ˆ π

0
dkTrA(k) + i log

Pf [w(π)]

Pf [w(0)]

]
mod 2. (3.1)

In the equation above, we have introduced the non-Abelian Berry con-
nection Am,n(k) = 〈um(k)| i∂k |un(k)〉, and the sewing matrix wm,n(k) =
〈um(−k)|Θ |un(k)〉 that is antisymmetric at the Γ and X points and hence
characterized by its Pfaffian Pf(w). The Z2 invariant defined above can be
related to the charge centers of the Wannier Kramers pairs by introducing
the unitary Wilson loop operator [83, 101]

Wk+2π←k = exp

[
i

ˆ k+2π

k
A(k′)dk′

]
, (3.2)

where exp denotes path ordering of the exponential while k is the Wilson
loop base point. The eigenvalues of the Wilson loop operator, exp(2πi νj),
j labelling the occupied bands, are independent of the base point k and
uniquely determine the Wannier centers νj . The presence of mirror symme-
try translates into a chiral symmetry for the Wilson loop eigenvalues [7], thus
implying that the Wannier centers are restricted to the values νj = 0, 1/2
or to “unpinned” pairs (ν̄,−ν̄). Moreover, time-reversal symmetry guaran-
tees that each Wilson loop eigenvalue has to be doubly degenerate. The
concomitant presence of mirror and time-reversal symmetry therefore yields∑

j νj mod 1 ≡ 0, and consequently
∑

j νj mod 2 ≡ νM can only assume the
values 0 and 1. Knowing the relation between the Z2 topological invariant
and the Wannier centers, we can straightforwardly classify the insulating
states realized in a one-dimensional mirror-symmetric atomic chain. In fact,
with a total number of occupied bands NF = 4n + 2, n being integer, an
insulating atomic chain for which νM = 0 (νM = 1) will be characterized
by the presence of an odd number of Wannier Kramers pairs at 1a (1b).
If instead NF = 4n the system can be described in terms of exponentially
localized Wannier functions with an even or odd number of Kramers degen-
erate pairs centered at 1a and 1b depending on whether νM = 0 or νM = 1,
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Figure 3.1: Evolution of the Wilson loop eigenvalues for a mirror and time-reversal
symmetric Aubry-André-Harper model [Eq. (3.3)] at NF = 4 by (a)
sweeping the dimerization hopping amplitude δt while preserving mir-
ror symmetry (φV = −π/4) and (b) changing the phase φV away from
the mirror-symmetric point for δt = −0.25t0. Other parameters are
set to φt = φλ = π, λ0 = 0.5t0, δλ0 = −0.3t0 and δV = t0.

respectively.

To verify this relation between the Z2 topological invariant νM and the
Wannier centers distribution, we have computed the Wilson loop spectrum
for a time-reversal and mirror symmetric one-dimensional spinful Aubry-
André-Harper [102–104] model described by the Hamiltonian [98],

H =
∑
j,σ

[t0 + δt cos (πj + φt)] c
†
j+1,σcj,σ

+i
∑
j,σ,σ′

[λ0 + δλ cos (πj + φλ)] c†j+1,σs
y
σσ′cj,σ′

+
∑
j,σ

[V0 + δV cos (jπ/2 + φV )] c†j,σcj,σ + H.c.,

where c†j,σ is the creation operator for an electron at site j with spin σ
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3 Classification of crystalline insulators without symmetry indicators

(σ =↑, ↓), and si are the conventional Pauli matrices. The Hamiltonian con-
tains harmonically modulated nearest-neighbor hopping, spin-orbit coupling
and onsite potentials of amplitudes δt, δλ, and δV , and phases φt, φλ and
φV . The periodicities of the modulated hopping and spin-orbit coupling have
been chosen to be of two lattice sites while the periodicity of the onsite po-
tential is four lattice sites. Moreover, t0, λ0 and V0 are the site-independent
amplitudes of the hopping, spin-orbit coupling and on-site potential. The
model possesses time-reversal symmetry whereas mirror symmetry is pre-
served only for specific values of the phases φt,λ,V .

For the mirror-symmetric model, the half-filled NF = 4 insulating state
undergoes a band gap closing-reopening, accompanied by a change of the
Z2 topological invariant, by sweeping the strength of the nearest-neighbor
hopping amplitude δt.

As explicitly shown in Fig. 3.1(a), the insulating state can be described in
terms of two Wannier Kramers pairs centered at 1a and 1b in the νM = 1 re-
gion. On the contrary, a νM = 0 value of the topological invariant implies the
existence of two Wannier pairs centered at two mirror related, non-maximal
Wyckoff positions in the unit cell. Moreover, by breaking the mirror symme-
try of the model [see Fig. 3.1(b)] the position of the exponentially localized
Wannier function can be freely moved at arbitrary positions in the unit cell
in agreement with the fact that the space group in this case only contains
the identity. Finally, we emphasize that the change of the Z2 invariant is
associated with a band gap closing-reopening occurring at unpinned points
in the BZ [98], which is a restatement of the fact that the topological index
characterizing a mirror and time-reversal symmetric insulating chain cannot
be inferred from the symmetry character of the occupied bands.

3.2 Wallpaper group p2: insulators with two occupied
bands

Having established the Z2 classification of mirror and time-reversal symmet-
ric insulating chains in the absence of symmetry indicators, we next con-
sider the main focus of this work: two-dimensional (2D) crystals possessing
a C2 twofold rotation symmetry. The smallest two-dimensional wallpaper
group containing C2 is p2. It has four maximal Wyckoff positions labelled
as 1a = {0, 0}, 1b = {1/2, 0}, 1c = {0, 1/2} and 1d = {1/2, 1/2}. Their
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3.2 Wallpaper group p2: insulators with two occupied bands

Wyckoff position Representation Γ X Y M

1a ρ1a
i ↑ G i i i i
ρ1a
−i ↑ G −i −i −i −i

1b ρ1b
i ↑ G i −i i −i
ρ1b
−i ↑ G −i i −i i

1c ρ1c
i ↑ G i i −i −i
ρ1c
−i ↑ G −i −i i i

1d ρ1d
i ↑ G i −i −i i
ρ1d
−i ↑ G −i i i −i

Table 3.2: Elementary band representation for the p2 wallpaper group G =
〈{E|t} , {C2|0}〉. The first column indicates the maximal Wyckoff posi-
tions; the second column the corresponding induced band representa-
tion, and the last two columns the C2 eigenvalues at the Γ = {0, 0},
X = {π, 0}, Y = {0, π} and M = {π, π} points in the BZ. In
time-reversal symmetric systems, the PEBRs obey the equivalence
ρ1a ↑ G ' ρ1b ↑ G ' ρ1c ↑ G ' ρ1d ↑ G.

stabilizer group is isomorphic to C2, which implies that in systems with
time-reversal symmetry the induced band representations have the same
symmetry character [cf. Table 3.2].

However, the parity of the Wannier Kramers pairs centered at 1a,1b,1c,1d
still represent real space stable topological indices that discriminate be-
tween non-equivalent atomic insulating states. To classify these different
atomic insulators, we first use the fact that in the BZ of a twofold rota-
tion symmetric crystal, the C2 symmetry constraint C−1

2 H(k)C2 = H(−k)
is equivalent to a one-dimensional mirror symmetry constraint along the
time-reversal invariant non-contractible loop lines k1,2 ≡ 0, and k1,2 =
G1,2/2. Therefore, we can in principle define a quartet of Z2 invariants{
νMk1=0; νMk1=G1/2

; νMk2=0; νMk2=G2/2

}
[c.f. Fig. 3.2]. These topological indices

are not all independent, however, since the differences νMk1,2=G1,2/2
− νMk1,2=0

can be related [105] to the Fu-Kane-Mele (FKM) Z2 topological invari-
ant [3, 100] characterizing a time-reversal invariant 2D topological insulator.
This follows from the fact that νMk1,2=G1,2/2

− νMk1,2=0 keeps track of the evo-

lution of the Wannier centers during a time-reversal pumping process [83].
Therefore, the condition νMk1,2=G1,2/2

−νMk1,2=0 = 1 mod 2 immediately implies
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Figure 3.2: Schematic drawing of a C2 symmetric Brillouin zone spanned by re-
ciprocal lattice vectors g1 and g2 with high-symmetry points Γ, X, Y
and M . The contours along which the partial Berry phases γI1 and
γI2 are calculated are drawn in green, a typical Wilson loop operator
contour, discussed in the main text, is drawn in red.

a quantum spin Hall (QSH) insulating state. When dealing with insulating
crystalline systems without anomalous edge states (trivial FKM invariant),
we are thus left with a Z2×Z2 classification [106], which, as we will show be-
low, is only able to diagnose the atomic insulating states when one Kramers
pair of bands is occupied.

The assertion above can be immediately proved by using the fact that
for an atomic insulator with two occupied bands, the exponentially localized
Wannier Kramars’ pair must be centered at one of the maximal Wyckoff posi-
tions. Hence, the corresponding center of charge already provides a Z2×Z2

classification. Furthermore, the center of charge can be straightforwardly
connected to the doublet of one-dimensional invariants νMk1,2=0 as follows. Let
us consider the Wilson loop operator in the e1 direction W(k1+2π,k2)←(k1,k2)

where (k1, k2) is the base point. Its eigenvalues exp [2πi νj(k2)] (j = 1, 2)
depend on the k2 coordinate of the Wilson loop base point and the corre-
sponding phases νj(k2) are the centers of the one-dimensional hybrid Wan-
nier functions [c.f. Fig. 3.2]. Due to time-reversal symmetry the Wannier
bands realize a Kramers related pair [c.f. Appendix A], and therefore can be
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3.2 Wallpaper group p2: insulators with two occupied bands

Wyckoff position νMk1=0 νMk2=0

1a 0 0

1b 0 1

1c 1 0

1d 1 1

Table 3.3: The Z2 × Z2 classification of atomic insulators in the p2 wallpaper
group with one occupied Kramers pair, i.e. NF = 2. The first column
indicates the maximal Wyckoff position, while the second and third
column are the U(2) gauge invariant line invariants.

split into two time-reversed channels s = I, II satisfying νI(k2) ≡ νII(−k2).
The additional C2 rotation symmetry mandates the Wilson loop spectrum
to be chiral symmetric, i.e. νI(k2) ≡ −νII(k2). As a result, the center of
charge of the Wannier Kramers pair in the e1 direction is

1

2π

˛
νI(k2)dk2 mod 1 ≡ νI(k2 = 0) mod 1 ≡

νMk2=0

2
.

Repeating the same argument using the Wilson loop operator in the e2

direction, we therefore reach the classification of atomic insulators with one
occupied Kramers pair of bands summarized in Table 3.3.

Strictly speaking, this classification does not enumerate all possible insu-
lating phases with a trivial FKM invariant. Contrary to 1D systems where
all insulating phases can be adiabatically continued to an atomic insulat-
ing phase [10], in 2D systems there can exist topologically non-trivial states
that present an obstruction to a representation in terms of symmetric and
exponentially localized WFs [6]. These topological phases have been dubbed
“fragile” topological phases since although not admitting a Wannier repre-
sentation by themselves, such a representation becomes possible when addi-
tional trivial bands are added to the system. In recent works, the existence
and diagnosis of fragile topological phases [7, 95, 107] have been linked to
the topological nature of disconnected PEBR’s [5]. However, the defining
characteristic of a fragile topological phase – the absence of a Wannier gap in
the Wilson loop spectrum that consequently must display a non-trivial wind-
ing – can exist also in our low-symmetric crystal with a single unsplittable
PEBR.
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3 Classification of crystalline insulators without symmetry indicators

In fact, due to the concomitant presence of the commuting two-fold rota-
tion symmetry and time-reversal symmetry, a crystal in the p2 space group
is also invariant under the combined antiunitary symmetry operation C2Θ
with (C2Θ)2 = 1. Assuming a periodic and smooth real gauge can be founda,
this also implies that the Wilson loop operator in the e1,2 direction belongs
to the orthogonal group SO(2), with the homotopy group π1 [SO(2)] = Z
guaranteeing the existence of an integer winding number invariant [108]. A
C2Θ-protected fragile topological phase of this kind has been first discussed
in Ref. [109] and dubbed Stiefel-Whitney (SW) insulator since the parity
of the winding number corresponds to the second SW class invariant. Note
that for a SW insulator to exist, the total Berry phases along the k1,2 ≡ 0
lines – which correspond to the first SW class invariant in a smooth and
periodic real gauge – must vanish. This constraint is immediately verified in
a C2 crystal with time-reversal symmetry. On the other hand, time-reversal
symmetry also guarantees the winding number of the Wilson loop operator
to assume 2Z values, which, in the language of Ref. [109] would imply the
Z2 second SW class invariant to be trivial.

However, in aNF = 2 insulator with time-reversal symmetry a Wilson loop
spectrum winding an even number of times cannot be unwinded. Consider
the Wilson loop operator W(k1,k2+2π)←(k1,k2) and assume, for instance, that

the line invariant νMk1=0 = 0. The Wilson loop spectrum has to display
two symmetry enforced degeneracies at k1 = 0, π with the corresponding
hybrid Wannier centers at ν = 0. The absence of a Wannier gap also implies
the existence of two degeneracies at time-reversal related momenta k̄1,−k̄1

where the hybrid Wannier center ν = 1/2. The C2Θ symmetry mandates
that these unpinned degeneracies can be only moved [c.f. Appendix A and
Ref. [7]] pairwise (as required by time-reversal), and consequently cannot
be destroyed. Hence, the winding of the Wilson loop spectrum is robust,
which allows for the definition of a fragile topological phase in insulators
with one occupied Kramers pair of bands. Furthermore, the Wilson loop
winding can occur independent of the Z2 line invariants, thus suggesting
that the complete classification in systems with a trivial FKM invariant is
Z2 × Z2 × Z2, where the third Z2 invariant discriminates between gapped
and winding Wilson loop spectra.

To verify the existence of the fragile topological phase discussed above,

aA real gauge can be formulated as C2Θ |ψ〉 = |ψ〉.
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Figure 3.3: (a) Band structure of the NF = 2 fragile topological insulator with

twofold rotation and time-reversal symmetry. Energies have been mea-
sured in units of t. There are no degeneracies other than those required
by time-reversal symmetry. (b) The Wilson loop spectrum along the
k1 direction for the half-filled insulating state. We have chosen the
following parameter set: t/t2 = 0.4; t/t3 = −1.6; λ/t = 0.15.
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we introduce a four-band tight-binding model on a C3 and mirror symmetry
broken honeycomb lattice reading:

H = {−t [1 + cos (ky) + cos (2kx)]− t2 cos (kx)} τxs0

{−t [− sin (ky)− sin (2kx)]− t2 sin (kx)} τys0

− t3 sin (2kx) τzsz

where t, t2, t3 are hopping amplitudes, the τi’s are Pauli matrices representing
an internal degree of freedom, whereas the si’s act in spin space. The two
independent spin sectors are additionally coupled by a Rashba-like term

HR = −iλ
{[
−1

2
sin (kx) + sin (ky)

]
iτxsx

+

[
1

2
− 1

2
cos (kx) + cos (ky)

]
iτysx

}
,

with λ the corresponding hopping amplitude. This model has a full spectral
gap at half-filling [see Fig. 3.3(a)], andcan be thought of as being made of
two coupled Chern insulators with opposite Chern numbers C = ±2, thereby
respecting time-reversal symmetry. In Fig. 3.3(b) we show the Wilson loop
spectrum along the k1 direction, which displays the non-trivial winding dis-
cussed above. We close this section by emphasizing that the existence of the
fragile topological phase does not strictly rely on the existence of a single
PEBR. In Appendix B, we introduce a C4 symmetric tight-binding model on
the square lattice where the NF = 2 atomic insulating states can be generally
represented in terms of symmetric WFs centered at the maximal Wyckoff
positions 1a = {0, 0} and 1b = {1/2, 1/2}, which possess distinguishable
PEBRs. The symmetry content of the occupied bands of our model is com-
patible with an atomic insulator with a Wannier Kramers pair centered at
1b. However, inspection of the Wilson loop spectrum firmly establishes it as
being a topological insulator of the fragile type.
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3.3 Z2 × Z2 × Z2 classification with NF = 4: a new
fragile topological phase

With the Z2×Z2×Z2 classification of NF = 2 insulating phases in our hands,
we next consider insulators with NF = 4. We will follow the same strategy
used in the preceding section, and enumerate and classify all the existing
atomic insulating phases. It is easy to see that there exist seven distinct
insulating states representable in terms of symmetric WFs. In fact, with two
Wannier Kramers pair in the system, their centers will either lie at two C2

related non-maximal Wyckoff positions or at two distinct maximal Wyckoff
positions. Therefore, the two Z2 line invariants νM(k1,2 = 0) are insufficient
to classify these states. Now we will show, using a procedure similar to the
“nested” Wilson loop one of topological multipole insulators [17, 110], that it
is possible to obtain an additional Z2 invariant by identifying two sectors in
the Wilson loop spectrum, each of which carries its own topological content,
i.e. its quantized partial polarization.

We recall that the essential characteristic of a generic atomic insulating
state is the presence of a Wannier gap in the Wilson loop spectrum. Its chi-
ral symmetry, dictated by the C2Θ symmetry, then allows us to distinguish
two regions, one symmetrically centered around ν = 0 and one symmetri-
cally centered around ν = 1/2, each possessing both twofold rotation and
time-reversal symmetry, and populated by Kramers related pairs of Wannier
bands. We have plotted the possible Wilson loop spectra for two Kramers
pairs in Fig. 3.4, where the red bands are centered around ν = 0 and the
green bands around ν = 1/2. The blue bands can be seen as centered around
either pointb. Obviously, the parity of the pairs of Wannier bands belong-
ing to the gapped region centered around ν = 1/2 can be linked to the
line invariants νMk1,2=0. Considering for instance the spectrum of the Wil-
son loop W(k1,k2+2π)←(k1,k2) and further splitting the Wannier bands in two

time-reversed channels, we immediately find that νMk1=0 = 0 (νMk1=0 = 1) if
the Wilson loop spectrum region centered at ν = 1/2 is populated by an
even [c.f. Figs. 3(b)-(d)] (odd [c.f. Fig. 3(a)]) number of pairs of Wannier
bands. Furthermore, we can obtain two distinct Z2 invariants for the two
disconnected regions of the k1 dependent Wilson loop spectrum as follows.

bSince we have to take a region symmetrically centered around ν = 0, 1/2 we have to
either include both or neither of the blue bands.
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3 Classification of crystalline insulators without symmetry indicators

Let us consider the Wilson loop operator W(k1,k2+2π)←(k1,k2), choosing its
base point on the time-reversal and twofold rotation symmetric line k2 = 0

[c.f. Fig. 3.2]. The corresponding eigenstates
∣∣∣νje2;(k1,0)

〉
, where the subscript

e2 specifies the k2 direction of the Wilson loop, satisfy

W(k1,2π)←(k1,0)

∣∣∣νje2;(k1,0)

〉
= e2πiνj(k1)

∣∣∣νje2;(k1,0)

〉
,

and allow us to define the Wannier basis [17, 76],∣∣∣wje2;(k1,0)

〉
=
∑
n

∣∣∣un(k1,0)

〉 [
νje2;(k1,0)

]n
, where n = 1, . . . , NF . Since the quantized partial polarization associated

to the Bloch Hamiltonian eigenfunctions
∣∣∣un(k1,0)

〉
is unchanged by a gen-

eral U(NF ) transformation, it follows that the Z2 invariant νMk2=0 can be

equivalently computed in the Wannier band eigenbasis
∣∣∣wje2;(k1,0)

〉
. More

importantly, working in such a basis allows us to decompose νMk2=0 into two

different Z2 invariants, which we dub as νM;0
k2=0 and ν

M;1/2
k2=0 , corresponding to

the “nested” quantized partial polarizations for the two gapped sectors of
the Wilson loop spectrum (the red and green bands in Fig. 3.4, respectively).
This is because, as mentioned above, the two gapped regions separately sat-
isfy both time-reversal and twofold rotation symmetry, which guarantees
that the partial polarization of the corresponding Wannier band eigenstates
is quantized. Note that Wannier bands only respect twofold rotation and
time-reversal symmetry when the Wilson loop base points lie on a mirror
symmetric line.

Having obtained three distinct Z2 topological invariants, we can now clas-
sify the atomic insulating phases enumerated above. Fig. 3.4(a) schemati-
cally shows the k1-dependent Wilson loop spectrum when the two gapped
sectors are each populated with one pair of Wannier bands, and thus νMk1=0 =
1. The gapped sector centered around ν = 0 is further characterized by the
Z2 invariant νM;0

k2=0, and its value dictates whether the Wannier Kramers pair

is centered at the maximal Wyckoff position 1a (νM;0
k2=0 = 0) or 1b (νM;0

k2=0 = 1).
The same argument can be applied to the gapped sector centered at ν = 1/2

to set apart Wannier Kramers pairs centered at 1c (ν
M;1/2
k2=0 = 0) and 1d
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Figure 3.4: Schematic drawings of the Wilson loop spectra for the NF = 4 atomic

insulating states in the p2 wallapaper group. Panel (a) corresponds
to four different atomic insulating states, where the pair of bands
around ν = 0 (ν = 1/2) can have a Wannier center at 1a or 1b (1c or
1d), respectively, which can be determined by calculating their nested
partial polarizations. Panel (b) corresponds to an atomic insulator
with Wannier Kramers pairs centered at 1a⊕ 1b, while panel (c) is for
1c⊕ 1d. In panel (d) the Wannier functions are centered at C2 related
generic points in the unit cell.
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3 Classification of crystalline insulators without symmetry indicators

Wyckoff positions νMk1=0 νM;0
k2=0 ν

M;1/2
k2=0

1a⊕ 1c 1 0 0

1a⊕ 1d 1 0 1

1b⊕ 1c 1 1 0

1b⊕ 1d 1 1 1

1a⊕ 1b 0 1 0

1c⊕ 1d 0 0 1

ν ⊕−ν 0 0 0

Table 3.4: The classification of atomic insulating states in the p2 wallpaper group
when two occupied Kramers pairs of bands are occupied, i.e. NF = 4.
The first column indicates the centers of charge of the Wannier Kramers
pairs; the second column is the Z2 line invariant of the full Wil-
son loop spectrum; the second and third columns are the invari-
ants derived from the nested Wilson loops, which obey the sum rule(
νM;0
k2=0 + ν

M;1/2
k2=0

)
mod 2 = νMk2=0. The last row refers to insula-

tors where the Wannier Kramers pairs are centered at C2 related non-
maximal Wyckoff positions.

(ν
M;1/2
k2=0 = 1). This, in turn, allows us to catalogue four distinct atomic

insulating states.

Next, we consider insulating states where the Wannier bands occupy
only one gapped sector of the Wilson loop spectrum, and thus νMk1=0 = 0.
Fig. 3.4(b),(c),(d) show the allowed possibilities for the Wannier bands.
They can either realize a connected pair with two protected degeneracies at
time-reversal related momenta (k̄1,−k̄1) or can come in disconnected pairs,
in which case the two pairs can be arbitrarily assigned to the ν = 0 or the

ν = 1/2 sector. Let us first inspect the value the invariants νM;0
k2=0 (ν

M;1/2
k2=0 )

assume for the connected pair of Wannier bands shown in Fig. 3.4(b),(c). We
can divide the four Wannier bands in two time-reversed channels, that each
possess C2Θ symmetry. Then, an essential twofold degeneracy in one channel
at ν = 0 (ν = 1/2) implies a π Berry phase [see Appendix A and Ref. [109]],

and consequently the nested line invariant νM;0
k2=0 (ν

M;1/2
k2=0 ) is enforced to be

1. As a result, the schematic Wannier bands shown in Fig. 3.4(b),(c) corre-
spond to the atomic insulating phase with Wannier Kramers pairs centered
at 1a ⊕ 1b and 1c ⊕ 1d respectively. Using similar arguments, we also find
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that the disconnected Wannier bands of Fig. 3.4(d) are characterized by a
zero nested partial polarization [see Appendix A]. Therefore, in this atomic
insulating state the Wannier Kramers pairs are centered at two non-maximal
Wyckoff positions related to each other by the twofold rotation symmetry.
All in all, we have thus reached the classification summarized in Table 3.4
of the seven distinct atomic insulating states realizable in the p2 wallpaper
group with four occupied bands.

When comparing this with the eight allowed configurations for the three
Z2 invariants, one can immediately recognize that an insulating state char-
acterized by the two nested quantization polarization invariants νM;0

k2=0 =

ν
M;1/2
k2=0 = 1 with νM;0

k1=0 = 0 cannot be represented in terms of symmetric
exponentially localized Wannier functions. In fact, such a configuration fea-
turing essential degeneracies at unpinned momenta k1 both around ν = 0 and
ν = 1/2 would necessarily imply the closing of the Wannier gap and hence a
non-trivial winding of the Wilson loop. We thus conclude that such an insu-
lator corresponds to a topologically non-trivial phase of the fragile type. Its
stability against symmetry-allowed perturbations is rooted in the fact that
the possible local annihilation of the degeneracies on the ν = 0 or ν = 1/2

line requires a change of the line invariant νMk2=0 =
(
νM;0
k2=0 + ν

M;1/2
k2=0

)
mod 2,

which is only possible with a bandgap closing-reopening point.

Let us now present a model realization of this novel fragile topological
insulating phase. The model is built by stacking two quantum spin-Hall
insulators on the honeycomb lattice – the so-called Kane-Mele model [2]
– with opposite sign of the spin-dependent next-nearest neighbor hopping
parametrizing the spin-orbit coupling strength. It reads:

HαKM =− tα
∑
〈i,j〉,σ

cα†i,σc
α
j,σ + εα

∑
i,σ

cα†i,σc
α
j,σ − (−1)α itα2

∑
〈〈i,j〉〉x̂,σ

ηijc
α†
i,σc

α
j,σ

− iλα
∑

〈i,j〉,σ,σ′

cα†i,σ (d× s)σσ
′

z cαj,σ′ ,

where α = 1, 2 labels the layer degree of freedom, tα denotes the nearest-
neighbor hopping amplitude, 〈i, j〉 the sum over nearest-neighbors, tα2 the
amplitude of intrinsic spin-orbit coupling, 〈〈i, j〉〉x̂ the sum over next-nearest
neighbors only in the x-direction, ηij = +1 (−1) for hopping in the clock-
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Figure 3.5: (a) Top view of the strained honeycomb bilayer realizing the NF = 4

fragile topological phase. The intralayer spin-dependent hopping am-
plitude t2 has been taken only along the zigzag direction to amplify the
threefold rotation symmetry breaking. (b) Bulk bands showing a full
spectral gap at half-filling. (c) The corresponding spectrum in a ribbon
geometry demonstrate the insulating nature of the edges. (d) Wan-
nier bands along the k2 direction. The Wilson loop in the k1 direction
also show a similar winding. We have chosen the following parameter
set: t2/t1 = 1.1, t12/t

1 = 1.1, t22/t
1 = −0.9, ε1/t1 = −ε2/t1 = 0.1,

λ1/t1 = λ2/t1 = 0.15, t3/t
1 = 0.25.
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3.4 More occupied bands

wise (counter-clockwise) direction, λα the Rashba amplitude, d the vector
between two sites, s the vector of Pauli matrices and εα an on-site potential.

We couple the two QSH states with the interlayer coupling term

Hmix (t3) = −t3

∑
i,σ

c2†
i,σc

1
i,σ +

∑
〈i,j〉,σ

c2†
i,σc

1
j,σ +

∑
〈〈i,j〉〉ŷ ,σ

c2†
i,σc

1
j,σ

 ,

where 〈〈i, j〉〉ŷ denotes next-nearest neighbor hopping along the ŷ-direction.

Inversion symmetry is explicitly broken by considering a chemical poten-
tial difference between the two layers, i.e. ε1 6= ε2 while the threefold rotation
symmetry breaking due to, e.g., a uniaxial strain [c.f. Fig. 3.5(a)] is incorpo-
rated by considering the directional dependence in the hopping amplitudes
t2. The Rashba spin-orbit coupling term also breaks the Mz symmetry.
Being composed of two quantum spin Hall insulators, the FKM invariant
of the half-filled model is trivial, and with the explicit interlayer coupling
the helical edge states disappear [see Fig. 3.5(b) for the ribbon spectrum].
A direct computation of the Wilson loop spectrum [c.f. Fig. 3.5(d)] shows
the non-trivial winding with the line invariants νMk1,2=0 = 0 that present an
obstruction to the Wannier representation of this phase. In Appendix C, we
also present a spinful model inspired by the px,y orbital model presented in
Ref. [107] that also realizes the NF = 4 fragile topological phase discussed
above.

3.4 More occupied bands

Contrary to the NF = 2 topologically non-trivial phase, which is trivialized
only when certain Kramers pairs of bands are added , the NF = 4 topological
insulator discussed above is intensively fragile: it is trivialized by the addi-
tion of a generic Kramers pair of bands. This assertion can be immediately
proved noticing that for a generic NF = 6 insulating state, the Z2×Z2×Z2

classification is saturated by enumerating the phases with symmetric Wan-
nier function. In fact, with three Wannier Kramers pairs in the system,
their centers can either lie on three distinct maximal Wyckoff positions, or
two Wannier pairs sit at C2-related non-maximal Wyckoff position with a
third pair located at one maximal Wyckoff position. Inspecting the possible
features of the Wilson loop spectrum and iterating the arguments presented
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Wyckoff positions νMk1=0 νM;0
k2=0 ν

M;1/2
k2=0

1a⊕ 1b⊕ 1c 1 1 0

1a⊕ 1b⊕ 1d 1 1 1

1a⊕ 1c⊕ 1d 0 0 1

1b⊕ 1c⊕ 1d 0 1 1

1a⊕ ν ⊕−ν 0 0 0

1b⊕ ν ⊕−ν 0 1 0

1c⊕ ν ⊕−ν 1 0 0

1d⊕ ν ⊕−ν 1 0 1

Table 3.5: The Z2×Z2×Z2 classification of atomic insulating states in the p2 wall-
paper group when three occupied Kramers pairs of bands are occupied,
i.e. NF = 6, indicating the relation between the Wannier Kramers
pairs center of charges and the (“nested”) quantized partial polariza-
tion topological invariants. This classification is generically valid for
an arbitrary number of occupied bands NF = 4n + 2 with the integer
n ≥ 1, which will only include more unpinned pairs of Kramers pairs.

in the former sections we reach the classification summarized in Table 3.5.
Note that this classification is generally valid for NF = 4n + 2 and n ≥ 1.
In fact, by adding two Wannier Kramers pairs to a state with NF = 6, we
will end up in one of the NF = 6 configurations [c.f. Table 3.5] with the ad-
dition of two Wannier Kramers pair centered at unpinned two-fold rotation
symmetric momenta, which do not change the Z2 invariants.

Finally, in Table 3.6 we also provide the classification of atomic insulators
with four Wannier Kramers, which is also valid for a generic number of
occupied bands NF = 4n and n > 1. Note that the distribution of Z2

invariants is strictly equivalent to the case of four occupied bands. However,
the topological non-trivial fragile phase is substituted by an atomic insulator
where the four Wannier Kramers pairs are centered at the four maximal
Wyckoff positions. In this configuration, in fact, the Wilson loop spectrum
is the superposition of Fig. 3.4(b) and Fig. 3.4(c) which is allowed with a
full Wannier gap with a minimum number of eight Wannier bands.
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3.5 Conclusions

Wyckoff positions νMk1=0 νM;0
k2=0 ν

M;1/2
k2=0

1a⊕ 1b⊕ 1c⊕ 1d 0 1 1

ν1 ⊕−ν1 ⊕ ν2 ⊕−ν2 0 0 0

1a⊕ 1b⊕ ν ⊕−ν 0 1 0

1a⊕ 1c⊕ ν ⊕−ν 1 0 0

1a⊕ 1d⊕ ν ⊕−ν 1 0 1

1b⊕ 1c⊕ ν ⊕−ν 1 1 0

1b⊕ 1d⊕ ν ⊕−ν 1 1 1

1c⊕ 1d⊕ ν ⊕−ν 0 0 1

Table 3.6: The Z2×Z2×Z2 classification of atomic insulating states in the p2 wall-
paper group when four occupied Kramers pairs of bands are occupied,
i.e. NF = 8, indicating the relation between the Wannier Kramers
pairs center of charges and the (“nested”) quantized partial polariza-
tion topological invariants. This classification is generically valid for an
arbitrary number of occupied bands NF = 4n with the integer n > 1,
which will only include more unpinned pairs of Kramers pairs.

3.5 Conclusions

In this paper, we presented a classification of gapped insulating phases that
cannot be diagnosed using crystalline symmetry eigenvalues. We have show-
cased two-dimensional crystals in the wallpaper group p2 where all gapped
phases have the same physical elementary band representation, but they can
be nevertheless classified with three Z2 topological invariants: the quantized
nested partial polarizations – partial Berry phases – along high-symmetry
lines in the two-dimensional Brillouin zone of the system.

Using the ensuing Z2 × Z2 × Z2 classification, we have been able to clas-
sify all atomic insulating states and identify non-Wannierazible topological
crystalline phases protected by twofold rotation symmetry and time-reversal
symmetry. Since the crystal does not possess boundaries that are left in-
variant under the protecting twofold rotation symmetry, these topological
phases do not display gapless anomalous boundary modes although their
bulk is topologically non-trivial. Instead, they represent an example of the
recently discovered fragile topology, and thus they can be trivialized with
the addition of atomic valence bands. In this respect, we wish to empha-
size that the fragile topological phase realized with two occupied valence
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3 Classification of crystalline insulators without symmetry indicators

bands, which is similar in nature to the fragile phases recently discussed in
the literature in other wallpaper groups does not necessarily decay into a
Wannierazible atomic insulating state when an additional Kramers related
pair of bands are introduced. In fact, such band addition might lead to our
novel NF = 4 topological crystalline phase whose Wilson loop winding is
strictly protected by the quantization of the nested quantized partial Berry
phase in the presence of time-reversal and twofold rotation symmetries.

An interesting direction for future research is the extension of the classifi-
cation presented here to other wallpaper and space groups where the symme-
try data of the valence bands could be combined with Berry phase invariants
to search for new topological electronic materials. Furthermore, the Berry
phase invariants for atomic insulating phases can be also exploited to obtain,
using the Wannier centers flow of hybrid Wannier functions [8, 29], topologi-
cal invariants for higher-order topological insulators with helical hinge modes
in non-centrosymmetric crystals.
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3.5 Conclusions

Appendix A: Nested partial polarization in Wilson loop
spectra with C2 and Θ symmetry

Here we show that the nested partial polarizations are well-defined quantities
in gapped Wilson loop spectra, and that they are quantized in the presence
of C2 and Θ symmetry. In addition, we calculate the partial polarizations
for various Wilson loop spectra.

Let us start by examining how the symmetries act on the Wilson loop.
Consider the Wilson loop operator W(k1,2π)←(k1,0), C2 and Θ symmetry then
require [7, 101]

C2W(k1,2π)←(k1,0)C
†
2 =W†(−k1,2π)←(−k1,0),

ΘW(k1,2π)←(k1,0)Θ
† =W†(−k1,2π)←(−k1,0),

where the complex conjugate on the right-hand side comes from the fact
that both symmetries send k → −k and hence reverse the contour of the
Wilson loop operator. Furthermore, C2 relates the eigenvalues of the Wilson
loop operator

{νi (k1)} = {−νi (−k1)} ,

and time-reversal relates

{νi (k1)} = {νi (−k1)} ,

where {} denotes the set of eigenvalues. Hence C2Θ enforces a chiral sym-
metry in the Wilson loop spectrum.

Now let us show, following Ref. [7], that a single crossing in the Wilson loop
spectrum is locally protected by the combination of C2 and Θ symmetry. Let
us work in a basis where C2Θ = K, where K indicates complex conjugation.
The symmetry restriction on the Wilson loop operator is then

KW(k1,2π)←(k1,0)K =W(k1,2π)←(k1,0),

since C2Θ sends k → k. Since the Wilson loop operator in this basis is an
SO (N) matrix, we can write it as the exponential of an Hermitian matrix
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HW , which is restricted by C2Θ such that

HW (k1) = −HW (k1)∗ .

Near a two-band crossing, this restriction means that locally HW (k1) =
k1 · σy. A single twofold degeneracy on the ν = 0, 1/2 lines cannot be
gapped out without breaking C2Θ symmetry, but only moved on the line.
Therefore, as for a Weyl point, the degeneracy can be only removed by pair
annihilation.

We now turn to the various possible Wilson loop spectra, and compute
their partial polarizations. In Fig. 3.6(a) we have drawn a generic Wilson
loop spectrum for one occupied Kramers pair. The corresponding Wannier
bands are given by

ϕIk = αψIk + βψIIk ,

ϕIIk = γψIk + δψIIk ,

where ψIk and ψIIk are the Bloch waves (schematically drawn in Fig. 3.6(b)
along the same contour), and the coefficients are given by the eigenvectors of
the Wilson loop matrix [see also Sec. IV]. The Wannier bands in Fig. 3.6(a)
are thus obtained by a unitary transformation on the occupied eigenstates
of the Hamiltonian [Fig. 3.6(b)], and will be linear combinations thereof.
These Wannier bands satisfy [see again Fig. 3.6(a)],

ϕIk = eiθ(k)C2ϕ
I
−k,

ϕIk = eiφ(k)ΘϕII−k.

The partial polarization is in this case given by the Berry phase of ϕIk. Since
ϕIk is C2 symmetric, its Berry phase, and hence the partial polarization is
quantized to 0, π.

Now consider two occupied Kramers pairs with two crossings at ν = 0
(Fig. 3.6(c)). The colors indicate the Kramers partners, and the dotted
(solid) lines are C2 partners. To find the partial polarization we split the
bands into two time-reversal channels. The only possibility that leaves us
with periodic subsets of bands is taking the solid blue and dotted red bands
together, and the solid red and dotted blue bands together (shown in Fig.
3.6(c) on the right).
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Let us denote the solid blue Wannier band by a (k), and define the red
dotted band b (k) by

b (k) := C2θa (k) .

Clearly the bands are not periodic, and we have

a (2π) = b (0) ,

b (2π) = a (0) .

We now try to construct a periodic gauge by a basis transformation, under
which the partial polarization is invariant. We define

ã (k) = [a (k) + b (k)] /2,

b̃ (k) = [a (k)− b (k)] /2.

Now

ã (2π) = [a (2π) + b (2π)] /2

= [b (0) + a (0)] /2 = ã (0) ,

hence ã (k) is periodic, however

b̃ (2π) = [a (2π)− b (2π)] /2

= [b (0)− a (0)] /2 = −b̃ (0) ,

is anti-periodic. Multiplying by a phase and defining

˜̃
b (k) = eik/2b̃ (k) ,

remedies this situation. Under C2Θ we now have

C2Θ ã (k) = ã (k) ,

C2Θ
˜̃
b (k) = e−ik/2b̃ (k)

= e−ik
˜̃
b (k) .
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Using this, we can calculate the Berry phase of the two bands separately,

γa =

ˆ
dk ã (k)† i∂kã (k)

=

ˆ
dk ã (k)† (C2θ)

† (C2θ) i∂kã (k)

= −
ˆ
dk ã (k)† i∂kã (k) = −γa

and

γb =

ˆ
dk

˜̃
b (k)† i∂k

˜̃
b (k)

=

ˆ
dk

˜̃
b (k)† (C2θ)

† (C2θ) i∂k
˜̃
b (k)

= −
ˆ
dk

˜̃
b (k)† eiki∂ke

−ik˜̃b (k)

= −γb −
ˆ
dk ∂kk = −γb − 2π,

from which we see γa = 0 and γb = π, and thus we find that the partial
polarization is π. In particular, this shows that the nested polarization
around ν = 0, 1/2 will be π when there are an odd number of crossings in
half the Brillouin zone on this line.

Let us finally consider two occupied Kramers’ pairs with a disconnected
Wilson loop spectrum (see Fig. 3.6(d)-(e)). To calculate the partial polar-
ization of these bands, let us first consider the red Kramers pair in isolation.
To calculate the partial polarization we need to again calculate the Berry
phase of the red dotted band. This band does not posses C2 symmetry and
hence its Berry phase will not be quantized. In order to calculate the par-
tial polarization of the blue bands, we calculate the Berry phase of the blue
dotted band. However, since the blue dotted and the red dotted bands are
related by C2 symmetry, we find for their Berry phases

γIRed = −γIBlue,

and hence the partial polarization, which is the sum of the two, is zero.

To calculate nested partial polarizations, we need to select symmetric
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Figure 3.6: (a) Schematic drawing of a generic Wilson loop spectrum with one
occupied Kramers pair. The two Wannier bands ϕIk and ϕIIk are re-
lated to each other by time-reversal symmetry, and are themselves C2
symmetric. (b) Generic band structure corresponding to (a), the Wan-
nier states are obtained by linear combinations of the eigenstates of
the Hamiltonian ψIk,ψIIk . (c) Wilson loop spectrum for two occupied
Kramers pairs with two crossings at ν = 0. The colors denote the
two different Kramers pairs, and the C2 partners have a solid (dotted)
line. The two time-reversal channels are depicted on the right, which
are by themselves C2Θ symmetric. (d) Disconnected Wilson loop of
two occupied Kramers pairs, again color denotes Krames pairs, dot-
ted (solid) the C2 partners. (e) Corresponding band structure with
two occupied Kramers pairs. 63
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regions centered around ν = 0 and ν = 1/2. Since there are two gaps in the
spectrum, we have two choices. We can either include the pair of Kramers
pairs, or exclude them from either region. However, we have just seen that
the partial polarization of this set of bands is zero, and hence either choice
will yield the same result. Indeed for any NF , the only choice in selecting a
subset of bands centered around ν = 0, 1/2, is including or excluding pairs
of disconnected bands such as in Fig. 3.6(e), making the nested partial
polarizations well-defined quantities.

Gapped Wilson loop spectra for arbitrary NF will consist of linear combi-
nations of the three cases presented here, and since the partial polarization
is an additive quantity, we know how to calculate it for arbitrary NF .

Let us finally show that the nested partial polarization of Wannier band
cannot change by a gap closing in the Wilson loop spectrum away from
ν = 0, 1/2 in the presence of C2 and Θ symmetry. We consider the situation
in Fig. 3.7(a), where we want to show that by a gap closing as shown in
Fig. 3.7(b), the nested partial polarization of the blue pair of bands cannot
change. We parametrize this gap closing by some parameter λ, where for
λ = 0 the Wilson loop spectrum is gapless and looks like Fig. 3.7(b).

The nested partial polarization is equal to the Berry phase of the blue
dotted band, which we will call ak,λ. To see how the Berry phase of this
band changes due to a gap closing, we consider the λ−k1 plane. The change
in Berry phase is then given by the sum of the Berry phases around the gap
closing points which we will call γ1 and γ2, the contours of which are drawn
in Fig. 3.7(c).

In a C2 symmetric system we have, up to a total derivative,

Aλ (k, λ) ≡ 〈ak,λ| i∂λ |ak,λ〉 = Aλ (−k, λ) ,

since C2 does not act on λ, and

Ak (k, λ) ≡ 〈ak,λ| i∂k |ak,λ〉 = −Aλ (−k, λ) ,

again up to a total derivative. Now the segments of the contour at constant
k (dotted lines in Fig. 3.7(c)) cancel each other because

Aλ (k, λ) dλ = −Aλ (−k, λ) dλ,

since dλ is oriented differently for the two segments. The contours at con-

64
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Figure 3.7: (a) Schematic Wilson loop spectrum for two occupied Kramers pairs,
(b) which might undergo a gap closing and reopening. (c) Contours
in parameter space used to calculate the change in Berry phase.

stant λ give us

Ak (k, λ) dk = −Ak (−k, λ) dk.

Hence we find

γ1 = −γ2 + 2πn,

where n ∈ Z, and hence the change in Berry phase for ak,λ is a multiple of
2π, leaving the nested partial polarization unchanged.
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Figure 3.8: Bulk bands (a) and Wilson loop spectrum (b) for the C4 symmetric
fragile topological insulator. Plots are for ε1/t = 0.1,ε2/t = −0.3,
t2/t = 0.8, λ/t = 0.4.

Appendix B: Topological insulator model of the fragile
type with NF = 2

In addition to the model presented in the main text, a topological phase of
the fragile type with NF = 2 can also be obtained in a fourfold rotation
symmetric system by considering the following C4 symmetric C = +2 Chern
insulator,

H =− ε1
[

cos (kx) + cos (ky)
]

(τ0 + τz)− ε2
[

cos (kx) + cos (ky)
]

(τ0 − τz)
− 2t

[
cos (kx)− cos (ky)

]
τx − t2

[
sin (kx) sin (ky)

]
τx,

where ε1, ε2, t, t2 are hopping amplitudes. We then again add a time-reversal
copy and couple them by

Hmix = −λ [sin (kx) τ0sy + sin (ky) τ0sx] .

The bulk bands and Wilson loop spectrum are plotted in Fig. 3.8. The
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Figure 3.9: Bulk band spectrum (a) and Wilson loop spectrum (b) of the Hamil-

tonian Hpxpy for ε = 0.5, tπ/tσ = 1.5, t2/tσ = 3.75, λ/tσ = 1.2

C4 operator is represented by C4 = τz ⊗ eisz/4, and time-reversal by Θ = UK
with U = I2 ⊗ isy and K is complex conjugation. The symmetry eigen-
values of the occupied bands at Γ are {eiπ/4, e−iπ/4}, and at the M point
{−e−iπ/4,−eiπ/4}, which are compatible with a Wannier function centered
at the maximal C4 symmetric position 1b = {1/2, 1/2}.

Appendix C: Fragile topological insulator with two
occupied Kramers pairs of bands

As mentioned in the main text, a different way to construct a model exhibit-
ing the NF = 4 fragile topological phase is by considering a model of px,y
orbitals on a honeycomb lattice introduced in Ref. [107],

Hpxpy (k) =

(
0 hk
h†k 0

)
+H1

k ,
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3 Classification of crystalline insulators without symmetry indicators

with

hk =
1

2

(
1 + α e−ik2 + e−ik1

)
(tσ + tπ) +

√
3

4

(
−1 + e−ik1

)
(tσ − tπ)σx

− 1

2

(
−1

2
+ α e−ik2 − 1

2
e−ik1

)
(tσ − tπ)σz,

and

H1
k = − t2

4

{
sin [i (k2 − k1)] + sin [ik1]− ρ sin [ik2]

}
τz ⊗ σy,

where tσ and tπ are the hopping amplitudes for the σ and π pairing, t2
is the amplitude of next-nearest-neighbor hopping and σi and τi are Pauli
matrices that act in orbital and sublattice space respectively. α and ρ are two
parameters we have introduced to break the C3 symmetry. For α = ρ = 1,
the C3, symmetry is preserved and our Hamiltonian is equivalent to the one
in Ref. [107].

We now take two copies of two copies of Hpxpy (k), where one copy has
spin pointing in the positive x-direction, and the other spin pointing in
the negative x-direction. In addition, we shift the momentum along the
x-direction of the copies in opposite direction:

H =Hpxpy (k − x̂ε) |←〉 〈←|+Hpxpy (−k + x̂ ε)∗ |→〉 〈→|
+Hmix |→〉 〈←| , (3.3)

where the spins are mixed by

Hmix =− iλ sin (kx) τ0 ⊗ σ0.

This Hamiltonian has C2 and Θ symmetry, where C2 = −τ0σxe
isxπ/2, and

Θ = UK with U = −iτ0σ0sy and K complex conjugation, and τi, σi, si Pauli
matrices acting in orbital-space, sublattice-space and spin-space respectively.
Fig. 3.9 shows the bulk band spectrum and the Wilson loop spectrum.
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4 The hybrid-order topology of weak
topological insulators

The essence of a free-fermion topological insulator is that it cannot be adi-
abatically deformed to a trivial atomic insulator, whose nature can be un-
derstood considering electrons as localized point particles. Put differently,
topological insulators do not admit a representation in terms of exponen-
tially localized Wannier functions (WFs). This obstruction to Wannier
representability is, in turn, reflected in the presence of anomalous gapless
boundary modes. Examples include the chiral (helical) edge modes in quan-
tum (spin) Hall insulators [1–3, 47, 50, 100], as well as the surface Dirac
cones of three-dimensional topological insulators (TI) [41]. In crystalline
systems with an additional set of spatial symmetries, additional topological
phases can arise [13]. These topological crystalline insulators (TCI) cannot
be represented in terms of WFs respecting the spatial symmetries of the
system, and feature, by the bulk-boundary correspondence, anomalous sur-
face states violating a stronger version of the fermion doubling theorem [16]
on surfaces that are left invariant under the protecting symmetry. Mirror
Chern insulators [14, 74], for instance, are characterized by the presence
of gapless surface Dirac cones pinned to mirror planes. Similarly, higher-
order topological insulators (HOTI) [8, 9, 17, 19] feature anomalous gapless
one-dimensional modes at the hinges connecting two surfaces related by the
protecting crystalline symmetry [81].

The topologies related to the internal and spatial symmetries do not nec-
essarily exclude each other and can also coexist. This occurs, for instance in
different “dual” topological materials [111–114], which have the topological
structure of both a weak TI and a mirror Chern insulator. Likewise, it has
been recently proposed that certain topological superconductors can con-
comitantly feature both surface cones and Majorana hinge modes [115–117].
In all these systems, the topological crystalline structure can be diagnosed
using the spatial symmetry content of the electronic bands [5, 10, 25, 97, 107]
while the topology due to the internal symmetry is uniquely determined
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4 The hybrid-order topology of weak topological insulators

by the “tenfold-way” invariants [70, 72, 84]. There exist, however, certain
topological crystalline phases that are neither characterizable by symmetry
indicators, nor by the tenfold way [118]. In two-dimensional systems these
phases have recently started to be classified [119].

The question that immediately arises is whether crystalline topologies
without symmetry indicators can be embedded in a topological non-trivial
insulating phase protected by an internal symmetry. In this work, we provide
an affirmative answer by showing that two-dimensional topological insulators
in the wallpaper group p2 – where time-reversal symmetry (TRS) guarantees
the complete absence of symmetry indicators – can be characterized by a set
of three crystalline topological Z2 indices. They correspond to two quantized
partial Berry phases [98, 99] and one additional novel topological index that
cannot be diagnosed even from the Wilson loop. We subsequently use this
new invariant to show that weak TIs possessing a twofold rotation symmetry
around the [ν1, ν2, ν3] direction, ν1,2,3 indicating the so-called weak topolog-
ical indices [120], can be in a non-trivial topological crystalline phase. It is
characterized by the presence of anomalous unpinned Dirac cones at the sur-
faces whose Miller indices (modulo 2) are identical to the weak topological
indices, i.e. the so-called “dark” surfaces of weak TIs where surface Dirac
cones protected by TRS are absent. This topological crystalline phase corre-
sponds to a form of hybrid-order topology since the system can be switched
to a HOTI with helical hinge modes using translational symmetry breaking
perturbations.

4.1 Crystalline topological invariants in quantum
spin-Hall insulators

We start out by developing a scheme that is able to capture the full crys-
talline topology of quantum spin-Hall insulators (QSHI) in systems with a
two-fold rotation symmetry C2. To do so, we first recall that for atomic
insulating phases, the crystalline topology is fully determined by the gauge-
invariant charge centers [16, 29, 119] of time-reversal symmetric Wannier
functions that respect the symmetries of the crystal. The construction of
such symmetric Kramers pairs of Wannier functions requires the construction

of two time-reversed channels [100] of Bloch waves
∣∣∣ΨI,II

n (q)
〉

that are sepa-

rately C2 symmetric, where n is a band index running from one to NF /2 and
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4.1 Crystalline topological invariants in quantum spin-Hall insulators

NF the total number of occupied bands. The Bloch waves
∣∣∣ΨI,II

n (q)
〉

need

not be individual eigenstates of the Hamiltonian, but are still basis states
spanning the eigenspace corresponding to the NF occupied bands. Impor-
tantly, the construction of symmetric Wannier functions requires a smooth,

periodic, and symmetric gauge for the
∣∣∣ΨI,II

n (q)
〉

Bloch waves. Since we want

to study crystalline topology in non Wannier representable QSHI, we relax
these constraints on the gauge by demanding its smoothness, periodicity
and symmetry modulo a U(NF /2)⊗U(NF /2) gauge degree of freedom, with
these two residual gauges acting in the two time-reversed and C2 symmet-
ric channels. In other words, we require a smooth, periodic and symmetric

set of projectors ρI(II)(q) =
∑

n

∣∣∣ΨI(II)
n (q)

〉〈
Ψ
I(II)
n (q)

∣∣∣. In Appendix A, we

show how to construct such a gauge assuming for simplicity there are no de-
generacies in the band structure other than those required by time-reversal.
Since within each sector we have not demanded a continuous gauge, it follows

that the channels described by the Bloch waves
∣∣∣ΨI,II

n (q)
〉

can be charac-

terized by non-vanishing but opposite Chern numbers CI,II . Furthermore,
the twofold rotation symmetry endows the two channels with Z indices that
correspond to the multiplicities of the rotation eigenvalues mI

±i ≡ mII
∓i at

the high-symmetry points in the Brillouin zone (BZ), i.e. m = Γ, X, Y,M
[see Fig. 4.1(a)].

We will now show that these integer crystalline indices and the Chern
numbers of the channels can be used to construct four Z2 invariants that
fully characterize the topology of C2 and time-reversal symmetric insula-
tors in two dimensions. Two Z2 invariants can be immediately identified in
the quantized partial polarizations [98] on the C2 symmetric lines of the BZ
k1,2 ≡ 0. They correspond to the centers of charge of one-dimensional hybrid
Wannier functions and are diagnosed [119] by the Wilson loop spectra ν(k1,2)
[see Fig. 4.1(b)]. These quantized partial polarizations can be expressed in
terms of the crystalline indices mI

±i as γI1(2) ≡
[
ΓIi +XI

i (Y I
i )
]

mod 2 (see

Appendix B). The third Z2 invariant corresponds to the Fu-Kane-Mele in-
variant that characterizes QSHI and can be expressed (see Appendix B) in
terms of the crystalline indices as νFKM =

(
ΓIi +XI

i +M I
i + Y I

i

)
mod 2.

To define a fourth Z2 invariant, notice that the additional combination
of eigenvalues νI1d =

(
ΓI−i −XI

−i − Y I
−i +M I

−i
)
/2 mod 2 is linearly inde-

pendent from the previously defined Z2 indices. For an atomic insulating

71



4 The hybrid-order topology of weak topological insulators

Figure 4.1: (a) Schematic drawing of the Brillouin zone of C2 symmetric crystal,
spanned by reciprocal lattice vectors G1 and G2. The partial polar-
izations are calculated along the green and blue line, and a typical
Wilson loop contour is shown in red. (b) Wilson loop spectrum of a
QSHI. The winding reflects the topological non-trivial nature of the
insulating phase. The quantized value of the Wilson loop for k1 = 0
corresponds to the quantized partial polarizations γI2 .
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4.2 Hybrid-order weak TIs

phase, νI1d corresponds to the parity of the time-reversed pairs of symmetric
Wannier functions centered at the corner of the unit cell with coordinates
1d = {1/2, 1/2}. The fact that in a QSHI the two time-reversed channels
I, II are characterized by an odd Chern number immediately yields a semi-
integer value νI1d = ±1/2. However, and this is key, we can still define a Z2

number reading

γI3 =
1

2

[
CI +

(
ΓI−i −XI

−i − Y I
−i +M I

−i
) ]

mod 2.

Being independent of the partial polarizations, this new integer cannot be
diagnosed by the Wilson loop spectrum but still represents a well-defined
and gauge-invariant crystalline topological number. In fact, γI3 is mani-
festly gauge-invariant under intrachannel U(NF /2) transformations since it
is made out of a Chern number and the twofold rotation symmetry eigenval-
ues. Furthermore, γI3 is also invariant under interchannel gauge transforma-
tions, which correspond to the swapping of the channels (I ↔ II) for isolated
pairs of bands. These transformations concomitantly change the sign of the
Chern numbers of the channels and the multiplicities of the C2 symmetry
eigenvalues, and therefore do not change γI3 . We have thus identified three
gauge-invariant Z2 crystalline topological indices, which together with the
Fu-Kane-Mele invariant yield a Z4

2 classification in agreement with a recent
K theory study [121].

We finally emphasize that the gauge-invariant γI3 is different in nature
from the “spin Chern numbers” existing in systems with a mirror symmetry
Mz. In this situation, the two time-reversed and C2 symmetric channels
I, II can be taken to be the spin eigenstates |↑〉 , |↓〉, such that CI ≡ C↑.
However, this does not determine the value of γI3 , as the spin Chern number
does not determine νI1d. Thus one can find both γI3 = 0, 1 for the same spin
Chern number.

4.2 Hybrid-order weak TIs

Next, we exploit the existence of the novel crystalline topology of γI3 in three-
dimensional bulk crystals with a C2z rotational symmetry. To do so, let us
consider the three-dimensional Brillouin zone of our time-reversal invariant
system as a collection of two-dimensional momentum cuts parametrized by
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4 The hybrid-order topology of weak topological insulators

the momentum kz parallel to the twofold rotation axis. At the time-reversal
invariant two-dimensional planes kz = 0, π we consider the system to be a
topological non-trivial QSHI. As a result, the bulk three-dimensional crys-
tal will be a three-dimensional topological insulator of the weak class. In
principle, we could choose the two Z2 topological crystalline indices corre-
sponding to the quantized partial polarization of the kz = 0, π QSHI to be
different. This, however, would imply that in the triad of “weak” topological
invariants [120] (ν1, ν2, ν3), ν1 and/or ν2 are different from zero. Hence, the
three-dimensional system would feature an even number of surface Dirac
cones protected by time-reversal at the (001) and (001̄) surfaces that are
left invariant under the C2z rotation symmetry. As a result, any physical
consequence of the crystalline topology cannot manifest itself: it would be
completely obscured by the internal, time-reversal, symmetry topology.

However, we can choose the two Z2 topological crystalline invariants at
the time-reversal invariant planes to be equal, thus constraining the weak
invariants to be (0, 0, 1). The time-reversal symmetric topology now guar-
antees the existence of an even number of massless Dirac cones appearing
at time-reversal invariant (100) and (010) surface momenta [c.f. Fig. 4.2],
while the C2z invariant (001) surfaces are completely gapped. A non-trivial
crystalline topology, which can thus only arise from a difference in γI3 at
the kz = 0, π planes, will then be in full force and lead to the appearance
of a single pair of surface Dirac cones [c.f. Fig. 4.2] at unpinned surface
momenta related by the twofold rotation symmetry. This pair of surface
Dirac cones realizes a rotational anomaly violating the fermion multiplica-
tion theorem of Ref. [16] and can be only removed by breaking the protecting
C2z and/or Θ symmetry [c.f. Fig. 4.2]. We point out that the existence of
this rotation anomaly cannot be diagnosed by considering the flow of gauge-
invariant Wannier centers between the kz = 0, π planes as in Ref. [16]. This
is because at kz = 0, π our system is a topological insulator, and therefore
cannot be represented in terms of localized Wannier functions. The appear-
ance of the unpinned Dirac surface cones is instead detected by considering
the kz-directed Wilson loop [see Appendix D] in agreement with Ref. [122],
although the stability of the surface Dirac cones cannot be inferred from
the Wilson loop that consequently cannot be used to derive a “topological
index”. We dub this new three-dimensional insulating phase a hybrid-order
weak topological insulator: it is by itself a first-order topological insulator in
d = 3 dimensions with d−1 gapless boundary modes, but it can be switched
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4.2 Hybrid-order weak TIs

Figure 4.2: Schematic of a hybrid-order weak topological insulator. At the top
and bottom surfaces left invariant under the protecting C2z symmetry
a single pair of surface Dirac cones exist. On the side surfaces an
even number of Dirac cones pinned to time-reversal invariant surface
momenta are mandated by the weak topological invariants. When
breaking C2 symmetry, the topological crystalline surface Dirac cones
at the top and bottom surfaces can be gapped out leaving these sur-
faces completely dark. By breaking the translational symmetry, i.e.
doubling the unit cell, the time-reversal symmetry protected Dirac
cones gap out, and the topological crystalline Dirac cones are then
connected by helical hinge states.
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4 The hybrid-order topology of weak topological insulators

using unit cell doublings in the ẑ-direction, and thus without breaking any
protecting symmetry, to a second-order topological crystalline insulator with
anomalous gapless hinge modes [c.f. Fig. 4.2] and C2 rotation anomaly [16],
and reminiscent of the surface cones one predicted to appear in α−Bi4Br4

and a family of Zintl compounds [123, 124].

4.3 Stacked Kane-Mele model

Having established the existence of the hybrid-order weak topological insu-
lator, we now present an explicit model based on stacked Kane-Mele systems
realizing this phase. Let us consider a tight-binding model for spin-1/2 elec-
trons on AA stacked honeycomb lattices. In momentum space the Bloch
Hamiltonian can be written as:

H(k) = d1(k)τx ⊗ s0 + d2(k)τy ⊗ s0 + d5(k)τz ⊗ sz
+ d4(k)τz ⊗ sy, (4.1)

where the τi’s and si’s are the Pauli matrices acting in sublattice and spin
space respectively. The first two terms in the Hamiltonian above corre-
spond to intralayer spin-independent nearest-neighbor hopping processes,
and the corresponding coefficients are d1(k) = −t [1 + cosx1 + cosx2] and
d2(k) = −t [sinx1 + sinx2]. Here we have introduced the hopping amplitude
t while x1,2 = k · a1,2, a1,2 being the Bravais lattice vectors. The third term
in the Hamiltonian Eq. 4.1 corresponds to spin-orbit interaction which in-
volves intralayer spin-dependent second-neighbor hopping. We take the cor-
responding coefficient d5(k) = 2t2 sin (x1), with t2 the hopping strength, thus
explicitly breaking the threefold rotation symmetry. Finally, the last term in
the Hamiltonian involves interlayer spin-dependent hopping amplitudes and
the corresponding coefficient reads d4(k) = −2t3 sin (kz). We introduce this
term to explicitly break the effective “in-plane” time-reversal symmetry [125]
to allow for the possibility of a change of (crystalline) topology in the two
time-reversal symmetric planes kz = 0, π. Since the Hamiltonian Eq. 4.1
preserves bulk inversion symmetry, we can immediately obtain the strong
and weak topological indices and thus obtain (ν0; ν1, ν2, ν3) = (0; 0, 0, 1). In
this form, however, Eq. 4.1 does not model a hybrid-order weak topological
insulator: it can be adiabatically connected to a stack of uncoupled QSHI
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4.3 Stacked Kane-Mele model

Figure 4.3: (a) Bulk bandstructure of the stacked Kane-Mele model Eq. 4.1 by
further accounting for a Rashba spin-orbit coupling term of strength
λ/t = 0.1. The strength of the modified intralayer spin-orbit coupling
term has been fixed to t2/t = 0.7, whereas the interlayer spin-orbit
coupling strength has been fixed to t3/t = 0.4. (b) Energy spectrum in
a slab geometry with open boundary conditions along the ŷ direction.
The (010) and (01̄0) surfaces exhibit an even number of Dirac cones
pinned at time-reversal invariant surface momenta as required by the
weak topological invariants. (c) Surface energy spectrum along the
stacking ẑ direction. There are two pairs of surface Dirac cones local-
ized at the (001) and the (001̄) surface. The Dirac points are found at
unpinned surface momenta related by the C2 symmetry. The zoom-in
(d) shows that the Dirac cones at opposite surface are located at dif-
ferent momenta due to the lack of inversion symmetry. All energies
have been measured in unit of the hopping strength t.

77



4 The hybrid-order topology of weak topological insulators

and consequently its (001) surface does not feature gapless modes. To en-
dow the system with a non-trivial crystalline topology we instead modify
the intralayer spin-orbit coupling as d5(k) → cos(kz)d5(k). This modifica-
tion keeps the strong and weak topological indices intact but changes the
crystalline topology of the system. Note that also the inversion eigenval-
ues remain unchanged, thus implying that the hybrid-order phase cannot be
diagnosed by inversion symmetry indicators.

To show this, we have computed the bulk bandstructure [see Fig. 4.3(a)]
and the surface energy spectra [see Fig. 4.3(b),(c),(d)] of this modified model
by further accounting for an intralayer Rashba spin-orbit coupling term a of
strength λ that explicitly breaks inversion symmetry. At the side surfaces we
observe the conventional surface Dirac cones of a weak topological insulators
[c.f. Fig. 4.3(b)]. More importantly, diagonalization of the Hamiltonian
with open boundary conditions along the stacking direction [c.f. Fig. 4.3(c)]
reveals the presence of two C2 symmetry protected surface Dirac cones thus
verifying that our model realizes a hybrid-order weak topological insulator.
Note that the pairs of Dirac cones at the (001) and (001̄) surface are found at
different surface momenta in agreement with the lack of inversion symmetry.

We have also verified that our model can be switched to a higher-order
topological insulator by suitable translational symmetry breaking pertur-
bations. Specifically we have introduced an interlayer staggered chemical
potential of strength ε that provides the required doubling of the unit cell
and further introduced an interlayer coupling in the enlarged unit cell of
the form −δτzsx. Fig. 4.4(a) shows the corresponding bulk bandstructure
that is still characterized by a substantial gap. At the (010) [(01̄0)] sur-
face the time-reversal symmetry protected Dirac cones are gapped out [see
Fig. 4.4(b)] while the twofold rotation symmetry-protected Dirac cones at
the (001) [(001̄)] surface are preserved [see Fig. 4.4(c)]. Notice that Dirac
cone pairs localized at opposite surface are connected by helical hinge states
[see Fig. 4.4(d)] as expected for a helical higher-order topological insulator
protected by a twofold rotation symmetry.

aThe term is [−1/2+cos(k2)−cos(k1)]τy⊗sx+[sin(k2)−sin(k1)/2]τx⊗sx+[
√

3/2(cos(k1)−
1)]τy ⊗ σy + [sin(k1)

√
3/2]τx ⊗ sy
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4.3 Stacked Kane-Mele model

Figure 4.4: (a) Bulk band structure of the stacked Kane-Mele model with a trans-
lational breaking perturbation. The parameter set is the same as in
Fig. 4.3. Moreover the translational symmetry breaking parameters
have been fixed to ε/t = 0.1 and δ/t = 0.2. (b) Surface energy spec-
trum showing the gapping of the time-reversal symmetry protected
Dirac cones. (c) Surface energy spectrum along the stacking direction
that still feature the C2-protected Dirac cones at unpinned surface
momenta. (d) Energy spectrum in a ribbon geometry with periodic
boundary conditions only along the stacking direction. Within the
surface energy gap we find gapless anomalous helical hinge modes,
colored in red.
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4.4 Conclusions

To sum up, we have shown that weak topological insulators with an addi-
tional twofold rotation symmetry around the dark direction can feature a
pair of Dirac cones on their dark surfaces, which are protected by the rota-
tion symmetry. This hybrid-order weak topological insulator can be turned
into a higher-order topological insulator with protected helical hinge modes
by translational symmetry breaking perturbations. We have shown that the
existence of such a topological phase comes about due to a third Z2 topolog-
ical invariant characterizing quantum spin-Hall insulators in C2-symmetric
crystals, that can be read off neither from symmetry indicators nor from
the properties of the Wilson loop spectrum. Considering the minimal sym-
metry requirements and the fact that the C2 protected surface Dirac cones
appear at unpinned points in the surface Brillouin zone, we anticipate that
our findings could apply to a large number of weak topological insulators.
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4.4 Conclusions

Appendix A: Constructing C2-symmetric channels for
pairs of isolated Kramers pairs

Our goal is to numerically construct, for systems with C2 and time-reversal
symmetry, a gauge that divides our system in two channels that are by
themselves C2 symmetric, and are related to each other by time-reversal
Θ, and consequently C2Θ symmetry. Since we are assuming that there are
no other degeneracies than those required by time-reversal symmetry, it is
sufficient to consider a single Kramers pair of bands. We then want to find
a gauge such that we have two states ψIk and ψIIk that satisfy

C2ΘψIk = ψIIk , (4.2)

C2ψ
I,II
k = ψI,II−k . (4.3)

To construct such a gauge, let us first see how to construct locally, at each
k-point, a gauge that satisfies Eq. (4.2). To do so we start by numerically
diagonalizing the Hamiltonian to find the two occupied eigenstates ΨI,II

k .

We then calculate the unitary matrix M ij = Ψi†
k C2θΨ

j
k and diagonalize it by

a transformation ψik = U ijk Ψj
k,where U ijk consists of the eigenvectors of M ij .

The matrix M then has the form

M =

(
eiρ1 0
0 eiρ2

)
.

After a further unitary transformation ψ1,2
k → eiρ1,2/2ψ1,2

k , M will be the
identity matrix. A final unitary transformation(

ψIk
ψIIk

)
→ 1√

2

(
−1 1
1 1

)(
ψIk
ψIIk

)
,

then ensures M is completely off-diagonal, and thus we have found states
ψIk and ψIIk that satisfy Eq. (4.2).

In order to construct a gauge satisfying Eqs. (4.2) and (4.3) across the
Brillouin zone, let us start by noting that for an isolated Kramers pair of
bands, the local gauge freedom is U(1)⊗ SU(2). That is, we are free to do
a rotation between the basis states, and can then change each basis state by
a U(1) phase. Now the conditions of Eqs. (4.2) and (4.3) completely fix the
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4 The hybrid-order topology of weak topological insulators

SU(2) part of the gauge freedom, up to the unitary operation of relabeling
the states ψIk ←→ ψIIk . There will thus be a remaining U(1) degree of
freedom within each C2 symmetric channel.

We can now start at the Γ point in the Brillouin zone at k = (0, 0), and
follow the steps described to make the matrix M off-diagonal. Since Γ is
a time-reversal invariant point, Kramers theorem guarentees that the time-
reversal operator θ is off-diagonal. Rotating such that C2θ is off-diagonal
thus also ensures that this basis is C2 diagonal.

Once we have found the states at the Γ point, we take a point close to
it at k = (ε, 0) for a small ε and repeat the procedure to make M off-
diagonal. We then consider the overlap matrix ψi(0,0)ψ

j
(ε,0), which will either

be almost completely diagonal, or almost completely off-diagonal. If it is
off-diagonal, this means that we need to switch the labels I, II by a unitary
transformation (

ψIk
ψIIk

)
→
(

0 1
1 0

)(
ψIk
ψIIk

)
.

We then define ψi−k = C2ψ
i
k. Continuing in this way along half the Brillouin

zone also ensures that the second condition Eq. (4.2) is satisfied.

The gauge constructed in this way fixes the SU(2) part of the gauge
degrees of freedom, since we ensured that the overlap matrix is diagonal.
Within each channel, there is still a U(1) phase degree of freedom which we
have not fixed, and for which there is an obstruction to smoothness if the
band has a non-zero Chern number. For our purposes we do not need to
fix this phase, as neither the eigenvalues nor the Chern number can change
under this U(1) gauge transformation

Appendix B:Topological invariants of systems with
two-fold rotational symmetry

Using the procedure of the previous section, we can divide the occupied
bands of a system into two channels that are tow-fold rotation symmetric,
and have broken time-reversal symmetry. In this section we show how one
can compute the topology of the system once such a gauge has been found.

First consider the partial polarizations, which are quantized along the
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high-symmetry lines of the BZ by C2 and time-reversal symmetry. Using
the constructed gauge, the two C2-symmetric channels give us an easy way
to compute the partial polarizations. Since the two channels are related
by time-reversal symmetry, the partial polarization is equal to the polariza-
tion in one channel. This means we have to calculate the Berry phase of
one channel along high-symmetry lines in the BZ. On these contours, each
channel is effectively a one-dimensional system with C2 symmetry. For such
systems, the Berry phase γ is quantized and can directly be expressed in
terms of its C2-eigenvalues as [126]

γ =(−i)
NF∏
i

log[−ξi(0)ξi(π)] mod 2π,

where ξi(k) is the C2 eigenvalue of band i at momentum k. Since the
eigenvalues can be either ±i, the term inside the logarithm can either be ±
and hence each term inside the product is either 0 or π. This allows us to
rewrite

γ =

NF∑
i

−i log[−ξi(0)ξi(π)] mod 2π

=

NF∑
i

−i(log[iξi(0)] + log[iξi(π)]) mod 2π

=− i
NF∑
i

log[iξi(0)]− i
NF∑
i

log[iξi(π)]) mod 2π

=π(mk=0
i +mk=π

i ) mod 2π,

Where mk=0
i denotes the multiplicity of eigenvalue i at k = 0 and the last

equality follows since whenever an eigenvalue is −i, the log evaluates to zero.

Applying this to the contours Γ−X and Γ−Y we find γI1(2) ≡
[
ΓIi +XI

i (Y I
i )
]

mod 2
as presented in the main text.

The Fu-Kane-Mele invariant is equal to the Chern number in one of the
channels modulo 2. This Chern number can in turn be expressed as the
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4 The hybrid-order topology of weak topological insulators

difference of the berry phases of the contours Γ − Y and X −M (CITE).
Hence the FKM-invariant can be expressed as

νFKM =(ΓIi +XI
i + Y I

i +M I
i ) mod 2

So far we have found three invariants constructed out of four eigenvalue
multiplicities. For atomic insulators, a fourth linearly independent crys-
talline invariant is given by [8]

ν1d =
1

2
(Γ−i −X−i − Y−i +M−i),

where m−i is the multiplicity of eigenvalue −i at high-symmetry point m =
Γ, X, Y,M .

This invariant is related to the number of Wannier functions localized at
Wyckoff position 1d in real space by [8]

ν1d =−N1d;i +N1d;−i

where N1d;i is the number of symmetric Wannier functions localized at
Wyckoff position 1d with two-fold rotation eigenvalue i. When considering
non-atomic insulators, one cannot find localized symmetric Wannier func-
tions, however we can still calculate ν1d. For systems with an odd Chern
number ν1d will be half-integer, since there will be an odd number of i eigen-
values, and an odd number of −i eigenvalues. Hence we can construct an
invariant that is always integer by the combination

γ3 = (C/2 + ν1d) mod 2.

Appendix C: Sums of quantum spin Hall insulators

Here we explicitly show how adding together and coupling two QSHI can
result in either a fragile topological phase or a trivial phase. To this end we
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consider a Kane-Mele model,

HKM (t, t2) = −t [1 + cos (k1) + cos (k2)] τx ⊗ s0

− t [sin (k1) + sin (k2)] τy ⊗ s0 + 2t2 sin (k1) τz ⊗ sz,

where t and t2 are the nearest-neighbor and intrinsic spin-orbit coupling
amplitudes, and τi and si are Pauli matrices acting in sub-lattice and spin-
space. We also add a Rashba coupling

HR =λ
{

[−1/2 + cos(k2)− cos(k1)]τy ⊗ sx

+[sin(k2)− sin(k1)/2]τx ⊗ sx + [
√

3/2(cos(k1)− 1)]τy ⊗ σy

+[sin(k1)
√

3/2]τx ⊗ sy
}
,

where λ is the Rashba amplitude. Note that the intrinsic spin-orbit coupling
term only acts along k1 such that threefold rotation symmetry is broken.

We now take two copies of this model, and couple them by adding a
term −δiσx ⊗ τx ⊗ sy, where δ is the amplitude of the coupling and σx is a
Pauli matrix acting in ”copy” space. Let us denote the parameters of the
two copies by ti and ti2 , where i = 1, 2 denotes the copy. To examine the
phase that results from coupling the two QSHI, we consider its Wilson loop
spectrum along k1 (see main text). Let us first consider the parameters of
the two Kane-Mele models to be equal and such that the system is insulating.
This leads to a Wilson loop spectrum as in Fig. 4.6(a), showing this is an
atomic insulator with two Kramers pairs at unpinned points in the BZ.
Changing the sign of t2 between the copies, such that t12 = −t22 and keeping
the sign of t the same, results in a fragile topological phase [see Fig. 4.6(b)].
Note that when turning off Rashba coupling, such that we restore inversion
symmetry, the two copies have the same inversion eigenvalues, meaning this
phase or γ3 cannot be diagnosed by inversion. To obtain this phase, we can
also instead change the sign of t between the copies such that t1 = −t2, while
keeping the sign of the other parameters equal. Changing both the sign of t
and t2 between the two copies again results in the trivial phase.

Finally, we note that when taking the hybrid-order topology model and
adding translational-symmetry breaking perturbation (as presented in the
main text), the resulting system at kz = 0 will be fragile topological insulator
with Wilson loop Fig. 4.6(b), while at kz = π it will be a trivial insulator
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4 The hybrid-order topology of weak topological insulators

with Wilson loop Fig. 4.6(a).

Figure 4.5: (a) Wilson loop spectrum of two coupled Kane-Mele models for t2 = t1,
t12/t

1 = t22/t
1 = 0.7, λ/t1 = 0.2 and δ/t1 = 0.4. (b) Wilson loop

spectrum for the same model as in a), changing only t12/t
1 = −t22/t1 =

0.7.

Appendix D: Spectral flow in the hybrid-order
topological insulator

In general protected edge states can be detected by studying the WIlson loop
spectrum along the momentum direction perpendicular to the surface [122].
For the hybrid-order topological insulator, the C2-related cones on the top
and bottom surfaces can be detected by considering the Wilson loop along
kz, as a function of k1 and k2. This is plotted in Fig. 4.6 for the hybrid-order
topological insulator presented in the main text. Here we see two protected
gap-closing points that are related by C2 symmetry.
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Figure 4.6: Wilson loop spectrum along kz plotted as a function of k1 and k2 of the
hybrid-order topological insulator presented in the main text. Two C2
related band crossings indicate gapless modes on the top and bottom
surfaces.

87





5 The Floquet Hofstadter butterfly

The complex fractal structure of the Hofstadter butterfly, which reveals
the interplay between the lattice constant and the magnetic length when
a perpendicular magnetic field is applied to a crystal lattice, has fascinated
researchers since its first theoretical prediction [127]. However, its experi-
mental realization seemed to be impossible at first sight, because for typical
crystal lattice spacings, the magnetic field required to observe the butterfly
is of the order of thousands of tesla. Recently, moiré superlattices, obtained
when depositing graphene on mismatched substrates, such as hBN, have
been realized [128, 129]. These structures have an effective lattice spacing
that is an order of magnitude larger than the usual crystal lattices. This
has brought the required magnetic-field strength within experimental reach,
and enabled the observation of the Hofstadter butterfly spectra [130, 131].
In addition, the Hofstadter butterfly has been proposed in nanophotonic de-
vices [132], and for bosons in optical lattices [133–135], where it has also
been experimentally realized [136, 137].

All these studies were done in equilibrium, and so far out-of-equilibrium
Hofstadter setups have not received much attention, although driven sys-
tems have been under intense scrutiny recently [138–153]. In particular,
time-periodic driving attracted great interest because it can be conveniently
described in the framework of Floquet theory [138, 140, 154, 155]. This al-
lows one to define quasi-static properties of the driven system that can be
measured, and is a tuning knob for quantum simulations both in condensed-
matter and cold-atom experiments. The quasi-energy spectrum obtained
using Floquet theory is periodic, with a period proportional to the driving
frequency. Recently, periodically driven systems have been observed in pho-
tonics [146], condensed-matter [147], and cold-atom experiments [148, 156].

Periodic driving described by Floquet theory can lead to many interest-
ing topological phase transitions [139–144, 157], characterized by a slightly
different topological invariant than for the undriven case [158–161]. For ex-
ample, Floquet theory predicts additional topological phases in the Kitaev
chain [145]. Topological behavior induced by periodic driving has been ob-
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5 The Floquet Hofstadter butterfly

served experimentally in photonic waveguides [146], and a gap opening has
been detected on the surface of a topological insulator upon irradiation with
circularly polarized light [147]. The Berry curvature of such Floquet Bloch
bands has also been explicitly measured [148].

Several recent works have been dedicated to the investigation of the driven
Hofstadter model. In Refs. [151, 152], the driven Hofstadter model has
been investigated on a square lattice for a specific flux φ = 1/3 (in units
of the flux quantum φ0 = h/e), and for two different driving protocols. In
both cases, the authors find counter-propagating edge modes in the quasi-
energy spectrum, crossing E = ±π~/T , where T is the period of the driving.
The Hofstadter butterfly for a driven honeycomb lattice has been studied
in Ref. [162], with an extensive Chern number analysis. In Ref. [153], a
transition from the half-integer to the integer quantum Hall effect has been
theoretically proposed to occur upon elliptical driving of an ac field.

Here, we show that the Floquet method can be used to unveil the forma-
tion of the Hofstadter butterfly at low magnetic fields by adding a periodic
driving. Upon tuning the frequency, the bands start to overlap and avoided

B

(a) x

y
z

(b)

E

k

~ω

6J

Figure 5.1: (a) Schematic setup of our model. The honeycomb lattice is subjected
to a perpendicular magnetic field, and is simultaneously irradiated by
circularly polarized light. (b) Quasi-energy spectrum of the Floquet
model. The generic feature of the Floquet spectrum is the periodicity
with ~ω in the vertical direction.
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5.1 The model

crossings occur, that lead to the formation of wings. At small flux, where
the spectrum has a Landau-level structure, the procedure can be analyti-
cally monitored using the Floquet formalism. In doing so, we gain insight
on the mechanism of hybridization between Landau levels. For larger mag-
netic fields, we perform numerical calculations to obtain the full butterfly
spectrum for various frequencies.

The outline of this chapter is as follows. In Sec. 5.1, we introduce the
model and explain the details of Floquet theory. In Sec. 5.2, we present
numerical results for the small-flux regime and derive an effective model
to explain the mixing of the Landau levels. In Sec. 5.3, we present and
analyze our numerical results for the full range of flux, in both high- and
low-frequency regimes. Our findings are summarized in Sec. 5.4.

5.1 The model

We consider a honeycomb lattice (e.g., a graphene monolayer) subject to
a perpendicular magnetic field and to irradiation by circularly polarized
light [see Fig. 5.1(a)]. The system is described by a tight-binding model of
electrons on a honeycomb lattice, where the background magnetic field and
the circularly polarized light are included through a vector potential A, via
Peierls substitution. The Hamiltonian reads

H = −J
∑
l=1,2,3

∑
r

|r + δl〉ei
´
ds·A〈r|+ H.c., (5.1)

where J is the hopping parameter, r is the position of a site, δl are the
nearest-neighbor vectors of the honeycomb lattice, and ds parametrizes the
path between two sites r and r + δl. The vector potential consists of two
contributions,

A(r, t) = Amag(r) + Alight(t). (5.2)

The first term is due to the background magnetic field, which will be de-
scribed in the Landau gauge,

Amag(r) = − e
~

(By, 0), (5.3)
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5 The Floquet Hofstadter butterfly

where e is the electron charge and ~ the reduced Planck constant. The
second contribution comes from the circularly polarized light and is periodic
in time,

Alight(t) = A0 (− sin (ωt) , cos (ωt)) , (5.4)

where A0 is the amplitude, ω is the frequency of the light and t denotes time.

Let us start by considering the static Hamiltonian, with Alight = 0. A
Fourier transformation then yields the Harper equation of the honeycomb
lattice (we set the lattice spacing to unity):

−E
J

(
1 0
0 1

)
ψr (k) =

(
0 1
1 0

)
ψr (k)

+ ei
√
3
2
kx

 0 e
3
2
i
(
ky+ 2

3
π rp
q

)
e
− 3

2
i
(
ky+ 2

3
π rp
q

)
0

ψr+1 (k)

+ e−i
√
3

2
kx

 0 e
3
2
i
(
ky+ 2

3
π rp
q

)
e
− 3

2
i
(
ky+ 2

3
π rp
q

)
0

ψr−1 (k) ,

(5.5)

where r = 1, . . . , q, and ψq+1 = ψ1, with

ψr(k) = (ar,kx,ky , br,kx,ky). (5.6)

Here, a and b are the annihilation operators of the two sublattices

ψr(k) =
(
ψA
r,kx,ky , ψ

B
r,kx,ky

)
. (5.7)

Here, the components ψA and ψB refer to the two sublattices of the hon-
eycomb lattice, and we have taken the flux per unit cell to be φ = p/q in
units of the flux quantum φ0, where p and q are co-prime integers. Thus,
the matrices in the Harper equation [Eq. (5.5)] act in sublattice space.

To describe the influence of the circularly polarized light, we now also
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5.1 The model

consider Alight. This will amount to each hopping picking up a phase,

ei
´
ds·Alight = exp {iA0 [− cos (θ) sin (ωt) + sin (θ) cos (ωt)]} , (5.8)

where θ is the angle between the bond and the x-axis. Since the Hamiltonian
is now periodic in time, we can define the Floquet Hamiltonian by [138]

HFloq =
i~
T

ln [U (T, 0)] . (5.9)

Here, T = 2π/ω is the period of the driving and U (T, 0) is the time-evolution
operator, which may be found by numerically solving the Schrödinger equa-
tion

i~
∂U (t, t′)

∂t
= H (t) U

(
t, t′
)
. (5.10)

By calculating the eigenvalues and eigenstates of HFloq, we can determine
the quasi-static behavior of the system at stroboscopic timescales larger than
T . The time-periodic Hamiltonian can thus be expanded into the Fourier
coefficients Hn, as

H(t) =
∑
n

Hneinωt. (5.11)

The eigenenergies of the Floquet Hamiltonian then follow from diagonaliza-
tion of

HFloq =



. . .
...

...
... . .

.

· · · H0 + ~ω H1 H2 · · ·
· · · H−1 H0 H1 · · ·
· · · H−2 H−1 H0 − ~ω · · ·

. .
. ...

...
...

. . .

 . (5.12)

We can interpret the Hamiltonian Eq. (5.12) as an infinite set of copies of
the Hamiltonian H0, separated by energies ~ω, as illustrated by Fig. 5.1(b).
These copies are then mixed by the off-diagonal elements. If ~ω is much
larger than the bandwidth 6J of the spectrum of H0, this mixing will be
negligible. However, when ~ω becomes comparable to 6J , the different copies
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5 The Floquet Hofstadter butterfly

of H0 start to overlap and the mixing terms become important.

For high frequencies, the Floquet Hamiltonian can be expanded to first
non-trivial order as [138, 157, 163–166]

HFloq ≈ H0 + [H−1, H1]/~ω. (5.13)

5.2 Landau-level regime

We will first focus our attention to the small-flux limit, where the Hofstadter
spectrum typically exhibits a Landau-level structure. In Fig. 5.2, we plot the
energies as a function of the flux φ for different values of the driving frequency
ω. We consider the regime where the frequency becomes comparable to the
bandwidth 6J . In Fig. 5.2(a), for ~ω = 5.2J , we observe that two subsequent
copies of H0 are still well separated. (The two copies shown here live in
the intervals [−~ω/2, ~ω/2] and [~ω/2, 3~ω/2], respectively.) The coupling
between the two copies reduces their width to a value smaller than 6J . Upon
lowering the frequency, the two copies of bands come closer to each other
and start to overlap. We see this process in Figs. 5.2(c)-(h). In Figs. 5.2(b)
and 5.2(c), the initial overlap of the bands takes place. Curiously, the top
two Landau levels of the lower copy do not mix with any Landau level of the
upper copy, while the rest hybridizes and a gap opens due to their avoided
crossings. We will explain this behavior in the next section using an effective
model to describe this regime. In Figs. 5.2(e)-(h), one sees additional gaps
opening, and one observes that the two largest gaps acquire a shape that
resembles the wings of the undriven Hofstadter butterfly.

5.2.1 Effective model

We now derive an effective model to describe the initial overlap of the two
copies of bands displayed in Figs. 5.2(b)-(d), aiming at understanding why
the top two bands of the lower copy do not hybridize with the bands of the
upper copy. To do so, we zoom in around E ≈ ~ω/2, where the overlap
occurs. Our starting point is the Hamiltonian in Eq. (5.12). Since we are
interested in the regime where two copies start overlapping, ~ω . 6J , at
energy E ≈ ~ω/2, we can restrict ourselves to two copies of H0. Here, we
take the ones centered at E = 0 and E = ~ω, and consider their mixing, of
which the dominant contribution stems from H1 and H−1. The mixing with
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levels in more distant Floquet copies is negligible, as the effect is suppressed
with increasing energy difference. (A similar analysis is done in Ref. [161].)
The effective Hamiltonian then becomes

Heff
Floq =

(
H0 + ~ω H1

H−1 H0

)
. (5.14)

To derive analytical expressions for Hn, with n = −1, 0, 1, we initially
solve the problem at zero dc magnetic field (φ = 0), including only the time-
dependent perturbation. In this case, Hn can be obtained by making the
following substitution in the Hamiltonian,

J → J

T

ˆ T

0
dt′ exp

{
iA0

[
− cos (θ) sin

(
ωt′
)

+ sin (θ) cos
(
ωt′
)]}

exp
{
inωt′

}
= J Jn (A0) exp

[
in
(
θ +

π

2

)]
, (5.15)

where Jn is the nth Bessel function of the first kind. Applying this substitu-
tion to the tight-binding Hamiltonian [Eq. (5.1)] of the honeycomb lattice,
we obtain

Hn =

(
0 hn
h′n 0

)
, (5.16)

where

hn = −J
(

e
i
(
ky

1
2

+kx
√
3

2

)
ein

5
6
π + e

i
(
ky

1
2
−kx

√
3

2

)
ein

π
6 + e−ikyeinπ

3
2

)
Jn (A0) ,

h′n = −J
(

e
−i

(
ky

1
2

+kx
√
3

2

)
e−in

π
6 + e

−i
(
ky

1
2
−kx

√
3

2

)
e−in

5
6
π + eikyein

π
2

)
Jn (A0) .

At small φ, we enter the Landau-level regime. Because of the suppression
of the mixing with energy difference, the strongest overlap occurs between
the highest and lowest Landau levels of two neighboring Floquet copies. This
observation justifies an expansion of the Hamiltonian around the maximum
of the spectrum at k = 0. The dispersion is quadratic in leading order, and
we find

H0 = −3JJ0 (A0)

[
1− 1

4

(
k2
x + k2

y

)]
σx, (5.17)
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where σx is a Pauli matrix in the sublattice pseudospin space, and we have
omitted the higher order terms. We now introduce the magnetic field by
minimal Peierls substitution, and then the standard ladder operators a and
a† to find

H0 = −3JJ0 (A0)

[
1− 1

2l2B
(a†a+ 1

2)

]
σx, (5.18)

where lB =
√
~/eB is the magnetic length in terms of the magnetic field

B. (We recall that the lattice spacing has been set to unity.) The term
H1, mixing two copies of the butterfly spectrum, is obtained by a similar
calculation,

H1 = JJ1 (A0)
3

2

[√
2

lB
a†σx +

1

2l2B
aaσy

]
. (5.19)

The eigenstates ψn,± of H0 have the same structure as the eigenstates of σx,

ψn,± =
1√
2

(
|n〉
∓|n〉

)
, (5.20)

and their energies are

En,± = ±3JJ0 (A0)

[
1− 1

2l2B
(n+ 1

2)

]
. (5.21)

These results are compatible with Ref. [161], which discusses the zero-field
case.

One observes that for each Floquet copy, which we label by r in the follow-
ing, there are two sequences of Landau levels: one where the zeroth Landau
level is at the top of the spectrum, and one where it is at the bottom of the
spectrum, labeled by + and −, respectively. In H1, the term proportional to
σy couples ψn,+,r with ψn′,−,r+1 and ψn,−,r with ψn′,+,r+1. The former pair
constitutes states very close in energy (energy difference ∆E � ~ω) whereas
the latter pair are distant states (∆E ≈ 2~ω). The term proportional to σx
couples ψn,±,r with ψn′,±,r+1, whose energy difference is ∆E ≈ ~ω. From
perturbation theory, it follows that the energy shift due to the mixing term
scales as 1/∆E. Consequently, hybridization between the states ψn,+,r and
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ψn′,−,r+1 is significant, whereas the couplings between the other pairs have
negligible effects.

The strong mixing between ψn,+,r and ψn′,−,r+1 is due to the matrix ele-
ment proportional to aa in Eq. (5.19). Thus, hybridization occurs between
these states if n′ = n− 2. In Figs. 5.2(c) and 5.2(d), we indeed observe that
avoided crossings occur between the Landau levels labeled 0 (blue) and 2
(red), between 1 (blue) and 3 (red), etc. The top two Landau levels of the
lower copy (n = 0, 1, labeled in red) do not have a partner; they do not
hybridize with any of the bands of the upper copy (labeled in blue).

5.3 Numerical results

We now go beyond the low-flux regime and study the full Hofstadter but-
terfly. We present numerical results for both high frequencies, when the
periodicity of the spectrum is much larger than the bandwidth, and lower
frequencies, where overlaps are observed.

5.3.1 High-frequency regime

In Fig. 5.3, we plot the energy levels as a function of the flux per plaquette
φ, for several values of the amplitude at a frequency of ω = 12J/~, such
that the periodicity of the spectrum ~ω is larger than the bandwidth ∼ 6J .
Thus, there are only resonances within one Floquet copy of the spectrum.

The colors of the gaps correspond to the associated topological invariants,
which are obtained by using the Středa formula [167]

σH = 2
e2

h

∂N

∂φ
, (5.22)

which provides the Hall conductivity σH, in terms of the integrated density
of states N and the conductance quantum e2/h. We have checked and
confirmed that the resulting values of σH from Eq. (5.22) are identical to
those obtained by counting the number of chiral edge states in a ribbon-
geometry calculation of the dispersion. Identical results can be obtained
from explicit calculation of the Chern numbers [162, 168], however at a
higher computational expense. Although the topological invariant of Floquet
systems is not the same as for static systems [158], in the high-frequency
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regime the Středa formula still yields the correct conductivity values because
there is still a trivial gap between different copies of the original spectrum.

For φ = 0 (no magnetic field), circularly polarized light opens up a topo-
logical gap in the honeycomb system, and realizes a dynamical Haldane
model [142, 156, 169–171]. Since the spectrum is continuous as a function
of φ, this gap must persist for non-zero φ. From Fig. 5.3, we see indeed
that it connects with the large gap above E = 0, which also has topological
invariant +1. If we create a gap with opposite winding number (by reversing
the polarization of the light), the gap that opens up at φ = 0 would connect
to the lower large gap with invariant −1. At other fractional fluxes, such
as φ = 1/2, 1/3, 1/4, non-trivial gaps also open at E = 0 with the same
chirality and with the topological invariant equal to the denominator of the
rational flux.

As we increase the amplitude of the light A0, we change the effective
couplings JJn(A0) [see Eq. (5.15)] in the Floquet Hamiltonian, which induces
additional topological phase transitions. These will happen by the closing
and opening of a gap that already exists without driving [172]. An example
can be observed at φ = 1/3, where the large gap around E ≈ −1 with
invariant −1 becomes smaller for A0 = 1.3, closes around A0 ≈ 1.5 and is
reopened at A0 = 1.7.

The gap closing occurs at three points in the Brillouin zone and the topo-
logical invariant changes from −1 to +2 (see colors in Fig. 5.3), consistent
with the number of gap closing points. Because the system still has magnetic-
translation symmetry, the topological invariant must satisfy the Diophantine
equation [151, 173]

p c+ q d = 1, (5.23)

for flux φ = p/q, where c is the topological invariant and d is integer. This
means that the topological invariant can only change in multiples of q, which
indeed agrees with our observation at the third gap for flux φ = 1/3.

5.3.2 Higher photon resonances

As we lower ω, and ~ω becomes comparable to the bandwidth (. 6J), bands
from the next copy will start interacting with each other (this regime in the
case of φ = 0 has been studied in Ref. [157]). We plot the spectrum for
A0 = 1 and various frequencies in Fig. 5.4. In Fig. 5.4(a) (~ω = 5.6J) there
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5.4 Conclusion

is still a gap between the first and second copy of bands. In Fig. 5.4(b),
the bands are at the verge of crossing, and in Fig. 5.4(c) (~ω � 6J) there
is an overlap between the two copies. The mixing of the energy bands
gives rise to an intricate spectrum, and also causes many topological phase
transitions. One example is the gap that appears at E ≈ ~ω/2 around
φ = 1/2 in Fig. 5.4(c). Since the different copies are now starting to overlap,
the periodicity of the spectrum makes it difficult to define a reference value
for the filling (integrated density of states N) and the Středa formula no
longer a priori provides the correct topological invariant. As we decrease ω
even further, an almost flat band appears for small φ [see Fig. 5.4(d)], where
the gap below (above) has Hall conductivity +1(+2). In this regime, it is
possible to clearly distinguish between two gaps with a different number of
edge states (the one above has two, the gap below one), where the gap above
the flat state has been created by the Floquet driving. This could facilitate
experiments, since the narrow and flat band persists for a wide range of flux.

5.4 Conclusion

By irradiating a honeycomb lattice subjected to a perpendicular magnetic
field with circularly polarized light, its Hofstadter butterfly exhibits an even
richer structure than its static counterpart. In particular, we can follow
the formation of wing-like structures in the spectrum at low flux and low
frequencies. The highest two Landau levels of the spectrum do not mix with
the overlapping copy, while the other levels do, as captured by our effective
analytical model.

To realize these features experimentally, the Floquet perturbation and
the flux per unit cell need to be large. The Floquet perturbations enter
through Bessel functions as factors of (reintroducing the lattice constant
c) Jn (A0c), which shows that a larger lattice constant would increase the
Floquet strength as well as the flux per unit cell. This makes honeycomb
structures with large lattice constants a natural place to realize this sys-
tem. Such structures can be for example lattices of nanocrystals [174, 175]
or optical lattices [176]. In optical lattices, one can also implement shaking
protocols [141, 177]. A circular shaking protocol will induce a vector po-
tential of the same form as Eq. (5.4) [161, 178]. The amplitude, however,
will grow linearly with the frequency ω, while for light A0 ∼ eE/~ω. As the
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5 The Floquet Hofstadter butterfly

required frequencies are quite large, this will aid in an experimental realiza-
tion. In such a setup ~ω ≈ 2.7J can be realized, which would be sufficient
to observe the newly formed wings.

The structures observed at the process of opening the wings are reminis-
cent of generic hybridized dispersions. For example, in semiconductor quan-
tum wells (e.g., HgCdTe/HgTe) [155, 179, 180] , gaps open between Landau
levels in the valence band. In that case, the ”warping terms”, which make
the dispersion non-isotropic, induce a coupling between Landau levels with
indices n and n± 4. The mechanism for the formation of these gaps is thus
analogous to the one governing the wing formation in the present Floquet
model. This analogy suggests a potential application of Floquet systems
as simulator of band structures of generic condensed matter systems. In
particular, such simulations could provide more insight into hybridization in
complicated Landau-level spectra.
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5.4 Conclusion

Figure 5.2: Spectra for small fluxes φ, in the Landau-level regime, plotted for
various values of ω, with A0 = 1. In the first four plots we label the
first three Landau levels of the upper (blue) and lower (red) copy.
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5 The Floquet Hofstadter butterfly

Figure 5.3: Full spectrum plotted for ~ω = 12J and various values of A0. The
colors of the gaps correspond to the number of left (red) or right
(blue) moving edge states.
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5.4 Conclusion

Figure 5.4: Full spectra plotted for various values of the frequency and A0 = 1.
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6 Conclusions

In this thesis, we have seen the effects of crystalline topology in a wide va-
riety of contexts. We started with spinless systems, where this topology is
completely determined by symmetry eigenvalues. With time-reversal sym-
metry, eigenvalues no longer reveal the full topology of the system, and in
particular one cannot determine the corner charges from eigenvalues any-
more. Here, we had to resort to different methods to identify the topological
invariants that determine the corner charges.

In Chapter 2, we have proposed a way of realizing a higher-order topo-
logical insulator by layering a two-dimensional material such as graphene or
silicene. If these layers are alternately p- and n-doped, and the construction
respects inversion symmetry, applying a magnetic field drives the system into
a higher-order topological insulating phase. This coupled layer construction
provides both an intuitive model for the appearance of chiral hinge states,
as well as a possible material platform to realize such phases.

In Chapter 3, two-dimensional systems with time-reversal and two-fold
rotation symmetry were considered. With time-reversal symmetry, conven-
tional symmetry indicators fail to classify all topological phases. We have
presented a novel Z2 invariant, that together with the partial polarization
is able to classify all atomic insulating phases. In addition, we have also
identified additional novel fragile topological phases, both with two and four
occupied bands.

In Chapter 4, we have examined the topological phases of quantum spin
Hall systems with an additional two-fold rotation symmetry. We found that
indeed the rotational symmetry provides an extra Z2 invariant, which we
then exploited to construct a hybrid-order topological insulator. This insu-
lator is both a weak and a second-order topological insulator, and features
protected surface Dirac cones on all surfaces. The Dirac cones on the side
surfaces are protected by translation and time-reversal symmetry, while the
cones on the top and bottom surfaces are protected by C2 and time-reversal.

In Chapter 5, we have considered a honeycomb lattice subjected to a
perpendicular magnetic field, and irradiated by circularly polarized light.
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6 Conclusions

This system was studied using the Floquet formalism, where we can follow
the hybridization of the Landau levels due to the polarized light.

We have only discussed a small number of space symmetry groups with
time-reversal symmetry, especially in three-dimensions, and it would be in-
teresting to explore the possible topological phases in other space groups.
Another direction of research for the future would be to find an efficient way
to check if materials realize the phases discussed in Chapters 3 and 4. This
has recently been done taking into account only phases distinguishable by
symmetry eigenvalues [86–88], and it would be interesting to extend this to
find topological materials not diagnosable by symmetry eigenvalues.
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Samenvatting

Dit proefschrift gaat voornamelijk over isolerende kristallen. Kristallen zijn
materialen waar de atomen in een regelmatig patroon gerangschikt zijn,
waaromheen zich elektronen bevinden, en in een isolator bevinden de elek-
tronen zich in een configuratie waarin er geen elektrische geleiding kan
plaatsvinden. Dit is bijvoorbeeld het geval als de elektronen zeer sterk zijn
gebonden aan de atomen.

Het lijkt op het eerste gezicht niet zo interessant om de elektronische
eigenschappen van deze materialen te bestuderen, aangezien er geen elek-
trische geleiding mogelijk is. Er bestaat echter een speciale klasse isola-
toren, genaamd topologische isolatoren. Deze materialen zijn isolerend in
het interieur van het materiaal, maar geleiden wel op de rand.

De eerste topologische isolator werd in 1980 ontdekt door Klaus von Kl-
itzing [1]. Hij bekeek een zeer dunne halfgeleider, en plaatste dit in een sterk
magnetisch veld. Hierdoor werd het materiaal isolerend, maar zijn experi-
ment liet zien dat er wel geleiding aan de rand van het materiaal mogelijk
was. Dit is een zogenaamde kwantum Hall isolator, waar opmerkelijk genoeg
de geleiding maar één kant op mogelijk is (zie Figuur 1).

Deze geleidende randtoestanden zijn niet slechts een randeffect. Dat wil
zeggen dat een topologische isolator anders is dan een isolator waar een
geleidend materiaal op de rand is geplakt, zoals het geval is bij een plastic
dobbelsteen ingepakt in aluminiumfolie. Zou men deze dobbelsteen doormid-
den snijden, dan zijn niet meer alle oppervlakken geleidend. Bij een topolo-
gische isolator zit dat anders; zou men deze in tweeën splitsen dan ontstaan
op elke rand weer geleidende toestanden (zie Figuur 1).

De reden dat dit een topologische isolator wordt genoemd, is dat de rand-
toestanden niet kunnen verdwijnen door kleine vervormingen. Topologie is
een wiskundige discipline die zich bezig houdt met eigenschappen die on-
veranderd blijven door zulke kleine vervormingen, en men kan laten zien dat
het systeem een kwantum Hall isolator blijft zolang men geen kleine ver-
vorming introduceert die het systeem geleidend maken. Dat wil zeggen dat
de precieze vorm van het materiaal, de exacte sterkte van het magneetveld,
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Figure 1: Schematische weergave van een kwantum Hall isolator. Het interieur is
een isolator, maar op de rand zit een geleidende toestand. Zou men het
materiaal in tweeën knippen, dan ontstaan twee verschillende stukjes
materiaal die allebei weer geleidende randtoestanden hebben.

of een deukje hier en daar niet uitmaken.

In deze doctoraalscriptie worden vooral kristallijne (topologische) isola-
toren beschouwd, en specifieker isolatoren die beschermd worden door een
rotatiesymmetrie. De atomen van deze materialen vormen een rooster dat
twee-, drie-, vier- of zesvoudige rotatiesymmetrie heeft (zie Figuur 2). Als
deze symmetrie gebroken wordt, zijn eventuele geleidende randtoestanden
niet langer beschermd. Naast geleidende randtoestanden kan rotatiesymme-
trie ook nog iets anders beschermen: een gekwantiseerde hoeklading. De
totale lading in de rode gebieden in Figuur 2 moet door de symmetrie een
geheel getal zijn. Ook de waarde van de hoeklading is geen randeffect, en
kan worden voorspeld als men weet in welke configuratie het interieur van
het kristal zich bevind.

Dit is een gevolg van de interieur-rand correspondentie, die stelt dat de
aanwezigheid van beschermde toestanden op de rand, en de waarde van de
hoeklading kan worden gerelateerd aan de configuratie waarin het interieur
zich bevind. Een belangrijke vraag, die we in dit proefschrift voor bepaalde
gevallen beantwoorden, is hoe het bestaan van beschermde randtoestanden
of hoeklading kan worden afgeleid uit het interieur van het systeem.

In hoofdstuk 2 beschrijven we een manier om een hogere orde topologische
isolator te realiseren, beschermd door inversiesymmetrie. Dit is een driedi-
mensionale isolator waarbij het interieur en de oppervlakten isolerend zijn,
maar er wel geleiding kan plaatsvinden langs de ribben van het materiaal.
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Figure 2: Schematische weergave van drie kristallen met van links naar rechts
tweevoudige, viervoudige en zesvoudige rotatiesymmetrie. De hoekge-
bieden zijn rood gekleurd. De lading in deze gebiden is gekwantiseerd
en beschermd door de rotatiesymmetrie.

Onze constructie bestaat uit het op elkaar stapelen van verschillende lagen
grafeen, een tweedimensionaal materiaal bestaande uit koolstofatomen in
een honingraat rooster. Deze lagen grafeen worden om en om p- danwel
n-gedoopt, en vervolgens wordt er een magnetisch veld aangezet. Op deze
manier ontstaan er geleidende toestanden op de ribben van het materiaal,
beschermd door inversie symmetrie. Deze constructie is een concrete manier
om een hogere orde topologische isolator te realiseren.

In hoofdstuk 3 beschouwen we tweedimensionale kristallen met tweevoudige
rotatiesymmetrie en tijdomkeersymmetrie. We ontwikkelen een methode
om alle topologisch verschillende isolatoren te onderscheiden met deze sym-
metrieën. Bestaande methodes om deze verschillende fases te onderschei-
den, gebaseerd op eigenwaardes, zijn hier niet toereikend. In plaats hiervan
beschouwen we de genestelde partiële polarisatie van het Wilson loop spec-
trum. Verder identificeren we een nieuwe fragiele topologische isolator.

In hoofdstuk 4 laten we zien dat tweevoudige rotatiesymmetrie en tijdom-
keer symmetrie een hybride-orde topologische isolator kunnen beschermen.
In deze driedimensionale topologische isolator zijn alle oppervlakken gelei-
dend, maar niet door dezelfde symmetrieën beschermd. Verder laten we
zien dat deze topologische isolator niet met bestaande methodes kan worden
gedetecteerd, en geven we een formulering voor de topologische invariant die
deze fase beschermt.

In hoofdstuk 5 beschouwen we grafeen in een sterk magneetveld, waar cir-
culair gepolariseerd licht op wordt geschenen. Dit systeem wordt bestudeerd
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met het zogenaamde Floquet formalisme. Hiermee wordt het energiespec-
trum van het systeem berekend voor verschillende sterktes en frequenties
van het circulair gepolariseerde licht.

In de toekomst zou het interessant zijn om de methodes om verschillende
isolatoren te onderscheiden, zoals beschreven in de hoofdstukken 3 en 4,
toe te passen op de data van een groot aantal materialen. Op deze manier
kan worden bekeken of er materialen zijn die op een natuurlijke manier
de fases die hier beschreven zijn realiseren. Dit is recentelijk gedaan met
methodes gebaseerd op symmetrie eigenwaardes [86–88], maar deze zijn niet
in staat om bijvoorbeeld de fragiele topologische isolator uit hoofdstuk 3 of
de hybride-orde topologische isolator uit hoofdstuk 4 te detecteren.
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