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Introduction 

 

1.1 General motivation 

The European carpet of regional competitiveness is highly colorful, ranging from strong 

greens to deep reds, as regions vary strongly regarding their economic competitiveness and, 

consequently, their welfare (see Figure 1.1). The “EU Regional Competitiveness Index 2019” 

(RCI) published by the European Union, weaves this pattern once again (Annoni and Dijkstra, 

2019). The EU assigns a competitiveness score to 268 regions, ranging from minus 1.6 to 1.08. 

In their index, they consider aspects such as quality of infrastructure, education of workforce 

and patent applications. With a score of 1.08, Stockholm leads the ranking of regional 

competitiveness, followed by London (1.06) and Utrecht (1.05). On the other side of the color 

spectrum, we find regions like the North Aegean in Greece (-1.61) and Sud-Est in Romania 

(-1.46).  

 

Figure 1.1: Regional Competitiveness Index 2019 for EU countries (Source: based on Annoni and Dijkstra, 2019) 

 

In the literature, one aspect identified to define the competitiveness of regions is their 

capability to generate new technologies and products (Porter, 1990). Innovations enable regions 

to increase their relative competitiveness and generate income and wealth. However, in 

accordance with the picture of regional competitiveness, innovation activities concentrate in 

space and only a few regions are capable of regularly generating new products (Feldman, 1993; 
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Acs et al., 2002; Balland and Rigby, 2017). One reason for this is the cumulative nature of 

knowledge generation. New knowledge always builds on information and experiences people 

have beforehand. Thus, regions that already have less access to knowledge are less capable of 

producing new knowledge and fall behind. Consequently, the economic disparity between 

regions tends to increase (Rodríguez-Pose and Crescenzi, 2008). 

Inter-regional diffusion of knowledge is one mechanism that can close such gaps. By sharing 

and transferring knowledge between regions, regions that did not engage in the invention of it 

can still utilize the knowledge in their quest for generating new technologies and products. 

Thereby, they are able to increase their competitiveness and eventually benefit from additional 

economic wealth. Like the production of knowledge, however, knowledge’s diffusion appears 

to be spatially sticky as well (Hägerstrand, 1952; Jaffe et al., 1993; Audretsch and Feldman, 

1996; Feldman et al., 2015). Some knowledge resists diffusion and is bound to its place of 

origin; hence, little diffusion is observed.  

But why is this so? Why do some regions adopt new knowledge much faster than other 

regions? Why do regions diversify into certain technologies and reject others? Can policy 

makers enhance the diffusion of technological knowledge in general? And if so, what tools are 

most appropriate for this? To answer these and related questions, a vital understanding of the 

mechanisms of spatial knowledge and technology diffusion is indispensable. This motivates the 

current thesis, which will analyze different dimensions of spatial knowledge diffusion and shed 

light on the adoption of technologies.  

 

1.2 Dimensions of spatial knowledge diffusion  

In his seminal work from 1890, “The laws of imitation,” translated into English in 1903, 

Gabriel Tarde explains the generation and diffusion of innovations as an s-shaped process: At 

the beginning, only few people adopt innovations. If these first adopters are satisfied with the 

innovation and they start using it frequently, other people will start imitating the pioneering 

users by trying out the innovation as well, and a re-enforcing process begins. This is the “growth 

phase” of an innovation, potentially leading to a broad market penetration. At the end, the 

process slows down as the market gets saturated and an innovation reaches its “maturity phase.” 

This concept has been widely used and modified in different research fields (see for example, 

Klepper, 1993; Rogers, 2003; Geels and Schot, 2007). 

In the 1950s and 1960s, the first geographer to analyze the diffusion of innovation was the 

Swede Torsten Hägerstrand; he built up a computer aided simulation model with mapped data 

of the diffusion of cars and radios in Sweden from 1918 until 1930 (Hägerstrand, 1952; 1965). 
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By doing so, Hägerstrand identified a robust time lag between regions in adopting innovations. 

More precisely, he described three stages of the diffusion process: the “primary stage”, the 

“diffusion stage”, and the “condensing stage” (Hägerstrand, 1952, p. 16 f). In the primary stage, 

multiple centers of adoption rapidly appear, due to unevenly distributed information about the 

innovation. Originating from these centers, the information spills over into neighboring regions 

along the networks of social contacts. In the second phase, an increasing adoption of the 

innovation can be observed in these regions. New centers of adoption might arise. In general, 

the differences between the regions will become levelled until the “phenomenon in question is 

[…] commonly known” (Hägerstrand, 1952, p. 17).  

 

 

Figure 1.2: Hierarchical and wave patterns of spatial diffusion (Source: based on Kulke, 2006) 

 

Hägerstrand (1952) identifies two spatial patterns defining these processes: first, a diffusion 

driven by the urban hierarchy of cities and, second, an innovation wave originating from these 

centers to neighboring regions (see Figure 1.2). According to his argumentation, both patterns 

are the results of actors’ individual communication and information fields. Adopters exchange 

information and experiences about new innovations with potential adopters and thereby 

convince them to try out the innovation themselves. These exchanges happen more frequently 

between actors of central cities and within geographic proximity (Hägerstrand, 1967). Thus, the 

process of spatial diffusion is mainly determined by overcoming the ignorance about innovation 

through networks of private communication.  

Blaut (1977) takes a rather contrasting position on this, as, for him, a diffusion model which 

merely concentrates on information flows “is not a simulation of the real world of geographic 

change” (p. 344). He criticizes Hägerstrand for emphasizing the ignorance of people as the main 

barrier to technology diffusion. Instead, Blaut (1977) argues that the successful acceptance of 

an innovation depends on the cultural context in which people live. Ormrod (1990), too, 
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emphasizes the role of local contexts as a main driver of spatial differences in the diffusion of 

innovations. With regards to the increasing mass communication and, thus, the availability of 

information, he states that the importance of a central position within personal communication 

networks decreases. Therefore, he extends the theory of diffusion by the “concept of 

receptiveness.” Accordingly, innovations are generated in a specific context and their 

successful diffusion depends on the potential customer’s perception of whether the innovation 

is capable of providing a benefit within the customer’s local context.  

In more recent terms, the customer’s knowledge about and his or her perception of an 

innovation may be affected by his or her level of proximity to the innovator. Actors living near 

each other have higher probabilities of meeting and interact. In this regard, geographic 

proximity facilitates the diffusion of knowledge between those actors (Jaffe et al., 1993; 

Audretsch and Feldman, 1996). However, a small physical distance may not be sufficient for a 

successful exchange. In this regard, Boschma (2005) identifies five dimensions of proximity: 

geographic, cognitive, social, institutional and organizational. Cognitive proximity, for 

example, affects how likely actors might make sense of new knowledge (Nooteboom et al., 

2007). If an actor becomes aware of new technologies outside his field of expertise, he or she 

may not understand their working mechanisms and, consequently, won’t use the new 

technologies. However, if it is related to what he or she already knows, the likelihood of 

successful transfers increases significantly (Nooteboom et al., 2007). Thus, in addition to the 

effects of regional contexts, research in Evolutionary Economic Geography (EEG) focuses on 

the relational level of firms and regions (Boschma, 2005).  

Similar to Hägerstrand (1966), who describes the interaction of actors as networks of social 

contacts, EEG is also strongly interested in the structures and mechanisms of networks and how 

these shape the diffusion of knowledge (Glückler, 2007; Ter Wal and Boschma, 2009; Boschma 

and Frenken, 2010). These networks may consist of collaborating inventors who work together 

on one patent (Ter Wal, 2014) or organizations that participate in the same joint project (Paier 

and Scherngell, 2011; Broekel and Hartog, 2013a). Empirical evidence exists that the formation 

of these relationships is affected by proximities (Knoben and Oerlemans, 2006). For example, 

two actors that live in the same city are more likely to interact often and, hence, build strong 

relationships that may lead to frequent knowledge exchanges (Ter Wal, 2014).  

In recent years a new notion was introduced to EEG, namely, complexity. For example, the 

production of new patents may be simple or complex, depending on the technologies used to 

generate this patent. Technologies are argued to be complex if they consist of numerous 

components and require ample information for reproduction (Simon, 1962; Kaufman, 1993). 
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Understanding such technologies is more difficult and time consuming (Jovanovic and Nyarko, 

1995) and, thus, complex technologies tend to resist diffusion (Feldman, 1993). To create new 

patents under these circumstances requires collaborations between experts with deep and 

complementary knowledge (Balland et al., 2020).  

In conclusion, generated knowledge tends to be translated into innovations in the form of 

new technologies. Knowledge about these technologies then diffuses through networks of 

personal contacts of those interacting with each other, for example, collaborating inventors. 

Whether these inventors then adopt the new knowledge or technology depends on their regional 

context, for example, the complementary capabilities and infrastructure to which they have 

access. This indicates three dimensions shaping the diffusion of knowledge: technology 

(complexity and diffusion patterns), networks (social interactions) and regional context 

(variations between regions in adoption and creation). The following sections will take a deep 

dive to each dimension and show gaps in the literature that motivate the research of this thesis.  

 

1.2.1 Technology  

The first dimension of knowledge diffusion, tackled in this thesis, is technology, as it 

represents the embodiment of knowledge. Novel technologies are the outcome of actors 

exploring and testing new combinations of knowledge and technological components (Arthur, 

2009). This typically necessitates experts of different components cooperating with each other 

to communicate and combine their joint knowledge (Powell et al., 1996; Witt et al., 2012). 

However, knowledge differs in its characteristics and thus varies in its difficulty to explain. A 

common distinction is between codified and tacit knowledge (Polanyi, 1966; Nelson and 

Winter, 1982; Gertler, 2003). Codified knowledge consists of insights and experiences that have 

been brought to paper and can be shared by sending the according documents (Jensen et al., 

2007). Contrarily, tacit knowledge is almost impossible to codify as it typically represents 

knowledge we are not able to articulate (Grimaldi and Torrisi, 2001). Riding a bicycle 

exemplifies such knowledge. Explaining to someone, in words, how to balance a bicycle seems 

impossible; people need to try it themselves and learn from their own experiences. Therefore, 

tacit knowledge tends to be more spatially sticky (Morgan, 2004), concentrating in particular 

regions and resisting diffusion (Howells, 2002).  

Whether a technology is stronger based on codified or tacit knowledge can be influenced by 

their structural composition, based on the subcomponents of a technology. An internal 

combustion engine car consists—among other things—of an engine block, power train and 

tires. The engine block itself is a technology with several subcomponents, e.g., the cylinders or 
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oil galleries. These components are directly or indirectly connected with each other and their 

interplay creates a technological system (Arthur, 2009). These systems can be simply or 

complexly structured. Complex technologies are characterized by large numbers of components 

that are connected in ways that requires a great deal of information to communicate and 

understand the structure (Simon, 1962). Moreover, with higher levels of complexity, the 

likelihood of technological knowledge being codified decreases (Broekel, 2019). Therefore, the 

difficulties and efforts to understand and advance technologies rise with the levels of 

complexity (Cohen and Levinthal, 1990; Singh, 1997). 

Consequently, not only the generation of technologies but also its diffusion is shaped by 

complexity (Sorenson et al., 2006). Complex technologies are more difficult to explain and, 

hence, tend to resist diffusion and concentrate in only a few places (Camagni, 1985; Feldman, 

1993; Glückler, 2007). Although the notion of complexity has already been touched upon in 

theoretical contributions about diffusion, empirical evidence about the relationship between 

complexity and diffusion is scarce. Exceptions are Sorenson et al. (2006) and Feldman et al. 

(2015), as well as Balland and Rigby (2017), who analyze the diffusion of complex technologies 

by incorporating the dimensions of proximity (Boschma, 2005). Balland and Rigby (2017) find 

geographic proximity to be relevant for the diffusion of technologies and even more so for 

complex technologies. Contrarily, Feldman et al. (2015) observe a slightly different picture. 

They divide the diffusion into two phases and find geographic proximity to be irrelevant in the 

initial phase. Only in the second phase can a distance-driven diffusion be observed. These 

conflicting results expose that we lack a clear understanding of the diffusion mechanisms of 

(complex) technologies. Accordingly, this thesis shall complement the existing literature.  

The first empirical chapter of this thesis will tackle this gap and offers a novel contribution 

to the field by incorporating the recent literature on complexity and proximities with the work 

of Hägerstrand. We will explore in detail which kind of spatial diffusion patterns (Hägerstrand, 

1952; 1965) will be adopted by complex technologies. Do complex technologies diffuse 

hierarchically from city to city and then to neighboring regions? Or do they diffuse 

contagiously, like a wave from the innovator region? Besides these two diffusion patterns, 

Chapter 2 will discuss and explore leap-like diffusions. In contrast to hierarchical diffusions, 

technologies may jump from one region to the other without any tendency of neighborhood 

effects. Thereby, the concept of Hägerstrand is extended by a third pattern. Differentiating 

between these patterns will allow us to clarify the role of geographic proximity in the diffusion 

of complex technologies. Additionally, we will incorporate technological and social proximity 
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to obtain a more complete picture of the diffusion processes. By this, we will add further 

empirical research to the notion of complexity in EEG and answer the first research question: 

 

Research Question 1: How do complex technologies diffuse in space? 

  

1.2.2 Networks  

Based on the seminal paper of Jaffe et al. (1993) which introduces the analysis of patent 

citations as a “paper trail” of knowledge diffusion, numerous researchers explored and 

presented the influence of proximities on spatial knowledge diffusion (Peri, 2005; Maggioni et 

al., 2007; Hoekman et al., 2009; Paci and Usai, 2009). For example, Almeida and Kogut (1997) 

analyze the moderating role of firm size on geographic proximity and find large firms to cite 

more distant knowledge sources. Evidence for technological and organizational proximity to 

facilitate knowledge diffusion was provided by Jaffe and Trajtenberg (1999), who find that 

patents are more likely to cite each other if they are assigned to the same firm and patent class. 

Besides the notion of proximities, existing empirical evidence suggests that social networks 

facilitate the generation of knowledge by enabling its diffusion (Young, 2000; Montanaria and 

Saberi, 2010; Schlaile et al., 2018; Tsouri, 2019). The generation of knowledge requires 

economic actors to utilize internal and external knowledge sources (Lundvall and Johnson, 

1994). Only by combining these two sources can a sustained generation of knowledge be 

achieved; otherwise, economic actors tend to be caught in technological lock-ins (Grabher, 

1993). To have access to external knowledge, this must diffuse across space or, in other words, 

has to be shared between actors (Witt et al., 2012). 

This exchange tends to occur while regional actors cooperate in R&D alliances, joint 

research projects or co-inventorships. During the time of cooperation, technological knowledge 

is intentionally or unintentionally shared between partners, initiating the possibility to combine 

this new knowledge with existing technologies and thereby develop innovations. Research in 

EEG shows that such partnerships tend to be formed between economic agents that share related 

knowledge, are embedded in similar social, organizational and institutional backgrounds and 

are located in the same place (Balland et al. 2013; Breschi and Lissoni, 2005; Broekel and 

Hartog, 2013b; Ter Wal, 2014). Boschma and Frenken (2010) summarize these tendencies as 

levels of proximity shaping the formation and, thus, the evolution of knowledge networks.  

Besides this bilateral or dyadic level, Glückler (2007) emphasizes the role of nodes and the 

structural level on the evolution of knowledge relations and networks. In this context, nodes 

represent the entities connected by links, e.g., individuals, organizations or regions. An example 
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of characteristics of the node is the size of organizations, which may determine how many links 

it is able to maintain at the same time. Larger firms tend to have greater capabilities for actively 

managing collaborations (Tether, 2002).  

In addition to node characteristics, the network structure matters for the evaluation of 

knowledge relations and networks. In this context, structure refers to the overall composition 

of networks. In this regards, a typical reference is the “small worldness” of networks (Watts 

and Strogatz, 1998). The structure of these networks is characterized by many clusters that 

possess numerous connections between their nodes and a couple of “bridges” to other clusters. 

Inter-regional knowledge networks can form in such a way when organizations are closely 

cooperating within their region and at the same time foster good relationships with 

organizations outside their home region (Schilling and Phelps, 2007). These networks then tend 

to foster the spatial diffusion of knowledge and technologies. 

In accordance with these findings, European policy makers try to foster inter-organizational 

cooperation through the subsidization of joint research projects. Since 1984, the EU has 

established eight Framework Programmes with a total volume of 250 billion euros, aiming to 

fund joint R&D projects between organizations in different EU member states. Additionally, 

nations like Germany have their own funding schemes with which they support joint projects. 

For example, in 2008, the Federal Ministry of Education and Research spent approximately 

nine billion euros on these instruments (Broekel and Graf, 2012). Due to this popularity and 

financial commitment, it is crucial to critically review these instruments (Bode, 2004; Fornahl 

et al., 2011; Broekel, 2015). 

Accordingly, a vast body of literature has been published, analyzing the effectiveness of 

subsidies. They mostly find positive effects of subsidized R&D projects on firms’ innovation 

performance; recent examples are Schwartz et al. (2012), Di Cagno et al. (2016) as well as 

Czarnitzki and Hussinger (2018). Typically, the innovation performance is assessed by the 

number of patents generated after the project. It is argued that inter-organizational R&D 

cooperation leads to knowledge diffusion between partners, subsequently enhancing the 

number of granted patents. Therefore, patent output is an attractive indicator to measure the 

effect of subsidized joint projects. It also has, however, one major limitation: it remains unclear 

whether knowledge has actually diffused between partners. The greater innovation output of 

firms might have different reasons, for example, the new patents might stem from hiring 

additional R&D personnel independent from the subsidized project. Thus, the enhancing effect 

of subsidization is subject to interpretation and we lack a clear picture of whether subsidized 

R&D projects enhance knowledge diffusion. 
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The approach developed by Jaffe et al. (1993), using patent citations as paper trails of 

knowledge diffusion, offers a framework suitable for closing this research gap; it will be applied 

in Chapter 3. It allows for an analysis of whether subsidized joint R&D projects in Germany 

have a facilitating effect on subsequent inter-regional patent citations. Thereby, this thesis 

complements the current empirical literature on the effectiveness of public subsidies and 

answers the second research question: 

 

Research Question 2: Do subsidized joint R&D projects facilitate the diffusion of knowledge 

between regions participating in the same joint R&D projects?  

 

The third gap identified in the literature and which this thesis addresses also relates to the 

network dimension of knowledge diffusion. In the past two decades, economic geographers 

have put much effort into the analysis of social networks. By understanding their structure and 

evolution, new insights about the diffusion of knowledge through network relationships have 

been generated (e.g., Murphy, 2003; Boschma and Ter Wal, 2007; Broekel and Boschma, 

2011). Much attention has been directed to the different dimensions of proximity (Boschma and 

Frenken, 2010) and their effect on link formation. For example, Scherngell and Barber (2009) 

study the effect of geographical and technological proximity on the formation of collaborative 

R&D projects. They find both proximity dimensions to be positively related to the occurrence 

of R&D cooperation. By considering the evolution of industries, Ter Wal (2014) analyzes how 

the effect of geographic proximity on link formation changes over time and finds it to decrease.  

Despite this comprehensive literature, most of these studies exclusively analyze the 

formation of network links. Although network “[…] variation should be conceived as the results 

of endogenous mechanisms of network formation and dissolution” (Glückler, 2007, p. 627), the 

latter part, dissolution, has been vastly neglected in the empirical literature of economic 

geography. A major reason might be the requirement of longitudinal data, including the 

formation as well as dissolution date, that is seldomly available (McPherson et al., 2001). 

Outside geography, some scholars have explored dissolution processes. For example, Polidoro 

et al. (2011) analyze different forms of embeddedness and their effect on the stability of inter-

organizational alliances. Makino et al. (2007) study the factors influencing the intended and 

unintended dissolution of joint ventures. Still, the research on dissolution processes is scarce. 

This contrasts with the importance of link dissolution as a major barrier for knowledge 

diffusion. Inventors or organizations who stop collaborating or interacting in any way with each 

other no longer exchange knowledge. Hence, it is vital to build an understanding about the 
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reasons and mechanisms of link dissolution in order to obtain a comprehensive picture of 

knowledge diffusion. For this reason, this thesis will discuss and analyze factors affecting the 

dissolution of network links. As proximities strongly facilitate the formation of links at the dyad 

level, it appears worthwhile to analyze whether their effect holds true for dissolutions as well. 

For example, economic agents with similar technological backgrounds (i.e., high cognitive 

proximity) find it easier to communicate and build up a common understanding (Nooteboom et 

al., 2007). Thus, they are more likely to establish a partnership. However, this cognitive 

proximity increases the chances that they work in the same industries and may be competitors 

(Boschma, 2005). The same cognitive proximity that first led to link formation may then also 

enhance link dissolution, making the relationships unstable (Boschma and Frenken 2010). 

Therefore, it is expected that the effects of geographic, cognitive, social, organizational and 

institutional proximity to differ with regards to link formation and dissolution. Additionally, 

factors at the node and structural level will also be taken into account to answer the third 

research question.  

 

Research Question 3: Do proximities influence the dissolution of knowledge network links?  

 

1.2.3 Regional context  

Thus far, the technological and network dimensions of knowledge diffusion have been 

discussed in light of how the complexity of technology may shape spatial diffusion patterns and 

how networks serve as channels of knowledge flows. This leaves the question of whether and 

how regional contexts shape the generation and diffusion of knowledge. 

The European Regional Competitiveness Index 2019 (RCI) indicates that the generation of 

knowledge, and hence innovation, is concentrated in few regions of the European Union 

(Annoni and Dijkstra, 2019). Therefore, regions appear to have different possibilities and 

capabilities to innovate. Feldman (1993) argues that this picture is the outcome of innovation 

production being a place-specific process. The generation of new knowledge rests on the 

knowledge already existing and available to people; hence, it is a cumulative process. 

Accordingly, innovation production concentrates in space. A region that has once successfully 

innovated tends to continue, as is it successively creates innovation-related capabilities and 

experiences that helps to innovate even further; a reinforcing process with increasing returns 

occurs (Arthur, 1990).  

With the rise of modern information and communication technologies, this knowledge may 

be effortlessly transferred between regions, even those at great distance (Friedman, 2005). As 
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a result, regions would converge, meaning their innovation capabilities and new technologies 

could flourish anywhere in the world. The map of regional competitiveness would become flat 

without mountains of economic dominance. However, as the RCI already indicates, the world 

has not become flat; to the contrary it is very spiky (Rodríguez-Pose and Crescenzi, 2008). The 

diffusion of knowledge shows crucial distance-decay effects (Jaffe et al., 1993) even today. Just 

recently, Balland et al. (2020) show that the production of complex patents concentrates in a 

few US regions, mostly large cities. Consequently, the regional context still shapes the 

generation and diffusion of innovations.  

Triggered by an initial innovation, such as modern wind turbines, new industries may emerge 

when these technologies are adopted by entrepreneurs and businessman (Theyel, 2012). In this 

way, emerging industries represent the result of an initial technology generation or diffusion. 

The likelihood of observing the creation of new industries tends to be shaped by regional 

characteristics. In this regard, Boschma and Frenken (2011) argue that the likelihood of new 

industries to emerge in regions increases when related industries are present. This presence 

positively shapes the regional context as the availability of required skills, human capital and 

infrastructure rises (Boschma, 2017). Empirically, Montresor and Quatraro (2019) find 

evidence for this argumentation in the case of green technologies in Europe. Subsequently, 

these regional characteristics are also shaped by the new industry, influencing whether and 

which innovations are adopted in the future. This interdependence motivates us to take a deeper 

look at the mechanics of industry emergence in order to understand the influence of regional 

characteristics on knowledge diffusion.  

Many concepts used in EEG, like agglomeration externalities, path dependence or windows 

of local opportunity, that explain industry emergence focus on the role of the supply-side 

shaping regional contexts, e.g., access to resources and competencies. The demand-side has 

received much less attention. However, economic markets are characterized by the supply of 

products through manufacturers and the demand for these products by consumers (Brem and 

Voigt, 2009). Firms will only be successful if they match their supply (e.g., what they produce 

and how much of it) to the actual demand. Therefore, it is necessary that they acquire knowledge 

about market trends and consumer preferences (Martin et al., 2019). Consequently, close user-

producer interactions are necessary for suppliers to correctly recognize future demand and 

translate it into innovations (Lundvall, 2008; Menzel and Fornahl, 2009). Thus, firms might 

tend to locate themselves in the vicinity of consumers to identify their demand correctly. 

Demand is also determined by the information and knowledge consumers have, for example, 

about new trends in fashion or product features advertised by firms. Hence, actual demand 
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varies locally (Porter, 1990; Justman, 1994) and the magnitude as well as the kind of demand 

is likely to impact the emergence new industries (Martin et al., 2019). Nevertheless, economic 

geographers have widely neglected this important driver of change and have focused most of 

their attention on supply-side factors (Boschma and Frenken, 2011). This motivates this thesis 

to contribute a missing discussion and elaboration on the effects of demand on the emergence 

of industries.  

 

Research Question 4: Does local demand shape the spatial emergence of industries? 

   

1.3 Overview of the chapters 

To present answers to these four research questions, this thesis will apply an evolutionary 

framework to all stated dimensions of knowledge diffusion: technologies, networks and 

regional context. The following sections give an overview of the thesis and introduce the 

individual chapters by presenting motivation, empirical setup and main results. In addition to 

the four empirical chapters, the thesis will conclude with Chapter 6, discussing the main 

empirical results, theoretical as well as methodological contributions, prospects for future 

research and policy implications.  

 

1.3.1 Technology complexity and spatial technology diffusion 

Controlling technological complexity is perceived as economically beneficial, as it promises 

high returns and offers the possibility to create a competitive advantage due to the difficulties 

of imitating and copying complex technologies (Balland and Rigby, 2017). For example, 

Sbardella et al. (2018) discover that economic complexity facilitates economic growth. Besides 

these benefits, complexity also implies greater constraints and higher resource requirements in 

its addoption. If a technology has several requirements that need to be fulfilled for adoption, 

only a few individuals or regions may be capable of its application. Accordingly, it is expected 

that technologies diffuse with different spatial patterns—hierarchical, contagious (Hägerstrand 

1967) or leap-like—when complexity is considered as a technological characteristic. In this 

regard, Chapter 2 contributes to our understanding of spatial diffusion patterns and how the 

complexity of technologies shapes the probability of observing either hierarchical, contagious 

or leap-like diffusions.  

In order to understand how technological complexity shapes spatial diffusion patterns, a 

Bayesian survival framework (Zhou and Hanson, 2017) is applied to a novel complexity index 

(Broekel, 2019) and geocoded data of 4,000,000 US patents, granted from 1836 to 2010. 
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Through the calculation of 285 Bayesian survival models, considering geographic, 

technological, and social proximity as well as population size and technological diversity, the 

spatial and temporal diffusion of 285 technologies is explored in Chapter 2 and accompanied 

over a time period of a hundred years. Afterwards, a meta-regression analysis provides insights 

to how technological complexity affects the strength and relationship of each variable.  

The Bayesian survival models reveal spatial diffusion patterns similar to Hägerstrand (1967). 

Some technologies diffuse contagiously from the region of creation and other technologies 

spread hierarchically, jumping to distanced regions and diffusing contagiously from these. Still 

others leap from region to region without showing any neighborhood effect. Additionally, the 

meta-regression reveals that with higher levels of technological complexity, the likelihood of 

observing contagious diffusions significantly increases. Further evidence is provided that 

technological relatedness and diversification facilitate technology adoption, even more for 

complex technologies. Population size generally facilitates the adoption of technologies, 

however, less so for complex technologies.  

With regards to social proximity, the results show a general tendency to support the diffusion 

of technologies, but the picture is very diverse. For some technologies the factor has a positive 

relationship, for others a negative relationship to diffusion speed. These contradicting results 

bring us to the second dimension of knowledge diffusion, networks, and supports the course of 

this thesis to a stronger elaboration of the effects and evolution of knowledge networks.  

 

1.3.2 The effect of subsidized R&D networks on knowledge diffusion 

From a national or regional point of view, knowledge diffusion between organizations is a 

favorable process, as it allows organizations to obtain knowledge they would not be able to 

generate on their own (Powell et al., 1996). This tends to increase the potential for innovations 

which may subsequently lead to new growth and employment. From the viewpoint of individual 

organizations, however, knowledge exchange is a double-edged sword; as knowledge leads to 

competitive advantages, organizations tend to restrain knowledge from partners or even try to 

exploit partners through opportunistic behavior (Williamson, 1973; Gulati, 1998). In this 

situation of uncertainty about partner behavior, knowledge might not diffuse without 

restrictions, and the positive effects associated with knowledge spillovers will probably not 

occur. Therefore, it appears legitimate that national and regional governments try to foster 

mutual knowledge diffusion between organizations. For example, in Germany, the government 

subsidizes joint projects in which organizations are urged to share project-relevant knowledge 

between all partners (Broekel and Graf, 2012). Otherwise no funding is granted.  
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Still it is unclear whether these programs lead to the desired, more intense knowledge 

exchange or to organizations merely using the opportunity to finance their projects partly with 

public money. Chapter 3 follows the work of Jaffe at al. (1993) and makes use of patent citations 

as a “paper trail” of knowledge diffusion (Peri, 2005). More precisely, the chapter analyzes 

whether a positive relationship between policy networks and inter-regional patent citations can 

be observed. Therefore, patent data from 2000 to 2009 and data from the German “subsidies 

catalogue” including all supported projects is processed and analyzed in a gravity model 

framework (Isard, 1954). Besides reflecting on the impact of a popular German policy tool, 

Chapter 3 also allows the extension of our knowledge on inter-organizational relationships and 

their impact on knowledge diffusion. 

Similar to previous research, Chapter 3 finds a negative relationship of geographic distance 

to regional patent citations (Jaffe et al., 1993). Moreover, evidence for the facilitating influence 

of technological proximity is provided. A significant relationship between policy network links 

and following patent citations could not be found. However, the chapter shows a positive 

relationship between co-inventor relationships and patent citations. Therefore, the results 

generally support the diffusion-enhancing effect of knowledge networks. In order to better 

understand the differences between networks and their effect on knowledge diffusion, Chapter 

4 will elaborate on the formation and dissolution of network links. 

 

1.3.3 Proximities and the dissolution of network links 

Already in the 1960s, Hägerstrand (1965) concludes that innovations diffuse “through the 

network of social contacts” and the “analysis of diffusion of innovation may […] be broken 

down into two parts: the study of links and the study of nodes” (1965, p. 27). However, 

Hägerstrand treated communication channels, i.e., network links, exogenously (Blaikie, 1978). 

Thus, he did not further elaborate on the differences of links, network structure or evolution. 

Because of recent methodological advancements, the mechanisms and factors shaping the 

structure and evolution of networks can be investigated. 

The evolution of networks is characterized by the processes of node appearance and 

disappearance as well as of link formation and dissolution over time. Studies in economic 

geography have already thoroughly analyzed the formation of network links. In particular, the 

work of Boschma (2005) led to several studies analyzing how proximities shape the evolution 

and structure of networks (Broekel and Boschma, 2011; Balland, 2012; Balland et al., 2015). 

Besides the relational level, the node and structural network levels have been analyzed as well 

(Glückler, 2010; Broekel and Hartog, 2013; Ter Wal, 2014). Consequently, a substantial body 
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of empirical evidence of the formation processes has been established, whereas link dissolution 

was mostly neglected as the required longitudinal data, including dissolution times, is often 

lacking.  

Chapter 4 utilizes the recent methodological advances in the area of exponential random 

graphs that allow the analysis of formation and dissolution processes of spatial knowledge 

networks (Krivitsky and Handcock, 2014). Thus, it explores the possibilities of separable 

temporal exponential random graph models (STERGMs) in order to analyze the network 

evolution of a German biotechnology network. More precisely, the formation and dissolution 

processes of policy-induced joint projects from 1998 to 2013 are examined. The data within the 

subsidies catalogue includes the date of establishment as well as project length. Thereby, 

Chapter 4 aims to increase the knowledge of the characteristics of inter-organizational 

relationships in order to gain a better understanding of which relationships are beneficial for 

the diffusion of knowledge and which are not.  

With regards to link formation, evidence is found that geographical, cognitive and 

institutional proximity increase the chances of link formation between two organizations. In 

addition, at the node level, support is given that larger firms have greater resources for building 

and maintaining inter-organizational relationships, as link formation is more likely for large 

firms. Additionally, the analysis of link dissolution reveals that urban organizations dissolve 

relationships significantly faster than rural ones, and institutional proximity facilitates link 

dissolution. Indicating that partnerships between companies of the same organizational 

backgrounds, e.g., two non-profit organizations, dissolve links faster than relationships of 

companies with different backgrounds. 

 

1.3.4 Local supply and demand and the emergence of industries 

In recent years in EEG several studies have analyzed the origins of new industries. In order 

to explain why some regions can diversify into new technological systems and industries and 

others cannot, the evolutionary principle of path dependence is considered (Garud and Karnøe, 

2001; Neffke et al., 2011). Organizations invest time, money and human capital into certain 

technologies and expect financial returns through sold products and services. Over time, 

economic agents acquire a certain set of skills, infrastructure and routines. According to the 

technological distance between industries, these skills, infrastructure and routines will differ 

(Boschma and Frenken, 2011; Essletzbichler, 2015). In their concept of “related variety,” 

Frenken et al. (2007) extended this argumentation by the dimension of geographical distance 

and concluded that firms operating in related industries and located in the same regions have 
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the best opportunities to frequently exchange knowledge in a fruitful way. Thereby, they might 

develop new technologies based on their joint knowledge (Boschma and Frenken, 2012). 

Accordingly, regions with a broad variety of related industries have the best chances of 

frequently developing new technologies and, subsequently, industries.  

Thus, the recent literature frequently focuses on the supply-side in order to understand the 

location decisions of industries. Regional capabilities, infrastructure or technological 

relatedness are used to explain why certain industries emerge in particular regions. The demand-

side and its effect, however, have been neglected. Nevertheless, consumer and user preferences 

are likely to shape the diffusion process as much as the actions of suppliers (Geels, 2002; Martin 

et al., 2019; Ormrod, 1990). In the end, adopters decide whether they want to use a technology. 

Chapter 5 will close this gap by simultaneously analyzing supply-side and demand-side factors 

influencing the diffusion of the German wind energy industry. 

Therefore, Chapter 5 takes an intensive look at the interplay of local supply and demand 

over the life cycle of the German wind industry from 1983 to 2010. On the one hand, it makes 

use of a Bayesian survival framework to investigate whether and how fast regions deploy their 

first wind turbines and, on the other hand, if and when they witness the foundation of a wind 

energy manufacturer. Thereby, demand is modeled in the form of deployed wind turbines. The 

more wind turbines a region plans to install, the higher its demand. Thus, in the demand-pull 

models, the location of manufacturers is explained through future wind turbines that are 

deployed five years after firm foundation. In the supply-push models, the likelihood of wind 

turbine deployment is explained through the presence of manufacturers.  

After extensive robustness checks, the results confirm the importance of related variety, 

urbanization and industrial agglomeration for the emergence of industries. In addition, evidence 

is provided that demand is also a crucial factor for understanding the diffusion of an industry. 

The results show a higher likelihood for firm foundation in regions where numerous wind 

turbines are planned to be deployed in subsequent years. With regards to wind turbine locations, 

support is found that natural conditions of regions, such as average wind speed and availability 

of free space, most determine the adoption of wind turbines. 
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The spatial diffusion of simple and complex 

technologies 

 

Abstract 

Recent studies show that regions generating and capitalizing complex technologies possess 

a competitive advantage and, thus, prosper economically. Far less is known about the spatial 

diffusion of complex technologies. What are the drivers of complex technology diffusion? In 

particular, do these drivers differ in comparison to simple technologies? To answer these 

questions, the chapter makes use of four million US patents and analyzes one hundred years of 

diffusion of 285 technologies. More precisely, for each technology, a spatial Bayesian survival 

model is fitted, the results of which are evaluated against each technology’s degree of 

complexity. Our findings confirm that simple and complex technologies diffuse with different 

spatial patterns. More precisely, complex technologies tend to diffuse contagiously. 

Additionally, we find out that a diverse set of related technologies in a region enhance the 

adoption of complex technologies to a greater degree than for simple ones. The results also 

underline the importance of cities in the diffusion process of complex technologies. 
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2.1 Introduction 

Many studies see the generation and diffusion of technologies across space as key drivers of 

economic growth and, therefore, as important for explaining differences in spatial economic 

development (Romer, 1990). For instance, regions that are successful in generating and 

adopting novel technologies have more chances of transforming these into economically 

valuable products.  

In this context, complex technologies have been argued to be particularly valuable, as they 

are non-ubiquitous and their knowledge is tacit in large parts (Balland and Rigby, 2017). This 

offers greater chances for monopolistic rents and consequent economic growth (Broekel, 2019). 

Consequently, complexity is associated with competitive advantages. For example, Sbardella 

et al. (2018) emphasize a positive relationship between economic complexity and economic 

growth. This is confirmed by Boltho et al. (2018), who find East Germany’s economic 

convergence to be related to its ability to produce complex goods. In addition, Pugliese et al. 

(2017) show that more complex economies had an advantage in starting the process of 

industrialization. 

Despite these advantages, the same characteristics that make complex technologies so 

valuable also suggest greater difficulties and resource requirements in their generation, 

adoption, and in consequence, their spatial diffusion. As the exploration of complexity is rather 

new in economic geography, there are few studies investigating the diffusion of complex and 

simple technologies: One example is the work of Balland and Rigby (2017). They analyze how 

complexity relates to the diffusion of technologies by studying citation patterns of patents. In 

this context, they find geographic distance to be a more important obstacle to citations for 

complex than for simple technologies. Complementarily, Sorenson et al. (2006) pointed out that 

social proximity is most important for the diffusion of moderately complex technologies.  

Although these studies analyze the diffusion of complex technologies, they do not 

differentiate different spatial diffusion patterns and whether complex technologies show a 

distinct form of diffusion. Therefore, based on Hägerstrand (1967) and Hagget (2001) we 

consider three patterns of spatial diffusion: hierarchical, contagious and leap-like. By 

combining spatial patterns of diffusion with the dimension of complexity, this chapter extends 

the previous work and generates a more detailed picture of the diffusion of technologies. 

Moreover, besides the effect of geographic distance in form of different spatial diffusion 

patterns, this chapter will also analyze two further forms of proximity: technological and social. 

This will help us to understand why technologies diffuse at different speeds (Pezzoni et al., 

2019), and how they form economic landscapes. Consequently, we seek to answer the following 
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research questions: What factors influence the spatial diffusion of complex knowledge? How 

does their relevance differ from that shaping the diffusion of simple knowledge? In addition, 

we apply a long-term perspective, including technologies created in the 19th and 20th centuries. 

This allows us to follow the diffusion of these technologies from their emergence to broad 

adoption.  

To answer these questions, we make use of the novel complexity index of structural 

diversity, which has been introduced by Broekel (2019). Moreover, we rely on the HistPat data 

base, which includes about four million individual patents granted by the US patent office from 

1838 to 2010. On this basis, in the first step we model the spatial diffusion of 285 distinct 

technologies using Bayesian survival models (Haiming Zhou and Hanson, 2017). In the second, 

the relation between the relevance of factors driving technologies’ spatial diffusion and 

technological complexity are assessed using a meta-regression approach.  

The results confirm the existence of multiple spatial diffusion patterns ranging from 

contagious to hierarchical to leaping. Hence, geographic proximity varies in its impact on 

diffusion between technologies. We also show that some of these differences in diffusion 

patterns are linked to technologies’ degree of complexity. For instance, contagious diffusion 

becomes more likely with rising levels of complexity. The relevance of complexity is also 

visible in the relevance of technological relatedness. In this case, we identify that the existence 

of related competences tends to enhance the diffusion of technologies in general and of complex 

ones in particular.  

The paper is structured as follows. Section 2.2 discusses the nature and structure of 

technologies as well as their diffusion considering the concept of proximities. In Section 2.3, 

we introduce the empirical setting, including the employed data and methods. Particular 

attention will be paid to the employed measure of technological complexity. Section 2.4 

presents and discusses the results of the empirical exercise. Section 2.5 concludes the paper. 

 

2.2 The structure and diffusion of technology  

The diffusion of new technologies is mostly described as an s-curved process (De Tarde, 

1903): In the “initial phase,” a limited number of actors try out innovations, and these people 

are called “innovators” and “early adopters” (Rogers, 2003). If they are satisfied with their 

experiences, they will spread information about those innovations. A re-enforcing process of 

adoption and communication may subsequently start, leading to an exponential diffusion of the 

novelty within a population. After some time, products typically reach the so-called “growth 

phase.” This phase is characterized by an increasing growth rate, which will last until the market 
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is saturated, i.e., until fewer potential adopters exist than actual adopters (Rogers, 2003). 

Eventually, products reach the “maturity phase” and the adoption curve declines. 

Although the s-curved process appears very robust regarding the diffusion of technologies, 

there are significant differences in the time it takes a technology to leave the initial phase and 

reach the growth phase. Pezzoni et al. (2018) and (2019) analyze the diffusion of 10,000 

technologies from 1985 to 2000. Novel technologies are defined as IPC combinations that have 

not been connected before. To trace the diffusion of technologies, the number of subsequent 

patents that use the same IPC combination is counted and mapped to its cumulated distribution. 

Crucially, these authors find technologies to significantly differ regarding their diffusion slopes. 

Some reach the growth phase very fast, while others require many years or never reach the 

growth phase.  

Pezzoni et al. (2019) focus on the “familiarity” of combined technological sup-components. 

If two components are assigned to the same upper-level technology (e.g., IPC3) they are more 

familiar and legitimation time is shorter. Inventors familiar with the upper-level class tend to 

adopt the new combination more quickly, as they perceive fewer uncertainties. Consequently, 

those technologies reach the growth phase more quickly. However, they also tend to remain 

there for less time and enter the maturity phase earlier. New combinations based on familiar 

components may offer less technological impact as the number of technological applications is 

smaller (Ibid.).  

The present chapter follows the recent literature that suggests complexity is a crucial 

characteristic of technologies that, among other effects, impacts their diffusion. More precisely, 

supposing that technologies are systems of directly and indirectly connected subcomponents 

(Arthur, 2009) allows us to reflect upon their simplicity or complexity, respectively. More 

complex systems have higher interdependencies between subcomponents, leading to greater 

difficulties in using such systems as they inherent larger knowledge diversity (Simon, 1962; 

Kaufman, 1993; Broekel, 2019). Changing one subcomponent might lead to direct or indirect 

changes in other subcomponents. Thus, besides knowing and understanding all subcomponents, 

it is also necessary to consider their interdependencies. Only then are successful replication and 

processing possible. Building up such knowledge can be time and resource intensive (W. M. 

Cohen and Levinthal, 1990). Therefore, the structure is likely to affect the adoption speed of 

technologies. 

Additionally, as regions tend to develop location-specific sets of skills, technological 

competencies and institutions (Boschma and Frenken, 2011), it appears likely that regions face 

distinct efforts and challenges when they try to adopt (complex) technologies. This may then 
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reflect the different diffusion curves identified by Pezzoni et al. (2018) and (2019) and may 

lead to distinct spatial diffusion patterns. This argumentation follows Balland and Rigby (2017), 

who argue and confirm the effect size of geographic proximity to vary with the level of 

technological complexity. More complex technologies are more strongly shaped in their 

diffusion by geographic proximity, indicating a contagious diffusion pattern. In contrast, 

Feldman et al. (2015) find that the technology “rDNA”1 initially jumps from the region of 

innovation to far distanced cities. Only afterwards can a distance driven diffusion be observed. 

rDNA is defined as breakthrough technology, i.e., a technology that differs substantially from 

existing technologies (Phene et al., 2006) and therefore may indicate greater levels of 

complexity (Rogers, 2003). These contradicting findings about the diffusion of complex 

technologies reveal that we miss a clear understanding about the diffusion mechanisms of 

(complex) technologies.  

 

2.2.1 The ambivalent relationship of complexity and geographic proximity 

To better understand these patterns, this chapter combines these ideas with the classical 

literature on the spatial diffusion of innovation. In particular, Thorsten Hägerstrand (1952) 

describes two effects that shape the spatial aspects of diffusion processes: the “hierarchy effect” 

and the “neighborhood effect.” By empirically analyzing the diffusion of motor cars in Sweden, 

he observed car adoption to follow a three-stage process. In the first stage, the relative increase 

in usage is strongest in the innovator region and decreases with distance. In the second stage, 

other cities adopt the innovation and the relative increase in usage rises with distance. In the 

third stage, the diffusion speeds converge and the relative increase in usage is similar in all 

regions. Visually, this process can be understood as a diffusion wave originating from the 

innovator region (Stage I) and first moving to neighboring regions and then farther away (Stage 

II). Thereby, the height of the wave symbolizes the usage intensity of the diffusing innovation. 

After a while, the wave loses momentum and the water, as well as the innovation, has spread 

evenly (Stage III) (Hägerstrand, 1952).  

This implies a contagious diffusion pattern, where nearby agents or regions would always 

be the first to adopt. However, Hägerstrand (1967) himself argues that the diffusion process is 

strongly shaped by networks of social relationships. The networks may be geographically 

shaped, leading to stronger bonds between nearby actors (Howells, 2002), which support the 

notion of contagious patterns. However, strong relationships might also develop between actors 

 
1 The recombinant DNA (rDNA) technology based on the Cohen and Boyer patent from 1980, describing the 
“Process for Producing Biologically Functional Chimeras” (patent number 4237224) (Feldman et al. 2015). 
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that are proximate in dimensions other than the geographical (Boschma, 2005). In this context, 

Hägerstrand (1967) argues in favor of cities at the same level of hierarchy having such bonds, 

leading to a hierarchy effect in innovation diffusion. Expressed differently, from a spatial 

perspective, cities act as early adopters, “adopting” innovations before their rural counterparts 

(Brown and Cox, 1971). He defines the hierarchy of cities according to their formal, 

administrative importance in the political system. Thus, at the top of this hierarchy are global 

cities and national capitols. Due to their importance in the political system, many firms and 

institutions have their global or regional headquarters in these cities, leading to strong links 

between them that are used for extensive information sharing and the early adoption of new 

ideas. Accordingly, innovations diffuse from the innovator regions to cities at the top of this 

hierarchy and then down the ladder. From these cities, Hägerstrand (1967) describes 

innovations spreading to neighboring regions (Fig. 2.1). In other words, not just one wave, 

emerging from the innovator region will be observable, but several waves that almost 

simultaneously originate from different cities.  

Following Hägerstrand, the role of geographic distance (or proximity) in the diffusion of 

knowledge or technologies has been the focus of numerous studies in economic geography. A 

short physical distance between economic actors tends to bring them together and facilitates the 

exchange of non-codified, tacit knowledge (Boschma, 2005). In other words, close proximity 

tends to create positive knowledge externalities, i.e., firms benefit from R&D activities 

conducted by others in the form of knowledge spillovers (Jaffe et al., 1993; Audretsch and 

Feldman, 1996). This view has been challenged, arguing that geographic proximity is just one 

of many dimensions of proximities. Boschma (2005) proposes four additional dimensions that 

affect knowledge exchange: technological, institutional, social and organizational. Before 

discussing these dimensions, we complete our argumentation about geographic proximities’ 

effect on the diffusion of complex technologies.  

 

 

Figure 2.1: Possible spatial diffusion patterns 
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Simple technologies are characterized by a few distinct combinatorial patterns of only a few 

technological subcomponents (Broekel, 2019), leading to ease in learning, transmitting, and 

codifying the underlying knowledge (Feldman, 1993). For example, one can imagine the 

technological system of a simple technology being structured like a star with one central 

component which is linked to all other components that have no further relations with each 

other. In this case, little information is necessary to describe and understand the structure. 

Consequently, if ignorance about the technology is overcome, adoption should be relatively 

easy, implying that the diffusion of simple technologies can be expected to be frictionless with 

geographic proximity being of low relevance. In other words, the technology might leap from 

one region to another regardless of whether these are closely located or greatly distanced (Fig. 

2.1). 

Contrastingly, complex technologies present a more diverse structural topology, in which 

components are stronger and more distinctively interrelated. Such a case is biotechnology, 

which represents a combination of chemical and biological technologies with additional 

elements of electronics and information. To adopt and advance this technology, access to 

laboratories as well as sufficient IT infrastructure, e.g., server farms, is necessary. Thus, the 

diffusion should be shaped more by the availability of required infrastructure and less by 

geographic proximity. The likelihood of finding innovation-supporting infrastructure tends to 

increase with the population size of cities (Bettencourt et al., 2007) and the most populous cities 

are at the top of the city hierarchy (Hagget, 2001). This suggests a hierarchy-driven diffusion 

in the case of complex technologies.  

On the other hand, as complex technologies tend to consist of more and stronger interrelated 

components, more information is necessary to describe and understand these technologies 

(Broekel, 2019). This implies that the sharing of this information is more challenging and less 

standardized (Feldman, 1993). Actors rely on frequent face-to-face interaction in order to 

transmit the information, ask questions and discuss the mechanism of complex technologies. 

These face-to-face interactions tend to occur more often with geographic proximity (Boschma, 

2005). This would indicate that complex technologies mostly diffuse contagiously along the 

social networks of personal interactions (Fig. 2.1). 

As we do not know which effect is greater, infrastructure requirements or tacitness, both 

argumentations might be correct, and therefore two hypotheses shall be pursued.  

 

Hypothesis 1A: With increasing complexity of technologies, the spatial diffusion pattern is 

characterized by a hierarchical diffusion (i.e., small impact of geographic proximity). 
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Hypothesis 1B: With increasing complexity of technologies, the spatial diffusion pattern is 

characterized by a contagious diffusion (i.e., high impact of geographic proximity). 

 

2.2.2 Technological proximity and the diffusion of complex technologies 

The adoption of novel technologies in the form of new patents implies that the adopted 

technology has been advanced (Dosi, 1991), for example by combining it with other (related) 

knowledge components. In this case, the mere information about a technology seems 

insufficient, but the ability of recognizing and absorbing it is necessary (W. M. Cohen and 

Levinthal, 1990). For example, if an actor is experienced in engineering and seeks to master 

new engineering-based technologies, he will succeed faster than a chemist. Accordingly, 

experiences with some of the new knowledge’s subcomponents will therefore greatly help in 

adopting technologies. These arguments are at the heart of the technological distance and 

relatedness debate (Teece, 1981). Thus, though complex technologies may diffuse 

hierarchically or contagiously, technological proximity is also likely to shape their spatial 

diffusion. 

More precisely, we refer to the idea that technologies may be similar in terms of required 

inputs, infrastructure, and institutions. That is, development and adaptation is facilitated by the 

existence of supportive (environmental) conditions for the application of a technology. A region 

already active in related technologies is likely to have built up a compatible infrastructure and 

offer required inputs (e.g., human capital), which supports the adoption of related technologies 

(Boschma and Frenken, 2011). The literature provides numerous studies showing that the 

emergence and adaptation of technologies by regions is a path-dependent process (e.g., 

Boschma, 2017; Neffke et al., 2011). Accordingly, regions are more likely to and successful in 

diversifying into new technologies when these are related to pre-existing activities (Boschma, 

2017). Balland and Rigby (2017) empirically support this argument by finding technology 

relatedness to enhance the probability of patent citations. We argue in this paper that the role 

of technological proximity is even more crucial in the context of the diffusion of complex 

technologies. The greater heterogeneity of knowledge will increase the benefits of compatible 

infrastructures and, as shown above, actors’ abilities to learn and utilize it. Recall the 

biotechnology example; technological proximity to either one or even both components—

chemistry/biology and electronics/information—appears beneficial when adopting this 

complex technology.  
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Hypothesis 2: A diverse set of related technologies in a region is more relevant for the diffusion 

of complex than of simple technologies. 

 

2.2.3 Complexity diffusion along social relationships 

Two steps are necessary for successful technology transfer: first, becoming aware of the 

technology and, second, understanding its structure and mechanisms. For the first, any kind of 

information channel may be sufficient, from mass media to personal communication (Ormrod, 

1990). In the case of the second, understanding technologies, personal interactions seem to be 

more appropriate. This is particularly true for complex technologies with their components 

belonging to different knowledge bases, which hinders learning and understanding (Dodgson, 

1992). In addition, complex technologies tend to embody greater parts of tacit knowledge 

(Sorenson et al., 2006; Balland and Rigby, 2017). 

Developing technologies and designing products on this basis, for example in biotechnology, 

requires the expertise of a diverse set of actors (Pavitt, 1998). By combining their knowledge, 

they jointly develop the capability to successfully merge these heterogenous components. Such 

an exploitation and combination of distinct knowledge bases is a sophisticated and uncertain 

process that tends to exceed the capacities of individual organizations that are specialized in 

specific technologies and activities (Kirkland, 1961; Nelson and Winter, 1982). Consequently, 

Powell et al. (1996) find that in biotechnology the “locus of innovation” is located in a network 

of inter-organizational relationships, i.e., the combination of the distinct knowledge bases is 

achieved in inter-organizational learning processes frequently organized in collaboration.  

Economic agents are embedded in systems of social relationships, e.g., kinship or friendship 

(Granovetter, 1985). The strength of this embeddedness can be described by the notion of social 

proximity (Boschma, 2005). The more economic agents communicate with each other, for 

example through joint technology projects, the more proximate they are to each other. This 

embeddedness tends to fuel the development of trust between actors because, based on previous 

experiences, they can judge each other better and they may share similar values (Ibid.). Thus, 

the heterogeneity and tacitness of knowledge in complex technologies is likely addressed by 

inventors collaborating with socially proximate partners. 

 

Hypothesis 3: Social proximity is more relevant for the diffusion of complex than of simple 

technologies. 
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2.3 Empirical setting 

We are interested in if and how the diffusions of simple and complex technologies differ. 

For this, we adopt a two-stage procedure. In the first stage, we calculate Bayesian survival 

models that evaluate the time required for a region to adopt2 a new technology. In this analysis, 

we consider the processes discussed above and further factors that influence the speed of 

technology diffusion. In a second stage, we perform a meta-analysis on the first-stage results. 

More precisely, we calculate a linear regression model with the technologies’ degrees of 

complexity as the meta-independent variable and the focal first stage variables’ coefficients as 

meta-dependent variables (Jarrell and Stanley, 1989). On this basis, we gain insights into 

whether the relevance of regional factors in the diffusion of technologies systematically varies 

in relation to technologies’ degrees of complexity. 

 

2.3.1 Bayesian survival analysis  

Here, the adoption and diffusion process is modelled between regions and starts with a 

second region becoming active in a specific technology. The adoption of new technologies by 

regions is an event which takes place at a given moment in time. The likelihood of observing 

this event is shaped by the capabilities of regions making sense of new technologies as well as 

their embeddedness in the inter-regional innovation systems. To assess which factors influence 

the time required from the “outbreak” of a new technology in one place to its adoption in 

another, we use Bayesian survival models3. 

Survival models were developed in the field of medical research and sought to explain the 

risk of patients falling ill or even dying. This risk is perceived to be conditioned by several 

covariates of theoretical interest, e.g., the physical condition of the patient (Fox and Weisberg, 

2011). Survival models have been also adapted to economic geography. For example, Feldman 

et al. (2015) make use of a Cox survival model in order to explain the diffusion of rDNA 

technology.  

Survival models are generally constructed as follows: 

 

𝑝(𝑡) =  𝑝0(𝑡) exp (𝛽𝑇𝑥(𝑡)) 

 

 
2 Regarding terminology, the region which is the first to patent a new technology is called the “innovator region” and all regions 

that patent afterwards are labelled “adopter regions.” In this case, adoption refers to the process of becoming aware of a 
technology, understanding it and developing it further.  
3 Survival models are also known as “event-history analysis” in sociology or “failure-time analysis” in engineering. 
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Where 𝑝(𝑡) is the likelihood of an event at time t (e.g., the approval of a patent), 𝑝0(𝑡) is the 

exogenous baseline hazard, i.e., the likelihood of observing an event independently of any 

further covariates. 𝑥(𝑡) is a vector of variables (e.g., proximities) which probably affect the 

baseline hazard, and 𝛽𝑇 represents the according covariates (Perkins and Neumayer, 2005). In 

this paper, the event is defined as the point in time when a region has its first patent granted in 

the specific technology.  

In comparison to standard regression models, survival models consider the effect of 

censoring in longitudinal data. Events may lie outside of the observation period, i.e., they might 

have happened earlier (left-censored) or later (right-censored). Standard regression does not 

take censoring into account and thereby misjudges the time it takes until an event occurs (Mills, 

2011). The Bayesian version of these models allows the consideration of random effects or so-

called frailties (Darmofal, 2009). If not considered, these frailties may lead to underestimation 

(overestimation) of the factors positively (negatively) influencing the hazard rate (Box-

Steffensmeier and Jones, 2004). In case of georeferenced data, it is assumed that frailties may 

result from a Gaussian random field (GRF) (for a detailed discussion, please see Zhou and 

Hanson (2017)). In the present paper, we make use of geolocational data, that is, we model 

potential spatial dependencies using information on regions’ central geo-coordinates and their 

distance to neighboring ones. 

 

2.3.2 Meta-regression analysis 

Individual survival models are estimated for a set of technologies. To explore to what extent 

variations in the calculated coefficients are related to technologies’ degrees of complexity, we 

feed the survival regression results into a meta-regression. The approach of meta-regression 

analysis (MRA) originates from the literature seeking to quantitively review and summarize 

potentially varying results of studies on the same topic (Jarrell and Stanley, 1989). Especially 

in medical or psychological sciences where repetitive (clinical) studies are conducted, MRA 

can help to identify the reasons for varying test results. In this context, the studies’ results are 

evaluated with respect to a “meta-independent variable.” In the context of medicine, this is 

usually the country in which the studies have been conducted or the sample sizes of the 

individual studies. 

In this paper, we conduct the MRA with the set of individual diffusion (Bayesian) models as 

our “units of observation.” On the basis of this set, we calculate a linear regression model for 

each explanatory variable in the diffusion models. The (beta) coefficients obtained in the 

diffusion models, e.g., that of geographic proximity, serve as observations. To these, we match 
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the corresponding complexity values of the technologies, which serve as the meta-independent 

variable. Accordingly, we seek to explain variations in the magnitude of the coefficients with 

the technologies’ levels of complexity.  

 

2.3.3 Survival data 

To study the diffusion of technologies, we first need information on technologies. We follow 

existing approaches in the literature and use patent data as well as its classification by the 

Corporate Patent Classification (CPC). The CPC was jointly developed by the European as well 

as US patent offices and was introduced in 2013. It is organized into nine research areas such 

as “Human Necessities” and “Chemistry” on the top level and more than 250,000 sub-classes 

on the lowest level. We define technologies as four-digit CPC classes and accordingly study 

their diffusion. The four-digit level represents a compromise of technological disaggregation 

and practicability, as finer levels of disaggregation imply larger numbers of models to be run. 

In addition, we follow other studies that made use of this level (e.g., Breschi and Lenzi 2012; 

Schmoch and Laville 2003), allowing for matching information on technologies’ complexity 

(Broekel, 2019). 

Using patent data implies a number of limitations. For instance, they capture only parts of 

the technological knowledge (Criscuolo and Verspagen, 2008) and the probability to patent is 

also known to differ between industries (Arundel and Kabla, 1998). However, they are still the 

best indicator of technology generation and diffusion (e.g., Jaffe et al., 1993; Fleming and 

Sorenson, 2001). This is especially true in the context of the present paper, as there is no other 

indicator of inventive activities that covers multiple technologies over an extensive period of 

time.  

Our empirical basis is the HistPat data base (Petralia et al., 2016) including 4.8 million US 

patents from 1836 to 1975 and the NBER Patent Database, which extends this data to 2010. We 

aggregate the location information of inventors’ residence to the level of US Metropolitan 

Statistical Area as this level is commonly used in the literature (e.g., Balland and Rigby, 2017; 

Feldman et al., 2015; Jaffe et al., 1993). Subsequently, we create a data set for each CPC 

containing the first patent granted in each MSA, which represents the adoption events in the 

diffusion models. This results in 655 data sets representing the diffusion of individual CPCs 

since 1836, i.e., over a period of 174 years. However, CPCs differ widely in terms of when they 

have been first introduced, implying that in many cases we do not observe any diffusion in 

many early years (see Fig. 2.2).  
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Figure 2.2: Histogram of CPC classes and first year of observation 

 

We address the heterogeneity in observational periods by focusing on the first one hundred 

years of diffusion for each CPC. In other words, if a CPC was introduced in 1836, we only 

consider the period from 1836 until 1936. Consequently, we also exclusively consider CPCs 

that were introduced before 1910. Despite restricting the observational time period, we still 

cover the majority of four-digit CPCs (471) and their diffusion in the 19th and 20th centuries. 

While the chosen time frame and restrictions are admittedly arbitrary, they in our eyes offer the 

best trade-off between comparability, numbers of included CPCs and length of time frame. Due 

to data availability (regional population), we aggregate the data into periods of ten years.  

Finally, we exclude all technologies that have their first occurrence in 1836. This is the first 

year of our observation period; however, patents have been granted since 1790. Therefore, we 

cannot identify for how long technologies of 1836 had previously been present. To some more 

minor extent, this is also true for the subsequent years. In order to minimize this bias, we 

exclude from our data set all technologies that appear for the first time in 1836.  

To increase the chances of stable, converging Bayesian models, we focus on technologies 

that have been adopted by at least 50 MSAs. This is in line with the literature stating that for 

each explanatory variable about ten events shall be present (Breul et al., 2015). This implies a 

significant reduction in considered technologies (from 401 to 285). Obviously, this might 

induce a bias, as the most complex technologies cannot be expected to diffuse to many regions. 

We address this by comparing the technologies’ complexities of the initial and the sample data 

set, see Table A.2.1 and Figure A2.1 in the chapter’s appendix. The distributions of both sets 

of technologies’ complexity values are very similar. Accordingly, we are confident that we do 

not introduce any bias with our sample selection. 
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2.3.3.1 Geographic Distance 

To explore the structure and spatial determinants of the diffusion of technologies, we create 

a number of variables. The first is DISTANCE.ADOPTERi.j,t, which represents the geographic 

distance of region i to the geographically nearest (Euclidian distance) region j, which has 

already adopted a particular technology in a particular year t. The values of this variable may 

change over time, as a technology may diffuse to regions that are closer. 
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Figure 2.3: Diffusion patterns and geographical proximity 

 

Additionally, we consider the distance of region i to the region where the technology was 

originally invented (DISTANCE.ORIGINi.j). In contrast to DISTANCE.ADOPTERi.j,t, this 

variable’s values are time-invariant. The combination of both distance variables allows for 

differentiating between hierarchical, contagious and leap-like diffusion patterns (Fig. 2.3). 

During a hierarchical diffusion, technologies tend to jump away from the innovator region and, 

subsequently, diffuse in waves from adopters. Therefore, DISTANCE.ORIGIN is expected to 

be significantly positive and DISTANCE.ADOPTER significantly negative. In cases of 

contagious diffusions, the technology spreads like a wave originating from the innovator region. 

In this scenario, both distance variables are expected to be significantly negative. When 
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DISTANCE.ADOPTER is significant positive, no contagious diffusion is observable, indicating 

that the technology leaps between regions, either a great distance from the innovator regions 

(DISTANCE.ORIGIN becomes positive) or in proximity to the innovator region but in different 

directions (DISTANCE.ORIGIN becomes negative).  

 

2.3.3.2 Social Proximity 

We have argued that social proximity may enhance the diffusion of technologies, as socially 

proximate partners tend to have some shared history which facilitates the generation of trust 

and, consequently, the reciprocal transmission of knowledge. Therefore, these actors may 

exchange knowledge about new technologies more frequently, which accelerates diffusion. 

Such a technology-related shared experience may be the co-inventorship of a former patent. In 

this case, two or more researchers have worked on the same patent, i.e., technology, and may 

have built up trust, leading them to keep in touch and share information relating to new 

technological developments. Hence, to calculate region i’s social proximity (SOCIALi,j) to an 

“infected” region j, we evaluate the regions’ intensity of joint patent co-inventorships in the 

prior five years (similar to Ter Wal (2014)). That is, we count the number of patents with 

inventors from both regions i and j.  

 

2.3.3.3 Technological proximity 

 Technological proximity (TECHi,c) is the association strength of region i and a technology 

s. Here, we derive a 474 x 474 co-occurrence matrix considering the joint occurrence of CPCs 

in the same patent with the last 5-years. This moving time window is commonly used in the 

literature (Breschi and Lenzi, 2012; Buchmann and Pyka, 2015). Subsequently, we identify the 

technology in which region i has already patented that is most similar to the focal technology 

c. The co-occurrence data has been normalized by considering the total co-occurrences. Thus, 

we prevent the association strength from correlating with the number of occurrences (for a 

detailed discussion see Van Eck and Waltman (2009)). 

 

2.3.3.4 Regional characteristics 

In contrast to the variables introduced above, which capture the relation between regions, 

we also consider some characteristics of the individual regions. First, we take into account the 

total population for each MSA and year (POPi,t). This allows for control of urbanization effects. 

The relationship between the diffusion of technologies and city size has already been discussed 
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in the works of Marshall (1920) and Jacobs (1969). Marshall (1920) explained the positive 

relationship of industrial productivity and city size with better opportunities for input sharing, 

improved access to work forces and higher probabilities of knowledge spillovers. Empirically, 

Balland et al. (2020) explored whether complex economic activities concentrate in cities. They 

find evidence for complex patents, publications and industries to appear more often in highly 

populated MSAs. Accordingly, we expect more populous regions to be more likely to be early 

adopters of new technologies in general and complex ones in particular. 

Second, regions can be either more specialized or diversified. The former happens when 

only one or a few industries locate in a region, the latter when several industries are present. 

Both forms can have positive effects on the adoption of complex technologies. In the case of 

specialization, it shows that a region is able to develop institutions and infrastructures geared 

towards a particular industry. In this sense, it might represent a region’s “capacity for 

dedication” towards individual industries or technologies. Being specialized in few industries 

or technologies bears the danger of lock-ins and strong dependency on one of these, which local 

actors may wish to reduce and, hence, actively seek to diversify their region (Jacobs 1969). 

Similarly, highly diversified regions are more likely to adopt new technologies because they 

have a “proven” capacity of hosting and supporting multiple industries/technologies at the same 

time. Highly diversified regions signal the capacity to sustain high levels of diversity and, 

hence, a capacity to provide necessary resources and niches for new technologies to grow. In 

this regard, Jacobs (1969) argued that diversity might lead to cross-fertilization of technologies 

and, thus, to more innovation (Jacob’s Externalities). Therefore, we construct a simple variable 

capturing the degree of technological diversity of regions (DIVERSE). For each region we count 

the number of technologies (four-digit CPC) for which a region has been granted a patent in the 

past five years. We neglect more common and complex diversity measures as we observe only 

a few patents per region in the 19th century. Accordingly, an index like the location quotient 

would not be adaptable. Technological diversity of cities is also partly reflected by POPi,t as 

larger cities tend to have more diverse technology portfolios but can also focus on few 

technologies (Marshall, 1920).  

 

2.3.4 Structural complexity—the meta-independent variable 

A central variable in our empirical approach is technological complexity. To quantify this 

on the basis of patent data, we rely on the approach of Broekel (2019). Based on the 

understanding of technologies as systems consisting of several connected components, Broekel 

(2019) describes technologies as “combinatorial networks” (p. 2) and derives a measure of 
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complexity. The airplane technology, for example, consists of knowledge components such as 

wing design and aluminum processing that can be thought of as nodes in this network; their 

interdependence in the airplane forms the network link (Ibid.). Broekel (2019) argues that 

heterogeneity in these components translates into distinct network structures. As diversity is 

widely accepted to be closely linked to complexity, he argues that the diversity in these 

structures (network topologies) is a sign of the overall complexity of the technology. More 

precisely, if the combinatorial network of a technology is similar to an ordered network (e.g., a 

star) and hence has a low topological diversity, the technology is rather simple. In contrast, 

networks of complex technologies are expected to be characterized by higher structural 

heterogeneity (e.g., small-world networks) and “[accordingly], the more information is required 

to describe the topology of a technology’s combinatorial network, the more complex it is” 

(Ibid., p. 4). By translating this idea to information contained in patents, Broekel (2019) derives 

an index of technological complexity (called structural diversity) which can be empirically 

approximated in the context of patent data with the network diversity score of Emmert-Streib 

and Dehmer (2012). 

We follow this approach and calculate the individual network diversity score for each 

technology’s (four-digit CPC class) network (iNDSc): 

 

𝑖𝑁𝐷𝑆𝐶 =  
𝛼𝑚𝑜𝑑𝑢𝑙𝑒 ∗ 𝛾𝑔𝑟𝑎𝑝ℎ𝑙𝑒𝑡

𝜃𝑚𝑜𝑑𝑢𝑙𝑒∗ 𝜃𝜆
       

 

Here 𝛼𝑚𝑜𝑑𝑢𝑙𝑒 is the share of modules, calculated by dividing the number of modules M by the 

number of nodes n. As we look at undirected binary networks, 𝛾𝑔𝑟𝑎𝑝ℎ𝑙𝑒𝑡  is the share of 

graphelets of size three and four. 𝜃𝑚𝑜𝑑𝑢𝑙𝑒  measures the variance of module sizes m and finally 

𝜃𝜆 is the Laplacian (L) matrix’s variability. A network might show its properties by chance; 

therefore, we calculate the iNDSc for a set of random sample networks GM from network c:  

𝑁𝐷𝑆 ({𝐺𝑐
𝑆|𝐺𝑀}) =  

1

𝑆
∑ 𝑖𝑁𝐷𝑆𝐶

𝑆

𝐺𝑐∈𝐺𝑀

 

 

Finally, we calculate the structural diversity of each CPC for each year during the first one 

hundred years of its existence. To cope with small patent numbers, we use a three-year time 

window and aggregate the patent data accordingly. In order to assess the complexity of each 

technology by one value that is usable in the meta-regression, the average complexity for each 

year over all technologies was calculated and compared with the focal technology’s complexity 
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value of that year. If it is above the average, 1 has been assigned, 0 otherwise. Afterwards, the 

sum has been calculated, ranging from 0–100, according to the years a technology was above 

average complex (CPLX). This procedure allows us to consider the change of complexity over 

years and creates a single value that serves as the meta-explanatory variable in the second-stage 

meta-regression approach. Tables 2.1 and 2.2 present the simplest and the most complex 

technologies, also including the average complexity of a technology over one hundred years 

(CPLXARVG).  

 

Table 2.1: Top 3 simplest technologies according to the structural complexity index (first one hundred years of diffusion) 

CPC-

Class 

Description CPLX CPLXARVG 

A63G Merry-Go-Rounds, Swings, Rocking-Horses etc. 0 2.38 

A01L Shoeing of animals 0 1.46 

F41B Weapons for projecting missiles without use of explosives (e.g. spears) 1 1.79 

 

Table 2.2: Top 3 complex technologies according to the structural complexity index (first one hundred years of diffusion) 

CPC-

Class 

Description CPLX CPLXARVG 

F03B Machines or engines for liquids 98 5.99 

B29C Shaping or joining of plastics 97 5.48 

E05F Devices for moving wings into open or closed position 95 6,13 

 

2.4 Results  

We visualize the results of the second-stage meta-regressions by means of scatterplots (see 

Fig. 2.5). In these plots, each dot represents the coefficient obtained for the focal factor in the 

Bayesian diffusion model for a particular technology. For example, in Figure 2.5A the dots 

show the corresponding values of each technology class for the variable DISTANCE.ORIGIN 

for each technology class. The color of the dots signals whether the according values are 

significant or not. The purple line represents the fitted meta-regression, whereby the slope 

parameter indicates the relationship of the focal factor’s importance (size of coefficients) in the 

diffusion model with the complexity of the underlying technology. A normalization of 

coefficients is not necessary as the diffusion models calculate the odd ratios for observing an 

event. In each meta-regression, we fit one variable of the diffusion models as the meta-

dependent variable (e.g., DISTANCE.ORIGIN) with CPLX as the meta-independent variable. 

This leads to six meta-regressions, which results are summarized in Table 2.3.  
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In the first step, we interpret the results for the spatial distance variables, which will give us 

a general overview of the spatial diffusion process. Subsequently, we will focus on the non-

spatial variables.  

 

Table 2.3: Descriptive Statistics 

Variable Mean St. Dev. Min Max 

(DISTANCE.ORIGIN) -0.032 0.039 -0.16 0.08 

(DISTANCE.ADOPTER) 0.01 0.101 -0.328 0.256 

(POP) 0.798 0.203 0.102 1.271 

(TECH) 0.002 0.003 -0.005 0.014 

(SOCIAL) 0.0003 0.001 -0.002 0.002 

(DIVERSE) 0.0001 0.001 -0.003 0.006 

 

The effect of geographic proximity is approximated by two variables, DISTANCE.ORIGIN 

and DISTANCE.ADOPTER. The first measures the distance between potential adopter region i 

and the original innovator region. The second represents the distance to the closest region that 

has already adopted the technology. On average, DISTANCE.ORIGIN obtains negative 

coefficients (see Table 2.3 and Fig. 2.5A). This implies that the relation between diffusion time 

and distance is negative. This general negative effect of geographic distance on knowledge 

diffusion is in accordance with numerous other studies of technology and knowledge diffusion 

(e.g., Jaffe et al., 1993; Bednarz and Broekel, 2019). In addition, (DISTANCE.ADOPTER) has 

a positive mean (see Table 2.3 and Fig. 2.5B), indicating that technologies rather leap from one 

adopter to the next instead of diffusing like a wave.  

Plotting both distances in a scatterplot gives further details on the spatial diffusion patterns 

(see Figure 2.4). According to DISTANCE.ORIGIN and DISTANCE.ADOPTER either being 

positively or negatively significant, four combinations are possible. Quadrant 1 shows 

technologies where (DISTANCE.ORIGIN) and (DISTANCE.ADOPTER) both obtain 

negative values, indicating a contagious diffusion pattern. Quadrant 2 presents technologies 

with (DISTANCE.ORIGIN) being positive and (DISTANCE.ADOPTER) again negative, 

implying a hierarchical diffusion. Therefore, technologies in these quadrants diffuse in 

accordance to the patterns described by Hägerstrand (1967). Quadrant 3 and 4 illustrate 

technologies with (DISTANCE.ADOPTER) being positive and (DISTANCE.ORIGIN) either 

negative (Quadrant 3) or also positive (Quadrant 4). The first indicates a leap-like diffusion 

patterns with a rather short distance to the innovator region and the second one implies large 

leaps. In line with the before-mentioned mean value of (DISTANCE.ORIGIN), Figure 2.4 
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shows most dots in the negative value range, suggesting that a high geographical proximity to 

the innovator region is beneficial for fast adoption. In addition, by also including 

(DISTANCE.ADOPTER), we can differentiate in more detail and observe three diffusion 

patterns at hand. Quadrant 4 will be neglected from now on, as only four significant 

observations are in this area. Consequently, a leap-like diffusion pattern with large distances to 

the innovator region seems to occur rather seldom.  

 

Figure 2.4: Scatterplot of (DISTANCE.ORIGIN) and (DISTANCE.ADOPTER) 

 

Quadrant 3 shows technologies in which both distances are significantly related to diffusion 

time. However, (DISTANCE.ORIGIN) and (DISTANCE.ADOPTER) obtain opposite signs. 

The positive sign of (DISTANCE.ADOPTER)suggests a positive effect on the diffusion speed 

of distance to the closest region that has already adopted a technology. Accordingly, these 

technologies seem to leap from region to other greatly distant regions. However, distance to the 

innovator region is also relevant, as (DISTANCE.ORIGIN) is significantly negative. Hence, 

these technologies accomplish this within the neighborhood of the inventor region. Potentially, 

this characterizes a simultaneous diffusion “in all directions,” i.e., regions that are similarly 

located close to the inventor region but in different directions. An example of such a diffusion 

is presented in the appendix, Figure A3.2. 

To evaluate whether the occurrence of these patterns is related to technological complexity, 

three binary dummy variables are created, with either 1, meaning the technology belongs to 

either quadrant one, two or three, and 0 if not. Afterwards, these dummy variables are 

1 

2 

3 

4 
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considered in three further binomial logit meta-regressions with the dummy variable as the 

meta-dependent variable and CPLX as the meta-independent variable (see Table 2.4). In case 

of hierarchical and small leaps, the regressions do not provide a significant relationship. 

Accordingly, technological complexity does not increase or decrease the chances of a 

technology diffusing either in a hierarchical or leap-like pattern. For cases in which 

technologies diffuse contagiously, CPLX obtains a significantly positive value. Thus, if 

technologies are more complex, the likelihood of them diffusing in wave-like patterns 

originating from the innovator regions increases. In other words, this confirms Hypothesis 1B. 

As complex technologies are composed of tacit knowledge in larger parts, face-to-face 

interactions are necessary for their transfer. Geographic proximity is likely to facilitate such 

interactions, especially in the 19th century, as people’s mobility was more restricted than today. 

Cars and planes were not yet invented, and the railroad network had only started to emerge 

(Stevens, 1926).  

 

Table 2.4: Logic regression of diffusion pattern and technological complexity 

 

 

 

 

 

Balland et al. (2020) show that complex technologies generally concentrate in cities and that 

this urban concentration of complex technologies has increased over the last 150 years. The 

advantage of cities in initial phases of technologies’ diffusion processes is further supported by 

our results and, more precisely, by POP, which tends to be positively related to the time of 

adoption (see Table 2.3). In other words, the more populated a region, the more quickly it tends 

to adopt new technologies. Surprisingly, the effect strength decreases with complexity (see Fig 

2.5C and Table 2.5). However, the coefficient of POP remains positive. Accordingly, while 

cities have an advantage compared to rural regions when it comes to the adoption of 

technologies, this advantage is lower for complex technologies. Stated differently, 

technological complexity appears to somewhat balance the adoption advantage of cities. Some 

care needs to be taken, however, as the majority of observed technologies began their diffusion 

before 1850 (see Fig. 2.2). Moreover, concentration tendencies of technologies have been 

lowest in the mid-19th century and have risen continuously since then (Balland et al., 2020). 

 Binomial Regression  

 Coefficient p-value N Positive N 

Contagious (Quadrant 1) 0.02*** < 1-04 145 30 

Hierarchical (Quadrant 2) -0.004 0.572 139 9 
Small Leaps (Quadrant 3) -0.01 0.243 150 89 
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Consequently, the advantage of cities in adopting complex technologies was less pronounced 

at that time. 

 

Table 2.5: Results of the meta-regression models 

 

 

We also control for the level of regional technological diversity by measuring how many 

technologies a region is active in at the time of adopting the diffusing technology. DIVERSE 

frequently obtains a positive coefficient in the diffusion models (see Table 2.3 and Fig. 2.5D). 

This indicates that regions patenting in several technologies are more likely to adopt new 

technologies more quickly. This is in line with Jacobs (1969), who argues that regional diversity 

might lead to cross-fertilization of technologies and, thus, to more innovations (Jacob’s 

Externalities). This study adds to this that diversified regions not only innovate more but also 

adopt (complex) technologies more quickly. The meta-regression also confirms a significant 

relationship between technologies’ complexity and the effect size of DIVERSE (see Table 2.5). 

Accordingly, regions with higher levels of diversity are quicker to adopt complex technologies.  

This effect is even stronger when regions are active in related technologies as TECH mostly 

obtains positive coefficients in the diffusion models (see Table 2.3 and Fig. 2.5E). A region that 

is already active in related technologies adopts new technologies earlier than regions that have 

a specialization in unrelated technologies. This is in line with many previous studies (Feldman 

et al., 2015; Pezzoni et al., 2018) and supports the working of relatedness (Boschma and 

Frenken, 2011). With regards to the meta-regression, the effect strength of technological 

proximity is also positively dependent on technological complexity (see Table 2.5). Thus, 

technological relatedness becomes even more important in the adoption of highly complex 

technologies, which is in line with Hypothesis 2. Due to the high structural heterogeneity of 

complex technologies, regions face greater uncertainties when adopting these technologies. 

Building upon related capabilities and infrastructure in such cases facilitates the likelihood of a 

successful adoption. It might even accelerate the decision to adopt a complex technology in the 

Model Complexity p-value 

(DISTANCE.ORIGIN) -0.0001 0.358 

(DISTANCE.ADOPTER) -0.0004 0.12 

(TECH) 0.001*** < 1-04 

(SOCIAL) 0.000002 0.32 

(POP) -0.004*** < 1-04 

(DIVERSE) 0.0001*** < 1-04 
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first place. Other regions facing the same uncertainties and having only unrelated expertise will 

need more time to catch up and successfully adopt complex technologies.  

 

 

 

 

Figure 2.5: Relationship between average technological complexity and A (DISTANCE.ORIGIN), B 

(DISTANCE.ADOPTER), C (POP), D (DIVERSE), E (TECH) and F (SOCIAL) 

 

With respect to social proximity SOCIAL (co-invention), we observe a mix of negative and 

positive coefficients in the diffusion models (see Fig. 2.5F). The latter meets our expectations. 

Social embeddedness supports learning and lowers transaction costs, which should be higher in 

the case of complex technologies. Diffusion hampering effects of social proximity in the case 

of some technologies, however, comes at a surprise. An explanation for this might be found in 

firms’ aims in collaboration activities. Besides learning, the goal of a partnership can be the 
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sharing of resources and costs (Kogut et al., 1992; Gulati, 1998). Technology adoption may 

cannibalize existing investments. This may decrease the potential net benefits of adaptation to 

a degree that firms decide to not adopt new technologies themselves. In these cases, firms may 

rather choose to rely on partners who have already adopted these technologies and may provide 

solutions based on these technologies at any time. Especially in the 19th century, firms faced 

large capital-intensive investments when establishing factories and infrastructure (Usselman, 

1991). In these situations, further investments into new technologies may have been particularly 

unattractive. It is also risky, however, to ignore new technologies; hence, they collaborated with 

partners (in other regions) that had entered these technologies. In essence, this is an outcome of 

firm and regional specialization processes that are coordinated through collaboration (Hidalgo, 

2015). If this strategy was not possible due to a lack of partners, firms had to adopt a new 

technology. While this explanation is speculative and we lack direct confirmation, it fits to the 

observed coefficients of social proximity and the overall patterns of firm/regional 

specialization. The meta-regression considering the complexity of technologies does not add 

any further insights to this, as the relationship between complexity and the effect strength of 

social proximity is insignificant (see Table 2.5). Consequently, we cannot confirm     Hypothesis 

3. 

 

2.5 Conclusion 

For nations and regions, mastering complex technologies is the path to long-lasting 

economic prosperity (Romer, 1990), as the capability to frequently innovate in the area of 

complex technologies leads to competitive advantages for regions (Porter, 1990). This creates 

products that are demanded beyond an individual region and will thereby add to economic 

growth (North, 1955; Kaldor, 1970) (Hidalgo et al., 2007). As much as we know about the 

benefits of being able to develop and apply complex technologies, however, we know much 

less about their generation and diffusion. In particular, the latter has received almost no attention 

in the literature thus far.  

This paper seeks to shed some light on this issue. From previous studies it is known that 

regional characteristics and relational ones such as geographic, technological and social 

proximity facilitate the diffusion of knowledge in space (e.g., Hägerstrand, 1967; Jaffe et al., 

1993; Bednarz and Broekel, 2019). We have built on this and add the consideration of 

technologies’ complexity. More precisely, we elaborate how the strength of regional and 

relational factors in technologies’ diffusion varies between simple and complex technologies.  
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To empirically assess this, a two-step procedure has been applied and US patent data of the 

19th and early 20th centuries has been utilized. This time period was characterized by the start 

of modernity with inventions such as the railway and electricity. However, in comparison to 

today, there were still very limited communication possibilities, with personal communication 

and movements of inventors being primary channels of knowledge diffusion (Morrison et al., 

2018). 

The patent data allowed us to analyze the spatial diffusion process of 285 technologies over 

a time period of a hundred years. Empirically, the effect of proximities on the speed of 

technology adoption in space was evaluated with Bayesian diffusion models. Subsequently, the 

obtained coefficients of each variable in the diffusion models have been implemented in linear 

meta-regressions with technological complexity as the meta-independent variable. Thereby, we 

analyzed whether their effect strength is significantly related to the level of technological 

complexity. 

The meta-analysis reveals that the level of technological complexity shapes the way 

technologies diffuse spatially. We find a positive relationship between complexity and the 

likelihood to observe contagious diffusion patterns. Thus, complex technologies tend to diffuse 

in wave-like patterns rather than in hierarchical forms. This finding is in line with Balland and 

Rigby (2017), who find geographic proximity to become more important with higher levels of 

technological complexity. Additionally, the meta-analysis shows that the effect strength of 

technological proximity, regions’ population and technological diversity vary significantly 

between simple and complex technologies. In the case of complex technologies, experience 

with a diverse set of related technologies is even more beneficial than with simple technologies. 

This supports the idea that complex technologies require more prerequisites to be adopted 

quickly and successfully. This also strengthens the argumentation of Blaut (1977) and Ormrod 

(1990) of local contexts being important for understanding who does and who does not adopt 

innovations. Interestingly, the results of social proximity vary significantly between 

technologies, ranging from a positive to a negative relationship to adoption time. Moreover, no 

significant association with complexity can be observed. Therefore, we leave the elaboration of 

social proximity and technological diffusion to future research. 

As it is typical for empirical studies, this chapter is subject to certain limitations. First, we 

focus on the early diffusion of technologies, i.e., mainly in the 19th century. Due to this focus, 

we are able to study the first one hundred years of diffusion for almost all technologies. 

Thereby, however, we fail to consider the most recent decades. These are characterized by the 

broad diffusion of the personal computer and the introduction of the internet. Both events may 
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have significantly shaped the diffusion of technologies, as they have changed the way we work 

and communicate. However, we believe that the possibility of exploring the long-term diffusion 

of technologies in space fills a greater gap in the literature. This is particularly the case as a 

number of existing studies already focus on more recent years (see, e.g., Balland and Rigby 

(2017) and Sorenson et al. (2006)). Nevertheless, as a prospect for future research, it will 

certainly be fruitful to extend our research and empirical approach to more recent time periods.  

Second, although we focus on the 19th century, we cannot rule out that some technologies 

existed before the start of our observation period in 1836. Thus, some technologies might 

already have diffused for a couple of years, whereas others newly emerge. We have partly 

tackled this issue by excluding all technologies that seem to emerge in 1836. Nevertheless, for 

future research to analyze the early emergence of technologies, it will be fruitful to extend our 

data to the year 1790.  

Third, we have been restricted to studying the diffusion of technologies within the US, an 

example of Thompson’s “national systems of cities” (1972). Most likely, our results will differ 

in other regions of the world such as Europe or Asia (Howells, 2002). For example, Europe is 

culturally more heterogenous and is divided by several language barriers. Therefore, it might 

be a fruitful region to analyze the effect of institutional proximity on technology diffusion. Low 

institutional proximity may especially hinder the diffusion of complex technologies, as 

communication and learning will be even more difficult in this case. Therefore, future research 

should consider other regions and evaluate our results in that context. In addition, future 

research should extend the national scope of analysis to an international one. Today, many firms 

operate (research) facilities in different countries to gain access to foreign technological 

knowledge not available in their home regions (Schaefer and Liefner, 2017). The activities of 

these multi-national firms might also shape the spatial diffusion patterns of technologies. For 

example, the German company Volkswagen operates “innovation hubs” in Germany, Israel, 

China and the US. Such locations might shape the international city hierarchy (Cantwell and 

Iammarino, 2000) and explain which cities adopt new technologies first, because it seems likely 

that employees of these firms regularly exchange information and knowledge.  

To summarize, this study adds a more detailed picture to the diffusion of technology by 

combining the notions of complexity and proximity with spatial diffusion patterns. 

Nevertheless, our knowledge about the processes of spatial diffusion is still scarce and, thus, 

offers many opportunities for future research in economic geography.  
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Appendix  

2.A1 Data description 

Table A2.1: Descriptive Statistics of CPLXARVG from original and refined data set 

Data set Variable N Mean Median St. Dev. Min Max 

Original CPLXARVG 436 3.90 3.64 1.28 1.19 11.21 

Sample CPLXARVG 285 3.78 3.57 1.17 1.59 9.19 

 

 

Figure A2.1: Stacked histogram of average complexity (CPLXARVG) for the original and refined data set 

 

2.A2 Simultaneous diffusion “in all directions,” 

 

Figure A2.2: First 20 years of diffusion of technology "C08K" separated in to six diffusion steps. 
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The relationship of policy induced R&D networks 

and inter-regional knowledge diffusion 

 

 

Abstract 

Knowledge diffusion is argued to be strongly influenced by knowledge networks and spatial 

structures. However, empirical studies primarily apply an indirect approach in measuring their 

impact. Moreover, little is known about how policy can influence the spatial diffusion of 

knowledge. The chapter seeks to fill this gap by testing empirically the effects of policy induced 

knowledge networks on the propensity of inter-regional patent citations. We use patent citation 

data for 141 labor market regions in Germany between 2000 to 2009, which is merged with 

information on subsidized joint R&D projects. Based on the latter, we construct a network of 

subsidized R&D collaboration. Its impact on inter-regional patent citations is evaluated with 

binomial and negative binomial regression models. Our findings do not indicate that inter-

regional network links created by public R&D subsidies facilitate patent citations and, hence, 

inter-regional knowledge diffusion. 
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3.1 Introduction 

To sustain innovation and gain competitive advantage, firms and regions need to innovate 

constantly, which requires the utilization of internal and external knowledge (Lundvall and 

Johnson, 1994; Sternberg, 2000). The utilization of external knowledge requires the diffusion 

of knowledge between organizations and across space. Since the pioneering work of 

Hägerstrand (1967) it is known that knowledge does not diffuse frictionlessly within socio-

economic systems. Despite technological advantages, geographic distance remains a significant 

obstacle. Other factors such as cognitive, institutional, organizational, and social distances add 

to an unequal, selective, and potentially too low diffusion of knowledge (Buisseret et al., 1995; 

Boschma, 2005). Policy has recognized this and established measures seeking to stimulate 

knowledge diffusion, foremost by subsidizing joint R&D projects (Buisseret et al., 1995; 

Broekel and Graf, 2012). The EU-Framework Programmes are a well-known example for such 

an initiative (Scherngell and Barber, 2009). 

Despite such initiatives existing for decades, evidence for a positive contribution to 

knowledge diffusion remains scarce. While their effects on firms’ and regions’ innovation 

activities has been frequently documented (Hewitt-Dundas and Roper, 2010; M. A. Maggioni 

et al., 2014; Broekel, 2015), little to no evidence exists on their effectiveness for inter-

organizational or inter-regional knowledge diffusion. The present chapter seeks to fill this gap 

by using an empirical approach frequently applied to study the diffusion of knowledge in space. 

Following the work of (Jaffe et al., 1993), we used patent citations as indications of inter-

regional knowledge diffusion and tested for the effect of joint R&D projects subsidized by the 

German Federal Government. Hence, besides modelling knowledge diffusion directly, we 

contribute to the literature by studying the effect of subsidized knowledge networks among 

regions of a single country, as most existing studies focus on knowledge diffusion at the 

European level (Maggioni et al., 2011). 

In the empirical analysis, we use information on patents and patent citations for 141 German 

labor market regions between 2000 and 2009. On this basis, technology-specific knowledge 

diffusion, regions technological relatedness and co-inventor relations are established. 

Following Broekel and Graf (2012), we construct policy induced networks emerging from the 

subsidization of joint R&D projects by the German federal government, which are matched to 

the patent data. 

The chapter is structured as follows. The second section discusses the mechanism of 

knowledge diffusion between organizations and in space. The empirical data and variables are 

described in section 3.3. Section 3.4 introduces the empirical approach. The results of the 
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analyses are presented in section 3.5. Section 3.6 concludes the chapter with a short summary, 

and discussion on its limitations, future research prospects and political implications. 

 

3.2 Theoretical considerations 

3.2.1 Knowledge diffusion, networks, and proximities  

It has long been established that knowledge creation and innovation are closely linked to 

knowledge diffusion. Kline and Rosenberg (1986) emphasize the central role of frequent 

knowledge exchange between economic actors in their “chain-linked model”. Here, innovation 

processes consist of feedback loops, forward and backward linkages, as well as other 

interactions between actors internal and external to an organization. In line with this, Schrader 

(1991) confirms a positive correlation between firms’ economic performance and the frequency 

of informal inter-firm interactions. Zucker et al. (1998) add to this by finding cooperation 

between biotechnology firms and scientists positively impacting product innovation. 

In general, knowledge diffusion can be described by individuals (senders and recipients) 

(un)intendedly sharing their knowledge via (in)direct communication (Witt et al., 2012). 

Successful knowledge diffusion dependents on the senders’ intentions and capacities to 

communicate (Ibid.) as well as on the recipients’ willingness and abilities to recognize and to 

absorb knowledge (Cohen and Levinthal, 1990; B. Lundvall and Johnson, 1994). The ability to 

assimilate new knowledge tends to be greater “when the object of learning is related to what is 

already known” (Cohen and Levinthal, 1990: p. 131). Therefore, it is positively influenced by 

the cognitive overlap of two actors’ cognitive “interpretation system[s]” (Nooteboom et al., 

2007: p. 1017). These arguments are frequently summarized as cognitive (alternatively 

technological) proximity between actors positively influencing the likelihood and effectiveness 

of knowledge diffusion. In addition to cognitive proximity, Boschma (2005) argues in favor of 

four additional proximities that make knowledge diffusion more likely and effective: 

organizational, institutional, social and geographic proximity. Organizational proximity is a 

control-related dimension: relations with high organizational proximity are embedded in the 

same business routines, hierarchies, and value systems, e.g., being part of the same firm 

(Loasby, 2001; Balland, 2012). Such circumstances tend to help dealing with uncertainty and 

opportunism, which in turn facilitates knowledge diffusion (Boschma, 2005). Similar 

conclusion can be drawn when actors are embedded in the same institutional framework, which 

implies that they share the same norms and formal rules (Ibid.).  

(Hägerstrand, 1952; 1966; 1967) promotes the view of geographic distance being an (and 

maybe “the”) explanatory factor for knowledge diffusion. Geographic proximity tends to 
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facilitate face-to-face interactions and mutual trust, which are necessary conditions for 

successful knowledge exchanges (Howells, 2002). Boschma (2005) points out that 

geographical proximity is neither necessary nor sufficient for knowledge diffusion, however, 

as other forms of proximity are similarly crucial. Besides geographic proximity, Hägerstrand 

(1965) also suggests knowledge diffusion being closely related to the embeddedness of actors 

into social relations, e.g. kinship or friendship. Social interactions consist of multilateral, 

interdependent and multilevel network relations that may serve as (in)direct knowledge 

channels (Tijssen, 1998; Maggioni et al., 2007). This is commonly referred to as social 

proximity (Boschma, 2005). 

 

3.2.2 Knowledge diffusion and proximities – what about R&D policy? 

Given that one or multiple of these proximities are frequently absence or weakly developed, 

inter-organizational knowledge diffusion can be expected to be below a social optimum. As this 

may reduce innovation, policy intervention can be justified (Buisseret et al., 1995). While 

different approaches exist to deal with this, policy mostly provides monetary incentives in the 

form of subsidizing joint R&D projects to increase inter-organizational learning and knowledge 

diffusion (Breschi and Cusmano, 2004; Broekel and Graf, 2012; Broekel et al., 2015). Usually, 

organizations can apply for project funding within the scope of policy-defined calls and by 

providing information on their projects’ aims, required resources, partners, and expected 

outcomes. A well-known example of such an initiative is the EU-Framework Programme (EU-

FRP). The EU-FRP has become the most important R&D policy tool of the European Union. 

For the period 2014 to 2020 it involves about 80 billion €, which are granted in the form of 

subsidies to R&D projects. For a more detailed discussion see e.g. Breschi and Cusmano (2004). 

Here, the subsidies are exclusively granted to projects in which organizations conduct R&D in 

a collaborative manner. Similar programs also exist at the national level. For instance, in 

Germany, the Federal Ministry of Education and Research as well as the Federal Ministry of 

Economics and Energy invest about 3-4 billion € each year as subsidies for project-based R&D. 

About 30 % of the subsidies are granted to collaborative R&D projects (Broekel and Graf, 

2012). Crucially, cooperating organizations are obligated to write a cooperation agreement in 

which they grant access to their intellectually property rights that are necessary to conduct the 

project. In these cases, financial support is only granted when all participants agree on 

exchanging knowledge within the scope of the project. This includes the use of property rights, 

access to technical expertise and regular face-to-face meetings (BMBF, 2008). Accordingly, 

subsidized joint R&D projects bear the potential of facilitating if not enabling inter-
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organizational knowledge diffusion (Broekel and Graf, 2012). The rather limited existing 

research on this issue shows that knowledge generation of regions and organizations is 

positively associated with participating in subsidized joint R&D projects. For example, 

(Fornahl et al., 2011) discover that biotechnology firms engaged in subsidized collaborative 

R&D have higher patent output than firms not receiving such funds. Maggioni et al. (2014) and 

Broekel (2015) confirm this for the regional level. However, we argue that these studies do not 

provide direct empirical evidence for a direct knowledge diffusion-enhancing effect of 

subsidized joint R&D projects. 

 

3.2.3 The indirect and direct approaches of analyzing spatial knowledge diffusion  

Traditionally, knowledge diffusion studies have investigated the inter-organizational4 

knowledge diffusion by empirically tracking inventions, applications, or products over time and 

space (see e.g. Hägerstrand, 1952; 1965; 1967; Rogers, 2003). The primary interest of these 

studies is to find re-occurring patterns of (spatial) knowledge diffusion and to analyze the extent 

to which these dimensions represent significant obstacles to knowledge diffusion. More 

recently, this research tradition, among others, has stimulated the analysis of publication and 

patent citation patterns, which are seen as indications of knowledge diffusion (Jaffe et al., 1993). 

By studying the spatial structure of patent citations, these authors show that patens are more 

likely to cite other patents if their inventors are located in geographic proximity. Breschi and 

Lissoni (2009) extend this research by using the same approach and identify limited geographic 

mobility of inventors being primarily responsible for this finding, as they tend to cite their older 

patents assigned to their previous employers. Since then, the evaluation of patent (and 

publication) citation has been used frequently to evaluate spatial knowledge diffusion (Peri, 

2005; Maggioni et al., 2007; Hoekman et al., 2009; Paci and Usai, 2009). Interestingly, this, 

what we call, the “direct approach”, has not been used to study the effectiveness to subsidized 

joint R&D projects, as vehicles of knowledge diffusion. 

When testing the effect of subsidies for R&D projects on inter-organizational knowledge 

diffusions, researchers seem to be primarily inspired by another literature that focuses on the 

relevance of spatial knowledge spillovers. In this line of research, studies relate the innovation 

output of individuals, organizations, and regions to the knowledge potentially available to them 

(e.g. Bode, 2004). Inspired by the classic knowledge production function approach, Griliches 

(1979) and Jaffe (1986) argue that the difference between observed innovation output and 

 
4 For the sake of readability, we exclusively use the term inter-organizational knowledge diffusion. However, the 
arguments apply in an identical fashion to knowledge diffusion between individuals or regions. 



50  Chapter 3 

 

 

 

knowledge of an innovation-generating entity (inventors, organizations, regions) can partly be 

explained by the entities use of external knowledge that was absorbed through various 

mechanisms, i.e. by knowledge diffusing between the entities. In the spatial knowledge 

spillover literature, researchers extend the individual knowledge input of entities by their 

potential access to external knowledge. For instance, studies assessing the innovation 

performance of regions consider a wide range of regional characteristics approximating their 

knowledge endowment, e.g. presence of high-tech industries, universities, etc. (Broekel and 

Brenner, 2011). This set of factors is extended by variables describing the knowledge 

endowment of neighboring regions (usually the spatial lag of their innovation output). If the 

latter show a positive correlation with the innovation output of the focal region (while 

controlling for its own knowledge endowment), it will be interpreted as a confirmation of 

knowledge having diffused from the neighboring regions into the focal region and thereby 

having contributed to its innovation generation (Bottazzi and Peri, 2003). 

The same approach can be transferred to test for the effect of knowledge networks. In this 

case, the positions of entities in inter-organizational knowledge networks are plugged into the 

knowledge production function approach replacing or complementing the spatial lag of other 

entities’ innovation output (Maggioni et al., 2014). The latter is usually described in terms of 

their local (degree) or global (betweenness / eigenvector) centrality. Larger centralities imply a 

“better” access to the knowledge potentially diffusing in the network. Hence, if the innovation 

output (or its change) is found to be statistically related to the centrality measures, it is inferred 

that the correlation is caused by the better access and ultimately use of the diffusing knowledge. 

The before mentioned studies by Fornahl et al. (2011) and Maggioni et al. (2014) use this 

approach to assess the significance of subsidized knowledge networks for knowledge diffusion. 

While this “indirect approach” is elegant and has its merits, it has one major flaw in this context: 

whether knowledge is actually diffusing between entities and is utilized, remains unobserved. 

This implies that the evidence for an enhancing effect of R&D subsidies on knowledge 

diffusion, which is largely based on this approach, remains subject to interpretation. 

The present study therefore seeks to complement the existing evidence on the effectiveness 

of R&D subsidies using the “direct approach”. Following Jaffe et al. (1993), we use patent 

citations to approximate knowledge diffusion. While it is also troubled by the unobserved 

knowledge sourcing and utilization, it is a much more direct approach and avoids many issues 

of spurious correlation that are likely troubling the indirect approach.  
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3.3 Data and empirical approach 

3.3.1 Modelling knowledge diffusion 

We follow Jaffe et al. (1993) and Breschi and Lissoni (2009) and rely on patent citations to 

model knowledge diffusion. Within the knowledge spillover literature, patent citations are an 

often used “paper trail” that “track” knowledge diffusion (e.g. Jaffe et al., 1993; Peri, 2005). 

Patent citations are argued to be an indicator of knowledge transfer and accumulation, as the 

citing patent builds its knowledge upon a piece of the existing knowledge of the referred patent 

(Jaffe et al., 1993). According to Howells (2002), patents are a proxy for tacit knowledge flows, 

since it is necessary to recognize, understand, and recombine the codified knowledge imprinted 

in the patent.  

Making use of patent citations, however, brings along some issues and limitations that must 

be carefully considered (Breschi and Lissoni, 2005). First, patent citations may only account 

for knowledge flows that are encodable, commercially exploitable and legally patentable 

(Criscuolo and Verspagen, 2008). Moreover, the propensity to patent in the first place 

significantly differs between industries; e.g. only 8% of product innovations are patented in the 

textile industry, while the share is almost 80% in pharmaceuticals (Arundel and Kabla, 1998). 

Therefore, patents capture only a portion of the created knowledge and correspondingly, their 

citations only a fraction of the knowledge circulating between innovators (Criscuolo and 

Verspagen, 2008). Second, patent citations may be a noisy indicator as usually not all citations 

are made by the inventor himself. Submitted patents will be checked by examiners who 

probably add further citations where appropriate (Jaffe et al., 1993). Fortunately, the European 

Patent Office (EPO) specifies which citations have been made by the inventor and which have 

been added by the examiner. Moreover, it has been argued that, at the regional level (which we 

will use in the later analysis), these issues are of smaller relevance and patent citations may be 

a good indicator of possible spillovers, even though it is not sure that these potentials have been 

realized in all cases (Paci and Usai, 2009). 

The data on patents and citations is taken from the REGPAT and Citations Database 

provided by the OECD. In contrast to other patent data sources, patents have already been 

assigned to the regions of inventors’ residence. Patents that have been developed by more than 

one inventor have been weighted accordingly (fractional counting). Considering the 

beforementioned limitations, we exclusively rely on patent citations identified as ‘inventor 

citations’. Moreover, to diminish biases stemming from intra-organizational citations or 

inventors’ self-citations, we remove all intra-regional citations. We also remove citations from 

different inventors and regions that share the same applicant (company) and so will further 
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reduce the likelihood of theses citations representing intra-organizational knowledge flows.5 To 

reduce the biases stemming from variations in industries’ patent and citation activities, we 

restrict the analysis to individual technologies, i.e. we only consider technology-specific 

knowledge flows, that is, we exclusively consider citations between patents belonging to the 

same IPC-subclass (4-digit level). 

The empirical analysis is conducted at the regional level because we are interested in spatial 

knowledge diffusion (e.g. Maggioni et al., 2014; Broekel, 2015). The approach avoids potential 

biases caused by unclear assignments of patents to applicants. We use the 141 German labor 

market regions classified by Kosfeld and Werner (2012). Labor market regions are an often-

applied regional unit of analysis (e.g. Frenken et al., 2007; Broekel et al., 2015), especially 

when patent data are used. They ensure that an inventor ‘s workplace and residence are most 

likely located in the same region and, hence, in the same unit of analysis (Broekel, 2015). 

The most important variable is the citation frequency between two regions. The variable, 

denoted as 𝐶𝐼𝑇𝑖,j,𝑡,s, is constructed as follows. In year t, a knowledge flow exists from region 𝑖 

to 𝑗 when at least one inventor living in region i cites at least one patent assigned to an inventor 

in region j within technology s. See exemplary Figure 3.1A for the patent citations in technology 

class H04L. More precise, 𝐶𝐼𝑇𝑖,j,𝑡,s is the count of citations from region i to j. We employ a five-

year moving window for the patent and citation counts to control for yearly fluctuations. For 

example, the moving window of region i’s inventors citing region j’s inventors in 2005 includes 

citations made from 2005 to 2009. The five-year moving window is consistent with the 

literature since most patents lose their economic impact within this time frame (Griliches, 

1979). 

 

3.3.2 Knowledge diffusion channels and regional characteristics 

The variable, in which we are most interested is the intensity of subsidized R&D projects, in 

that organizations of two regions jointly participate. Data on subsidized collaborative R&D 

projects is obtained from the subsidies catalogue of the German federal government 

(“Förderkatalog”). According to Broekel and Graf (2012) and Broekel (2015), joint R&D 

projects listed in this database are intended to stimulate collective learning and knowledge 

diffusion. For instance, to acquire financial support for a joint R&D project, all participants 

must agree on certain rules that facilitate collaboration and knowledge exchange. Moreover, all 

intellectual property rights lying within the scope of the project and that existed before project 

 
5 Note that there is no direct assignment of applicants to inventors. This is particularly true, when multiple inventors 
are given on an applicant’s patents. 
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start must be revealed if demanded by the partners (BMBF, 2008). The partners moreover have 

frequent face-to-face interactions in consortia meetings. They usually have a proven track 

record of R&D and have convinced application reviewers that their projects (and their 

partnership) have the potential to become successful. 

 

All projects listed in the subsidies catalogue have been assigned to a 

“Leistungsplansystematik” (LPS), which is a thematic classification scheme similar to the IPC. 

The classification includes 22 main classes, for example, biotechnology or nanotechnology. 

These main classes are further divided into more differentiated subclasses (e.g. photonics (class: 

I25020)) (Broekel and Graf, 2012). Based on these subclasses and the project descriptions, we 

manually matched 87 four-digit IPC subclasses to about four hundred thematic subclasses of 

the subsidies catalog. Accordingly, we can differentiate between 87 technologies for which 

information on R&D subsidies and patenting are available. In line with Broekel and Graf 

(2012), we constructed the variables SUBS.𝑁𝐸𝑇𝑖,𝑗,(𝑡−3),s and SUBS.𝑁𝐸𝑇𝑖,𝑗,(𝑡−5),s as follows: a 

direct subsidized link between two regions i and j exists if at least two of their organizations 

participated in the same R&D project in year t (see exemplary Figure 3.1B for the R&D network 

of technology class H04L). To model the intensity of their joint R&D work, the variable 

SUBS.𝑁𝐸𝑇𝑖,𝑗,t captures the count of the regions co-involvement in subsidized R&D projects. To 

avoid biases in the coding of joint projects, we restricted the analysis to projects with at least 

Figure 3.1:Spatial networks of technology H04L “Transmission of digital information” A Inter-regional patent citations in 
2003 and B Subsidized R&D network in 2000 
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three participants. Moreover, we neglected all intra-regional relations as these are of no interest 

in the context of the chapter.  

In accordance to the patent data, the subsidies data include information on the projects’ exact 

starting and ending dates making the construction of a moving window unnecessary. We 

consider a three- and five-year time lag to the citation variable 𝐶𝐼𝑇𝑖,j,𝑡,s  as we suspect a time lag 

given between the cooperation, i.e. the potential knowledge exchange, and the patent citation, 

i.e. the usage of this knowledge. To make sure that our results are robust, we decide to test for 

two time lags.  

Different types of proximity influence the likelihood of knowledge diffusion between two 

regions (see Section 4.2.2) 6. We mainly included these into the models as control variables. 

The first considered knowledge diffusion channel approximates social proximity. The intensity 

of social proximity is measured by the strength of co-inventor ties. The co-inventor network 

has been constructed in two versions denoted as CO.INVi,j,(t-3),s and CO.INVi,j,(t-5),s. A co-inventor 

relation between regions i and j exist when two inventors, one from each region, have worked 

together on the same patent in technology s. It is usually interpreted as these two inventors 

having met personally and hence having established a personal relationship. Accordingly, the 

frequency of such co-inventor relations signals the strength of the social relations (of inventors) 

between two regions. We included this variable in a three and alternatively a five-year time lag 

to the citation variable, to avoid problems of endogeneity and the possibility that citations 

directly emerge from co-invented patents. 

The other proximity types are defined as follows. Geographic proximity is captured by the 

variable 𝐷𝐼𝑆𝑇𝑖,j, which is specified by the great circle distance between the centroids of region 

𝑖 and 𝑗 in kilometers and divided by one hundred in order to scale the variable. 

The construction of technological proximity (TECHi,j) is somewhat more complex. We 

follow the early work of Jaffe (1986), Engelsman and van Raan (1994) and Verspagen (1997) 

and estimate the cosine similarity between regions’ technological profiles. In practice, for each 

of the 141 German labor market regions, we count the applied patents of each IPC subclass 

resulting in a 141 (regions) x 629 (technologies) matrix. In the next step, we calculated the 

cosine similarity between each region and obtain the 141x141 technological relatedness matrix 

for 2000 to 2009, which serves as a technological proximity measure. 

Boschma (2005) describes organizational proximity as a control-related dimension: high 

organizational proximity means that relations are embedded in the same organizational routines 

 
6 Note that the data at hand does not allow to capture institutional proximity.  
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and hierarchies. We sought to capture this by the organizational proximity (ORGi,j) measure. It 

represents the number of patents that are invented by the same organization with inventors from 

both regions i and j. 

 

Table 3.6: Descriptive statistics 

 Variables Mean SD Median Min Max 

CITi,j,t,s 0.226 0.816 0 0 28 

CO.INVi,j, (t-3),s  0.207 1.771 0 0 81 

CO.INVi,j, (t-5),s 0.23 1.668 0 0 84 

SUBS.NETi,j,(t-3),s 0.014 0.351 0 0 47 

SUBS.NETi,j,(t-5),s 0.012 0.282 0 0 45 

DISTi,j 3.56 1.86 3.43 0.16 9.52 

TECHi,j 0.410 0.173 0.41 0 0.92 

ORGi,j 0.007 0.03 0 0 6 

PATi,t 6.846 15.01 0 0 207.1 

PATj,t 7.159 15.75 0 0 207.1 

SUBSi,t 0.571 1.305 0 0 46 

SUBSj,t 0.597 1.268 0 0 46 

CIT.LAGi,j,t 0.109 0.586 0 0 28 

 

The likelihood of inter-regional knowledge flows is also dependent on regions’ individual 

characteristics. The first variable accounts for regions’ innovative output (PATi,t,s and PATj,t,s), 

i.e. the sum of technology specific patents created by inventors (factual counting) located in the 

respective regions i or j in time period t and technology s. The more a region patents, the more 

likely it will receive citations and cite other regions’ patents. 

Moreover, we consider the amount of subsidies that regional actors acquired in period t, 

(SUBSi,t,s and SUBSj,t,s). More precisely, SUBSi,t,s and SUBSj,t,s are the sum of granted subsidized 

projects to organizations located in region 𝑖 and j in technology s and year t. SUBSi,t,s and 

SUBSj,t,s are included for two reasons; first, large sums of subsidies may indicate the presence 

of extensive R&D activities, which in turn make citations more likely and second, while a 

significant coefficient of SUBS.NET is the most direct confirmation of R&D subsidies 

enhancing inter-regional knowledge diffusion, the coefficients of SUBS can still give some 

indication as to whether the subsidization of R&D activities will lead to larger citation activities 

or to research that is more frequently cited. 

Descriptive statistics for all variables are listed in Table 3.1. 
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3.3.3 Empirical modelling 

Our aim is to explain the intensity of knowledge flows (𝐶𝐼𝑇𝑖,j,𝑡,s,) between regions with the 

variables introduced above and particular emphasis on the impact of R&D subsidies. In a 

common manner, we employed a gravity model approach. Based on the work of Isard (1954) 

and Tinbergen (1962), the gravity approach is a conceptual framework frequently used in 

investigations of trade and migration flows as well as tourism and commuting interactions 

(Burger et al., 2009). It has also previously been used to estimate knowledge flows between 

regions (see Peri, 2005; Maggioni et al., 2007; Hoekman et al., 2009; Paci and Usai, 2009). 

The basic expression of a gravity model can be written as follows (Burger et al., 2009; 

Hoekman et al., 2009): 

 

𝐼𝑖,𝑗 =  
𝐾𝛽1 𝑀𝐴𝑆𝑆𝑖

𝛽2𝑀𝐴𝑆𝑆𝑗
𝛽3

𝐷𝐼𝑆𝑇𝐴𝑁𝐶𝐸𝑖,𝑗
𝛽4

 

 

where 𝐼𝑖,j is the intensity of interaction between two entities, i.e. the amount of knowledge 

flows between regions i and j. The “masses” of origin i and destination j are individual regional 

characteristics potentially influencing this interaction intensity. In this chapter, the number of 

regional patents (PAT) and subsidies (SUB) represent the “MASS” variables.  

 DISTANCEi,j represents the dyadic relations (e.g., geographical distance) between region i 

and j. Crucially, the model is not restricted to two masses and one distance variable, as in 

practice; it is logarithmized, transforming the equation into a standard (log)linear regression 

equation, which can include many more explanatory variables (see for a detailed discussion 

Broekel et al. (2014)).  

Our data sample consists of patent citation relations among 141 German labor market regions 

in 87 IPC classes over a period of ten years (2000-2009). This gives us slightly more than 16 

million observations. 34,487 of these are positive (CITi,j,t,s  > 0). Notably, we defined a positive 

case if at least one citation occurred between a pair of regions in any of the ten years. Fitting a 

regression model to this vast amount of data with just 0.2% non-zero observations would lead 

to methodological as well as computational difficulties. We therefore reduce the data by 

randomly matching one positive case with two negative cases. More precise, each positive case 

of 𝐶𝐼𝑇𝑖,j,𝑡,s > 0 is matched with two zero-cases of 𝐶𝐼𝑇𝑖,𝑗,𝑡,s = 0, whereby one of these zero-cases 

is randomly drawn from the zero-cases of the citing region i and one from the set of zero-cases 

of the cited region j. Hence, our zero-cases share many characteristics of the positive cases. 
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 The matched sampling has 255,493 observations of which 34487 are positive (𝐶𝐼𝑇𝑖,j,t,s > 0), 

i.e. 13,5% of the sample. The ratio is less than 1:3 because the figure is estimated considering 

all years, while CITi,j,t,s  > 0 might only be positive in one. 

Given that our dependent variable, CITi,j,t,s, is a count variable, Poisson or negative binomial 

regression models are generally appropriate. We decided to calculate a binomial and a negative 

binomial regression. The binomial regression will provide insights into the probability of 

inventors in two regions citing each other at all. The negative binomial part seeks to explain the 

variance in the citation intensities for the sample of observations with at least one citation 

between 2000 and 2009. 

The regressions utilize the panel structure of our data, which allows for including 

technology- and time-fixed effects controlling for unobserved time invariant effects. Moreover, 

we also included the lagged version of our dependent variable (CIT.LAGi,j,t,s) to capture any 

remaining unobserved and time-variant structures. It is lagged by six years to the dependent 

variable ensuring no overlap in the citations used in its construction. 

 

3.4 Empirical results 

We estimated four regression models in total: two binomial models distinguishing between 

inter-regional citations and no inter-regional citations and two negative binomial models 

explaining the magnitude of inter-regional citations, both with varying time lags of three and 

five years. The results are presented in Table 3.2 (three-year time) and Table A3.1 in the 

Appendix (five-year time lag). The results are very robust across all models. We will therefore 

interpret all outcomes at once. 

Mostly, our control variables behave according to our expectations. Increasing geographical 

distance (DISTi,j) between two regions decreases the probability of positive citation counts 

(binominal model) and the magnitude of inter-regional citations (count model). This confirms 

the geographically localized nature of knowledge spillover (Jaffe et al., 1993; Storper and 

Venables, 2004). Technological proximity (TECHi,j) has a positive and significant impact on 

the existence of inter-regional citation in general (binominal model) and on their intensity 

(count model). The finding is in line with those of Peri (2005) and supports the idea of actors 

being more likely to seek and absorb new knowledge in cognitive proximity to what they 

already know (Cohen and Levinthal, 1990). Contrary to our expectations, organizational 

proximity (ORGi,j,t) mostly obtains a significantly negative coefficient in the binomial model. 

It means that region pairs with strong organizational linkages are less likely to cite each other. 

We suspect that this finding might be caused by our data cleaning in which we removed all 
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citations associated with patents of the same applicant and with the inventors residing in two or 

more regions. Accordingly, in the construction of the dependent variable, we removed intra-

organizational citations, which are closely related to patents with multiple inventors and one 

applicant, which provide the underlying information for ORGi,j,t. In light of this, it is somewhat 

surprising to see ORGi,j,t gaining a significantly positive coefficient in the count model, 

suggesting that once citation links are established between regions, organizational proximity 

facilitates these and supports knowledge diffusion. 

 

Table 3.7: Results of the fixed-effects, binomial and negative binomial (count) regression models (3-year time lag) 

 

 
 Binomial model Count model 

Variables  Estimate (SE) Estimate (SE) 

Policy    

SUBS.NETi,j,(t-3),s  0.011 

(0.013) 

-0.007 

(0.007) 

SUBSi,t,s  0.013*** 

(0.003) 

0.005*** 

(0.002) 

SUBSj,t,s  0.021*** 

(0.003) 

0.002 

(0.002) 

Proximities     

CO_INVi,j, (t-3),s  0.109*** 

(0.005) 

0.012*** 

(0.001) 

DISTi,j   -0.098*** 

(0.004) 

-0.017*** 

(0.003) 

TECHi,j   1.816*** 

(0.038) 

0.124*** 

(0.027) 

ORGi,j  -0.015*** 

(0.004) 

0.005*** 

(0.001) 

Regional properties    

PATi,t,s  0.017*** 

(0.0005) 

0.004*** 

(0.0003) 

PATj,t,s  0.014*** 

(0.0005) 

0.003*** 

(0.0002) 

Control    

CIT_lagi,j,t,  -0.231*** 

(0.011) 

0.046*** 

(0.003) 

Year Dummies  Yes Yes 

Technology Dummies  Yes Yes 

AIC  163,794 102,695 

2x Log-likelihood   -102,526 

Observations  255,493 34,487 

Non-zero obs  34,487 - 

* significant at the 90% level, ** significant at 95% level, *** significant at 99 % level 
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We interpret this contradictory finding as an indication of large organizations acting as 

gatekeeper (Giuliani and Bell, 2005). Sometimes they help other organizations in establishing 

inter-regional linkages, which they, for various reasons, are not able to build otherwise. In 

network science, this corresponds to the triadic closure argument: partners are likely to connect 

to partners of their partner (e.g., Granovetter, 1973). Accordingly, large organizations with 

facilities in multiple regions may stimulate other actors in these regions to interact with each 

other. Our results, however, suggest that this effect only comes into play when at least one 

organization other than the large one has managed to establish such a link. As ORGi,j,t is 

primarily included as a control variable, we refrained from exploring this issue in greater detail 

and leave it to future research. 

The findings for our measure of social proximity clearly confirms the crucial role this plays 

for spatial knowledge diffusion. CO.INVi,j,(t-3),s and CO.INVi,j,(t-5),s are both significantly positive 

in the binomial and count model. Hence, as (Hägerstrand, 1966) proclaimed social networks 

are crucial for diffusing information about new knowledge and for subsequently spreading this 

knowledge. 

The results for the individual patenting activities of citing (PATi,t,s) and cited regions 

(PATj,t,s) are highly significant and have a positive relationship with citations in the binomial 

and count model. Thus, confirming a size effect, regions with a larger patent output have a 

higher likelihood to cite and to be cited.  

The last control variable, CIT.LAGi,j,t,s measures the citation intensity between regions in the 

previous period. It is significantly negative in the binomial model and significantly positive in 

the count model. Accordingly, if inventors in region i cite patents of inventors in region j, it is 

unlikely that they cite each other again in the subsequent period. However, in case they do, their 

citation intensity will grow. With some speculation, we can interpret this as a kind of “probing” 

behavior. Inventors will tap into other regions’ knowledge bases to solve specific problems. 

However, if the problem is solved, their interest in keeping these relations vanishes. In some 

cases, though, the regions’ knowledge bases turn out to be complementary, leading to increasing 

cross-citations and intensifying knowledge exchanges. The observation might also be related to 

the vary erratic patenting numbers characterizing many (and particularly smaller) regions 

(Burger et al., 2009), which translate into erratic citation numbers. In the case of regions with 

few patents, a decrease in these likely translates into the vanishing of many inter-regional 

linkages created by previous patents’ citations. While the decrease in patents will also lower 

inter-regional citation frequencies of regions with many patents, their cited patents’ set of 

regions is likely to remain intact due to the higher levels of citation frequencies. 
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Our results clearly support the idea of proximities and general economic as well as 

technological structures shaping the spatial diffusion of knowledge. The question remains, if 

policy can impact the diffusion by subsidizing R&D projects, which provide a framework for 

inter-organizational learning. 

The variables SUBS.𝑁𝐸𝑇𝑖,𝑗,(𝑡−3),s as well as SUBSi,t,s and SUBSj,t,s answer this question. 

SUBS.𝑁𝐸𝑇𝑖,𝑗,(𝑡−3),s (and SUBS.𝑁𝐸𝑇𝑖,𝑗,(𝑡−5),s) remain insignificant in all models. Accordingly, 

joint projects with participants form multiple regions do not facilitate inter-regional knowledge 

flows, at least when these are measured by patent citations three or five years after the project. 

This clearly contradicts our expectations and contrasts with the findings of (Fornahl et al., 2011) 

and Broekel (2015), which, however, employ an indirect empirical approach. They investigate 

the relation between organizations and regions probable exposure to knowledge flowing 

through subsidized joint R&D projects and their innovation output. With the more direct 

approach used in this chapter, we fail to replicate their findings. There are multiple reasons that 

may cause this result. First, partners in subsidized joint R&D projects may use these subsidies 

as windfall gains by using subsidies to strengthen already existing collaboration, which 

knowledge exploitation potential has already depleted. Second, many subsidized R&D projects 

may also not result in any patents and, accordingly, citations. Third, subsidized joint projects 

may fail in establishing relationships that outlast the length of the project. While the knowledge 

exchange might happen during the project, the inventive process might exceed projects’ 

durations (which is, on average, close to 36 months) and our time lags of three and five years. 

Fourth, the collaborative feature of joint R&D projects covered by our data may simply be 

insufficient for significant knowledge exchange. Clearly, further work, which may have more 

detailed data available, may shed additional light on these issues. 

More promising results (from a policy perspective) are obtained for the number of subsidized 

projects acquired by regional organizations. The variables SUBSi,t,s and SUBSj,t,s are 

significantly positive in all binominal models, i.e., the more projects acquired by regional 

organizations, the more likely are these regions’ inventors citing and getting cited. However, 

this is not consistently true in the count models. Here, only SUBSi,t,s, is positively significant, 

i.e., the number of subsidized projects in the citing region. The number of projects acquired by 

the cited region (SUBSj,t,s) is mostly insignificant. Accordingly, organizations in regions that 

are more successful in project acquisition are more likely to create (patent) output that refers to 

the work of inventors outside their region. Hence, the subsidization of projects seems to 

stimulate external knowledge sourcing. Unfortunately, whether this sourcing goes beyond 

already existing contacts cannot be tested. The insignificance of SUBSj,t,s implies that 
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(subsidized) research of cited regions does not produce findings that are recognized and utilized 

by actors outside the region at an above average rate. Put differently, if citations are interpreted 

as an impact indicator, their research’s impact does not seem to exceed the average. Hence, 

subsidies are granted to organizations in regions, which research impact is not outstanding.7 

This is in line with Broekel et al. (2015) who discovered that, in contrast to the EU-Framework 

Programmes, research excellence at the regional level does not seem to be the primary 

allocation determinant of R&D subsidies granted by the German federal government.  

 

3.5 Conclusion  

Despite being one of its central aims, few attempts have been made at evaluating the 

contribution of subsidies for joint R&D projects on inter-organizational and inter-regional 

knowledge diffusion. Most existing studies follow a knowledge production function approach 

to test for such policy’s effectiveness (Maggioni et al., 2014; Broekel, 2015; Broekel et al., 

2015). We argued that the traditional literature on knowledge diffusion offers a more direct 

approach for assessing the contribution of R&D subsidies to inter-regional knowledge 

diffusion. By following the work of Jaffe et al. (1993) and others, we used patent citations as 

indication of knowledge diffusion, which are related to subsidies for joint R&D projects by the 

German national government. We aggregated the data to the level of German labor market 

regions during the years 2000 to 2009. While our results confirmed the diffusion hampering 

effects of different kinds of distances (cognitive, geographical, social, organizational), we did 

not find clear evidence of subsidies significantly stimulating inter-regional knowledge 

diffusion. While they seem to enhance organizations’ ability to source knowledge in other 

regions, subsidizing inter-regional collaboration does not increase the intensity of subsequent 

patent citation intensity. Accordingly, we fail to confirm existing evidence obtained by the 

indirect, knowledge production function type approach (Ponds et al., 2010; Fornahl et al., 2011; 

Broekel, 2015). 

While our results fail to deliver support for project-based R&D subsidies achieving one of 

their primary objectives, there are a number of shortcomings that put our results into 

perspective. These may also serve as possible starting points for future research. First, by 

aggregating the data at the regional level, we reduced some of the inherent limitations of patent 

data. However, when data are available, the organizational level is certainly more appropriate 

 
7 Note that one must be very careful with this interpretation as it is prone to an ecological fallacy trap. We do not 

say (and find) that the research of organizations receiving R&D subsidies is “just” average or not excellent. Our 
results exclusively refer to the regional level. 
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for such kind of analyses. Consequently, the findings must be interpreted with caution, as there 

is the threat of aggregation biases or “ecological fallacy” (Downs and Mohr, 1976: p. 707). 

Second, while providing more general results, this and similar studies also lack the detailed 

insights, which can be obtained with qualitative research. For example, the “innovation 

biographies” approach by Butzin (2009) may be used to study the impact of R&D subsidies on 

knowledge diffusion in more depth. Third, the study also shares the well-known and frequently 

discussed limitations of patent data (Griliches, 1998). Particularly, patent citations may only 

account for knowledge flows that are encodable, commercially exploitable and legally 

patentable (Criscuolo and Verspagen, 2008). Thus, the chapter only considered knowledge 

flows that led to new patents and cite the corresponding ones. An organization might develop 

a new product, however, without patenting it, as the organization uses other ways of securing 

their intellectual property (Cohen et al., 2000). In this case, knowledge diffuses from one region 

to another without leaving a trail in patent data. The extent to which innovations and thereby 

knowledge diffusion are covered by patent data varies significantly between industries (Arundel 

and Kabla, 1998). This makes a comparison of patent-based observations difficult across 

industries. In order to minimize the likelihood of an inter-industry bias in the use of patent data 

as indication of knowledge diffusion, we decided to consider exclusively technology specific 

patent citations excluding citations between technologies. Future studies might be able to tackle 

this issue in other ways and, hence, might be able to exploit the full breath of patent citations. 

In addition, future research should make use of alternative data sources to measure knowledge 

diffusion. One way could be to relate firms’ product portfolio diversification to their 

cooperation activities, as their diversification might be the consequence of obtaining and 

transforming new knowledge. The chapters’s fourth shortcoming is the consideration of only 

one specific type of subsidy, i.e., that granted by two ministries of the German federal 

government. Hence, our findings remain restricted to these programs, as other subsidization 

schemes such as the EU-Framework Programmes or local policy initiatives might induce 

different processes and be more effective. Clearly, more research is needed in this direction. 

In addition to these shortcomings, there might be other processes that might be responsible 

for our finding of R&D subsidies not enhancing inter-regional knowledge diffusion. It has been 

frequently shown that joint R&D projects tend to bring together organizations in geographic, 

cognitive, organizational, social, and institutional proximity (Breschi and Cusmano, 2004; 

Scherngell and Barber, 2009, 2011; Balland, 2012; Broekel and Hartog, 2013a, 2013b). Yet, 

these are precisely those constellations that are most likely to emerge without subsidization. It 

can therefore be argued that to stimulate knowledge diffusion, policy should try to stimulate 
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interactions among organizations that are rather unlikely to interact in the first place. For 

instance, if subsidized collaboration primarily connect partners at low cognitive distances, their 

learning potentials are rather small, implying relatively low possibilities for mutual referencing 

(e.g. in form of patent citations) because they are already familiar with each other’s work. 

Similar arguments apply in the case of organizations sharing a long history of collaboration, 

which also seem to team up frequently in subsidized joint R&D projects (Breschi and Cusmano, 

2004).  

In summary, this chapter marks an additional step towards a better understanding of the 

effects and effectiveness of subsidizing joint R&D projects. Yet, as the discussion shows, the 

study opens a barrage of additional issues that hopefully will be addressed by future research.  
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Appendix  

3.A1 Additional analysis (five-year time lag) 

Table A3.1: Results of the fixed-effects, binomial and negative binomial (count) regression models (5-year time lag) 

 
 

Binomial 

model 6 

Count 

model 6 

Variables  Estimate (SE) Estimate (SE) 

Policy    

SUBS.NETi,j,(t-5),s 
 

0.024 

(0.018) 

-0.009 

(0.009) 

SUBSi,t,s 
 

0.013*** 

(0.003) 

0.005*** 

(0.002) 

SUBSj,t,s 
 

0.02*** 

(0.003) 

0.002 

(0.002) 

Proximities    

CO_INVi,j, (t-5),s 
 

0.11*** 

(0.005) 

0.012*** 

(0.001) 

DISTi,j  
 

-0.098*** 

(0.004) 

-0.017*** 

(0.003) 

TECHi,j  
 

1.809*** 

(0.038) 

0.124*** 

(0.027) 

ORGi,j 
 

-0.002*** 

(0.004) 

0.006*** 

(0.001) 

Regional properties    

PATi,t,s 
 

0.018*** 

(0.0005) 

0.004*** 

(0.0003) 

PATj,t,s 
 

0.015*** 

(0.0005) 

0.003*** 

(0.0003) 

Control    

CIT_lagi,j,t 
 

-0.236*** 

(0.011) 

0.047*** 

(0.003) 

Year Dummies  Yes Yes 

Technology Dummies  Yes Yes 

AIC  163808 102700 

2x Log-likelihood   -102532 

Observations  255493 34487 

Non-zero obs.  34487 - 



65 

 

Disentangling link formation and dissolution in 

spatial networks 

 

 

Abstract 

The analysis of spatial networks’ evolution has predominantly concentrated on the formation 

process of links. However, the evolution of networks is similarly shaped by the dissolution of 

links, which has thus far received considerably less attention. The chapter presents separable 

temporal exponential random graph models (STERGMs) as a promising method in this context, 

which allows for the disentangling of both processes. Moreover, the applicability of the method 

to two-mode network data is demonstrated. 

We illustrate the use of these models for the R&D collaboration network of the German 

biotechnology industry as well as for testing for the relevance of different forms of proximities 

for its evolution. The results reveal proximities varying in their relative importance for link 

formation and link dissolution. 
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4.1 Introduction 

Network analysis has gained great popularity in many spatial disciplines (Ducruet and 

Beauguitte, 2014). For instance, in urban studies, network analyses are intensively used to study 

city-networks (Liu et al., 2013), while economic geography focuses on R&D networks’ 

facilitating of the flow of knowledge between cities and regions (e.g., Murphy, 2003; Boschma 

and ter Wal, 2007). In both fields, studies have sought to explain the evolution of inter-

organizational relationships in time and space by relying on longitudinal network data (Broekel 

et al., 2014). Most of the existing research focuses on the relative importance of factors 

facilitating link formation. Crucially, network evolution consists of link formation and 

dissolution processes, though different factors might drive each process. For instance, Balland 

(2012) note “[…] that the creation and dissolution of ties are not generally strictly inverse 

mechanisms […]” (p. 749). Moreover, Krivitsky and Handcock (2014) explain that “social 

processes and factors that result in ties being formed are not the same as those that result in ties 

being dissolved” (p. 35). For instance, in order to benefit from scale effects, firms might 

participate in joint R&D projects with other firms that have a similar technological background 

(i.e., they are cognitively proximate). Over the course of the project, they realize that their 

technological similarity stimulates unintended knowledge spillovers, and they end the 

collaboration to sustain their competitive advantages. Hence, cognitive proximity fostered 

collaboration in the first place and subsequently increased the likelihood of an early termination 

of the collaboration. However, while substantial empirical evidence of the first process exists, 

much less attention has been paid to the second process. 

The present chapter contributes to the spatial network literature in two ways. Firstly, it 

demonstrates the use of separable temporal exponential random graph models (STERGMs) as 

a method for investigating formation and dissolution processes in spatial (knowledge) networks 

(Krivitsky and Handcock, 2014). We apply STERGM to a spatial network emerging from 

subsidized R&D projects in the German biotechnology industry between the years 1998 and 

2013. Secondly, we demonstrate STERGM’s ability to handle two-mode network data, which 

overcomes the (still) common but sometimes questionable one-mode project of network data 

when constructing spatial (knowledge) networks (Scherngell and Barber, 2009, 2011; Balland, 

2012; Broekel and Hartog, 2013b; Hoekman et al., 2013; Buchmann and Pyka, 2015). We 

thereby extend the work of Liu et al. (2015), who applied a cross-sectional two-mode 

exponential random graph model to analyze global city networks by presenting an application 

of ERGMs to longitudinal data. While, alternatively, such data can be investigated with 

stochastic actor-oriented models (SAOMs) (Liu et al., 2013), these models require specific 
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assumptions (e.g., agency) that are often doubtful in the context of spatial networks (Broekel et 

al., 2014). In addition, STERGMs have been shown to be empirically similar if not preferable 

to SAOM models (Leifeld and Cranmer, 2015). 

This chapter is organized as follows: Section 4.2 discusses the process of an inter-

organizational R&D cooperation network evolution. It addresses the relevance of 

organizations’ attributes, their relational characteristics, and structural level effects. It also 

considers why existing empirical analyses on their relative importance might be biased, which 

motivates the use of STERGMs. The STERGM approach is introduced in Section 4.3. Section 

4.4 discusses the network data and the empirical model specification. The analyses’ results are 

presented and discussed in Section 4.5. Section 4.6 concludes the chapter.  

 

4.2 Disentangling the determinants of link formation and dissolution  

On the following pages, we will argue why we expect the influence of factors to vary for 

formation and dissolution processes, whereby varying effects are particularly likely for 

proximities and the location. 

The literature on the evolution of spatial networks generally highlights three essential levels 

at which processes of network evolution occur (Glückler, 2007; Ter Wal and Boschma, 2009; 

Boschma and Frenken, 2010). These levels are the (1) the node, (2) the dyad, and (3) the 

structural network.  

 

4.2.1 The node level 

Many organizational characteristics influence the collaboration behavior of organizations. 

Researchers have often argued that the size of organizations is of relevance: In particular, two 

of the expressed arguments are in favor of greater nodes having more links. First, larger nodes, 

i.e. organizations with more employees, may have greater capacities to establish and maintain 

more links (Tether, 2002). Second, larger nodes tend to attract more requests for interacting, as 

they usually occupy more prominent positions within specific fields in general and within 

existing networks (Broekel and Hartog, 2013a). For instance, larger organizations are more 

widely known than smaller ones and, due to their larger portfolio, provide more opportunities 

for interacting. In case of the Dutch aviation knowledge network, Broekel and Hartog (2013b) 

find evidence for a positive relationship between size and link formation. 

Moreover, larger firms might have more capacities to form new relationships and 

simultaneously maintain previously existing ones. Smaller firms tend to face a trade-off in this 

situation — i.e., they must decide whether to invest time in establishing new relationships and 
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giving up existing ones or to opt for maintaining their relations (Tether, 2002). Hence, small 

organizational size might negatively relate to link formation and dissolution, while in case of 

large organizations, the latter relationship might be positive. This point also highlights that link 

formation and dissolution are not necessarily independent of each other because of 

organizations’ potential constraints in their collaboration capacity.  

In the literature on spatial (knowledge) networks, organization-specific characteristics 

(nodes) are complemented by factors at the spatial level, which also impact organizations’ 

interaction behavior. For instance, Illenberger et al. (2013) hypothesize differences in the 

relationship structures of individuals living in cities and those in rural areas. While they failed 

to empirically confirm this hypothesis, empirical evidence exists for organizations in urban and 

rural areas. For example, Meyer-Krahmer (1985) report that firms in (urban) agglomerations 

are more prone to interact with other organizations than firms in rural areas. Broekel and Hartog 

(2013a) confirm this positive relationship between population density and organizations’ 

amount of inter-regional collaboration. Moreover, Wanzenböck et al., (2015) investigate the 

centrality of regions in inter-organizational R&D networks initiated by the EU Framework 

Program. Their findings clearly show urban regions being more central in these networks than 

rural regions. Hence, as an example of a spatial factor influencing organizations’ interaction 

behavior, we focus on organizations’ location within urban regions, which is expected to 

facilitate their link formation activities.  

In regard to link dissolution, we further argue that these positive urbanization externalities 

(Boschma and Wenting, 2007) will help organizations to maintain relationships. By accessing 

major train stations and airports, organizations tend to be able to lower transportations costs 

and will be able to maintain more relationships than organizations situated in more remote rural 

areas.  

 

Hypothesis 1: Organizations located in urban areas are more likely to form a link and less 

likely to dissolve a link. 

 

4.2.2 The dyad level: How proximities shape network structures 

The dyad level refers to the properties of the relationships between nodes. In research on 

spatial networks, Boschma's (2005) proximity framework offers an effective summary of many 

(specific) arguments made in the literature. Among others, the concept builds upon the 

homophily effect, which has been applied in sociology. Here, it is argued that two individuals 

are more likely to develop a trust-based relationship when they share similar attributes (e.g., the 
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same age) (McPherson et al., 2001). This concept has been transferred to the organizational and 

regional levels as well as to other types of relationships and similarities. More precisely, 

Boschma (2005) summarizes the prominent arguments in the literature and proposed a 

distinction between five dimensions of inter-organizational proximities. These proximities 

describe organizations’ similarity (homophily) in different dimensions and are all argued to 

increase the likelihood of two organizations to establish a (collaborative) relationship and to 

exchange knowledge. These proximities are cognitive, geographical, organizational, social, and 

institutional.8 As our empirical analysis will focus on cognitive, institutional, and geographic 

proximity, we limit the theoretical discussion to these dimensions. A discussion on the other 

two dimensions can be found in Boschma (2005).  

Nooteboom et al. (2007) define cognitive proximity as the result of organizations’ 

development of an organization-specific internal “interpretation system” (p. 1017). At its core 

is the organizations’ absorptive capacity. As learning is a cumulative process that builds upon 

existing knowledge, their absorptive capacity increases when new and previously possessed 

knowledge overlap (Cohen and Levinthal, 1990). Accordingly, organizations tend to interact 

with partners who share similar knowledge bases. In this case, it is easier and more efficient for 

organizations to identify them as potential collaboration partners, absorb their knowledge, and 

jointly learn (Nooteboom et al., 2007). The positive impact of cognitive proximity on link 

formation in spatial R&D networks has been frequently confirmed (Paier and Scherngell, 2011; 

Balland, 2012; Broekel and Hartog, 2013b; Buchmann and Pyka, 2015). 

While cognitive proximity greatly increases link formation, two cognitively similar 

organizations are likely to be competitors because they tend to produce similar products 

(Boschma, 2005). This circumstance increases the risk of withholding knowledge in order to 

avoid unintended knowledge spillover (Zander and Kogut, 1995). Moreover, given their 

cognitive overlap, these organizations offer relatively little to learn from each other. In such a 

situation, the formed alliance may be unstable (Polidoro et al., 2011), as organizations tend to 

be reluctant to stay in alliances longer than necessary. Accordingly, cognitive proximity may 

increase the chances of early link dissolution. 

Geographical proximity refers to the “similarity” of organizations in terms of their 

geographic location. Being geographically close or within the same region fosters the formation 

of links because it makes frequent face-to-face interactions much easier (Boschma, 2005). Such 

contacts facilitate the generation of mutual trust and are especially important when exchanging 

 
8 This list of proximities is not exclusive. Other types of proximities may matter as well but have received considerably less 

attention in the literature so far.  
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tacit knowledge (Ter Wal, 2014). In spatial sciences, geographical proximity is a key interest 

and thus is often analyzed in regard to network formation. For instance, in the case of funded 

R&D networks, Paier and Scherngell (2011) as well as Balland (2012), among others, find 

evidence of a positive relationship between link formation and geographical proximity.  

As geographic proximity strongly enhances the possibility of frequent face-to-face contacts 

and more insightful communication, it may contribute to the earlier completion of projects, 

which in turn will result in quicker link dissolution. It might even be the case that partners 

anticipate the higher efficiency and more effective communication when collaborating in 

geographic proximity and therefore opt for shorter project durations when setting-up 

collaborations with geographically proximate partners, such as when applying for joint grants. 

 

Hypothesis 2: Geographic and cognitive proximity positively influences link formation and 

dissolution. 

 

Institutional proximity is also associated with the embeddedness literature, i.e. organizations 

operating in different social subsystems (e.g., industry or academia). According to Ponds et al.,  

(2007), scientific research and the development of product innovations are “conducted within 

different socio-economic structures” (p. 426). Institutionally distant organizations are more 

likely being confronted with unknown behavior and problems in mutual communication, which 

reduces the likelihood of interaction (Parkhe, 1991; Boschma, 2005; Balland et al., 2013). 

Institutional proximity ensures that partners operate under the same or at least comparable 

institutional (legal and societal) frameworks, which significantly aids in overcoming the risks 

of freeriding and reduces monitoring costs (Boschma, 2005). Accordingly, it strongly helps 

with initiating collaborations, which is also empirically confirmed (Balland, 2012). 

In contrast, its relevance for link duration might be rather minimal. It can be argued that once 

collaboration has been initiated and formalized, most legal and formal issues concerning the 

collaboration are settled and contractually fixed. While the efforts needed for this may prevent 

the formation of interactions, the institutional frameworks may become complementary through 

the formal contract and, hence, exercise little to no effect on link duration. 

 

Hypothesis 3: Institutional proximity impacts link formation positively but does not affect 

link dissolution. 
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4.2.3 Structural level determinants 

Glückler (2007) and Liu et al. (2015) highlight the relevance of factors at the structural 

network level.  These authors argued that a theory of network evolution focuses on the 

interdependency of new links and the overarching structure of the network as such. 

Accordingly, “[…] this perspective explicitly moves beyond the dyadic analysis of single 

relationships to the analysis of entire network relations” (Glückler, 2007: p. 207). Three factors 

have received the most attention so far: triadic closure, multi-connectivity, and preferential 

attachment (Ibid.).  

Triadic closure implies that partners of a node are likely to become partners themselves. This 

is shown by so-called triangles in networks, i.e. dense cliques of strongly interconnected nodes 

(Ter Wal, 2014). In spatial (knowledge) networks, such cliques are usually interpreted as a sign 

of social capital (Coleman, 1988), which may enhance trust and the willingness among nodes 

to invest in mutual goals. For instance, Ter Wal (2014) confirms the relevance of triadic closure 

for the evolution of a biotech network based on co-invented patents.  

Multi-connectivity is a consequence of organizations tending to seek a diverse portfolio of 

partners. In other words, they may connect to others in multiple ways to decrease their 

dependency on individual links (Glückler, 2007). For example, organizations may link to other 

organizations through joint R&D projects in addition to existing buyer-supplier relations. 

Broekel and Hartog (2013b) provide empirical evidence for the relevance of such processes in 

the context of subsidized spatial networks.  

Preferential attachment implies that the probability of creating additional links may increase 

with every new link a node possesses (Vinciguerra et al., 2010; Liu et al., 2015). Organizations 

with many relationships tend to have a greater flow of information about new activities and 

partners, and they also tend to have a stronger ability to evaluate these by means of collaborative 

behavior and appropriate resources (Polidoro et al., 2011). While Broekel and Hartog (2013a) 

hypothesized preferential attachment to play a role in networks of subsidized R&D 

collaboration, they failed to empirically confirm this. With respect to their relevance on link 

formation and dissolution, the literature clearly suggests a positive contribution to link 

formation, while discussions on their effects for link dissolution are largely absent. We 

therefore expect that their positive influence is also applicable to link persistence (i.e. these 

effects are negatively correlated with link dissolution). 

 

Hypothesis 4: Network structures support link formation and suppress link dissolution. 
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4.3 Separable temporal exponential random graph models 

A range of methods can be applied to identify factors driving networks’ evolution (see, for 

example, a recent review of the most common approaches: (Broekel et al., 2014). In the context 

of dynamic spatial networks, SAOM models in particular have been used (Balland, 2012; Liu 

et al., 2013). These models are convincing due to their wide range of application possibilities, 

consideration of factors at all three levels of investigation, and usability with one and two-mode 

network data. While their applicability and functionality were unmatched in the past, the 

development of the TERGM (temporal exponential random graph model) and STERGM 

(separable temporal exponential random graph model) provides researchers with a legitimate 

modeling alternative. It is beyond the scope of the present chapter to conduct a full review and 

an empirical comparison of the two models. For this, we refer to Broekel et al., (2014) and even 

more so to Leifeld and Cranmer (2019). The chapter instead focuses on an application of the 

recently developed STERGM and seeks to highlight its three most prolific features that are 

crucial in the context of spatial (knowledge) networks: its nature as a tool of dynamic network 

analysis, its applicability to two-mode network data, and its ability to separate formation and 

dissolution processes. While SOAMs offer similar features, these are achieved by the 

fundamental assumption of agency residing with the nodes. In other words, the models are built 

on actor-based behavioral assumptions (Park and Newman, 2004). When applying these models 

to inter-organizational or inter-regional networks, this assumption of agency is likely to be 

violated (Broekel et al., 2014). Moreover, recent theoretical and empirical comparisons suggest 

that (S)TERGMs outperform SOAMs (Leifeld and Cranmer, 2015), which further motivates 

the presentation of STERGM for the analysis of spatial (knowledge) networks. 

The separable temporal exponential random graph model (STERGM) is a recently developed 

extension of the exponential random graph model (ERGM) (Krivitsky and Handcock, 2014); 

as such, it is part of the ERG family (also known as p*-models (Robins et al., 2007)).  

As neither nodes (actors) nor dyads (relationships) are completely independent from each 

other, classical econometric models such as regression analysis do not effectively explain the 

structure of observed networks (Broekel et al., 2014). For that reason, Frank and Strauss (1986) 

develop the so-called Markov dependence on which ERGMs are based. It implies that a given 

dyad between two actors impacts and is impacted by any further link of those two actors (Robins 

et al., 2007). Therefore, links are defined as being “conditionally dependent” (Ibid: p. 181).  

Models of the ERG family consider link creation as a continuous process, and the observed 

network structure is seen as one possibility out of a large set of potential networks with similar 

characteristics (Ibid.). This range of possible network patterns and their likelihood of 
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appearance “is represented by a probability distribution on the set of all possible graphs with 

this number of nodes” (Ibid: p. 176). Hence, a good ERGM has a high probability of simulating 

the observed network by finding the correct coefficients of the determinants impacting the 

network structure. For this purpose, a Markov chain Monte Carlo maximum likelihood 

estimation (MCMC MLE) procedure is used to simulate and evaluate the modeling process 

(Broekel et al., 2014). 

Mathematically, an ERGM is defined as follows (Robins et al., 2007): 

 

𝑃𝑟(𝑌 = 𝑦) = (
1

𝜅
) 𝑒𝑥𝑝{∑ 𝜂𝐴𝑔𝐴(𝑦)𝐴 }      

 

where 𝑃𝑟(𝑌 = 𝑦) is the probability that the observed network (𝑦) equals the simulated network 

(Y). The network configuration 𝐴 is considered by 𝜂𝐴, and the network statistics are represented 

by 𝑔𝐴(𝑦). The network configurations are the determinants with which the researcher attempts 

to explain the network structure, such as cognitive proximity. ERGMs allow the inclusion of 

node, dyad, and structural determinants at the same time (Broekel et al., 2014). 𝑔𝐴(𝑦) is either 

1 if the configuration is observed in 𝑦, or 0 if it is not. The factor 𝜅 is a normalizing constant 

that is implemented to ensure a proper probability distribution of the equation (Robins et al., 

2007). 

Hanneke and Xing (2007) and Hanneke et al. (2010) extend the ERG family with a 

framework that enables the researcher to model network dynamics over discrete time steps, 

called temporal ERGM (TERGM). In this model, a network at time t is conditional on the 

network at time t - 1. In essence, the TERGM corresponds to a stepwise ERGM approach with 

the steps corresponding to the observed time periods (Krivitsky and Handcock, 2014). Recently, 

Krivitsky and Handcock (2014) build upon this model and introduced the concept of 

separability. This allows a STERGM to independently consider the process of link formation 

and dissolution. In consideration of the organizational processes underlying the establishment 

and maintenance of cooperation, it seems legitimate to view different factors as in control of 

link formation and dissolution. A STERGM displays the transition from one time period (t) to 

the following time period (t+1) and thereby independently analyses the formation and 

dissolution of links. Accordingly, a STERGM is separated into two formulas (Ibid.). One 

formula considers the formation of links: 

 

𝑃𝑟(𝑌+ = 𝑦+|𝑌𝑡) = (
1

𝜅+) 𝑒𝑥𝑝 {(𝜂𝐴
+)𝑡𝑔𝐴(𝑦+)}    
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The other formula considers the dissolution of links: 

 

𝑃𝑟(𝑌− = 𝑦−|𝑌𝑡) = (
1

𝜅−) 𝑒𝑥𝑝 {(𝜂𝐴
−)𝑡𝑔𝐴(𝑦−)}    

 

The general aim of this method is to obtain a model with a high probability of simulating the 

observed network and that can identify the best coefficients. The success of the simulation can 

be tested by checking whether the model is degenerated and by examining the model’s goodness 

of fit. A degenerated model is often the consequence of misleading starting parameters and/or 

variables that are not able to correctly simulate the observed network. A degenerate model does 

not converge, or the calculated estimates simulate a network that is either extremely dense or 

has almost no edges (Robins et al., 2007).  

A non-degenerated model has to be further tested regarding the quality of simulating the 

observed network. By comparing the network characteristics of the simulated network (e.g., the 

degree distribution) with the corresponding statistics of the observed network, the goodness of 

fit can be verified graphically (Hunter et al., 2008).  

When calculating several models of the same size but with slightly different variables, the 

Akaike information criterion (AIC) and the Bayesian information criterion (BIC) provide 

additional information on a model’s goodness of fit. However, by including several network 

configurations (variables), the model becomes increasingly complex, and both AIC and BIC 

become less precise (Goodreau, 2007). Therefore, they should only be used in combination with 

the graphics mentioned above.  

We take advantage of the STERGM being capable of handling two-mode data. Accordingly, 

a one-mode projection is not necessary, but we directly analyze the two-mode structure of the 

network. In this case, the researcher must make sure that the simulation procedure does not 

create links that are impossible, i.e. no links should be simulated among events or among 

participants, only between events and participants (for practical application see Morris et al. 

(2008) and Section 4.4.4). 

 

4.4 Empirical approach and data 

4.4.1 Data 

The empirical network is based on organizations’ participation in joint R&D projects 

subsidized by the German Federal Ministry of Education and Research (BMBF), the Federal 

Ministry of Economics and Technology (BMWi), and the Federal Ministry of the Environment, 
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Nature Conservation and Nuclear Safety (BMU). Data on subsidized R&D projects are 

extracted from the so-called “Förderkatalog” (subsidies catalogue)9. Financial support for joint 

R&D projects is conditional on all participants agreeing to exchange knowledge with each 

other. Moreover, they grant access to intellectually property rights that are within the scope of 

the project but existed before project’s start (BMBF, 2008). Therefore, inter-organizational 

relations based on joint participation in such subsidized projects qualify as knowledge exchange 

links (Broekel and Graf, 2012). The data consist of firms, universities, and research institutes 

that operate in the German biotechnology industry and obtain subsidies for their joint projects 

in the period from 1998 to 2013.  

The industry has been chosen because it can be classified as a science-based industry in 

which scientific advancements primarily drive economic progress (Ter Wal, 2014). Moreover, 

cooperation is essential for innovation in this industry, as its “locus of innovation” is located in 

the network of inter-organizational relationships rather than in a single organization (Powell et 

al., 1996: p. 119). Thus, inter-organizational R&D cooperation is an important competitive 

factor in the biotechnology industry because individual firms may not be able to cover all the 

necessary capabilities to innovate (Ibid).  

Regarding the economic entities being used as nodes in the network analysis, the subsidies 

catalogue distinguishes between the beneficiary unit (“Zuwendungsempfänger“) and the 

executing unit (“Ausführende Stelle“). The first refers to the receiving organization (e.g., 

organizations’ headquarters), and the latter refers to the executing entity (e.g., a specific 

department or an institute of this organization). In accordance to the literature (Broekel and 

Graf, 2012), we chose the executing units as network nodes because they actively select whom 

to cooperate with and decide when to end a project. 

 

4.4.2 The structure of two-mode networks 

The described data represent a two-mode (or bipartite) network, as actors are related to 

projects and not directly to other actors. We extracted 652 nodes at the actor level (mode 1; i.e., 

organizations) and 258 nodes at the event level (mode 2; i.e., projects). Both levels are 

connected through 1,177 links (see Figure 4.1). The two-mode network structures have 

significant implications for network analysis, as, for instance, network structures such as closed 

triads are not possible.  

 
9 In addition to the subsidies catalogue, the websites “Biotechnologie.de,” “chemie.de,” “Life-Sciences-

Germany.com,” and “statista.de” and the homepages of the organizations have been used to acquire further data 
on organizational size and technological focus (cognitive proximity). 
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To account for factors’ importance varying over time (see, e.g., Balland et al., 2013), we 

split the network into four phases, with each being four years (see Figure 4.1 and Table 4.1). 

We defined a link to be formed when a project started within the observed time phase. It was 

maintained when the project had not been ended during the foregoing timespan. Otherwise, the 

link was been dissolved (see Figure 4.2). Pooling the data for four years caused the resulting 

networks to be sufficiently dense. We analyzed the three transitions of the networks from one 

period to the next by estimating separate models for each transition. This allowed for assessing 

potentially time-varying effects of our explanatory variables.  

 

 

Figure 4.1: Network visualization for all four time periods (grey = projects, orange = organizations) 

 

The STERGM demands the network to have the same set of nodes in both time periods. This 

gave us two opportunities: First, we could have included all nodes in the networks, regardless 

of whether they have a link in that period. However, this would have led to more complex 

models and would have decreased the chances of a converging model. Moreover, nodes only 

participating in the first transition are irrelevant for the following transitions. Therefore, we 

went with the second possibility: In the first STERGM, we only considered nodes that 

participate in the first and second periods. In the second STERGM, we then only included nodes 



Disentangling link formation and dissolution in spatial networks 77        

 

 

 

participating in the second and third periods. Finally, in the third model, we only considered 

nodes that had a link in the third or fourth period. Eventually, we had two slightly different 

networks for the second period and the third period (see Table A4.1 in the appendix for an 

overview of the networks). 

 

Figure 4.2: Link formation, maintenance and dissolution (a = organization, b = project) 

 

Table 4.1: Link development from 1998 – 2013 

Network Period 
Links  

present 
Links 

formed 
Links 

maintained 
Links 

dissolved 

No. 1 1998 – 2001 236 236 - - 

No. 2 2002 – 2005 494 275 219 17 

No. 3 2006 – 2009  689 465 224 270 

No. 4 2010 – 2013  530 145 385 304 

 

In the case of publicly subsidized project data, multiple reasons may exist for the dissolution 

of links. First, if participants successfully complete the project within the subsidized time 

period, the network link(s) will disappear. Second, if organizations apply for and receive a 

second funding within the project run-time, the link will be extended without a break, and we 

would not observe the dissolution of a link. Interestingly, we did not find a single instance in 

which this took place. We speculated that a policy discriminates against immediately 

reoccurring project partnerships when awarding new grants. Third, a policy could artificially 

induce the termination of joint projects and the according dissolution of network links, thus 

setting a maximum project duration. While this motivates Balland (2012) to argue that 

“analyzing why links are dissolved […] in the case of projects whose length is fixed from the 

beginning seems less relevant” (p. 749), we argue that partners know about fixed project 

durations ex-ante. Hence, they will apply for a grant only if its duration meets the (foreseeable) 

requirements of the planned project, which includes the consideration of the scope, complexity, 

and partner characteristics. Each of these considerations is usually known ex-ante to some 

extent. Similar to Makino et al. (2007), we therefore expect the initial conditions of partner 
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selection to influence the projects’ length. For instance, we expect more complex (and therefore 

longer) projects to more likely involve geographically proximate partners, as the complexity 

requires more frequent face-to-face contacts (see, e.g., Balland and Rigby (2017). Similarities 

can be expected for projects involving actors at greater cognitive distances, which also tend to 

demand increased and closer interaction (Boschma, 2005). Two processes are likely to support 

this. Firstly, when designing subsidization programs, a policy is probable to consider the task’s 

complexity and defines longer project durations. Secondly, applicants may look for programs 

with maximal project durations that fit the complexity of the expected task. We assumed 

project-lengths are (indirectly) related to the type of partners and consortia applying. Significant 

results in the dissolution models will show the extent to which this assumption is valid. 

Based on these arguments and secondary data, we constructed the following variables at the 

node, dyad, and structural network levels. 

 

4.4.3 Dyad level variables 

Categorical and binary dyad-level effects are considered in the STERGM by evaluating how 

frequently two-paths are created between two organizations sharing the same characteristics 

(see Figure 4.3). We were thereby particularly interested in their characteristics concerning 

cognitive, geographical, and institutional proximity. We did not consider social and 

organizational proximity because of missing data.10  

In the biotechnology industry, organizations are commonly assigned to a technological 

subfield: medicine and pharmacy, industrial processes, agriculture, and (bio)informatics 

(DaSilva, 2012). These fields represent distinct technological foci and systematic differences 

in the way R&D is conducted (Herrmann et al., 2012).  We constructed a simple measure of 

cognitive proximity based on this assignment. If two partners were assigned to the same 

category, they were perceived of as being cognitively more proximate than in the case they 

were active in different technological subfields. The variable COG PROX was given a value 

from 1 to 4 according to the assigned subfields11. 

 

 
10 In general, the data allowed us to compute organizational proximity because of the distinction between 

beneficiary and executing entity. If two collaborating entities were departments of the same beneficiary, they 

would have a higher organizational proximity. However, in the data set at hand, this setting is extremely rare 

(around 1%) and, thus, very likely to be insignificant anyway. 
11 Unfortunately, we could not assign a biotech subfield to every organization (see Table A4.2 in the appendix). 

Fortunately, the STERGM allows for excluding categories from the calculation, which we made use of when 
calculating the effect of cognitive proximity. 
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Figure 4.3: Homophilous two-path of organization 1 and 2 via Project 1 

 

The measure of geographic proximity (GEO PROX) is a categorical variable corresponding 

to the NUTS 3 region in which organizations are co-located. In Germany, NUTS3 regions 

correspond to 429 districts (Kreise), which are administrative areas ranging from cities such as 

Munich or Berlin to rural areas such as the Uckermark in East Germany (for additional Figures, 

see Table 4.2).  

 

Table 4.2: Figures of German districts (NUTS 3) (Source: Destatis, 2016) 

 Average Minimum Maximum 

Area (km²) 907 35 5,470 

Population 203,589 34,260 3,520,031 

Population density (per km²) 504 36 4,668 

 

Moreover, organizations were classified as being profit orientated (private firms) and as non-

profit organizations (universities, research institutes, and associations). This difference was 

captured by our measure of institutional proximity (INST PROX), which is categorical and 

distinguishes between firms (0), universities (1), and research institutes (2). 

 

4.4.4 Organizational node level variables 

Potential location effects of organizations situated in urban areas were approximated using 

data of the Federal Institute for Research on Building, Urban Affairs and Spatial Development. 

It classifies each German NUTS 3 regions as “urban,” “increasing urbanization,” or “rural.” 

The classification is based on the total population and population density (BBSR, 2015). We 

constructed the categorical variable (URBAN) as 0 for rural, 1 for increased urbanization, or 2 

for urban regions.  

The second variable at the node level approximated the size of organizations. As it was 

impossible to acquire the number of employees for each organization and year, we created a 

categorical variable (SIZE) indicating membership in different size classes. SIZE consisted of 
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the categories utilized by the Reconstruction Credit Institute (KFW, 2012) as well as Buchmann 

and Pyka (2015):   

 

Category 0: organizations with fewer than 50 employees. 

Category 1: organizations with 51 to 250 employees. 

Category 2: organizations with more than 250 employees. 

 

The third node level variable is EAST, which distinguishes organizations located in West 

(Category: 0) and East Germany (Category: 1). To the catching-up process of the East German 

economy, a large share of European and German subsidies is allocated there to facilitate this 

process. Thus, there might be a propensity to favor applications from organizations being 

located in cities formerly belonging to the German Democratic Republic (GDR). Moreover, 

Cantner and Meder (2008) discover that East German organizations participate more actively 

in R&D collaborations. 

As we sought to model interactions between specific variables (see Section 4.3.), we also 

considered the corresponding main effects at the node level. We therefore included node-level 

variables consisting of the categories of cognitive proximity (i.e., MEDICINE and 

AGRICULTURE with base INDUSTRIAL12) and the differentiation between types of 

organizations (i.e., UNI and RESEARCH INST with base FIRM)13. While surely being 

interesting on their own, due to the scope of the study, we primarily included these variables as 

control variables. 

 

4.4.5 Structural level variables 

At the structural level, four variables were considered.14 The effect of multi-connectivity 

was captured by the so-called geometrically weighted dyad shared partner statistic (GWDSP). 

A positive coefficient of this statistic suggests that actors tend to link in multiple ways (i.e., via 

multiple projects) to each other (Hunter et al., 2008). 

The second structural determinant is preferential attachment. We modeled this by making 

use of the variable GWDEGREE, which represents the geometrically weighted degree statistic. 

The variable is seen “as a sort of anti-preferential attachment model term” (Hunter, 2007: p7). 

 
12 Bioinformatics was excluded as only 25 organizations are assigned to this category over the complete timespan. 
13 As the categories of GEO PROX consist of approximately 80 regions, we excluded them as well, as it would have made the 

models too complex to calculate. 
14 Our two-mode network has no triads and STERGM currently does not support the consideration of a two-mode clustering 

coefficient as, e.g., described by (Opsahl, 2013). We will therefore not further elaborate on triadic closure, which does not 
mean that it is of no relevance. 
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If its coefficient is negatively significant at the actor level15, preferential attachment is a likely 

driver of network evolution. In contrast, there is no clear interpretation of a significant 

coefficient of GWDEGREE at the event level. It means that preferential attachment works at 

the project level, which lacks a theoretical foundation. Nevertheless, the effect was included to 

help the simulating of the network. 

The observed networks are characterized by high numbers of projects with three participants 

(see Figure 4.5). We considered this by including the variable B2DEG3, which added a statistic 

to the model counting how frequently B2-nodes (projects) have three links, i.e. three 

participants (Morris et al., 2008).  

The final structural network variable is EDGES. This variable should always be included 

when modeling a network with any ERG method. It equals the number of observed edges and 

helps in modeling the density of the observed network in the simulations (Broekel and Hartog, 

2013b). 

In the appendix, Table A4.2 presents the descriptives of all node and dyad level variables.  

 

4.5 Results and Discussion 

4.5.1 Verifying the model  

Before presenting the empirical results, it is important to address a number of issues that 

have to be taken into consideration before interpreting the results. For instance, there might be 

a potential bias connected to our data. For historic reasons, subsidized R&D projects frequently 

(but not exclusively) have a length of 36 months (see Figure 4.4). 

 

Figure 4.4: Frequencies of project length in months, n = 750 

 

 
15 STERGM allows for calculating GWDEGREE for both levels (actor and event). A significantly negative coefficient will be 

obtained if the network shows a power law degree distribution. It means that at the actor mode, few organizations participate 
in many projects. At the event mode, few projects have many participants in this case. 
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Accordingly, project lengths are not fully flexible, and organizations do not have full 

freedom in choosing a support scheme allowing for project lengths that meet their requirements 

(also see Section 4.4.2). In other words, this precondition dominates link dissolution. To 

evaluate the significance of this, we created a second network that eliminated all links of 

projects that terminated immediately after 36 months. Projects and participants that became 

isolates because of this circumstance were also deleted. The corresponding network consisted 

of 144 projects and 476 actors.  

There are two implications. Firstly, due to the predefined project lengths, we were less likely 

to obtain significant coefficients in the dissolution model, as project endogenous processes and 

conditions are “overruled” by these externally imposed conditions. In other words, link 

dissolution becomes an external event and hence cannot be explained by endogenous processes. 

Secondly, if significant coefficients are obtained or differences between the models for the full 

set of projects and those excluding links of 36 months are observed, these should be primarily 

interpreted as selection effects — i.e., partners choose specific support schemes considering the 

maximal time of subsidization when applying for grants.  

In general, the results do not change significantly when excluding the 36-month projects, 

which indicates, similar processes drive both networks’ evolution. A major difference is related 

to geographic proximity. It was not possible to find a converging model when considering the 

full set of projects. However, when excluding the 36-month projects, convergence was 

achieved, and we obtained reliable results. 

Besides convergence, STERGM involves finding the best model in a manual iterative trial-

and-error process (Broekel and Hartog, 2013b). Usually, a first estimation is used to calculate 

starting values entering the second estimation (similar to Goodreau (2007). The models’ 

goodness of fit is assessed via the degree distribution. Figures 4.5 and 4.6 plot the observed 

network’s degree distribution as a solid line and the 95% confidence interval of the distribution 

for the corresponding simulated networks as box-plots and light-grey lines. A solid line within 

the light-grey lines represents a model with a satisfying goodness of fit (Krivitsky and 

Goodreau, 2015). The figures reveal our models as being of sufficient overall quality because 

only small parts of the simulated degree distribution exist outside of the observed one (Ibid). 

The coefficients of the formation and dissolution model can be understood as odd ratios by 

taking the exponential. In the case of the formation model, a positive coefficient means that the 

establishment of a link is more likely. In contrast, in the dissolution model, a positive sign 

signals persistence of a link, i.e. the lower likelihood of dissolving (c.f. Krivitsky and Goodreau, 

2015). 
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Figure 4.5: Degree distribution of all the initial models 

 

 

Figure 4.6: Degree distribution of all the refined models 

 

4.5.2 Factors driving the formation of links 

The results of the formation model are presented in Table 4.3. The model with all links 

(initial) and the model excluding the 36-month links (refined) are very similar and do not 

contain conflicting results. The initial model, however, contains more significant coefficients 

and therefore serves as a basis for the interpretation. 

At the node level, INCR URBAN, and URBAN are significantly negative in Model 2, which 

indicates that in the second period (2002-2005), rural organizations participate in more joint 
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projects than urban ones. The variable is insignificant in the other models. The results are not 

in line with Hypothesis 1, which suggests urban organizations being more likely to form links 

due to urbanization externalities. We suspect an effect similar to what Illenberger et al. (2013) 

find for individuals. Organizations might compensate for the lower accessibility of partners 

with the higher acceptance of partners in rural areas. Alternatively, after the BioRegio initiative 

ended in 2005 (see, e.g., Dohse, 2000), support became less focused on urban regions, and rural 

regions gained importance in subsidization schemes. In any case, Hypothesis 1 is not confirmed, 

as organizations in urban regions are not more actively engaging in subsidized R&D 

collaboration than rural organizations. 

SIZE1 and SIZE2 obtain significantly positive coefficients in Model 1 and Model 2, 

respectively. Accordingly, medium-sized and large-sized firms have higher probabilities of link 

establishment in comparison to small firms (fewer than 50 employees). This fits with our line 

of argumentation in Section 4.2.1 regarding larger firms having more capabilities and 

opportunities to establish links. Our findings are in line with the results of Tether (2002), who 

argues that larger firms might benefit from their size in two ways: First, they are more attractive 

for cooperation partners (e.g., universities), and, second, they might force their suppliers into 

cooperation projects.   

The coefficient of EAST is significantly positive in Model 1. This supports the findings of 

Cantner and Meder (2008) – specifically, that East German organizations are more active in 

subsidized R&D-cooperation, which corresponds to the idea of a policy’s stronger support for 

these regions. 

At the dyad level, we found that COG PROX was significantly positive in all models. 

Organizations operating in the same subfields of biotechnology are more inclined to conduct 

joint R&D. Accordingly, Hypothesis 2 is confirmed, and our results add to the findings of 

Nooteboom et al. (2007) and Balland et al. (2013), showing that cognitive proximity is an 

important driver of R&D network formation.  

In addition to cognitive proximity, geographic proximity also plays a significant role in the 

formation of R&D cooperation. GEO PROX obtained a significant coefficient in the second 

refined model but remained insignificant in the first and third models16. Thus, in the second 

period, organizations tend to work together with partners located nearby, which supports 

Hypothesis 2. 

 

 
16 Including GEO PROX in Models 1 and 3 led to degenerated results. Thus, we decided to exclude it. Nevertheless, degeneracy 

itself is an interesting topic and needs further research.  
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Table 4.3: Results of the two-mode STERGM, formation. 

 Initial models¥ Refined models¥ 

 
 
 

Model 1 
1998 – 2001 
2002 – 2005 

Model 2 
2002 – 2005 
2006 – 2009 

Model 3 
2006 – 2009 
2010 - 2013 

Model 1 
1998 – 2001 
2002 – 2005 

Model 2 
2002 – 2005 
2006 – 2009 

Model 3 
2006 – 2009 
2010 – 2013 

Variables  Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) 

Node level 
MEDICINE 
(base: INDUSTRIAL) 

0.514 
(0.392) 

-0.209 
(0.238) 

-0.128 
(0.365) 

-0.0005 
(0.663) 

-0.298 
(0.417) 

-0.165 
(0.617) 

AGRICULTURE 

(base: INDUSTRIAL) 
1.124*** 

(0.411) 
1.208*** 

(0.240) 
-0.065 
(0.399) 

0.506 
(0.677) 

1.306*** 
(0.425) 

-0.517 
(0.726) 

UNI 
(base: FIRM) 

0.003 
(0.286) 

-0.068 
(0.185) 

-0.183 
(0.302) 

0.159 
(0.512) 

0.468 
(0.326) 

0.152 
(0.549) 

RESEARCH INST 
(base: FIRM) 

0.658** 
(0.273) 

-0.029 
(0.185) 

-0.013 
(0.327) 

0.646 
(0.486) 

0.237  
(0.351) 

-0.034 
(0.675) 

SIZE1 
(base: SIZE0) 

0.349 
(0.269) 

0.543*** 
(0.183) 

0.588** 
(0.293) 

-0.013 
(0.471) 

0.340 
(0.331) 

0.056 
(0.586) 

SIZE2 
(base: SIZE0) 

0.896*** 
(0.295) 

0.795*** 
(0.207) 

-0.065 
(0.378) 

0.506 
(0.512) 

1.084*** 
(0.377) 

-1.073 
(1.096) 

EAST 
(base: WEST) 

0.565* 
(0.308) 

-0.317 
(0.214) 

-0.611 
(0.421) 

1.263**  
(0.518) 

0.226 
(0.387) 

-0.320 
(0.809) 

INCR URBAN  
(base: rural) 

0.269 
(0.361) 

-0.483** 
(0.230) 

0.052 
(0.434) 

0.209 
 (0.572) 

-0.933** 
(0.428) 

-0.196 
(0.774) 

URBAN 
(base: rural) 

0.141 
(0.359) 

-0.777*** 
(0.222) 

-0.269 
(0.411) 

0.492 
(0.639) 

-0.954** 
(0.409) 

-0.929 
(0.929) 

Dyad level 
COG PROX 

 
0.226*** 

(0.045) 

 
0.185*** 

(0.032) 

 
0.290*** 

(0.071) 

 
0.344*** 

(0.073) 

 
0.422*** 

(0.069) 

 
0.389*** 

(0.149) 

INST PROX 0.115* 
(0.062) 

0.021 
(0.049) 

0.063 
(0.096) 

0.326*** 
(0.074) 

0.216*** 
(0.081) 

0.303 
(0.184) 

GEO PROX 
    

0.782*** 
(0.153) 

 

Structural level 
EDGES 

 
-7.166*** 

(0.629) 

 
-6.444*** 

(0.366) 

 
-7.202*** 

(0.610) 

 
-6.804*** 

(1.103) 

 
-4.691*** 

(0.745) 

 
-6.264*** 

(1.119) 

GWDSP, 0.3, fix -0.262*** 
(0.052) 

-0.130*** 
(0.031) 

-0.294*** 
(0.065) 

-0.579*** 
(0.099) 

-0.837*** 
(0.101) 

-0.551 
(0.149) 

GWDEGREEB1, 0.5, fix 4.187*** 
(0.451) 

3.663*** 
(0.322) 

3.748*** 
(0.363) 

6.278*** 
(0.856) 

4.998*** 
(0.561) 

3.462*** 
(0.686) 

B2DEG3 1.721*** 
(0.236) 

1.674*** 
(0.166) 

2.315*** 
(0.266) 

1.431*** 
(0.314) 

1.274*** 
(0.236) 

1.817*** 
(0.413) 

Null deviance: 57,320 on  
41,348 df 

179,014 on 
129,131 df 

168,117 on 
121,271df 

23,338 on 
16,385 df 

73,062 on 
52,703 df 

46,680 on  
3,367 df 

Residual Deviance: 2,533 on  
41,331 df 

4,996 on  
129,114 df 

881 on  
121,254 df 

1,064 on  
16,818 df 

2,147 on  
52,685 df 

-76 on  
33,656 df 

AIC 2,567 5,030 915 1,064 2,183 -42 

BIC 2,713 5,196 1,081 1,230 2,343 100 

 

Institutional proximity (INST PROX) is significantly positive in the first formation model, 

suggesting that organizations with the same institutional background are more likely to work 
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together. Hypothesis 3 is thereby confirmed. Due to less uncertainty regarding partner goals 

and behavior, organizations tend to select cooperation partners from the same institutional 

background (Ponds et al., 2007). 

Only one of the findings on variables at the structural level is in line with our expectations. 

All other factors excluded, the variable EDGES represents the density of the network and can 

be interpreted similar to an intercept. As the observed network is the consequence of a social 

process, it is typically less dense than exponential random networks leading to the negative 

coefficient of EDGES (Lufin Varas, 2007). 

Unexpectedly, GWDSP was significantly negative in all of the models. This contradicts the 

multi-connectivity proposition of organizations’ tendency to connect through several ways in 

order to decrease link dependencies. In our case, organizations rarely engaged with the same 

organizations in multiple subsidized R&D research projects, which appears to be a valid, but 

still unexpected, strategy to maximize learning and inter-organizational knowledge diffusion. 

While a potential explanation might be a policy, penalizing collaborations of the same 

organizations in its subsidization programs, we are not aware of such a rule. 

GWDEGREEB1’s coefficient gained a significantly sign; however, its sign is positive, which 

contradicts the preferential attachment process (Hunter, 2007): Organizations are less likely to 

gain additional links when they are already well connected. We clearly must reject Hypothesis 

4 with respect to the link formation model. There are three potential reasons for this: Firstly, 

organizations are limited in their collaboration capacities, thus implying that they constantly 

face a trade-off between maintaining and acquiring new links through projects. Similarly, they 

might not have the capacity or willingness to apply to multiple subsidization programs within 

the same time period. Secondly, subsidization programs are more focused, and there is only a 

limited overlap between organizations’ activity portfolios and support programs. Thirdly, a 

policy might favor subsidizing a broad range of organizations and therefore penalizes 

organizations already active in numerous projects.  

 

4.5.3 The dissolution models 

As expected (see Section 4.5.1), we found fewer significant coefficients for the dissolution 

models (see Table 4.4). We believe that this is due to the relatively low variance in link duration, 

which is strongly constrained by the design of the underlying policies (4.5.1). Nevertheless, as 

argued in Sections 4.4.1 and 4.5.1, significant results are still possible and interesting. 

The coefficient of RESEARCH INST is significant and negative in Model 3. This finding 

implies that research institutes are either leaving projects earlier (unlikely) or initially opting 
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for shorter projects (more likely) than firms. As research institutes are inclined to exchange 

knowledge with diverse sources (Ponds et al., 2007), shorter collaboration appear to be more 

attractive to these organizations. This also allows for the establishment of a diverse network of 

collaboration partners and for the maximizing of access to knowledge from different subfields. 

The same argument can be brought forward regarding universities. It might also be the case, 

however, that both types of organizations relate their R&D projects to the completion of PhD 

theses (which usually require about three years) and therefore target the 36-month projects. In 

the case of universities, some support for this can be found in period 3, in which the coefficient 

is positively significant. In other words, once the 36-month projects are excluded (which are 

likely to relate to PhD projects), universities are less likely to be engaged in shorter projects 

and collaboration. 

In the Model 3, INCR URBAN is significantly negative, meaning that organizations located 

in urban areas are more likely to dissolve links in comparison to organizations in rural areas. 

Again, there might be multiple explanations for this. Organizations in urban regions are known 

to have a large selection of (nearby) potential collaboration partners, which organizations in 

rural regions lack (Meyer-Krahmer, 1985). Accordingly, they might be more interested in 

shorter projects in order to exploit and thereby make use of this potential. Organizations in rural 

regions might also be less attractive collaboration partners because of lower reachability, less 

prestigious names, etc. This lack of attractiveness has to be compensated by larger subsidies, 

i.e. larger and longer R&D projects. Additionally, organizations in urban and rural regions 

might have different technology foci. Shorter projects are more attractive for organizations 

seeking to remain at the technology frontier, which implies making quick progress and 

constantly exploring new developments on a short-term basis. However, organizations in rural 

regions are less likely to be active in the most recent and most complex technologies 

(Hägerstrand, 1967; Balland and Rigby, 2017). Hence, shorter projects are not as attractive for 

them, thus leading to lower link dissolution probabilities. Future research should more 

thoroughly address this issue, such as by applying qualitative methods. 
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Table 4.4: Results of the two-mode STERGM, dissolution. 

 Initial models¥ Refined models¥ 

 
 
 

Model 1 
1998 – 2001 
2002 – 2005 

Model 2 
2002 – 2005  
2006 – 2009 

Model 3 
2006 – 2009 
2010 - 2013 

Model 1 
1998 – 2001 
2002 – 2005 

Model 2 
2002 – 2005  
2006 – 2009 

Model 3 
2006 – 2009 
2010 - 2013 

Variables Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) 

Node level 
MEDICINE 

(base: INDUSTRIAL) 
0.054 

(1.671) 
- 0.103 
(0.407) 

-0.880** 
(0.310) 

0.417 
(1.151) 

-0.393 
(0.515) 

-0.433 
(0.403) 

AGRICULTURE 

(base: INDUSTRIAL) 
0.454 

(1.665) 
-0.129 
(0.419) 

-0.167 
(0.328) 

0.706 
(1.338) 

-0.090 
(0.523) 

-0.578 
(0.419) 

UNI 
(base: FIRM) 

0.203 
(1.177) 

-0.692** 
(0.289) 

0.136 
(0.259) 

0.568 
(0.998) 

-0.370 
(0.359) 

0.688** 
(0.344) 

RESEARCH INST 
(base: FIRM) 

-0.157 
(1.043) 

0.175 
(0.298) 

-0.817*** 
(0.271) 

1.387 
(1.154) 

0.257 
(0.408) 

-1.570*** 
(0.434) 

SIZE1 
(base: SIZE0) 

-0.987 
(1.102) 

0.262 
(0.293) 

-0.196 
(0.269) 

-0.758 
(0.981) 

-0.356 
(0.372) 

-0.342 
(0.358) 

SIZE2 
(base: SIZE0) 

-0.485 
(1.116) 

-0.036 
(0.317) 

-0.388 
(0.295) 

-0.884 
(1.050) 

-0.042 
(0.429) 

0.078 
(0.295) 

EAST 
(base: WEST) 

-1.354 
(1.063) 

0.197 
(0.349) 

-0.102 
(0.316) 

-1.747 
(1.056) 

0.027 
(0.442) 

0.201 
(0.436) 

INCR URBAN  
(base: RURAL) 

-0.664 
(1.399) 

0.604 
(0.391) 

-0.842** 
(0.452) 

-0.859 
(1.222) 

-0.541 
(0.529) 

-2.040*** 
(0.523) 

URBAN 
(base: RURAL) 

-0.788 
(1.455) 

0.197 
(0.402) 

-0.476 
(0.336) 

-0.689 
(1.281) 

-0.713 
(0.512) 

-1.154** 
(0.485) 

Dyad level 
COG PROX 

 
0.03 

(0.349) 

 
0.039 

(0.102) 

 
-0.129 
(0.083) 

 
-0.259 
(0.361) 

 
-0.161 
(0.170) 

 
-0.195 
(0.161) 

INST PROX 0.109 
(0.366) 

-0.248* 
(0.126) 

-0.152 
(0.095) 

0.070 
(0.348) 

0.086 
(0.149) 

-0.415** 
(0.196) 

GEO PROX 0.32 
(0.848) 

0.148 
(0.231) 

0.335 
(0.257) 

0.128 
(0.840) 

0.213 
(0.278) 

0.375 
(0.44) 

Structural level 
EDGES 

 
5.295** 
(2.638) 

 
1.943*** 

(0.715) 

 
2.675*** 

(0.582) 

 
2.606 

(2.631) 

 
3.261** 
(1.151) 

 
3.537*** 

(0.992) 

GWDSP, 0.3, fix -0.003 
(0.267) 

-0.029 
(0.074) 

0.115** 
(0.051) 

0.354 
(0.375) 

-0.302** 
(0.139) 

0.187 
(0.164) 

GWDEGREEB1, 0.3, fix -0.384 
(1.127) 

-0.446 
(0.316) 

-0.465 
(0.283) 

0.137 
(1.488) 

-0.405 
(0.579) 

-0.459 
(0.505) 

GWDEGREEB2, 0.3, fix -6.800*** 
(1.860) 

-4.865*** 
(0.540) 

-5.208*** 
(0.445) 

-3.978** 
(1.621) 

-5.398*** 
(0.862) 

-5.911*** 
(0.161) 

Null deviance:  327 on 
236 df 

650 on 
469 df 

952 on 
687 df 

228.7 on 
165 df 

400 on 
289 df 

952 on 
687 df 

Residual deviance:  48 on 
218 df 

467 on 
451 df 

568 on 
669 df 

47 on 
147df 

-72,559 on 
271 df 

568 on 
669 df 

AIC:  84 503 604 83 -72,523 604 

BIC:  146 578 686 139 -72,457 686 

NAs have been excluded. 
* significant at the 90% level, ** significant at 95% level, *** significant at 99 % level 
¥ Initial models including the whole network, refined models without links of 36-months length. 
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We also determined that the dyad-level variable INST PROX was negatively significant in 

the second model. This contradicts Hypothesis 6, in which we argued that institutional 

proximity is unlikely to influence link dissolution. Here, the negative sign inclines partnerships 

between profit and non-profit organizations to last longer than between profit and profit 

organizations and non-profit and non-profit organizations. A straightforward explanation is that 

projects involving partners with different institutional backgrounds require more time (and 

hence apply for longer projects) than partners operating within the same institutional framework 

(Boschma, 2005). 

At the structural level, EDGES and GWDEGREEB2 were highly significant in all the models. 

EDGES is interpreted as in the formation model with its significantly positive coefficient 

pointed toward higher network density than in a random network. The effect of preferential 

attachment is also present in the duration of links. The significantly positive coefficient of 

GWDEGREEB2 implies links established between new organizations and projects that are 

already well embedded in the network are less persistent. We interpret this as being primarily 

a technical effect. Projects and organization in the network that hold central positions do so 

because they are participating in large projects. Note that we established earlier that few 

organizations are active in multiple projects at the same time. Hence, when the project is 

completed, they will lose most if not all their links at the same time. This number will naturally 

be larger than in case of less central organizations and projects (because otherwise their 

centrality would not be lower). Accordingly, prominence in the network caused by participation 

in larger projects (in terms of the number of participants) tends to imply larger dissolution rates 

of links. The results for the other structural network variable GWDSP are inconclusive as its 

coefficient alters between the models. Again, we must reject Hypothesis 4, network structural 

effects do not relate in the expected way to the evolution of the network. This is most likely, 

partly caused by the endogenous dissolution processes, which are strongly impacted by the 

(externally fixed) conditions of the support programs. 

 

4.6 Conclusion 

In urban studies and related fields, dynamic network analysis has become a crucial tool to 

understand the evolution of different types of networks in time and space. In particular, studies 

analyzing spatial knowledge networks have increasingly relied on dynamic network analysis 

(Glückler, 2007; Boschma and Martin, 2010; Ducruet and Beauguitte, 2014; Glückler and 

Doreian, 2016). Interestingly, most existing studies have thereby focused on the formation of 

links. However, as Glückler (2007) put forward, network evolution is a twofold procedure that 
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“should be conceived as the result of endogenous mechanisms of network formation and 

dissolution” (Ibid: p. 627). Accordingly, in order to fully understand the evolution of spatial 

networks, both processes need to be considered in empirical investigations.  

The chapter contributes to the literature by discussing the separable temporal exponential 

random graph model (STERGM) as a novel and interesting tool in this context. We demonstrate 

its use for the analysis of the evolution of spatial (knowledge) networks by presenting a case 

study on the (subsidized) R&D collaboration network of the German biotechnology industry. 

In particular, we highlight the STERGM’s capacity to directly analyze two-mode networks, 

which avoids the sometimes questionable one-mode projection (see also Liu et al. 2015). In 

addition to the dynamic analysis and the possibility of disentangling formation and dissolution, 

this feature was frequently argued to be the primary benefit of using stochastic actor-oriented 

models (see, e.g., Liu et al., 2013). 

Besides advocating the use of the STERGM, the chapter also aimed at exploring the roles 

played by location (urban – rural) and different types of proximities (cognitive, institutional, 

geographic) for the formation and dissolution of spatial knowledge links, with the latter having 

received little attention in the past. 

Table 4.5 provides an overview of the main results. Overall, the results of the formation 

models are in line with the theoretical expectations. Interestingly, the same cannot be said for 

the dissolution models. In these cases, we were not able to find solid evidence for location and 

the proximities to strongly impact link dissolution.  

 

Table 4.5: Summary of the main results 

 Formation Dissolution 

Hypothesis Variable Result 
Supporting  
hypothesis? 

Result 
Supporting 
hypothesis? 

Node level      

H1 URBAN Negative relationship No Insignificant No 

Dyad level       

H2 COG PROX Positive relationship Yes Insignificant No 

H2 GEO PROX Positive relationship Yes Insignificant No 

H3 INST PROX Positive relationship Yes Negative relationship No 

 

However, we observed that these factors seem to vary in their influence on formation and 

dissolution. If we expand our view beyond our relatively narrow hypotheses, we find 

confirmation for variations in the relative importance of factors for link formation and 
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dissolution; some factors are more crucial for the formation while others impact link dissolution 

to a greater extent. For instance, institutional proximity, i.e. whether organizations cooperate 

within the same (university, applied research, or profit) framework, makes link formation more 

likely. At the same time, it also facilitates link dissolution. Accordingly, simply inferring from 

knowledge on formation processes on dissolution dynamics is invalid, and we need to analyze 

both processes separately.  

Our results also show that factors’ influence on network evolution is not time-invariant but is 

instead conditional on the current framework in which an industry operates. While previous 

studies argued for the relevance of industry life-cycle phase and thereby endogenous conditions 

(Balland et al., 2013; Ter Wal, 2014), our analysis (due to the nature of the employed data) 

highlights the relevance of external circumstances — in this case, variations in the R&D policy. 

As is typical for empirical studies, this case study used for demonstrating the applicability 

of STERGM is subject to certain limitations. First, the STERGM was only recently developed, 

which implies some shortcomings that will certainly be addressed in the future. Currently, 

continuous variables at the dyad level are difficult to implement. This is particularly relevant in 

the context of spatial networks as geographic proximity is usually modeled in a continuous way. 

As of now, researchers working with the STERGM need to work with categorical definitions. 

Second, the robustness of the simulated networks, i.e. of the model converges, depends on a 

variety of factors that are hard to isolate (e.g., network size and continuous variables such as 

the amount of funding). This implies considerable difficulties in terms of finding the best-fitting 

model. Third, the discrepancy between methodological possibilities and data availability is the 

most apparent shortcoming of our study. This chapter highlights and promotes the STERGM’s 

feature of disentangling link formation and dissolution processes. However, when looking at 

the most commonly used data for constructing spatial networks (such as that in the present 

chapter), it turns out that most of the data encounter the same issues: either there is no (precise) 

available information on the duration of links (e.g., patent data, co-authorship data) or, if this 

information does exist, it might be subject to external conditions (e.g., relations established on 

the basis of the subsidization of joint R&D projects). Accordingly, while the methodological 

precision and possibilities to explore (spatial) network evolution continuously increase, the 

same cannot necessarily be said about the available data. Hence, researchers need to be aware 

of the gap existing regarding the methodological possibilities and what can actual been done 

with the data at hand. The opportunity to explore longitudinal two-mode network data with 

dynamic network analyses is hence a step in the right direction as it moves the methodological 

side closer to the type of data available. Nevertheless, we clearly pledge for more efforts to be 
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directed toward the collection of data on link dissolution, as otherwise our understanding of 

knowledge network evolution will remain constrained. 

Despite these shortcomings, some policy implications can be derived from the present study. 

Firstly, our results indicate that institutional proximity is still an important determinant of link 

formation. Given the wide belief in the necessity to involve heterogeneous sets of actors in 

R&D projects and that spillovers between the non-profit and profit sectors are to be increased 

(see, e.g., triple helix literature (Etzkowitz and Leydesdorff, 2000)), these goals are not yet 

visible in our results. Profit organizations still seem to prefer to work with other profit 

organizations, and non-profit organizations are more frequently engaged with other non-profit 

organizations.  

Secondly, as with other related studies, we found that proximities are important drivers of 

subsidized network formation. One can argue that these represent the “natural” way in which 

networks evolve without external influences. This is confirmed in many analyses on non-

subsidized knowledge networks (Glückler, 2010; Balland et al., 2013; Ter Wal, 2014). Hence, 

networks influenced by a policy and those that are not influenced by such evolve in the same 

manner — i.e., they have the same factors driving their evolution. If this is the case, it may lead 

one to wonder why policy is providing subsidies for collaboration in the first place. When a 

policy supports the same kind of interactions that evolve independently of it, in the best of all 

cases, it merely increases the general magnitude of collaborations. However, it does not impact 

their structural composition. This particularly concerns cognitive proximity, which makes the 

establishment of projects generating significant novelty less likely (Boschma, 2005; 

Nooteboom et al., 2007). In this respect, this chapter calls for a reconfiguration of the R&D 

subsidization policy. 
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Appendix  

4.A1 Network characteristics 

Table A4.1: Network characteristics 

Model Networks 
All 

nodes 

Project 
nodes 

Organizational 
nodes 

Links Density 

Initial networks       

1 No. 1 481 113 368 236 0.0020 

 No. 2a 481 113 368 494 0.0040 

2 No. 2b 816 216 600 494 0.0014 

 No. 3a 816 216 600 687 0.0021 

3 No. 3b 789 211 578 687 0.0022 

 No 4 789 211 578 530 0.0017 

Refined networks       

4 No. 1 318 68 250 165 0.0032 

 No. 2a 318 68 250 295 0.0059 

5 No. 2b 542 128 414 289 0.0019 

 No. 3a 542 128 414 353 0.0024 

6 No. 3b 425 107 318 353 0.0039 

 No 4 425 107 318 226 0.0025 
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4.A2 Variable descriptives 

Table A4.2: Variable descriptives (initial network). 

Variable Category Category Name Description Observations 

COG PROX 1 MEDICINE Medicine 272 

 2 AGRICULTURE Agriculture 175 

 3 INDUSTRIAL Industrial processes 86 

  4 BIOINFORMATICS Bioinformatics 25 

 NA   94 

INST PROX 0 FIRM Private 191 

 1 UNI Universities 283 

  2 REASEARCH INST Research Institutes 178 

SIZE 0 0 < 50 employees 289 

 1 1 < 250 employees 134 

 2 2 > 250 employees 229 

EAST 0 WEST West German region 548 

  1 EAST East German region 104 

GEO PROX 
83 different 
categories 

 
Organization sharing a 

NUTS 3 region 

Max: 30 
Min: 1 

Average: 3.6 

URBAN 0 RURAL Rural region 98 

 1 INCR URBAN Increasing Urbanization 175 

 2 URBAN Urban region 379 
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Pulled or pushed? The spatial diffusion of wind 

energy between local demand and supply 

 

Abstract 

This chapter contributes to and connects the literature on spatial innovation diffusion, 

entrepreneurship, and industry life-cycles by disentangling the relevance of local demand and 

sup-ply in the adoption of wind energy production. More precisely, we evaluate the strength of 

local supply-push effects with those of local demand-pull over the course of the evolution of an 

industry and its main product evolution. 

By using Bayesian survival models with time-dependent data of wind turbine deployment 

and firm foundation for 402 German regions between the years 1970 and 2015, we show that 

the spatial evolution of the German wind energy industry was more strongly influenced by local 

demand-pull than local supply-push processes. New producers are found to emerge in proximity 

to existing local demand for wind turbines. No evidence was found for producers being able to 

create local demand for their products by pushing the adoption of the technology in their 

regions. 
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5.1 Introduction 

A growing literature is investigating the emergence and evolution of industries across space 

and time. The economic geography and regional science literature usually focuses on the role 

of the (local) supply side in the emergence and evolution of industries, emphasizing 

agglomeration externalities, path dependence, windows of local opportunity, and related variety 

(Bergek and Jacobsson, 2003; Boschma and Wenting, 2007; Fornahl et al., 2012). Notably, 

while the demand side has received much less attention in the field, its relevance has been 

highlighted in the diffusion of innovation literature originating from Rogers (2003) and 

(Hägerstrand, 1952, 1965, 1966). More recently, the (primarily sociological) literature on 

technology transition has underlined demand processes as crucial for the emergence and 

expansion of industries and their products17 (Geels, 2004). In particular, in this literature, local 

demand (in combination with local institutions) is argued to create (market) niches within which 

new industries and products can grow before facing the “full” competitive forces of non-local 

markets (Schot and Geels, 2008). 

Hence, both lines of argument emphasize the role of local demand and supply processes for 

the emergence and growth of industries. However, while a substantial empirical literature exists 

assessing the role of regional supply-side factors for industries’ emergence, empirical findings 

on the importance of local demand are less extensive. In addition to both literature streams 

paying more attention to the early stage on industries’ developments, empirical studies in these 

fields rarely analyze demand and supply factors side-by-side (Justman, 1994). Accordingly, it 

is still not well understood how local demand relates to the emergence and concentration of 

industries, and to what extent industries may themselves contribute to the activation and 

formation of local demand. 

The present chapter contributes to this debate by investigating how industries’ evolution is 

shaped by local supply-side conditions (i.e. manufacturers) and the spatial distribution of 

demand. In the context of grand societal challenges, such as climate change and the associated 

transition toward renewable energies, demand becomes particularly important as it enables 

producers to learn about these new and changed consumer needs as well as shifts in their 

preferences (Martin et al., 2019). Therefore, this chapter evaluates the (statistical) impact of 

local wind turbine producers on regional wind turbine installation and the extent to which 

existing regional wind turbines stimulate the emergence and extension of local wind turbine 

production. Extending the work at the level of product innovation (e.g. Brem and Voigt, 2009), 

 
17 For the sake of readability, we stick to the term “product”. However, our argumentation is also valid for new 
technologies. 
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we compare the contribution of local supply-push and local demand-pull processes to the 

emergence and evolution of the industry over multiple stages of its life-cycle. 

For our empirical analysis, we use data on wind turbine deployment and firm foundation for 

402 German regions for the years 1970–2015 and employ a Bayesian event-history analysis 

(Zhou and Hanson, 2018). To analyze both the supply and demand side, we first explain the 

spatial diffusion of wind turbines considering the location of manufacturers. Second, we 

investigate the location decisions of manufacturers using the (regionally) existent and future 

installments of wind turbines as approximations of local demand. Our results show that 

manufacturers emerge more frequently in places with already existing wind turbine 

installations. Hence, local supply-push factors, in the form of local niche building, are identified 

to be less relevant while local demand-pull plays a greater role. 

The chapter is structured as follows: Section 5.2 gives an overview of the underlying 

theoretical arguments, building on the literature of economic geography, innovation, and 

transition studies. Section 5.3 describes the evolution of the German wind industry. The 

empirical design of our study is presented in Section 5.4. Section 5.5 shows the results and 

Section 5.6 concludes with a discussion of the results, shortcomings, and future research. 

 

5.2 The emergence and evolution of industries in time and space 

5.2.1 Emergence 

To explain the spatial origins of new industries, Scott and Storper (1986) and Storper and 

Walker (1989) developed the Window of Locational Opportunity (WLO) concept. Here, so-

called “trigger events” mark the starting point for the emergence of new industries in specific 

locations. The industry’s initial locations are distributed relatively arbitrarily and unpredictably, 

as their needs in terms of resources and skills are diverse and distinct from the older existing 

industries (Boschma and Lambooy, 1999). Consequently, emerging industries are characterized 

by relatively high degrees of freedom in terms of location. In later extensions of the concept, 

the assumption of the randomness of locations was revised with greater importance assigned to 

regional conditions (Boschma and Lambooy, 1999; Fornahl et al., 2012). In particular, scholars 

have argued that the likelihood of new industries emerging in regions grows when related 

industries are already present (Boschma and Frenken, 2011). Technological relatedness thereby 

refers to a certain but not complete cognitive overlap, similarity, and complementarity of core 

technologies, and potential shared development history (Frenken et al., 2007). The presence of 

related industries ensures the availability of required skills, human capital, infrastructure, and 

collaboration partners. The process of industry emergence and expansion on the basis of 
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regional technologically-related industries is referred to as regional branching (Boschma and 

Frenken, 2011) and manifests itself through various diversification mechanisms (Asheim et al., 

2011; Buenstorf et al., 2015). For example, the diversification of existing firms from related 

industries has been highlighted as a catalyst for the first regional entry of new industries (Helfat 

and Lieberman, 2002, Klitkou and Coenen 2013). Regional branching processes are also fueled 

by spin-off activities with entrepreneurs from related industries (Boschma and Wenting, 2007; 

Klepper, 2007). Both mechanisms, related diversification and spin-offs, have a strong regional 

dimension in that firms tend to establish new activities near to existing operations, and spin-

offs tend to be located close to their parent company. Other processes fueling regional 

branching are spatially limited labor mobility and knowledge diffusion in social networks, 

which are also more intense within relatively small-scale areas and among related industries 

(Asheim et al., 2011). 

 

5.2.2 Concentration 

While some regions manage to become the initial locations of new industries, they do not 

necessarily benefit from their subsequent growth as industrial concentration processes 

frequently lead to industrial agglomeration in only a few regions. But which regional 

characteristics favor such concentration processes? The literature addresses this question 

among others with concepts such as industrial districts (Marshall, 1920), Italian industrial 

districts (Pyke et al., 1990), clusters (Porter, 1998), and innovative milieus (Camagni, 1995).18 

In evolutionary economic geography, spin-offs and agglomeration externalities are emphasized 

as explanatory mechanisms (Arthur, 1994; Klepper, 2006). Spin-off processes are transmission 

channels in which routines and knowledge diffuse from parent organizations to new enterprises. 

The mechanism has features of a self-reinforcing, snowball-like process, as the likelihood of 

further spin-offs depends on the number of existing firms in a region. The importance of spin-

off dynamics in the emergence of regional industry clusters has been demonstrated by numerous 

examples, such as the information and communication technology industry in Silicon Valley 

(Saxenian, 1994) and the automotive industry in Detroit (Klepper, 2007). 

In addition to spin-off processes, agglomeration externalities may play significant roles in 

regional industry concentrations. These externalities emerge from the co-localization of 

economic actors (Neffke et al., 2011) and represent the spatial connotation of increasing returns 

(Krugman, 1991). It is customary to differentiate between Jacobs and Marshall externalities, 

 
18 It is beyond the scope of the present chapter to present and discuss these concepts. An overview can be found in 
(Brenner and Mühlig, 2013: 482 ff.).    
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where the first refers to externalities resulting from the spatial concentration of economic actors 

in different activities and the latter relates to effects resulting from the agglomeration of firms 

in the same sector (Boschma and Wenting, 2007). In addition, urban regions may offer 

advantages to young industries, as their size and greater economic diversity make firms more 

able to find generic resources, among which are human capital, services, and infrastructure 

(Hoover and Vernon, 1962). The discussion of these types of externalities has recently been 

extended to include a more dynamic approach, which considers industries not only being 

exposed to regional conditions but also being able to contribute to their development. This is 

taken up in the concept of related variety, which highlights concentration-promoting 

externalities that often emerge from the agglomeration of existing, related industries (Boschma 

and Wenting, 2007; Boschma and Frenken, 2011). It highlights mutual adaptation processes 

between new industries and their regional environment. For example, research and development 

(R&D) investments generate industry-specific knowledge and employees gain industry-specific 

skills through on-the-job learning. As an industry becomes more established, the specific 

resources that are created increase in importance and may even reach a critical mass such that 

increasing demand for them leads to the emergence of an efficient "local production 

environment" (Boschma and Lambooy, 1999). This may stimulate regional branching processes 

or attract further firms from related industries and, hence, may give rise to self-reinforcing 

processes according to the principle of cumulative causation (Myrdal, 1957). From studies 

covering the multiple development phases of industries, it has been observed that the relevance 

of the different processes and factors (i.e. branching, related variety, spin-offs, and 

agglomeration externalities) changes. Moreover, the effect of spin-off processes with an 

industry-specific background is less relevant for industry concentration in the development 

phase of an industry due to the (still) low potential of the parent companies—at this stage, 

related industries are more significant (Boschma and Wenting, 2007). A large number of 

empirical studies confirm these processes, showing the path-dependent emergence and 

development of industries in space (e.g. Balland et al., 2013; Breul et al., 2015). For instance, 

Neffke et al. (2011) show that young industries benefit from Jacobs externalities, whereas more 

mature industries profit more strongly from Marshal externalities. 

 

5.2.3 The creation of local technological niches 

The literature reviewed in the previous subsection noticeably pays more attention to 

“supply” or “push” dynamics. That is, the likelihood of industry emergence and spatial 

concentration are primarily explained based on the availability of “input factors” such as human 
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capital, infrastructure, resources, knowledge, and the presence of related competencies. While 

not absent, local demand and supply factors have received less explicit attention in theoretical 

arguments as well as in empirical studies. For instance, the presence of local customers, for 

example, in the form of related industries positioned at later stages of the value chain, is clearly 

acknowledged in the discussions on related diversification and urbanization externalities. Yet, 

few discussions are found in this literature stream on the presence of potential end-users in 

regions and how these may contribute to the emergence of an industry or its spatial 

concentration. 

In the neoclassical models of Weber (1909) and later Myrdal (1957), it is argued that demand 

is an important factor for the location decision of firms and hence for the spatial distribution of 

industries. However, both argue that demand is an indirect factor for location decisions as 

demand has a positive effect on supply-side factors. More recently, a more dynamic view of the 

demand side has been put forward in transition studies (Geels, 2004; Schot and Geels, 2008). 

Transition studies build upon the notion of institutional embeddedness in socio-technical 

systems (STS). These include three elements: production, diffusion, and the use of technology 

including both supply and demand (Geels, 2004). These subsystems shape and are shaped by 

the actions of actors on three different but interrelated levels: the “technological niche,” “the 

socio-technical regime,” and “landscape” (Geels and Schot, 2007). Geography enters by 

combining the socio-technical dimension with that of socio-spatial embeddedness (Truffer and 

Coenen, 2012). More precisely, it takes a “spatially informed, co-evolutionary transition 

model” (Ibid: 11) that considers the evolution of new industrial niches as an asymmetric process 

of regional development. Hence, when analyzing the emergence of new technological niches, 

not only the regime and technological landscape need to be looked at, but the regional context 

in which the niches are built up as well. 

When new products are pushed into the market (supply-push or technology push) (Brem and 

Voigt, 2009), the new technology is usually superior to existing products in some way and 

therefore has the potential to create its own demand. However, few customers are willing to 

buy and test the product. Only “innovators” or “early adopters” are willing to take a risk by 

spending money on unknown products (Rogers, 2003: 22). Consequently, demand is usually 

too low (e.g., due to high production or utilization costs) for new products to sustain themselves 

in fully competitive environments (Geels and Schot, 2007). The emergence of “technological 

niches” is therefore critical for their survival. These “technological niches” are a kind of 

protected area and include a network of supportive actors (Schot and Geels, 2008). Jacobsson 

and Johnson (2000) called these actors partly “prime movers”, who contribute to niches by 
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raising awareness, undertaking investments, providing legitimacy, and facilitating the diffusion 

of new products. In particular, inventors and producers of new products play a decisive role in 

the formation of those supportive networks and niches as they “shape the selection process itself 

by setting up special programs in R&D settings or demonstration projects” (Schot and Geels, 

2008: 539). 

Support networks tend to be place specific, as geographical proximity between contributing 

actors facilitates interaction and coordination possibilities, which in turn help the network to 

form and grow. If successful, a support network will expand in size (in terms of actors and 

space) and establish its own local institutions, routines, and dynamics (Coenen et al., 2012) 

after which the niches might reach the stage of a regime (Essletzbichler, 2012). Besides 

supportive networks, geographic proximity is also important for the local demand side because 

prime movers frequently create new niche markets that are geographically separated from the 

main market by establishing “local practices” (Geels and Deuten, 2006). Hence, markets for 

new products are likely to be located in geographic vicinity to their producers, as these may 

have created the markets themselves. Moreover, lacking established marketing and distribution 

channels, the diffusion of knowledge about these new products tends to be hampered by 

geographic distance (Hägerstrand, 1965). In some instances, this may be strengthened by new 

products’ limited transportability when product-specific transportation infrastructure is 

required and needs to be established first. Hence, in the early stages, the possibilities of serving 

geographically large-scale markets may be significantly reduced. Over time, infrastructure and 

distribution, as well as marketing channels, will be built up, and consumers at larger geographic 

distances can be served. As a prerequisite, the establishment of local technological niches 

including local demand is essential. In this case, it is the emergence of new products that create 

their own local demand and thereby shape the spatial distribution of industries. Put more 

bluntly, these arguments suggest that the spatial distribution of supply shapes the subsequently 

developed spatial distribution of demand. Noticeably, the creation or activation of local demand 

by the supply side is particularly relevant in the early, emergence stage of a product or industry. 

However, another relationship between demand and supply may be of greater importance in 

other stages. 

 

5.2.4 Regional demand as a pull-factor 

According to the STS literature, demand rises when a certain socio-technical regime is not 

in a state of equilibrium, in other words, the current technology does not fit or satisfy user 

preferences. Such an imbalance might originate from the socio-technical landscape (e.g., new 
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dominant lifestyles) which can “modify the direction of development paths and innovation 

activities” (Geels and Schot, 2007: 406). According to Essletzbichler (2012), these landscapes 

are “ […] multiple selection environments operating on various spatial scales” (p. 798). Part of 

the variations in landscapes are regional differences in demand and consumer preferences. 

Understanding these preferences is important for the success of a product and its producer. The 

producer may learn about consumer preferences and their changes through interactive and 

collaborative learning with consumers and users (Martin et al., 2019). This is particularly the 

case for industries in which innovation processes are strongly linked to doing, using, and 

interacting (DUI) (Jensen et al., 2007). This applies to the early phases of the development of 

the wind industry when synthetic knowledge was combined with experience-based skills and 

crafts. This "bricolage" process is described in detail by Garud and Karnoe (2003). 

For instance, the size of regions may matter in this context. If potential early adopters make 

up a small share of the population, the absolute initial regional demand for products will scale 

with the size of the population. Moreover, given the smaller distances between potential 

consumers, information about a new product will diffuse faster within the region. Put 

differently, larger local technological niches (at least from a demand perspective) are more 

likely to be formed in urban areas than in rural ones, which is in line with the work of 

Hägerstrand (1965). However, size is not the only regional characteristic that may matter in this 

context. Regions also differ in accumulated experiences and the presence of tacit knowledge 

with respect to products, as well as in actors’ propensity share this knowledge among producers 

(Martin et al., 2019). In addition, existing infrastructure, natural resource endowments, social 

and cultural capital, wealth and culture may also translate into regional differences in demand, 

making specific regions more attractive for producers. 

Being proximate to demand is particularly attractive when transaction and transportation 

costs are significant. In such cases, firms may choose to locate close to the demand to maximize 

profit and, hence, demand may “pull” firms to specific locations (Weber, 1909). However, 

transportation costs have been decreasing on average in recent decades for most products, 

suggesting that this argument might have lost significance. However, this is not true for all 

goods. If trucks and heavy-duty transportation are necessary, for example, if the buyer is located 

in an inaccessible location or if the transport infrastructure is inappropriate, transportation costs 

may still be of relevance (Ashwill, 2003). Additionally, if components are fragile and upheaval 

might damage the product, transportation costs tend to rise as well (Kammer, 2011). 

Accordingly, for some goods and locations, transportation costs are still highly relevant. In 
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these cases, it is economically more favorable for manufacturers to produce in geographical 

vicinity to demand. 

Other factors that can influence the location decision process of firms are the public sector 

and policy. First, these may create additional demand, such as through public tenders or 

procurement (Edler and Georghiou, 2007). Second, by offering tax reductions and subsidies, 

policymakers can support the development of specific industries. For instance, public tenders 

that are combined with “local-content requirements” are direct monetary effects that shape the 

location decisions of manufacturers. These have been successfully used by the provincial 

government of Quebec, Canada when setting up a 1,000 MW wind farm (Lewis and Wiser, 

2007), with the winning company General Electric (USA) establishing three manufacturing 

facilities in Canada as a result. Naturally, public policy is especially likely to support industries 

in this way when they are associated with providing solutions for societal issues such as climate 

change and sustainability. 

Another process that may lead firms to “follow” demand can be found in the 

entrepreneurship literature. Some entrepreneurs set up their company to satisfy their own 

demand. That is, driven by an unsatisfied personal need, inventors initiate the production or 

development of new products. If the innovation is adopted by further actors, such as family or 

friends, the inventor might become aware of its business potential and eventually found a 

company. Shah and Tripsas (2007) call this “user entrepreneurship”. Entrepreneurs frequently 

set up their companies close to their home (Boschma and Martin, 2010). Accordingly, it can be 

argued that it is the initial (individual) demand which decides the location of industrial 

emergence. 

Previously, we have presented arguments for the supply side being able to impact the spatial 

distribution of demand and thereby being relatively more impactful on the spatial distribution 

of an industry in its emergence phase. When looking in the opposite direction, a less clear 

statement can be made. Some aspects (such as entrepreneurs satisfying their own demand) are 

of great relevance in the emergence phase of an industry as well. Transportation costs and 

regional variations in demand seem to be less specific to a particular stage of an industry’s 

development. While arguments can be made that the “discovery” of the optimal location in 

terms of minimizing the distance to demand takes some time and requires the product to have 

somewhat matured, the issue of inappropriate transport infrastructure is likely to be reduced 

over time. Hence, it is up to empirical analyses to shed light on these processes. 
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5.3 The evolution of the German wind industry 

To empirically disentangle the contribution of local demand and local supply on the spatial 

evolution of industries, we take the German wind industry as an example. This is motivated by 

a number of reasons. First, renewable energy industries are of high importance for policymakers 

in order to achieve the established climate goals and the new industries promise numerous new 

jobs (Burton et al., 2011). In addition, the decentralized structure of renewable energy systems 

generally opens up an interesting research area for geographers (Dewald and Truffer, 2012). 

Second, the wind industry in its modern form is only a few decades old, which increases the 

availability of data for the early stages of this industry. Moreover, the geographically-fixed 

installation of wind turbines and the obligation to report every new plant in Germany until 2015 

allow for approximating the geographic (and temporal) distribution of their demand. This is a 

very appealing feature of this industry because, generally, little information on local demand is 

available for emerging industries. Third, the production of wind turbines does not require 

specific natural resources or regional characteristics implying that (in principle) firms in this 

industry are relatively unconstrained when choosing their location (Kammer, 2011). Moreover, 

some of the industries that the wind industry is strongly related to and that might spur related 

diversification processes belong to the mechanical engineering sector (Ibid.). Despite 

significant regional variations, it can be assumed that basic competences in mechanical 

engineering are existent in the vast majority of regions in Germany and, hence, the set of 

potential locations for the industry’s emergence is substantial. Accordingly, the WLO covers a 

significant number of regions. Fourth, the wind industry is characterized by very high 

transportation costs, which on average amount to 7–10% of total costs (Ashwill, 2003). Should 

complex or problematic situations lead to higher idle times for trucks, costs can even increase 

to 20% of the total investment (Kammer, 2011). Proximity to demand is therefore a non-

negligible locational advantage. 

 

5.3.1 The rise of the wind energy system 

The wind industry started to emerge in the late 1970s in Germany when the first societal and 

political rethinking of the energy system took place, stimulated by the energy crisis (Simmie et 

al., 2014). Before then, Germany’s energy regime had relied on coal and nuclear power but the 

crisis led to the first proposals demanding a change to renewables (Jacobsson and Lauber, 

2006). R&D expenditures somewhat rose in favor of renewable energy and led to the first 

development projects, initiating the growth of specialized knowledge (Johnson and Jacobsson, 

2003). Within this experimental phase, producers were individuals living in rural areas and 
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building all the necessary infrastructure on their own. Simultaneously, global companies like 

Boeing or MAN began entering the market (Kammer, 2011). 

 

 

Figure 5.1: Spatial development of the wind energy industry in Germany, 1974 -2010 (Source: own visualization and 
www.gadm.org, version 2.8, November 2015) 

 

In these first years, new firms scattered over the whole of West Germany (Kammer, 2011). 

In Lower Saxony (North-Western Germany), a small core of regional producers and suppliers 

evolved (see Figure 5.1). Former shipbuilders started to manufacture towers and rotor blades 

for wind energy plants. Gearboxes were produced in South Germany and in the Ruhr Area, as 

expertise in mechanical engineering was necessary (Kammer, 2011). 

From the mid-1980s onwards, events at the socio-technical landscape started to put 

additional pressure on the dominant regime of energy production: the accident of Chernobyl in 

1986, the general climate change debate, and the reunification of Germany (Jacobsson and 

Lauber, 2006; Kammer, 2011). Policymakers eventually acknowledged changing societal 

attitudes toward sustainability and renewables, which, amongst others, led to the introduction 

of the electricity feed-in tariffs law in 1990. This law provided financial certainty for investors 

by guarantying relatively high feed-in tariffs for a long time period (Kaldellis and Zafirakis, 

2011). Moreover, on the product level, the design of three-bladed turbines became the dominant 

design (Johnson and Jacobsson, 2003). This led to the standardization of production and a cost 

reduction per kilowatt of 29% between 1990 and 2004 (Kammer, 2011). 

http://www.gadm.org/
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During these events, the wind turbine industry experienced its first take-off and started to 

grow and diffuse across the country. For instance, the world’s first fair on wind energy, “Husum 

Wind”, took place in Lower Saxony in 1989. From 1990 onward, German reunification opened 

up new manufacturing locations in Eastern Germany (Kammer, 2011 and Figure 5.1) and some 

firms started to establish their first sales offices outside of the country. 

In a typical fashion for an emerging industry, this was a turbulent phase with product 

standards not yet being defined, consumers still being skeptical, and the well-established energy 

regime of coal and nuclear power energy producers putting pressure on the new market entrants 

(Jacobsson and Lauber, 2006; Kammer, 2011). Consequently, many newcomers producing 

wind turbines quickly exited the market by either filing for bankruptcy or by merging with other 

firms (Kammer, 2011). For example, in 1989, Vestas Wind Systems bought the Danish 

producer Danish Wind Technology (Ibid: 153). Crucially, in this phase, such mergers and exits 

were not part of an industry-wide consolidation process but rather part of the explorative 

character of innovation and entrepreneurial processes in this phase of the industry’s 

development. 

 

 

Figure 5.2: Number of firms entering the wind market per year and selected political events 

 

Political support for wind energy and other renewables was significantly strengthened when 

the Social Democratic/Green coalition gained power in 1998. The coalition initiated market 

formation programs for renewable energies such as eco-taxes on energy. Further indirect 

support came from the decision to phase out nuclear power (Jacobsson and Lauber, 2006). 

Additionally, and most importantly, the nationwide feed-in tariff law was reformed and 

renewed by adopting the Renewable Energy Sources Act in 2000. This implemented long-term 
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financial support for new renewable energy production and increased investment security (tariff 

schemes were guaranteed for 20 years), which greatly stimulated the installation of wind 

turbines (Johnson and Jacobsson, 2003). The industry’s growth in this phase led to established 

manufacturers setting up regional production plants and additional start-ups entering the market 

(Kammer, 2011 and Figure 5.2). 

 

5.3.2 The wind industry life-cycle 

The German wind energy industry has passed through multiple life-cycle phases so far. 

Based on the work of Klepper (1997), we divide its evolution into three stages: initial, growth, 

and maturity. This is usually done based on the firm’s entry and exit rates. However, as the 

wind industry is highly subsidized (see Johnson and Jacobsson, 2003), political influence 

strongly biases these rates (see Figure 5.2). We, therefore, define the industry’s life-cycle phase 

based on the development of its primary product—wind turbines. To abstract from 

technological specifics and incremental innovation, we capture it by the installed capacity of 

energy generation from wind. 

 

 

Figure 5.3: Annually installed (top) and cumulated nominal capacity (bottom) in Germany (1995 – 2010) (Source: energy-
map.org) 

 

The cumulated installed capacity shows the expected S-Curve of diffusion (see Figure 5.3). 

Until the end of the 1980s, only several hundred kilowatts were installed every year. From 1989 

onward, the typical take-off becomes visible. In 1991, for the first time, more than 10,000 
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kilowatts were installed. In line with this, Neukirch (2010) assigns the years from 1973/75 to 

1991 as the pioneering phase of the industry. Ohlhorst (2009) identifies the years from 1990 to 

1995 as the breakthrough years, which was followed by a short decline in growth during the 

years 1996–1998 (see also Figure 5.3). In line with Klepper (1997), we combine the pioneering 

phase (the mid-70s to 1991) and the take-off stage (1992–1998) into the initial stage. 

From 1999 onwards, one million kilowatts were installed yearly (except for during the 

financial crisis of 2008). Given this qualitative jump in installed capacity, we define the years 

1999 to 2010 as the growth phase of the industry. Since the yearly installed capacity continued 

to grow linearly until the end of our observation phase, we cannot identify the industry moving 

into its maturity phase. This is in line with other studies that argue the industry has not yet 

reached this stage (Kammer, 2011). Moreover, if we look at the mean values of market entries 

for both phases, we observe a value of 3.05 for the initial phase and a value of 2.6 for the growth 

phase. However, the first value is biased by the year 1985 when seven firms entered the market. 

Excluding this value, we obtain a mean of 2.8, only slightly higher than in the growth phase. 

For the maturity phase, we would expect a smaller number of market entries (Klepper, 1993). 

 

5.4 Empirical approach 

5.4.1 The data at hand 

The first data set we use is the wind turbine database (“EEG Anlagenregister”). In Germany, 

every new renewable energy facility had to be registered in this database by the grid operator 

until the end of 2015. Most importantly, it includes information about the time of activation, 

place of deployment, and capacity. Energy-map.org reviewed this information and added the 

geolocation of all facilities. Amongst others, the database lists all onshore wind turbines starting 

from 1983 to 2015. On this basis, we observe the time of the first and all subsequent wind 

turbine installations for every NUTS3 region in Germany. We use this information as an 

approximation of the regional demand for wind turbines. In particular, we identify which 

regions where the first to install wind turbines at all. 

To model the supply side, we conducted detailed web research in order to identify all wind 

turbine manufacturers in Germany that existed at some point between 1970 and 2015. We 

started with the list of manufacturers gathered by Kammer (2011) and extended it by searching 

on the manufacturers’ own websites and on business registers like unternehmen24.info. 

Additionally, websites such as Wind-turbine.com and www.wind-turbine-models.com were 

helpful for acquiring an overview of the industry. In total, we identify 103 manufacturers and 

collected their date and place of foundation. This includes the location of the firms’ first 
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production facility, as well as the additional production facilities they opened over the years in 

different regions. 

Before presenting the empirical variables constructed on this information in Sections 5.4.3 

and 5.4.4, we first introduce our empirical model. 

 

5.4.2 Bayesian spatial survival analysis 

The adoption of innovations and the foundation of firms are events taking place at certain 

moments in time. In the case of innovations, their timing dependents on the innovation itself, 

the adopter’s characteristics, and environmental conditions (Rogers, 2003). With respect to 

founding a firm, regional characteristics tend to impact the time of establishment (Boschma and 

Wenting 2007; Sternberg 2003). Therefore, we model the founding of a firm in a location as an 

event in time, which is related to the prior emergence of its industry at another time and location. 

To identify the determinants influencing the occurrence of this event, we make use of survival 

analysis methods. 

Survival models originate from medical research and seek to explain how the risk, or hazard, 

of an event occurring (e.g., death) is conditioned by covariates of theoretical interest (e.g., 

medication) (Fox and Weisberg, 2011). Recently, these models have been used to study the 

diffusion of events in time and space. For instance, Darmofal (2009) applies spatial Bayesian 

survival models to explain the diffusion of political ideas in the United States and Perkins and 

Neumayer (2005) make use of a Cox proportional hazard model to study whether emerging 

countries adopt new technologies faster due to smaller investments in prior technologies. 

Generally, a survival model consists of the following elements: 

 

𝑝(𝑡) =  𝑝0(𝑡) exp (𝛽𝑇𝑥(𝑡)) 

 

where 𝑝(𝑡) is the probability of an event at time t (e.g., death), 𝑝0(𝑡) is the exogenous baseline 

hazard, i.e., the probability of an event occurring independently of any covariates. 𝑥(𝑡) is a 

vector of covariates (e.g., drugs) affecting the baseline hazard and 𝛽𝑇 is the corresponding 

vector of parameters (Perkins and Neumayer, 2005). 

A specific reason to use survival analysis instead of standard regression models is the 

censoring inherent to longitudinal data. Censoring defines the possibility that events may lie 

outside the observation time; called left censoring if the event occurs beforehand and right 

censoring when the event takes place after the observational period (see Figure 5.4). In contrast 
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to survival models, standard regression models do not consider censoring and thereby 

miscalculate the average time it takes for an event to happen (Mills, 2011). 

 

Figure 5.4: Left-censored, uncensored and right-censored subjects 

 

Survival models differ in the distribution of their baseline hazard. For instance, the semi-

parametric Cox model does not assume any baseline hazard, i.e., it has no intercept (Cox, 1972). 

In contrast, the calculation in Weibull or Gompertz models is based on a specific baseline 

hazard. Thus, researchers must decide between the flexibility of a Cox model or a more precise 

parametric model, if the assumed baseline is correct (Box-Steffensmeier and Jones, 2004). 

Another issue in the use of survival analysis is potentially missing variables influencing the 

baseline hazard. These are called random effects or frailties. Box-Steffensmeier and Jones 

(2004) show that omitting such covariates leads to the underestimation of the factors positively 

influencing the hazard rate and to an overestimation of the factors negatively relating to it. In 

our case, such factors are most likely related to specific locations and their relations to others. 

We account for these unobserved factors by means of including frailty terms into the model. 

These can either be individual or shared frailties. The first accounts for unit-specific effects and 

the second incorporates the effects relating to the clustering of observations, i.e. observations 

sharing the same region. 

To do this, we make use of a Bayesian framework, which is particularly useful when 

applying survival models in spatial settings, i.e., when the observations are organized in a finite 

number of spatial units such as regions (Zhou and Hanson, 2018). This is the case here, as we 

assign all observations to the 402 German districts (NUTS3). Subsequently, we implement 

spatial dependencies through the inclusion of an intrinsic conditionally autoregressive (ICAR) 

element. The ICAR represents a spatial neighborhood matrix E, with an element eij being 1 if 

observations i and j are neighbors and 0 otherwise. Hereby, we consider the possibility of 
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neighboring observations having similar risk propensities based on unobserved covariates 

(spatial autocorrelation) (Darmofal, 2009). 

The quality of the models is compared by the Log Pseudo Marginal Likelihood (LPML) and 

the Deviance Information Criterion (DIC). A model is superior if its LPML value is larger and 

if its DIC value is smaller than another model. 

 

5.4.3 Empirical variables 

Supply-Push 

We model local supply-push by the time it takes for the first wind turbine to be installed in 

region i with FIRST TURBINEt → e, i 
19 being our dependent variable. This event is explained 

with the following independent variables. 

To measure the effect of existing producers on the likelihood of wind turbine deployment in 

region i, we create the variable PRODUCERe-5. This counts the number of producers that exist 

within a radius of 25, 50, 75, or 100 kilometers from the first turbine in region i. We decided to 

work with a radius instead of administrative region borders (e.g., NUTS3) because wind 

turbines are often deployed at the borders of such regions (Broekel and Alfken, 2015) and we 

expect producers to have an effect on the deployment in neighboring regions as well. Moreover, 

we introduce a time lag of five years, i.e., we count the producers that entered the market at 

least five years before the observed deployment. This is justified because the decision process 

of installing and the installation of a wind turbine itself take around three to seven years 

(Kammer, 2011). Therefore, a time lag is needed when investigating whether wind turbine 

manufacturers create a technological niche and push the product into the regional market, 

allowing the manufacturer to plan, manufacture, and install the wind turbine. 

We also include the number of existing wind turbines within a radius of twenty kilometers 

(TURBINESi,e-5) with a time lag of five years. The variable summarizes all wind turbines 

deployed five years before the event e, i.e., it captures the installation of prior wind turbines in 

region i. Considering this variable allows us to model two effects in the growth phase: learning 

and aversion. On the one hand, the existence of wind turbines can signal learning effects, which 

in turn imply reduced planning and construction time for further wind turbines. On the other 

hand, if several wind turbines already exist, citizens might prefer to prevent the installation of 

further wind turbines, leading to longer planning times. The chosen distance is in line with the 

current literature (Broekel and Alfken, 2015). 

 
19 Start of the observation time is one year before the first event occurs. 
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Demand-Pull 

With the local demand-pull model, we are interested in analyzing the effect of local demand 

on the propensity of wind turbine manufacturers emerging in region i. That is, we seek to 

explain the time it takes for a new company being founded in region i, which is captured by the 

dependent variable FIRST PRODUCERt → e,i.
20 

The first explanatory variable TURBINESe measures the number of wind turbines within a 

radius of 25, 50, 75, or 100 kilometers existing in the year of the founding of a wind turbine 

manufacturer. It approximates the demand conditions five years ago, which might have been 

the time at which the manufacturer made the decision to eventually found a firm. Planning and 

installing wind turbines, as well as establishing a business, is a long process usually requiring 

multiple years. Second, we approximate current demand conditions by counting the number of 

wind turbines installed in the five years following the emergence of a wind turbine manufacturer 

(FUTURE TURBINESi,e+5). We make use of the same radii as with TURBINESe. Due to the 

planning time of up to seven years, it seems likely that these turbines are publicly announced 

approximately five to six years before they start to operate. Hence, they are considered as 

current as well as short-term future demand that a manufacturer can satisfy. 

Recent studies have shown that the emergence of new firms and industries greatly depends 

on spatial clustering and the existence of related variety (Boschma and Wenting 2007; Porter 

1998). We construct the variable PRODUCERi,e that sums all wind turbine manufacturers 

already existing in region i when a new manufacturer emerges. A positive finding for this 

variable is in line with the idea of spatial clustering being important for a firm’s emergence. 

The potential impact of related variety is capture by RELATEDi,e, which approximates the 

technological relatedness of the wind industry to other industries. It is based on the cosine 

similarity of the 4-digit IPC class F03D (“Wind motors”) with all other IPC classes. More 

precisely, in a common manner, we estimate the cosine similarity based on the co-occurrence 

frequencies of 4-digit IPC classes on patents to obtain a measure of technological relatedness 

of each IPC class pair. In a second step, we calculate the revealed technological advantage 

(RTA) for each IPC class and region. If the RTA > 1 for IPC class F03D in region i, it reveals 

that this region patents more wind motors than the average region (Hidalgo et al., 2007). The 

two matrices, technological relatedness and RTA, are then multiplied with each other in order 

to obtain the aggregated relatedness coefficient for F03D and each region (see Neffke et al., 

2011). 

 
20 Start of the observation time is one year before the first event occurs. 
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Control Variables 

The diffusion of wind turbines is likely to be impacted by additional factors that are not in 

the focus of the present chapter. Crucially, the average wind speed in region i (WINDi) is a 

natural candidate in this respect. The higher its level, the more electricity can be produced by 

the wind turbine and, hence, profitability increases making the installation more likely (Burton 

et al., 2011). The likelihood of installing wind turbines in regions is also determined by 

available space (AREAi). Wind turbine installations need space to build up the necessary 

infrastructure, such as foundations and network access. Second, wind turbines have to be distant 

from other objects like buildings or trees, allowing for unhindered wind flow and avoiding 

externalities (Burton et al., 2011). We obtained data on the extent of residential areas and forests 

in regions from the German Federal Institute for Research on Building, Urban Affairs and 

Spatial Development (BBSR). We subtract from the total area of region i the areas already in 

use and the areas not available for wind energy due to natural constraints like rivers. As this 

variable is not measured on a yearly basis and the first figures are available for 1996, we decided 

to use its values from the last available year in each industry life-cycle phase, because we 

assume the available space decreases over time. On this basis, we estimate two values for the 

variables AREA for each NUTS3 region. The first represents these conditions in the initial phase 

of the industry (the year 2000)21 and the second those at the end of the growth phase (the year 

2010). 

Moreover, we consider the political preferences toward sustainable energy in a region, which 

is crucial for the installation of wind turbines (Theyel, 2012). We approximate this with the 

share of votes for the Green party in federal elections (GREENi,e). Further regional factors are 

the population density (POPi,e) and gross domestic product (GDPi,e). In less populated regions 

it might be easier to plan and activate wind turbines as fewer people feel distracted by them. At 

the same time, a larger population represents more potential entrepreneurs that can establish 

wind turbine manufacturers. All three variables were gathered from the German database 

“GENESIS”. 

Moreover, for the demand-pull models, we control for regions being in the north of Germany 

(NORTHi). More precisely, NORTHi is a dummy variable having the value of one if region i is 

part of the federal states of Hamburg, Bremen, Lower Saxony, Schleswig-Holstein, or 

Mecklenburg-Western Pomerania, and is zero otherwise. While we exclusively consider 

onshore wind turbines, the offshore business has become important for wind turbine 

 
21 There were no values for 1999.  
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manufacturers in recent years. Consequently, offering direct access to the sea is a beneficial 

attribute of North German regions (Fornahl et al., 2012). Finally, in the supply-push models, 

we consider the potential peculiarities of East Germany with dummy variable EASTi which is 

zero for all regions in West Germany and one for all East German regions. The variable controls 

for the East German regions becoming accessible to manufacturers at a later time and these 

regions being characterized by economic catching-up processes in the 1990s. 

 

Time Dependency 

Many of our covariates changed over the years. For example, GREEN changes every four 

years with the parliamentary elections. We therefore model time dependencies as described in 

Zhou et al. (2016) and Therneau et al. (2017). That is, we organize the data in time intervals 

that are defined in a way that variables’ values change between intervals but not within. For the 

1980s we lack data for several variables (see Table 5.1) and therefore define variables’ values 

based on the earliest available observation. 
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Table 5.1: Variable operationalization and source 
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5.5 Results 

Before coming to the actual results, please note that we do not report p-values but rather the 

95% confidence intervals, which are more common when using Bayesian event models 

(Darmofal, 2009; Craioveanu and Terrell, 2016). Moreover, the variable capturing spatial 

dependencies (ICAR) is significant in all estimations, justifying the choice of our empirical 

approach. 

 

5.5.1 Initial phase 

Local supply 

The results for the initial phase are presented in Table 5.2. The models explain the effect of 

local supply on the creation or activation of local demand (supply-push), i.e., the likelihood of 

wind turbine installations. 

WINDi is significant and positive, implying that regions with high wind speeds are likely to 

be among the first to install wind turbines. If wind levels increase by one meter per second, the 

probability of a first wind turbine being installed increases by 124%. This finding supports the 

idea of turbines being expensive and having low degrees of efficiency in the industry’s initial 

phase (Neukirch, 2010; Kammer, 2011). This made early installments more attractive in regions 

with high wind speeds. 

POPi,e is also significant and positive. This contradicts our expectations that wind turbines 

are more likely to be installed in less populated regions to reduce land-use conflicts (see e.g., 

Short (2002) and the “nimbyism” discussion). However, as our models explain the timing and 

not the number of wind turbines, we see this finding to be in line with the technology diffusion 

literature. This literature argues that new technologies are more likely to emerge in urban 

regions and that their diffusion starts from more central places (Hägerstrand, 1952). 

GDPi,e is significant and negative, i.e. regions with large gross domestic products per capita 

are less likely to be early locations for wind turbine installations. This fits with the northern 

German regions, which were found to be more likely locations for wind turbines. 

In the model considering a radius of one hundred kilometers, PRODUCERe-5 is significant 

and negative. This suggests that the presence of wind turbine producers tends to increase the 

time needed to install the first wind turbine in a region. This result is surprising because we 

observe a relatively strong overlap between producers’ and wind turbines’ locations in North 

Germany (see Figure 5.5). However, again, our models capture the timing of turbine 

installations and their locations. Accordingly, this finding suggests that the earliest wind 

turbines’ locations were not proximate to those of producers, which is supported by the fact that 
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the average distance between producers and wind turbines is 81 km. Hence, while they share 

the general location of northern Germany, early turbines were not installed directly at the 

producers’ locations but in more suitable places in the wider surroundings. 

 

Table 5.2: The regional supply model in the initial phase 

Local Supply-Push  

Initial Phase (1983 - 1998) 

 50 km radius 100 km radius  

Supply-Push    

PRODUCERe-5 0.0079 

(-0.184, 0.194) 

-0.359 

(-0.503, -0.211) 

 

DISTANCET,P - -  

TURBINESe - -  

Regional Characteristics    

WINDi,e 0.492 

(0.337, 0.675) 

0.808 

(0.552, 1.039) 

 

AREAi,e 0.003 

(-0.011, 0.07) 

0.045 

(-0.031, 0.114) 

 

GREENi, -5.743 

(-1.42, 2.371) 

-4.517 

(-15.4, 5.097) 

 

GDPi,e -0.008 

(0.0003, 0.0031) 

-0.01 

(-0.015, -0.0043) 

 

POPi,e 0.0017 

(0.0003, 0.003) 

0.0025 

(0.0002, 0.005) 

 

EAST -0.384 

(-0.025, 0.387) 

-1.777 

(-2.656, -0.683) 

 

ICAR 1.641 

(0.718, 2.975) 

10.79 

(5.71, 18.00) 

 

Survival Model Proportional hazards  Proportional hazards  

LPML -527 -432  

DIC 1051 812  

N | Events 2159 | 152 2159 | 152  
Cell entries are the posterior means, with 95% credible intervals in parentheses 

 

To test the robustness of our results, we calculated additional models with an alternative time 

lag of three years and alternative radii of 25 and 75 km. The results are reported in the first two 

rows in Table A5.1 in the appendix. Our results are robust with respect to the specification of 

the time lag; there are no visible differences when using three or five years. By and large, these 

models also confirm our main findings with PRODUCERSe-5 being negative and significant. 

PRODUCERSe-5 remains insignificant in the models in which we consider wind turbine 

installations within a radius of 25 km and 50 km to district centers. However, this is explained 

by the fact that few wind turbines exist within a 50 km distance of producers, as the average 

minimum distance between wind turbines and producers is 81 km (Table A5.2). We also tested 

an alternative specification considering the distance between the first wind turbine and the 

closest existing producer. Unfortunately, these models did not converge. For this reason, we 

also calculated a Cox proportional hazard model with the same frailties (see Table A5.3). 
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Local demand 

We now turn toward the question of whether local demand for wind turbines attracts the 

emergence of producers. The results of our estimations are shown in Table 5.3. 

RELATEDi has a significantly positive coefficient. Regions with a related patent portfolio 

have a higher likelihood of wind turbine producers emerging. This confirms existing works on 

the impact of relatedness of regional diversification and firm foundation (Neffke et al., 2011). 

It also fits with Kammer (2011) who highlights that the German wind turbine producers 

benefited from the shipbuilding industry and with Breul et al. (2015) who also find a positive 

relationship between technological relatedness and the time of local manufacturers' emergence. 

Accordingly, this chapter adds further support for the importance of relatedness for industrial 

development. 

 

Table 5.3: Demand-pull results of the initial phase 

Local Demand-Pull 

Initial Phase (1974 - 1998) 

 50 km 100 km Distance 

Demand-Pull     

FUTURE  

TURBINESe+5 

0.0053 

(0.0008, 0.009) 
 

0.0009 

(-0.0004, 0.003) 

- 

DISTANCEP,FT   
 -0.003 

(-0.008, 0.0013) 

TURBINESe 
-0.032 

(-0.086, 0.012) 
 

-0.017 

(-0.0493, 0.024) 

- 

Related Variety     

PRODUCERi,e -  - - 

RELATED 
0.014 

(0.006, 0.002) 
 

0.0014 

(0.0005, 0.002) 

0.0014 

(0.0006, 0.003) 

Regional  

Characteristics 
  

  

NORTHi 
1.329 

(0.329, 2.205) 
 

1.353 

(0.177, 2.454) 

1.329 

(0.177, 2.454) 

GREENi,e 
2.970 

(-1.288, 1.730) 
 

2.308 

(-0.162, 0.179) 

2.308 

(-16.29, 0.177) 

GDPi,e 
-0.003 

(0.008, 0.002) 
 

-0.004 

(-0.01, 0.0016) 

-0.0042, 

(-0.0101, 0.0016) 

POPi,e 
0.0002 

(-0.002, 0.002) 
 

0.0003 

(-0.002, 0.003) 

0.0003 

(-0.0018, 0.0022) 

ICAR 
0.775 

(0.05, 2.97) 
 

2.919 

(0.042, 12.855) 

0.676 

(0.06, 2.591) 

Survival Model 
Proportional 

Hazards 
 

Proportional 

Hazards 

Proportional Hazards 

LPML   -235  -222 -236 

DIC 468  441 470 

N | Events 7288 | 57  7288 | 57 7288 | 57 

Cell entries are the posterior means, with 95% credible intervals in parentheses 
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Furthermore, we find more favorable conditions for this industry’s development in northern 

regions, which we captured with the variable NORTHi. This variable is significantly positive 

and indicates that the likelihood of the first manufacturer entering a region increases by a factor 

of three when the region is located in the north of Germany. We interpret this as an indication 

of the relevance of access to offshore activities for wind turbine manufacturers’ locations and 

for the generally more wind turbine-friendly conditions in northern Germany (a more suitable 

landscape and more sparsely populated) that are not captured by the other variables in our 

model. 

In contrast to PV manufacturers that appear to prefer urban regions as locations (Breul et al., 

2015), population density remains insignificant in our investigations and thus appears to be 

irrelevant for wind turbine manufacturers. With all other factors equal, new facilities have equal 

chances of being located in urban and rural regions. Consequently, these regions do not appear 

to offer any particular locational benefits or disadvantages. The latter is somewhat surprising, 

as the transportation of towers and rotor blades would seem to be more cumbersome and 

expensive in urban environments and hence, make these locations less attractive. 

 

Figure 5.5: Spatial distribution of wind turbines in Germany (dark grey: high propensity of installation, white: 

low propensity, black points: producer) 

 

With respect to the relevance of a local demand-pull effect, we look at the coefficients of 

FUTURE TURBINESe+5, DISTANCEP,FT, and TURBINESe that approximate a local demand-

pull effect. FUTURE TURBINESe+5 is significantly positive in the 50 km model with the 

coefficients of DISTANCEP,FT and TURBINESi,e remaining insignificant. The emergence of a 
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producer is 0.5% more likely in regions that see one more additional wind turbine being 

installed over the next five years. The finding provides some support for the idea that local 

demand stimulates the emergence of wind turbine producers. Note that the effect appears 

smaller than in reality because wind turbines are often installed in larger numbers at the same 

time, which multiplies this effect. 

 

5.5.2 Growth phase 

Local supply 

During the industry’s growth phase, the installation of wind turbines was impacted by 

favorable natural conditions, which is shown by the significantly positive coefficients of wind 

speed WINDi and available space AREAi (see Table 5.4). Higher wind speeds and more available 

space decreases the time until the installation of a first wind turbine. Over time, the relevance 

of AREAi increases as available open spaces become more scarce and therefore potentials of 

utilization conflicts grow (Burton et al., 2011). As in the initial phase, GDPi,e is significantly 

negative: wind turbines are installed earlier in economically weaker regions. 

Interestingly, in the model considering a 50km radius to wind turbines, GREENi,e is 

significant but negative, that is, regions with larger shares of green voters needed more time to 

install their first wind turbine. This seems contradictory at a first glance as wind power is a 

renewable, “green” energy source. However, voters favoring ecological behavior and thus 

voters of green parties are more frequently found in South German cities, such as Freiburg, 

Stuttgart, or Munich. They are significantly underrepresented in the northern regions where 

most wind turbine installations took place. In addition to a strong south-north discrepancy, 

voting for the Green party is also much more frequent in the largest cities. Accordingly, this 

variable may also capture that wind turbine installations are much less common there. 

Moreover, wind turbine installations also represent interference with local ecological systems, 

which these types of voters likely oppose. As the variable captures multiple aspects, its 

relatively large coefficient is not surprising (coefficient: -7.72). Given that GREEN’s value 

ranges between 0.02 and 0.29, an increase of 1% in votes decreases the likelihood of a first 

wind turbine installation in a region by about 7%. 

PRODUCERe-5, which approximates local supply-push processes, is insignificant in both 

models. However, the distance to the next producer, DISTANCET,P is significantly positive. 

Hence, it takes more time for the first wind turbine to be installed in a region proximate to an 

existing manufacturer. This clearly does not correspond to a significant local supply-push effect 

in this phase. Rather, the contrary appears to hold, the first wind turbines are installed at greater 
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distances to manufacturers. However, this result could be driven by some producers being 

located far away from wind turbines’ early locations, i.e. in the south of Germany. 

 

Table 5.4: Supply-push results for growth phase 

Local Supply-Push 

Growth Phase (1999 - 2010) 

 50 km 100 km Distance 

Supply-Push    

PRODUCERe-5 0.198 

(-0.493, 0.001) 

-0.374 

(-0.124, 0.068) 

 

DISTANCET,P   0.033 

(0.0195, 0.0401) 

TURBINESe -0.017 

(-0.043, 0.008) 

-0.012 

(-0.026, 0.001) 

-0.019 

(-0.409, 1.361) 

Regional  

Characteristics 

   

WINDi,e 0.261 

(0.083, 0.531) 

0.247 

(0.051, 0.384) 

0.40 

(0.212, 0.739) 

AREAi,e 0.333 

(0.201, 0.453) 

0.252 

(0.190, 0.335) 

0.434 

(0.351, 0.544) 

GREENi, -7.72 

(-14.24, -0.445) 

-6.169 

(-0.139, 0.658) 

-6.151 

(-19.51, 2.831) 

GDPi,e -0.009 

(-0.013, -0.006) 

-0.009 

(-0.013, -0.004) 
-0.015 

(-0.0202, -0.0103) 

POPi,e 0.0015 

(-0.0003, 0.003) 

0.0013 

(-0.0006, 0.006) 

0.0032 

(0.0013, 0.0049) 

EAST -0.014 

(-1.466, 1.162) 

0.487 

(-0.347, 1.757) 

0.378 

(-0.434, 1.215) 

ICAR 23.084 

(3.724, 39.045) 

7.804 

(1.257, 16.046) 

53.24 

(39.941, 69.899) 

Survival Model 
Proportional hazards Proportional 

hazards 

Proportional hazards 

LPML   -510 -572 -400 

DIC 906 1101 655 

N | Events 1940 | 204 1940 | 204 1940 | 204 
Cell entries are the posterior means, with 95% credible intervals in parentheses 

 

Therefore, as a robustness test, we included only regions of North Germany. The coefficient 

of DISTANCET,P becomes insignificant (Table A5.4 in the appendix). In any case, the finding 

clearly suggests that better possibilities to build local support for wind turbines or lower 

transportation costs to potential wind turbine locations did not matter at this stage of the 

industry’s life-cycle since more suitable natural conditions for wind turbine installations were 

more important. 

 

Local demand 

The results for the growth phase are also reported Table 5.5. The number of existing 

producers in a region (PRODUCERSe) is significantly positive, which indicates that the industry 

is concentrating in space as existing producers attract further producers. This may either be due 
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to spin-off processes (Klepper, 2006) or because of the increasing relevance of Marshallian 

externalities (Neffke et al., 2011). As RELATEDi is insignificant it implies the irrelevance of 

related industries at this stage. This phase of the industry’s life-cycle is also characterized by 

firms opening up second production locations with little to no R&D activities (Kammer, 2011). 

For these, the presence of related knowledge is less relevant than advantages linked to shared 

infrastructure and labor pooling effects. 

 

Table 5.5: Demand-pull results of the growth phase 

Local Demand-Pull 

Growth Phase (1999 - 2010) 

 50 km 100 km Distance 

Demand-Pull    

FUTURE  

TURBINESe+5 

0.001 

(-0.004, 0.005) 

-0.003 

(-0.002, 0.0009) 

 

DISTANCEP,FT 
- - 

-0.073 

(-0.144, -0.009) 

TURBINESe 0.0001 

(-0.016, 0.015) 

0.005 

(-0.007, 0.018) 

0.0009 

(-0.013, 0.013) 
    

Related Variety    

PRODUCERi,e 0.692 

(0.186, 1.244) 

0.601 

(0.239, 0.951) 

0.610 

(0.242, 0.941) 

RELATED 0.0006 

(-0.002, 0.003) 

0.0004 

(-0.002, 0.002) 

0.0005 

(-0.001, 0.002) 

Regional  

Characteristics 
 

  

NORTH 1.084 

(-0.114, 2.227) 

1.275 

(0.418, 2.142) 

0.987 

(0.166, 1.805) 

GREENi,e -7.417 

(-22.53, 5.228) 

-8.637 

(-20.69, 3.630) 

-7.580 

(-20.78, 3.497) 
GDPi,e 0.0008 

(-0.003, 0.0044) 

0.0002 

(-0.004, 0.004) 

0.0007 

(-0.003, 0.004) 

POPi,e 0.0023 

(0.0002, 0.004) 

0.002 

(-0.0003, 0.003) 

0.0018 

(-0.00009, 0.0037) 

ICAR 1.608 

(0.1347, 5.7041) 

0.067 

(0.005, 0.195) 

0.080 

(0.006, 0.464) 

Survival Model Proportional Hazards 
Proportional 

Hazards 

Proportional 

Hazards 

LPML   -192 -191 -188 

DIC 378 381 375 

N | Events 4648 | 46 4648 | 46 4648 | 46 

Cell entries are the posterior means, with 95% credible intervals in parentheses 

 

POPi,e is significant and positive in one model (50 km radius) meaning that regions with 

higher populations are more likely to be the first to witness an early firm entry. This result fits 

with the urbanized regions having larger potentials of entrepreneurial activities (Boschma and 

Wenting, 2007). 
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TURBINESi,e and FUTURE TURBINESi,e+5 remain insignificant in these models. The 

number of existing wind turbines and those that will be built in the next five years within a 

certain distance to the producer does not explain producers’ emergence. However, we do find 

a significantly negative coefficient of DISTANCET,P, which supports the demand-pull 

hypothesis. During the growth phase, new producers are more likely to emerge early in regions 

geographically proximate to future wind turbines. With every additional kilometer a region is 

more distant to future wind turbines, the probability of a producer emerging decreases by about 

7%. This is likely because firms seek to minimize the transport costs of their final products. In 

fact, Klepper (2006) presents evidence of firms in the automobile and tire industries locating 

new production facilities in geographic proximity to customers to save transportation costs. In 

the case of wind turbines, these costs are even higher and therefore production facilities located 

close to demand are more valuable. However, it may also be the case that firms will locate near 

demand to better interact with their customers and understand their preferences (Fabrizio and 

Thomas, 2012). Crucially, while there are benefits to geographic proximity, manufacturers do 

not need to be immediately co-located with wind turbine locations, as the insignificance of 

TURBINESi,e and FUTURE TURBINESi,e+5 underlines. This finding is reasonable given that 

wind turbines require open space and a certain distance to settlements. 

 

5.6 Discussion and conclusion 

The aim of this chapter was to analyze whether and to what extent local supply-push or local 

demand-pull mechanisms characterize an industry’s spatial evolution. We have combined 

supply-side arguments from the field of economic geography (e.g., Weber, 1909; Myrdal, 1957; 

Frenken et al., 2007; Boschma and Frenken, 2011) with more demand-oriented arguments from 

the literature on technological systems (Geels, 2004; Geels and Schot, 2007). In particular, we 

argued that the relevance of local supply-push and demand-pull factors changes over the life-

cycle of an industry. 

These arguments were tested using the example of the German wind turbine industry and its 

spatial evolution over its initial and growth phases. Empirically, we made use of data on 

manufacturers’ founding dates and their locations. This was merged with information on the 

installation time and geographical locations of wind turbines. We employed Bayesian survival 

models to test the relative importance of the local supply-push and local demand-pull 

hypotheses. 

The local supply-push models, which analyze the spatial diffusion of wind energy turbines, 

highlighted the importance of regions’ natural conditions. In order to maximize turbines’ 
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revenues, the first turbines are installed in regions with high wind speeds and with available 

open spaces. We find these natural conditions to be more important for the success and diffusion 

of this technology than manufacturers establishing local supportive niches in the initial and 

growth phase of the industry. Accordingly, local supply-push induced by manufacturers appears 

to be less relevant for this industry’s evolution. However, this is not to say that these processes 

have not been present at all, for instance, some regions can be seen as testing areas for early 

wind turbine installations (Kammer, 2011). According to our results, this does not seem to have 

been essential for the evolution of the industry spatially. 

In the local demand-pull models that analyze the spatial evolution of wind turbine 

manufacturers, we observe the expected processes typical for the industrial phases of 

emergence and concentration. In the initial phase of the industry, manufacturers are more likely 

to emerge in regions with related knowledge, for example, in which the shipbuilding industry 

was present. Over time, relatedness becomes less important and new firms tend to emerge in 

geographic vicinity to already existing manufacturers, which fosters the industry’s spatial 

concentration. In addition, local demand-pull becomes more relevant: with every additional 

kilometer to demand (future wind turbine installations), a new producer is less likely to emerge 

in a region. In summary, we confirm the importance of related variety, urbanization, and 

industrial agglomeration shaping the industry’s spatial distribution. In addition to providing 

further evidence for this, this chapter highlights the significant role of local demand. 

These characteristics of the wind industry are in line with the argumentation of Binz and 

Truffer (2017) who define four kinds of global innovation systems (GIS). In particular, they 

classify the wind industry as a “spatially sticky GIS”. Accordingly, the wind industry is built 

upon specialized user needs and experience-based skills that are hard to copy and that are 

unlikely to diffuse in space. Other examples of such industries are biogas, luxury watchmaking, 

or legal services (Ibid.). Crucially, in the growth phase, these industries’ spatial distributions 

remain similar to those of the initial stage. With the exception of East Germany expanding the 

set of potential locations in 1989, the results support this view, as the spatial distribution of 

producers remained similar over time and as the existence of local producers was identified to 

contribute to the establishment of new producers. In contrast, the photovoltaic industry, which 

was subject to similar politically support as the wind industry (Jacobsson and Lauber, 2006; 

Dewald and Truffer, 2012; Breul et al., 2015), is characterized as a “footloose GIS” (Binz and 

Truffer, 2017). This implies that regions diversifying into the PV industry at an early stage of 

this industry’s life-cycle are much more in danger of losing their initial market dominance. In 

fact, this is what happened in Germany, where regions with an initial advantage in this industry 
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were overtaken (and almost completely eliminated from the market) by other locations in Asia 

that entered the industry at a later stage. Consequently, any generalization of our results is 

conditional on such differences between industries and the respective GIS. 

Our empirical study has several shortcomings, which may lead the way for future research. 

First, the German wind industry has specific and partly unique characteristics; it is an industry 

highly supported by the government implying that its evolution is strongly related to decisions 

made in politics (Johnson and Jacobsson, 2003; Kaldellis and Zafirakis, 2011). We are 

confident that this did not significantly impact producers’ and wind turbines’ precise locations, 

as nationwide tax and tariff schemes have been mostly used as policy tools in Germany. These 

shaped demand and supply in general but not their spatial distributions. Future research should 

nevertheless reevaluate the arguments using industries more independent of policy influence. 

Second, to generate a quantitative empirical setting, we focused on the push and pull 

mechanisms of technology. However, the literature emphasizes technology transitions entailing 

an interplay of societal rules, norms, market preferences, and policy (see for example Schot and 

Geels, 2008). Moreover, Fabrizio and Thomas (2012) discovered that in the pharmaceutical 

industry, access to local demand changes firms’ patterns of innovation as it eases understanding 

local peculiarities in customer needs. Hence, looking in more detail into these processes is likely 

to reveal further interesting procedures that remain hidden in our research design. Third, we did 

not explicitly consider the main product of the industries (wind turbines) to be heterogeneous 

and evolving over time as well. While certain features of wind turbines can be regarded as a 

dominant design (3-blade rotor), there are substantial technological variations (e.g., gear vs. 

gearless designs). Treating all wind turbines to be alike therefore represents a significant 

assumption on which our empirical study is built. Fourth, we lack the information of which 

wind turbines were manufactured by which producers. With such information at hand, it would 

be possible to test if producers only create local demand for their own products or whether they 

also open markets for competitors. Lastly, our quantification of local demand by means of wind 

turbines installed in regions in subsequent periods does not directly reflect the demand curve. 

Rather it may represent the point of supply and demand levels being equal. Accordingly, we 

might underestimate actual demand in regions in which it exceeds supply capacities. However, 

we argue and provide evidence for supply being spatially mobile to some extent. This is 

particularly true when looking at longer time periods. In these cases, manufacturers may emerge 

or re-locate in proximity to demand which implies that the equality of supply and demand levels 

in subsequent periods may also reflect the “excess” of demand in previous periods. How to 

properly approximate and quantify demand at the local level needs to be addressed by future 
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research in more detail. With improved access to novel and more precise data in the future, we 

are confident that the demand side will receive more attention in studies investigating the 

evolution of industries in time and space. 

Accordingly, while the present chapter represents an additional step in disentangling the 

interplay between demand and supply in industry’s evolution in time and space, we are still far 

away from fully understanding these processes. 

 

 

 

  



Pulled or pushed? The spatial diffusion of wind energy between local demand and supply 127        

 

 

 

Appendix  

5.A1 Robustness checks  

Our main variable PRODUCERS stays always negative and significant, however, in some 

models it is insignificant (Table A5.1). This is true for the 25 km and 50 km radii. When taking 

a look at Table 7, we see that the average minimum distance between an installed turbine and 

producer is at least 57 km. Accordingly, the number of producers within 25 km or 50 km is 

generally very low, which is the most likely reason for its frequent insignificance. 

There is no difference in results with respect to the time lags of three and five years. 

 

Table A5.1: Main results of the robustness test 

Model Phase 
 

Producers 

(25 km) 

Producers 

(50 km) 

Producers 

(75 km) 

Producers 

(100 km) 
Distance 

Supply- 

Push 

Initial 3 years and 

earlier 

Insignificant Insignificant Negative  

Significant 

Negative  

Significant 

Not  

converged   
5 years and 

earlier 

  

Insignificant Insignificant Negative  

Significant 

Negative  

Significant 

Not  

converged 

Supply- 

Push 

Growth 3 years and 

earlier 

Insignificant Insignificant Negative  

Significant 

Insignificant Positive  

Significant   
5 years and 

earlier 

Insignificant Insignificant Negative  

Significant 

Insignificant Positive  

Significant 

   

     

Model Phase 

 

Future 

Turbines 

(25 km) 

Future 

Turbines 

(50 km) 

Future 

Turbines 

(75 km) 

Future 

Turbines 

(100 km) 

Distance 

Demand- 

Pull 

Initial Within  

3 years 

Insignificant Insignificant Insignificant Insignificant Insignificant 

  
Within 

5 years 

  

Positive  

Significant 

Positive  

Significant 

Insignificant Insignificant Insignificant 

Demand- 

Pull 

Growth Within 

3 years 

Insignificant Insignificant Insignificant Insignificant Insignificant 

  
Within 
5 years 

Insignificant Insignificant Insignificant Insignificant Negative 

 Significant 

 

The demand-pull models show different results when it comes to three- or five-year time lag 

and our main variable FUTURE TURBINES. The three-year model of the initial phase has only 

insignificant values. We trace this result back to the fact that only very few turbines are 

deployed within three years (see Table A5.2). Again, there is no difference in the direction of 

significance. 
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Table A5.2: Average Values of turbines and producers within a given radius (median values in brackets) 

Model Phase 
 

Producers 

25 km 

Producers 

50 km 

Producers 

75 km 

Producers 

100 km 
Distance 

Supply- 

Push 

Initial 3 years and 

earlier 

0.16 

(0) 

0.69 

(0) 

1.49 

(1) 

2.48 

(2) 

77.39 km 

(62.54 km)   
5 years and 

earlier 

  

0.15 

(0) 

0.62 

(0) 

1.35 

(1) 

2,23 

(2) 

81.72 km 

(68.41 km) 

Supply- 

Push 

Growth 3 years and 

earlier 

0.31 

(0) 

1.11 

(1) 

2.41 

(2) 

3.79 

(3) 

57.41 km 

(48.83 km)   
5 years and 

earlier 

0.27 

(0) 

0.98 

(1) 

2.158 

(2) 

3.42 

(3) 

62,46 km 

(52.73 km) 

   

     

Model Phase 

 

Future 

Turbines 

25 km 

Future 

Turbines 

50 km 

Future 

Turbines 

75 km 

Future 

Turbines 

100 km 

Distance 

Demand- 

Pull 

Initial Within  

3 years 

4.45 

(0) 

17.45 

(0) 

39.31 

(2) 

68.98 

(3) 

131,23 km 

(51.81 km)  
Within 

5 years 

  

34.54 

(0) 

77.63 

(2) 

136.00 

(6) 

104.63 

(11) 

104,62 km 

(31.33 km) 

Demand- 

Pull 

Growth Within 

3 years 

20.17 

(10) 

79.7 

(50) 

178.4 

(122) 

311.2 

(227) 

13.97 km 

(10.92 km)  
Within 

5 years 

28.82 

(15) 

114.30 

(78) 

256.00 

(194) 

446.00 

(359) 

11.45 km 

(9.17 km) 

 

Table A5.3: Results of the Cox proportional hazard models 

Local Supply-Push 

Initial Phase (1983 - 1998) 

 Distance (3-years lag) Distance (5-years lag) 

 Coefficient (SE) p-value Coefficient (SE) p-value 

Supply-Push     

DISTANCET,P, e-3 -0.002 

(0.002) 

0.403   

DISTANCET,P, e-5   -0.0012 

(0.002) 

0.525 

Regional Characteristics     

WINDi,e 0.504*** 

(0.063) 

< 1e-3 0.505*** 

(0.064) 

< 1e-3 

AREAi,e 0.058*** 

(0.019) 

0.003 0.059*** 

(0.019) 

0.002 

GREENi, -10.78*** 

(3.864) 

0.005 -10.76e*** 

(3.855) 

0.005 

GDPi,e -0.007*** 
(0.002) 

< 1e-3 -0.007*** 
(0.002) 

< 1e-3 

POPi,e 0.001*** 

(0.001) 

0.014 0.001** 

(0.001) 

0.016 

EAST 2.226*** 

(0.318) 

< 1e-3 2.218*** 

(0.318) 

< 1e-3 

ICAR -0.011 

(0.001) 

< 1e-3 -0.011*** 

(0.987) 

< 1e-3 

Concordance   0.821  0.821  

Likelihood ratio test 257 on 8 df  212 on 8 df  
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Table A5.4: Robustness check of distance. Data only includes regions of North Germany (i.e. regions of the states Hamburg, 
Bremen, Lower Saxony, Schleswig-Holstein or Mecklenburg-Western Pomerania) 

Local Supply-Push 

Growth Phase (1999 - 2010) 

 Distance (3-years lag) Distance (5-years lag) 

Supply-Push   

DISTANCET,P, e-3 -0.013 

(-0.035, 0.009) 

 

DISTANCET,P, e-5  -0.016 

(-0.039, 0.016) 

TURBINESe 0.006 

(-0.007, 0.019) 

0.006 

(-0.016, 0.031) 

Regional Characteristics   

WINDi,e 0.243 

(-0.123, 0.605) 

0.281 

(-0.186, 0.624) 

AREAi,e 0.152 

(0.071, 0.237) 

0.165 

(0.064, 0.352) 

GREENi, -5.545 

(-1.783, 7.790) 

-7.854 

(-24.45, 8.782) 

GDPi,e -0.005 

(-0.009, -0.0002) 

-0.006 

(-0.011, -0.001) 

POPi,e 0.0001 

(-0.002, 0.002) 

0.001 

(-0.002, 0.003) 

EAST 0.865 

(-1.286, 3.006) 

0.831 

(-1.402, 3.506) 

ICAR 3.503 

(0.9452, 8.4271) 

3.61 

(0.5127, 12.6271) 

Survival Model Proportional Hazards Proportional Hazards 

LPML   -42 -60 

DIC 61 104 

N | Events 169 | 68 169 | 68 
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Conclusion  

 

Researchers in economic geography strive to understand the changes in economic landscapes 

and the reasons for regional divergence. Therefore, they explore the evolution of industries and 

the generation of innovations as sources of new economic welfare and regional prosperity. In 

recent years, geographers have devoted much more attention to the initial creation of new 

technologies and products than to their subsequent diffusion. In many cases, however, it is not 

the generation of a new technology within a single region that changes the structure of economic 

landscapes; rather, it is its widespread diffusion and adoption (Grübler, 1997). Consequently, 

this thesis has focused on three dimensions of knowledge diffusion—technology, networks and 

regional context—to better understand the mechanisms of spatial diffusion processes. Related 

to these dimensions, four gaps in the literature have been recognized that have been investigated 

in the four central chapters of this work. Chapter 6 highlights the thesis’ contributions, 

summarizes the empirical findings, and discusses the limitations as well as avenues for future 

research. Last but not least, it will derive policy implications.  

 

6.1 Theoretical contributions  

Combining the concepts of proximity, technological complexity and spatial patterns 

To analyze the spatial diffusion of complex technologies, Chapter 2 has combined three 

theoretical concepts: proximities (Boschma, 2005), complexity (Simon, 1962; Kaufman, 1993) 

and spatial diffusion patterns (Hägerstrand, 1952, 1967). So far, these three concepts have not 

been considered together, although all three concepts are often used to study technology 

diffusion. Feldman et al. (2015) study the diffusion of biotechnology and therefore consider 

proximities and spatial diffusion patterns, while Balland and Rigby (2017) analyze the effects 

of geographical and technological proximity on the diffusion of complex technologies. Taking 

all three concepts into account contributes to our understanding of spatial technology diffusion.  

First, including the perspective on spatial diffusion patterns allows an increase in 

understanding about geographic proximity beyond the common distinction of whether it 

influences diffusion processes or not. Therefore, hierarchical and contagious diffusion patterns 

have been discussed in Chapter 2. Besides these two patterns that have been introduced by 

Hägerstrand (1952, 1967), a further diffusion pattern has been added: leap-like diffusion. This 
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pattern is characterized by a diffusion that leaps from one region to another without showing 

any kind of neighborhood effect.  

Additionally, discussing the dimension of technological complexity promises to offer insight 

into why certain technologies diffuse hierarchically while others diffuse contagiously or in a 

leap-like form. Complex technologies tend to consist of more subcomponents, and more 

information is required to understand their structures than those of simple ones (Dehmer et al., 

2009). These characteristics imply that simple and complex technologies diffuse with different 

spatial patterns. Simple technologies have fewer requirements for adoption and might therefore 

diffuse with far less friction. Geographic proximity is likely to play a minor role, leading to a 

leap-like diffusion pattern. Interestingly, high levels of technological complexity do not suggest 

one distinct spatial pattern per se. On one hand, the infrastructure and capability requirements 

of complex technologies indicate a hierarchical diffusion, as those requirements are more likely 

to be found in cities (Hagget, 2001; Bettencourt et al., 2007). On the other hand, the higher 

efforts necessary to understand complex technologies indicate the necessity of strong personal 

interactions that are more likely to form in geographic proximity (Boschma, 2005) and imply a 

contagious diffusion. Thereby, Chapter 2 has shown a way of connecting the traditional 

innovation diffusion literature (Hägerstrand, 1966; Blaut, 1977) with recent concepts of EEG. 

 

The dissolution of network links  

Although the structure and evolution of social networks has been extensively studied, the 

mechanisms underlying the dissolution of links has remained relatively unexplored. Some 

authors indicate that the dissolution is not just a strictly inverse process of link formation but is 

independent and, therefore, worthwhile to explore (Balland, 2012; Krivitsky and Handcock, 

2014). However, a comprehensive theoretical discussion about the mechanisms of link 

dissolution is still lacking. Chapter 4 has presented a starting point for this discussion and has 

elaborated on dissolution processes.  

The discussion considers location factors and aspects of the dyad as well as the structural 

level of networks. For example, it is argued that organizations in urban regions will likely 

dissolve links earlier to exploit the greater possibilities of partners that cities offer. Moreover, 

they will do this with an even higher probability if partners have high cognitive proximities. 

Cognitive proximity may enhance the formation of links because it enables the partners to 

exchange knowledge more efficiently (Nooteboom et al., 2007). But as cognitively proximate 

organizations could also be competitors (Boschma, 2005), cognitive proximity might 

simultaneously facilitate the dissolution of links and not its maintenance. In this sense, Chapter 
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4 contributes an important first step to the literature discussing the process of link dissolution 

as an elementary aspect of network evolution.  

 

The demand side of industry emergence 

The literature of innovation diffusion highlights the relevance of the regional context to 

adoption probabilities and diffusion processes (Blaut, 1977; Ormrod, 1990; Rogers, 2003). 

Regional characteristics shape the perception of potential adopters regarding the usability of 

new technologies and products. Thus, the regional context tends to form the demand of 

economic agents. Adding to this, technology transition studies emphasize the relationship of 

local demand and the creation of technological niches nurturing industries in their early phases 

(Geels, 2004). In economic geography, the processes and patterns of industry emergence in 

regions are frequently understood as the outcome of previously existing regional industry 

structure (Boschma and Martin, 2010). Thereby, the emphasis rests on the relatedness or 

unrelatedness of novel industries to current ones. Stated differently, the literature looks at the 

local supply of resources and infrastructure and their impact on attracting new industries 

(Boschma, 2017). Far less attention has been directed to the effect of local demand on industry 

dispersion. For this reason, Chapter 5 contributes an extensive elaboration on how demand 

shapes the location decisions of manufacturers.  

The chapter has combined arguments from the literature of technological transition and 

innovation management with aspects of EEG. Thereby, Chapter 5 has distinguished between 

local supply-push and local demand-pull mechanisms. The first has been described as the 

creation of regional niches in which technologies are supported and nurtured (Schot and Geels, 

2008). These niches are incubated by manufacturers to create small local markets in which their 

product can be introduced without facing complete competition (Jacobsson and Johnson, 2000). 

Those niches tend to be place specific as local constellations of actors and institutions shape 

these (Coenen et al., 2012). In contrast, manufacturers might not actively create local markets 

but may rather follow existing consumer demand. Hence, manufacturers develop product 

features according to customer preferences. In order to understand these best, close 

relationships to customers are necessary (Martin et al., 2019), which might lead manufacturers 

to locate themselves near places of great demand. This is especially the case when consumer 

preferences tend to be place specific and shaped by regional characteristics (Ormrod, 1990; 

Essletzbichler, 2012).  

Chapter 5 contributes an important discussion to elaborate the interdependent relationship 

of supply and demand that has been largely neglected in EEG so far. It thereby adds to the 
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understanding of how new industrial paths emerge in regions and emphasizes the vital role of 

demand in this process, which needs to be more strongly integrated in evolutionary theories of 

industry emergence.  

 

6.2 Empirical contributions  

6.2.1 Technology  

As technologies represent the embodiment of knowledge, they were the first dimension of 

knowledge diffusion analyzed in this thesis. Based on their knowledge, inventors generate novel 

technologies that diffuse in space. How much and in which way these technologies diffuse is 

influenced I part by their characteristics (Pezzoni et al., 2018). One such characteristic that is 

relevant in this context is the level of complexity inherent in technologies (Kaufman, 1993). 

Although many studies emphasize the advantages of managing complex knowledge (e.g., 

Boltho et al., 2018; Sbardella et al., 2018), little is known about its emergence and diffusion in 

space. Consequently, Chapter 2 has tackled the first research question of this thesis: How do 

complex technologies diffuse in space? 

To answer this question, Chapter 2 has combined the work of Hägerstrand (1952, 1967) with 

the proximity framework (Boschma, 2005) and the dimensions of technological complexity. 

Moreover, it has made use of an extensive data set of around four million patents that were 

granted in the US between 1836 and 2010. Utilizing this information, a data set has been derived 

for each technology considering whether a region has been granted a patent in a technology and 

how many years this has taken. Combined with data on geographical, technological and social 

relations as well as population size and patent activity, a Bayesian survival model has been 

calculated for each technology. Afterwards, the resulting coefficients of the independent 

variables have been featured in a meta-regression with technological complexity as the meta-

independent variable.  

The results of the investigations sustain the findings of Hägerstrand (1952): examples have 

been found for hierarchical diffusions in which technologies first leap to other cities and then 

diffuse into neighboring regions. Contagious diffusions have been observed as well, i.e., 

technologies diffuse from the innovator region to neighboring regions. Other technologies also 

leap from region to region without revealing any neighborhood effects. Crucially, the meta-

regression has indicated the existence of a significant relationship between contagious 

diffusions and technological complexity. This adds to the work of Balland and Rigby (2017), 

who present evidence for such a relationship of complexity and geographic proximity. The 

meta-regression has also revealed that complex technologies are more quickly adopted in cities 
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than in rural regions. This effect is even more pronounced if regions have experience in related 

technologies. These results complement previous findings (Balland and Rigby, 2017; Feldman 

et al., 2015). Interestingly, the results of social proximity vary strongly between technologies. 

For some, a positive relationship to adoption speed can be found. For others, this relationship 

is negative. Moreover, the differences in technological complexity do not explain these 

findings. Therefore, other reasons must be present that shall be uncovered by future research. 

 

6.2.2 Networks 

The second dimension that is of relevance when studying knowledge diffusion is networks. 

Social networks have been long recognized as the channels through which knowledge flows 

from one person to another. Hägerstrand (1965) argues that information about products is 

transmitted via personal communication fields. Similar, firms and regions learn about new 

technological opportunities through interaction in alliances or joint R&D projects (Broekel, 

2015), which facilitates their innovativeness (Fornahl et al., 2011). Chapters 3 and 4 have 

investigated two aspects about networks that have not or only indirectly been targeted by 

previous research: the effectiveness of subsidized R&D networks and the simultaneous 

evaluation of link formation and link dissolution mechanisms. 

 

Subsidized R&D networks  

The aim of Chapter 3 was to analyze whether public induced knowledge networks lead to an 

increase in spatial knowledge diffusion. In contrast to most existing studies, in this work, a 

direct approach, similar to that of Jaffe et al. (1993), has been applied. It has evaluated whether 

actors’ joint participation in projects subsidized by the German government between 2000 and 

2009 lead to higher patent citations among their respective regions. For the empirical analysis, 

a gravity model has been designed and estimated that explains inter-regional patent citations by 

considering relations resulting from publicly funded projects and geographical, technological 

and organizational proximity. In addition, relationships between regions in the form of co-

inventorships have been considered. 

The findings for geographical and technological proximity are in line with the existing 

literature as geographical proximity is negatively and technological proximity positively related 

to knowledge diffusion (Jaffe et al., 1993; Peri, 2005). With regards to the effects of knowledge 

networks, Chapter 3 presents somewhat contradictory results. The chapter has found a positive 

and significant relationship between co-inventors and subsequent patent citations among their 

respective regions. This supports the facilitating influence of networks on knowledge exchange. 
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In regard to policy-induced networks, the analysis has not revealed any evidence for an 

increased probability of patent citations between the home regions of participating 

organizations. This finding comes at a surprise, as, for example, Fornahl et al. (2011) and 

Broekel (2015) report a positive relationship between participation in subsidized joint projects 

and subsequent patent activity. However, in contrast to the findings of Chapter 3, these authors 

use an indirect approach of measuring knowledge diffusion that links project participation and 

patent generation but not patent citations. Accordingly, the findings in this thesis, which are 

based on a more direct approach, question the idea of subsidized networks facilitating 

knowledge flows between regions.  

This may be due to a number of reasons (see Chapter 3.5). One of these may be that firms 

use the subsidies as windfall gains, i.e., they are not used to establish new or strengthen existing 

collaborations. Rather, they are simply used to reduce the firm-resources invested into existing 

collaborations. The results of Hagedoorn and Schackenraad (1993) support this argument. 

These authors conclude that organizations tend to cooperate with the same partners regardless 

of receiving subsidies or not. Contrastingly, Czarnitzki and Hussinger (2018) recently provided 

empirical evidence that private and publicly funded projects have a complementary effect on 

patent output. Hence, subsidized partnerships have an additional positive effect on patent 

outcome. Again, however, this relationship between network and patent outcome only 

indirectly measures whether there was a knowledge flow between partners. It is also possible 

that the subsidies led firms to hire additional personnel, which created new patent output. This 

does not mean that knowledge has been diffused between organizations. In this sense, Chapter 

3 adds a methodological possibility to directly assess the effect of subsidized joint projects on 

knowledge flows.  

 

The evolution of network structures 

Chapter 3 has elaborated on knowledge networks and has generated new insights on their 

importance for inter-regional knowledge exchange. Chapter 4 has deepened the analysis and 

focused on the structural evolution of inter-organizational networks. More precisely, the 

formation and dissolution processes of a German biotech network have been analyzed. Both 

processes are important drivers facilitating (link formation) and hampering (link dissolution) 

knowledge diffusion. The determinants of link dissolution have been largely neglected in 

empirical papers, although they shape the structure and evolution of networks as much as 

formation processes (Glückler, 2007; Boschma and Frenken, 2010). Therefore, Chapter 4 has 
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discussed and empirically explored the effects of regional characteristics, proximities and 

network structures on the dissolution of links in spatial knowledge networks.  

Adding to the literature, the results emphasize the positive relationship of cognitive and 

institutional proximity with link formation (e.g., Balland, 2012; Broekel and Hartog, 2013b). 

Moreover, a negative relationship with geographic distance has been found, i.e., links tend to 

be formed between partners that are located nearby, which is also highlighted by previous 

studies (e.g., Ponds et al., 2007; Ter Wal, 2014). In addition, the variables at the node and 

structural levels are of relevance: we have observed medium and large firms to form more links 

than small firms, and organizations located in rural regions have been identified to be more 

actively forming relationships than their urban counterparts. No evidence has been found for 

positive effects of multi-connectivity and preferential attachment. Accordingly, organizations 

do not tend to link in multiple ways, and they are less likely to obtain more links if they are 

already well connected. 

In general, the process of link dissolution seems to be more difficult to explain with factors 

commonly considered when studying the evolution of knowledge networks. This was shown in 

more variables being insignificant in the empirical models. Accordingly, fewer of them seem 

to be relevant for the length of subsidized joint projects in biotechnology. This observation 

might stem from the low variance in project length, which in turn is partly fixed by the design 

of the underlying policies. Nevertheless, some significant results have been discovered: the 

variables considering research institutes and urban locations are both negative significant 

implying that these organizations aim for shorter time frames. At a first glance, the latter comes 

as a surprise, as, according to the “third mission” of universities, they can be expected to aim 

for extensive knowledge exchange and project-related funding (Lee, 1996). Therefore, one 

could argue that they are likely to engage in longer-lasting projects. On the other hand, 

considering the restrictive capabilities of organizations in maintaining partnerships, the results 

might indicate that these institutes prefer shorter timeframes for projects to increase their 

chances of having many different partners and gaining access to many distinct knowledge 

sources (Ponds et al., 2007).  

Of the considered types of proximity, only institutional proximity has become significant 

negative, indicating that partnerships between organizations from different institutional 

backgrounds, e.g., private firms and public universities, last longer. The effect contrasts with 

our expectations of different institutional backgrounds having no effect once the cooperation 

has been initialized and formally arranged. However, projects with partners of different 

institutional backgrounds might necessitate longer project timeframes as the involved parties 
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need to familiarize themselves with each other and introduce joint routines and processes 

(Ponds et al., 2007; Balland, 2012).  

 

6.2.3 Regional Context 

Chapter 5 has studied the spatial emergence and diffusion of the German wind energy 

industry. More specifically, the location of new manufacturers and the location of wind turbines 

have been explored for the initial and growth phases of this industry. This has distinguished 

between local supply-push and local demand-pull mechanisms. In the first, manufacturers 

deploy wind turbines within their home region by creating a supportive market niche. In other 

words, they push their product in the market. In the latter, manufacturers emerge in regions 

where a significant demand already exists. So to speak, they are pulled into these regions. In 

order to identify which process is dominant, it has been observed and analyzed whether and 

when new manufacturers were founded and whether a significant relationship is given with the 

amount of deployed wind turbines before (demand-pull) or five years later (supply-push). 

Thereby, the number of future wind turbines quantifies the demand of a region.  

The chapter’s results, as expected, support the importance of related variety in the initial 

phase of the industry. Regions with former related patent portfolios are more likely to witness 

the emergence of wind energy manufacturers. This is in line with the findings of Neffke et al. 

(2011) and Breul et al. (2015). Besides this, the chapter has revealed that the emergence and 

diffusion of industries is also linked to demand. The likelihood to observe the foundation of 

wind energy manufacturers increases by 0.5% for each wind turbine that will be installed in 

that region in upcoming years. In the growth phase, related variety becomes less important, but 

demand still affects the diffusion process as distance decay effects are present. With every 

additional kilometer between regions and the nearest wind turbines, the likelihood of witnessing 

a manufacturer to emerge decreases. 

Moreover, Chapter 5 confirms that the diffusion of wind turbines is strongly driven by 

natural conditions such as average wind speeds and available open space. Interestingly, the 

analysis has not found any evidence for manufacturers pushing the establishment of new wind 

turbines in their home region. The latter finding comes somewhat as a surprise, as it contrasts 

with the expectations of the transition literature (Geels and Deuten, 2006; Schot and Geels, 

2008). There are a number of reasons for this. For instance, producers may not have done so 

because natural conditions, e.g., wind speed, were more important than proximity to their 

facilities. Alternatively, manufactures may have tried to push turbine deployments but were 

unsuccessful.  
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6.3 Methodological contributions 

In addition to the theoretical and empirical findings, this thesis represents a substantial 

contribution to the methodological repertoire of evolutionary economic geography. The 

following section will describe these contributions and discuss their potential impact. 

In Chapters 2 and 5, a Bayesian survival framework has been applied (Zhou and Hanson, 

2017). Survival models focus on the explanation of event occurrences and simultaneously 

consider the time it has taken for the event to take place (Box-Steffensmeier and Jones, 2004). 

Such events can be specified as firm entries or exits, patent grants or citations. In addition, 

survival models allow the consideration of regional or relational characteristics influencing the 

likelihood of observing an event (Breul et al., 2015). The baseline hazard, i.e., the probability 

of an event occurring without considering any variables, can be flexibly adapted by selecting 

from a set of various survival models, e.g., Cox, Bayesian or Weibull (Darmofal, 2009). The 

spatial dependence of neighboring regions can also be taken into account and controlled for by 

including spatial individual or shared frailties (Ibid.). For example, Feldman et al. (2015) make 

use of a Cox semi-parametric survival model to investigate the spatial diffusion of 

biotechnology. In sum, the application of survival models appears promising for the field of 

economic geography, as they allow for the empirical analysis of the diffusion of knowledge in 

space. Thereby, they can contribute to the understanding of economic landscapes and their 

evolution over time, which is one of the primary aims of EEG (Boschma and Martin, 2010). In 

this regard, this thesis contributes to the methodological portfolio of geographers and promotes 

the usage of survival models for the future by offering two empirical studies as examples.  

Adding to the application of a Bayesian survival framework, Chapter 2 has demonstrated the 

use of meta-regression analyses (Jarrell and Stanley, 1989). In order to systematically assess 

complex issues, economic geographers often face the challenge of how to empirically analyze 

the working of specific mechanisms in different contexts. In the case of innovation diffusion, 

such contexts can be different technologies, for which diffusion patterns and drivers might 

differ. Using simple regression frameworks, it is impossible to consider many of these contexts 

and in particular their heterogeneity. Chapter 2 has presented a solution to this issue: meta-

analysis. Meta-analysis has been introduced to the scientific community to propose a 

quantitative method for reviewing conducted studies (Jarrell and Stanley, 1989). Typically, the 

variations in results of clinical studies have been evaluated with meta-analysis by considering 

variables that have not or could not be implemented in the single studies, e.g., group size or 

methods used. Relating to innovation diffusion, meta-regressions allow for factoring in an 

additional level (in this case, technological context). Chapter 2 has demonstrated what such a 
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framework can look like. First, for different technologies, independent Bayesian survival 

models are calculated that relate regional characteristics (e.g., urbanization) and relational 

attributes (e.g., technological proximity) to the spatial diffusion of technologies. In a second 

step, the resulting coefficients are considered as the dependent variable of a supplementary 

regression analysis and technological characteristics, e.g., complexity, are implemented as the 

independent variable. Thereby, Chapter 2 contributes to the necessity of analyzing innovation 

diffusion in a holistic and systematical way. The possibility of recognizing the heterogeneity of 

contexts and analyzing this heterogeneity’s impact on the underlying mechanisms presents 

meta-regressions as a powerful tool for economic geographers. 

A further methodological contribution has been made in Chapter 4 by introducing separable 

temporal exponential random graph models (STERGM) to the analysis of spatial knowledge 

networks. STERGM is a recent advancement in the family of ERGM (Krivitsky and Handcock, 

2014). ERGM allows to study the structure and evolution of networks by letting researchers 

consider independent variables of all three network levels: node, dyad and structural. Thus, 

ERGM are powerful tools already used in economic geography (e.g., Broekel and Hartog, 

2013). Additionally, STERGM extends the tool by a prolific feature: the simultaneous 

consideration of formation and dissolution processes of links in two-mode networks. Thereby, 

two features of a network are addressed that have been mostly neglected in the literature thus 

far. First, the two-mode structure of networks is taken into consideration. Real-life networks 

often evolve around two-modes, e.g., projects and participants or firms and employees. Due to 

methodological limitations, researchers are often forced to use one-mode projections in which 

the first mode is dissolved, and links are created directly with the second mode (e.g., Buchmann 

and Pyka, 2015; Scherngell and Barber, 2009). However, this projection is likely to have 

questionable outcomes, as, for example, all participants of a project will have direct links in the 

resulting one-mode network and, thus, clustering indices tend to be very high (Liu et al., 2015). 

Second, STERGM differentiates between link formation and dissolution and simultaneously 

evaluates both processes’ determinants. This is crucial as, in addition to the formation of links, 

their eventual dissolution is an elementary part of network evolution. However, the possibilities 

to analyze the latter process have been very limited so far because (a) data about link dissolution 

is rather rare and (b) methods that allow for disentangling the two were lacking. In Chapter 4, 

point (b) has been addressed by introducing STERGM to the community of economic 

geography. More specifically, an example has been presented that shows how to disentangle 

the processes of formation and dissolution and, thus, how to deepen our understanding of 
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network evolution. Additionally, so far only a few empirical studies make use of STERGM, for 

example, Zhang et al. (2019).  

Taken together, the individual chapters of this thesis offer new methodological approaches 

to the community of economic geography and thereby advance the possibilities of 

understanding the evolution of economic landscapes.  

 

6.4 Limitations and future research 

The eventual reflection upon this thesis shall not only bring its contributions to the scientific 

community to light but also its limitations. The main ones will be presented and discussed in 

the following section and shall serve as starting points for future research.  

 

The evolution of complexity over time and its spatial diffusion 

In Chapter 2, the diffusion of simple and complex technologies has been investigated 

thoroughly. The chapter thereby complements previous research (Sorenson et al., 2006; Balland 

and Rigby, 2017; Balland et al., 2020). However, Chapter 2 as well as the mentioned studies 

neglect that the complexity of a technology changes over time (Broekel, 2019). On one hand, 

technologies may become simpler when their components are restructured. On the other hand, 

economies have in general become more complex over the years (Ibid.), leading to formerly 

complex technologies being comparably simple today. This change in complexity is likely to 

affect spatial diffusion. Feldman et al. (2015) separate the diffusion of biotechnology into two 

phases. In the first phase, geographic proximity is unrelated to the diffusion process; in the 

second phase, it becomes relevant. This raises the question of whether this observation can be 

explained by a change in complexity. In a similar sense, Balland et al. (2013) argue that, in the 

video game industry, geographic proximity of interfirm collaboration becomes more important 

over time as complexity rises.  

In accordance with these observations, a dynamic perspective on proximities might be 

fruitful as well to enhance our understanding of spatial diffusion processes. For example, 

through the constant generation and adoption of technologies, regions advance their 

technological portfolio. Accordingly, their technological proximity to other regions changes as 

well. Balland et al. (2015) identify five dynamics affecting the evolution of proximities: 

learning (cognitive proximity), integration (organizational proximity), decoupling (social 

proximity), institutionalization (institutional proximity), and agglomeration (geographic 

proximity). Accordingly, a further explanation for the changing role of geographic proximity 

in Feldman et al. (2015) may be the process of agglomeration in biotechnology (Zeller, 2001).  



142  Chapter 6 

 

 

 

A dynamic perspective on complexity and proximity would allow future research to 

investigate how both aspects shape each other’s evolution. Does the evolution of complexity 

shape dynamics, like organizational integration? Or do the two aspects evolve co-

evolutionarily? This clearly presents a worthwhile prospect for future research. 

 

Complexity and network structure  

Chapters 3 and 4 have elaborated on the network dimension of knowledge diffusion 

independent of the complexity of technologies. However, both dimensions may not be 

independent of each other. Fleming and Sorenson (2001) study the flow of knowledge through 

networks and consider the level of complexity. They observe that knowledge of distinct levels 

of complexity diffuses differently in networks. Highly complex knowledge resists diffusion, 

even within closely connected clusters, whereas simple knowledge flows equally between 

actors, independent of their network position. This indicates that, according to its complexity, 

knowledge requires different network structures to flow.  

Furthermore, not only may network structures shape the diffusion of complexity, but 

complexity may also shape the structure of networks. Economic agents that face complex 

technologies and, hence, greater difficulties and uncertainties may decide to interact more 

intensively (Carbonell and Rodriguez, 2006). In this regard, Broekel (2019) finds a positive 

relationship between technological complexity and number of inventors per patent. This raises 

the question, if not only the number of partners increases but also the time of their partnership. 

Does complexity affect the dissolution of network links? The interdependence between 

technological complexity and network evolution represents a further interesting research 

avenue. 

 

The measurement of complexity 

Before future research may tackle these avenues, however, a common understanding of 

complexity is necessary. At the moment, several definitions are at hand, leading to different 

measurements of complexity based on different data inputs. Fleming and Sorenson (2001) 

introduce “Modular Complexity” quantifying the degree of interdependence of technological 

subcomponents. Balland et al. (2020) measure complexity for different economic activities like 

scientific publications and industries. In their paper, complexity of publications is measured by 

the number of authors, and industries are defined as complex if their workforce requires many 

years of education. In another paper, Balland and Rigby (2017) compute a knowledge 

complexity index (KCI) by applying the complexity index developed by Hidalgo and 
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Hausmann (2009) to patent data. Originally this measurement was developed to evaluate 

countries’ export and employment patterns. Just recently, Broekel (2019) developed “structural 

diversity” as a further index of complexity.  

Comparing the empirical results of studies with different complexity measures may become 

difficult and may often focus exclusively on the usage of measurements. Thereby, conceptual 

reflection might be neglected, and theoretical progress may slow. Hence, a critical discussion 

on the different measures will be essential for future research. In this regard, Broekel (2019) 

takes a first step by comparing the results of structural diversity with modular complexity and 

KCI. He finds significant differences in the results, supporting the necessity of a vital discussion 

about the indices. Importantly, this discussion needs to tackle the question of whether there is 

one complexity measure that can be used in all contexts (e.g., regional and national). Or, is there 

a necessity for different complexity indices to analyze distinct contexts? 

 

International knowledge diffusion 

Through the course of this thesis, a regional perspective on knowledge diffusion is adopted 

which neglects the international level. However, today’s economies are characterized by global 

production and knowledge networks (Binz and Truffer, 2017; Yeung and Coe, 2014). For 

example, the German auto manufacturer Volkswagen maintains research institutes in Germany, 

Spain, the US, Japan and China. Although these locations are far apart, organizational distance 

is likely to be relatively low, which may simplify the knowledge exchange between these 

facilities. In the sense of Bathelt et al. (2004), Volkswagen may provide global pipelines of 

knowledge, providing regions with new knowledge from outside their region.  

In this regard, the literature on multi-national enterprises (MNE) appears to be a good 

starting point for future research (Cantwell and Iammarino, 2000; Ascani et al., 2016). For 

example, Schaefer and Liefner (2017) find that MNEs from developing countries can enhance 

their patent activities through maintaining R&D institutes abroad. This implies a knowledge 

flow from the R&D institutes to the headquarters. Considering these international linkages, and 

networks in total, would allow for the investigation of spatial diffusion patterns of technologies 

on a global scale. Do hierarchical and contagious patterns still dominate the diffusion of 

technologies, as observed in Chapter 2? Or, do new patterns occur? Are MNEs capable of 

transferring complex knowledge internationally?  
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Data, Data and again Data 

The preceding paragraphs have shown that future research in economic geography faces 

challenging and worthwhile topics to investigate. Complexity, networks, proximities and 

regional contexts offer much to explore. However, all previously mentioned empirical research 

avenues will severely depend on the availability of data. In Chapter 4, for example, the 

investigation of link dissolution requires longitudinal data of inter-organizational cooperation 

or inter-personal partnerships that also includes the date of termination. However, this data is 

often not available (McPherson et al., 2001). In this thesis, we have made use of the German 

subsidies catalogue that includes project length, allowing us to analyze link formation as well 

as link dissolution. In this case, project length is defined before the project starts. Hence, the 

data does not capture unplanned project termination. Moreover, partners might have stopped 

working with each other long before the official end of the supported project.  

In recent years, the enthusiasm for “big data” has grown significantly. The rapid 

accumulation of data through various sources like internet websites or sensors promises many 

new insights about all aspects of life (Labrinidis and Jagadish, 2012; Mayer-Schönberger and 

Cukier, 2013). Future research in economic geography might potentially benefit from this 

development as well by producing a more accurate and complete understanding of spatial 

processes (Graham and Shelton, 2013). Many data points already contain explicit or implicit 

spatial information (Goodchild, 2013); IP addresses include information on regional level and 

smartphones often track GPS positions. With respect to information on link duration and 

dissolution, web scraping of firm websites enables us to track the timing of formation and 

dissolution of partnerships. Just recently, Krüger et al. (2020) published a working paper on the 

“digital layer,” utilizing web-scraped information of 500,000 German firms to analyze inter-

firm relations. With regards to Chapter 4, firms tend to announce strategic partnerships on their 

websites; if these should disappear, it might indicate the closure of the partnership. In 

combination with the information on projects supported by innovation policies, serving as 

representations of relations with initially agreed project lengths, this would allow us to 

investigate intended as well as unintended terminations. Additionally, in this particular use case, 

web scraping methods offer a time and cost effective way of acquiring data, which allows future 

research to analyze inter-firm networks on a large scale without limiting to specific regions or 

industries (Krüger et al., 2020).  
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6.5 Policy implications  

This thesis has investigated three dimensions of knowledge diffusion: technology, networks, 

and regional context. Based on the empirical results, the following section will discuss the 

possibility of governments to intervene in markets in order to steer knowledge diffusion. In 

general, policy tools tackle numerous aspects of social and economic life in which market 

failures are perceived (Jaffe et al., 2005). Therefore, the following implications will only target 

a small part of potential place-based instruments.  

 

Facilitating the diffusion of complex technologies 

Chapter 2 has found evidence that complex technologies diffuse contagiously. Moreover, 

similar to Balland et al. (2020), our results have shown that complex technologies concentrate 

in urban areas. Hence, these results imply that distance dependent face-to-face interactions are 

essential for understanding complex technologies. Only through personal communication can 

complex technologies be explained and a successful transition between people be achieved 

(Feldman, 1993). As complex technologies promise higher economic returns, this might 

increase the welfare gap between regions, which would be contradictory to the aims of the EU 

cohesion policy (Basile et al., 2008). In order to enhance the diffusion of complex knowledge 

over greater distances, policy makers should facilitate the mobility of scientists and researchers. 

Thereby, the complex knowledge embodied in these people might flow between regions when 

researchers are moving between places and begin working in new regions. Either star scientists 

with complex knowledge enter new regions and enrich the regional stock of knowledge with 

more complex knowledge, or researchers acquire new knowledge by temporarily moving to 

regions that possess more complex knowledge. While working there they might absorb new, 

complex knowledge which they transmit to their home region when moving back. In order to 

facilitate these possibilities, policy makers could, for example, simplify the process of achieving 

temporary working and residence permits in their countries. 

Balland et al. (2019) discuss the implications of technological complexity and relatedness 

on the EU smart specialization policy. They propose to identify the diversification potentials of 

regions by assessing the scores on relatedness and complexity to guide policy makers which 

technologies to support. Thereby, policy makers could facilitate the adoption of technologies 

that promise economic benefits and are related to regional competencies. The results of Chapter 

2 also suggest that technological relatedness is beneficial when it comes to the adoption of 

technologies, and even more so if these technologies are complex. Therefore, policy makers 

should encourage firms to explore product opportunities related to their current technological 
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portfolio but that are more complex. For example, policy makers could support firms in taking 

a step forward in the supply chain of their industry. Thus, instead of producing and supplying 

components for the next step in the production chain, they start to manufacture these as well. 

This would allow firms to advance, based on their skills and competencies and, therefore, 

increase the likelihood of a successful development.  

 

Shaping the regional context to steer technology and industry diffusion 

Current policy tools in Europe, like smart specialization, that are frequently discussed in 

science (Asheim et al., 2017; Balland et al., 2019; Boschma, 2014) target the supply side of 

regions by leveraging existing strength and facilitating the competitive advantage of regions. 

In Chapter 5 evidence has been revealed that demand is a further factor shaping the emergence 

of industries. New industries may sustain the competitiveness of regions by diversifying the 

regional economy (Frenken et al., 2007). Thus, policy tools may not only support supply side 

factors like infrastructure and human capabilities but also demand related aspects.  

 For governments, the most direct way to do so would be to occur as consumers themselves 

and create additional demand, e.g., via public tenders. As governments frequently appear to be 

the largest vehicle fleet and infrastructure owners, they could raise a substantial demand. In this 

regard, Edler and Georghiou (2007) discuss a demand-orientated innovation policy by making 

use of general and strategic public procurement. In case of the first option, innovation in general 

is an essential part of the call for tenders. The second option describes public procurement that 

demands specific technologies, products or services. In this way, governments could act as lead 

users of innovations and provide a critical mass, securing producers a certain return. Thereby, 

the market uncertainty accompanying the innovation process is decreased and firms might 

rather decide to invest in the development process. This might not only lead manufacturers to 

invest in production capabilities (Edler and Georghiou, 2007) but also encourage the emergence 

of new firms offering complementary products and services. For example, in the case of electric 

vehicles, the possibility that new firms target the missing charging infrastructure might be 

enhanced if policy makers signal a significant demand for electric vehicles.  

 

Adjusting policy instruments according to the maturity of an industry 

Similar to Neffke et al. (2011) who report that the effects of agglomeration externalities 

change over the industry life cycle, the results of Chapter 5 have also shown that the importance 

of factors vary in accordance to industry maturity. In the initial phase, related knowledge 

enhances the probabilities of industry emergence in a region. In the growth phase this factor 
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loses power, and geographic proximity to demand becomes more relevant for the development 

of an industry. Accordingly, the results suggest that different policy tools vary in their 

effectiveness over the industry life cycle. Hence, policy makers should consider the maturity of 

an industry when designing industry supporting policies. In a similar sense, Brenner and 

Schlump (2011) find evidence that different policy measures affect cluster development 

differently in the various phases of a cluster life cycle.  

In order to facilitate industry emergence and development, the results of Chapter 5 indicate 

that emerging industries should be supported through access to related knowledge. Policy 

makers could, for example, facilitate cooperation between young firms and related universities. 

More mature industries, on the other hand, need access to demand-related knowledge, like user 

experience and consumer needs, in order to perceive and understand changes in consumer 

preferences and react accordingly. As this kind of data likely concerns the privacy of people 

because it includes information about individuals’ place of living or habits, the European Union 

is very restrictive about data capturing and storage. This requires organizations to handle a 

constant trade-off between data-driven innovation and privacy (Goldfarb and Tucker, 2012). 

Thus, privacy policy becomes successively more linked to innovation policy, which should be 

taken into account by policy makers when designing these instruments.  

 

Subsidized joint projects 

The subsidization of joint projects enjoys great popularity in the EU. Since 1984, the EU has 

established eight Framework programs with a total volume of 250 billion euros, aiming to fund 

joint R&D projects between organizations in different EU member states. Additionally, nations 

like Germany have their own funding schemes with which they support joint projects. The aim 

of these subsidies is to enhance the exchange of knowledge between organizations and thereby 

facilitate the innovation capabilities of organizations. As knowledge exchanges tend to be 

characterized by market failures (Lundvall, 1992), the intervention of policy makers appears 

legitimate (Jaffe et al., 2005). Interactive learning and innovation processes create significant 

costs related to invested time, effort and trust (Hagedoorn, 2002) by a simultaneous uncertainty 

about future returns (Bleek and Ernst, 1993). Not only may the innovation process fail, but 

organizations are at risk of partners behaving opportunistically (Williamson, 1973). However, 

while these arguments are used to justify the subsidization of joint projects, there is no empirical 

evidence that the amount of inter-organizational cooperation remains below a “social 

optimum,” as one would expect because of the mentioned costs and uncertainties (Graf and 
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Broekel, 2020). Thus, not only does the effectiveness of this instrument need to be assessed but 

also its legitimation critically evaluated.  

With respect to their effectiveness, Chapter 3 has analyzed whether policy-induced networks 

facilitate inter-regional knowledge diffusion in the form of patent citations but has failed in 

obtaining clear evidence as our main variable is insignificant. Several reasons appear: the 

knowledge transferred between partners may be obsolete and therefore does not lead to new 

citations because (1) novel knowledge is not existent, (2) it is (willingly) not shared, (3) it is 

not sharable, and (4) it cannot be shared due to partners’ low absorptive capacity. With regards 

to (1), it might occur that novel knowledge was already shared before the induced partnership, 

as policy may induce similar constellations of partners in the same way as in private networks 

(Breschi and Cusmano, 2004; Scherngell and Barber, 2011). Therefore, it might be fruitful to 

try promoting unlikely partnerships, e.g., in the form of low cognitive proximity. This might 

also facilitate the research impact because, if successful, the partnership might create 

breakthrough innovations (Castaldi et al., 2015). However, the results of this thesis as well as 

many other studies have shown that cognitive proximity should not be too low (Nooteboom et 

al., 2007); otherwise a successful knowledge exchange will be highly unlikely. Thus, a balance 

between too low and too high cognitive proximity has to be found. In addition, policy could 

also aim for connecting organizations working on highly complex technologies, as these 

promise higher returns. However, both approaches might be likely to have a high likelihood of 

failure, either due to an unfavorable constellation of partner characteristics—again, low 

cognitive proximity tends to hamper successful cooperation—or because the confrontation with 

combining complex technologies might overstretch the participants’ capabilities. But, if 

successful, the effort might be worthwhile as it could create valuable, novel technologies.  

In order to enhance the possibilities of a successful knowledge exchange under these 

circumstances and tackle point (4), policy makers should consider utilizing different project 

lengths. When facing knowledge unrelated to prior experiences, organizations tend to fail to 

grasp the new knowledge (Cohen and Levinthal, 1990; Nooteboom et al., 2007), at least at the 

beginning of a project. Allowing partners to collaborate longer might neglect the problem of 

unrelated knowledge and enable organizations to gain new insights. Crucially, the dissolution 

of established links and the length of research projects are essential for successful outcomes, as 

different research topics and goals necessitate distinct project lengths. Accordingly, policy 

makers should allow individual project lengths and not restrict all projects to a certain maximum 

length. Today a majority of projects is limited to 36 months (see Chapter 4). But it is 

questionable that projects in all kinds of technologies can be completed within such a time 
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frame. Distinguishing technologies with regards to their complexity might allow policy makers 

to adjust projects’ lengths appropriately. Complex activities tend to take more time and resource 

investments (Carbonell and Rodriguez, 2006); for these, governments could define longer 

project lengths in contrast to simple technologies, where shorter time frames might be 

sufficient.  

 

6.6 An appeal  

“The history of innovations teaches us that usually it takes far too long for proven concepts 

and programs to become part of practice” (Glanz et al., 2008, p. 313). For example, it took the 

British navy until 1795 to introduce citrus juice into the diet of sailors, although its effectiveness 

in preventing scurvy was already recognize in 1601. Nearly two centuries were necessary to 

adopt a life-saving measure. Obviously, this is an example meant to exaggerate the before-

mentioned quote. Nevertheless, people or regions often neglect to adopt certain processes or 

technologies which appear beneficial, at least from an outsider perspective. Accordingly, it is 

crucial to understand what factors shape the diffusion of new ideas and technologies. For 

economic geographers, this includes understanding the emergence and evolution of economic 

landscapes, and for policy makers, being able to steer socially desirable adoption processes. 

Therefore, at the end of this work, I would like to emphasize the importance of understanding 

spatial diffusion mechanisms and hope that the research in this thesis will encourage other 

researchers to likewise investigate spatial diffusion processes.  

 

 



150 

 

Bibliography  

Acs, Z. J., L. Anselin, and A. Varga (2002) ‘Patents and innovation counts as measures of 

regional production of new knowledge’, Research Policy, 31, 1069–1085. 

Almeida, P., and B. Kogut (1997) ‘The Exploration of Technological Diversity and Geographic 

Localization in Innovation: Start-Up Firms in the Semiconductor Industry’, Small Business 

Economics, 9, 21–31. 

Annoni, P., and L. Dijkstra (2019) The EU Regional Competitiveness Index 2019., Vol. 02. 

Arthur, W. (1990) ‘Positive Feedbacks in the Economy’, Scientific American, 262(2), 92–99. 

—— (1994) Increasing returns and path dependence in the economy. Michigan: University of 

Michigan Press. 

—— (2009) The Nature of Technology: What It Is and How It Evolves. London: Free Press. 

Arundel, A., and I. Kabla (1998) ‘What percentage of innovations are patented? Empirical 

estimates for European firms’, Research Policy, 27(2), 127–141. 

Ascani, A., R. Crescenzi, and S. Iammarino (2016) ‘Economic Institutions and the Location 

Strategies of European Multinationals in their Geographic Neighborhood’, Economic 

Geography, 92(4), 401–429. 

Asheim, B., M. Grillitsch, and M. Trippl (2017) ‘Smart Specialization as an Innovation-Driven 

Strategy for Economic Diversification: Examples From Scandinavian Regions’. In: 

Radosevic S., A. Curaj, R. Gheorghiu, L. Andreescu and W. I (eds) Advances in the Theory 

and Practice of Smart Specialization, pp. 73–97. Elsevier: London. 

Asheim, B. T., R. Boschma, and P. Cooke (2011) ‘Constructing Regional advantage: Platform 

policies based on related variety and differentiated knowledge bases’, Regional Studies, 

45(7), 893–904. 

Asheim, B. T., and M. S. Gertler (2009) ‘The Geography of Innovation: Regional Innovation 

Systems’, The Oxford Handbook of Innovation, (January 2009). 

Ashwill, T. D. (2003) Cost Study for Large Wind Turbine Blades : WindPACT Blade System 

Design Studies. 

Audretsch, D. B., and M. P. Feldman (1996) ‘R&D Spillovers and the Geography of Innovation 

and Production’, American Economic Review, 86(3), 630–640. 

Balland, P.-A. (2012) ‘Proximity and the Evolution of Collaboration Networks: Evidence from 

Research and Development Projects within the Global Navigation Satellite System 

(GNSS) Industry’, Regional Studies, 46(6), 741–756. 

Balland, P.-A., R. Boschma, J. Crespo, and D. L. Rigby (2019) ‘Smart specialization policy in 



Bibliography  151        

 

 

 

the European Union: relatedness, knowledge complexity and regional diversification’, 

Regional Studies, 53(9), 1252–1268. 

Balland, P.-A., R. Boschma, and K. Frenken (2015) ‘Proximity and Innovation: From Statics 

to Dynamics’, Regional Studies, 49(6), 907–920. 

Balland, P.-A., C. Jara-Figueroa, S. Petralia, M. Steijn, D. L. Rigby, and C. Hidalgo (2020) 

‘Complex Economic Activities Concentrate in Large Cities’, Nature Human Behaviour, 

4, 248–254. 

Balland, P.-A., and D. Rigby (2017) ‘The Geography of Complex Knowledge’, Economic 

Geography, 93(1), 1–23. 

Balland, P.-A., M. De Vaan, and R. Boschma (2013) ‘The dynamics of interfirm networks along 

the industry life cycle: The case of the global video game industry, 1987-2007’, Journal 

of Economic Geography, 13(5), 741–765. 

Basile, R., D. Castellani, and A. Zanfei (2008) ‘Location choices of multinational firms in 

Europe: The role of EU cohesion policy’, Journal of International Economics, 74(2), 328–

340. 

Bass, F. M. (1969) ‘A New Product Growth for Model Consumer Durables’, Management 

Science, 15(5), 215–227. 

Bathelt, H., A. Malmberg, and P. Maskell (2004) ‘Clusters and knowledge: local buzz, global 

pipelines and the process of knowledge creation’, Progress in Human Geography, 28(1), 

31–56. 

Bednarz, M., and T. Broekel (2019) ‘The relationship of policy induced R&D networks and 

inter-regional knowledge diffusion’, Journal of Evolutionary Economics, 29, 1459–1481. 

Bergek, A., and S. Jacobsson (2003) ‘The emergence of a growth industry: A comparative 

analysis of the German, Dutch and Swedish wind turbine industries’. In: Metcalfe J Stan 

and U. Cantner (eds) Change, Transformation and Development, pp. 197–227. Physica-

Verlag: Heidelberg. 

Bettencourt, L. M. A., J. Lobo, D. Helbing, C. Kühnert, and G. B. West (2007) ‘Growth, 

innovation, scaling, and the pace of life in cities’, Proceedings of the National Academy 

of Sciences of the United States of America, 104(17), 7301–7306. 

Binz, C., and B. Truffer (2017) ‘Global Innovation Systems—A conceptual framework for 

innovation dynamics in transnational contexts’, Research Policy, 46(7), 1284–1298. 

Blaikie, P. (1978) ‘The theory of the spatial diffusion of innovations: A spacious cul-de-sac’, 

Progress in Human Geography, 2(2), 268–295. 

Blaut, J. M. (1977) ‘Two Views of Diffusion’, Annals of the Association of Americal 



152   

 

 

Geographers, 67(3), 343–349. 

Bleek, J., and D. Ernst (1993) Collaborating to compete: using strategic alliances and 

acquisitions in the global marketplace. New York, Chichester, Brisbane, Toronto, 

Singapore: John Wiley and Sons. 

BMBF (2008) ‘Merkblatt für Antragsteller/Zuwendungsempfänger zur Zusammenarbeit der 

Partner von Verbundprojekten’, Bundesministerium für Bildung und Forschung, BMBF-

Vordruck 0110/10.08. 

Bode, E. (2004) ‘The spatial pattern of localized R&D spillovers: An empirical investigation 

for Germany’, Journal of Economic Geography, 4(1), 43–64. 

Boltho, A., W. Carlin, and P. Scaramozzino (2018) ‘Why East Germany did not become a new 

Mezzogiorno’, Journal of Comparative Economics, 46(1), 20–34. Elsevier. 

Boschma, R (2005) ‘Proximity and Innovation: A Critical Assessment’, Regional Studies, 

39(1), 61–74. 

—— (2014) ‘Constructing Regional Advantage and Smart Specialisation: Comparison of Two 

European Policy Concepts’, Italian Journal of Regional Science, 13(1), 51–68. 

—— (2017) ‘Relatedness as driver of regional diversification: a research agenda’, Regional 

Studies, 51(3), 351–364. 

Boschma, R, and K. Frenken (2010) ‘The spatial evolution of innovation networks: a proximity 

perspective’. In: Boschma Ron and R. Martin (eds) The Handbook of Evolutionary 

Economic Geography, pp. 120–135. Edward Elgar Publishing: Cheltenham. 

—— (2011) ‘Technological relatedness and regional branching’. In: Kogler D. F., M. P. 

Feldman and H. Bathelt (eds) Beyond territory. Dynamic geographies of knowledge 

creation, diffusion, and innovation, pp. 64–81. Milton Park, New York. 

Boschma, R, and J. G. Lambooy (1999) ‘Evolutionary economics and economic geography’, 

Journal of Evolutionary Economics, 9(4), 411–429. 

Boschma, R, and R. Martin (2010) ‘The aims and scope of evolutionary economic geography’. 

In: Boschma R. and R. Martin (eds) The Handbook of Evolutionary Economic Geography, 

pp. 3–39. Edward Elgar Publishing: Cheltenham. 

Boschma, R, and A. L. J. ter Wal (2007) ‘Knowledge Networks and Innovative Performance in 

an Industrial District: The Case of a Footwear District in the South of Italy’, Industry & 

Innovation, 14(2), 177–199. 

Boschma, R, and R. Wenting (2007) ‘The spatial evolution of the British automobile industry: 

Does location matter?’, Industrial and Corporate Change, 16(2), 213–238. 

Bottazzi, L., and G. Peri (2003) ‘Innovation and spillovers in regions: Evidence from European 



Bibliography  153        

 

 

 

patent data’, European Economic Review, 47(4), 687–710. 

Box-Steffensmeier, J., and B. Jones (2004) Event history modeling: A guide for social scientists. 

Cambridge: Cambride University Press. 

Brem, A., and K. I. Voigt (2009) ‘Integration of market pull and technology push in the 

corporate front end and innovation management-Insights from the German software 

industry’, Technovation, 29(5), 351–367. 

Brenner, T., and A. Mühlig (2013) ‘Factors and Mechanisms Causing the Emergence of Local 

Industrial Clusters: A Summary of 159 Cases’, Regional Studies, 47(4), 480–507. 

Brenner, T., and C. Schlump (2011) Policy Measures and their Effects in the Different Phases 

of the Cluster Life Cycle. Regional Studies, Vol. 45. 

Breschi, S., and L. Cusmano (2004) ‘Unveiling the texture of a European Research Area : 

Emergence of oligarchic networks under EU Framework Programmes’, International 

Journal of Technology Management, 27(8), 747–772. 

Breschi, S., and C. Lenzi (2012) ‘Net city: how co-invention networks shape inventive 

productivity in us cities’, Working Paper, 1–32. 

Breschi, S., and F. Lissoni (2005) ‘Knowledge Networks from Patent Data: Methodological 

Issues and Research Targets’. In: Moed H., W. Glänzel and U. Schmoch (eds) Handbook 

of Quantitative Science and Technology Research, pp. 613–643. Kluwer Academic 

Publisher: New York, Boston, Dordrecht, London, Moscow. 

—— (2009) ‘Mobility of skilled workers and co-invention networks: An anatomy of localized 

knowledge flows’, Journal of Economic Geography, 9(4), 439–468. 

Breul, M., T. Broekel, and M. Brachert (2015) ‘The drivers of the spatial emergence and 

clustering of the photovoltaic industry in Germany’, Zeitschrift fur Wirtschaftsgeographie, 

59(3), 133–150. 

Broekel, T. (2015) ‘Do Cooperative Research and Development (R&D) Subsidies Stimulate 

Regional Innovation Efficiency? Evidence from Germany’, Regional Studies, 49(7), 

1087–1110. 

—— (2019) ‘Using structural diversity to measure the complexity of technologies’, Plos One, 

14(5), e0216856. 

Broekel, T., and C. Alfken (2015) ‘Gone with the wind? The impact of wind turbines on tourism 

demand’, Energy Policy, 86, 506–519. 

Broekel, T., P.-A. Balland, M. Burger, and F. van Oort (2014) ‘Modeling knowledge networks 

in economic geography: a discussion of four methods’, The Annals of Regional Science, 

53(2), 423–452. 



154   

 

 

Broekel, T., and R. Boschma (2011) ‘Knowledge networks in the Dutch aviation industry: The 

proximity paradox’, Journal of Economic Geography, 12(2), 409–433. 

Broekel, T., and T. Brenner (2011) ‘Regional factors and innovativeness: An empirical analysis 

of four German industries’, Annals of Regional Science. 

Broekel, T., T. Brenner, and M. Buerger (2015) ‘An Investigation of the Relation between 

Cooperation Intensity and the Innovative Success of German Regions’, Spatial Economic 

Analysis, 10(1), 52–78. 

Broekel, T., and H. Graf (2012) ‘Public research intensity and the structure of German R&D 

networks: a comparison of 10 technologies’, Economics of Innovation and New 

Technology, 21(4), 345–372. 

Broekel, T., and M. Hartog (2013a) ‘Explaining the Structure of Inter- Organizational Networks 

using Exponential Random Graph Models’, Industry and Innovation, 20(3), 277–295. 

—— (2013b) ‘Determinats of Cross-Regonal R&D Collaboration Networks: An Application 

of Exponential Random Graph Models’. In: Scherngell T. (ed.) The Geography of 

Networks and R&D Collaborations, pp. 49–70. Springer: Wien. 

Brown, L., and K. R. Cox (1971) ‘Empirical Regularities in the Diffusion of Innovation’, 

Annals of the Association of American Geographers, 61(3), 551–559. 

Buchmann, T., and A. Pyka (2015) ‘The evolution of innovation networks: the case of a 

publicly funded German automotive network’, Economics of Innovation and New 

Technology, 24(1–2), 114–139. 

Buenstorf, G., M. Fritsch, and L. F. Medrano (2015) ‘Regional Knowledge, Organizational 

Capabilities and the Emergence of the West German Laser Systems Industry, 1975–2005’, 

Regional Studies, 49(1), 59–75. 

Buisseret, T. J., H. M. Cameron, and L. Georghiou (1995) ‘What difference does it make? 

Additionality in the public support of R&D in large firms’, International Journal of 

Technology Management, 10(4/5/6), 587–600. 

Bundesinstitut für Bau- Stadt- und Raumforschung (BBSR) (2015) ‘Laufende 

Raumbeobachtung – Raumabgrenzungen. Siedlungsstrukturelle Regionstypen’. Retrieved 

January 15, 2016, from 

<http://www.bbsr.bund.de/BBSR/DE/Raumbeobachtung/Raumabgrenzungen/Regionsty

pen/regionstypen.html?nn=443270> 

Burger, M., F. van Oort, and G. J. Linders (2009) ‘On the specification of the gravity model of 

trade: Zeros, excess zeros and zero-inflated estimation’, Spatial Economic Analysis, 4(2), 

167–190. 



Bibliography  155        

 

 

 

Burton, T., N. Jenkins, D. Sharpe, and E. Bossanyi (2011) Wind Energy Handbook Second 

Edition. West Sussex: John Wiley & Sons, Ltd. 

Butzin, A. (2009) ‘Innovationsbiographien als Methode der raum-zeitlichen Erfassung von 

Innovationsprozessen’. In: Dennenberg P., H. Köhler, T. Lang, J. Utz, B. Zakirova and T. 

Zimmermann (eds) Innovationen im Raum - Raum für Innovationen: 11. Junges Forum 

der ARL, 21. bis 23. Mai 2008 in Berlin, pp. 189–198. Verlag der ARL: Hannover. 

Di Cagno, D., A. Fabrizi, V. Meliciani, and I. Wanzenböck (2016) ‘The impact of relational 
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of Shipbuilding onto the New Path of Offshore Wind Energy? The Case of Northern 

Germany’, European Planning Studies, 20(5), 835–855. 

Fox, J., and S. Weisberg (2011) ‘Cox Proportional-Hazards Regression for Survival Data in R’. 

An Appendix to An R Companion to Applied Regression, Second Edition. Sage 

Publications: Los Angeles. 



158   

 

 

Frank, O., and D. Strauss (1986) ‘Markov graphs’, Journal of the American Statistical 

Association, 81(395), 832–842. 

Frenken, K., F. Van Oort, and T. Verburg (2007) ‘Related variety, unrelated variety and 

regional economic growth’, Regional Studies, 41(5), 685–697. 

Friedman, T. (2005) The World Is Flat: A Brief History of the Twenty-first Century. New York: 

Farrar, Straus, and Giroux. 

Garud, R., and P. Karnøe (2001) ‘Path Dependence and Creation’. In: Garud R. and P. Karnøe 

(eds) Path Dependence and Creation, pp. 1–38. Lawrence Earlbaum Associates: Mahwah. 

—— (2003) ‘Bricolage vs. breakthrough: distributed and embedded ageny in technology 

entrepreneurship’, Research Policy, 32(2), 277–300. 

Geels, F., and J. Deuten (2006) ‘Local and global dynamics in technological development: a 

socio-cognitive perspective on knowledge flows and lessons from reinforced concrete’, 

Science and Public Policy, 33(4), 265–275. 

Geels, F. (2002) ‘Technological transitions as evolutionary reconfiguration processes: a multi-

level perspective and a case-study’, Research Policy, 31, 1257–1274. 

—— (2004) ‘From sectoral systems of innovation to socio-technical systems: Insights about 

dynamics and change from sociology and institutional theory’, Research Policy, 33(6–7), 

897–920. 

Geels, F. , and J. Schot (2007) ‘Typology of sociotechnical transition pathways’, Research 

Policy, 36(3), 399–417. 

Gertler, M. (2003) ‘Tacit knowledge and the economic geography of context, or The 

undefinable tacitness of being (there)’, Journal of Economic Geography, 3, 75–99. 

Giuliani, E., and M. Bell (2005) ‘The micro-determinants of meso-level learning and 

innovation: Evidence from a Chilean wine cluster’, Research Policy, 34(1), 47–68. 

Glanz, K., B. K. Rimer, and K. Viswanath (2008) Health Behaviour and Health Education. (K. 

Glanz, B. K. Rimer, & K. Viswanath, Eds)Health Education. San Francisco: Jossey-Bass. 

Glückler, J. (2007) ‘Economic geography and the evolution of networks’, Journal of Economic 

Geography, 7(5), 619–634. 

—— (2010) ‘The evolution of strategic alliance network: exploring the case of stock 

photography’. In: Boschma Ron and R. Martin (eds) The Handbook of Evolutionary 

Economic Geography, pp. 298–315. Cheltenham. 

Glückler, J., and P. Doreian (2016) ‘Editorial: social network analysis and economic 

geography—positional, evolutionary and multi-level approaches’, Journal of Economic 

Geography, 16, 1123–1134. 



Bibliography  159        

 

 

 

Goldfarb, A., and C. Tucker (2012) ‘Privacy and Innovation’, Innovation Policy and the 

Economy, 12(1), 65–90. University of Chicago Press. 

Goodchild, M. (2013) ‘The quality of big (geo)data’, Dialogues in Human Geography, 3(3), 

280–284. 

Goodreau, S. (2007) ‘Advances in exponential random graph (p*) models applied to a large 

social network’, Social Networks, 29(2), 231–248. 

Grabher, G. (1993) ‘The weakness of strong ties: the lock-in of regional development in the 

Ruhr area.’ In: Grabher G. (ed.) The embedded firm. On the socioeconomics of industrial 

networks. Routledge: London and New York. 

Graf, H., and T. Broekel (2020) ‘A shot in the dark? Policy influence on cluster networks’, 

Research Policy, 49(3). 

Graham, M., and T. Shelton (2013) ‘Geography and the future of big data, big data and the 

future of geography’, Dialogues in Human Geography, 3(3), 255–261. 

Granovetter, M. (1973) ‘The Strength of Weak Ties’, Americal Journal of Sociology, 78(6), 

1360–1380. 

Granovetter, M. (1985) ‘Economic Action and Social Structure : The Problem of 

Embeddedness’, The American Journal of Sociology, 91(3), 481–510. 

Griliches, Z. (1979) ‘Issues in Assessing the Contribution of Research and Development to 

Productivity Growth’, The Bell Journal of Economics. 

—— (1992) ‘The Search for R&D Spillovers’. Scandinavian Journal of Economics, 94, 29–47. 

—— (1998) ‘Patent statistics as economic indicators: a survey’. In: Elliot C. (ed.) R&D and 

productivity: the econometric evidence, pp. 287–343. University of Chicago Press: 

Chicago. 

Grimaldi, R., and S. Torrisi (2001) ‘Codified-tacit and general-specific knowledge in the 

division of labour among firms: A study of the software industry’, Research Policy, 30(9), 

1425–1442. 

Grübler, A. (1997) ‘Time for a Change: On the Patterns of Diffusion of Innovation’, Daedalus, 

Journal of the American Academy of Arts and Sciences, 125(3), 19–42. 

Gulati, R. (1998) ‘Alliances and Networks’, Strategic Management Journal, 19, 293–317. 

Hagedoorn, J. (2002) ‘Inter-firm R&D partnerships: an overview of major trends and patterns 

since 1960’, Research Policy, 31(4), 477–492. 

Hagedoorn, J., and J. Schackenraad (1993) ‘A comparison of private and subsidized R&D 

partnerships in the European Information Technology Industry’, Journal of Common 

Market Studies, 31(3), 373–390. 



160   

 

 

Hägerstrand, T. (1952) The Propagation of Innovation Waves. Lund Studies in Geography, 

Series B Human Geography No. 4. Lund: Lund University Press. 

—— (1965) ‘A Monte Carlo Approach to Diffusion’, European Journal of Sociology, 6, 43–

67. 

—— (1966) ‘Aspects of the Spatial Structure of Social Communication and the Diffusion of 

Information’, Papers of the Regional Science Association, 16(1), 27–42. 

—— (1967) Innovation diffusion as a spatial process. Chicago: University of Chicago Press. 

Hagget, P. (2001) Geography A Global Synthesis. Essex: Pearson Education. 

Hanneke, S., W. Fu, and E. Xing (2010) ‘Discrete Temporal Models of Social Networks’, 

Electronic Journal of Statistics, 4, 585–605. 

Hanneke, S., and E. Xing (2007) ‘Discrete temporal models of social networks’. In: Airoldi E., 

D. Blei, S. Fienberg, A. Goldenberg, E. Xing and A. Zheng (eds) Statistical Network 

Analysis: Models, Issues, and New Directions, pp. 115–125. Springer-Verlag: Berlin, 

Heidelberg. 

Helfat, C., and M. Lieberman (2002) ‘The birth of capabilities: Market entry and the importance 

of pre-history’, Industrial and Corporate Change, 11(4), 725–760. 

Herrmann, A., J. Taks, and E. Moors (2012) ‘Beyond Regional Clusters: On the Importance of 

Geographical Proximity for R&D Collaborations in a Global Economy-the Case of the 

Flemish Biotech Sector’, Industry and Innovation, 19(6), 499–516. 

Hewitt-Dundas, N., and S. Roper (2010) ‘Output additionality of public support for innovation: 

Evidence for Irish manufacturing plants’, European Planning Studies, 18, 107–122. 

Hidalgo, C. (2015) Why Information Grows: The Evolution of Order, from Atoms to Economies. 

New York: Basic Books. 

Hidalgo, C., and R. Hausmann (2009) ‘The building blocks of economic complexity’, 

Proceedings of the National Academy of Sciences, 106(26), 10570–10575. 

Hidalgo, C., B. Klinger, A.-L. Barabási, and R. Hausmann (2007) ‘The product space 

conditions the development of nations.’, Science, 317(5837), 482–487. 

Hoekman, J., K. Frenken, and F. van Oort (2009) ‘The geography of collaborative knowledge 

production in Europe’, Annals of Regional Science, 43(3), 7321–7738. 

Hoekman, J., T. Scherngell, K. Frenken, and R. Tijssen (2013) ‘Acquisition of European 

research funds and its effect on international scientific collaboration’, Journal of Economic 

Geography, 13(1), 23–52. 

Hoover, E., and R. Vernon (1962) Anatomy of a metropolis. The changing distribution of people 

and jobs within the New York metropolitan region. Garden City, N.Y.: A Doubleday 



Bibliography  161        

 

 

 

Anchor book, A 298. 

Howells, J. (2002) ‘Tacit Knowledge, Innovation and Economic Geography’, Urban Studies, 

39(5–6), 871–884. 

Hunter, D. (2007) ‘Curved Exponential Familiy Models for Social Networks’, Social Networks, 

29(2), 216–230. 

Hunter, D., S. Goodreau, and M. Handcock (2008) ‘Goodness of Fit of Social Network 

Models’, Journal of the American Statistical Association, 103(481), 248–258. 

Illenberger, J., K. Nagel, and G. Flötteröd (2013) ‘The Role of Spatial Interaction in Social 

Networks’, Networks and Spatial Economics, 13(3), 255–282. 

Isard, W. (1954) ‘Location Theory and Trade Theory: Short-Run Analysis’, The Quarterly 

Journal of Economics, 68(2), 305–320. 

Jacobs, J. (1969) The Economy of Cities. New York: Random House. 

Jacobsson, S., and A. Johnson (2000) ‘The diffusion of renewable energy technology: An 

analytical framework and key issues for research’, Energy Policy, 28(9), 625–640. 

Jacobsson, S., and V. Lauber (2006) ‘The politics and policy of energy system transformation 

- Explaining the German diffusion of renewable energy technology’, Energy Policy, 34(3), 

256–276. 

Jaffe, A. (1986) ‘Technological Opportunity and Spillovers of R & D: Evidence from Firms’ 

Patents, Profits, and Market Value’, The American Economic Review, 76(5), 984–999. 

Jaffe, A., R. Newell, and R. Stavins (2005) ‘A tale of two market failures: Technology and 

environmental policy’, Ecological Economics, 54, 164–174. 

Jaffe, A., and M. Trajtenberg (1999) ‘International Knowledge Flows: Evidence From Patent 

Citations’, Economics of Innovation and New Technologies, 8, 105–136. 

Jaffe, A., M. Trajtenberg, and R. Henderson (1993) ‘Geographic Localization of Knowledge 

Spillovers as Evidenced by Patent Citations’, The Quarterly Journal of Economics, 108(3), 

577–598. 

Jarrell, S., and T. Stanley (1989) ‘Meta-regression analysis: A quantitative method of literature 

surveys’, Journal of Economic Surveys, 3(2), 161–170. 

Jensen, M., B. Johnson, E. Lorenz, and B. Lundvall (2007) ‘Forms of knowledge and modes of 

innovation’, Research Policy, 36(5), 680–693. 

Johnson, A., and S. Jacobsson (2003) ‘The emergence of growth industry: a comparative 

analysis of the German, Dutch and Swedish wind turbine industries’. In: Metcalfe J.S. and 

U. Cantner (eds) Change, Transformation and Development, pp. 197–227. Physica-

Verlag: New York. 



162   

 

 

Justman, M. (1994) ‘The Effect of Local Demand on Industry Location’, The Review of 

Economics and Statistics, 76(4), 742–753. 

Kaldellis, J., and D. Zafirakis (2011) ‘The wind energy (r)evolution: A short review of a long 

history’, Renewable Energy, 36(7), 1887–1901. 

Kaldor, N. (1970) ‘The Case fo Regional Policies*’, Scottish Journal of Political Economy, 

17(3), 337–348. 

Kammer, J. (2011) Die Windenergieindustrie. Evolution von akteuren und 

Unternehmensstrukturen in einer Wachstumsindustrie mit rämlicher Perspektive. (F. N. 

Nagel, Ed.). Hamburg: Geographische Gesellschaft Hamburg, Franz Steiner Verlag. 

Kaufman, S. (1993) The Origins of Order: Self organisation and selection in evolution. New 

York, Oxford: Oxford University Press. 

Kirkland, E. (1961) Industry Comes of Age: Business, Labor, and Public Policy, 1860-1897. 

Chicago: Quadrangle Books. 

Klepper, S. (1996) ‘Entry, Exit, Growth, and Innovation Over the Product Life Cycle’, The 

American Economic Review, 86(3), 562–583. 

—— (1997) ‘Industry Life Cycles’, Industrial and Corporate Change, 6(1), 145–182. 

—— (2006) ‘The Evolution of Geographic Structure in New Industries’, Revue de l’OFCE, 5, 

136–158. 

—— (2007) ‘Disagreements, Spinoffs, and the Capital of the U.S. Automobile Industry’, 

Management Science, 53(4), 616–631. 

Kline, S., and N. Rosenberg (1986) ‘An Overview of Innovation’, European Journal of 

Innovation Management, 38, 275–305. 

Klitkou, A., and L. Coenen (2013) ‘The Emergence of the Norwegian Solar Photovoltaic 

Industry in a Regional Perspective’, European Planning Studies, 21(11), 1796–1819. 

Knoben, J., and L. Oerlemans (2006) ‘Proximity and inter-organizational collaboration: A 

literature review’, International Journal of Management Reviews, 8(2), 71–89. 

Kogut, B., W. Shan, and G. Walker (1992) ‘The make-or-cooperate decision in the context of 

an industry network’. In: Nohiria N. and R. Eccles (eds) Networks and organizations, pp. 

348–365. Harvard Business School Press: Brighton. 

Kosfeld, R., and A. Werner (2012) ‘Deutsche Arbeitsmarktregionen – Neuabgrenzung nach 

den Kreisgebietsreformen 2007–2011’, Raumforschung und Raumordnung, 70, 49–64. 

Krivitsky, P., and S. Goodreau (2015) ‘STERGM - Separable Temporal ERGMs for modeling 

discrete relational dynamics with statnet’. 

Krivitsky, P., and M. Handcock (2014) ‘A separable model for dynamic networks’, Journal of 



Bibliography  163        

 

 

 

the Royal Statistical Society. Series B: Statistical Methodology, 76(1), 29–46. 

Krüger, M., J. Kinne, D. Lenz, and B. Resch (2020) The Digital Layer: How Innovative Firms 

Relate on the Web. ZEW Discussion Paper. 

Krugman, P. (1991) ‘Increasing returns and economic geography’, Journal of Political 

Economy, 99(3), 483–499. 

Kulke, E. (2006) Wirtschaftsgeographie., 2nd ed. Paderborn: Ferdinand Schöningh. 

Labrinidis, A., and H. Jagadish (2012) ‘Challenges and opportunities with big data’, 

Proceedings of the VLDB Endowment, 5(12). 

Lee, Y.  (1996) ‘“Technology transfer” and the research university: A search for the boundaries 

of university-industry collaboration’, Research Policy, 25(6), 843–886. 

Leifeld, P., and S. Cranmer (2015) ‘A theoretical and empirical comparison of the temporal 

exponential random graph model and the stochastic actor-oriented model’, Network 

Science, 7(1), 20–51. 

Lewis, J., and R. Wiser (2007) ‘Fostering a renewable energy technology industry: An 

international comparison of wind industry policy support mechanisms’, Energy Policy, 

35(3), 1844–1857. 

Liu, X., B. Derudder, and Y. Liu (2015) ‘Regional geographies of intercity corporate networks: 

The use of exponential random graph models to assess regional network-formation’, 

Papers in Regional Science, 94(1), 109–126. 

Liu, X., B. Derudder, Y. Liu, F. Witlox, and W. Shen (2013) ‘A stochastic actor-based 

modelling of the evolution of an intercity corporate network’, Environment and Planning 

A, 45(4), 947–966. 

Loasby, B. (2001) ‘Organisation as interpretative systems’, Revue d’économie industrielle, 97, 

17–34. 

Lufin Varas, M. (2007) Essays in social space:  Applications to Chilean communities on inter 

-sector social linkages, social capital, and social justice. ProQuest Dissertations and 

Theses. 

Lundvall, B. (1992) National systems of innovation: Towards a theory of innovation and 

interactive learning. London: Pinter Publishers. 

Lundvall, B., and B. Johnson (1994) ‘The learning economy’, Journal of Industry Studies, 1(2), 

23–42. 

Maggioni, M., M. Nosvelli, and T. Uberti (2007) ‘Space versus networks in the geography of 

innovation: A European analysis’, Papers in Regional Science, 86(3), 471–493. 

Maggioni, M., T. Uberti, and M. Nosvelli (2014) ‘Does intentional mean hierarchical? 



164   

 

 

Knowledge flows and innovative performance of European regions’, Annals of Regional 

Science, 53, 453–485. 

Maggioni, M., T. Uberti, and S. Usai (2011) ‘Treating patents as relational data: Knowledge 

transfers and spillovers across Italian provinces’, Industry and Innovation, 18(1), 39–67. 

Makino, S., C. Chan, T. Isobe, and P. Baemish (2007) ‘Intended and Unintended Termination 

of International Joint Ventures’, Strategic Management Journal, 28, 1113–1132. 

Marshall, A. (1920) Principles of economics. An introductory volume., 8th ed. London: 

Macmillan. 

Martin, H., R. Martin, and E. Zukauskaite (2019) ‘The multiple roles of demand in new regional 

industrial path development: A conceptual analysis’, Environment and Planning A: 

Economy and Space, 51(8), 1741–1757. 

Mayer-Schönberger, V., and K. Cukier (2013) Big Data. A Revolution that will Transform how 

we Live, Work and Think. London: John Muray. 

McPherson, M., L. Smith-lovin, and J. Cook (2001) ‘Birds of a Feather: Homophily in Social 

Networks’, Annual Review of Sociology, 27, 415–444. 

Menzel, M., and D. Fornahl (2009) ‘Cluster life cycles-dimensions and rationales of cluster 

evolution’, Industrial and Corporate Change, 19(1), 205–238. 

Meyer-Krahmer, F. (1985) ‘Innovation Behaviour and Regional Indigenous Potential’, 

Regional Studies, 19(6), 523–534. 

Mills, M. (2011) ‘The fundamentals of survival and event history analysis’. In: Mills M. (ed.) 

Introducing Survival and Event History Analysis, pp. 1–17. Sage Publications: London. 

Montanaria, A., and A. Saberi (2010) ‘The spread of innovations in social networks’, 

Proceedings of the National Academy of Sciences of the United States of America, 107(47), 

20196–20201. 

Montresor, S., and F. Quatraro (2019) ‘Green technologies and Smart Specialisation Strategies: 

a European patent-based analysis of the intertwining of technological relatedness and key 

enabling technologies’, Regional Studies. 

Morgan, K. (2004) ‘The Exaggerated Death of Geography: Learning, Proximity and Territorial 

Innovation Systems’, Journal of Economic Geography, 4(1), 3–21. 

Morris, M., M. Handcock, and D. Hunter (2008) ‘Specification of Exponential-Family Random 

Graph Models: Terms and Computational Aspects.’, Journal of statistical software, 24(4), 

1548. 

Morrison, A., S. Petralia, and D. Diodato (2018) Migration and invention in the age of mass 

migration. Papers in Evolutionary Economic Geography (PEEG). 



Bibliography  165        

 

 

 

Murphy, J. (2003) ‘Social space and industrial development in East Africa: deconstructing the 

logics of industry networks in Mwanza, Tanzania’, Journal of Economic Geography, 3(2), 

173–198. 

Myrdal, G. (1957) Economic Theory and Underdeveloped Regions. London: Harper 

Torchbooks. 

Neffke, F., M. Henning, and R. Boschma (2011) ‘How Do Regions Diversify over Time? 

Industry Relatedness and the Development of New Growth Paths in Regions’, Economic 

Geography, 87(3), 237–265. 

Neffke, F., M. Henning, R. Boschma, K. Lundquist, and L. Olander (2011) ‘The dynamics of 

agglomeration externalities along the life cycle of industries’, Regional Studies, 45(1), 49–

65. 

Nelson, R., and S. Winter (1982) An Evolutionary Theory of Economic Change. Cambridge: 

Belknap Press. 

Neukirch, M. (2010) Die internationale Pionierphase der Windenergienutzung. Georg-August-

Universität Göttingen. 

Nooteboom, B., W. Van Haverbeke, G. Duysters, V. Gilsing, and A. van den Oord (2007) 

‘Optimal cognitive distance and absorptive capacity’, Research Policy, 36(7), 1016–1034. 

North, D. C. (1955) ‘Location Theory and Regional Economic Growth’, Journal of Political 

Economy, 63(3), 243–258. 

Ohlhorst, D. (2009) Windenergie in Deutschland. Konstellationen, Dynamiken und 

Regulierungspotenziale im Innovationsprozess. Mit einem Geleitwort von Prof. Dr. Martin 

Jänicke. Freie Universität Berlin. 

Opsahl, T. (2013) ‘Triadic closure in two-mode networks: Redefining the global and local 

clustering coefficients’, Social Networks, 35(2), 159–167. 

Ormrod, R. (1990) ‘Local Context and Innovation Diffusion in a Well-Connected World’, 

Economic Geography, 66(2), 109–122. 

Paci, R., and S. Usai (2009) ‘Knowledge flows across European regions’, Annals of Regional 

Science, 43(3), 669–690. 

Paier, M., and T. Scherngell (2011) ‘Determinants of collaboration in European R&D networks: 

Empirical evidence from a discrete choice model’, Industry and Innovation, 18(1), 89–

104. 

Park, J., and M. Newman (2004) ‘Statistical mechanics of networks’, Physical Review E - 

Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 70(6). 

Parkhe, A. (1991) ‘Interfirm Diversity, Organizational Learning, and Longevity in Global 



166   

 

 

Strategic Alliances’, Journal of International Business Studies, 22, 579–601. 

Pavitt, K. (1998) ‘Technologies, products & organization in the innovating firm: What Adam 

Smith tells us and Joseph Schumpeter doesn’t.’, Industrial and Corporate Change, 7(3), 

433–452. 

Peri, G. (2005) ‘Determinants of Knowledge Flows and Theirs Effect on Innovation’, Review 

of Economics and Statistics, 87(2), 308–322. 

Perkins, R., and E. Neumayer (2005) ‘The international diffusion of new technologies: A 

multitechnology analysis of latecomer advantage and global economic integration’, 

Annals of the Association of American Geographers, 95(4), 789–808. 

Petralia, S., P.-A. Balland, and D. Rigby (2016) ‘Unveiling the geography of historical patents 

in the United States from 1836 to 1975’, Scientific Data, 3, 1–14. 

Pezzoni, M., R. Veugelers, and F. Visentin (2018) ‘Is This Novel Technology Going to Hit?’, 

Academy of Management Proceedings, 2018(1), 13832. 

—— (2019) ‘How fast is a novel technology going to be a hit? Antecedents predicting follow-

on inventions’, Academy of Management Proceedings, 2019(1), 13223. 

Phene, A., K. Fladmoe-lindquist, and L. Marsh (2006) ‘Breakthrough Innovations in the U.S. 

Biotechnology Indusrty: The Effects of Technological Space and Geographic Origin’, 

Strategic Management Journal, 27, 369–388. 

Polanyi, M. (1966) The Tacit Dimension. New York: Doubleday. 

Polidoro, F. J., G. Ahuja, and W. Mitchell (2011) ‘When the Social Structure Overshadows 

Competitive Incentives: The Effects of Network Embeddedness on Joint Venture 

Dissolution’, Academy of Management Journal, 54(1), 203–223. 

Ponds, R., F. van Oort, and K. Frenken (2010) ‘Innovation, spillovers and university-industry 

collaboration: An extended knowledge production function approach’, Journal of 

Economic Geography, 10(2), 231–255. 

Ponds, R., F. Van Oort, and K. Frenken (2007) ‘The Geographical and Institutional Proximity 

of Research Collaboration’, Papers in Regional Science, 86(3), 423–443. 

Porter, M.  (1990) ‘The Competitive Advantage of Nations’, Havard Business Review, 1(1), 

73–91. 

—— (1998) On competition. Boston: The Harvard business review book series. 

Powell, W., K. Koput, and L. Smith-Doerr (1996) ‘Interorganizational Collaboration and the 

Locus of Innovation: Networks of learning in biotechnology’, Administrative Science 

Quarterly, 41(1), 116–145. 

Pugliese, E., G. Chiarotti, A. Zaccaria, and L. Pietronero (2017) ‘Complex economies have a 



Bibliography  167        

 

 

 

lateral escape from the poverty trap’, PLoS ONE, 12(1), 1–18. 

Pyke, F., G. Becattini, and W. Sengenberger (1990) Industrial districs and inter-form co-

operation in Itlay. Geneva: International Institute for Labour Studies. 

Robins, G., P. Pattison, Y. Kalish, and D. Lusher (2007) ‘An introduction to exponential 

random graph (p*) models for social networks’, Social Networks, 29(2), 173–191. 

Rodríguez-Pose, A., and R. Crescenzi (2008) ‘Mountains in a flat world: Why proximity still 

matters for the location of economic activity’, Cambridge Journal of Regions, Economy 

and Society, 1(3), 371–388. 

Rogers, E. (2003) Diffusion of innovations., 5th ed. New York: Free Press. 

Romer, P. (1990) ‘Endogenous Technological Change’, Journal of Political Economy, 98(5), 

72–102. 

Saxenian, A. (1994) Regional advantage. Culture and competition in Silicon Valley and Route 

128., 2nd ed. Cambridge: Harvard University Press. 

Sbardella, A., E. Pugliese, A. Zaccaria, and P. Scaramozzino (2018) ‘The role of complex 

analysis in modeling economic growth’, Entropy, 20(11). 

Schaefer, K., and I. Liefner (2017) ‘Offshore versus domestic: Can EM MNCs reach higher 

R&D quality abroad?’, Scientometrics, 113(3), 1349–1370. 

Scherngell, T., and M. Barber (2009) ‘Spatial interaction modelling of cross-region R&D 

collaborations: Empirical evidence from the 5th EU framework programme’, Papers in 

Regional Science, 88(3), 531–546. 

—— (2011) ‘Distinct spatial characteristics of industrial and public research collaborations: 

Evidence from the 5th EU Framework Programme’, Annals of Regional Science, 46(2), 

247–266. 

Schilling, M., and C. Phelps (2007) ‘Interfirm collaboration networks: The impact of large-

scale network structure on firm innovation’, Management Science, 53(7), 1113–1126. 

Schlaile, M., K. Bogner, and M. Müller (2018) ‘Knowledge diffusion in formal networks: the 

roles of degree distribution and cognitive distance’, International Journal of 

Computational Economics and Econometrics, 8(3/4), 388. 

Schmoch, U., and F. Laville (2003) ‘Linking technology areas to industrial sectors. Final Report 

to the European Commission’. 

Schot, J., and F. Geels (2008) ‘Strategic niche management and sustainable innovation 

journeys: theory, findings, research agenda, and policy’, Technology Analysis & Strategic 

Management, 20(5), 537–554. 

Schrader, S. (1991) ‘Informal technology transfer between firms: Cooperation through 



168   

 

 

information trading’, Research Policy, 20(2), 153–170. 

Schwartz, M., F. Peglow, M. Fritsch, and J. Günnther (2012) ‘What drives innovation output 

from subsidized R & D cooperation ?— Project- level evidence from Germany’, 

Technovation, 32(6), 358–369. 

Scott, A., and M. Storper (1986) High technology industry and regional development: a 

theoretical critique and reconstruction. Berkshire: Geographical Papers - University of 

Reading, Department of Geography. 

Shah, S., and M. Tripsas (2007) ‘The accidental entrepreneur: the emergent and collective 

process of user entrepreneurship’, Strategic Entrepreneurship Journal, 1(1–2), 123–140. 

Short, L. (2002) ‘Wind Power and English Landscape Identity’. In: Pasqualetti M., P. Gipe and 

R. Righter (eds) Wind Power in View: Energy Landscapes in a Crowded World. Academic 

Press: San Diego. 

Simmie, J., R. Sternberg, and J. Carpenter (2014) ‘New technological path creation: evidence 

from the British and German wind energy industries’, Journal of Evolutionary Economics, 

24(4), 875–904. 

Simon, H. (1962) ‘The Architecture of Complexity’, Proceedings of the American 

Philosophical Society, 106(10), 467–482. 

Singh, K. (1997) ‘The Impact of Technological Complexity and Interfirm Cooperation on 

Business Survival’, The Academy of management Journal, 40(2), 339–367. 

Sorenson, O., J. Rivkin, and L. Fleming (2006) ‘Complexity, networks and knowledge flow’, 

Research Policy, 35(7), 994–1017. 

Sternberg, R. (2000) ‘Innovation networks and regional development-evidence from the 

European Regional Innovation Survey (ERIS): Theoretical concepts, methodological 

approach, empirical basis and introduction to the theme issue’, European Planning 

Studies, 8(4), 389–407. 

—— (2003) ‘Wissensintensität und regionales Umfeld als Determinanten der Entstehung und 

Entwicklung junger Unternehmen’. In: Steinle C. and K. Schumann (eds) Gründung von 

Technologieunternehmen, pp. 219–237. Gabler Verlag: Wiesbaden. 

Stevens, F. (1926) The Beginnings of the New York Central Railroad: A History. New York: 

G. P. Putnam’s Sons. 

Storper, M., and A. Venables (2004) ‘Buzz: Face-to-face contact and the urban economy’, 

Journal of Economic Geography, 4(4), 351–370. 

Storper, M., and R. Walker (1989) The capitalist imperative; territory, technology and 

industrial growth. New York: Basil Blackwell. 



Bibliography  169        

 

 

 

De Tarde, G. (1903) The laws of imitation. New York: H. Holt and Company. 

Teece, D. (1981) ‘The Market for Know-How and the Efficient International Transfer of 

Technology’, The Annals of the American Academy of Political and Social Science, 

458(1), 81–96. 

Tether, B. (2002) ‘Who co-operates for innovation, and why - an empirical analysis’, Research 

Policy, 31(6), 947–967. 

Therneau, T., C. Crowson, and E. Atkinson (2017) ‘Using Time Dependent Covariates and 

Time Dependent Coefficients in the Cox Model Time’, Red, 1–16. 

Theyel, G. (2012) ‘Spatial Processes of Industry Emergence : US Wind Turbine 

Manufacturing’, European Journal of Futures Research, 50(5), 857–870. 

Thompson, W. (1972) ‘The National System of Cities as an Object of Public Policy’, Urban 

Studies, 9(1), 99–116. 

Tijssen, R. (1998) ‘Quantitative assessment of large heterogeneous R&D networks: The case 

of process engineering in the Netherlands’, Research Policy, 26(7–8), 791–809. 

Tinbergen, J. (1962) Shaping the World Economy. New York: Twentieth Century Fund. 

Truffer, B., and L. Coenen (2012) ‘Environmental Innovation and Sustainability Transitions in 

Regional Studies’, Regional Studies, 46(1), 1–21. 

Tsouri, M. (2019) ‘Knowledge transfer in time of crisis: evidence from the Trentino region’, 

Industry and Innovation, 26(7), 820–842. 

Usselman, S. (1991) ‘Patents Purloined : Railroads , Inventors , and the Diffusion of Innovation 

in 19th-Century America’, Technology and Culture, 32(4), 1047–1075. 

Verspagen, B. (1997) ‘Measuring Intersectoral Technology Spillovers: Estimates from the 

European and US Patent Office Databases’, Economic Systems Research, 9(1), 47–65. 

Vinciguerra, S., K. Frenken, and M. Valente (2010) ‘The geography of internet infrastructure: 

An evolutionary simulation approach based on preferential attachment’, Urban Studies, 

47(9), 1969–1984. 

Ter Wal, A. (2014) ‘The dynamics of the inventor network in German biotechnology: 

geographic proximity versus triadic closure’, Journal of Economic Geography, 14(3), 

589–620. 

Ter Wal, A., and R. Boschma (2009) ‘Applying social network analysis in economic 

geography: framing some key analytic issues’, The Annals of Regional Science, 43(3), 

739–756. 
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De EU Regional Competitiveness Index 2019 laat opnieuw zien dat het economische 

concurrentievermogen in Europa per regio significant verschilt (Annoni and Dijkstra, 2019). 

Voor deze index wordt gekeken naar regionale kenmerken zoals de kwaliteit van de 

infrastructuur, het opleidingsniveau van de beroepsbevolking en het aantal octrooiaanvragen. 

Op die schaal blijken tussen regio’s grote verschillen te bestaan, waarbij Stockholm het hoogst 

scoort en regio’s zoals het noordelijke Egeïsche gebied in Griekenland het slechtst. Eén aspect 

van het regionale concurrentievermogen dat in de literatuur wordt benadrukt is het vermogen 

om vaak te innoveren, aangezien innovaties regio’s in staat stellen om nieuwe inkomsten en 

welvaart te genereren (Porter, 1990). Maar gezien de cumulatieve aard van kennisgeneratie is 

het vermogen om innovatie te creëren veelal ruimtelijk geconcentreerd in een aantal regio’s 

(Feldman, 1993; Acs et al., 2002; Balland, 2017). Dit leidt ertoe dat de economische verschillen 

tussen regio’s groter worden (Rodríguez-Pose and Crescenzi, 2008). 

Een vitale en wederzijdse kennisoverdracht tussen regio’s zou de verkleining van deze 

economische verschillen kunnen ondersteunen. De uitwisseling van kennis zou regio’s in staat 

kunnen stellen om zelf innovaties te produceren (Asheim and Gertler, 2009) of in ieder geval 

economisch gebruik te maken van innovaties, al hebben ze deze niet zelf geproduceerd. Maar: 

“de geschiedenis van de innovatie leert ons dat het meestal veel te lang duurt voordat bewezen 

concepten en programma’s onderdeel worden van de praktijk” (Glanz et al., 2008: 313). 

Evenals de productie van innovaties lijkt de verspreiding hiervan ruimtelijk gebonden te zijn 

en de neiging te hebben om verspreiding te weerstaan (Audretsch and Feldman, 1996; Jaffe et 

al., 1993). Daarom wordt in dit proefschrift onderzocht waarom sommige regio’s veel sneller 

kennis overnemen dan andere en worden de factoren die een rol spelen bij de ruimtelijke 

verspreiding van kennis geanalyseerd. 

De verspreiding van innovaties is een onderzoeksonderwerp in verschillende vakgebieden, 

waaronder economie, sociologie, marketing en innovatieonderzoek (e.g. De Tarde, 1903; Bass, 

1969; Griliches, 1992; Rogers, 2003). Het is een belangwekkend onderwerp vanwege de 

gevolgen van deze verspreiding voor het economisch handelen en het maatschappelijk leven. 

Gewoontes en routines veranderen niet door het genereren van innovatie, maar door de 

daaropvolgende brede verspreiding ervan. Zo zat er bijvoorbeeld 190 jaar tussen de ontdekking 

dat met citrusvruchtensap scheurbuik te voorkomen was en de formele opname hiervan in het 

voedingspatroon van zeelieden. Toen pas veranderden de omstandigheden aan boord van 
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Engelse schepen (Glanz et al., 2008). Maar ongeacht het belang hiervan hebben economisch 

geografen hun aandacht de afgelopen jaren niet op de verspreiding van innovaties gericht, maar 

op de productie ervan. Dat was een aanvullende reden om in dit proefschrift de mechanismen 

van innovatieverspreiding te analyseren en ons begrip daarvan te vergroten. 

In dit proefschrift worden drie hoofddimensies van ruimtelijke verspreiding geïdentificeerd 

die van invloed zijn op de wijze waarop innovaties worden verspreid. De eerste hier 

geanalyseerde dimensie is technologie, oftewel de concretisering van kennis. Technologieën 

zijn het resultaat van het onderzoeken, combineren en testen van nieuwe kenniscombinaties 

(Arthur, 2009). De kenmerken van deze gecombineerde kenniscomponenten hebben vervolgens 

gevolgen voor de verspreiding van technologie (Rogers, 2003). Zo kan de kennis die in 

technologie besloten ligt zowel gecodeerd als onuitgesproken zijn (Polanyi, 1966; Nelson and 

Winter, 1982; Gertler, 2003). Dat laatste belemmert de verspreiding significant, doordat de 

kennis daardoor niet kan worden uitgeschreven en gemakkelijk overgedragen. Meestal is er 

veelvuldige interactie tussen economische actoren op persoonlijk niveau voor nodig om 

dergelijke kennis uit te wisselen. Die interacties maken deel uit van de tweede dimensie van 

kennisverspreiding waarnaar in dit proefschrift wordt gekeken, namelijk netwerken. 

Hägerstrand (1966) benadrukte dat de verspreiding van innovaties klaarblijkelijk de sociale 

relaties tussen mensen volgt. En ook bij economisch-geografisch onderzoek wordt er sterk 

gekeken naar de mechanismen van netwerkontwikkeling en kennisuitwisseling (Glückler, 

2007; Ter Wal and Boschma, 2009; Boschma and Frenken, 2010). Daarbij ligt de nadruk sterk 

op het relationele niveau en de effecten van nabijheid op de vorming van netwerkverbindingen 

(Boschma, 2005; Knoben and Oerlemans, 2006; Ter Wal, 2014). Naast de twee genoemde 

dimensies wordt in dit proefschrift nog een derde onderzocht: de regionale context. De 

regionale context geeft veelal vorm aan de perceptie die mensen hebben met betrekking tot 

welke soorten innovaties waardevol zijn om over te nemen (Blaut, 1977; Ormrod, 1990). 

Innovaties worden in een specifieke context ontwikkeld en de succesvolle verspreiding ervan 

is grotendeels afhankelijk van de vraag of potentiële gebruikers deze kunnen benutten in hun 

lokale context. Op de volgende pagina’s zullen deze dimensies, de bijbehorende lacunes in 

onderzoek en de relevante empirische hoofdstukken van dit proefschrift in meer detail worden 

beschreven. 

 

Technologie 

Over het algemeen kunnen technologieën worden opgevat als systemen van onderling met 

elkaar verbonden subcomponenten (Arthur, 2009). Dergelijke componenten zijn direct én 
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indirect met elkaar verbonden en vormen als zodanig een ‘combinatorisch netwerk’ (Broekel, 

2019). Die netwerken kunnen eenvoudig of complex van structuur zijn. Complexe 

technologieën worden gekenmerkt door een relatief groot aantal componenten met een groot 

aantal onderlinge verbindingen. Daarom hebben mensen veel informatie nodig om complexe 

technologieën te kunnen doorgeven en begrijpen (Simon, 1962). Daar komt nog bij dat de 

onderliggende kennis vaker onuitgesproken zal zijn (Broekel, 2019). Daardoor is het begrijpen 

en stimuleren van complexe technologieën lastiger en bewerkelijker. Maar juist doordat deze 

moeilijk te imiteren en te kopiëren zijn, bieden ze vaak aanzienlijke concurrentievoordelen en 

economische waarde (Balland and Rigby, 2017; Sbardella et al., 2018). 

Hoewel de voordelen en knelpunten van complexiteit in de literatuur worden benoemd, 

bestaat er maar weinig empirisch onderzoek waarin de verspreiding van complexe 

technologieën wordt geanalyseerd. Een uitzondering wordt gevormd door Sorenson et al. 

(2006), Feldman et al. (2015) as well as Balland and Rigby (2017), die de verspreiding van 

complexe technologieën bekijken aan de hand van de dimensies van nabijheid (Boschma, 

2005). En niet alleen is het empirisch onderzoek dun gezaaid, de bestaande onderzoeken laten 

ook nog eens verschillende resultaten zien, zoals in dit proefschrift wordt aangetoond. Daarom 

wordt in hoofdstuk 2 de ruimtelijke verspreiding geanalyseerd van enkele honderden 

technologieën waarop in de 19e en 20e eeuw in de VS octrooi is verleend. Om preciezer te zijn: 

het werk van (Hägerstrand, 1952; 1966; 1967) op het gebied van ruimtelijke 

verspreidingspatronen, de dimensie van technologische complexiteit (Simon, 1962; Kaufman, 

1993) en het concept nabijheid (Boschma, 2005) worden hier gecombineerd. Alle drie deze 

concepten kunnen nuttig zijn voor onderzoekers om inzicht te krijgen in ruimtelijke 

verspreidingsprocessen, maar zijn vooralsnog nooit in onderling verband geanalyseerd. Daarom 

wordt in hoofdstuk 2 onderzocht of de ruimtelijke verspreidingspatronen van eenvoudige en 

complexe technologieën van elkaar verschillen. Naast de hiërarchische en ‘besmettelijke’ 

verspreidingspatronen die door Hägerstrand (1967) zijn geïntroduceerd, wordt in hoofdstuk 2 

ook gekeken naar verspreidingsvormen waarbij technologieën van regio naar regio ‘springen’, 

naast de effecten van technologische en sociale nabijheid. 

Om de gevolgen van deze factoren op de ruimtelijke verspreiding te analyseren en te 

beoordelen of deze per complexiteitsniveau verschillen is gebruikgemaakt van een procedure 

die uit twee stappen bestaat. Voor de eerste stap zijn 285 Bayesiaanse overlevingsmodellen 

doorgerekend (Zhou and Hanson, 2017), één voor elke technologie, met inachtneming van 

geografische, technologische en sociale nabijheid evenals de regionale diversiteit wat betreft 

populatie en technologie. Voor de tweede stap zijn de afgeleide coëfficiënten gebruikt om 
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verschillende metaregressies te modelleren (Jarrell and Stanley, 1989) met technologische 

complexiteit als meta-afhankelijke variabele. Dat heeft het mogelijk gemaakt om in hoofdstuk 

2 empirisch te onderzoeken of de effectgrootte van de bekeken variabelen verandert met het 

niveau van complexiteit. Verschilt bijvoorbeeld het effect van technologische nabijheid op de 

verspreiding tussen eenvoudige en complexe technologieën? 

Uit de resultaten komt naar voren dat technologieën significant van elkaar verschillen wat 

betreft ruimtelijke verspreiding. In dat verband zijn voorbeelden van hiërarchische, 

besmettelijke en springende verspreiding gevonden. Bovendien wordt de kans om een 

besmettelijk verspreidingspatroon waar te nemen groter naarmate de complexiteit toeneemt. 

Complexe technologieën hebben aldus de neiging om zich in golfachtige patronen vanuit hun 

oorsprongsregio te verspreiden naar aangrenzende regio’s, en van daaruit naar verdere 

aangrenzende regio’s. In hoofdstuk 2 wordt ook duidelijk dat technologische nabijheid tussen 

de regio van de innovator en de regio van de gebruiker nog gunstiger is voor complexe 

technologieën. 

 

Netwerken 

In hoofdstuk 3 en 4 worden de twee lacunes onderzocht die zijn geïdentificeerd met 

betrekking tot de netwerkdimensie van kennisverspreiding. In dat verband wordt in hoofdstuk 

3 aandacht besteed aan de tweede lacune en de volgende onderzoeksvraag: faciliteren 

gesubsidieerde gezamenlijke R&D-projecten de verspreiding van kennis tussen regio’s die aan 

dezelfde gezamenlijke R&D-projecten deelnemen?? Daarna volgt hoofdstuk 4, waarin wordt 

onderzocht of verschillende vormen van nabijheid van invloed zijn op de desintegratie van 

verbindingen binnen kennisnetwerken. 

De afgelopen jaren is er veel onderzoek verricht waarbij de effecten van netwerken op de 

overloop van kennis empirisch werden geanalyseerd. Daarbij brengen veel onderzoeken een 

positief effect aan het licht van interorganisatorische relaties op de innovatieactiviteiten van 

organisaties en regio’s (Hewitt-Dundas en Roper 2010; Maggioni et al. 2014; Broekel 2015). 

In lijn met deze bevindingen zijn ook beleidsmakers de nadruk gaan leggen op 

interorganisatorische relaties. Zowel de Europese Unie als natiestaten, waaronder Duitsland, 

hebben programma’s geïnitieerd waarmee zij gezamenlijke onderzoeksprojecten subsidiëren. 

De effecten van deze programma’s zijn eveneens door onderzoekers beoordeeld. Een recente 

voorbeeld is het werk van Schwartz et al. (2012), Di Cagno et al. (2016) as well as Czarnitzki 

and Hussinger (2018), die positieve effecten op de innovatieprestaties van organisaties 

aantonen. Bij al deze onderzoeken wordt echter een empirische analyse gemaakt van het 
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verband tussen deelname aan gezamenlijke projecten en de daaropvolgende innovatieoutput. 

Men gaat er dus van uit dat er kennisuitwisseling heeft plaatsgevonden als de innovatieoutput 

na afloop van het project toeneemt. Op die manier is het positieve effect van gesubsidieerde 

R&D-projecten op kennisverspreiding een kwestie van interpretatie en blijft onduidelijk of er 

kennis is uitgewisseld tussen partners. 

In hoofdstuk 3 wordt deze lacune in onderzoek geanalyseerd op basis van de benadering van 

Jaffe et al. (1993), die octrooivermeldingen als ‘papieren spoor’ van kennisverspreiding hebben 

geïntroduceerd. Aan de hand daarvan worden de effecten van gesubsidieerde gezamenlijke 

projecten op interregionale octrooivermeldingen onderzocht. Om precies te zijn wordt er een 

zwaartekrachtmodel voor de gegevens ontwikkeld, waarbij het aantal vermeldingen tussen twee 

regio’s als afhankelijke variabele wordt genomen en projectdeelname (drie respectievelijk vijf 

jaar eerder) als onafhankelijke variabelen. Daarnaast wordt in hoofdstuk 3 gekeken naar verdere 

relationele en regionale kenmerken, zoals technologische nabijheid en de regionale 

octrooiproductie. Interessant genoeg wordt in hoofdstuk 3 geen significant bewijs gevonden 

voor een effect van gesubsidieerde R&D-projecten op daaropvolgende octrooivermeldingen. 

Dat kan verschillende oorzaken hebben, die in hoofdstuk 3 grondig worden behandeld. 

De derde lacune heeft betrekking op de vraag of nabijheden een verklaring kunnen zijn voor 

de desintegratie van netwerkverbanden. De laatste jaren is er veel aandacht geweest voor de 

vorming van netwerkverbanden en de bijbehorende mechanismen als verklaring voor de 

evolutie van interorganisatorische netwerken (e.g. Murphy, 2003; Boschma and Ter Wal, 2007; 

Broekel and Boschma, 2011; Ter Wal, 2014). Uit dit onderzoek komt naar voren dat de 

verschillende dimensies van nabijheid significante effecten hebben op de vorming van 

netwerkverbanden. Zo heeft Scherngell and Barber (2009) bijvoorbeeld het effect geanalyseerd 

van geografische en technologische nabijheid op de vorming van verbanden en daarbij een 

positieve relatie ontdekt tussen beide nabijheidsdimensies en samenwerking op het gebied van 

R&D. 

Maar ondanks de zeer omvangrijke literatuur over netwerkevolutie is de tegenhanger van 

netwerkevolutie – de desintegratie van verbanden – grotendeels genegeerd. En dat terwijl 

netwerkevolutie en “[…] -variatie moeten worden beschouwd als resultaten van endogene 

mechanismen van netwerkvorming en -desintegratie” (Glückler, 2007: p. 627). Daarnaast 

vormt de desintegratie van verbanden een grote belemmering voor kennisverspreiding, 

aangezien organisaties die hun banden verbreken stoppen met het uitwisselen van kennis. 

Daarom wordt in hoofdstuk 4 deze lacune in de literatuur onderzocht op basis van een nieuwe 

methodologische benadering. Onlangs hebben Krivitsky and Handcock (2014) zogenaamde 
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scheidbare temporele exponentiële random graafmodellen (STERGM) ontwikkeld, waarmee 

de vorming en desintegratie van netwerkverbanden gelijktijdig kunnen worden geanalyseerd. 

In hoofdstuk 4 worden gegevens over gesubsidieerde gezamenlijke projecten in de Duitse 

biotechnologische industrie geschikt gemaakt voor dit kader door variabelen af te leiden op de 

niveaus van knooppunt, dyade en netwerkstructuur. 

Uit de analyse komt naar voren dat de effecten van de beschouwde variabelen met betrekking 

tot verbandvorming en -desintegratie varieert, wat de stelling ondersteunt dat deze processen 

significant van elkaar verschillen. Hoofdstuk 4 vormt een aanvulling op de bestaande 

empirische literatuur over verbandvorming doordat er significante verbanden worden gevonden 

tussen geografische, cognitieve en institutionele nabijheid enerzijds en verbandvorming 

anderzijds. Daarnaast blijkt dat institutionele nabijheid een positieve relatie vertoont met de 

desintegratie van verbanden. Dat duidt erop dat organisaties met een soortgelijke 

organisatorische achtergrond – bijvoorbeeld twee non-profitorganisatie – verbanden sneller 

verbreken dan organisaties met verschillende achtergronden. 

 

Regionale context 

De derde dimensie van kennisverspreiding waaraan aandacht wordt besteed is de regionale 

context. De afgelopen decennia is er regelmatig gediscussieerd over de vraag of moderne 

informatie- en communicatietechnologieën, zoals het internet, de wereld zouden ‘afvlakken’ 

met betrekking tot innovatievermogen en concurrentievoordeel (Friedman, 2005). Het betoog 

van Feldman (1993) gaat nog steeds op: regio’s hebben verschillende capaciteiten en daardoor 

uiteenlopende mogelijkheden om nieuwe kennis en technologieën te produceren (Rodríguez-

Pose and Crescenzi, 2008; Balland et al., 2020). Naast kennisproductie is ook het gebruik van 

technologieën een plaatsgebonden proces, betogen Blaut (1977) en Ormrod (1990). De 

beoordeling of een technologie of product de moeite van het onderzoeken en testen waard is, is 

afhankelijk van de regionale omstandigheden waarin mensen leven. Als zij besluiten om 

gebruik te maken van nieuwe technologieën, zoals windenergie, kunnen er nieuwe 

bedrijfstakken ontstaan. De eerste gebruikers kunnen een bepaalde technologie verbeteren, deze 

aan andere aanbieden en op die manier handel creëren (Shah and Tripsas, 2007). In dergelijke 

gevallen ontstaat er een bedrijfstak naar aanleiding van vraag. Vraag is dan ook een belangrijke 

drijfveer voor het ontstaan van nieuwe bedrijfstakken (Martin et al., 2019). Binnen de 

economische geografie is echter veel meer gekeken naar de aanbodzijde om het ontstaan en de 

ontwikkeling van bedrijfstakken te verklaren – denk aan padafhankelijkheid en gerelateerde 

variëteit – dan naar de vraag (Garud and Karnøe, 2001; Frenken et al., 2007; Boschma and 
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Frenken, 2011). Daarom wordt in hoofdstuk 5 van dit proefschrift de volgende onderzoeksvraag 

behandeld: geeft de lokale vraag vorm aan de ruimtelijke opkomst van bedrijfstakken? 

Gegevens over de Duitse windenergie-industrie van 1983 tot 2010 zijn geschikt gemaakt 

voor twee Bayesiaanse overlevingskaders. Aan de ene kant wordt in hoofdstuk 5 geanalyseerd 

of, en hoe snel, regio’s windenergie-installaties in gebruik hebben genomen door te 

onderzoeken of er sprake is van een stimulans door het aanbod (‘supply push’). Aan de andere 

kant wordt er onderzocht of, en hoe snel, er nieuwe aanbieders van windenergie zijn opgericht. 

Daarbij wordt gekeken of er sprake is van aanzuiging vanuit de vraag (‘demand pull’), waarbij 

de geplande ingebruikname van windenergie-installaties als verklarende factor wordt 

gehanteerd. Naast deze variabelen wordt in de modellen ook rekening gehouden met regionale 

factoren en omgevingsfactoren, zoals de aanwezigheid van gerelateerde bedrijfstakken en de 

gemiddelde windsnelheid. 

De resultaten vormen een aanvulling op het bestaande onderzoek door de nadruk te leggen 

op het belang van gerelateerde variëteit, verstedelijking en industriële agglomeratie voor het 

ontstaan van bedrijfstakken. Daarnaast levert hoofdstuk 5 ook belangrijk empirisch bewijs voor 

het belang van vraag voor de locatie van nieuwe bedrijven. 

 

Conclusie 

De in dit proefschrift gepresenteerde bevindingen vormen een essentiële volgende stap in 

het economisch-geografisch onderzoek, doordat er vier belangrijke lacunes in onderzoek 

worden onderzocht. Daarnaast is het onderwerp van het onderzoek – kennisverspreiding – een 

onderwerp waaraan in de academische gemeenschap onvoldoende aandacht wordt besteed. 

Daarom wordt in dit proefschrift een innovatieve behandeling van de theoretische benadering 

van dit onderwerp gepresenteerd, waarbij de literatuur over complexiteit, nabijheid en 

ruimtelijke verspreidingspatronen met elkaar worden gecombineerd. Bovendien worden er 

innovatieve methodes en empirische settings gebruikt om de gestelde onderzoeksvragen te 

beantwoorden. Bayesiaanse overlevingsmodellen, STERGM en meta-analyse worden 

geïntroduceerd en met succes toegepast op de gegevens. In het laatste hoofdstuk worden 

beleidsimplicaties uitgewerkt op basis van de empirische bevindingen. Daarnaast worden in dit 

hoofdstuk nieuwe onderzoeksrichtingen voor de toekomst gepresenteerd die worden 

geïmpliceerd door de bevindingen en beperkingen van het hier gepresenteerde werk. Zo vormt 

bijvoorbeeld de onderlinge afhankelijkheid van technologische complexiteit en 

netwerkevolutie een interessant onderzoeksgebied voor de toekomst. Hier moet met klem 

worden opgemerkt dat de onderzochte dimensies van kennisverspreiding elkaar op geen enkele 
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wijze uitsluiten en er waarschijnlijk nog andere mechanismen voor ruimtelijke verspreiding zijn 

die kunnen worden onderzocht. 

 



179 

 

Acknowledgments 

When I first came into touch with the idea of doing a PhD, I was fully concerned with writing 

my master thesis and parallelly being a working student at Mercedes-Benz Vans. So, I was not 

really thinking of writing a PhD thesis. In that moment, my former team leader approached me 

with the question of whether I would not be interested in writing my PhD and thereby 

continuing to work for the company. Therefore, my first thanks go to Ralf Kehrberger and 

Renate Reichenauer who initiated this process and gave me the chance to obtain my doctoral 

degree by offering me the opportunity to stay at that company while also being able to keep on 

researching. 

With this chance and idea in mind, I have approached Tom Broekel who already supervised 

my master thesis at that point and asked whether he could imagine supervising my PhD in the 

industry. Typically Tom, he was directly on board but nevertheless mentioned that it depended 

on me getting my master’s degree first. Like I didn't know that. Anyway, my utter most 

gratitude goes to him as a person, supervisor and academic role model. Tom is always full of 

ideas which clearly supported me in finding my own way. More than that he has always been 

understanding and supportive regarding my full employment position at Mercedes-Benz Vans 

that has forced me to write my PhD at the weekends. But nevertheless, he has always been 

demanding the highest scientific quality in designing and conducting research and, thereby, I 

have learned a lot. Without his passionate support, I am confident that I would not have been 

able to finish this thesis. Thank you for your support, your advice and your continuous pushing 

me further. After we both had moved to Utrecht University, Ron Boschma and Andrea Ascani 

began supervising me as well. With them, they brought fresh ideas and new perspectives to my 

work that enriched it significantly. Therefore, I want to give many thanks to you. 

My PhD was not only influenced by my academic fellows, but also by family and friends. 

They have always supported me when I was stuck by pulling me away from the desk to get a 

free mind. In this regard, I am most thankful for my fiancée Victoria. I know that she would 

have loved us two to explore South Germany, meet friends more often or just go for a leisurely 

brunch in one of Stuttgart’s many cafes. However, as the mornings are my best and productive 

time of the weekends, this rarely happened. Nevertheless, she has always fully supported me in 

writing and finishing my thesis. She has been there when I wanted to throw everything away, 

cheered me up, and gave me new strength to proceed. More than that, she has also been an 

inspiration and a wonderful sparring partner challenging my ideas, thoughts and arguments. I 

will be always thankful for her and I am looking forward to a future with her and with many 



180   

 

 

more shared experiences to come. Starting with the movement to our own home and our 

wedding to happen this summer. I love you! 

I also want to thank my parents. They have not only given me the opportunity to learn and 

be educated but they always encouraged me to strive for more and pushed me a little bit further. 

They have also respected my decision to study Geography, although they have clearly asked 

themselves, what job I will find with it. Nevertheless, they respected my decision and believed 

in me. Thank you! 

Many more people have been there for me over the last years, and although I have not 

mentioned you all by name, be sure that I have not forgotten you and I am very thankful for all 

the people I have met, the conversations I had and the experiences we shared. And I am looking 

forward for all the new ones to come.  

 



181 

 

Curriculum vitae 

Marcel Bednarz was born on February 18, 1990 in Bielefeld, Germany. He lives and works 

in Stuttgart, Germany. He holds a bachelor’s degree of Geography from the Westfälische 

Wilhelms-Universität Münster (2013) and a Master of Economic Geography from the Leibniz 

Universität Hannover (2016). While studying in Hannover he did an exchange semester at the 

Universiteit Utrecht (2014). In 2016, his master thesis was awarded as the best of the year. 

Afterwards, Marcel Bednarz started to work at Daimler AG in Stuttgart as a PhD student before 

becoming a full-time employee in 2017.  

 


