Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Virtual Special Issue – Real and Complex Singularities and their applications in Geometry and Topology

Non reduced plane curve singularities with $b_1(F) = 0$ and Bobadilla's question

Dirk Siersma

Institute of Mathematics, Utrecht University, PO Box 80010, 3508 TA, Utrecht, The Netherlands

ARTICLE INFO

Article history: Received 24 January 2017 Received in revised form 24 May 2017 Accepted 17 July 2017 Available online 24 November 2017

MSC: 14H20 32S05 32S15

Keywords: Milnor fibre Equisingular 1-Dimensional critical locus Bobadilla's conjecture

1. Introduction

Let $f : \mathbb{C}^n \to \mathbb{C}$ be a holomorphic function germ. What can be said about functions whose Milnor fibre F has the property $b_i(F) = 0$ for all $i \ge 1$? If F is connected then f is non-singular and equivalent to a linear function by A'Campo's trace formula. The remaining question: What happens if F is non-connected? is only relevant for non-reduced plane curve singularities.

This question is related to a recent paper [3]. That paper contains a statement about the so-called Bobadilla conjectures [2] in case of plane curves. The invariant $\beta = 0$, used by Massey [4] should imply that the singular set of f is a smooth line.

In this note we give a short topological proof of a stronger statement.

If the first Betti number of the Milnor fibre of a plane curve singularity is zero, then the defining function is equivalent to x^r .

 $\ensuremath{\textcircled{O}}$ 2017 Elsevier B.V. All rights reserved.

E-mail address: D.Siersma@uu.nl.

Fig. 1. Deformation to maximal number of double points.

Proposition 1.1. If the first Betti number of the Milnor fibre of a plane curve singularity is zero, then the defining function is equivalent to x^r .

Corollary 1.2. In the above case the singular set is a smooth line and the system of transversal singularities is trivial.

2. Non-reduced plane curves

Non-isolated plane curve singularities have been thoroughly studied by Rob Schrauwen in his dissertation [5]. Main parts of it are published as [6] and [7]. The above Proposition 1.1 is an easy consequence of his work.

We can assume that $f = f_1^{m_1} \cdots f_r^{m_r}$ (partition in powers of reduced irreducible components).

Lemma 2.1. Let $d = \text{gcd}(m_1, \dots, m_r)$

(a.) F has d components, each diffeomorphic to the Milnor fibre G of $g = g_1^{\frac{m_1}{d}} \cdots g_r^{\frac{m_r}{d}}$. The Milnor monodromy of f permutes these components,

(b.) if d = 1 then F is connected.

Proof. (a.) Since $f = g^d$ the fibre F consists of d copies of G.

(b.) We recall here the reasoning from [5]. Deform the reduced factors f_i into \hat{f}_i such that the product $\hat{f}_1 \cdots \hat{f}_r = 0$ contains the maximal number of double points (cf. Fig. 1). This is called a network deformation by Schrauwen. The corresponding deformation \hat{f} of f near such a point has local equation are of the form $x^p y^q = 0$ (point of type D[p,q]).

Near every branch $\hat{f}_i = 0$ the Milnor fibre is a m_i -sheeted covering of the zero-locus, except in the D[p,q]-points. We construct the Milnor fibre F of f starting with $S = \sum m_i$ copies of the affine line \mathbb{A} . Cover the *i*th branch with m_i copies of \mathbb{A} and delete (p+q) small discs around the D[p,q]-points. Glue in the holes gcd(p,q) small annuli (the Milnor fibres of D[p,q]). The resulting space is the Milnor fibre F of f.

A hyperplane section of a generic at a generic point of $\hat{f}_i = 0$ defines a transversal Milnor fibre $F_1^{\uparrow\uparrow}$. Start now the construction of F from $F_1^{\uparrow\uparrow}$, which consists of m_1 cyclic ordered points. As soon as $f_1 = 0$ intersects $f_k = 0$ it connects the sheets of $f_1 = 0$ modulo m_k . Since $gcd(m_1, \dots, m_r) = 1$ we connect all sheets. \Box

Proof of Proposition 1.1. If $b_1(F) = 0$, then also $b_1(G) = 0$. The Milnor monodromy has trace $(T_g) = 1$. According to A'Campo's observation [1] g is regular: g = x. It follows that $f = x^r$. \Box

3. Relation to Bobadilla's question

We consider first in any dimension $f : \mathbb{C}^{n+1} \to \mathbb{C}$ with a 1-dimensional singular set, see especially the 1991-paper [8] for definitions, notations and statements.

We focus on the group $H_n(F, F^{\uparrow})$ which occurs in two exact sequences on p. 468 of [8]:

$$0 \to H_{n-1}^{\mathrm{f}}(F) \to H_{n-1}(F^{\uparrow}) \to H_n(F) \oplus H_{n-1}^{\mathrm{t}}(F) \to 0$$
$$0 \to H_n(F) \to H_n(F, F^{\uparrow}) \to H_{n-1}(F^{\uparrow}) \to H_{n-1}(F) \to 0$$

Here F^{\uparrow} is the disjoint union of the transversal Milnor fibres F_i^{\uparrow} , one for each irreducible branch of the 1-dimensional singular set.¹

Note that $H_n(F)$, $H_n(F, F^{\uparrow})$ and $H_{n-1}(F^{\uparrow})$ are free groups. $H_{n-1}(F)$ can have torsion, we denote its free part by $H_{n-1}(F)^{\rm f}$ and its torsion part by $H_{n-1}(F)^{\rm t}$. All homologies here are taken over \mathbb{Z} , but also other coefficients are allowed.

From both sequences it follows that the β -invariant, introduced in [4] has a 25 years history, since is nothing else than:

$$\dim H_n(F,F^{\uparrow\uparrow}) = b_n - b_{n-1} + \sum \mu_i^{\uparrow\uparrow} := \beta$$

From this definition is immediately clear that $\beta \ge 0$ and that β is topological. The topological definition has as direct consequence:

Proposition 3.1. Let $f : \mathbb{C}^{n+1} \to \mathbb{C}$ with a 1-dimensional singular set, then:

$$\beta = 0 \quad \Leftrightarrow \quad \chi(F) = 1 + (-1)^n \sum \mu_i^{\uparrow} \quad \Leftrightarrow \quad H_n(F, \mathbb{Z}) = 0 \text{ and } H_{n-1}(F, \mathbb{Z}) = \mathbb{Z}^{\sum \mu_i}$$

The original Bobadilla conjecture C [2] was in [4] generalized to the reducible case as follows: Does $\beta = 0$ imply that the singular set is smooth? As consequence of our main Proposition 1.1 we have:

Corollary 3.2. In the curve case $\beta = 0$ implies that the singular set is smooth; and that the function is equivalent to x^r .

Remark 3.3. In [3] the first part of this corollary was obtained with the help of Lê numbers.

Remark 3.4. From the definition $\beta = H_n(F, F^{\oplus})$ follow direct and short proofs of several statements from [4].

An other consequence from [8] is the composition of surjections:

$$H_{n-1}(F^{\uparrow}) = \oplus \mathbb{Z}^{\mu_i} \twoheadrightarrow H_{n-1}(\partial_2 F) = \oplus \frac{\mathbb{Z}^{\mu_i}}{A_i - I} \twoheadrightarrow H_{n-1}(F)$$

From this follows:

Proposition 3.5. If dim $H_{n-1}(F) = \sum \mu_i$ (upper bound) then

- a. $H_{n-1}(\partial_2 F)$ and $H_{n-1}(F)$ are free and isomorphic to $\mathbb{Z}^{\sum \mu_i}$.
- b. All transversal monodromies A_i are the identity.

The second part of [4] contains an elegant statement about $\beta = 1$ via the A'Campo trace formula. Also the reduction of the generalized Bobadilla conjecture to the (irreducible) Bobadilla conjecture. As final remark: The great work (the irreducible case) has still has to be done! Together with the Lê-conjecture this seems to be an important question in the theory of hypersurfaces 1-dimensional singular sets.

¹ $F^{\uparrow\uparrow}$ was originally denoted by F'. In the second sequence a misprint n in the third term has been changed to n-1.

References

- [1] N. A'Campo, Le nombre de Lefschetz d'une monodromie, Indag. Math. 35 (1973) 113–118.
- J. Fernandez de Bobadilla, Topological equisingularity of hypersurfaces with 1-dimensional critical set, Adv. Math. 248 (2013) 1199–1253.
- [3] B. Hepler, D. Massey, Some special cases of Bobadilla's conjecture, Topol. Appl. 217 (2017) 59-69.
- [4] D.B. Massey, A new conjecture, a new invariant, and a new non-splitting result, in: J.L. Cisneros-Molina, et al. (Eds.), Singularities in Geometry, Topology, Foliations and Dynamics: A Celebration of the 60th Birthday of José Seade, Merida, Mexico, December 2014, Springer International Publishing, 2017, pp. 171–181.
- [5] R. Schrauwen, Series of Singularities and Their Topology, Dissertation, Universiteit Utrecht, 1991.
- [6] R. Schrauwen, Deformations and the Milnor number of nonisolated plane curve singularities, in: Singularity Theory and Its Applications, Part I, Coventry, 1988/1989, in: Lecture Notes in Math., vol. 1462, Springer, Berlin, 1991, pp. 276–291.
- [7] R. Schrauwen, Topological series of isolated plane curve singularities, Enseign. Math. (2) 36 (1–2) (1990) 115–141.
- [8] D. Siersma, Variation mappings on singularities with a 1-dimensional critical locus, Topology 30 (3) (1991) 445–469.