Contents lists available at ScienceDirect
Topology and its Applications

Virtual Special Issue - Real and Complex Singularities and their applications in Geometry and Topology

Non reduced plane curve singularities with $b_{1}(F)=0$ and Bobadilla's question

Dirk Siersma

Institute of Mathematics, Utrecht University, PO Box 80010, 3508 TA, Utrecht, The Netherlands

A R T I C L E I N F O

Article history:

Received 24 January 2017
Received in revised form 24 May 2017
Accepted 17 July 2017
Available online 24 November 2017

$M S C$:

14 H 20
32S05
32S15
Keywords:
Milnor fibre
Equisingular
1-Dimensional critical locus
Bobadilla's conjecture

Abstract

If the first Betti number of the Milnor fibre of a plane curve singularity is zero, then the defining function is equivalent to x^{r}.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Let $f: \mathbb{C}^{n} \rightarrow \mathbb{C}$ be a holomorphic function germ. What can be said about functions whose Milnor fibre F has the property $b_{i}(F)=0$ for all $i \geq 1$? If F is connected then f is non-singular and equivalent to a linear function by A'Campo's trace formula. The remaining question: What happens if F is non-connected? is only relevant for non-reduced plane curve singularities.

This question is related to a recent paper [3]. That paper contains a statement about the so-called Bobadilla conjectures [2] in case of plane curves. The invariant $\beta=0$, used by Massey [4] should imply that the singular set of f is a smooth line.

In this note we give a short topological proof of a stronger statement.

[^0]

Fig. 1. Deformation to maximal number of double points.

Proposition 1.1. If the first Betti number of the Milnor fibre of a plane curve singularity is zero, then the defining function is equivalent to x^{r}.

Corollary 1.2. In the above case the singular set is a smooth line and the system of transversal singularities is trivial.

2. Non-reduced plane curves

Non-isolated plane curve singularities have been thoroughly studied by Rob Schrauwen in his dissertation [5]. Main parts of it are published as [6] and [7]. The above Proposition 1.1 is an easy consequence of his work.

We can assume that $f=f_{1}^{m_{1}} \cdots . f_{r}^{m_{r}}$ (partition in powers of reduced irreducible components).

Lemma 2.1. Let $d=\operatorname{gcd}\left(m_{1}, \cdots, m_{r}\right)$
(a.) F has d components, each diffeomorphic to the Milnor fibre G of $g=g_{1}^{\frac{m_{1}}{d}} \cdots . g_{r}^{\frac{m_{r}}{d}}$. The Milnor monodromy of f permutes these components,
(b.) if $d=1$ then F is connected.

Proof. (a.) Since $f=g^{d}$ the fibre F consists of d copies of G.
(b.) We recall here the reasoning from [5]. Deform the reduced factors f_{i} into \hat{f}_{i} such that the product $\hat{f}_{1} . \cdots . \hat{f}_{r}=0$ contains the maximal number of double points (cf. Fig. 1). This is called a network deformation by Schrauwen. The corresponding deformation \hat{f} of f near such a point has local equation are of the form $x^{p} y^{q}=0$ (point of type $D[p, q]$).

Near every branch $\hat{f}_{i}=0$ the Milnor fibre is a m_{i}-sheeted covering of the zero-locus, except in the $D[p, q]$-points. We construct the Milnor fibre F of f starting with $S=\sum m_{i}$ copies of the affine line \mathbb{A}. Cover the i th branch with m_{i} copies of \mathbb{A} and delete $(p+q)$ small discs around the $D[p, q]$-points. Glue in the holes $\operatorname{gcd}(p, q)$ small annuli (the Milnor fibres of $D[p, q])$. The resulting space is the Milnor fibre F of f.

A hyperplane section of a generic at a generic point of $\hat{f}_{i}=0$ defines a transversal Milnor fibre F_{1}^{\dagger}. Start now the construction of F from F_{1}^{\pitchfork}, which consists of m_{1} cyclic ordered points. As soon as $f_{1}=0$ intersects $f_{k}=0$ it connects the sheets of $f_{1}=0$ modulo m_{k}. Since $\operatorname{gcd}\left(m_{1}, \cdots, m_{r}\right)=1$ we connect all sheets.

Proof of Proposition 1.1. If $b_{1}(F)=0$, then also $b_{1}(G)=0$. The Milnor monodromy has trace $\left(T_{g}\right)=1$. According to A'Campo's observation [1] g is regular: $g=x$. It follows that $f=x^{r}$.

3. Relation to Bobadilla's question

We consider first in any dimension $f: \mathbb{C}^{n+1} \rightarrow \mathbb{C}$ with a 1 -dimensional singular set, see especially the 1991-paper [8] for definitions, notations and statements.

We focus on the group $H_{n}\left(F, F^{\pitchfork}\right)$ which occurs in two exact sequences on p. 468 of [8]:

$$
\begin{gathered}
0 \rightarrow H_{n-1}^{\mathrm{f}}(F) \rightarrow H_{n-1}\left(F^{\pitchfork}\right) \rightarrow H_{n}(F) \oplus H_{n-1}^{\mathrm{t}}(F) \rightarrow 0 \\
0 \rightarrow H_{n}(F) \rightarrow H_{n}\left(F, F^{\pitchfork}\right) \rightarrow H_{n-1}\left(F^{\pitchfork}\right) \rightarrow H_{n-1}(F) \rightarrow 0
\end{gathered}
$$

Here F^{\pitchfork} is the disjoint union of the transversal Milnor fibres F_{i}^{\pitchfork}, one for each irreducible branch of the 1-dimensional singular set. ${ }^{1}$

Note that $H_{n}(F), H_{n}\left(F, F^{\pitchfork}\right)$ and $H_{n-1}\left(F^{\pitchfork}\right)$ are free groups. $H_{n-1}(F)$ can have torsion, we denote its free part by $H_{n-1}(F)^{\mathrm{f}}$ and its torsion part by $H_{n-1}(F)^{\mathrm{t}}$. All homologies here are taken over \mathbb{Z}, but also other coefficients are allowed.

From both sequences it follows that the β-invariant, introduced in [4] has a 25 years history, since is nothing else than:

$$
\operatorname{dim} H_{n}\left(F, F^{\pitchfork}\right)=b_{n}-b_{n-1}+\sum \mu_{i}^{\pitchfork}:=\beta
$$

From this definition is immediately clear that $\beta \geq 0$ and that β is topological. The topological definition has as direct consequence:

Proposition 3.1. Let $f: \mathbb{C}^{n+1} \rightarrow \mathbb{C}$ with a 1-dimensional singular set, then:

$$
\beta=0 \Leftrightarrow \chi(F)=1+(-1)^{n} \sum \mu_{i}^{\pitchfork} \Leftrightarrow H_{n}(F, \mathbb{Z})=0 \text { and } H_{n-1}(F, \mathbb{Z})=\mathbb{Z}^{\sum \mu_{i}}
$$

The original Bobadilla conjecture C [2] was in [4] generalized to the reducible case as follows: Does $\beta=0$ imply that the singular set is smooth? As consequence of our main Proposition 1.1 we have:

Corollary 3.2. In the curve case $\beta=0$ implies that the singular set is smooth; and that the function is equivalent to x^{r}.

Remark 3.3. In [3] the first part of this corollary was obtained with the help of Lê numbers.
Remark 3.4. From the definition $\beta=H_{n}\left(F, F^{\pitchfork}\right)$ follow direct and short proofs of several statements from [4].
An other consequence from [8] is the composition of surjections:

$$
H_{n-1}\left(F^{\pitchfork}\right)=\oplus \mathbb{Z}^{\mu_{i}} \rightarrow H_{n-1}\left(\partial_{2} F\right)=\oplus \frac{\mathbb{Z}^{\mu_{i}}}{A_{i}-I} \rightarrow H_{n-1}(F)
$$

From this follows:
Proposition 3.5. If $\operatorname{dim} H_{n-1}(F)=\sum \mu_{i}$ (upper bound) then
a. $H_{n-1}\left(\partial_{2} F\right)$ and $H_{n-1}(F)$ are free and isomorphic to $\mathbb{Z}^{\sum \mu_{i}}$.
b. All transversal monodromies A_{i} are the identity.

The second part of [4] contains an elegant statement about $\beta=1$ via the A'Campo trace formula. Also the reduction of the generalized Bobadilla conjecture to the (irreducible) Bobadilla conjecture. As final remark: The great work (the irreducible case) has still has to be done! Together with the Lê-conjecture this seems to be an important question in the theory of hypersurfaces 1-dimensional singular sets.

[^1]
References

[1] N. A'Campo, Le nombre de Lefschetz d'une monodromie, Indag. Math. 35 (1973) 113-118.
[2] J. Fernandez de Bobadilla, Topological equisingularity of hypersurfaces with 1-dimensional critical set, Adv. Math. 248 (2013) 1199-1253.
[3] B. Hepler, D. Massey, Some special cases of Bobadilla's conjecture, Topol. Appl. 217 (2017) 59-69.
[4] D.B. Massey, A new conjecture, a new invariant, and a new non-splitting result, in: J.L. Cisneros-Molina, et al. (Eds.), Singularities in Geometry, Topology, Foliations and Dynamics: A Celebration of the 60th Birthday of José Seade, Merida, Mexico, December 2014, Springer International Publishing, 2017, pp. 171-181.
[5] R. Schrauwen, Series of Singularities and Their Topology, Dissertation, Universiteit Utrecht, 1991.
[6] R. Schrauwen, Deformations and the Milnor number of nonisolated plane curve singularities, in: Singularity Theory and Its Applications, Part I, Coventry, 1988/1989, in: Lecture Notes in Math., vol. 1462, Springer, Berlin, 1991, pp. $276-291$.
[7] R. Schrauwen, Topological series of isolated plane curve singularities, Enseign. Math. (2) 36 (1-2) (1990) $115-141$.
[8] D. Siersma, Variation mappings on singularities with a 1-dimensional critical locus, Topology 30 (3) (1991) 445-469.

[^0]: E-mail address: D.Siersma@uu.nl.
 https://doi.org/10.1016/j.topol.2017.11.029
 0166-8641/© 2017 Elsevier B.V. All rights reserved.

[^1]: ${ }^{1} F^{\pitchfork}$ was originally denoted by F^{\prime}. In the second sequence a misprint n in the third term has been changed to $n-1$.

