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Roads go ever ever on,
Over rock and under tree,

By caves where never sun has shone,
By streams that never find the sea:

Over snow by winter sown,
And through the merry flowers of June,

Over grass and over stone,
And under mountains in the moon.

- J. R. R. Tolkien, The Hobbit
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1

Introduction

In this chapter, we pose the questions that this thesis aims to answer in the field of active
matter. To this end, first, we introduce thermodynamic variables, and explain why they
are valuable tools. Next, we give background information on active matter, and introduce
active Brownian particles as a model system. Subsequently, we describe the phenomenon
of motility-induced phase separation, and explain how it leads to the research questions
of this thesis. Finally, we outline how these questions are addressed in the remainder of
the thesis.



2 Chapter 1

1.1 From individual to collective behavior

Have you ever stopped to watch a flock of starlings in the winter months (Fig. 1.1)?
These flocks, that can consist of as many as 100.000 birds, tend to form patterns that
are truly mesmerizing to watch. If you have, then perhaps you have also wondered why
these patterns form. The behavior is not coordinated by one, or a few, leader bird(s).
Instead, the patterns form spontaneously, and result, somehow, from the way that every
individual bird flies, and interacts with its neighbours.

Suppose that one is very determined to find out how this happens. Then one could first
study how a bird flies in isolation, and subsequently how it responds to nearby birds as a
function of their positions and velocities. Suppose that one then knows this ‘individual’
behavior perfectly. One then proceeds to study the behavior of large groups of birds.
By using different types of birds, one finds that different types of collective behavior can
emerge. Perhaps a certain type of bird always flocks in one large group, whereas another
tends to split up into smaller subgroups. The question is then: why do the different types
of birds show different these collective behaviors? Admittedly, it may not be entirely
clear when one completely understands the reason, but, arguably, part of it is to be able
to predict the collective behavior of a certain type of bird from its individual behavior.
Phrased more generally, the question is then:

Figure 1.1: Photograph of a starling murmuration, taken by Paul Gold-
stein in Suffolk, UK, 16 Feb 2018. Credit: Paul Goldstein/Cover
Images. Taken from https://komonews.com/news/offbeat/gallery/
its-birds-its-a-plane-its-photographer-captures-stunning-starling-murmuration#
photo-9
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“Given a large number of units (or: particles) whose individual dynamics and interaction
rules are specified, is it possible to predict and characterize the behavior of the collective?”

One approach would be to perform a computer simulation that uses the individual be-
havioral rules to compute how the positions of all particles evolve from any timestep to
the next. While this is a very useful method, it can be very time and resource consuming.
Moreover, the output is a sequence of all subsequent positions and velocities of all par-
ticles, which is a huge number of variables, and it is not a priori clear how the different
collective behaviors are to be distinguished from those.

Therefore, instead, would it not be convenient if we could have only a few variables that
completely characterize the collective? Variables that can, moreover, be calculated from
the individual behavior rules? Such variables are called thermodynamic variables, and are
at the core of this thesis.

While finding such variables may sound elusive, systems that are in thermodynamic equi-
librium can be described by them. For these systems, knowledge of the interaction po-
tential between the individual particles allows one, in principle, to calculate the system’s
free energy, and derive any collective property - such as the pressure, heat capacity, etc.
- from there [1]. This has far-reaching consequences: it allows one, for example, to pre-
dict the temperature at which water boils at the top of Mt. Everest, but ultimately also
underlies the engines that power our cars and airplanes [1]. Admittedly, calculating the
thermodynamic variables from the interaction potential may not be easy, but a formal
route (via partition functions and free energies) does exist, a route that moreover allows
for systematic approximations [2]. In addition, the thermodynamic variables can be de-
termined from computer simulations without using any approximation [3].

So when is a system in thermodynamic equilibrium, such that all of this is possible?
Different authors give different definitions [4–7]; here, we paraphrase R. Haase [6]. A
system is in thermodynamic equilibrium if it satisfies the following two conditions.

1. The system does not change over time, i.e., the system is in steady state.

2. If the system is cut off from all external influences, except from static external
potential energy fields, the system remains unchanged.

As the reader may have guessed, a flock of birds is not in thermodynamic equilibrium,
but before discussing why, we first place the example in a broader context.

1.2 Active Matter
The behavior of a group of birds falls into a class of systems nowadays known as active
matter [8]. Although the term is sometimes used more broadly, here I define active matter
as systems that consist of a large number of units (or: particles) that continuously con-
sume energy and convert it into motion. The term “active” refers to the inherent motion
of the particles; the term “matter” is perhaps less intuitive, and is discussed below. The
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definition includes a very diverse range of systems. Not only can one think of schools of
fish, or crowds of people, but also of granular rods that are being vibrated on a table, or
of the kinetics of the cytoskeleton of a human cell [8, 9].

The experimental systems known as microswimmers [10, 11] deserve special attention.
They are particles of micrometer-ranged size that “swim” in a solvent. Their value lies
in the fact that their individual behavior can be manipulated to a relatively large extent,
while also the particle movement can be accurately tracked under the microscope. We
distinguish biological and synthetic microswimmers. Biological microswimmers are mostly
swimming bacteria, such as E. Coli [12]. By appropriately choosing the species, or by
manipulating its DNA, the swimming behavior can be controlled to a surprisingly large
extent. For example, some species swim in intervals interrupted by tumbles [13], whereas
others swim only when illuminated by light [14]. Synthetic microswimmers are nonliving
particles whose swimming is made possible by some ongoing physical process, typically
the chemical reaction of a solute taking place on (part of) the surface of the swimmer.
The resulting processes that make the particle swim go by names as self-diffusiophoresis,
self-electrophoresis, and self-thermophoresis. Often, but not always [15], these particles
have a built-in asymmetry that dictates the direction of swimming. Synthetic swimmers,
too, can be manipulated by exernal fields, such as light intensity, solute concentration, or
magnetic fields [10, 11].

The last few decades have known a surge of interest in active matter in general, and mi-
croswimmers in particular. The interest partly comes from the prospect of applications,
for example in self-assembly [16, 17], microsurgery [18] or targeted drug delivery [18–20].

Another reason is of fundamental nature. Indeed, the term “matter” suggests that
these systems could be described in ways analogous to their passive counterparts. How-
ever, to which extent this is possible, is a priori not clear, because active matter systems
are not in thermodynamic equilibrium. To see this, let us go back to the two conditions
stated in Sec. 1.1. As for condition 1: it is perfectly possible to consider active steady
states. In fact, in this thesis we focus only on steady states in order to be ‘as close to
equilibrium as possible’. However, keeping the system in steady state requires a steady
flux of some kind of fuel into the system. Cutting off this external influence would make
it impossible to sustain the particles’ motion, and would therefore violate condition 2. So,
indeed, active matter systems are by definition out of equilibrium.

But then why have hope that these systems can be described by a few collective thermo-
dynamic variables? Well, active matter systems do resemble equilibrium systems in that
they allow for steady states that are homogeneous. This contrasts with systems that are
driven out of equilibrium ‘from the outside’. An example of the latter is a system with two
opposing boundaries that are kept at different temperatures. Clearly, this system will go
to a steady state that has a temperature gradient, and is therefore not homogeneous. On
the other hand, active matter systems are driven at the single-particle level, and therefore
can have homogeneous steady states. In this sense, active matter steady states seem to
be ‘the closest thing to equilibrium’.

Moreover, several simple active matter models can undergo a motility-induced phase
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Figure 1.2: Figure taken and caption adapted from S. Paliwal’s PhD thesis [21]. Typical
configurations of two-dimensional (a) passive and (b) active Brownian particles with purely
repulsive interactions. The particles’ propulsion speed v0, reorientation time τ and diameter σ
are related as indicated. The coloring of the particles shows the local particle density ρ. Whereas
the passive system shows a homogeneous distribution, the active system shows a dense cluster
phase surrounded by a dilute gas phase.

separation, which, when one sees it, inevitably reminds one (or at least the author of this
thesis) of an equilibrium gas-liquid, or gas-solid, phase separation.

1.3 Motility-induced phase separation

To investigate the use of thermodynamic variables for active matter, in this thesis we
focus on a simple theoretical model: the model of active Brownian particles (ABPs).
While later chapters specify their dynamics in full detail, here we point out the crucial
ingredients. They are Brownian particles, whose steady-state behavior is that of an equi-
librium system, except for the extra ingredient of activity: every particle feels a constant
propulsion force - giving rise to propulsion speed v0 - in a direction that changes on a
timescale τ by rotational diffusion.

Let us assume that the particles interact via a purely repulsive interaction potential,
e.g. a Weeks-Chandler-Andersen potential (the repulsive part of a Lennard-Jones poten-
tial) with particle diameter σ [22]. Also, let us assume that the overall density is fixed,
and below the equilibrium freezing transition. Then passive particles (v0 = 0) form a sim-
ple homogeneous fluid phase, as depicted in Fig. 1.2(a). However, when the particles are
made sufficiently active, they separate into a dense cluster phase and a dilute gas phase,
as depicted in Fig. 1.2(b) for v0τ/σ = 180. This phenomenon is known as motility-induced
phase separation (MIPS), and is discussed in much more detail in chapter 2. Note that
MIPS is a non-equilibrium phase coexistence of repulsive particles. Yet, it resembles the
equilibrium phase coexistence of attractive particles, in the following senses:
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• The coexistence forms a steady state in which the dense cluster does not significantly
move.

• The bulk of both the dense and dilute phase is homogeneous and isotropic.

• The lever rule is satisfied. This means that if one adds particles to (or: removes
particles from) the coexistence of Fig. 1.2(b), then the dense cluster will simply grow
(shrink) while the densities of the bulk phases do not change [23].

The last observation suggests that the system somehow ‘likes’ to have the particular den-
sities that the dense and dilute phase attain.

For an equilibrium phase coexistence (at fixed temperature), this ‘liking’ is expressed
by the statement that the total Helmholtz free energy of the system is minimized. This
minimization boils down to performing a common tangent construction on the free energy
density of a bulk state of density ρ (at fixed temperature) [1, 24]. This construction then
selects out the gas density ρg and liquid density ρl. An equivalent way to minimize the
free energy is to demand that both bulk phases have equal pressure P (ρ) and chemical
potential µ(ρ) [1, 24]. The two equalities P (ρg) = P (ρl) and µ(ρg) = µ(ρl) can then be
solved for the two unknowns ρg and ρl. The latter approach is especially useful since, as
emphasized in section 1.1, the pressure P (ρ) and µ(ρ) have microscopic expressions that
can be determined in computer simulations, in principle without needing any approxi-
mationsa [3]. Thus, for an equilibrium phase coexistence, knowing the thermodynamic
variables P (ρ) and µ(ρ) for bulk states of density ρ allows one to determine the densities
ρg and ρl of the phase-separated state.

This naturally leads to the question: can we also define a pressure and chemical po-
tential for active steady states, preferably as microscopic expressions? And can they be
utilized to find the coexisting densities of the MIPS phases of Fig. 1.2(b)? These questions
are central to this thesis.

Another intriguing aspect of MIPS is the interface between the dense and the dilute phase.
Any movie of MIPS readily shows that the interface fluctuates wildly (see e.g. movies
supplementary to [25]). In equilibrium, the key property that determines the behavior
of the interface - including its fluctuations - is the interfacial tensionb. This has led to
studies on the surface tension of MIPS [25–31], and while the magnitude of the surface
tension could be related to the fluctuations [25, 26], its sign turned out to be surprising:
Bialké et al. [26] found it to be negative! This immediately leads to the question: how
can an interface with a negative tension be stable? This question - as well as the sign of
the surface tension - is curently heavily debated in the literature [25, 27, 29, 31].

This has been a motivation to study the thermodynamic variable surface tension in
this thesis as well. In particular, we focus on the question how to define surface tension
out of equilibrium, and how it relates to the stability of the interface.

aThe attentive reader may wonder how a computer simulation can produce a bulk state of a density
ρg < ρ < ρl for which the system wants to phase separate. The answer is: there are tricks [3]. The relevant
simulations in this thesis, performed by collaborators R. van Damme and S. Paliwal, used systems that
are too small to phase separate. The inherent finite-size effects can be estimated by doing this for various
(small) sizes, and turn out to be insignificant. See e.g. section 2.C.

bOr surface tension. I shall use the words interchangeably.
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1.4 Scope and outline of the thesis
In this thesis, we study the definition and usefulness of thermodynamic variables for
ABPs. Motivated by the questions posed in section 1.3, we focus on the variables pres-
sure, chemical potential and surface tension.

One may wonder whether temperature is a suitable thermodynamic variable for ABPs
as well. Indeed, many studies have focused on this question, see e.g. [32] and references
therein. This thesis, however, simply focuses on other variables. A temperature T does
enter our equations, but it is not the temperature of the ABPs themselves. Instead, we
think of the ABPs as microswimmers, and of T as the temperature of the solvent they
are immersed inc. It enters the equations as follows. The ABPs - being Brownian -
exhibit Brownian motion. When other driving forces, such as activity, are absent, this
motion leads to translational diffusion with diffusion constant Dt. At the same time, any
movement of the particle through the solvent leads to a drag force with (translational)
friction constant γt. Throughout this thesis, the constants Dt and γt are assumed to be
related by the Einstein relation Dtγt = kBT , where kB is the Boltzmann constant. This
is how the temperature T enters. Actually, the Einstein relation assumes equipartition
[24], and therefore only holds in equilibrium. Yet we assume it for active particles out
of equilibrium also. This assumption is undoubtedly false, but it is made only to obtain
expressions that look familiar, and that are therefore more reader friendly. By no means
is the assumed Einstein relation essential to any of our results: one can simply replace
any kBT one encounters by Dtγt.d In fact, this is probably the best way to think about
the temperature T that appears in this thesis: it is the quantity that sets the strength of
the passive Brownian motion, and thereby the diffusion constant Dt.

The outline of this thesis is as follows.
In chapter 2, we introduce MIPS. We present phase diagrams, and rationalize the

onset of MIPS by performing a stability analysis of the homogeneous isotropic phase.
As interesting phenomenology, we show that MIPS disappears if one changes perfectly
spherical particles into slightly elongated rods.

In chapter 3, we study the thermodynamic variable pressure. In particular, we take

cStrictly speaking, the solvent temperature is not constant in time: since the microswimmers dissipate
energy, the solvent heats up. The rate at which this happens can be estimated as follows. A swimmer
with speed v0 experiences a drag force of magnitude γtv0, where the friction coefficient can be estimated
from the Stokes relation γt = 3πησ, with η the dynamic viscosity of the solvent. Consequently, a
single swimmer dissipates the power γtv

2
0 , such that N swimmers dissipate the power P = Nγtv

2
0 . This

dissipation leads to an increase in solvent temperature ∆T per time interval ∆t via P = cv∆TρsV/∆t,
where cv is the specific heat of the solvent, ρs the mass density of the solvent, and V the volume. If
we assume that the swimmers have (effective) diameter σ = 1 µm, swimming speed v0 = 1 µm/s, and
packing fraction φ = Nπσ3/(6V ) = 0.01, and assume that the solvent is water at room temperature,
such that ρs = 1 · 103 kg/m3, η = 1 · 10−3 Pa · s, and cv = 4 · 103 J/(K kg), we can calculate that the time
it takes the solvent to heat up ∆T = 1 K is given by ∆t ≈ 3 · 102 years. Therefore, we can safely assume
that the solvent temperature T is constant in time.

dActually, in chapter 3 the Einstein relation is assumed to hold for rotational motion also, i.e. it is
assumed that Drγr = kBT , with Dr and γr the rotational diffusion and friction coefficients, respectively.
In this case, one should replace kBT by Dtγt in the first line of Eq. (3.2) and by Drγr in its second line,
and work these modifications through in the rest of the chapter.
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the role of the solvent into account, which allows to define and calculate the osmotic
pressure.

In chapter 4, we switch back to a colloids-only description. In addition to the pres-
sure, we study the other thermodynamic variable that can be defined mechanically: the
surface tension. We do not consider the surface tension of MIPS directly, but examine a
system that can - to some extent - be regarded as a toy model for MIPS: an active ideal gas
in between two bulks with different propulsion speeds. We give two possible definitions
for its interfacial tension, and show that the stability of the interface is not determined
by their sign, but is instead guaranteed by tangential currents. These tangential currents
are caused by the Marangoni effect, which is the effect that lateral inhomogeneities in the
interfacial tension lead to mass transfer along the interface from low to high tension [33].
We show that these tangential currents restore any (slightly) perturbed interface to its
original state.

In chapter 5, we address the next thermodynamic variable: the chemical potential.
We define a chemical potential-like quantity and test whether it can be used together
with the pressure to find the densities of active phase coexistences. While this works
for a coexistence of weakly active Lennard-Jones particles, it does not correctly predict
the densities of the highly active MIPS. We show this to be due to the highly nonlocal
dependence of the chemical potential.

Finally, in chapter 6, we address a related effect. Where the previous chapter studied
the definition of a chemical potential, this chapter focuses on the effect of applying an
external potential. In particular, we show that applying an external potential in the shape
of a sawtooth leads to an active steady state whose density profile depends on the details
of the sawtooth, even arbitrarily far away. We aim to characterize, and understand, this
‘long-range effect’. We conclude that both this effect and the chemical potential’s nonlocal
dependence make the statistical physics of ABPs a challenging affair.

Chapter 7 concludes the thesis by summarizing the main findings, discussing what
we have learnt from the research as a whole, and providing directions for further research.



2

Motility-Induced Phase Separation

In this chapter, we introduce motility-induced phase separation (MIPS). We construct its
phase diagram, and explain its formation from a stability analysis of the homogeneous
isotropic phase.

As interesting phenomenology, we allow for the possibility of orientation-dependent
interactions (torque) between the particles. This is done by considering rodlike particles
of varying aspect ratio. Surprisingly, we find that MIPS disappears if one changes the
particle shape from spherical to only slightly elongated. We propose a suppression mech-
anism based on the duration of collisions, and argue that this mechanism can explain
both the suppression of MIPS found here for rodlike particles, but also the enhancement
of MIPS found for particles with Vicsek interactions.

This chapter is based on the publication “Interparticle torques suppress motility-induced
phase separation for rodlike particles” [34], and has been part of a collaboration with
Robin van Damme, René van Roij and Marjolein Dijkstra. Robin van Damme performed
all the simulations and their analysis, whereas the author of this thesis developed the
stability analysis of the homogeneous isotropic phase.
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2.1 Introduction
Active 2D disks or 3D spheres, two well-studied model systems, often have a parame-
ter regime in which the system demixes into a dense and a dilute region. This phase
separation closely resembles the well-known gas-liquid coexistence found in, for instance,
water or Lennard-Jones systems. Unlike the gas-liquid phase separation, however, the
clustering in active matter occurs because of the motility rather than the particle-particle
attractions. Hence, the phenomenon has been coined motility-induced phase separation
(MIPS). Recently, MIPS has been studied extensively [35–45]. For example, it has been
identified for both active Brownian [36–38, 42] and run-and-tumble particles [35], its nu-
cleation has been studied [43], and it has been derived from several theoretical models
[40, 41, 45, 46].

All of the above studies logically constrained themselves to the simplest possible model
systems, in which particles interact either through hard-particle excluded-volume inter-
actions or through (softer) short-range repulsions. Importantly, these studies did not
consider any torque interactions between the particles. Studies that do include torques
typically fall into two categories. The first uses particles with Vicsek-like alignment in-
teractions [47, 48], which mimic a visual alignment mechanism, such as for birds or fish.
The second uses particles with an anisotropic, typically rodlike shape [49–53]. This most
closely mimics bacteria, whose alignment arises simply from bumping into one another.
While studies of active rods reveal a zoo of nonequilibrium phases, they do not exhibit
MIPS; there seems to be no parameter regime for which there is a separation into dense
and dilute regions without strong alignment. Naturally, this raises questions such as:
why does MIPS occur for 2D disks and 3D spheres, but not for 2D and 3D rods? How
anisotropic or rod-like must a particle be for MIPS to disappear? In this chapter, we will
address these questions by both simulations and theory.

To address these questions numerically, we need a model system which exhibits MIPS,
and a means to identify MIPS when it occurs. Section 2.2 describes both the Active
Brownian Particle model we use, and the modified cluster algorithm that was developed
to identify MIPS. In Section 2.3 we present an analytical criterion for the onset of MIPS,
on the basis of a stability analysis of density fluctuations in the homogeneous isotropic
phase. Section 2.4.1 discusses the phase diagrams for the 2D disks, 3D spheres and 2D
and 3D rods, showing unambiguously that MIPS indeed disappears for increasing aspect
ratio. Subsequently, the mechanism behind this suppression is discussed in Section 2.4.2.
Section 2.5 then concludes this chapter by discussing the influence of torque on MIPS in
a more general context.

2.2 Computational methods

2.2.1 Active Brownian Particles
Using Brownian Dynamics (BD) simulations, we study a system of N spherocylinder-
shaped active Brownian particles (ABP) of head-to-tail length l and diameter σ ≤ l
in a periodic area A. The spherocylinders self-propell by a mechanism that we leave
unspecified, such that their velocity (at infinite dilution) is v0 along their long axis ê.
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The particles are subject to rotational and translational noise, with rotational diffusion
constant Dr and translational diffusion tensor Dt = D‖êê + D⊥(I − êê), with parallel
and perpendicular components D‖ and D⊥, respectively. For such a 2D system, shown
schematically in Fig. 2.1, the overdamped Langevin equations are given by

∂tri = v0êi + βDt,i ·
∑
i �=j

F ij +
√

2Dt,i · Λt
i, (2.1)

∂tθi = βDr

∑
i �=j

Tij +
√

2DrΛr
i , (2.2)

where i = 1, ..., N is the particle label, ri is the center-of-mass position of particle i,
êi = (cos θi, sin θi) the particle orientation, and β = 1/kBT . The force F ij and torque Tij

are due to particle-particle interactions. We assume fluctuation-dissipation to hold on the
scale of individual particles, such that the translational and rotational noise terms Λt,α

i

and Λr
i , respectively, are Gaussian distributed random numbers with zero mean and unit

variance, i.e.
〈Λi〉 = 0, 〈Λα

i (t)Λβ
j (t′)〉 = δijδαβδ(t − t′). (2.3)

To describe excluded-volume interaction between particles i and j, we let the forces F ij =
(∂uW CA(rs,ij)/∂rs,ij)r̂s,ij be the result of a short-range pairwise repulsive WCA potential
uW CA(rs,ij) acting on the shortest distance rs,ij between particle cores:

uW CA(rs,ij) =




4ε
[(

σ
rs,ij

)12
−

(
σ

rs,ij

)6
]

+ ε if rs,ij < 21/6σ;

0 if rs,ij ≥ 21/6σ.

For disks (l/σ = 1), the distance rs,ij is simply the distance between their centers. For
l/σ > 1 the cores of the particles are no longer points, but lines. The distance rs,ij then
corresponds to the shortest distance between these two line segments. The torques T
are calculated from the forces by T ij = aij × F ij, where aij is the lever arm for the
applied force F ij on rod i by rod j (see Fig. 2.1). For each pair of particles, both the
shortest distance rs,ij and the lever arms aij are calculated using the algorithm described
in Ref. [54]. In 2D this torque always points out of plane, so we only need to consider its
out-of-plane component T in the equations of motion.

This 2D model easily generalizes to 3D: aside from vectorial quantities now being three-
rather than two-dimensional, we must now also consider the direction of the torque. For
convenience, we also switch to vector notation in the orientational equation of motion.
The equations of motion in 3D are thus:

∂tri = v0êi + βDt,i ·
∑
i �=j

F ij +
√

2Dt,i · Λt
i (2.4)

∂têi = βDr

∑
i �=j

T ij × êi +
√

2Dr(êi × Λr
i ). (2.5)

We nondimensionalize the 2D and 3D system by expressing all distances in units of the
particle diameter σ, all energies in terms of the thermal energy kBT , and all units of time
in terms of τ = 1/Dr.
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Figure 2.1: Schematic representation of the model. Particles are 2D or 3D spherocylinders of
diameter σ and head-to-tail length l, self-propelled with a velocity v0 in their forward direction ê.
They interact based on their core-to-core distance rs,ij , causing repulsive forces F ij and torques
T ij . Additionally, they diffuse rotationally with diffusion constant Dr, and translationally along
their long and short axis with diffusion constants D‖ and D⊥, respectively.

2.2.2 Choice of model parameters and additional assumptions
Our investigation studies the influence of four parameters: the dimensionality d = 2 or
d = 3, the aspect ratio p = l/σ, the packing fraction φ = N((π/4)σ2 + (l − σ)σ)/A (or
φ = N((π/6)σ3 + (π/4)(l − σ)σ2)/V in 3D) and the Péclet numbera Pe = v0/σDr. The
diffusion constants D‖ and D⊥ for rodlike particles can be calculated from simulations
including hydrodynamics as in e.g. Ref. [55] or, for short spherocylinders, approximated
by the exact results for ellipsoids [56], see also appendix 2.B. We found that the influence
of this change of diffusion constants is negligible for the aspect ratio range we look at, so
for simplicity we will set D‖ = D⊥ = Dt = σ2Dr/3 from now on. This choice corresponds
to the correct ratio between translational and rotational diffusion for 3D spheres (see
footnote a).

Some care is required in the way the Péclet number is varied. The most straightforward
way is to simply vary it by changing the self-propulsion velocity v0. However, if we do
this and keep the pair interaction strength fixed, the ratio between active and interaction
forces will depend on the Péclet number. The result of changing this ratio is that the
particle interaction effectively becomes softer as the Péclet number increases. In the

aWe warn the reader that this definition of Pe agrees with the definition used in chapter 5, but not
with the definition used in chapters 3, 4 and 6. The latter chapters use the slightly different convention
Pe = v0/

√
DtDr, with Dt the translational diffusion coefficient of the spherical particles considered in

those chapters. Since for spherical particles we assume the Stokes-Einstein relations kBT = Dt3πησ and
kBT = Drπησ3 to hold (with η the viscosity of the solvent), Dt and σ are related as Dt = σ2Dr/3.
Consequently, the difference between the two conventions for the definition of Pe is the proportionality
factor

√
3.
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extreme case, MIPS may even disappear for high enough Péclet numbers. Earlier work
has remarked on this subtlety of varying the Péclet number [57, 58]. As our aim is not
to provide quantitative but only qualitative data on the phase behaviour, we nevertheless
use the straightforward approach by fixing ε = 24kBT and changing the Péclet number
by varying v0.

2.2.3 Identifying motility-induced phase separation by cluster-
ing regions of similar density

MIPS is a separation of a system of self-propelled particles into a dense and a dilute region.
While it can be identified quite readily from visual inspection of particle configurations,
it is also useful to have a more quantitative method. Two of these methods are common.
The first is to measure the distribution of the local density: for a homogeneous system,
such a distribution is unimodal, while for a phase-separated system it is bimodal [59–61].
However, such a distribution can not tell us whether the system has separated into one or
into multiple domains, which means it cannot distinguish between micro- and macrophase
separation. This distinction becomes important for rods.

The other method is to group particles together into clusters based on a distance
cutoff and to determine the fraction fcl of particles in the largest cluster [36, 62, 63].
Since MIPS eventually forms one large, dense cluster in a very dilute background gas,
fcl → 1 for MIPS for large enough systems, while for a homogeneous fluid fcl → 0. This
latter method requires a cutoff distance that specifies whether particles are close enough
to belong to the same cluster. In practice, we found that there is no single cutoff distance
that yielded reasonable results for the resulting cluster fraction across all shapes and
densities we wish to study.

To solve this problem, a slightly different clustering method was developed, shown
schematically in Fig. 2.2. From the particle positions (Fig. 2.2a), we make a Voronoi
construction. This provides us not only with a parameter-free way to define neighbouring
particles, but also with a means of measuring the local packing fraction: φl = ((π/4)σ2 +
(l − σ)σ)/Av or ((π/6)σ3 + (π/4)(l − σ)σ2)/Vv, with Av and Vv the area (2D) or volume
(3D) of the Voronoi cell (colors in Fig. 2.2b). Our requirements for two particles to belong
to the same cluster are then that (a) their Voronoi cells are connected and (b) they both
have a local packing fraction that is either lower or higher than the mean packing fraction
φ by a certain cutoff ∆φ. Using this method, we create clusters of similar local density
(Fig. 2.2c). We choose ∆φ = 0.025, as we found through trial and error that this cutoff
allows us to meaningfully distinguish between homogeneous states with fcl < 0.5 and
phase-separated states with fcl ≥ 0.5 for all aspect ratios and Péclet numbers of interest
and for nearly all densities, both in d = 2 and d = 3. Note that fcl is not guaranteed to
go to zero in the homogeneous phase when using this definition of clusters due to density
fluctuations, but fcl = 0.5 still offers a reasonable threshold.
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Figure 2.2: Representation of our clustering algorithm. From unlabeled coordinates (a), con-
struct a Voronoi tesselation and obtain local densities (b), then use these to create clusters of
particles with similar density (c).

2.3 An analytical criterion for the onset of MIPS

Having described the means to obtain and identify MIPS numerically in simulations, we
now describe an analytical criterion for the onset of MIPS. We are aware of three ways to
obtain such a criterion: by considering the particle flux balance between a dense cluster
and a dilute gas phase [37, 64], by constructing an effective free energy and proceeding as in
equilibrium [40, 65], and by a stability analysis of density fluctuations of the homogeneous
isotropic phase [58, 66]. All three methods have previously been used for torque-free
systems.

In this section, we extend the mean-field-like third method laid out in [66] to 3D
systems with torque. The method consists of the following steps. In section 2.3.1, we map
our system to an active ideal gas, where the effect of the many-body forces and torques
is subsumed into a modified, effective swim speed veff, effective translation diffusion Deff

t ,
and - due to the present of torques - also a modified rotational diffusion Deff

r . By doing
this mapping, we effectively make two approximations: the only effect of the interparticle
forces F is to slow particles down, and the only effect of the torques T is to change the
rate at which particles change their orientation. The former is a good approximation
in the absence of structural order, the latter in the absence of orientational order. Both
approximations become poorer at higher densities, where structure and alignment become
important. In section 2.3.2, we perform a stability analysis of the homogeneous isotropic
phase of the active ideal gas, which allows to obtain an analytical criterion for the onset of
MIPS. This criterion involves the effective coefficients veff, Deff

r , and Deff
t , which are still a

function of the the mean density ρ̄ and input swimming speed v0. Section 2.3.3 discusses
how this dependence of the effective coefficients on ρ̄ and v0 can be determined.

2.3.1 Effective Smoluchowski equation

To render the problem analytically tractable, our first goal is to simplify the effect of
the pairwise forces and torques. We will do this using a mean-field-like approximation.
Following the same procedure as Refs. [58, 66], we start from the Smoluchowski equation
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for the one-particle probability density ψ(r, ê, t), given by

∂tψ = − ∇ · (v0êψ + βDtF − Dt∇ψ) − R · (βDrT − DrRψ) , (2.6)

where ∇ are the 2D and 3D gradient operators and R is the rotation operator, defined
as R = ∂θ in 2D and R = ê × ∇ê in 3D. Note that similar to our numerical model we
neglect the influence of particle shape anisotropy on the translational diffusion and simply
set Dt = DtI . F and T are pairwise force and torque densities, respectively, and not
to be confused with the interparticle force F ij and interparticle torque T ij. They are
defined in terms of the pair potential Vê1,ê2(r1, r2) and the two-body probability density
ψ

(2)
ê1,ê2

(r1, r2, t) as

F(r1, ê1, t) ≡
ˆ

dr2dê2 (−∇1Vê1,ê2(r1, r2)) ψ
(2)
ê1,ê2

(r1, r2, t), (2.7)

T (r1, ê1, t) ≡
ˆ

dr2dê2 (−R1Vê1,ê2(r1, r2)) ψ
(2)
ê1,ê2

(r1, r2, t). (2.8)

In order to close Eq. (2.6), the force and torque densities F and T need to be expressed
in terms of the one-body PDF. To do so, we first use the identity

ψ
(2)
ê1ê2

(r1, r2, t) = ψ(r1, ê1, t)ψ(r2, ê2, t)gê1ê2(r1, r2, t) (2.9)

to rewrite Eq. (2.7) as F = F̃ψ, where

F̃(r1, ê1, t) ≡
ˆ

dr2dê2 (−∇1Vê1,ê2(r1, r2)) ψ(r2, ê2, t)gê1,ê2(r1, r2, t). (2.10)

To obtain a closure, we make the following assumptions. First, we assume that the
force F acts along the direction of self-propulsion, i.e. F = (F · ê)ê. Whereas this is
exact in a homogeneous, isotropic bulk as dictated by symmetry, in general we neglect a
possible second component that is perpendicular to ê. In Ref. [66], Speck et al. assume
this second component to act along the gradient of the one-particle PDF, i.e.
F = (F · ê)ê + a∇ψ. This additional assumption leads to a modified translational
diffusion Deff

t = (1 − βa)Dt. We measured the magnitude of this modification for 3D
spheres and rods, and found that the modification provided by βa is of negligible influence
on the location of the phase boundaries. Therefore, we do not consider this additional
component here and simply set a = 0, such that Deff

t = Dt. We did not explicitly check
the validity of this assumption in the 2D case, but see no reason to assume a difference.

To continue our derivation, we make the second assumption that F̃ · ê is linear in the
local density ρ(r, t) =

´
dêψ(r, ê, t) and has no further dependence on (r, ê, t):

F̃(r, ê, t) · ê = −ρ(r, t)ζ(ρ̄, v0). (2.11)

Here the constant ζ is independent of (r, ê, t), but can still depend on the mean density
ρ̄ = N/A (or N/V in 3D) and the self-propulsion strength v0. In this way, the effect of
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the interaction forces in Eq. (2.6) can be absorbed into a modified self-propulsion velocity
veff, which is given by

veff = v0 − βDtρ(r, t)ζ(ρ̄, v0). (2.12)

For the torques, we make the approximation that its only influence is to modify the
rotational diffusion, i.e.

T (r, ê, t) ≈ bR1ψ(r, ê, t). (2.13)

We assume the constant b to be homogeneous and isotropic, such that it can only de-
pend on the mean density and self-propulsion: b = b(ρ̄, v0). With these approximations,
Eq. (2.6) simplifies and becomes the Smoluchowski equation of an active ideal gas:

∂tψ = −∇ ·
(
veffêψ − Dt∇ψ

)
+ Deff

r R · Rψ, (2.14)

where veff and Deff
r are now the effective self-propulsion and rotational diffusion constant,

respectively.

2.3.2 Stability analysis of the homogeneous isotropic phase
Now that we have reduced the full Smoluchowski Eq. (2.6) into the ideal-gas form of
Eq. (2.14), we can perform a linear stability analysis on the homogeneous isotropic phase.
We start by defining the relevant moments of the one-particle PDF ψ(r, ê, t),

ρ(r, t) =
ˆ

dêψ(r, ê, t) (density), (2.15)

mα(r, t) =
ˆ

dêeαψ(r, ê, t) (polarization), (2.16)

Sαβ(r, t) =
ˆ

dê(eαeβ − 1
d

δαβ)ψ(r, ê, t) (nematic alignment tensor). (2.17)

Here, the Greek indices label the Cartesian vector- or tensor components, and in the
following we shall employ the Einstein summation convention. Considering the same
moments of the ideal gas Smoluchowski equation (2.14) yields the following evolution
equations:

∂tρ = − ∇ ·
(
veffm − Dt∇ρ

)
, (2.18)

∂tmα = − ∂β[veff(Sαβ + 1
d

ρδαβ) − Dt∂βmα] − (d − 1)Deff
r mα, (2.19)

∂tSαβ = − ∂γ[veff(Bαβγ − 1
d

mγδαβγ) − Dt∂γSαβ] − d(d − 1)Deff
r Sαβ. (2.20)

Here Bαβγ is the next (third) order moment. The structure of this hierarchy of time-
evolution equations (2.18)-(2.20) is such that the time-derivative of each moment depends
linearly on itself and lower order ones, and on the next one. However, as we shall see,
moments beyond m are irrelevant for the instability we wish to consider.

A steady-state solution to Eq. (2.14) is the homogeneous isotropic phase: ψ(r, ê, t) ∝
ρ̄. Expressed in terms of the angular moments (2.15)-(2.17), this gives ρ(r, t) = ρ̄ and
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m(r, t) = S(r, t) = 0. To obtain a criterion for the stability of this solution, we investigate
the behaviour of small perturbations to the homogeneous state:

ρ(r, t) = ρ̄ + δρ(r, t), (2.21)
m(r, t) = δm(r, t), (2.22)
S(r, t) = δS(r, t). (2.23)

Since MIPS is a macroscopic phase separation, we study the instability with respect to
long-range perturbations, i.e. perturbations with small spatial gradients. In this limit, the
dynamics are dominated by the terms in Eqs. (2.18)-(2.20) that have the fewest spatial
gradients. Of the three moments, it is ρ whose time evolution is slowest. Its timescale is
of order ∇−1, while m and S evolve at the timescale (Deff

r )−1 ∼ ∇0. As we are interested
in the evolution of the density perturbations, i.e. of the slow variable, we can assume that
at any given time the higher moments m and S are given by their steady-state solutions
that correspond to the density profile ρ(r, t) at that instant. Solving Eq. (2.20) for its
steady-state solution δSαβ reveals that it scales as O(∇1). Therefore, its contribution to
the evolution of polarization perturbations (Eq. (2.19)) is of higher order. To leading
order, the evolution of polarization perturbations is then given by

δm(r, t) = − 1
d(d − 1)Deff

r

∇
(
veff(r, t)ρ(r, t)

)
. (2.24)

Recalling that veff = v0 − βDtρ(r, t)ζ(ρ̄, v0), we can evaluate the gradient explicitly and
obtain

δm(r, t) = − 1
d(d − 1)Deff

r

(v0 − 2βDtρ(r, t)ζ) ∇ρ(r, t). (2.25)

Using this result, the equation for the time evolution of density perturbations becomes

∂tδρ(r, t) = Dδρ(ρ̄, v0)∇2δρ(r, t), (2.26)

which is a diffusion equation with diffusion constant

Dδρ(ρ̄, v0) = Dt + (v0 − βDtρ̄ζ)(v0 − 2βDtρ̄ζ)
d(d − 1)Deff

r

= Dt + veff(2veff − v0)
d(d − 1)Deff

r

. (2.27)

Importantly, values exist of the effective coefficients veff(ρ̄, v0) and Deff
r (ρ̄, v0) for which

the diffusion constant Dδρ(ρ̄, v0) of Eq. (2.27) is negative. When this happens, density
perturbations δρ(r, t) grow. Therefore, the condition Dδρ(ρ̄, v0) < 0 maps out a region in
(ρ̄, v0)-space where the homogeneous isotropic phase is unstable. The line that separates
the stable from the unstable regions in (ρ̄, v0)-space is called the spinodal - it is the line
that corresponds to Dδρ(ρ̄, v0) = 0 in the phase diagrams that are to be discussed in
Sec. 2.4. The lowest point of the spinodal in (ρ̄, v0)-space occurs when the propulsion
speed v0 equals the critical threshold v∗ = 2

√
2

√
d(d − 1)

√
DtDeff

r . Indeed, it follows from
Eq. (2.27) that v0 > v∗ is a necessary condition for the inequality Dδρ(ρ̄, v0) < 0 to occur.
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Figure 2.3: Phase diagram of 2D self-propelled disks (a) and rods of aspect ratio l/σ = 2.0 (b),
for different Péclet numbers Pe and packing fractions φ. Data points indicate the resulting phase
of N = 104 particles as obtained from Brownian dynamics simulations, in which we distinguished
MIPS, fluid and solid phases. The colors indicate the diffusion constant of density fluctuations
Dδρ. Spinodal decomposition to a MIPS state is then predicted where Dδρ < 0.

2.3.3 Determination of the effective coefficients
The effective coefficients veff and Deff

r can be found in two ways: either by formulating
closed-form equations for these effective constants, or by measuring them in some way.
Here the latter method is used, and their values are determined from the correlation
functions

〈ṙi(t) · êi(t)〉 = veff, (2.28)
〈êi(t) · êi(0)〉 = exp(−(d − 1)Deff

r t), (2.29)

which measure the effective velocity in the direction of self-propulsion, and how quickly a
particle loses its orientation, respectively. Thus, the effective coefficients veff and Deff

r are
determined in a simulation of a (small) system in the homogeneous isotropic phase.

2.4 Results & Discussion
To explore the MIPS-related phase behaviour, within a collaboration we performed Brow-
nian Dynamics simulations with N = 104 particles in the packing-fraction range 0.1 ≤
φ ≤ 0.7, and the Péclet-number range 1 ≤ Pe ≤ 100 (2D) and 1 ≤ Pe ≤ 150 (3D).
This spans the entire density range from the fluid regime to just below the hexatic/solid
regimes [67, 68]. The Péclet range spans from below the MIPS critical point to high
enough Péclet that the MIPS region attains a near-constant width in density [57, 69]. We
also performed smaller simulations to measure the effective constants veff and Deff

r . The
initial state for all simulations was one with random positions and orientations. Using
only a limited number of particles (N = 100) ensures that the system remains in the
homogeneous isotropic phase regardless of density or activity. Of course, these smaller
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simulations suffer from finite-size effects. Appendix 2.C contains a more detailed analysis
of these finite-size effects.

We now turn to answer the questions posed in the introduction. How elongated do
particles have to be to not display MIPS? And what is the mechanism that suppresses
MIPS for rods?

2.4.1 Phase diagrams of self-propelled disks, spheres and rods
Before we can appreciate how the phase behaviour changes with aspect ratio, we must
first establish the relevant features of MIPS for isotropic particles. Let us start in 2D.

The phase boundaries of MIPS for disks have been studied by a number of authors
[37, 45, 66, 69, 70], and report a U-shaped MIPS region in the density-activity plane.
Recently, a comprehensive study appeared that also includes the high-density hexatic and
solid phases [68]. However, an in-depth comparison of the high-density phase boundaries
falls outside the scope of this chapter. Instead, we will merely identify the solid-like phases
by looking at where the effective velocity veff becomes vanishingly small (veff < 0.1σDr).
Although this is not a very accurate measure, it serves to crudely distinguish the solid
or hexatic phase from the fluid and MIPS phases, at least at low self-propulsion. We use
this criterion for all phase diagrams throughout this chapter. With this information in
mind, let us consider the phase diagrams in Figure 2.3.

Figure 2.3 shows phase diagrams in the Péclet number Pe - packing fraction φ repre-
sentation for 2D disks and rods that show both the MIPS region predicted on the basis of
the stability analysis (blue-tinted region, D < 0), and the MIPS region found in the sim-
ulations using N = 104 (black points). Both methods seem to indicate MIPS in roughly
the same region, but there are a few notable differences. On the low density side, we
also find MIPS outside of the predicted spinodal region. Making the analogy with the
gas/liquid phase separation, we would expect MIPS in this region to then occur through
nucleation and growth. Is this also the case?

A simple way to see if MIPS forms through a nucleation process is to look at domain
growth, which we can track using a time series of cluster fraction fcl defined in Section
2.2.3. If the system immediately decays from an isotropic to a MIPS state, this fraction
will likewise increase immediately. If, on the other hand, the system stays in the fluid
state for a prolonged period of time, only to later transition into MIPS through a nucle-
ation process, fcl will retain the value corresponding to the fluid for a finite time.

Figure 2.4 compares the time evolution of the fraction fcl of particles in the largest
cluster for a number of Péclet numbers at two different densities: one on the low density
side of the MIPS regime at φ = 0.25 and one on the high density side at φ = 0.7. On
the low density side and outside of the predicted spinodal region, the cluster fraction can
stay constant for a significant amount of time (t > 30τ) before transitioning to a MIPS
state. On the high density side of the MIPS region, such a delay is absent. The stability
analysis predicts spinodal decomposition in this regime, and the cluster growth agrees.
This asymmetry is consistent with the findings of Speck et al. [66], who report that the
MIPS transition is discontinuous at low densities, but continuous at high densities.
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Figure 2.4: Time series of the largest cluster fraction fcl for active disks (l/σ = 1). At
low density φ = 0.25, the system occasionally only clusters after a significant amount of time
(t > 10τ), suggesting that the transition is triggered by a rare nucleation event. At high density
φ = 0.7, this is never the case—only spinodal decomposition is observed.

There is also a discrepancy between the stability analysis and the large-scale simulation
at low Péclet numbers. This is to be expected: in this region the fluid-MIPS transition
is continuous, and the difference in density between the coexisting phases is small when
we close to a critical point. Consequently, distinguishing between clusters of particles is
difficult, and the exact choice of cluster fraction threshold fcl can shift the boundary quite
a bit in this region.

Having identified the most important features of the phase diagram for active disks, let
us now turn to rods and see how these features change. Figure 2.3b shows the phase
diagram in the density-activity representation for rods with an aspect ratio of l/σ = 2,
using the same density and activity ranges as for the disks. The most obvious difference
with the rods is that the MIPS region is now both shifted to higher densities and much
narrower. The predictions of the stability analysis are worse for the rods: the predicted
spinodal now lies in the middle of the simulated MIPS region. We find that the transition
from fluid to MIPS now appears to be completely continuous—the system always starts
clustering immediately, without any nucleation-like transient period. As can be seen from
Figure 2.5a, the suppression is continuous with increasing aspect ratio, and it eventually
pushes the fluid-MIPS transition into the regime where solid phases typically emerge.

Let us now see whether the 3D case is similar. Figure 2.6 displays phase diagrams in
the (φ, Pe) representation, in Fig. 2.6a for 3D spheres and in Fig. 2.6b for 3D rods with
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Figure 2.5: Spinodal lines for 2D active rods as predicted from Eq. 2.27, as a function of aspect
ratio (a), and the corresponding effective self-propulsion velocity veff and rotational diffusion Deff

r

at Péclet number Pe = 100 as a function of packing fraction (b). At high activity, the effective
self-propulsion decreases more slowly with density, while the rotational diffusion is enhanced.

l/σ = 2. Somewhat unsurprisingly, they are similar to their 2D counterparts. The most
important feature is retained: MIPS disappears when the aspect ratio is increased. The
fluid gap we found in between the solid and MIPS phases is also present for the active
spheres. However, there are notable differences between the 2D and 3D cases.

In contrast to the 2D case, we observe no region for the active spheres where the MIPS
transition is discontinuous. All simulations that form MIPS appear to undergo immediate
spinodal decomposition. This does not necessarily mean that there is no binodal region:
it may simply be quite small or have low nucleation barriers. The density regime of the
metastable region for 3D active spheres is not well understood. We are only aware of
one comparable simulation study by Stenhammar et al. [57], who looked at 2D and 3D
active disks/spheres to study the influence of dimensionality. However, their binodal lines
were defined as the density at which a high-Péclet system phase separated, which is not
directly comparable to the metastable region we define here. Hence, further studies are
needed to explain the difference in the width of the metastable region between d = 2 and
d = 3.

Another difference is at high Péclet number, where the predicted MIPS region for the
spheres continues to shift towards higher density, instead of moving towards a constant
one. We believe this to be the behaviour that we discussed in Section 2.2.2: for higher
Péclet numbers the particles can approach each other closer due to the active forces, caus-
ing the effective diameter of the particles to decrease. This effect appears to be stronger
in 3D than in 2D, presumably due to the increased coordination of each particle.

The final difference between the 2D and 3D cases is perhaps the most notable one:
for the rods, MIPS has disappeared completely. Whatever mechanism suppresses MIPS,
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Figure 2.6: Phase diagram of 3D self-propelled spheres (a) and rods of aspect ratio l/σ = 2.0
(b), in the Péclet number Pe-packing fraction φ representation. Data points indicate the resulting
phase of N = 104 particles as obtained from Brownian dynamics simulations, in which we
distinguished MIPS, fluid and solid phases. The colors indicate the diffusion constant of density
fluctuations Dδρ. Spinodal decomposition to a MIPS state is then predicted to occur in the blue
region where Dδρ < 0. The small region of predicted instability in (b) under the points indicated
as solid is an artefact of the fluid-solid transition there, where Dδρ fluctuates strongly as both
veff and Deff

r go to zero.

it appears to be stronger in 3D than in 2D. Curiously enough, the stability analysis still
predicts MIPS in a significant portion of the phase diagram. This discrepancy, combined
with its 2D counterpart, suggests that our theoretical approach breaks down for longer
aspect ratios. We will see why this is the case in the next section, where we discuss the
suppression mechanism.

Armed with the knowledge of these phase diagrams, we now turn to the first question
posed in the introduction: “How rodlike must a particle be for MIPS to disappear?”
Unfortunately, we can answer this question only partially. Determining the exact aspect
ratio where MIPS disappears turns out to be quite difficult. We now know that the nature
of the suppression stems from the fluid-MIPS transition shifting to higher densities, but
unfortunately our methods to identify MIPS are less reliable at higher densities. More
importantly, however, when the particle interactions are not isotropic, MIPS is no longer
defined unambiguously and multiple types of clustered phases are possible which all fit
the present criteria. When we identify MIPS according to a) the system phase-separating
into a single dense cluster in a background gas and b) this cluster having no net ori-
entational order, there are still multiple realizations of such a system (see Fig. 2.D.2 of
appendix 2.D), such as a dense cluster with large domains of oppositely oriented par-
ticles (l/σ = 1.1) or a percolating cluster with low orientational order and many voids
(l/σ = 1.3, 2.0). Therefore, establishing the boundaries of MIPS at these higher densities
requires a more careful consideration of both hexatic [68] and orientational order [71].
We leave this investigation to future work and instead, having established that MIPS is
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Figure 2.7: Simulation results for the effective self-propulsion speed veff of 2D act ive disks and
3D active spheres (a,b), effective self-propulsion speed veff for 2D and 3D active rods (c,d), and
effective rotational diffusion Deff

r for 2D and 3D rods with an aspect ratio l/σ = 2.0 (e,f). All
insets show effective velocity divided by input velocity, for comparison with veff = v0(1 − φ/φcp)
with φcp the close packing density.

suppressed when particles become elongated, we now turn to finding out why.

2.4.2 Torque-induced suppression of motility-induced phase sep-
aration

Since the main difference between the disk and rod systems is the presence of torque, it
is likely that the suppression of MIPS must arise there. In our stability analysis, the only
effect of torques is to modify the rotational diffusion. Looking at Eq. (2.27), it might be
possible to suppress MIPS if Deff

r is increased enough to make the second term on the
right-hand side smaller than Dt. Is this the case? Is the rotational diffusion perhaps
enhanced so much that we effectively end up with a thermal system again?

A closer inspection of Eq. (2.27) shows that this is not the case. Due to the large
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values of veff (see Figs. 2.7(a-d)), the second term on the right-hand-side of Eq. (2.27)
dominates over Deff

t . Therefore, the sign of Dδρ is almost completely determined by the
sign of the second term, which, in turn, is determined by the value of veff, and not by the
value of Deff

r . Consequently, it is veff that contains the key information that allows us to
predict MIPS or its suppressionb. Comparing the effective swimming speeds of different
aspect ratios (Figs. 2.7a and 2.7c, or 2.7b and 2.7d), we see that the rods slow down
less with increasing density than the disks. In other words, the rods hinder each other’s
movement less than the disks do. Why is this? Again we must look to the main difference
between the two systems: torque.

For disks, one can derive the linear decrease of the velocity with increasing density
veff = v0(1 − ρ/ρ∗) from mean-field theory and kinetic arguments [61, 72, 73]. This is
done by assuming that particles slow down at low density due to time spent in binary
collisions, which leads to veff(ρ) � v0(1 − τc/τf ), where τc is the time spent in a collision
and τf = 1/(σv0ρ) the mean free time between collisions. At low density, we expect the
mean free time τf to be mostly unaffected by the presence of torques as long as there are
no significant short-range orientational correlations. The duration of collisions τc, how-
ever, can change significantly when torques are involved. For disks, the duration of their
collision—of their hindrance—is determined by how long it takes for them to slide around
each other. Rods, however, will rotate to reorient their swimming directions away from
the combined center of mass of the collision. This will decrease the collision duration.
Since collisions are now shorter, the rods spend more time moving freely: less hindered.
Furthermore, this reorientation leads to an enhanced rotational diffusion—exactly what
we find.

Interestingly, this suggests that an inverse mechanism might also exist. If the torques
between two colliding particles cause the particles to rotate towards their center of mass,
collisions would be prolonged and MIPS would be enhanced. Precisely this inverse effect
was reported earlier in Refs. [47, 48]: MIPS is enhanced for self-propelled particles that
align through Vicsek interactions. In binary collisions, the Vicsek torques always rotate
particles towards the combined center of mass, increasing the duration of collisions, in-
creasing hindrance and thus enhancing MIPS.

Is the changing density dependence of veff with increasing anisotropy enough to completely
describe the suppression of MIPS? If we would have a system of self-propelled particles
with some arbitrary shape and we would know how the effective swim speed depends on
density, could we then predict whether and where it will undergo MIPS? Unfortunately,
no. As we can see from the rod phase diagrams in Figs. 2.3b and 2.6b, our stability
analysis predicts the right qualitative trend, but its quantitative prediction is poor. This
is probably due to neglecting alignment effects in the stability analysis. As the rod length
increases, nematic and polar alignment of the particles start playing a more significant
role in their phase behaviour, which is not captured by our theory. For instance consider

bNote that this argument uses Eq. (2.27), which is the result of the stability analysis of Sec. 2.3.2. Even
though - as discussed in Sec. 2.4.1 - this analysis does not does predict the phase diagrams quantitavely,
it does predict the MIPS suppression for high aspect ratios, and therefore we believe this argumentation
to be sound.
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Fig. 2.8, where we show a snapshot of rods at φ = 0.5, Pe = 100, just outside the MIPS
region, and colour particles according to nematic orientation. The clusters formed by
the rods have significant short-range nematic order. Incorporating the dynamics of the
polarization and nematic fields using theory developed for active nematics [74, 75] might
allow for more accurate predictions for the onset of MIPS for longer rods.

Figure 2.8: Simulation snapshot of 2D rods with aspect ratio l/σ = 2 at a packing fraction
of φ = 0.5 and a Péclet number of Pe = 100. Particles are coloured according to their orienta-
tion. Dense clusters display significant short-range orientational order, and no large-scale phase
separation can be seen.

2.5 Conclusions & outlook
In this chapter, we showed that motility-induced phase separation does not occur for rod-
like particles when they become sufficiently anisotropic. This disappearance is observed
both from many-particle simulations and from a stability analysis of the homogeneous
isotropic phase. The latter provides a simple criterion for the onset of MIPS by consider-
ing the effective swimming speed of the particles and their effective rotational diffusion.
Both methods agree qualitatively in that MIPS is pushed to higher densities for increasing
rod aspect ratio, and they agree quantitatively for short rods that deviate only slightly
from disks or spheres. For larger aspect ratios the quantitative agreement is lost, pre-
sumable due to alignment interactions that are present, but not taken into account in the
stability analysis.

We also propose a more intuitive explanation for the suppression mechanism. MIPS
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relies on particles slowing down sufficiently with increasing density [40]. This hindrance
is closely linked to the duration of collisions between particles [61, 72, 73]. Excluding
torques, the duration of collisions is determined by how long it takes for them to slide
along one another. Including torques can dramatically decrease the duration of collisions
by rotating the forward axes of the self-propelled particles away from each other. Formu-
lated in this way, we can also explain the results of Refs. [47, 48], where MIPS is enhanced
for particles with Vicsek interactions. Simply put, Vicsek torques prolong particle colli-
sions, while rodlike excluded volume torques shorten them. Intriguingly, this provides us
with a particle design tool to enhance or suppress MIPS. MIPS is enhanced for Vicsek-
like interactions [47, 48], for faceted, concave and/or rough particles [63, 76, 77], while we
expect to be suppressed for smooth particles and rodlike shapes [71]. In addition to steric
interactions, hydrodynamic interactions between active particles also play an important
role in whether or not MIPS can form. While hydrodynamics seems to usually suppress
MIPS [78–80], the details depend on whether particles are “pushers” or “pullers” and on
the dimensionality [81, 82].

Despite recent advancements, the role of torque in active systems is still not well un-
derstood. Much of the developed theory has been restricted to the torque-free regime, but
recent numerical studies suggest that torque interactions [47, 48] can have a significant ef-
fect on the structure and dynamics of active matter systems. In order to understand active
matter beyond torque-free model systems, more theoretical work is needed to elucidate
the influence of torques in active systems.
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Appendices

These appendices present an analysis of the significance of the effective translational
diffusion Deff

t , the hydrodynamic friction coefficients for short spherocylinders, a finite-
size analysis of the effective self-propulsion velocity veff and effective rotational diffusion
Deff

r , and additional simulation snapshots.

Appendix 2.A Insignificance of effective translational
diffusion

In the stability analysis we have mapped the effect of interparticle forces into an effective
swim speed veff and an effective translational diffusion Deff

t . Previous literature with
similar stability analyses has assumed that this effective translational diffusion is equal
to the bare translational diffusion i.e. Deff

t = Dt, usually as an approximation or closure
[58, 66]. We opted to check this whether such an assumption is reasonable for 3D spheres
and rods as well by measuring it from the 3D mean square displacement (MSD)

〈|ri(t) − ri(0)|2〉 = (veff)2

2(Deff
r )2

(
e−2Deff

r t − 1
)

+ 6
(

Deff
t + (veff)2

6Deff
r

)
t. (2.30)

Similar to Ref. [66], we associate Deff
t with the long-time diffusion constant of a passive

system. For a passive system, the MSD becomes
〈|ri(t) − ri(0)|2〉 = 6Deff

t t. (2.31)

Figure 2.A.1: Mean square displacement of N = 200 3D passive spheres (Pe = 0) at a
packing fraction of φ = 0.3. At very small times, there is free diffusion i.e. MSD/σ2 ≈ 6Dtt,
while at long times the particle interactions lead to a decrease of the diffusion coefficient i.e.
MSD/σ2 ≈ 6Deff

t t.
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Figure 2.A.1 shows the MSD measured for a system of passive spheres at a packing fraction
of φ = πσ3N/6V = 0.3. At short times, diffusion is essentially free and Deff

t = Dt. At long
times the particle interactions lead to an effective decrease of the diffusion coefficient. This
decrease depends on the density of the system. For φ = 0.3, we find that Deff

t /Dt ≈ 0.34.
While this decrease is significant in terms of the diffusion of passive particles, it is entirely
insignificant when considering the stability of the homogeneous isotropic phase for self-
propelled particles, as long as the Péclet number is higher than roughly Pe ∼ 1. Thus,
we just approximate Deff

t = Dt.

Appendix 2.B Hydrodynamics friction coefficients for
3D spherocylindrical particles

In Figure 2.B.1 we show the hydrodynamic friction factors of short (1 ≤ l/σ < 2.5)
spherocylinders and ellipsoids in 3D, defined with respect to a sphere of the same volume
as detailed in Ref. [55]. For these aspect ratios the difference between ellipsoids and
spherocylinders is minimal, so one can safely use the exact friction factors that were
determined by Perrin in Ref. [56].

Figure 2.B.1: Hydrodynamic friction coefficients for ellipsoids and spherocylinders for small
aspect ratios 1 < l/σ < 2.5, defined with respect to a sphere of the same volume [55]. The red
long-short dashed and dotted lines indicate the translational friction coefficients of spherocylin-
ders, while the red solid and dashed lines indicate the total friction coefficient of ellipsoids and
spherocylinders, respectively. The green and blue lines indicate the rotational friction coeffi-
cients around and perpendicular to the long axis, respectively. The difference between any of
the curves in this aspect ratio regime are < 5%, so we can safely approximate the translational
and rotational friction coefficients of spherocylinders by those of ellipsoids.
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Appendix 2.C Finite-size effects when measuring ef-
fective swim speed and rotational dif-
fusion

Measuring the effective swim speed veff and rotational diffusion Deff
r from simulations with

only few particles (N ∼ 100) means these constants will suffer from finite-size effects. Here
we show the magnitude of this effect. Figure 2.C.1 shows the scaling of (a) the effective
swim speed veff and (b) the fraction of particles in the largest cluster fcl with the inverse
of the number of particles N for 3D active spheres, at a packing fraction φ = 0.44 and a
Péclet number of Pe = 100. A clear kink can be seen in both graphs at roughly the same
system size (N ∼ 4000), which after visual inspection of the corresponding snapshots
(Fig. 2.D.1) can be associated with MIPS. As our small-N simulations take place well
below this threshold and veff does not scale strongly with the number of particles in this
regime, we assume that they provide a reasonable estimate of the effective swim speed
even when a larger system would phase-separate.

Figure 2.C.1: Effective swim speed veff (a) and fraction of particles in the largest cluster fcl

(b) for 3D active spheres as a function of the inverse of the number of particles N , at a packing
fraction φ = 0.44 and a Péclet number of Pe = 100. Both veff and fcl display a clear kink around
N ∼ 4000 that denotes MIPS. The dashed lines are drawn to show the transition in scaling from
the fluid to the MIPS regime, and the dotted line denotes the intercept at N ≈ 4000.
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Appendix 2.D Additional simulation snapshots

Figure 2.D.1: Two representative snapshots of the simulated system of Fig. 2.C.1 for (a)
N = 2000 in the fluid regime, and (b) N = 10000 in the MIPS regime. Particles are coloured
according to their local density. While no large-scale phase separation can be seen for (a), (b)
has clearly separated into a dense and a dilute region.
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Figure 2.D.2: 2D Simulation snapshots for N = 10000 rods with aspect ratios l/σ = 1.1
(top), l/σ = 1.3 (middle) and l/σ = 2.0 (bottom), at φ = 0.6, Pe = 100, deep within the MIPS
region. The columns depict the same snapshot three times with various color maps. The left
column shows the distribution of clusters, where each cluster is assigned a unique color. In
the middle column the color is indicative of the particle orientation, with nematic symmetry.
Zooming in also shows black stripes that indicate the polar orientations. In the right column
the color represents the local density. Even though all three snapshots show a separation into
dense and dilute regions, form a single connected cluster and have no global orientational order
(and are thus classified as MIPS), the three cases are clearly different.
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Van’t Hoff’s law for active
suspensions

In this chapter, we focus on the thermodynamic variable pressure. In contrast to the rest
of this thesis, we take into account the fact that the ABPs swim in a solvent. Hence, we
study their osmotic pressure.

We show that the osmotic pressure increases with the activity of the swimmers. We
calculate this increase for ABPs, and find that it can be measured as a rise in the height
of the suspension as large as micrometers for experimentally realized microswimmers de-
scribed in the literature. Moreover, we show that the increase in osmotic pressure is due
to an increase in the pressure of the solvent. We rationalize this finding by arguing that
the background solvent is, in contrast to passive suspensions, no longer at the chemical
potential of the solvent reservoir.

This chapter is based on the publication “Van’t Hoff’s law for active suspensions: the role
of the solvent chemical potential” [83], written in collaboration with Marjolein Dijkstra
and René van Roij.
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3.1 Introduction

In this chapter, we study the thermodynamic variable pressure for active Brownian parti-
cles (ABPs). The first studies on their pressure [84–86] focussed on isotropic particles, and
extended the virial theorem (for equilibrium systems [87]) to show that activity makes
the particles exert an additional pressure onto the walls of the container that confines
them. This additional pressure is usually known as the “swim pressure”, or the “active
pressure”, and was attributed to the increased long-time diffusion constant of the active
particles. Later, Solon et al. [88] studied the pressure of anisotropic particles, and found
a surprising result: the pressure that these particles exert onto a container wall depends
on the details of the particle-wall interaction! This is in sharp contrast to systems in
thermodynamic equilibrium, whose pressure is a function only of the variables that char-
acterize the system state, e.g. of the system’s density and temperature, and not of the
particle-wall interaction potential. In other words, Solon et al. showed that the pressure
that anisotropic particles exert onto a surrounding wall is not a state function. Not only
is this surprising, it is also problematic: if one wishes to predict the densities of two
coexisting phases by equating their pressure (and chemical potential), then what should
one use for the pressure of a particular phase?

Importantly, these and most other studies on the pressure [26, 45, 84–86, 88–104] con-
sider a model that consists of active particles only. Thereby, they model self-propelled par-
ticles on a substrate. For active particles in a solvent, such as the self-propelled colloidal
particles used in many experiments, they represent an effective “colloids-only” picture
that models the solvent only implicitly via the Brownian motion of the ABPs. However,
since the propulsion force is an internal force [8], the solvent itself - and in particular
its pressure - is affected by the opposite reaction force [94], and this effect is not present
in a colloids-only picture. The solvent is explicitly modelled in Ref. [105], but only as a
passive species that is unaffected by the propulsion force. The only work we know of that
does study the influence of the reaction force on the solvent is Ref. [94], but it remains
unclear how the reaction force affects the conclusion of [88] that the pressure of ABPs is
not a state function.

In this chapter, we take the reaction force on the solvent explicitly into account, and
study the pressure of an active suspension of particles and solvent. In particular, we study
the osmotic pressure of (anisotropic) ABPs, and ask whether it is a state function or not.

To this end, first we review the following basic knowledge about the osmotic pressure
of passive Brownian particles in thermodynamic equilibium. These systems obey Van’t
Hoff’s law, which states that the osmotic pressure Π of a dilute suspension equals the pres-
sure ρkBT of a dilute gas of the same concentration ρ and temperature T [106–108]. In
Van’t Hoff’s interpretation, the total pressure of the suspension Ptot(ρ, µs) = ρkBT+Ps(µs)
decomposes into the sum of the effective colloid-only pressure ρkBT and a ‘background’
pressure Ps(µs) of the solvent at chemical potential µs. In the typical experimental setup
to measure osmotic pressure (Fig. 3.1), µs is set by a solvent reservoir that connects to
the suspension via a membrane permeable to solvent only. The net force per unit area
exerted on the membrane defines the osmotic pressure, and results from the difference in
suspension pressure Ptot(ρ, µs) and reservoir pressure Ps(µs). As this pressure difference
induces a height difference H between the two menisci, the osmotic pressure Π ∼ H can
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Figure 3.1: Schematic setup to measure the osmotic pressure Π from the height difference H =
H0+∆H between the two menisci. (a) For a passive system, the solvent chemical potential of the
suspension equals the reservoir chemical potential µs, such that Π = ρkBT and H = H0 ∼ ρkBT .
(b) For an active system, colloids tend to ‘propel into’ the membrane (green arrows), thereby
exerting the opposite reaction force on the solvent (red arrows). As a result, the solvent pressure
and solvent chemical potential in the bulk suspension increase by ∆Ps and ∆µs, respectively,
indicated by the darker blue background, such that Π and H increase by ∆Ps and ∆H ∼ ∆Ps,
respectively, as we will see in this chapter.

be directly inferred.
In this chapter, we extend Van’t Hoff’s law to active suspensions. We show that

the osmotic pressure increases with activity due to a difference in solvent pressure that
develops between the suspension and the reservoir. We predict the effect of this solvent
pressure difference to be experimentally measurable, either as an additional meniscus rise
∆H (Fig. 3.1), or as a solvent flow through a semipermeable membrane towards the
active particles in an open system (Fig. 3.2). The solvent pressure difference implies
also a difference in solvent chemical potential, that, remarkably, depends on the details of
the colloid-membrane interactions. We will conclude that the osmotic pressure is a state
function of a state that itself, however, is affected by the colloid-membrane interaction
potential.

3.2 Model

We model the effective one-component system of suspended particles as overdamped ac-
tive Brownian particles (ABPs) [109, 110]. Every particle is characterized by a three-
dimensional position r and an orientation ê. It is well known that the probability density
ψ(r, ê, t) satisfies the continuity equation

∂tψ(r, ê, t) = −∇ · j(r, ê, t) − ∇ê · jê(r, ê, t), (3.1)
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Figure 3.2: Schematic setup to measure how active colloids confined to one side of a semiper-
meable membrane in an open pipe affect the solvent, viewed in the lab frame. As the colloids
tend to ‘propel into’ the membrane (green arrows), they exert the opposite reaction force on the
solvent (red arrows). Under boundary conditions of equal solvent pressure Ps on either side of
the pipe, the reaction force drives a parabolic solvent flow profile of mean velocity ū, as indicated
by the blue arrows.

and that the translational flux j and rotational flux jê follow from the force and torque
balance,

0 = −γtj − ψ∇V (r, ê) + γtv0ψê − kBT∇ψ and
0 = −γrjê − ψ∇êV (r, ê) − kBT∇êψ,

(3.2)

respectively, between (i) the frictional force and torque, with friction coefficients γt and
γr, (ii) an external force and torque generated by the external potential V (r, ê) acting
on every particle, (iii) a constant self-propulsion force, corresponding to propulsion speed
v0, acting along each particle’s orientation ê, and (iv) Brownian forces and torques giving
rise to translational and rotational diffusion. In order to focus on the essential physics, we
follow Van’t Hoff and consider the dilute limit, where effective colloid-colloid interactions
can be ignored, and where also hydrodynamic colloid-colloid interactions are expected
to be nonessential. Furthermore, we assume a steady state, i.e. ∂tψ = 0. We analyse
the force balance by taking the zeroth moment of Eq. (3.2), which upon defining the
density ρ(r) ≡

´
dêψ(r, ê), the polarization m(r) ≡

´
dêψ(r, ê)ê, and the colloid flux

J(r) ≡
´

dêj(r, ê), yields the balance

0 = −γtJ(r)−
ˆ

dêψ∇V (r, ê) + γtv0m(r) − kBT∇ρ(r)

≡ f f (r) + f e(r) + f p(r) − ∇P (r) (3.3)

between the frictional body force f f , the external body force f e, the propulsion body force
fp, and the pressure gradient force −∇P . The form of the propulsion body force,

f p(r) ≡ γtv0m(r), (3.4)

is easily understood as the sum of propulsion forces γtv0ê acting on individual colloids.
Just like the frictional force f f , the propulsion force f p is an internal force.

We now turn our attention to the solvent, that we assume to be incompressible and at
small Reynolds number. On a scale coarse-grained over the colloids - i.e. the same scale
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Eq. (3.3) applies to - the local solvent velocity u(r) is governed by the Stokes equation

f e
s (r) − f f (r) − f p(r) − ∇Ps(r) + η∇2u(r) = 0, (3.5)

as derived in appendix 3.A. Eq. (3.5) is simply the solvent force balance equipped with
a possible external body force f e

s (r), and the opposite internal body forces −f f (r) and
−fp(r) as reaction forces, in accordance with Newton’s third law. Furthermore, η is the
dynamic viscosity of the solvent, and Ps(r) is the (coarse-grained) solvent pressure. For
the present purposes, one can regard the solvent pressure Ps(r) and velocity u(r) as being
defined by Eq. (3.5) together with the incompressibility condition ∇ · u(r) - for a more
careful definition, see appendix 3.A.

3.3 Osmotic pressure
To represent the setting of Fig. 3.1, we assume an external potential due to a semiperme-
able membrane that is planar and normal to the Cartesian unit vector ẑ, i.e. V (r, ê) =
V (z, θ), with cos θ ≡ ê · ẑ. This implies ψ(r, ê) = ψ(z, θ), J(r) = Jz(z)ẑ etc. The potential
V (z, θ) is assumed to decay from ∞ in an infinitely large reservoir, located at z < 0 and
containing z-coordinate zres � 0 in bulk, to 0 in the suspension, located at z > 0 and
containing zb � 0 in bulk. The zeroth moment of Eq. (3.1), ∂zJz(z) = 0, together with a
no-flux boundary condition, then implies Jz(z) = 0, and hence the frictional body force
f f (z) = 0. For a state without any solvent flow (u = 0), and for a membrane perfectly
invisible to the solvent (f e

s = 0), Eq. (3.5) then simplifies to −fp
z (z) − ∂zPs(z) = 0.

For a passive system, where the propulsion body force f p
z (z) = 0, this solvent force

balance guarantees equal solvent pressures in the bulk suspension and solvent reservoir,
i.e. ∆Ps ≡ Ps(zb) − Ps(zres) = 0. In an active system, however, the existence of a nonzero
propulsion force fp

z (z) results in a difference in these solvent pressures, derived in the
supplementary information (SI) to be

∆Ps = −
ˆ zb

zres

dzf p
z (z)

= γtγrv
2
0

6kBT
ρ − γtv0

2kBT

ˆ zb

zres

dz

ˆ
dêψ(z, θ) sin(θ)∂θV (z, θ).

(3.6)

The first term on the right-hand side of Eq. (3.6) corresponds to what is known as the
swim pressure [84–86], which we thus actually identify as a difference in solvent pressure.
The second term on the right-hand side of Eq. (3.6), present for particles experiencing a
torque −∂θV (z, θ), is of special interest because it turns out to lead to the conlusion that
∆Ps depends on the potential V (z, θ). This issue will be discussed later.

The force balance of the total suspension simply follows as the sum of the colloid
force balance (3.3) and the solvent force balance (3.5), yielding in the planar and flow-free
geometry of interest

f e
z (z) − ∂zPtot(z) = 0, (3.7)

where Ptot(z) ≡ P (z) + Ps(z). From the total force balance (3.7), the osmotic pressure
Π ≡

´ zb

zres
dzf e

z (z), defined as the magnitude of the force per unit area exerted on the
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membrane, follows as Ptot(zb)−Ps(zres). As the total bulk pressure decomposes into colloid
and solvent contributions as Ptot(zb) = ρkBT + Ps(zb), the osmotic pressure reads

Π = ρkBT + ∆Ps. (3.8)

In equilibrium, Eq. (3.8) reduces to Van’t Hoff’s result Π = ρkBT on account of ∆Ps = 0.
Activity increases the osmotic pressure by increasing the solvent pressure with respect to
the reservoir by ∆Ps, which is the key result of this chapter. Together, Eq. (3.8) and (3.6)
generalize Van’t Hoff’s law to active suspensions.

To clarify these concepts further, we have solved the Smoluchowski equation (3.1)
numerically for a system of spheres subject to a propulsion force, characterized by Péclet
number Pe ≡ (γtγr)

1
2 v0/kBT , in the planar geometry modelling the setting of Fig. 3.1. The

membrane, felt by the colloids only, is modelled by the soft potential V (z) = λkBT (z/�)2

for z < 0 and V (z) = 0 for z ≥ 0 (Fig. 3.3(a)), i.e. there is no torque. Here λ = 1 is
the strength of the potential, and � ≡ (γr/γt)

1
2 is the appropriate unit of length, which

is of the order of the (effective) particle size upon using Stokes relations for γt and γr.
Fig. 3.3(b) shows the profile of the propulsion body force fp

z (z). Whereas fp
z (z) = 0 for

a passive system (Pe = 0), an active system displays a nonzero polarization mz(z), and
thus by Eq. (3.4) a propulsion body force f p

z (z), in the vicinity of the membrane directed
towards the membrane. This well-known effect [111–116] is in this case caused by colloids
persistently propelling ‘into’ the repulsive membrane. Fig. 3.3(c), for Pe= 0, shows the
pressure profiles P (z) of the passive colloids, Ps(z) of the solvent, and Ptot(z) of the total
passive suspension. Here the reaction body force −fp

z (z) = 0, and hence the solvent
pressure Ps(z) is constant, as argued before. It is only due to the bulk colloid pressure
P (zb) = ρkBT that the total bulk pressure Ptot(zb) is higher than the total reservoir
pressure Ptot(zres). The osmotic pressure Π = Ptot(zb) − Ptot(zres) is therefore equal to
ρkBT . The profiles for an active system (Pe = 3), displayed in Fig. 3.3(d), show that the
solvent bulk pressure Ps(zb) exceeds the solvent reservoir pressure Ps(zres). This is caused
by the reaction body force −fp

z (z), that pushes solvent towards the bulk, as pictured in
Fig. 3.1(b). As a result, both the total bulk pressure Ptot(zb) and the osmotic pressure Π
exceed their passive counterparts by ∆Ps = γtγrv

2
0ρ/6kBT on account of Eq. (3.6) for the

torque-free potential of interest here.

3.4 Experimental predictions
The experiments that have addressed the pressure of active systems [91, 98, 103] are few in
number. In particular, the osmotic pressure has never been measured directly. Despite the
simplicity of the ABP model, that neglects e.g. hydrodynamic interactions, our expression
for the osmotic pressure does allow to estimate the order of magnitude of the meniscus
height difference H = Π/(ρm

s g) that is to be expected in the experiment sketched in
Fig. 3.1. Here we focus on an aqueous dispersion (mass density ρm

s = 1 kg/dm3) of active
hard spheres of radius a, with friction coefficients given by the Stokes relations γt = 6πηa
and γr = 8πηa3, subject to Earth’s gravitational acceleration g, at room temperature,
and at packing fraction 0.01 that should mimic the ideal (non-interaction) conditions.
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Figure 3.3: (a) External potential V (z) modelling the planar membrane of Fig. 3.1 that
separates the reservoir at zres = −4� from the bulk suspension at zb = 3�. (b) The steady state
propulsion body force fp

z (z), at activity Pe. Passive (c) and active (d) pressure profiles of the
colloids P (z), the solvent Ps(z), and the total suspension Ptot(z) = P (z)+Ps(z). For the passive
system (Pe = 0), Ps(z) is constant, such that the osmotic pressure Π = Ptot(zb)−Ptot(zres) equals
the bulk colloid pressure P (zb) = ρkBT . For the active system (Pe = 3), the reaction body force
−fp

z (z) increases the bulk solvent pressure Ps(zb), as well as Ptot(zb) and Π, by ∆Ps.
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Figure 3.4: (a) Predicted rise H = H0 + ∆H in Fig. 3.1, for spherical particles of radius a at
propulsion speed v0 at packing fraction 0.01 in water. (b) Predicted mean solvent velocity ū in
Fig. 3.2, for a cylindrical pipe of radius 5a and length 100a. Symbols denote literature values of
(v0,a) combinations of experimentally realized self-propelled colloids + [15], × [117], � [118], ◦
[119], � [120], � [121]; and motile bacteria • [122], � [123].

The predicted height differences H are shown in Fig. 3.4(a). Whereas the passive osmotic
pressure ρkBT induces a passive rise H0 ∼ a−3 too small to measure for colloidal particles,
activity induces an additional rise ∆H ∼ ∆Ps ∼ av2

0 that brings H = H0 + ∆H up to
the regime of micrometers [117, 122, 123] or even millimeters [15] for the larger values of
propulsion speed v0 and particle size a of experimentally realized microswimmers.

To determine experimentally that the activity-induced increase in osmotic pressure
results from the increase in solvent pressure ∆Ps, we propose to confine active particles
by a membrane to one half of an open, horizontal pipe, for which gravity plays no role,
as illustrated in Fig. 3.2. Applying equal solvent pressures to either side of the pipe,
rather than the no-flux boundary condition before, results in a steady state where the
reaction body force near the membrane −fp drives a steady solvent flow u(r) through
the pipe (as seen in the lab frame), according to Eq. (3.5). In the limit |u(r)| � v0,
and for a cylindrical pipe, this flow velocity is identical to the Poisseuile flow that would
be generated in a pipe filled with only solvent upon applying the solvent pressure differ-
ence ∆Ps of Eq. (3.6) between either end of the pipe. For a derivation see the SI. The
predicted mean solvent velocity ū ∼ a2v2

0 is shown in Fig. 3.4(b) as a function of the
propulsion speed v0 and colloid radius a, for a pipe of radius 5a and length 100a. For
the larger values of v0 and a of experimentally realized swimmers [15, 117, 122, 123], the
solvent velocity ū (although not satisfying ū � v0 in all cases) is predicted to be on the
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Figure 3.5: Increase in bulk solvent pressure ∆Ps as a function of the strength λ of the soft
colloid-membrane interaction potential in the setting of Fig. 3.1 for active dumbells at varying
activity Pe. For active systems (Pe> 0) ∆Ps depends on λ.

order of micrometers per second, and hence easily detectable, e.g. by using tracer particles.

3.5 The solvent chemical potential
We now return to the the original setting of Fig. 3.1 to interpret the solvent pressure
difference ∆Ps between the suspension and the reservoir. Even though the active sus-
pension is out of equilibrium, the solvent pressure Ps(z) can still be used to define a
meaningful intrinsic solvent chemical potential µint

s (z) by the (Gibbs-Duhem like) relation
ρs(z)∂zµint

s (z) = ∂zPs(z), with ρs(z) the number density of the solvent (see the SI for
details). Hence, the solvent pressure difference ∆Ps is accompanied by a difference in the
intrinsic solvent chemical potential

∆µs ≡ µint
s (zb) − µint

s (zres) =
ˆ zb

zres

dz
∂zPs(z)
ρs(z) . (3.9)

We can thus rephrase our findings as follows. Activity increases the solvent chemical
potential of the bulk of the suspension from the reservoir value µs to µs + ∆µs. The
total bulk pressure Ptot(ρ, µs + ∆µs) = ρkBT + Ps(µs + ∆µs) increases accordingly, such
that the osmotic pressure Π = Ptot(ρ, µs + ∆µs) − Ps(µs), which is the difference between
the total bulk pressure and the reservoir pressure, now equals Π = ρkBT + ∆Ps, where
∆Ps = Ps(µs + ∆µs) − Ps(µs) is the difference in solvent pressures accompanying the
difference in solvent chemical potentials.

In this light, we address the second term of Eq. (3.6), present for anisotropic col-
loids experiencing a torque −∂θV (z, θ). To investigate the implications of this term, we
have solved the Smoluchowski equation (3.1) for active dumbells, consisting of two point
particles with separation � = (γr/γt)

1
2 . Both point particles are subject to the same

membrane potential V (z) = λkBT (z/�)2 for z < 0 as before, where the strength pa-
rameter λ can now be varied. The resulting potential acting on a dumbell, V (z, θ) =
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V (z + �
2 cos θ) + V (z − �

2 cos θ), exerts a nonzero torque −∂θV (z, θ), that tends to align
dumbells parallel to the wall. Fig. 3.5 shows the resulting increase in solvent pressure
∆Ps, calculated from Eq. (3.6), for different activities Pe as a function of the strength λ
of the colloid-membrane interaction potential. For Pe > 0, ∆Ps decreases with λ. The
reason for this decrease is that the torque generated by the potential rotates the particles
that propel ‘into’ the membrane, and thereby influences the shape of the polarization pro-
file mz(z). As it turns out, the torque reduces the total polarization near the membrane
−
´ zb

zres
dzmz(z), and by that also the integrated reaction body force −

´ zb

zres
dzf p

z (z) that
pushes solvent towards the suspension, see Eq. (3.4). Consequently, the increase in sol-
vent pressure ∆Ps decreases as the strength of the colloid-membrane interaction potential
increases. The same dependence was found in Ref. [88] for ellipsoidal particles under the
assumptions that the distribution ψ(z, θ) attains its bulk value already at z = 0, and that
the effect of ellipses that only feel the potential partially is negligible. We thus confirm
the conclusion of Ref. [88] that the second term of Eq. (3.6) depends on the precise form
of the colloid-membrane interaction potential V (z, θ), by a numerical solution ψ(z, θ) that
does not require any further assumptions.

Whereas in Ref. [88] this finding was reason to question whether the osmotic pres-
sure is a state function, we emphasize it is the bulk state of the suspension itself that
depends on the colloid-membrane potential. To appreciate its consequences, we note that
in equilibrium the ensemble of reservoir and suspension is specified by the state variables
(µs, ρ, T ), since the solvent chemical potential of the reservoir µs sets the same chemical
potential in the suspension. The fact that for an active system the solvent pressure differ-
ence ∆Ps - and thereby also the chemical potential difference ∆µs - generally depends on
the colloid-membrane interaction potential, implies that a complete specification of the
ensemble requires an additional state variable, e.g. the bulk solvent chemical potential
µb

s ≡ µs +∆µs. In fact, upon including effective colloid-colloid interactions, the activity is
also required as a state variable, e.g. in terms of v0 (see SI). A complete set of (intensive)
state variables therefore reads (µs, µb

s, ρ, T, v0). All the mentioned pressures, including the
osmotic pressure, are state functions of these variables. In other words, they are not a
direct function of the strength λ of the colloid-membrane interaction potential, but can
only depend on λ via the bulk solvent chemical potential µb

s(λ).

3.6 Conclusions

We have generalized Van’t Hoff’s law to active suspensions. We have shown that the
active particles exert a net reaction force on the solvent, an effect that we predict to be
experimentally measurable either as a solvent flow through a semipermeable membrane
confining the active suspension to one side of an open pipe, or as a macroscopic rise
of the suspension meniscus in a U-pipe experiment. In the latter case, the reaction
force increases the solvent pressure of the suspension, and thereby the solvent chemical
potential. Remarkably, this increase, and thereby the bulk state of the suspension itself,
depends on the details of the colloid-membrane interactions. The osmotic pressure is a
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state function of (amongst others) the solvent chemical potential; it does depend on the
details of the colloid-membrane interactions, but only via the solvent chemical potential.

3.7 Discussion
The predictions of Eq. (3.6) and of Fig. 3.4 are made for active particles whose orienta-
tion changes only by rotational diffusion with a rate that follows from the Stokes-Einstein
relations for spherical particles. The corresponding typical reorientation time τr, equal
to γr/kBT in this case, is shown by Eq. (3.6) to be proportional to the excess solvent
pressure ∆Ps. In fact, the result ∆Ps ∼ τr is more general[85], because the typical time
τr that a particle spends propelling ‘into’ the membrane determines the magnitude of
the time-averaged reaction force it exerts on the solvent, and thus of the excess solvent
pressure ∆Ps. In general, this reorientation time τr depends on more factors, for instance
on the details of the propulsion mechanism of the active particle, and on its (hydrody-
namic) interaction with the membrane [112, 124]. An interesting example of the latter
type occurs for the square-shaped particles simulated in Ref. [125]. These particles tend
to form a crystal phase next to the membrane, with the majority of particles facing the
membrane [126]. This effect increases τr, and thereby the excess solvent pressure ∆Ps,
dramatically.

In the SI, we generalize the framework presented here to include interactions. The ac-
tive version of Van’t Hoff’s law (3.8) then generalizes to Π = P (ρ, µb

s, v0) + ∆Ps, where
P (ρ, µb

s, v0) now denotes the full pressure (ideal gas plus virial contributions) of the effec-
tive colloids-only system that is characterized by (ρ, µb

s, v0). Hence, the functional form
of the osmotic pressure Π differs from its passive expression only by the excess solvent
pressure ∆Ps. This excess pressure ∆Ps again depends on the membrane potential, except
in the absence of any torque interactions between either the particles and the membrane,
or between the particles themselves. In the absence of such torques, ∆Ps again reduces to
the known swim pressure. While this swim pressure is a linear function of ρ at low colloid
densities, cf. Eq. (3.6), it typically becomes a decreasing function of ρ at high densities
[84, 92, 127, 128]. For general interactions, it remains true that the difference in solvent
pressure ∆Ps is accompanied by a difference in solvent chemical potential ∆µs, and that
the osmotic pressure is a state function of the variables (µs, µb

s, ρ, T, v0).

Crucial in our approach is that activity enters the colloid force balance (3.3) as the body
force f p(r), cf. Ref. [94], whereas the local pressure P (r) = ρ(r)kBT is of the same form
as in equilibrium. Our approach follows Speck and Jack [97], who showed that the bulk
colloid pressure ρkBT represents momentum flux of non-interacting colloids. In the in-
teracting case, the local pressure tensor P (r) generalizes to a local pressure tensor, that
consists of both momentum flux and a term accounting for interaction forces (see Sec. 1
of the SI), as the conventional local pressure tensor does [129]. Representing activity by
a body force contrasts the approach that we present in chapter 4, where activity is ac-
counted for (in a colloid-only picture) as a contribution to the local pressure tensor, known
as the “swim pressure”. The latter approach is also followed by Refs. [26, 101, 130, 131].
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Whereas the approach presented in this chapter is valid for general particle-particle and
particle-wall interactions (see SI), this ‘activity-modified’ local pressure has only been
defined for isotropic particles, and indeed its derivation [102, 132] does not seem to be
extendable to systems with torque interactions.

The generalizations of the force balances (3.3), (3.5) and (3.7) to an interacting sus-
pension (see Sec. 3 of the SI) can readily be applied to other typical phenomena exhibited
by active systems, such as the motility-induced phase separation that we encountered in
chapter 2. Strikingly, the interface of the phase coexistence generated by MIPS was found
to have a negative interfacial tension, defined in the colloid-only picture in terms of the
activity-modified pressure tensor [26]. This begs the question what this negative interfa-
cial tension - and its interpretation [26, 27] - translate into in the picture presented here,
both in the colloid-only sense and upon taking the solvent into account. This question -
in the colloid-only sense - is the subject of chapter 4.

3.8 Acknowledgements
This chapter came into being in collaboration with Marjolein Dijkstra and René van Roij,
who helped by critically examining all results and identifying future directions throughout
the research process. We acknowledge Bram Bet and Bob Evans for useful discussions.

3.9 Supplementary Information
See the supplementary information (SI) of the article on which this chapter is based [83]
for the following information - numbered according to section number in the SI.

1. A derivation of the overdamped Smoluchowski Eq. (3.1) and colloid momentum
balance (3.3) from the underdamped case. This includes a proof that the local
pressure tensor P (r) represents momentum flux in the non-interacting case, as well
as the generalizations to interacting systems.

2. A slightly more extended version of the derivation (of the solvent force balance (3.5))
presented in appendix 3.A.

3. A generalization to interacting systems of the osmotic pressure presented in Sec. 3.3
and of the solvent chemical potential presented in Sec. 3.5.

4. A derivation of the solvent pressure difference (3.6), as well as its generalization to
interacting systems.

5. Details of the numerical solution (to the Smoluchowski equation (3.1)) that underlies
Figs. 3.3 and 3.5.

6. A calculation that shows that the polarization of colloids near the semi-permeable
membrane can also lead to solvent flow through an open pipe.



Appendices

Appendix 3.A Derivation of the solvent force bal-
ance

In this section we derive that Eq. (3.5) of the main text is the force balance governing the
solvent flow on a scale where the colloids can be regarded as a continuum. To this end,
we start from the hydrodynamic problem that governs the solvent flow around a single
swimmer, and coarse-grain this problem to the desired larger scale. As done through-
out this Electronic Supplementary Information, Latin indices i, j, k shall label particles,
whereas Greek indices α, β, γ shall refer to the Cartesian components x, y, z. We apply the
Einstein summation convention only to the latter Greek indices, and only in this section.
Furthermore, we use the notation A(αβ) ≡ 1

2(Aαβ + Aαβ) to denote the symmetrization of
a tensor A with respect to its Greek indices only.

To describe the solvent flow around a single swimmer, we consider a model in which
the swimming is generated by a nonzero slip-velocity at the surface of the single particle.
This models for example biological swimmers - so-called ‘squirmers’ - that move by the
beating motion of small flagella at their body surface, or by small body deformations [133],
but also the swimming of active colloidal particles [134, 135]. The hydrodynamic problem
is as follows. The swimmer/particle i, occupying a volume Vi enclosed by the surface Si,
is assumed to have a fixed overall shape, such that it can only undergo rigid body motion,
with center-of-mass velocity vi and angular velocity ωi around its center-of-mass position
ri. It swims in an ambient flow u∞(r) that is assumed to solve the Stokes equation for all
r in the absence of any particles. In the fluid region Vf , bounded by Si and by a spherical
surface S∞ with radius R that we plan to take towards ∞, the fluid velocity uout(r) and
pressure pout(r) satisfy

∇ · uout = 0
−∇pout + η∇2uout = 0

}
with b.c.’s

{
uout(r) = uRBM

i (r) + us
i (r), for r ∈ Si,

uout(r) = u∞(r), for r ∈ S∞,
(3.10)

where η is the dynamic solvent viscosity, where uRBM
i (r) ≡ vi +ωi × (r−ri) is the surface

velocity of particle i due to its rigid body motion, and where us
i (x) is the additional slip

velocity satisfying us
i (x) · n̂i = 0, n̂i being the normal vector pointing from particle i

into Vf . The stress tensor σout of the solvent is given as σout
αβ = −poutδαβ + 2η∂(αuout

β) ;
the second equation of (3.10), known as the Stokes equation, can thus also be written as
∇ · σout = 0. Note that we assume that no external body force acts on the solvent. This
assumption is made for simplicity only, and the derivation can be extended to include a
nonzero external body force.
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It is not Eqs. (3.10) that we shall coarse-grain, but an integral representation of these
differential equations. This integral representation is derived in e.g. the book of Kim and
Karilla [136] for a rigid, non-swimming particle, i.e. for us

i (r) = 0. Here, we extend this
result to a finite swimming velocity us

i (r). It is important to realize that Eqs. (3.10) are
equations for the solvent velocity outside the particle; to emphasize this, we have called
this velocity uout(x). Of course, no solvent is present inside the particle, yet it shall be
convenient to formally consider an ‘extended’ solvent velocity profile defined on both Vf

and Vi as

u(r) =
{

uout(r), if r ∈ Vf ,

uin
i (r), if r ∈ Vi,

(3.11)

where uin
i (r) is defined as the velocity field solving the Stokes equation inside particle i

(i.e. in Vi) subject to the boundary condition

uin
i (r) = uRBM

i (r) for r ∈ Si. (3.12)

This velocity profile inside the particle is easily solved as

uin
i (r) = vi + ωi × (r − ri), (3.13)

which means that uin
i (r) has the same functional form as uRBM

i (r), yet is defined on Vi

rather than only on Si. As such, it is clear that the solution (3.13) indeed satisfies the
boundary condition (3.12). One can check that the solution (3.13) also solves the Stokes
equations by noting that ∇ · uin

i (r) = 0 and ∇2uin
i = 0. The corresponding stress tensor

reads σin
i (r) = −p0

i I, where p0
i is a spatially constant pressure. In order to find an integral

representation for the solvent velocity profile u(r) as defined by (3.11), we follow the
procedure followed in [136], but for a nonzero us

i (r). The resulting integral representation
for u(r) makes use of the Green’s functions that correspond to equations (3.10). These
Green’s functions, Gαβ, Pα, and Σαβγ , are defined by

{
∂αGαβ(r) = 0,

8πη∂γΣαβγ(r) = −∂αPβ(r) + η∇2Gαβ(r) = −8πηδαβδ(r).
(3.14)

Physically, they represent the solvent response to a point force
ffl

α
= 8πηδαβδ(r) that acts

in direction β; the resulting velocity profile uα(r) is Gαβ(r), the resulting pressure profile
is Pβ(r), and the resulting stress tensor σαγ(r) is Σαβγ(r). The integral formulation for
the velocity field u(r) then reads

u(r) = u∞(r) − 1
8πη

˛

Si

dS(ξ)(σout(ξ) · n̂i) · G(r − ξ) −
˛

Si

dS(ξ)us
i (ξ) · Σ(r − ξ) · n̂i.

(3.15)

For us
i (r) = 0, Eq. (3.15) shows that the solvent flow can be understood as resulting from a

collection of force monopoles −σout(ξ) · n̂i distributed over the surface of the particle. For
nonzero us

i (r), the effect of the last term in (3.15) is that an additional surface distribution
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of force dipoles comes into play. To see that the last term indeed represents force dipoles,
we use Σαβγ = (8πη)−1(−Pβδαγ + 2η∂(γGα)β) to rewrite this term as

−
˛

Si

dS(ξ)us
iα(ξ)Σαβγ(r − ξ)n̂iγ

= 1
8πη

˛

Si

dS(ξ)Pβ(r − ξ)us
i (ξ) · n̂i − 1

4π

˛

Si

dS(ξ)∂(γGα)β(r − ξ)us
iα(ξ)n̂iγ

= − 1
4π

˛

Si

dS(ξ) lim
ε↓0

{
[Gαβ (r − (ξ − εγ̂)) − Gαβ(r − ξ)]

us
i(α(ξ)n̂iγ)(ξ)

ε

}
, (3.16)

where in the last line we used us
i (ξ) · n̂i(ξ) = 0, wrote out the definition of the derivative

∂γ, with γ̂ denoting the unit vector in the γ-direction, and used A(αβ)Bαβ = A(αβ)B(αβ) =
AαβB(αβ) for any tensors A and B. A summation over γ is implied in the last line of
(3.16), and will be implied in similar terms that arise from this term. The last line of
Eq. (3.16) indeed represents the solvent flow uα(r) that arises as a result of a collection of
force dipoles distributed over the surface Si. The combination of Eqs. (3.15) and (3.16)
shows that the solvent velocity profile u(r) satisfies the problem

∇ · u(r) = 0,

−∂αp(r) + η∇2uα(r) =
∑

i

˛

Si

dS(ξ)σout
αβ (ξ)n̂iβ(ξ)δ3(r − ξ) (3.17)

+ 2η
∑

i

˛

Si

dS(ξ) lim
ε↓0

{us
i(α(ξ)n̂iγ)(ξ)

ε

[
δ3 (r−(ξ−εγ̂)) − δ3(r−ξ)

]}
,

where we now account for many possible particles i present, and where u(r) is subject to
the boundary condition u(r) = u∞(r) for r ∈ S∞ (with R → ∞). Eq. (3.17) indeed shows
that the velocity profile u(r) can be thought of as resulting from a distribution of force
monopoles, and, for us

i (r) �= 0, force dipoles distributed over the surfaces of the particles.

It is equation (3.17) that we shall coarse-grain. In order to do so, we define a window w(r)
around r, that satisfies

´
drw(r) = 1, and whose ‘width’ determines the coarse-graining

scale L. For definiteness, we shall take

w(r) = 1
L3

∏
α=x,y,z

Θ(L

2 − |rα|), (3.18)

such that w(r) is only nonzero (and equal to L−3) inside a cube with ribbons of length L
centered at r, that we shall refer to as C(r, L). We assume the window to ‘contain’ many
colloids; for our cubical window (3.18) we thus assume L � a, b, where a is the particle
radius and b the typical particle separation. We define the coarse-grained version of any
solvent property f(r) as

〈f〉(r) =
ˆ

V +
f

dr′w(r − r′)f(r′) = 1
L3

ˆ

C(r,L)∩V +
f

dr′f(r′), (3.19)
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where V +
f denotes the fluid volume Vf , plus, for every particle i, a thin shell of width

δ enclosing the particle surface Si
a. Note that the integration is not over the volume

inside the particles, while we do divide by the entire window volume L3. Consequently,
the coarse-grained solvent velocity 〈u〉(r) is the physical velocity uout(r) volume-averaged
over C(r, L). It is related to the average velocity per solvent particle uav(r) as 〈u〉(r) =
(1 − φ(r))uav(r), where φ(r) is the local volume fraction of colloids.

We now coarse-grain Eq. (3.17), i.e. we calculate 〈(3.17)〉(r). First, we note that any
distribution f(r) satisfies

〈∇f〉(r) =
ˆ

V +
f

dr′w(r − r′)∇′f(r′) = −
ˆ

V +
f

dr′∇′w(r − r′)f(r′) = ∇
ˆ

V +
f

dr′w(r − r′)f(r′)

= ∇〈f〉(r). (3.20)
Using this property, the coarse-grained version of the first equality of Eq. (3.17) becomes
∇ · 〈u〉(r) = 0, whereas the left-hand side of the second equality of Eq. (3.17) becomes

−∂α〈p〉(r) + η∇2〈uα〉(r). (3.21)
We adress the right-hand-side terms of the second equality of Eq. (3.17) one by one. The
coarse-grained version of the first right-hand-side term is

∑
i

˛

Si

dS(ξ)w(r − ξ)σout
αβ (ξ)n̂iβ(ξ) ≈ 1

L3

∑

i∈C(r,L)

˛

Si

dS(ξ)σout
αβ (ξ)n̂iβ(ξ)

= 1
L3

∑

i∈C(r,L)
F H

i,α, (3.22)

where FH
i =

¸
Si

dSσout · n̂ is the hydrodynamic force exerted on particle i, and where
we neglected any contributions from particles contained only partially in C(r, L), which is
justified by virtue of the assumption L � a, b. The coarse-grained version of the second
right-hand-side term of the second equality of Eq. (3.17) is

2η

ˆ

V +
f

dr′w(r − r′)
∑

i

˛

Si

dS(ξ) lim
ε↓0

{
us

i(α(ξ)n̂γ)(ξ)
ε

[
δ3(r′ − (ξ − εγ̂)) − δ3(r′ − ξ)

]}

= 2η
∑

i

˛

Si

dS(ξ) lim
ε↓0

{
w(r − (ξ − εγ̂)) − w(r − ξ)

ε

}
us

i(α(ξ)n̂iγ)(ξ)

= 2η
∑

i

˛

Si

dS(ξ)∂w(r − ξ)
∂rγ

us
i(α(ξ)n̂iγ)(ξ)

(3.18)= −2η

L3

∑
i

˛

Si

dS(ξ)

 ∏

β �=γ

Θ(L

2 − |rβ − ξβ|)



{
δ

(
rγ − (ξγ + L

2 )
)

− δ
(
rγ − (ξγ − L

2 )
)}

us
i(α(ξ)n̂iγ)(ξ)

= −2η

L3

∑
i

(˛

δC+
γ (r,L)∩Si

dl(ξ) −
˛

δC−
γ (r,L)∩Si

dl(ξ)
)

us
i(α(ξ)n̂iγ)(ξ), (3.23)

aFormally we take δ → 0, while ensuring that δ > ε at all times. All the monopoles and dipoles
appearing in Eq. (3.17) are thus entirely contained in V +

f .
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where in the last line δC±
γ (r, L) denotes the face of the C(r, L) cube with outward normal

±γ̂. The integrations in the last line thus run over the intersection of the δC±
γ (r, L)-face

with the surface Si of any particle i that intersects it. For any particle i, the inte-
gration domain is thus an intersection between two surfaces, which forms a line. The
magnitude of the contributions (3.22) and (3.23) can now be estimated. Denoting the
magnitude of F H

i by F , and the colloid density by ρ such that the number of colloids
inside C(r, L) approximately equals ρL3, the magnitude of the contribution (3.22) is esti-
mated as L−3(ρL3)F = ρF ≈ Fφa−3, where φ denotes the packing fraction of the colloids,
and where a denotes the particle size. To estimate the contribution of either integral in
(3.23), we note that i) the number of particles intersecting δC±

γ (r, L) has as approximate
upper bound (ρL3) 2

3 (in fact, the number of intersecting particles is much less for a di-
lute suspension), ii) for any particle intersecting δC±

γ (r, L), the length of the intersection
line is of the order a, and iii) ηus

i ≈ aσout ≈ F/a. Therefore, the contribution of either
integral in (3.23) is approximated as L−3(ρL3) 2

3 a(F/a) = Fρ2/3L−1 ≈ Fφ
2
3 a−2L−1. Since

L−1 � a−1, the contribution of (3.23) is negligible as compared to the contribution of
(3.22). Therefore, the coarse-grained version of the second equation in (3.17) reads

−∂α〈p〉(r) + η∇2〈uα〉(r) = 1
L3

∑

i∈C(r,L)
F H

i,α. (3.24)

The hydrodynamic force FH
i experienced by a spherical particle i can be decomposed

as FH
i = −γtvi + γtv0êi, where vi is the velocity of particle i and êi its orientation [94].

The evolution of vi(t) and êi(t) are governed by the Langevin dynamics of the particles
b. Consequently, even though it was left implicit so far, the solvent pressure 〈p〉(r, t) and
velocity 〈u〉(r, t) actually depend on time, via Eq. (3.24). To relate the right-hand side of
Eq. (3.24) to the probability distribution function ψ(r, e, t) of the particles - whose time
evolution is governed by the Smoluchowski equation (3.1) - we assume that the dynamics
of the particles does not to change significantly throughout a window, which means that
e.g. the external potential V ext(r) must not vary significantly under rα → rα + L c. This
implies that ψ is approximately constant within any window, i.e. ψ(r′, e, t) ≈ ψ(r, e, t)
with r′ ∈ C(r, L) for any r. In this case, the sum over all particles in C(r, L) (which
are many) coincides with a sum over different realizations of the noise appearing in the
Langevin equation. As shown in Sec. 2 of the SI, the coarse-grained Stokes equation (3.24)
then becomes

−∇〈p〉(r, t) + η∇2〈u〉(r, t) = −γtJ(r, t) + γtv0m(r, t)
≡ f f (r, t) + fp(r, t), (3.25)

where in the first equality we used that the polarization is defined as m(r, t) =
´

dêψ(r, ê, t)ê,
and in the second equality we used the definitions of the the frictional body force f f (r, t) =

bThis is under the assumption that the effect of the slip velocity us
i is to displace particle i only

translationally; if it also rotates the particle an additional ‘self-torque’ has to be added to the Langevin
equations.

cIn the main text we do consider a membrane potential that changes on the scale a � L. However,
this is in a planar geometry; if one employs a window that is thin in the direction perpendicular to
the membrane, and elongated in the parallel direction(s), it can still contain many colloids, yet have an
approximately constant V (r) inside.
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−γtJ(r, t) and the propulsion body force density fp(r, t) = γtv0m(r, t), which are the in-
ternal body forces appearing in the colloidal force balance (3.3) of the main text. This
derivation can be extended to also include a nonzero body force that acts on the solvent,
in which case the result is simply Eq. (3.25) with the coarse-grained version of this body
force f e

s (r, t) additionally appearing on the left-hand side of Eq. (3.25). Eq. (3.25) then
forms the solvent force balance (3.5) of the main text, where we simply denoted 〈u(r, t)〉
by u(r, t) and 〈p(r, t)〉 by Ps(r, t).



4

Interfacial properties of ideal active
Brownian particles in a motility

gradient

In this chapter, we switch back to a picture that considers the active colloids without
making the solvent explicit. We review the definition of pressure for such a colloids-only
system, but mainly focus on the other thermodynamic variable that can be defined me-
chanically: the interfacial tension.

Rather than MIPS, we study what could well be the simplest active system that admits
an interface: an active ideal gas in two half-spaces with different propulsion speeds. We
show that this system gives rise to an interface that qualitatively resembles the interface
of MIPS. We propose two possibilities for the definition of an interfacial tension, and find
microscopic expressions - and thus the signs - for both. Related to this, we investigate the
stability of the interface. Remarkably, the normal force on a piece of perturbed interface
acts in the same direction as the perturbation, and thus seems to have a destabilizing
effect. Nonetheless, the interface is stable, owing to a Marangoni-like effect that leads to
tangential currents which restore the interface to its original state.

This chapter is part of a collaboration with Liesbeth Janssen (Eindhoven University of
Technology), who performed particle-based computer simulations on the same system
(whose results are not shown).
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4.1 Remarks on notation
In contrast to the other chapters, where σ denotes the particle diameter, throughout this
chapter σ is used for the interfacial tension.

Furthermore, while the setting of this chapter (a colloids-only picture, isotropic par-
ticles and an inhomogeneous propulsion speed) differs from the setting in chapter 3 (an
explicit solvent, anisotropic particles and a homogeneous propulsion speed), the various
pressures that appear in both chapters are related. The pressure P that was associated
with the colloids in chapter 3 equals the bare pressure P defined in this chapter. For
isotropic particles with homogeneous propulsion, and in a flux-free steady statea - which
is considered throughout most of this thesis - the solvent pressure Ps of chapter 3 equals
the swim pressure P swim defined in this chapter. Under the same conditions, the total
pressure Ptot of the suspension of chapter 3 equals the total pressure P tot defined in this
chapter.

4.2 Introduction
An intriguing aspect of MIPS, that we have not discussed in chapter 2, is its interface.
Any movie of MIPS shows that active particles continuously attach to and detach from
the dense phase, and that the interface fluctuates wildly (see e.g. movies supplementary
to [25]).

For phase coexistences in thermodynamic equilibrium, these fluctuations are controlled
by the stiffness κ, which, in turn, is set by the surface tension σ via κ = σ/kBT . Here
kBT can be thought of as the energy scale of the interface perturbations. Previous studies
[25, 26, 137] showed that a similar relation holds for active phase coexistences when one
adopts a mechanical definition for the surface tension, provided that one replaces the tem-
perature T by an effective temperature Teff. Then κ = σ/kBTeff [137]. At large activity
Pe, the effective temperature Teff ∝ Pe2 is also large, which is consistent with the wild
fluctuations of the MIPS interface. Intuitively, the fact that the fluctuations are so large
can be understood from the fact that the energy scale kBTeff of interface perturbations is
simply much larger for active than for passive systems [27].

Thus, the magnitude of the surface tension σ seems to be understood reasonably well.
However, in the case of MIPS, its sign turned out to be surprising: Bialké et al. [26] found
it to be negative! Since in equilibrium the surface tension is also the tensile force (per
unit length) that restores the interface when it is perturbed [138], it would seem that
a negative interfacial tension would enhance perturbations and thus lead to an unstable
interface. But then why is the MIPS interface nonetheless stable?

This question is being debated in the literature [25, 27, 29, 31]. On one hand, Patch
et al. [25] propose that while the surface tension is indeed negative, it is also curvature-
dependent, which leads to a “Marangoni-like effect”. The Marangoni effect is the effect
that lateral inhomogeneities in the interfacial tension lead to tangential currents from
low to high interfacial tension [33]. Patch et al. propose that these tangential currents

awhere, moreover, the pressure profiles are not affected by any external force fe
s that acts on the

solvent.
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restore the perturbed interface to its original state. On the other hand, Lee [29] argues
that the stability of the interface is controlled by an effective surface tension that is posi-
tive, and also Hermann et al. [31] argue that the stability is controlled by a non-negative
surface tension. The surface tensions proposed by Lee [29] and Hermann et al. [31] are
distinct from each other, and also from the mechanical surface tensionb first proposed by
Refs. [25, 26, 137].

In this chapter, we focus on a simpler system that can - to some extent - be regarded
as a toy model for MIPS. In chapter 2, we explained that MIPS forms because particles in
denser regions undergo more collisions and therefore effectively slow down, which increases
the density further. Formally, this explanation came in the form of a mapping from the
interacting system to an active ideal gas with an effective velocity profilec. We employ
the same analogy here: rather than considering the interface of MIPS, we consider the
interface that is formed by an active ideal gas in two neighbouring regions with different
propulsion speeds. While the interface of this toy model does not map quantitavely to
the MIPS interface, we will show that it does share some of its qualitative features. More-
over, this toy model is arguably the simplest active system that admits an interface. And
precisely because it is a simple active ideal gas, issues concerning the interfacial tension
can be rather easily understood.

One important issue that we address is: how to define an interfacial tension for this
non-equilibrium system in the first place? We propose two definitions, from pure me-
chanical arguments that do not make reference to any free energy. We discuss when these
definitions coincide, and also find their signs. Finally, we ask: what makes the interface
stable against small perturbations?

The outline of this chapter is as follows. In section 4.3 we introduce the model, and in
section 4.4 we characterize the interface that forms. Then, in section 4.5, we discuss the
various forces and pressures at play in the interface, such that in section 4.6 we can give
our first definition of the interfacial tension: the mechanical interfacial tension, defined
in terms of the work required for deforming the system in such a way that the area of
the interface changes while the volume of the system remains constant. In section 4.7, we
give our second definition: the interfacial tension as the tensile force in the interface. In
this section we also discuss the stability of the interface.

4.3 Model
In order to describe self-propelled particles in a minimal way, we model them as active
Brownian particles [109]. For simplicity, we consider non-interacting, isotropic particles
that live in only two spatial dimensions d, characterized by the Cartesian coordinates x
and y. Every particle undergoes overdamped motion driven by a number of forces. The
most important driving force is the self-propulsion force. Usually, its magnitude is taken
to be spatially constant, such that it gives rise to a constant propulsion speed v0. In this

bActually, the surface tension proposed by Hermann et al. [31] is defined mechanically, but only from
the structural force components.

cand, for anisotropic particles, an effective rotational diffusion constant. Here, however, we only
consider isotropic particles.

dAll of our results are easily generalizable to three dimensions.
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Figure 4.1: (a) Pictorial representation of the considered setting: active Brownian parti-
cles with (b) a position-dependent self-propulsion speed v0(x) that represents a fast bulk with
propulsion speed vf at x < 0 connected with a slow bulk with self-propulsion speed vs < vf at
x > 0.

chapter, however, we consider a spatially varying propulsion speed v0(x), that we specify
below. The direction of the propulsion force defines a particle’s orientation ê, a unit vector
that can also be expressed by the angle θ with the x-axis as ê(θ) = cos(θ) x̂ + sin(θ) ŷ.
The orientation ê undergoes rotational diffusion with diffusion constant Dr. An additional
driving force is the external force, generated by the potential V (r) of the wallse of the
system that we specify below. The final effect that can change a particle’s position r =
(x, y) is translational diffusion, with an associated diffusion constant Dt. The probability
density ψ(r, θ, t) to find a particle at time t with orientation θ at position r then evolves
according to the Smoluchowski equation

∂tψ = −∇ · j − ∂θjθ, (4.1)

where j = (jx, jy) and jθ are components of the probability flux in (r, θ)-space. They are
given by

j ≡ v0(x)êψ − 1
γ

ψ∇V (r) − Dt∇ψ, jθ ≡ −Dr∂θψ. (4.2)

Here γ is the friction coefficient associated with the overdamped motion.

The setting we consider consists of two adjacent bulks with different propulsion speeds,
separated by an interface that is taken to be parallel to the y-axis and in the vicinity of
x = 0. A ‘fast’ bulk is located at negative x-values, and contains the bulk coordinate
(xf

b, yb), with xf
b � 0. A ‘slow’ bulk is located at positive x-values, and contains the

coordinate (xs
b, yb), with xs

b � 0. The propulsion speed v0(x) is a function of x in such
a way that for x � 0 it equals v0(xf

b) ≡ vf, while for x � 0 it equals v0(xs
b) ≡ vs ≤ vf.

eand not V (r, θ), since the particles are isotropic.
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In principle, v0(x) can interpolate between these bulk values in any way, but for most of
this chapter we assume the simple stepwise velocity profile

v0(x) = vf + (vs − vf)Θ(x), (4.3)

where Θ(x) is the Heaviside step function. This propulsion speed profile is depicted in
Fig. 4.1(b). Rather than specifying both vf and vs, in most of the chapter we shall specify
the velocity vf through the dimensionless Péclet number Pe ≡ vf/

√
DtDr, while vs then

follows from the specified asymmetry in propulsion speeds

a ≡ (vf − vs)/vs ≥ 0. (4.4)

The external potential V (r) represents the hard walls of a rectangular box that sur-
rounds the whole ensemble of two bulks, as depicted in Fig. 4.1(a). The vertical walls
of the box are at x = −Lf

x and x = Ls
x, while the horizontal walls are at y = 0 and

y = Ly. The box is assumed to be large, such that there are two bulk states; the bulk
coordinates (xf

b, yb) and (xs
b, yb) are located far from the walls. We are mostly interested

in the region where the presence of the walls is not felt, and therefore we mostly consider
x-coordinates xf

b ≤ x ≤ xf
b at fixed y = yb. This region is invariant in the y-direction,

such that Eq. (4.1) simplifies to

∂tψ = −∂xjx − ∂θjθ (4.5)

Throughout this chapter, whenever we discuss the solution far from any walls, we shall
display the spatial x-dependence of functions and leave the considered y = yb implicit,
e.g. we write ψ(x, θ, t) rather than ψ(x, yb, θ, t).

Rather than considering the full probability density ψ(r, θ, t), one can also decompose its
orientation dependence into angular moments. The lowest order moments are

ρ(r, t) =
ˆ

dθψ(r, θ, t) (density),

mα(r, t) =
ˆ

dθeαψ(r, θ, t) (polarization),

Sαβ(r, t) =
ˆ

dθ(eαeβ − 1
2δαβ)ψ(r, θ, t) (nematic).

(4.6)

Here α, β ∈ (x, y) label Cartesian components. These angular moments follow a set of
coupled differential equations that follow by taking the angular moments of Eq. (4.1).
The evolution equations for the density and polarization read

∂tρ = −∇ · J, (4.7a)
∂tmα = −∂βJ m

βα − Drmα, (4.7b)

where the particle current J(r, t) and orientation current J m(r, t) are given by

J = v0(x)m − 1
γ

(∇V )ρ − Dt∇ρ, (4.8a)

J m
βα =v0(x)

(
Sαβ + ρ

2δαβ

)
− 1

γ
(∂βV )mα−Dt∂βmα, (4.8b)
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Figure 4.2: (a) Steady state probability density ψ(x, θ) in the absence of translational diffusion
(Dt = 0), for a propulsion speed asymmetry a = 3. Arrows represent the probability flux jprob.
(b) Corresponding profiles of density ρ, polarization mx, and nematic order Sxx, as a function
of position x in units of the persistence length �p. (c) Probability density with translational
diffusion (Dt > 0), as obtained numerically from Eqs. (4.5) and (4.2), for the same asymmetry
a = 3 and for Péclet number Pe = 3. The finite translational diffusion results in a lower slow
bulk density as for the Dt = 0 case. Consequently, the probability flux in the slow bulk is also
smaller. In order to guarantee equal in- and outfluxes in the marked phase-space regions, a
polarization and associated rotational current form in the interface. (d) Corresponding profiles
of density ρ, polarization mx, and nematic order Sxx, both numerically and analytically (under
the closure Sxx = 0), as a function of x now measured in units of the diffusive length scale �.
(d-inset) Zoom around the origin of the graph.

respectively. Note that if one wants to solve the two relations of Eqs. (4.7) and (4.8) for
the three unknowns ρ, m and S one needs an additional closure relation. We shall use
the closure Sαβ = 0 in the next section to obtain analytical solutions.

4.4 Characterization of the interface

In this section we show that non-interacting particles in the velocity profile of Fig. 4.1
give rise to nontrivial steady-state profiles. To this end, we study the solution to our
system away from any walls, i.e. the steady-state solution to Eq. (4.5). We shall see that
the obtained interface profiles qualitatively resemble the interface profiles found in MIPS.
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Figure 4.3: Normalized difference in bulk densities ∆ρ/ρf as a function of the asymmetry
in propulsion speeds a, for several activities Pe as indicated. The symbols denote numerical
solutions; the correspondingly colored lines are analytical solutions; and the black line shows
the solution in the absence of translational diffusion ∆ρ/ρf = a.

4.4.1 No translational diffusion
In order to better understand the general solution to Eq. (4.5), we first discuss a limiting
case that has a simple, intuitive solution: the case of no translational diffusion, i.e. Dt = 0.
In this case, Eq. (4.5) is easily solved by v0(x)ψ(x, θ) = constant. Using as a boundary
condition that the density in the left bulk equals ρf, i.e. ρ(xf

b) = ρf, yields

ψ(x, θ) = vf

v0(x)
ρf

2π
. (4.9)

Eq. (4.3) then implies that ψ(x, θ) = ρf/2π for x < 0, and ψ(x, θ) = (1 + a)ρf/2π for
x > 0, where a is asymmetry between the two velocities given in Eq. (4.4). Note that a is
the only system parameter (aside from the imposed density ρf) the solution depends on.
For a = 3, the solution (4.9) is by the heat map of Fig. 4.2(a). The arrows in the figure
represent the (dimensionless) probability flux in (x, θ)-space

jprob(x, θ) ≡ (ρf vf)−1jxx̂ + (Dr)−1jθθ̂ = v0(x)
vf

cos(θ) ψ

ρf
x̂ − ∂θψ

ρf
θ̂, (4.10)

which, according to Eq. (4.5), has to be divergence free in steady state in the sense that
�p∂xjx + ∂θjθ = 0. Here �p ≡ vf/Dr denotes the persistence length of particles in the fast
bulk, i.e. the typical length they travel by their propulsion force before rotating by one
radian. Note that �p is the only internal length scale of (the fast side of) the system when
Dt = 0. Fig. 4.2(a) also shows the probability current (4.10), which, by Eq. (4.9), simply
reads jx = cos(θ)/2π and jθ = 0. This current is indeed divergence free. In particular,
note that the marked phase-space region of particles near the interface (−2�p < x < 2�p)
with positive x-orientation (−π/2 < θ < π/2) has equal in- and outflux of probability,
such that the number of particles in this phase-space region does indeed remain constant.
The same is true for particles near the interface with negative x-orientation. Fig. 4.2(b)
shows the density profile, which simply jumps from ρ(x) = ρf for x < 0 to ρ(x) = (1+a)ρf
for x > 0. The slow bulk density ρs ≡ ρ(x � 0) is thus given by ρs = (1 + a)ρf ,
and the difference in bulk densities ∆ρ ≡ ρs − ρf satisfies ∆ρ/ρf = a. This normalized
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density difference is plotted as the black line in Fig. 4.3. Finally, since the solution (4.9) is
independent of the angle θ, the polarization m and nematic order S are zero everywhere,
as also displayed in Fig. 4.2(b).

4.4.2 Nonzero translational diffusion
We now consider the general case with a nonzero translational diffusion constant Dt > 0.
This introduces the additional length scale � =

√
Dt/Dr, which we call the diffusive length

scale, as it is the typical distance a particle diffuses before rotating by one radian. To
completely specify the problem, one must now not only specify the velocity asymmetry a,
but also the ratio Pe = �p/� of the persistence and diffusive lengths. This ratio is known
as the Péclet number, and provides a dimensionless measure of the activity of the system.

To obtain the probabilty density ψ(x, θ) we solve Eq. (4.5) numerically. We use the
boundary conditions

1. that x � −� represents a fast bulk with density ρf, i.e. ψ(xf
b, θ) = ρf/2π,

2. that x � � represents a homogeneous bulk (whose density is to follow from the
solution of the equations), i.e. ∂xψ(xs

b, θ) = 0, and

3. periodic boundary conditions for the angle θ, i.e. ψ(x, −π) = ψ(x, π) and ∂θψ(x, −π) =
∂θψ(x, π).

Fig. 4.2(c) shows the solution ψ(x, θ) for the same velocity asymmetry a = 3 used for the
Dt = 0 solutions of Figs. 4.2(a-b), and for activity Pe = 3. Note that boundary condition
1 dictates that the density in the fast bulk ρf is the same as for the Dt = 0 solution, but
that the density in the slow bulk is now lower. The reason is that the probability current

jprob =
(

v0(x)
vf

cos θ
ψ

ρf
− 1

Pe
�∂xψ

ρf

)
x̂ − ∂θψ

ρf
θ̂ (4.11)

now includes an additional diffusive flux from the higher density in the slow bulk towards
the lower density in the fast bulk. The lowering of the slow bulk density distorts the
flux balance in the interface region. Indeed, the same phase-space region of right-pointing
particles in the interface now has an outflux towards the slow bulk that is smaller than
the influx from the fast bulk. Conversely, the phase-space region of left-pointing particles
in the interface now has an influx from the slow bulk that is smaller than the outflux
towards the fast bulk. Therefore, as Fig. 4.2(c) illustrates, the resulting steady state has
an interface with an excess of right-pointing particles, as well as a deficit of left-pointing
particles. This asymmetry leads to a rotational diffusive flux from right- to left-pointing
particles. This rotational flux restores the flux balance in the interface.

Fig. 4.2(d) shows the corresponding density, polarization and nematic order profile.
The polarization profile indeed shows that particles in the interface preferentially point
towards the slow bulk. A similar polarization in between two bulks with different propul-
sion was found in Ref. [139]. In their case, the polarization was developed by self-propelled
rods that form a membrane-like structure in the interface. Here, we show that no align-
ing interactions are required: the polarization already forms for non-interacting spherical
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particles. The inset of Fig. 4.2(d) also shows that there is small nematic order Sxx(x),
which demonstrates that particles preferentially point tangential to the interface on the
fast side of the interface, and preferentially normal to the interface on the slow side of
the interface. All these profiles agree qualitatively with the profiles found for MIPS. For
MIPS, too, the density is highest on the side where the particles move slowest [140], while
also the interfacial profiles are similar: the polarization points towards the dense phase
[141], and there is nematic alignment parallel to the interface on the dilute side, and
perpendicular to the interface on the dense side [25].

The normalized difference in bulk densities ∆ρ/ρf is represented by the symbols in
Fig. 4.3 for a range of Péclet numbers as a function of the asymmetry in propulsion
speeds a. For Pe = 0, the particles do not self-propel in either bulk, hence ∆ρ = 0. For
nonzero activity Pe > 0, the density difference increases with the velocity asymmetry a,
from ∆ρ = 0 in the symmetric case (a = 0) to an asymptotic value in the limit a → ∞.
For high activity Pe � 1, self-propulsion dominates over translational diffusion, and the
density difference closely resembles the solution ∆ρ/ρf = a found for the case with no
translational diffusion.

We also obtained analytical solutions, by solving the moment equations (4.7) in steady
state with the closure of no nematic order, i.e. Sαβ = 0. This closure is exact in the limit
Pe � 1. The derivation of the solutions is given in appendix 4.A; here, we simply give
the resulting density profile

ρ(x) =




ρf + APef
λf

�
exp(x/λf) for x ≤ 0,

ρs − APes
λs

�
exp(−x/λs) for x ≥ 0,

(4.12)

and polarization profile

m(x) =
{

A exp(x/λf)x̂ for x ≤ 0,
A exp(−x/λs)x̂ for x ≥ 0.

(4.13)

In Eqs. (4.12) and (4.13) we explicitly distinguished the Péclet number on the fast side
Pef ≡ Pe and the Péclet number on the slow side Pes ≡ Pe/(1 + a), and we defined the
length scales λf/s ≡ (1 + Pe2

f/s/2)−1/2�. The constant A, which depends on Pe and a, is
given explicitly in appendix 4.A. Finally, the analytical solution for the slow bulk density
is

ρs = ρf

√√√√1 + 1
2Pe2

f

1 + 1
2Pe2

s
. (4.14)

The analytical profiles (4.12) and (4.13) are shown in Fig. 4.2(d), for the same parameter
values as the numerical solution, i.e. for Pe = 3 and a = 3. Even though the closure is
only exact for Pe � 1, the agreement is still very good, and in fact remains very good -
at least for these profiles - up to Péclet numbers as high as 100. The analytical solutions
(4.12) and (4.13) show that the width of the interface is set by the length scales λf and
λs. For large activity, these length scales are inversely proportional to the Péclet numbers
Pef and Pes, respectively. Therefore: the higher the activity, the sharper the interface,
another feature that is also displayed by the interface of MIPS [25]. The differences in
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Figure 4.4: (a-b) Illustration of the force balance (4.15) for activity Pe = 3 and asymmetry
a = 3. (a) The normal pressure Pxx(x) = ρ(x)kBT (blue line) and (b) the propulsion force
density fp

x = γv0(x)mx(x). The green line in (a) is the primitive of the force balance (4.15)(´ x
xf

b
dx′fp

x(x′) − Pxx(x)
)

/ρfkBT , shifted for clarity; the fact that is independent of x confirms
that the force balance is satisfied. (c-d) Illustration of the rewritten force balance (4.20), again
for Pe = a = 3. (c) The total normal pressure P tot

xx (x) (blue line) is constant as long as v0(x) is
constant, but its value jumps at x = 0. (d) The ∂xv0-term takes the form of a delta function,
as suggested by the red line. The green line in (c) is the primitive of the force balance (4.20)(´ x

xf
b

dx′γ(∂x′v0)(x′)J m
xx(x′) − P tot

xx (x)
)

/ρfkBT , shifted for clarity; the fact that it is independent
of x confirms that the rewritten force balance is satisfied.

bulk density ∆ρ that follow from Eq. (4.14) are plotted as the solid lines in Fig. 4.3,
again displaying excellent agreement with the numerical data. Finally, we point out that
the ratio in bulk densities (4.14) agrees with the bulk densities that were obtained by
Magiera and Brendel, who account for the position-dependent activity by using an effec-
tive, position-dependent diffusion coefficient [142].

Now that we have characterized the interface, the next question is: what is its interfacial
tension? Before we can address this question, we first need to discuss the various forces
and pressures at play in the interface.

4.5 Force balances
The force balance follows from multiplying Eq. (4.8a) by the friction coefficient γ, which
results in

0 = f f (r) + f p(r) + f e(r) − ∇ · P(r). (4.15)

Here f f ≡ −γJ is the frictional force density, f p ≡ γv0m is the propulsion force density,
f e ≡ −(∇V )ρ is the external force density, and P(r) ≡ ρ(r)kBT I is the ‘bare’ local
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pressure tensor that represents the momentum flux of our active ideal gas particlesf [83,
97]. Furthermore, to obtain an expression for the pressure that is familiar from equilibrium
thermodynamics, we defined a temperature from the Einstein relation, i.e. kBT ≡ γDt.

Far from any walls (where f e = 0), and in our steady state that is flux-free (such that
f f = 0), the force balance (4.15) in the direction normal to the interface simplifies to

0 = fp
x(x) − ∂xPxx(x), (4.16)

where Pxx(x) = ρ(x)kBT is the xx-component of the tensor P. This normal pressure is
plotted as the blue line in Fig. 4.4(a). As it is proportional to the density, it is higher in the
slow bulk than in the fast bulk, and hence gives rise to a pressure gradient force directed
towards the fast bulk. This pressure gradient should be balanced by the propulsion force
fp

x(x), shown as the red line in Fig. 4.4(b). The propulsion force points - just like the
polarization - towards the slow bulk. To explicitly check that these forces indeed balance
each other, the green line in Fig. 4.4(a) shows the integrated force balance

´ x dx′fp
x(x′) −

Pxx(x). The fact that this expression is independent of x confirms that the force balance
is indeed satisfied.

A convenient way to rewrite the propulsion force balance (4.15) is by employing the
evolution equation (4.7b) for the polarization m. When multiplied by γv0(x), it becomes
the following evolution equation for the propulsion force density f p(r, t).

∂tf
p
α = −∂βJ p

βα − Drf
p
α + γ (∂βv0) J m

βα, (4.17)

where we defined the propulsion force flux J p
αβ(x, t) ≡ γv0(x)J m

αβ(x, t). When there is
reason to assume that ∂tf

p
α = 0, e.g. in steady state, or when the polarization can be

considered a fast variable on the time scale of interest, then Eq. (4.17) can be solved for
the propulsion force as

fp
α = −∂βP swim

βα + γ

Dr

(∂βv0) J m
βα. (4.18)

Here we defined the swim pressure tensor P swim
αβ ≡ J p

αβ/Dr
g, a quantity that is also called

the flux of ‘active impulse’ [132], and that is thus proportional to the propulsion force
flux J p

αβ [42]. With Eq. (4.18), the force balance (4.15) can be rewritten as

0 = f f
α + f e

α − ∂βP tot
βα + γ

Dr

(∂βv0)J m
βα, (4.19)

fFor the overdamped motion considered here, the momentum flux tensor of active particles has the
same form as the one for passive particles. Generally, the propulsion force does give additional contribu-
tions to the momentum flux, but these contributions disappear in the overdamped limit [83, 97].

gActually, other authors reserve the term ‘swim pressure’ (or ‘active pressure’) solely for the contribu-
tion to P swim

αβ that comes from the density term in the orientation current J m
αβ (see Eq. (4.8b)) [30, 42, 85].

We point out that the swim pressure was originally derived as a property of a homogeneous and isotropic
bulk [84–86]. In such a bulk, the other contributions to J m

αβ vanish, such that the swim pressure as
defined here agrees with other definitions. We find the definition used here, P swim

αβ (r) = J p
αβ(r)/Dr, a

natural extension of the notion of swim pressure to a local property of inhomogeneous and anisotropic
regions. Having said that, the difference in convention is purely semantic, and the results of this chapter
do not depend on it.



62 Chapter 4

where Ptot = P+Pswim has the form of a total pressure tensor that now includes the swim
pressure. One reason why Eq. (4.19) is convenient to work with, is that in a homogeneous
and isotropic bulk the total pressure tensor Ptot(r) = P totI reduces to a constant scalar
quantity P tot that equals the pressure exerted onto a (planar [143]) wall that confines the
bulk. This wall pressure P tot usually exceeds the bare bulk pressure P = 1

2Tr(P). The
reason is that active particles tend to persistently self-propel ‘into’ the wall, and thereby
exert an additional pressure on it. This additional pressure is precisely equal to the value
of the swim pressure evaluated in the bulk [83, 132]. We point out that the force balance
(4.19) is derived here only for an active ideal gas, but it can be generalized to systems
with isotropic particle-particle interactions: for these systems Eq. (4.19) remains valid,
but with generalized expressions for the total pressure tensor P tot

αβ (see e.g. [144]) and
orientation flux J m

αβ [141].
Rewriting the force balance (4.15) into (4.19) is by now standard [66, 132], but because

we consider a position-dependent propulsion speed v0(x), we pick up an additional term
proportional to its gradient ∂βv0. To illustrate the effect of this term, we again consider
the force balance in a flux-free steady state away from any walls, such that f f = f e = 0.
The component of the force balance (4.19) in the direction normal to the interface then
simplifies to

0=−∂xP tot
xx (x) + γ(∂xv0)

Dr

[
v0

(
Sxx + ρ

2

)
−Dt∂xmx

]
, (4.20)

where we used Eq. (4.8b). The force balance (4.20) is illustrated in Figs. 4.4(c-d). The
normal component of the total pressure, P tot

xx (x), is plotted as the blue line in Fig. 4.4(c).
It is constant as long as v0(x) is constant, i.e. P tot

xx (x) = P tot
f for x < 0, and P tot

xx (x) = P tot
s

for x > 0, where P tot
f and P tot

s represent the total pressure of the fast and slow bulk,
respectively. However, as Fig. 4.4(c) shows, the value of P tot

xx (x) jumps at x = 0, such
that P tot

f �= P tot
s . According to the discussion above, this implies that the fast bulk and

slow bulk exert different pressures on their surrounding walls, a feature that was already
observed in [88]. This difference is a consequence of the fact that both the densities
and propulsion speeds differ between the two bulks, and, consequently, so do both the
bare pressure and the swim pressure. The overall result is that the total pressure is
higher in the slow bulk than in the fast bulk. We show here that the force balance is
nonetheless satisfied. Indeed, for our velocity profile v0(x) given by Eq. (4.3), the ∂xv0-
term in Eq. (4.20) takes the form of a delta function, which is represented by the red line
in Fig. 4.4(d). This delta function restores the force balance, as again made explicit by
the fact that the integral up to x of both terms in Eq. (4.20), shown as the green line in
Fig. 4.4(c), is independent of x.

4.6 Mechanical interfacial tension
Having established the force and pressures at play in the interface, we now aim to find
the interfacial tension. First, we must answer the question how to extend the equilibrium
concept of interfacial tension to active systems. We consider two possible extensions, both
of which deserve their own section.

In this section, we define the mechanical interfacial tension σm, that follows from the
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equilibrium concept of interfacial tension σ in the following way. For an equilibrium phase
coexistence, the interfacial tension σ is defined as the free energy cost of an interface of
unit length. Note that we speak of a unit length because we consider a two-dimensional
system; in three dimensions it would be the cost of an interface of unit area. This definition
implies that if one increases the interfacial length by an infinitesimal amount dL, the
free energy increases by an amount dF = σdL, provided that one keeps other system
parameters constant, such as the system’s total area (or, in 3D, its volume). For a system
in a rectangular box, such a transformation can be achieved by lengthening the box in
the direction tangential to the interface, while simultaneously shortening the box in the
normal direction in such a way that its area remains constant. This box deformation is
indicated by the orange arrows in Figs. 4.5(a) and (b). Note that our interface points
along the y-axis, such that dL = dLy. If the deformation is performed quasi-statically,
the work required for the deformation dW equals the increase in the system’s free energy
dF , which implies

dW = σdLy. (4.21)
Now, by itself, Eq. (4.21) is a purely mechanical equation for the interfacial tension σ, and
can therefore directly be applied to active systems, in which case we denote the resulting
interfacial tension by σm.

We thus obtain the mechanical interfacial tension σm by first calculating the work dW
required for the constant-volume box deformation, and subsequently applying Eq. (4.21).
Actually, the situation is a bit more involved than outlined above, and the entire cal-
culation is presented in Appendix 4.B. Nonetheless, the essential idea is the same, and
the result of the derivation in Appendix 4.B is as follows. The interfacial tension σm
equals the work per increase in interface length, i.e. σm = dW/dLy, where dW is the
work required for a constant-area box deformation of the actual system minus the work
required for the same deformation of a reference system that has a ‘trivial’ interface. This
reference system is defined as the combination of a fast and slow bulk that exist all the
way up and down to x = 0, respectively, and is schematically depicted in Fig. 4.5(a). The
actual system, illustrated in Fig. 4.5(b), differs from the reference system by the existence
of a nontrivial interface in between the bulks. Thus, the interfacial tension σm equals
the difference between Figs. 4.5(b) and (a) in the force that is exerted vertically onto
the upper (or lower) wall. The difference in this force comes from the difference between
the systems in the region where their interface meets the wall. This region is marked
by the upper (or lower) yellow rectangle in Figs. 4.5(a) and (b). For definiteness, in this
discussion we stick to the upper wall, and upper yellow rectangle, whose enclosed area we
denote by Sup. Hence, by Newton’s third law, the interfacial tension reads

σm = −
ˆ

Sup

dS(f e
y,ref − f e

y ). (4.22)

The subscript ‘ref’ refers to the reference system of Fig. 4.5(a). The surface integral is
defined as

´
Sup

dS =
´ xs

b
xf

b
dx
´ Ly

yb
dy, where it is understood that the boundary y = Ly

(the upper boundary of Sup) lies just above the upper wall, such that no particles are
present at y = Ly. The reason that a surface integral appears is because we consider a
two-dimensional system; in three dimensions it would be a volume integral.
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Figure 4.5: Sketch of (a) a fictional reference system that consists of a fast and slow bulk simply
glued together at x = 0 and (b) the actual system with a nontrivial interface. (c) Numerical
solution of the actual system in the region where the interface meets the wall, obtained under
the closure S = 0 for Pe = a = 5. The orange arrows in (a-b) indicate a constant-volume box
deformation that increases the interfacial length by dLy. The background color in (a-c) indicates
the bare pressure P = ρkBT , black arrows indicate the propulsion force fp (or, actually, only
the vertical component fp

y ŷ in (a-b)), and red arrows indicate the flux of propulsion force J p
yy.

(d) Total pressure profile P tot
yy over the lower boundary of the upper yellow box in (a) for the

actual system (blue line) and for the reference system (violet line), under the same closure but
for Pe = 1 and a = 5. The area under the difference of these curves gives a negative contribution
to the mechanical interfacial tension σm. Inset: The profile of the source term s(y) - that is due
to v0(x) being position dependent - over the dotted red line in (a), again for S = 0, Pe = 1
and a = 5. The area under this curve gives a contribution to σm that is positive and exactly
opposite to the contribution from the total pressure difference. Therefore, σm = 0.
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A closeup of the region Sup is shown in Fig. 4.5(c) for a numerical solution of the
actual system. The numerical solution is obtained under the closure S = 0, i.e. by solving
Eqs. (4.7) and (4.8), in steady state, and in a box with lengths Lx = Ly = 80� enclosed by
hard walls. The solution is shown for Pe = 5 and a = 5. The choice for Pe = 5 may seem
strange, since the closure S = 0 is only expected to be reasonable for Pe � 1. However,
it is made only for illustrational purposes: the purpose of Fig. 4.5(c) is to illustrate the
qualitative features that we discuss below, and while these features are also present for
Pe � 1, they are smaller, and therefore not clearly visible in that case.

To rewrite Eq. (4.22) into a more useful form, we utilize the force balance of Eq. (4.15)
to substitute the external forces f e

y,ref and f e
y . Of the several terms that follow, the

contribution from the frictional force f f
y = −γJy vanishes: for the reference system of

Fig. 4.5(a), the reason is simply that the particle flux Jref is zero everywhere; for the
actual system of Fig. 4.5(b), it turns out that there is a nonzero current J in the region
where the interface meets the wall, but this vector field is a pure rotation, and therefore its
contribution the integral vanishes, as shown in Appendix 4.C. The remaining contributions
to the interfacial tension are

σm =
ˆ xs

b

xf
b

dx (Pyy,ref(x, yb) − Pyy(x, yb)) +
ˆ

Sup

dS
(
fp

y,ref(x, y) − fp
y (x, y)

)
. (4.23)

Here we used Gauss’ theorem to rewrite the integral over the pressure term as an integral
over the boundary δSup. Of this boundary integral, only the integral over the lower side
of δSup (at y = yb) contributes: the contributions from the vertical sides (at x = xf

b and
at x = xs

b) vanish due to the fact that P is diagonal, whereas the contribution from the
upper side (at y = Ly) vanishes because it is understood to lie just above the upper wall,
where there are no particles such that Pyy,ref(x, Ly) = Pyy(x, Ly) = 0.

Eq. (4.23) shows that the mechanical interfacial tension σm is the sum of two con-
tributions. The first contribution is the difference in the bare pressure Pyy integrated
over the lower boundary of δSup, i.e. integrated through the interface at fixed y = yb.
The bare pressure Pyy(x, yb) = ρ(x, yb)kBT is proportional to the local density ρ(x, yb),
which is shown by the background color in Figs. 4.5(a-c). Because the density profile
in the interface is different for the actual and reference systems, the first contribution of
Eq. (4.23) to σm is nonzero, and can be either positive or negative, depending on Pe and
a. The second contribution to Eq. (4.23) comes from the y-component of the propulsion
force fp

y . The propulsion force field is shown as the black arrows in Figs. 4.5(a-c). A
nonzero propulsion force f p

y = γv0(x)my forms close to the horizontal walls, because, as
already alluded to in section 4.5, active particles tend to persistently propel ‘into’ walls,
and thereby form a polarization my pointed towards the wall. Note that Figs. 4.5(a) and
(b) only (schematically) show the y-component of the propulsion force, which is the only
component that contributes to the interfacial tension. In contrast, Fig. 4.5(c) shows the
profile of the full propulsion force f p, and therefore also displays the horizontal propulsion
force fp

x that forms in the interface (see section 4.5).
Rather than evaluating the two contributions to Eq. (4.23) directly, we choose to

further rewrite them by employing Eq. (4.18). The result is

σm = σ0 + σmg, (4.24)
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where
σ0 ≡

ˆ xs
b

xf
b

dx
(
P tot

yy,ref(x, yb) − P tot
yy (x, yb)

)
(4.25)

and
σmg ≡ − γ

Dr

ˆ

Sup

dS(∂xv0)(x)J m
xy(x, y). (4.26)

The subscript “mg” stands for “motility gradient”, for reasons we discuss below. In
deriving Eq. (4.24), we used the fact that the ∂xv0-term is absent for the trivial interface
of the reference system, simply because this is how the reference system is defined. In
fact, Appendix 4.B only derives Eq. (4.24) where P tot

yy,ref(x, yb) is defined to be given by
P tot

f for x < 0 and by P tot
s for x > 0. Indeed, these are the total bulk pressures of the

fast and slow bulk, and thus of the reference system of Fig. 4.5(a). Nonetheless, strictly
speaking, Eqs. (4.22)-(4.23) and the comparison with the reference system only constitute
an interpretation of the result derived in appendix 4.B.

Eq. (4.24) again shows the interfacial tension σm as the sum of two contributions: σ0,
whose expression (4.25) does not explicitly depend on the velocity profile v0(x), and σmg,
whose expression (4.26) involves ∂xv0(x) such that σmg is only nonzero for systems with
a motility gradient. We discuss these contributions one by one.

4.6.1 The contribution σ0

The first contribution (4.25) comes from the difference in the yy-component of the total
pressure tensor, again integrated through the interface (at fixed y = yb). This contribution
can be rewritten into a form that only involves the actual system. To this end, we point
out that the reference system’s total pressure tangential to the interface coincides with
the actual system’s total pressure normal to the interface, i.e. P tot

yy,ref(x, yb) = P tot
xx (x, yb).

Indeed, Sec. 4.5 showed that P tot
xx (x, yb) is also given by P tot

f for x < 0 and by P tot
s for

x > 0. Therefore,

σ0 =
ˆ xs

b

xf
b

dx
(
P tot

xx (x, yb) − P tot
yy (x, yb)

)
. (4.27)

Now, Eq. (4.27) is precisely the expression for the mechanical interfacial tension that
has been found for MIPS [25, 26]. Thus, whereas for our system σ0 is only one of two
contributions to the mechanical interfacial tension σm of Eq. (4.24), for MIPS it constitutes
full mechanical interfacial tension σm = σ0 [25, 26]. Of course, in the latter case it is
understood that the total pressure tensor includes the appropriate contributions from
particle-particle interactions [26, 144].

The two pressure components that appear in Eq. (4.27) are plotted in Fig. 4.5(d), this
time for Pe = 1 and a = 5. As already discussed in Sec. 4.5, the component normal to
the interface P tot

xx (x) jumps at x = 0, but is otherwise constant and equal to the bulk
pressures P tot

f/s . The component tangential to the interface P tot
yy (x) behaves differently. On

the fast side of the interface, i.e. for x < 0, it exceeds the bulk pressure P tot
f , whereas

on the slow side of the interface (x < 0) it is lower than the corresponding bulk pressure
P tot

s , but by a lesser amount. The overall result is that the integral of Eq. (4.27), given as
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the area under the difference of the two curves, is negative. Hence, σ0, which forms the
full - negative [26] - interfacial tension for MIPS, is already negative in our simple ideal
gas system!

And precisely because our system is a simple active ideal gas, we can also understand
why it is negative. We explain it for the form that σ0 takes in Eq. (4.25), i.e. by comparing
the interfacial profiles P tot

yy of the actual and the reference system. As explained in Sec. 4.5,
the total pressure P tot

yy is the sum of the bare pressure Pyy and the swim pressure P swim
yy .

We already explained below Eq. (4.23) that the bare pressure Pyy differs between the
two systems, and that this gives a contribution to the interfacial tension σm that can
be either positive or negative. As we will explain below, the contribution from the swim
pressure P swim

yy to Eq. (4.25) is always negative. Moreover, it turns out that the sum of the
contributions from the bare and swim pressure is also always negative, such that indeed
σ0 < 0. In fact, for small Péclet numbers (Pe � 1), Appendix 4.D derives that

σ0 = −�kBTPe a

1 + a
mx(0), (4.28)

where the polarization mx(0) = mx(x = 0, y = yb) is positive (see Fig. 4.2(b)), such
that Eq. (4.28) is indeed manifestly negative. In the opposite limit, i.e. for Pe � 1, the
contribution from the swim pressure dominates the contribution from the bare pressure,
such that the result is also negative.

So why is the contribution to Eq. (4.25) from the swim pressure P swim
yy negative?

Physically, the reason is that this contribution represents a propulsion force fp
y in the

interface-wall region that is larger in the actual system than in the reference system.
Because this propulsion force helps in doing the box deformation, its contribution to the
interfacial tension is negative. We now explain this in more technical terms. The reason
that the interfacial profile P swim

yy (x, yb) contributes to the interfacial tension σm in the
first place is that, as explained in Sec. 4.5, it is proportional to the flux of y-component
of propulsion force J p

yy. In turn, the flux J p
yy(x, yb) contributes to the total amount of

propulsion force in Sup, and thus, via the second term of Eq. (4.23), to the interfacial
tension σm. To understand the sign of this contribution, we compare the flux J p

yy(x, yb)
between the actual and the reference system. This flux is shown as the red arrows in
Figs. 4.5(a-c). For the reference system, the flux J p

yy into Sup simply equals its fast bulk
value for x < 0 and its slow bulk value for x > 0 (see Fig. 4.5(a)). The actual system,
however, has a higher influx J p

yy on the fast side of the interface, and a lower influx on the
slow side of the interfaceh (see Figs. 4.5(b) and (c)). Importantly, the difference between
the actual and reference system is of larger magnitude on the fast side than on the slow
sidei, such that the overall effect is that the actual system has a higher influx J p

yy into
hThe excess influx on the fast side can be traced back to the fact that, compared to the reference

system, the actual system has a density and tangential nematic alignment Syy = 1 − Sxx that are
higher on this side (see Fig. 4.2). By Eq. (4.8b), this leads to a higher orientation flux J m

yy - which
means that particles are more mobile along the interface - and thus to a higher flux of propulsion force
J p

yy = γv0(x)J m
yy . Conversely, on the slow side the actual system’s density and nematic alignment Syy

are lower, which makes particles less mobile along that side of the interface and thus leads to a lower
value of J p

yy.
iThe reason is the factor v0(x) that appears in J p

yy = γv0(x)J m
yy : the change in particle mobility along

the interface J m
yy has a larger impact on the flux of propulsion force J p

yy on the fast side of the interface
than on the slow side.
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Sup than the reference system. If we ignore the “mg”-contribution from the ∂xv0-term
in Eq. (4.18) for the moment, the result is indeed that the actual system has a larger
propulsion force fp

y in the interface-wall region than the reference system. As emphasized
above, this propulsion force helps in doing the box deformation, and this is (largely) the
reason that σ0 < 0.

4.6.2 The contribution σmg

Finally, we discuss the effect of the motility gradient, which gives rise to the contribu-
tion σmg in Eq. (4.24). Eq. (4.26) shows that σmg is proportional to an integral over
∂xv0(x)J m

xy(x, y). Since ∂xv0(x) = −(vf − vs)δ(x) (see Eq. (4.3)), this integrand only
contributes at x = 0, i.e. on the line marked by the red dots in Fig. 4.5(b). Consequently,
the integral over x can be performed, which yields - using Eq. (4.8b) and treating the
discontinuities at x = 0 carefully -

σmg =
ˆ Ly

yb

dy

�
s(y), (4.29)

with
βs(y)

�
≡ Pe

(1 + a)2

(
− a(1 + a)�∂xmy(y) + Pe a(2 + a)Sxy(0, y)

)
. (4.30)

Here β ≡ (kBT )−1 and ∂xmy(y) ≡ 1/2(∂xmy(0+, y)+∂xmy(0−, y)), where 0± ≡ limε↓0(0±
ε). ∂xmy is the ‘mean value’ of ∂xmy, which is discontinous, at x = 0. Here we defined
0± ≡ limε↓0(0 ± ε). Generally, calculating the function s(y) requires the full numerical
solution of the system sketched in Fig. 4.5(b), including the y-dependence near the hor-
izontal wall. Since we were not able to obtain this solution to the required accuracy for
general Pe, instead we used the closure S = 0 to simplify the equations. The resulting
solution s(y) is shown in the inset of Fig. 4.5(d), for Pe = 1 and a = 5. Clearly, s(y)
is positive, and therefore so is σmg. In fact, under this closure σmg can be calculated
analytically, which is done in Appendix 4.D. The result is

σmg = �kBTPe a

1 + a
mx(0). (4.31)

Remarkably, comparing Eq. (4.31) with Eq. (4.28) shows that σmg = −σ0, such that, by
Eq. (4.83), σm = 0!

We conclude that in the limit Pe � 1 the mechanical interfacial tension σm = 0. This
means that the presence of the interface neither makes the box deformation of Figs. 4.5(a-
b) cost more work, nor less.

4.7 Tensile force in the interface
For an equilibrium phase coexistence, the interfacial tension σ also plays the role of the
tensile force in the interface. Thereby, it stabilizes the interface against perturbations. In
this section we extend this definition to active systems, for which we call it σt. Moreover,
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we investigate the stability of the interface.
To this end, we slightly perturb the interface, and see how it responds. The pertur-

bation consists of shifting the interface at coordinate y in the x-direction by an amount
h(y). Thus, the perturbed density profile ρ(x, y, t) is initially given by

ρ(x, y, t = 0) = ρ0(x − h(y)), (4.32)

where ρ0(x) denotes the unperturbed density profile. For simplicity, we assume

h(y) = A cos(ky) (4.33)

for a given wavenumber k and amplitude A. We assume that h(y), h′(y) and h′′(y) all
can be considered ‘small’, which means that B must be much smaller than any internal
length scale, while k must not be much larger than the reciprocal of any internal length
scale. The perturbation h(y) is sketched in Fig. 4.6.

Eq. (4.32) does not fully specify the perturbed probability density ψ(r, θ, t = 0), since
it states nothing about the change in the higher angular moments m, S etc. To specify
the perturbation fully, we assume that these higher angular moments are adiabatically
enslaved to the density. In other words, we assume that they attain their steady-state
values at the fixed density profile (4.32). This assumption is valid only if all gradients are
‘small’ [66], i.e. if |∇ψ| � ψ/max(�, �p), where we recall that � is the diffusive length scale
and �p the persistence length. This assumption is not justified for the solutions of Sec. 4.4,
which correspond to the step function profile (4.3) of the propulsion speed. Therefore, in
the current section, instead we assume a profile v0(x) that varies slowly from one bulk to
the other. ‘Slowly’ means over a distance W much larger than any internal length scale,
such that the interface width is much larger than � and �p. Appendix 4.F derives the
perturbations of the higher angular moments that follow from this assumption.

In order to track the response of the interface over time, we define its location by the
Gibbs dividing line xG(y, t). The definition of xG(y, t) is given in appendix 4.E. Actually,
the most interesting quantity is the deviation of the Gibbs dividing line δxG(y, t) ≡
xG(y, t) − xG,0(y, t) from its unperturbed value xG,0(y, t). In the following, we consider
this displacement δxG(y, t) of an interface segment of infinitesimal width δy along the
interface. An example of such a segment (but of finite width) is drawn in Fig. 4.6. As
shown in Appendix 4.E, the displacement of this segment changes according to

∂tδxG(y, t) = 1
∆ρ

1
δy

ˆ

δSsegm

d�J · n̂. (4.34)

Here δSsegment denotes the boundary of the segment’s surface area Ssegm and n̂ its outward-
pointing normal vector. Also, recall that ∆ρ = ρs − ρf is the difference in bulk densities,
which remain unchanged by the perturbation. Eq. (4.34) shows that particles that flow
out of the segment (J·n̂ > 0) cause the interface to displace towards the right (∂tδxG > 0),
which is towards the dense phase, as expected. Similarly, particles flowing into the segment
(J · n̂ < 0) cause the interface to displace towards the dilute phase on the left (∂tδxG < 0).
The particle flux J·n̂ can either come from the adjoining bulks through the normal faces of
the segment, or from the adjoining part of the interface through the lateral faces. Indeed,
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as shown in appendix 4.E, Eq. (4.34) can also be written as

∂tδxG(y, t) = 1
∆ρ

(
Jx(xs

b, t) − Jx(xf
b, t) +

xs
bˆ

xf
b

dx∂yJy

)
, (4.35)

where Jx(xs
b, t) − Jx(xf

b, t) represents the outflux through the normal faces, and where´ xs
b

xf
b

dx∂yJy(x, y, t) represents the outflux through the lateral faces. As we will show in
Sec. 4.7.2, a lateral flux is only present if the interfacial tension σt - that we will define in
Sec. 4.7.1 - depends on the location y in the interface. Before we discuss this possibility,
we first focus on the case that σt is uniform, such that fluxes tangential to the interfaces
are absent.

4.7.1 Interface response in absence of tangential currents
If tangential currents are absent, it seems likely that the fluxes through the normal faces,
Jx(xf

b) and Jx(xf
b), are related to the change in center-of-mass position of the interface

segment. Indeed, if one approximates the interface segment as a rigid object of n ≡´
Ssegm

dSρ0(x) particles, then its center-of-mass velocity v̄x ≡
´

Ssegm
dSJx/n equals the

local velocity at the normal faces. Therefore, the fluxes through these faces are given by
Jx(xf

b) = ρfv̄x and Jx(xs
b) = ρsv̄x, and Eq. (4.35) becomes

∂th(y, t) = v̄x = 1
nγ

ˆ

Ssegm

dSγJx. (4.36)

Here we replaced δxG(y, t) by h(y, t), because the assumption that the interface consists of
rigid segments implies that the density profile remains of the form (4.32), but with a shift
h(y, t) that now depends on time and that equals the change in Gibbs dividing surface
δxG(y, t). Eq. (4.36) shows that the change in the perturbation ∂th(y, t) is proportional
to the particle flux Jx - and thereby to the frictional force f f

x = −γJx - integrated over
the interface segment. According to the force balance (4.19), any change in h(y, t) thus
results from the sum of the non-frictional forces integrated over the segment, which is an
intuitive result.

We now calculate the integral
´

Ssegm
dSγJx. Integrating the force balance (4.19) over

the interface segment gives
ˆ

Ssegm

dSγJα = −
ˆ

δSsegm

d�P tot
αβ nβ + γ

Dr

ˆ

Ssegm

dS(∂xv0)J m
xα, (4.37)

where we used that ∂yv0 = 0. In order to obtain a more useful form, we slightly rewrite
Eq. (4.37). We make use of the fact that the undeformed interface satisfies the force
balance

0 = −∂αP tot
0,xx + γ

Dr

(∂xv0)J m
0,xα, (4.38)

where P tot
0,αβ is the total normal pressure of the unperturbed system, and J m

0,αβ its ori-
entation current. To see that Eq. (4.38) is indeed correct, note that for α = x it
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Figure 4.6: (a) Sketch of the forces that act on a perturbed interface segment. The interface,
in black, is perturbed by the function h(y) from its original position in gray. Marked orange is an
interface segment whose lower (upper) boundary δSA (δSB) is located at y = yA (y = yB) and has
normal vector n̂A (n̂B). Blue arrows denote the tensile forces σt(yA)n̂A and σt(yB)n̂B that act on
the upper and lower boundary (the sketch assumes σt(yA/B) > 0). Green arrow denotes the force
due to the motility gradient, γ/Dr∂xv0(J m

xα − J m
0,xα), integrated over the segment. In (b-d) we

specialize to an interface segment centered at y = 0, where h(y) is positive and maximal. (b) The
normal flux Jx integrated over the segment is, after an initial transient, positive. This seems to
make the perturbation grow. (c) Typical snapshot of an interface perturbation. Colors indicate
density, arrows indicate particle flux. A tangential current through the interface increases the
number of particles in the orange segment. (d) The tangential derivative of this current, ∂yJy,
integrated over the segment, is negative. As a result, (inset) the interface position, represented
by the offset in Gibbs dividing surface δxG(y, t), is restored over time. Parameter values used
for (b) and (d) are Pe = 1, a = 1, W = 10, A = 0.1, and k = 2π/40, while for (c) Pe = 1, a = 1,
W = 0.5, A = 2, k = 2π/8 and Drt = 0.8. The values for (c) do not satisfy the assumptions
that the perturbation and spatial gradients are small, but these values are chosen only to obtain
a snapshot for which the perturbation and tangential currents are visible with the naked eye.
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reduces to Eq. (4.20), while for α = y it is trivially satisfied since ∂yP tot
0,xx = 0 and

J m
0,xy = 0. We integrate Eq. (4.38) over Ssegm, and rewrite the pressure term by using

−∂αP tot
0,xx = −∂β(P tot

0,xxδαβ) and Gauss’ theorem. The result we subtract from Eq. (4.37),
which yields
ˆ

Ssegm

dSγJα = −
ˆ

δSsegm

d�
(
P tot

αβ − P tot
0,xxδαβ

)
nβ + γ

Dr

ˆ

Ssegm

dS(∂xv0)
(
J m

xα − J m
0,xα

)
. (4.39)

The integral over the pressure terms in Eq. (4.42) does not contribute on the left
and right boundaries of the segment, because these boundaries are assumed to lie in the
unperturbed isotropic bulk systems, where P tot

αβ = P tot
0,xxδαβ. Therefore, the integral only

contributes on the lower and upper boundary. These boundaries are located at y = yA and
y = yB, and denoted by δSA and δSB, respectively (see Fig. 4.6(a)). Their contributions
are assumed to point in the direction of their normal vectors n̂A and n̂B, such that

ˆ

δSA

d�
(
P tot

0,xxδαβ − P tot
αβ

)
nβ ≡ σt(yA, t)n̂A (4.40)

for the lower boundary, and the same expression holds for the upper boundary with
the subscripts ‘A’ replaced by ‘B’. Physically, the contribution of Eq. (4.40) represents a
tensile force in the interface. Thereby, it defines our second extension of the equilibrium
concept of interfacial tension: σt. The subscript ‘t’ is for ‘tension’. Since the perturbation
h(y, t) is assumed to be small, the leading order contribution to the tension σt follows
from Eq. (4.40) evaluated for the unperturbed interface. For the unperturbed interface,
Ptot is diagonal and n̂A = −ŷ, such that the tension σt reduces to the quantity σ0 of
Eq. (4.27). Note that σ0 does not depend on y (or time). Additionally, the tension σt can
have subleading contributions that depend on the perturbation h(y, t) (or its derivatives),
and that we denote by σ1(y, t). Therefore, the tensile force

σt(y, t) = σ0 + σ1(y, t) (4.41)

can only depend on the position in the interface y through σ1(y, t). With Eq. (4.40) -
and its equivalent for the upper boundary - the integrated flux (4.39) becomes
ˆ

Ssegm

dSγJα = σt(yA, t)n̂A + σt(yB, t)n̂B + γ

Dr

ˆ

Ssegm

dS(∂xv0)
(
J m

xα − J m
0,xα

)
. (4.42)

Before we address the right-hand side terms of Eq. (4.42) for our system, we discuss
them for a case that is more familiar: a phase coexistence of interacting particles with
homogeneous propulsion speed. This includes equilibrium phase coexistences (for which
the propulsion speed is zero), but also MIPS. Since ∂xv0 = 0 for these systems, the
final term in Eq. (4.42) vanishes. Moreover, the dominant contribution to σt is simply
σ0, which, as discussed in section 4.6, equals the mechanical interfacial tension. Hence,
σt = σ0 = σm, such that the two definitions for the interfacial tension σt and σm coincide
(for an interface with small spatial gradients). Since the directions of the tensile forces in
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Eq. (4.42) add up as n̂A + n̂B = h′′(yA, t)δyx̂ (see appendix 4.F), the change in interface
location (4.36) reads

∂th(y, t) = δy

nγ
σ0h

′′(y, t). (4.43)

We use primes to denote derivatives with respect to y, i.e. h′′(y, t) ≡ ∂2h/(∂y)2. Since,
h′′(y, t) has the opposite sign of our perturbation h(y, t) of Eq. (4.33), Eq. (4.43) shows
that a positive interfacial tension σ0 results in a particle flux that restores the original
interface, whereas a negative interfacial tension makes the perturbation grow. Hence,
for interfaces of interacting particles with homogeneous propulsion speed, under the as-
sumption that there are no tangential currents, the sign of the interfacial tension controls
whether small perturbations grow or shrink.

For MIPS, the finding that σ0 < 0 [25, 26] then seems to imply that the interface
is unstable. However, Ref. [25] shows that significant tangential currents do exist in the
interface. Therefore, the term

´ xs
b

xf
b

dx∂yJy(x, y, t) in Eq. (4.35) cannot be neglected, and
Eq. (4.43) is not valid. We discuss this term in Sec. 4.7.2, and discuss its implications for
MIPS in Sec. 4.7.3.

We now discuss the terms on the right hand side of Eq. (4.42) for our active ideal gas with
position dependent propulsion speed. First, we discuss the tensile forces. In Sec. 4.6.1, we
saw that the unperturbed interface gave rise to a tension σ0 that was negative. However,
as shown in appendix 4.F, an interface with small spatial gradients has σ0 = 0. Therefore,
the leading contribution to the tension σt comes from σ1, which appendix 4.F derives to
be

σt(y, t) = σ1(y, t) = Mh(y, t). (4.44)
Here M is a positive constant whose value is given in the appendix. Since Eq. (4.44) is
linear in the perturbation h, the sum σt(yA, t)n̂A + σt(yB, t)n̂B yields a normal compo-
nent that is quadratic in the perturbation (see appendix 4.F). Therefore, the dominant
contribution to the integrated normal flux of Eq. (4.42) comes from the ∂xv0-term. As
appendix 4.F shows, this term is given by

γ

Dr

ˆ

Ssegm

dS(∂xv0)
(
J m

xx − J m
0,xx

)
= Kh(y, t)δy. (4.45)

Here K is again a positive constant whose value is given in the appendix. Thus, as sketched
in Fig. 4.6(a), the ∂xv0-term plays the role of a body force that acts in the same direction
as the perturbation. Inserting Eq. (4.45) into Eqs. (4.42) and (4.36) now yields

∂th(y, t) = Kδy

nγ
h(y, t), (4.46)

which predicts that the perturbation h(y, t) grows! Thus, the assumption of having rigid
interface segments predicts perturbations that grow, both for MIPS and for the active
ideal gas considered here.

To check this prediction, we solved the time evolution of a small interface perturbation
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numerically. The time evolution of the normal flux Jx, integrated over an interface segment
with h(y, t) > 0, is shown in Fig. 4.6(b). After an initial transient - that corresponds to
the time it takes the fast variables m, S, etc. to adapt to the slow density profile ρ -
the integrated flux

´ xs
b

xf
b

dxJx is indeed positive. Nonetheless, the interface displacement
δxG(y, t), shown in the inset of Fig. 4.6(d), decays in time. The reason for this apparent
discrepancy is, again, that tangential currents are present in the interface. Therefore,
Eq. (4.46) is not valid, and the effect of the term

´ xs
b

xf
b

dx∂yJy(x, y, t) in Eq. (4.35) has to
be taken into account. We discuss this term now.

4.7.2 Interface response in the presence of tangential currents

Tangential currents through the interface are generated by spatial gradients in the inter-
facial tension σt(y, t). Indeed, appendix 4.F derives that the transverse flux integrated
over a cross section through the interface is given by

ˆ xs
b

xf
b

dxJy(x, y, t) = 1
γ

σ′
t(y, t). (4.47)

Eq. (4.47) shows that a tangential current forms from regions of low to regions of high
interfacial tension. This effect is known as the Marangoni effect [33]. Usually, the gradients
in the tension σt are caused by gradients in the tension σ0 of the unperturbed interface,
due to e.g. a gradient in temperature or in concentration. In our case, however, σ0 = 0,
and the gradients come instead from the higher order terms σ1(y, t). Indeed, Eq. (4.44)
shows that σt = σ1 ∝ h, which means that the transverse flux is directed towards maxima
of the perturbation h. This is confirmed by Fig. 4.6(c), which shows a typical snapshot
of the perturbed interface. The orange box in the figure marks an interface segment
where h(y) has a maximum, and, indeed, particles flow through the lateral faces into the
segment. This flux increases the number of particles in the segment, and consequently
shifts the interface location δxG towards the left. Thereby, the tangential particle flux
diminishes the perturbation!

Moreover, the snapshot shows that the fluxes through the normal faces are zero, i.e.
Jx(xf

b) = Jx(xs
b) = 0. The reason is that for our ideal gas the effect of the density

perturbation remains localized in the interface. Therefore, the transverse currents are the
only contribution to the change in interface location ∂tδxG, and Eq. (4.35) simplifies to

∂tδxG(y, t) = 1
∆ρ

ˆ xs
b

xf
b

dx∂yJy(x, y, t), (4.48)

Fig. 4.6(d) shows the time evolution of
´ xs

b
xf

b
dx∂yJy(x, y, t)/∆ρ for the same interface seg-

ment. Clearly, this term is negative for all times, which confirms that the transverse flux
is the restoring mechanism for our interface perturbation.

Finally, we can use Eqs. (4.48), (4.47), and (4.44) to find that our interface location
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changes initially j according to

∂tδxG(y, t = 0) = M
δργ

h′′(y). (4.49)

Since h′′(y) has the opposite sign of the perturbation h(y) of Eq. (4.33), Eq. (4.49) again
shows that the perturbation initially shrinks.

4.7.3 Discussion
From Eq. (4.35) we distinguished two mechanisms by which the displacement δxG(y, t)
of an interface segment can change: either by a net flux through the normal faces of the
segment, or by a net flux through its lateral faces. Subsequently, we argued that for ‘rigid’
interface segments only the normal fluxes are important - where we had in mind the case
of a classic solid-gas or liquid-gas interface, for which the Marangoni-effect plays no role.
Then, we argued that for our active ideal gas only the tangential fluxes are important,
and that they are entirely caused by a Marangoni-like effect.

Actually, however, the distinction between the two effects is somewhat arbitrary. The
distinction depends on where one locates the left and right boundary of the interface
segment: where does the interface end and the bulk begin? A proper treatment would
probably define these boundaries by a threshold in density. For example, one could iden-
tify the interface as the region where the density ρ satisfies ρf + c∆ρ < ρ < ρs − c∆ρ,
for, say, c = 0.05. Then indeed for a classic liquid-gas interface the flux through the nor-
mal faces should dominate over the flux through the lateral faces. In contrast, if instead
one takes the boundaries of the segment extremely far into the bulks, then certainly the
normal fluxes through these faces will be zero, and any in- or outflux will be through
the (very long) lateral faces. In fact, for the classic liquid-gas coexistence one expects
that the restoring movement of the interface is accompanied by a ‘circular’ particle flux
in the bulk regions next to the interface, whereby particles in the dense phase move from
interface bulges to interface depressions, while particles in the dilute phase move in the
opposite direction. Locating the normal faces of the segment far into the bulks would
(partly) identify this circular flux as a tangential flux through the interface, and thus, by
Eq. (4.47), as the Marangoni-effect. Therefore, this choice of interface boundaries does
not provide a proper definition of the interface segment.

Yet, in Eq. (4.48) we used precisely this definition for our interface segment. How-
ever, while a proper treatment is beyond the scope of this chapter, we point out that
the tangential current is clearly different from the aforementioned ‘circular motion’, as
it has the same direction on both sides of the interface (see Fig. 4.6(c)). Moreover, the
same figure shows that the tangential currents in the interface are clearly larger than any
normal currents. Therefore, it is safe to say that these currents are indeed generated by
the Marangoni effect.

Finally, we discuss the stabilizing mechanism for MIPS. Patch et al. [25] show that signif-
icant tangential currents are present in the MIPS interface. They substantiate the claim

jWithout the assumption of having rigid interface segments, Eq. (4.44) is only valid at t = 0, because
at later times the density profile is not anymore of the form (4.32).
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that these currents are due to a Marangoni-like effect, and that they restore the perturbed
interface to its original state. The facts that our perturbed interface shows all of these
features and that our interface qualitatively resembles the MIPS interface (see Sec. 4.4)
support the idea that this is indeed the stabilizing mechanism.

Lee [29] argues that the stability of the MIPS interface is caused by the fact that
particles in an interface bulge can escape more easily into the dilute phase than parti-
cles in an interface depression. He relates this effect to an effective interfacial tension
that is positive and constant throughout the interface, and therefore different from the
interfacial tensions that are considered here and in [25]. Because it is likely that escaping
particles give rise to tangential currents, the different proposed stability mechanisms are
likely related, yet at this point we do not see more precisely how Lee’s argument fits into
the framework presented here.

Hermann et al. [31] also propose that the stability is governed by an interfacial tension
that is non-negative. Their definition of the interfacial tension is based on the structural
force components, which are defined as minus the sum of the ideal diffusive force and
the adiabatick interaction force components. Since all forces - including the propulsion
force - play an important role in the stability analysis presented in this section, at this
point we do not see how the interfacial tension presented in [31] and the stability analysis
presented here can be related.

4.8 Conclusions
We studied the interface formed by an active ideal gas in two half-spaces with different
propulsion speeds. We characterized the interfacial profiles of density, polarization, and
nematic order, and identified the relevant forces and pressures. We showed that the total
pressure differs between the two bulks, but that the force balance is nonetheless satisfied
due to an additional ‘body force’ that appears because the propulsion speed depends on
position. Moreover, we proposed two ways to extend the equilibrium concept of interfacial
tension to active systems. The first definition, which we called the mechanical interfacial
tension σm, represents the work required to deform the system in a way that changes the
interfacial area but not the system volume. The second definition, σt, is the tensile force
in the interface.

We found that the system considered here shares important qualitative features with
MIPS. Firstly, the interface has polarization towards the dense side, an effect which does
thus not require having particle interactions, nor particle anisotropy. Secondly, σ0, the
anisotropy of the total pressure tensor integrated through the interface, is negative -
an effect that we explained microscopically. While for MIPS σ0 = σm forms the full
mechanical interfacial tension, in our case the additional force term also contributes and,
for Pe � 1, precisely cancels the contribution from σ0, such that σm = 0. Thirdly, an
analysis of an interface perturbation, under the assumption of small spatial gradients,

kSomewhat confusingly, in this context the term ‘adiabatic’ does not refer to the assumption made in
the beginning of Sec. 4.7, i.e. that the higher angular moments are adiabatically enslaved to the density.
Instead, the adiabatic interaction forces are the interaction force components that can be written as the
gradient of a free energy derivative in the Density Functional Theory framework [145].
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shows that the normal force on an interface segment acts in the same direction as the
perturbation. While the responsible force is different - for MIPS it is the tension σt =
σm = σ0, which is negative, while for our model it is the additional body force - the result
is the same, and the analysis seems to imply that the perturbation grows, at least at first
sight.

Nonetheless, we showed that the interface of our system is stable. The reason is that
the tension σt(y) depends on the position y in the interface. This leads to the Marangoni
effect, which causes tangential currents through the interface that restore the interface to
its original state. This finding supports the idea of Patch et al. [25] that a Marangoni-like
effect similarly stabilizes the interface of MIPS.
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Appendices

Appendix 4.A Derivation of analytical solutions
In this appendix, we derive the analytical solution given in the main text, i.e. we derive
Eqs. (4.12) and (4.13). The approach is to solve the moment equations (4.7) and (4.8) by
using the closure Sαβ = 0. We consider the region far from any walls, where V (r) = 0,
and where there is invariance in the y-direction. Furthermore, we consider a steady state,
such that ∂tρ = ∂tmx = 0.

First, we take the propulsion speed to be a constant, i.e. v0(x) = v0, which holds
true for the regions x < 0 and x > 0 separately. In order to write the equations in
dimensionless form, in this appendix we use a definition for the Péclet number slightly
different from the main text, namely Pe ≡ v0/

√
DtDr. Whenever we wish to specify the

activity of the fast or slow region explicitly, we shall use Pef/s ≡ vf/s/
√

DtDr. Eqs. (4.12)
and (4.13) of the main text then take the form

0 = −�∂x (Pemx − �∂xρ) , (4.50a)
0 = −�∂x (Peρ/2 − �∂xmx) − mx, (4.50b)

which are to be solved for ρ(x) and mx(x). Eq. (4.50a) implies that the term in between
brackets, which represents the horizontal particle flux, is constant. Since there can be no
constant particle flux in steady state due to the presence of walls around the system, this
constant equals zero. Therefore,

Pemx − �∂xρ = 0. (4.51)

Eq. (4.51) can be used to substitute �∂xρ in Eq. (4.50b), which yields

0 = ∂xxmx − λ−2mx, (4.52)

where λ ≡ �/(1 + Pe2/2)1/2. Eq. (4.52) is solved by

mx(x) = Bex/λ + Ce−x/λ, (4.53)

where B and C are integration constants. Solution (4.53), in turn, can be substituted in
Eq. (4.51), which can subsequently be solved for the density as

ρ(x) = ρ0 + B Peλ

�
e−x/λ − C Peλ

�
e−x/λ, (4.54)
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where ρ0 is an additional integration constant.
The solutions (4.53) and (4.54) hold for the fast region (x < 0) and the slow region

(x > 0) separately. We now make this explicit by writing

ρ(x) =




ρ̃f + Bf Pef
λf

�
ex/λf − Cf Pef

λf

�
e−x/λf for x < 0,

ρs + Bs Pes
λs

�
ex/λs − Cs Pes

λs

�
e−x/λs for x > 0,

(4.55)

and

mx(x) =



Bfe
x/λf + Cfe

−x/λf for x < 0,
Bse

x/λs + Cse
−x/λs for x > 0.

(4.56)

The solutions (4.55) and (4.56) contain six integration constants, namely ρ̃f, ρs, Bf, Bs, Cf,
and Cs. These are to be determined from boundary conditions. First, we apply boundary
condition 1 of the main text, which translates to mx(−∞) = 0 and ρ(−∞) = ρf. This
yields Cf = 0 and ρ̃f = ρf. Next, we apply boundary condition 2 of the main text, which
translates to mx(∞) = 0. This yields Bs = 0. The three remaining constants, ρs, Bf, and
Cs, are to be determined from the requirements that the density ρ(x), the polarization
mx(x), and orientation current J m

xx(x) all need to be continuous at x = 0. The continuity
requirement for the polarization yields Bf = Cs ≡ A. Using the values obtained so far
for the integration constants in Eqs. (4.55) and (4.56) yields the solutions (4.12) and
(4.13) given in the main text. The values for the constants ρs and A follow from the two
remaining continuity conditions. The result for ρs is given by Eq. (4.14), whereas

A = cff

cffcss + c2
fs

Pef − Pes

2 ρf, (4.57)

where cff ≡ (1 + Pe2
f /2)1/2 = �/λf, css ≡ (1 + Pe2

s/2)1/2 = �/λs, and cfs ≡ (1 + PefPes/2)1/2.

Appendix 4.B Derivation of the mechanical interfa-
cial tension

In this appendix, we derive the mechanical interfacial tension σm as given by Eq. (4.24)
in the main text. In order to do so, the essential idea, explained in section 4.6, is to
calculate the work required for a constant-area box deformation, and subsequently apply
Eq. (4.21). Actually, the situation is a bit more involved than outlined in the main text, for
two reasons. Firstly, our system contains two bulks with different pressures, and therefore
the proper box deformation is one that keeps the areas of both bulks constant. Secondly,
in Eq. (4.21) we ignored the fact that the required box deformation also modifies the
lengths of the container walls, and that these have line tensions associated with them as
well. Again, we speak of line tensions rather than surface tensions because our system is
2D instead of 3D. Consequently, the box deformation that keeps both bulk areas constant
requires the work

dW = σmdLy + σfdLf + σsdLs, (4.58)
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Figure 4.B.1: Illustration of the setting and box deformation considered in appendix 4.B (a)
for the calculation of the wall line tension, and (b) for the calculation of the interfacial tension.
It is understood that the integration areas Sleft, Sright and Stop cross the interior of the system
far from the wall that they enclose, i.e. at a bulk value of the coordinate normal to that wall.

where dLf/s is the increase in the length of the wall that surrounds the fast/slow bulk, and
where σf/s is the associated line tension. Our strategy is as folows. First, we determine
the wall line tensions σs/f, by calculating the work required for a constant-area box de-
formation of a homogeneous system, with single propulsion speed and single bulk density.
Then, we calculate the work required for the box deformation of our system with a fast
and slow bulk, and use Eq. (4.58) to obtain the interfacial tension σm.

To determine the wall line tensions σs/f, we consider a steady state of an active ideal
gas with a uniform propulsion speed in a rectangular box. This system is depicted in
Fig. 4.B.1(a). It forms a single, homogeneous bulk, that we characterize by the coordinate
(xb, yb). The walls are located at x = 0, x = Lx, y = 0 and y = Ly, and they are assumed
to be identical, in the sense that they all exert the same external potential on the particles.
The box deformation that we consider is one that shifts the right wall to x = Lx + dLx

and the top wall to y = Ly + dLy, but under the restriction that system area remains
constant, i.e. that

LxdLy + LydLx = 0. (4.59)
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This implies that if dLy > 0, such as in Fig. 4.B.1(a), then dLx < 0. The line tension σw
of the wall is defined as

dW = σwdLw, (4.60)
where dW is the work required for the box deformation, and where

dLw = 2(dLx + dLy) (4.61)

is the change in total length of wall that surrounds the system. We first calculate dW ,
and then obtain the line tension σw of the wall via Eq. (4.60).

dW = −(FrightdLx + FtopdLy). (4.62)

Here, Fright is the total horizontal force exerted by the system onto the right wall, and
Ftop the total force exerted onto the top wall. We first calculate Fright. Note that only
particles in the vicinity of the right wall contribute to Fright, and that all these particles
are contained in Sright, an area that extends from the bulk system to the right wall (see
Fig. 4.B.1(a)). By Newton’s third law, Fright equals minus the horizontal external force
exerted onto the particles in Sright. Therefore,

Fright = −
ˆ

Sright

dSf e
x(x, y)(4.19)= −

ˆ

Sright

dS∂βP tot
βx (x, y) = −

ˆ

δSright

d�P tot
βx nβ =

Lyˆ

0

dyP tot
xx (xb, y).

(4.63)

For the second equality we used Gauss’ theorem, for the third equality we defined δSright
to be the boundary of Sright and n to be an outward-pointing normal vector, and for the
last equality we used that Ptot = 0 outside of the walls. In order to proceed, we point out
that the total pressure tensor in the bulk of the system is constant and isotropic, such that
P tot

xx (xb, yb) = P tot
yy (xb, yb) ≡ P tot

b . The integrand in the last line of Eq. (4.63), P tot
xx (xb, y),

only differs from P tot
b near the horizontal walls. We make this explicit by rewriting the

last term of Eq. (4.63) as

Fright = LyP tot
b − 2

ˆ Ly

yb

dy
(
P tot

b − P tot
xx (xb, y)

)
, (4.64)

where we used the top-down mirror symmetry of the system. In a completely analogous
way - but using the area Stop instead of Sright - we obtain the force exerted onto the top
wall as

Ftop = LxP tot
b − 2

ˆ Lx

xb

dx
(
P tot

b − P tot
yy (x, yb)

)
. (4.65)

Because the walls are assumed to be identical, and due to the symmetry of the system,
the integrals that appear in Eqs. (4.64) and (4.65) are actually identical. Both represent
an integral from the bulk to a wall, and can be represented as

σ̃w ≡
ˆ Ln

nb

dn
(
P tot

b − P tot
T (n)

)
, (4.66)
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where n ∈ {x, y} is the coordinate perpendicular to the wall, where P tot
T (n) is the total

pressure component tangential to the wall, and where it is understood that the integration
takes place away from any other walls, i.e. at a ‘bulk value of the tangential coordinate’.
With Eq. (4.66), inserting the forces (4.64) and (4.65) into Eq. (4.62) yields

dW = −P tot
b (LydLx + LxdLy) + 2σ̃w(dLx + dLy)

(4.59),(4.61)= σ̃wdLw. (4.67)

Comparing Eq. (4.67) with Eq. (4.60) readily shows that σw = σ̃w. Therefore, we conclude
that the line tension of a wall that surrounds a bulk system is given by

σw =
ˆ Ln

nb

dn
(
P tot

b − P tot
T (n)

)
. (4.68)

Evaluating Eq. (4.68) for the pressure profile P tot
b − P tot

T (n) next to a wall for a system
with propulsion speed vf yields σf, whereas evaluating the same quantity for propulsion
speed vs yields σs.

Next, in order to calculate the interfacial tension σm, we consider a box deformation of
our original system that keeps the areas of both the fast and slow bulk constant. We recall
that the horizontal walls are located at y = 0 and y = yb, that the interface is located
at x = 0 and stretches vertically, and the the vertical walls are located at x = −Lf

x and
x = Ls

x. This setting is depicted in Fig. 4.B.1(b). The deformation shifts the top wall to
y = Ly + dLy, the left wall to x = −(Lf

x + dLf
x), and the right wall to x = Ls

x + dLs
x. Note

that in Fig. 4.B.1(b) dLy > 0 and dLf
x, dLs

x < 0. The requirement that the areas of the
fast and slow bulks remain constant implies

LydLf/s
x + Lf/s

x dLy = 0. (4.69)

The interfacial tension follows from Eq. (4.58), where

dLf/s = 2dLf/s
x + dLy (4.70)

is the change in total length of wall that surrounds the fast/slow bulk, and where dW is
the work required for the box deformation. This work can be calculated as

dW = −(FleftdLf
x + FrightdLs

x + FtopdLy), (4.71)

where Fleft/right is the magnitude of the total horizontal force exerted onto the left/right
wall, and Ftop the magnitude of the total vertical force on the top wall. We calculate
these forces one by one. The integration areas Sleft, Sright, and Stop that appear in these
calculations are depicted in Fig. 4.B.1(b).

Fleft =
ˆ

Sleft

dSf e
x

(4.19)=
ˆ

δSleft

d�P tot
βx nβ =

ˆ Ly

0
dyP tot

xx (xf
b, y). (4.72)
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Next, in the integrand in the last line of Eq. (4.72) we add and substract the total fast
bulk pressure P tot

f . Note that the term P tot
xx (xf

b, y) − P tot
f only contributes near the upper

and horizontal walls, and that we recognize both these contributions from Eq. (4.68) as
−σf. The result is

Fleft = LyP tot
f − 2σf. (4.73)

In a similar way, the force on the right wall follows as

Fright = LyP tot
s − 2σs. (4.74)

The force on the top wall can be calculated as

Ftop = −
ˆ

Stop

dSf e
y

(4.19)=
ˆ

Stop

dS
(

−∂βP tot
βy + f f

y + γ

Dr

(∂xv0)J m
xy

)
. (4.75)

As shown in appendix 4.C, the frictional force f f
y is nonzero in the region where the

interface meets the wall, but its contribution to the integral disappears. Therefore, two
terms remain. The first we rewrite by similar manipulations as before, as follows.

−
ˆ

Sup

dS∂βP tot
βy =

ˆ Ls
x

−Lf
x

dxP tot
yy (x, yb) =

ˆ 0

−Lf
x

dxP tot
yy (x, yb) +

ˆ Ls
x

0
dxP tot

yy (x, yb). (4.76)

In the first integrand in the last line of Eq. (4.76) we add and substract the total fast
bulk pressure P tot

f . The term P tot
yy (x, yb) − P tot

f then contributes near the left wall, where
its integral gives −σf, and near the interface. In the second integrand in the last line of
Eq. (4.76) we add and substract the total slow bulk pressure P tot

s . The term P tot
yy (x, yb) −

P tot
s then contributes as −σs near the right wall, and additionally near the interface. The

result is
−
ˆ

Sup

dS∂βP tot
βy = Lf

xP tot
f + Ls

xP tot
s − σf − σs − σ0, (4.77)

where we defined

σ0 ≡
ˆ 0

xf
b

dx
(
P tot

f − P tot
yy (x, yb)

)
+
ˆ xs

b

0
dx

(
P tot

s − P tot
yy (x, yb)

)
, (4.78)

which is equivalent to Eq. (4.25) of the main text. With Eq. (4.77), Eq. (4.75) becomes

Ftop = Lf
xP tot

f + Ls
xP tot

s − σf − σs − σ0 − σmg, (4.79)

where
σmg = − γ

Dr

ˆ

Sup

dS(∂xv0)J m
xy , (4.80)

in accordance with Eq. (4.26). We used the fact that the integrand (∂xv0)J m
xy only con-

tributes near the interface, and therefore only in the area Sup ⊂ Stop defined in section
4.6. Inserting the expressions for the forces (4.73), (4.74) and (4.79) into Eq. (4.71) yields

dW = − P tot
f (LydLf

x + Lf
xdLy) − P tot

s (LydLs
x + Ls

xdLy)
+ σf(2dLf

x + dLy) + σs(2dLs
x + dLy)

+
(

σ0 + σmg

)
dLy,

(4.81)
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Figure 4.C.1: Same as Fig. 4.5(c), but now the arrows denote the (dimensionless) particle flux
�J/Dr. A nonzero, rotating flux exists in Sup, the region where the interface meets the wall.
Although not strictly true in the figure, it is understood that Sup extends to x- and y-values far
from the interface-wall intersection, such that J = 0 at its boundary δSup.

which, by Eqs. (4.69) and (4.70), simplifies to

dW = σfdLf + σsdLs +
(

σ0 + σmg

)
dLy. (4.82)

Comparing Eq. (4.82) with Eq. (4.58) shows that the interfacial tension is given by

σm = σ0 + σmg, (4.83)

which indeed is Eq. (4.24) of the main text.

Appendix 4.C Particle flux in the interface-wall re-
gion

In this appendix, we show that there is a nonzero particle current J, and thus frictional
force f f = −γJ, in the region Sup where the interface meets the wall. Also, we show that´

Sup
dSf f

y = 0. This integral appears in Eq. (4.75), and in Eq. (4.22) upon using the force
balance (4.15).

First of all, we point out that in steady state, Eq. (4.7a) implies that ∇ · J = 0. In
most regions of our setting, the symmetry and boundary conditions of the problem then
dictate that J = 0. However, in principle, a nonzero ‘rotation’ ∂xJy − ∂yJx is not ruled
out, and indeed appears in the region Sup, as shown by the numerical solution depicted
in Fig. 4.C.1.

To understand that
´

Sup
dSf f

y = 0 nonetheless, we first employ the fact that the current
J is divergenceless. This implies that it can be specified by a scalar function B(x, y) as
Jx = ∂yB and Jy = −∂xB, just as, in hydrodynamics, a divergenceless two-dimensional
flow can be specified by a stream function [146]. On δSup, the boundary of Sup, the particle
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flux J is zero, and therefore ∂xB = ∂yB = 0. This implies that B(x, y) = constant over
δSup. In particular, B(xf

b, y) = B(xs
b, y) for yb ≤ y ≤ Ly. Then

ˆ

Sup

dSJy = −
ˆ xs

b

xf
b

dx

ˆ Ly

yb

dy∂xB(x, y) = −
ˆ Ly

yb

dy
(
B(xs

b, y) − B(xf
b, y)

)
= 0. (4.84)

Hence also
´

Sup
dSf f

y = 0, which is what we wanted to prove.

Appendix 4.D Mechanical interfacial tension for small
activity

In this appendix, we show that for Pe � 1, i.e. when the closure S = 0 is fully justified,
the mechanical interfacial tension σm equals 0. In order to do so, we calculate the two
contributions to σm in Eq. (4.24) separately. We prove that the first contribution is given
by Eq. (4.28), and the second by Eq. (4.31).

We start with the first contribution σ0, and calculate it via Eq. (4.27). The integrand
in the last line of Eq. (4.27), P tot

xx (x, yb) − P tot
yy (x, yb), is the difference of the diagonal

elements of the total pressure tensor. Since Ptot = P + Pswim, and since the bare pressure
P is proportional to the identity, this difference only comes from the components of the
swim pressure:

σ0 =
ˆ xs

b

xf
b

dx
(
P swim

xx (x, yb) − P swim
yy (x, yb)

)
. (4.85)

From Sec. 4.5 we know that P swim
αβ = J p

αβ/Dr = γv0(x)J m
αβ/Dr. Using this in Eq. (4.85)

yields

σ0 = γ

Dr

ˆ xs
b

xf
b

dxv0(x)
(
J m

xx(x, yb) − J m
yy (x, yb)

)

(4.8b)= −kBT

Dr

ˆ xs
b

xf
b

dxv0(x)∂xmx(x, yb). (4.86)

In the last line we used the closure S = 0, as well as the fact that the integral runs through
the interface far from any walls, i.e. over positions for which V (r) = 0 and my = 0. Next,
we suppress the label y = yb, and calculate the integral in the last line of Eq. (4.86).

σ0 = −kBT

Dr


vf

ˆ 0

xf
b

dx∂xmx(x) + vs

ˆ xs
b

0
dx∂xmx(x)




= −kBT

Dr

(vf − vs)mx(0), (4.87)

where in the last line we used that mx(xf
b) = mx(xs

b) = 0. Upon using vs = vf/(1 + a),
vf =

√
DtDrPe, and 	 =

√
Dt/Dr, Eq. (4.87) indeed becomes Eq. (4.28) of the main text.
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Next, we calculate the second contribution σmg.

σmg
(4.26)= − γ

Dr

ˆ

Sup

dS(∂xv0)(x)J m
xy(x, y)

(4.3),(4.8b)= −kBT

Dr

ˆ xs
b

xf
b

dx

ˆ Ly

yb

dy(vf − vs)δ(x)∂xmy(x, y)

= −kBT

Dr

(vf − vs)
ˆ Ly

yb

dy∂xmy(0, y). (4.88)

At this point, it seems that, in order to calculate the integral in the last line of Eq. (4.88),
one needs the full solution of the polarization my(x, y) near the horizontal wall - which
we do not have analytically. However, it turns out that is sufficient to only know the
interfacial profile far from any walls (i.e., the solution for xf

b < x < xs
b at fixed y = yb),

which we do have analytically for Pe � 1. The trick is to write Eq. (4.88) as

σmg = −kBT

Dr

(vf − vs)I ′(0), (4.89)

where I ′(x) ≡ ∂xI(x) and I(x) ≡
´ Ly

yb
dymy(x, y), and to subsequently derive a differential

equation for I(x). This differential equation is found from the evolution equation (4.7b)
for my. Together with Eq. (4.8b), this evolution equation in steady state reads

0 = Dt∂xxmy − ∂y

(1
2v0(x)ρ − Dt∂ymy

)
− Drmy. (4.90)

Bringing the first and last term to the left and dividing by Dr yields

(1−�2∂xx)my(x, y) = −�∂y

(1
2Pe(x)ρ(x, y) − �∂ymy(x, y)

)
, (4.91)

where we defined Pe(x) ≡ v0(x)/
√

DtDr. Integrating Eq. (4.91) over y, from y = yb to
y = Ly, then gives

(1 − �2∂xx)I(x) = 1
2Pe(x)ρ(x, yb). (4.92)

Here we used that ρ and ∂ymy are zero inside the wall (which is where y = Ly is), and that
∂ymy = 0 at y = yb. Eq. (4.92) is the differential equation for I(x) that we were looking
for. Indeed, it only depends on the interfacial profile ρ(x, yb). In principle, Eq. (4.92)
can be solved for I(x), since we know the analytical solution for ρ(x, yb) (see Eq. (4.12)).
However, there is an easier way to obtain I ′(0). The first step is to take the derivative of
Eq. (4.92) with respect to x. This gives the following differential equation for I ′(x).

(1 − �2∂xx)I ′(x) = ∂x

(1
2Pe(x)ρ(x, yb)

)
. (4.93)

The next step is to recognize that the same differential equation is satisfied by −mx(x, yb).
To see this, we find the steady-state equation for mx(x, yb) far from any walls. According
to Eqs. (4.7b) and (4.8b), mx(x, yb) satisfies

0 = −∂x

(1
2v0(x)ρ(x, yb) − Dt∂xmx(x, yb)

)
− Drmx(x, yb), (4.94)
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which can be rewritten as

(1 − �2∂xx) (−mx(x, yb)) = �∂x

(1
2Pe(x)ρ(x, yb)

)
. (4.95)

Comparing Eqs. (4.95) and (4.93) shows that I ′(x) and −mx(x, yb) indeed satisfy the
same differential equation, and in particular that

(1 − �2∂xx)I ′(x) = (1 − �2∂xx) (−mx(x, yb)) . (4.96)

Eq. (4.96) implies that I ′(x) and −mx(x) can only differ by a function that vanishes by
applying the operator (1 − �2∂xx). Therefore, the general solution for I ′(x) is

I ′(x) = −mx(x) + D1e
x/� + D2e

−x/�, (4.97)

where D1 and D2 are integration constants. Since x = xf
b and x = xs

b correspond to bulks
where everything is x-invariant, I ′(xf

b) = I ′(xs
b) = 0. Since also mx(xf

b) = mx(xs
b) = 0,

Eq. (4.97) then implies that D1 = D2 = 0. Therefore I ′(x) = −mx(x), and in particular
I ′(0) = −mx(0). Using this in Eq. (4.89) yields

σmg = kBT

Dr

(vf − vs)mx(0). (4.98)

This is indeed the opposite of the first contribution (4.87). Therefore, Eq. (4.31) - being
the opposite of Eq. (4.27) - is indeed correct, and both contributions cancel, such that
indeed σm = 0 for Pe � 1.

Appendix 4.E Gibbs dividing line
In this appendix, we define the Gibbs dividing line used in Sec. 4.7, and we derive
Eqs. (4.34) and (4.35). We start by considering a fixed time t, and fixed coordinate
y - or, actually, a bin of infinitesimal width δy centered at y. In this bin, the density
profile ρ(x) interpolates between the fast bulk density ρf at x = xf

b and the slow bulk
density ρs at x = xs

b. One could imagine rearranging the particles in this bin in such a
way that the density suddenly jumps from ρf to ρs, i.e. in such a way that ρ(x) = ρf for
x smaller than some xG, while ρ(x) = ρs for x > xG. Performing this rearrangement for
all y and t defines a line xG(y, t), known as the Gibbs dividing line, usually called Gibbs
dividing surface in three dimensions [2]. The Gibbs dividing line xG(y, t) is defined by
the equation

ˆ xs
b

xf
b

dxρ(x, y, t) = ρf
(
xG(y, t) − xf

b

)
+ ρs (xs

b − xG(y, t)) , (4.99)

which expresses that the number of particles in the bin does not change during the rear-
rangement. We are mostly interested in the offset of xG(y, t) from its unperturbed value
xG,0, i.e. in δxG(y, t) ≡ xG(y, t)−xG,0. Since Eq. (4.99) forms a linear relationship between
xG and ρ, this offset δxG follows from (4.99) as

δxG(y, t) = − 1
∆ρ

ˆ xs
b

xf
b

dxδρ(x, y, t), (4.100)
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where δρ(x, y, t) ≡ ρ(x, y, t)−ρ0(x) is the change in density with respect to its unperturbed
profile ρ0(x), and where ∆ρ = ρs −ρf. Taking the time-derivative of Eq. (4.100) and using
∂tδρ = ∂tρ

(4.7a)= −∇ · J yields

∂tδxG(y, t) = 1
∆ρ

ˆ xs
b

xf
b

dx∇ · J(x, y, t). (4.101)

On one hand, by using ∇ · J = ∂xJx + ∂yJy and subsequently performing the integral
over ∂xJx, Eq. (4.101) becomes Eq. (4.35) of the main text. On the other hand, we can
integrate Eq. (4.101) over our bin of infinitesimal width, i.e. from yA to yB = yA + δy.
This yields

∂tδxG(y, t) = 1
∆ρδy

ˆ xs
b

xf
b

dx

ˆ yB

yA

dy∇ · J(x, y, t). (4.102)

Since the slope of the perturbation h′(y) � 1, the integration over the rectangular
area

´ xs
b

xf
b

dx
´ yB

yA
dy(. . . ) can be replaced by the integration over an interface segment´

Ssegm
dS(. . . ). Subsequently using Gauss’ theorem to rewrite the integral then yields

Eq. (4.34) of the main text.

Appendix 4.F Response to an interface perturbation
In sections 4.7.1 and 4.7.2 we used several results without derivation. In this appendix, we
present their derivations. We calculate the integrated flux of Eq. (4.42) that results from
a perturbation of the interface for our active ideal gas with position dependent propulsion
speed. We show that the tension σt is given by Eq. (4.44), and that the normal component
of the sum σt(yA, t)n̂A + σt(yB, t)n̂B is indeed quadratic in the perturbation. We prove
Eqs. (4.45) and (4.47). Also, along the way, we show that n̂A + n̂B = h′′(yA)dyx̂, which
was used in the main text above Eq. (4.43).

First, we make use of the approximation that all spatial gradients are small (in the
sense described in section 4.7). By Eq. (4.7a), this implies that the density ρ is a slow
variable, whereas according to Eq. (4.7b) the polarization m is then a fast variable.
Therefore, on the timescale at which the density evolves, we can assume that for any
density profile the polarization reaches its steady-state value immediately. In other words,
we can set ∂tm = 0 in Eq. (4.7b). As explained in Sec. 4.5, this justifies the use of the
force balance (4.19) in Sec. 4.7. Another consequence of the assumption of small spatial
gradients is that the orientation current J m

αβ of Eq. (4.8b) simplifies to

J m
αβ = 1

2ρ(x)v0(x)δαβ. (4.103)

Here we used that we are far from any walls, such that V (r) = 0, and that the nematic
order Sαβ can be neglected, as was shown in section 2.3.2 of this thesis. An immediate
consequence of Eq. (4.103) is that the swim pressure tensor is given by P swim

αβ = J p
αβ/Dr =

γv0(x)J m
αβ/Dr = 1

2γ(v0(x))2/Drδαβ, such that the total pressure tensor reads

P tot
αβ = Pαβ + P swim

αβ = ρkBT
(

1 + 1
2Pe2(x)

)
δαβ. (4.104)
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Here we defined Pe(x) ≡ v0(x)/
√

DtDr, a notation that we use throughout this section,
but that is not used in the main text to avoid confusion with the Péclet number on the
fast side Pe ≡ Pef. Note that total pressure tensor of Eq. (4.104) satisfies P tot

xx = P tot
yy . By

Eq. (4.27), this implies that the tension σ0 of the unperturbed interface is zero, as was
claimed in Sec. 4.7.1.

We now calculate the contributions to the integrated flux
´

Ssegm
dSγJα as given by

Eq. (4.42). We start with the tensile force on the lower boundary of the segment.

σt(yA)n̂A
(4.40)=
ˆ

δSA

d�
(
P tot

0,xxδαβ − P tot
αβ

)
nβ (4.105)

(4.104)= n̂A

ˆ

δSA

d� [ρ0(x) − ρ(x, y)] kBT
(
1 + Pe2(x)

)
.

We now use the fact that h(y) and h′(y) are small (in the sense explained in the main
text) to simplify Eq. (4.105). Firstly, the fact that h(y) is small implies that

ρ(x, y)(4.32)= ρ0(x − h(y)) = ρ0(x) − h(y)ρ′
0(x) (4.106)

to leading order in h(y). Secondly, the fact that h′(y) is small implies that αA, the
angle that n̂A makes with the negative y-axis (see Fig. 4.6), is small. Therefore, the
integration

´
δSA

d�(. . . ) in Eq. (4.106) can be replaced by the purely horizontal integration´ xs
b

xf
b

dx(. . . ). With these simplifications, Eq. (4.105) becomes

σt(yA)n̂A = Mh(yA)n̂A, (4.107)

where
M ≡

ˆ xs
b

xf
b

dxρ′
0(x)kBT

(
1 + 1

2Pe2(x)
)

. (4.108)

Note that ρ′
0(x) > 0, and hence M > 0, as claimed in the main text. The tensile force on

the upper side of the segment can be calculated in an analogous way, and reads

σt(yB)n̂B = Mh(yB)n̂B. (4.109)

Eqs. (4.107) and (4.109) identify the tension as

σt(y) = Mh(y), (4.110)

and thus prove Eq. (4.44) of the main text. In order to add the tensile forces σt(yA)n̂A
and σt(yB)n̂B, we again use the fact that h′(y) is small, which implies that

n̂A = − (h′(yA)x̂ + ŷ) (4.111)

and
n̂B = h′(yB)x̂ + ŷ (4.112)

to linear order in h′(y). The difference in sign between Eqs. (4.107) and (4.109) comes from
the different orientation of the normal vectors n̂A and n̂B. As an aside, since yB = yA +δy,
where δy is assumed to be infinitesimal, Eqs. (4.111) and (4.112) imply that

n̂A + n̂B = h′′(yA)dyx̂, (4.113)
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which is the identity that was used in the main text above Eq. (4.43). We proceed by
calculating the sum σt(yA)n̂A + σt(yB)n̂B. By Eqs. (4.111) and (4.111), this yields

σt(yA)n̂A + σt(yB)n̂B = (σ′
th

′ + σth
′′) δyx̂ + σ′

tδyŷ, (4.114)

where the right hand side line is to be evaluated at y = yA. Note that, since σt is linear in
the perturbation (see Eq. (4.110)), the x-component of the sum (4.114) is indeed quadratic
in the perturbation, as was claimed in the main text.

Next, we calculate the contribution from the ∂xv0-term in Eq. (4.42).

γ

Dr

ˆ

Ssegm

dS∂xv0
(
J m

xα − J m
0,xα

)(4.103)= γ

2Dr

ˆ

Ssegm

dS (ρ − ρ0) v0(x)∂xv0(x)δxα. (4.115)

To simplify Eq. (4.115), we use Eq. (4.106), as well as the fact that the slopes h′(y)
is small. The latter fact implies that the interface segment can be approximated to be
rectangular, such that the integration

´
Ssegm

dS(. . . ) can be replaced by
´ xs

b
xf

b
dx
´ yb

yA
dy(. . . ).

Consequently,

γ

Dr

ˆ

Ssegm

dS∂xv0
(
J m

xα − J m
0,xα

)
= K
ˆ yB

yA

dyh(y)δxα, (4.116)

where
K ≡ − γ

2Dr

ˆ xs
b

xf
b

dxρ′
0(x)v0(x)∂xv0(x). (4.117)

Since regions of high propulsion speed v0 correspond to a low density ρ0 and vice versa,
∂xv0 and ρ′

0 are expected to have opposite sign. Therefore, K > 0, as was claimed in the
main text. Since the width of the interface segment is infinitesimal,

´ yB
yA

dyh(y) = h(yA)δy.
Using this in Eq. (4.116), and adding the result to the tensile forces (4.114) gives the
following integrated flux of Eq. (4.42),

ˆ

Ssegm

dSγJ = (Khx̂ + σ′
tŷ) δy, (4.118)

to leading order in the perturbation strength. Note that the x-component of this flux is
indeed given by Eq. (4.45), and that this component is only due to the ∂xv0-term. The
x-components of the tensile forces are subleading, since, as we saw in Eq. (4.114), they
are quadratic in the perturbation strength.

Finally, we slightly rewrite the y-component of Eq. (4.118). Again replacing the inte-
gration

´
Ssegm

dS(. . . ) by
´ xs

b
xf

b
dx
´ yb

yA
dy(. . . ), and using that the width δy of the segment

is infinitesimal, yields ˆ xs
b

xf
b

dxJy(x, yA, t) = 1
γ

σ′
t(yA, t), (4.119)

which proves Eq. (4.47) of the main text.
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Chemical potential in active
systems: predicting phase

equilibrium from bulk equations of
state?

In this chapter, we focus on the simplest ABPs considered so far - isotropic ABPs with
homogeneous propulsion speed - and address the remaining thermodynamic variable: the
chemical potential.

We derive a microscopic expression for a quantity µ that plays the role of chemical
potential for ABPs in steady state and in a planar geometry with normal Cartesian co-
ordinate z. This quantity µ is not to be confused with the solvent chemical potential
µs introduced in chapter 3. We confirm that µ(z) is spatially constant for several inho-
mogeneous active fluids, and also use it to study phase coexistences of ABPs. We show
that these phase coexistences satisfy not only mechanical but also diffusive equilibrium,
and test whether the coexisting densities can be found by equating the bulk chemical
potentials and bulk pressures obtained from bulk simulations. While this works well for
a coexistence of weakly active Lennard Jones particles, the predicted densities are found
to be inaccurate for the highly active MIPS. We show that the discrepancy can be traced
back to interfacial contributions to µ.

This chapter is part of a collaboration with Siddharth Paliwal, Marjolein Dijkstra and
René van Roij. It is based on chapter 4 of Siddharth Paliwal’s PhD thesis [21], as well
as on the publication that carries the same title as this chapter [141]. Siddharth Paliwal
performed all computer simulations, whereas the author of this thesis was responsible
for the Fokker-Planck calculations of the active ideal gas, and, together with Marjolein
Dijkstra and René van Roij, for the conceptualization of the swim potential.
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5.1 Remarks on notation
We warn the reader that the various pressures appearing in this chapter have slightly
different notation than in chapter 4. The most important difference is that the total
pressure P tot of chapter 4 is denoted in this chapter by P . In chapter 4, P was the bare
pressure, and followed from the trace of the bare pressure tensor P; in the current chapter,
only the normal component of the bare pressure tensor enters, and is called PN . The swim
pressure P swim of chapter 4 still corresponds to the swim pressure Pswim of this chapter.

Furthermore, whereas in the other chapters the orientation of an active Brownian
particle is denoted by ê, in this chapter it is called û.

5.2 Introduction
Coexisting phases in thermodynamic equilibrium are, apart from thermal, also in me-
chanical and chemical equilibrium with each other. These conditions mean that, for a
certain temperature, both phases have equal pressure as well as equal chemical potential.
If the pressure and chemical potential are known for a homogeneous system as a function
of the density, then these two conditions can be used to solve for the densities of the two
coexisting phases. This is a powerful technique, and a feat that would truly show the
usefulness of thermodynamic variables for ABPs, would be to show that they can predict
the coexisting densities of MIPS in a similar fashion.

The variable pressure for ABPs has already been discussed in chapters 3 and 4. These
chapters did show some surprises: chapter 3 showed that in systems with torque the pres-
sure on the wall depends on the wall potential, while chapter 5 showed that two phases
with different propulsion speeds “coexist” at different pressure. However, for the simple
case of isotropic particles with homogeneous propulsion speed, the situation is just like in
equilibrium: the total pressure exerted on the wall is well-defined (as shown by Eqs. (3.8)
and (3.6)), and two phases coexist at equal total pressure [92] (see Eq. (4.19)a). There-
fore, in the remainder of this thesis we focus on isotropic particles with homogeneous
propulsion speed. For these systems, the question that remains is: can we define a chem-
ical potential? And can it, together with the pressure, be used to predict the coexisting
densities of MIPS?

A chemical potential has already been introduced in the literature using phenomeno-
logical arguments [41, 46, 57, 89, 147]. For instance, Takatori and Brady [41] introduced
a chemical potential using micromechanical arguments, of similar form to the one that we
will derive by a different approach in this chapter. The same authors even proceed and
calculate binodals on the basis of either a Gibbs-Duhem-like equation or a free energy for
the case of an incompressible solvent. However, a quantitative comparison with simulated
data later showed that a Maxwell construction on the simulated equation of state does
not yield the correct coexistence densities [70]. Recently, Hermann et al. [148] also intro-
duced a different non-equilibrium chemical potential. With the help of an ansatz for the
crucially unknown chemical potential component, they were able to find the coexisting

aActually, in chapter 4 we considered only an active ideal gas. However, the same equality holds for
a suitable generalization of the pressure to interacting systems, as we show in this chapter.



Chemical potential in active systems 95

densities to good accuracy. While all of these efforts provide valuable insight, none of
the proposed chemical potentials is fully microscopic, which means that they cannot be
measured unambiguously (yet) in computer simulations of homogeneous bulk systems.

In this chapter, we aim to view the problem from a different perspective, by introduc-
ing a chemical potential-like quantity that is fully microscopic. While our Fokker-Planck
approach is similar in spirit to that of Refs. [46, 70], it sheds new light on the problem
by explicitly defining an expression for the local chemical potential in terms of the new
concept of a “swim potential”.

The outline of this chapter is as follows. First, we derive a microscopic expression
for the local chemical potential µ(z) of active Brownian particles in a spatially inhomo-
geneous steady state in a planar geometry, for simplicity, with z the normal Cartesian
direction. Next, we confirm using Brownian Dynamics simulations that µ(z) is spatially
constant for active fluids in contact with a soft planar wall, in a gravitational field, and
in two-phase coexistence with a planar interface. Subsequently, we show that the coexis-
tence is described by diffusive and mechanical equilibrium with equal bulk pressure and
bulk chemical potential of the coexisting phases, provided the swim potential that we
introduce in this chapter, is properly taken into account. However, we conclude that the
swim potential and hence the chemical potential µ(z) is not a state function of the density
for a macroscopic system.

5.3 Methods and Formulation

We consider a three-dimensional dispersion of N active Brownian particles (ABPs) with
positions ri = (xi, yi, zi) and orientations ui = (sin θi cos φi, sin θi sin φi, cos θi) with polar
angle θi and azimuthal angle φi, interacting via an isotropic pair potential U(|ri − rj|)
and subject to an external field Ve(ri) for i = 1, . . . , N at temperature T . Particle i
experiences a constant self-propulsion force along its orientation ui. The motion of particle
i is described by the overdamped Langevin equations

ṙi = −βDt∇i


Ve(ri) +

∑
j �=i

U(|ri − rj|)

 + v0ui +

√
2DtΛt

i, (5.1)

u̇i =
√

2Dr(ui × Λr
i ), (5.2)

where Dt and Dr are the translational and rotational diffusion coefficients, β = 1/kBT
with kB the Boltzmann constant, and v0 is the self-propulsion speed. The collisions with
the solvent are described by a stochastic force and torque characterised by random vectors
Λt

i and Λr
i with 〈Λt

i〉 = 〈Λr
i 〉 = 0 and 〈Λt

i,α(t)Λt
j,β(t′)〉 = 〈Λr

i,α(t)Λr
j,β(t′)〉 = δαβδijδ(t − t′)

with α, β = x, y, z [149].
Starting from (5.1) and (5.2), we average over the noise to derive the deterministic

Fokker-Planck equation [70, 149, 150]

∂ψ(r, u, t)
∂t

= −∇ · j(r, u, t) − ∇u · ju(r, u, t) (5.3)
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for the time evolution of the probability distribution function

ψ(r, u, t) ≡
〈

N∑
i=1

δ(r − ri)δ(u − ui)
〉

with 〈· · · 〉 denoting the averaging over the random noise. Here we defined the translational
and rotational fluxes

j(r, u, t) = − βDt

ˆ
dr′
ˆ

du′ψ(2)(r, u, r′, u′, t)∇U(|r − r′|)

+ ψ(r, u, t) (−βDt∇Ve(r) + v0u) − Dt∇ψ(r, u, t); (5.4)
ju(r, u, t) = − Dr∇uψ(r, u, t). (5.5)

We introduced here the instantaneous full two-body correlation function

ψ(2)(r, u, r′, u′, t) ≡
〈

N∑
i=1

N∑
j �=i

δ(r − ri)δ(u − ui)δ(r′ − rj)δ(u′ − uj)
〉

, (5.6)

which can be formally related to higher n-body correlation functions using a BBGKY-like
hierarchy of Fokker-Planck equations or approximated by applying a closure relation such
as the mean-field approximation ψ(2)(r, u, r′, u′, t) � ψ(r, u, t)ψ(r′, u′, t). In our formu-
lation we do not make such an approximation and rather calculate ψ(2)(r, u, r′, u′, t) by
simulating the particle dynamics explicitly for various setups as described in the subse-
quent sections.

We next define the first few angular moments of the probability distribution function
ψ(r, u, t)

ρ(r, t) =
ˆ

du ψ(r, u, t)

m(r, t) =
ˆ

du ψ(r, u, t)u

S(r, t) =
ˆ

du ψ(r, u, t)(uu − I/d) (5.7)

which are, respectively, the local particle density ρ(r, t), the local polarization m(r, t) and
the traceless alignment tensor S(r, t). I is the identity matrix and d = 2, 3 denotes the
spatial dimension of interest.

The time evolution of the local particle density ρ(r, t) is described by the continuity
equation obtained from the zeroth moment of Eq. (5.3),

∂ρ(r, t)
∂t

= −∇ · J(r, t), (5.8)

with the particle flux J(r, t) given by

J(r, t) =
ˆ

du j(r, u, t) (5.9)
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which can be expressed using Eq. (5.4) as

J(r, t) = −βDt

ˆ
dr′ρ(2)(r, r′, t)∇U(|r − r′|)

− βDt ρ(r, t)∇Ve(r) + v0m(r, t) − Dt∇ρ(r, t). (5.10)

Here ρ(2)(r, r′, t) is the spatial two-body correlation function given by

ρ(2)(r, r′, t) =
ˆ

du
ˆ

du′ψ(2)(r, u, r′, u′, t).

An equation for the evolution of m(r, t) follows from the first moment of Eq. (5.3) which
yields

∂m(r, t)
∂t

= −∇·Jm(r, t) − (d − 1)Drm(r, t), (5.11)

with the two-rank momentum flux tensor

Jm(r, t) = − βDt

ˆ
du u

ˆ
dr′
ˆ

du′ψ(2)(r, u, r′, u′, t)∇U(|r − r′|)

− m(r, t)βDt∇Ve(r) + v0

(
ρ(r, t) I

d
+ S(r, t)

)
− Dt∇m(r, t). (5.12)

We now assume that the system is only inhomogeneous in the z-direction, due to either
an external potential Ve(z) or due to coexistence of two phases separated by an interface
parallel to the xy-plane. Without loss of generality, we consider a large, but finite system
by setting Ve(±∞) = ∞, such that ρ(z → ±∞) = 0. From Eq. (5.10), we find that the
particle flux in the z-direction is given by

Jz(z, t) = − βDt

Ld−1

ˆ
drd−1

ˆ
dr′ρ(2)(r, r′, t)∂zU(|r − r′|)

− βDtρ(z, t)∂zVe(z) + v0mz(z, t) − Dt∂zρ(z, t), (5.13)

where we spatially integrated over the direction(s) perpendicular to z-direction and di-
vided by the surface area Ld−1 in d-dimensions, so that ρ(z, t) = L−d+1 ´ drd−1ρ(r, t).
When divided by βDt, we interpret Eq. (5.13) as a force balance in a continuum pic-
ture rather than at the microscopic level, which assumes averaging over bins that contain
enough colloids for the continuum picture to hold. In the following sections we ensure this
by having bins that are very elongated in the direction(s) perpendicular to the z-direction.

The term (βDt)−1v0mz(z, t) has previously been interpreted as a contribution to the
divergence of the stress tensor, which has led to a debate on pressure being a state function
or not in active systems [150–152]. Here, however, we take another point of view, and
regard this term as an activity-induced body force

− ρ(z, t) ∂

∂z
Vswim(z, t) ≡ v0

βDt

mz(z, t), (5.14)

that is exerted on the active particles by the solvent [83, 151]. This allows us to define
the so-called swim potential

Vswim(z, t) = Vswim(z0, t) − v0

βDt

zˆ

z0

mz(z′, t)
ρ(z′, t) dz′, (5.15)
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where Vswim(z0, t) is a suitably chosen reference.
Clearly, for a homogeneous and isotropic bulk phase, for which the polarization m = 0

in a steady state, Vswim is a spatial constant. Interestingly, however, the value of this
constant is determined by surfaces and interfaces, where m can be non-zero, not unlike
the Donnan potential in inhomogeneous electrolyte solutions [153, 154]. This is a reflection
of the fact that the activity-induced body force on the active particles only averages out
in the bulk, but not near interfaces.

We now combine Eqs. (5.13)-(5.15) to construct, in the spirit of the simplest dynamic
density functional theory [155, 156] with a density-independent diffusion coefficient Dt, a
local chemical potential-like function µ(z, t) by

− ρ(z, t) ∂

∂z
βµ(z, t) ≡ 1

Dt

Jz(z, t) (5.16)

or more explicitly

ρ(z, t) ∂

∂z
βµ(z, t) = 1

Ld−1

ˆ
drd−1

ˆ
dr′ρ(2)(r, r′, t) ∂

∂z
βU(|r − r′|)

+ ρ(z, t) ∂

∂z
βVe(z) − v0

Dt

mz(z, t) + ∂

∂z
ρ(z, t). (5.17)

The quantity µ(z) can then be interpreted as a sum of the swim potential (Vswim(z))
and the equilibrium-like external (Ve(z)) and intrinsic (µint(z)) contributions such that:

µ(z, t) − µ(z0, t) = µint(z, t) − µint(z0, t)
+ Ve(z) − Ve(z0) + Vswim(z, t) − Vswim(z0, t), (5.18)

where the intrinsic chemical potential µint(z, t) = kBT ln ρ(z, t) + µex(z, t). Here the
‘excess’ contribution µex(z, t) is defined using Eq. (5.13) as

µex(z, t) = µex(z0, t) + 1
Ld−1

ˆ
drd−1

zˆ

z0

dz′′ 1
ρ(z′′, t)

ˆ
dr′ρ(2)(r′′, r′, t)∂U(|r′′ − r′|)

∂z′′ .

(5.19)
Eq. (5.18) reduces to the conventional chemical potential for a passive system, where
v0 = 0, and is constructed such that Jz(z, t) = 0 if µ(z, t) is a spatial constant. The local
chemical potential µ(z) is therefore a prime candidate to describe diffusive equilibrium
of coexisting phases in stationary states of active systems. Interestingly, all terms in
Eq. (5.18) can be determined in Brownian Dynamics (BD) simulations of ABPs.

The body-force interpretation of the polarization (5.14) can also be used to write the
mechanical equilibrium condition of a stationary state in terms of a well-defined normal
component of the stress tensor. Since the stationary state satisfies ∂tρ(z, t) = 0, which
from Eq. (5.8) is equivalent to Jz(z) = 0 for a macroscopically large, but finite system,
we can rewrite Eq. (5.13) as

dPN(z)
dz

+ ρ(z)∂Vswim(z)
∂z

= −ρ(z)∂Ve(z)
∂z

(5.20)
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where the standard equilibrium-like (intrinsic) normal pressure

PN(z) = Pid(z) + Pvir(z)

with the ideal contribution Pid(z) = ρ(z)kBT and the ‘virial’ contribution Pvir(z) given
by:

dPvir(z)
dz

= 1
Ld−1

ˆ
drd−1

ˆ
dr′ ρ(2)(r, r′)∂U(|r − r′|)

∂z
, (5.21)

where we used Newton’s third law and the symmetry of ρ(2)(r, r′) under particle exchange.
Eq. (5.21) gives us the virial contribution that describes the z-component of the interpar-
ticle forces across a plane at z, which can be measured in a BD simulation [157]. Note
that we did not add a swim pressure [150, 151] to the “intrinsic” PN , but instead treated
the activity at the level of a swim potential Vswim in the force balance (5.20), which turns
out to be crucial for interpreting the (osmotic) pressure as a state function [83]. However,
in order to connect to existing literature, and for later reference, we do define

Pswim(z) − Pswim(z0) =
zˆ

z0

dz′ρ(z′)∂Vswim(z′)
∂z′

= v0kBT

(d − 1)DtDr

(Jm,zz(z) − Jm,zz(z0)) (5.22)

with the zz-component of Jm given by

Jm,zz(z) = v0

d
ρ(z) − mz(z)βDt

∂

∂z
Ve(z) + v0Szz(z) − Dt

∂

∂z
mz(z)

− βDt

Ld−1

ˆ
drd−1

ˆ
du
ˆ

dr′
ˆ

du′ψ(2)(r, u, r′, u′, t) ∂

∂z
U(|r − r′|) cos θ,

(5.23)

which reduces to the conventional swim pressure [41, 158]

Pswim(zb) = ρ(zb)
v2

0kBT

d(d − 1)DtDr

in an ideal active bulk fluid at z = zb. Note that our local swim pressure (5.22) deviates
from previous expressions [86, 159] due to the gradient term ∂zmz(z), which plays a
non-negligible role in the force balance obtained from Eq. (5.20) when significant spatial
variations are present, e.g. in the interface of a phase coexistence.

To summarize, we have introduced the concept of a swim potential here using a force
balance for only the colloids. As we saw in chapter 3, this force balance can be combined
with an additional force balance for the solvent, which provides an alternative interpre-
tation, but identical expression, for the swim pressure as an excess solvent pressure.

With the definition (5.22) one can thus define a total pressure P (z) = PN(z)+Pswim(z),
such that Eq. (5.20) can be written as dP/dz = −ρ(z)∂zVe(z); in the case where Ve(z) = 0
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a steady state is then characterized by a spatially constant total pressure P (z). The
intrinsic chemical potential µint(z) and intrinsic normal pressure PN(z), and the swim
potential Vswim(z) and swim pressure Pswim(z) have thus been constructed such that

dPN(z)
dz

= ρ(z)dµint(z)
dz

, and dPswim(z)
dz

= ρ(z)dVswim(z)
dz

. (5.24)

If we now invoke a Local Density Approximation (LDA), i.e. assume that the local
environment behaves as a bulk such that the local pressure and chemical potential are a
function of only the local density ρ(z), then Eq. (5.24) can be written in terms of bulk
quantities as:

dPN(ρ)
dρ

= ρ
dµint(ρ)

dρ
, and dPswim(ρ)

dρ
= ρ

dVswim(ρ)
dρ

, (5.25)

allowing us to write

dP (ρ)
dρ

= ρ
dµ(ρ)

dρ
(5.26)

with µ(ρ) = µint(ρ) + Vswim(ρ), in a zero external potential. Here, we shall take care to
distinguish the notation µ(ρ) for the chemical potential obtained via Eq. (5.26), from µ(z)
which denotes the chemical potential calculated from Eq. (5.18). We recognize Eq. (5.26)
as a generalization of the Gibbs-Duhem relation for equilibrium systems. Whereas in
equilibrium (where Pswim = Vswim = 0) it holds true in general, we emphasize that in
this case we had to make use of the LDA to derive it. This Gibbs-Duhem relation
provides a way to obtain the chemical potential µ(ρ) from the bulk equation of state
P (ρ), whereas to obtain µ(z) from Eq. (5.18) we require complete spatial profiles. We
test the applicability of Eq. (5.26) in simulations and show that it works well for cases
with low anisotropy (e.g. low polarization). However, Eq. (5.26) does not hold true in
general as Vswim(z) �= V LDA

swim(ρ(z)) for high anisotropy as we discuss later in Section 5.5.
We note that Eq. (5.26) is akin to the one in Ref. [41], apart from a factor that

is equal to the (incompressible) solvent volume fraction. The equilibrium analogue of
Eq. (5.26) follows naturally if the solvent is treated grand-canonically which we implicitly
assume. Both approaches are also similar in the sense that they both identify the fluxes
as being proportional to the gradient of a (scalar) chemical potential. In the next section
we describe some of the details of the methodology and parameters used for numerical
simulations.

5.3.1 Simulation details
Within a collaboration, Brownian Dynamics (BD) simulations were performed of non-
interacting as well as interacting particles, by employing Eqs. (5.1) and (5.2) in three-
dimensional and two-dimensional geometries in Sections 5.4.1-5.4.3 and Section 5.4.4,
respectively. The Euler-Maruyama method was used to integrate the equations of motion
(5.1) and (5.2) with a time step size dt = 10−5τ , where τ = 3Dr−1 is the unit of time.
The translational and rotational diffusion coefficients (Dt and Dr respectively) are kept
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fixed, v0 is varied to change Pe, and the interaction strength ε is varied to change the
temperature of the colloidal particles. We employ periodic boundary conditions in only
x- and y-direction in Section 5.4.1 and 5.4.2, in all three directions in Section 5.4.3, and
in both y- and z- directions in Section 5.4.4. We simulate system sizes of about 2500
particles in 3D and about 6500 particles in 2D within an elongated box. We measure the
density profile ρ(z) in the z-direction as ρ(z) = 〈n(z)〉/L2∆z by measuring the average of
the number of particles 〈n(z)〉 in the slabs of volume L2∆z (ρ(z) = 〈n(z)〉/L∆z in 2D)
arranged parallel to xy plane (y-direction in 2D), where L is the length of the system in
the x and/or y-direction, and where ∆z = 0.1σ is the width of the slab. In a similar
manner we measure the polarization profile mz(z) by summing the particle orientations
in the slab at location z. The density profiles ρ(z) in the case of a phase coexistence in
Sections 5.4.3 and 5.4.4 are fitted to a hyperbolic tangent function:

ρ(z) = 1
2 (ρ(zl) + ρ(zg)) + 1

2 (ρ(zl) − ρ(zg)) tanh
[

2(z − z∗
0)

w

]
, (5.27)

where ρ(zl) and ρ(zg) are the corresponding bulk liquid and vapour phase coexisting
densities, z∗

0 is the location of the dividing plane and w represents the thickness of the
interface.

The swim potential profile Vswim(z) is obtained as

Vswim(z) = Vswim(z0) − v0

βDt

zˆ

z0

mz(z′)
ρ(z′) dz′, (5.28)

where we numerically integrate the mean-orientation profile mz(z)/ρ(z) as measured in
the BD simulations and Vswim(z0) is a suitably chosen reference state. In addition, we
measure the normal component PN(z) of the stress tensor using

PN(z) = Pid(z) + Pvir(z) (5.29)
with the ideal gas pressure Pid(z) and the virial pressure Pvir(z) given by:

Pid(z) = ρ(z)kBT (5.30)

Pvir(z) = 1
2L2∆z

〈
N∑

i=1

N∑
j �=i

zij

rij

dU(rij)
drij

ˆ

Cij

dlz

〉
, (5.31)

where rij = |rij| = |rj − ri| denotes the center-of-mass distance between particle i and
j, zij = zj − zi where zi is the z position of particle i, Cij is the intersection of rij and
the slab of width ∆z centered at z. The integral in Eq. (5.31) denotes that the virial
contribution to the pressure of particle pair i and j is due to the part of rij that lies inside
the respective slab at z within the coarse-grained Irving-Kirkwood approximation [157].
We also calculate the swim pressure using the expression

Pswim(z) = v2
0kBT

d(d − 1)DtDr

ρ(z) − v0mz(z)
(d − 1)Dr

∂zVe(z)

− v0

(d − 1)Dr

1
Ld−1

ˆ
drd−1

ˆ
du
ˆ

dr′du′ψ(2)(r, u, r′, u′)∂U(|r − r′|)
∂z

cos θ

+ v2
0kBT

(d − 1)DtDr

Szz(z) − v0kBT

(d − 1)Dr

∂zmz(z), (5.32)
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and the chemical potential profile µ(z) using Eq. (5.18) with the excess chemical potential
µex(z) measured as

µex(z) = µex(z0) +
zˆ

z0

dz′
〈

1
n(z′)

n(z′)∑
i=1

N∑
j �=i

z′
ij

r′
ij

dU(r′
ij)

dr′
ij

〉
. (5.33)

Here, the excess chemical potential at z with respect to a reference at z0 is determined by
integrating the averaged force that a particle feels due to the particle interactions with
all other particles in the system over the distance z0 to z.
Alternatively, if Ve(z) = 0, µ(z) can also be obtained using

µ(z) = µ(z0) +
zˆ

z0

dz′ 1
ρ(z′)

dP (z′)
dz′ (5.34)

with P (z) = PN(z) + Pswim(z).
In the next Section, we discuss the results obtained by applying the formalism of

Eqs. (5.15)-(5.22) to active fluids and consider four different scenarios. In Section 5.4.1
we study a non-interacting active fluid in contact with a short-ranged planar soft wall. We
compare and verify that the stationary state is indeed described by constant µ(z) in both
the Fokker-Planck calculations and particle based simulations. Next we present the results
of BD simulations of an active fluid with Lennard-Jones (LJ) interactions subject to a
gravitational field in Section 5.4.2. In Section 5.4.3 we consider an active Lennard-Jones
fluid exhibiting gas-liquid coexistence with a planar interface and confirm mechanical and
diffusive equilibrium. We perform a Maxwell equal-area construction to identify phase
coexistence from bulk equations of state. We then attempt to apply the same formalism to
active particles which undergo Motility Induced Phase Separation (MIPS) at high activity
in Section 5.4.4.

5.4 Results

5.4.1 Active Ideal Gas
We first consider a three-dimensional active ideal gas (with U(r) = 0) at Péclet number
Pe = v0/σDr = 0 (passive), 1, 3, 5, in the presence of an external potential

βVe(z) =



(z/σ)2 if z < 0
0 if z ≥ 0

where the unit of length σ =
√

3Dt/Dr is chosen to be the particle diameter so that the
Stokes-Einstein relation for spheres in three dimensions is satisfied. Note that Pe can also
be perceived as the ratio of the persistence length v0/Dr and the particle diameter[158].
For large but finite z = zb � 3σ, the active fluid reaches a bulk state with bulk density
ρb = ρ(zb), and the normal pressure reduces to the bulk pressure Pb = PN(zb) = ρbkBT .
In Fig. 5.1(a) and (b) we show the time-averaged density profiles ρ(z) and orientation
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Figure 5.1: (a) Density profile ρ(z), (b) polarization profile mz(z)/ρ(z), (c) swim potential
Vswim(z) and the soft external potential Ve(z) (see text), and (d) local chemical potential µ(z)
(with error bars), all as a function of z for an active ideal gas in contact with a planar soft
wall, as obtained from BD simulations (open circles) and Fokker-Planck calculations (dashed
lines), for varying Péclet numbers as labeled. In (d) the open circles represent βµ(z) obtained
by the integration of Jz(z)/ρ(z), which fluctuates about zero, whereas the square symbols show
the resultant from Eq. (5.18). The errorbars represent the error induced in βµ(z) due to the
statistical error in ρ(z). The deviation from the Fokker-Planck calculations deep into the wall
for high Pe is due to the correlation of error upon numerical integration.

profiles mz(z)/ρ(z), respectively as measured in BD simulations (solid lines) as well as
from Fokker-Planck calculations (dashed lines). We observe that the particles penetrate
deeper into the wall at higher Pe resulting into a more extended ρ(z) within the wall
accompanied by a small adsorption (that was found in Ref. [160] as well) close to z = 0.
In Fig. 5.1(b) we see no average polarization outside or inside the wall for the passive
case. At finite Pe, however, Fig. 5.1(b) shows that the average orientation is zero in
the bulk where Ve(z) = 0 and negative within the wall, corresponding to the particles
oriented towards the wall. Fig. 5.1(c) and (d) show Vswim(z) and µ(z) as obtained from
Eq. (5.15) and (5.18), respectively. We find that Vswim(z) is attractive towards the wall
consistent with the polarization and extended density profile close to the wall. Finally,
we also confirm that µ(z) is indeed constant within our statistical accuracy of ∼ 0.1kBT .
Clearly, for µ(z) to be constant it is crucial that Vswim(z) is included in Eq. (5.18) and
ignoring this contribution of 10 − 30kBT would not have yielded a spatially constant
chemical potential in the stationary state. Although µ(z) was constructed to be spatially



104 Chapter 5

constant within the Fokker-Planck formalism, a confirmation from the simulations serves
as a useful validation.

Additionally, we verify that the swim pressure (given by Eq. (5.22)) measured in
the bulk reduces to Pswim(zb) = kBTv2

0ρb/(6DrDt). Vswim can similarly be obtained as
Vswim(zb) = (kBTv2

0/6DrDt) ln ρbσ
3. We use this bulk state at zb � 3σ with Vswim(z0 =

zb) as the reference point for the profiles of Vswim(z) and µ(z) in Fig. 5.1(c) and (d),
respectively.

5.4.2 Sedimenting weakly active LJ-particles
We now consider simulations of weakly active Lennard-Jones (LJ) particles with an
isotropic pair potential, ULJ(r) = 4ε((σ/r)12 − (σ/r)6), at kBT/ε = 2.0 in the gravi-
tational potential Ve(z) = Mgz for z > 0 with a hard ‘bottom’ at z = 0, with M the
buoyant particle mass. These systems are supercritical in the passive case, and therefore
even more so in the active cases since the ‘critical temperature’ decreases with increas-
ing activity[128, 161]. We measure the density ρ(z)σ3, polarization mz(z)/ρ(z), swim
potential βVswim(z), and chemical potential µ(z) for βMgσ = 0.5 and 1.0 for Pe=0, and
βMgσ = 3 and 5 for Pe=10 and 20, all plotted in Fig. 5.2(a)-(d). In order to obtain
a comparable length scale l over which variations are observed in the passive (where we
choose l = σ) and in the active cases (where l = v0/Dr ), we used a smaller buoyant mass
(βMgσ) of the particles in the passive case. We observe that the polarization mz(z) is
positive for Pe=10 and 20, and hence the mean swimming direction is opposite to the grav-
itational field, consistent with the findings in Ref. [162]. Moreover, Fig. 5.2(b) shows that
the polarization profile mz(z)/ρ(z) is surprisingly constant over a large regime of heights
z. As a consequence, the swim potential profile βVswim(z) essentially decreases linearly
with height z for Pe = 10 and 20 and counteracts largely the gravitational field, as shown
in Fig. 5.2(c), leading to an enormous increase in sedimentation length (βMg)−1[163].
The chemical potential profile µ(z) is calibrated by µ(z0) = 0 at the reference point z0
determined by the condition ρ(z0)σ3 = 10−3. The chemical potential profile µ(z) is shown
in Fig. 5.2(d) and is indeed spatially constant upto ∼ 0.3kBT within our statistical ac-
curacy. It is important to note here that Vswim(z) decreases by a few hundred kBT and
the external gravitational potential Ve(z) = Mgz increases by a few hundred kBT in the
z-range of interest as shown in Fig. 5.2(d).

In addition, we show in Fig. 5.2(e) and (f) both PN and µint as a function of ρ, obtained
by eliminating z from PN(z) and ρ(z), and µint(z) and ρ(z), respectively. We observe that
the data collapse at fixed Pe, and it is alluring to interpret that PN(ρ,Pe) and µint(ρ,Pe)
are state functions of the density in this regime.

5.4.3 Active-LJ phase coexistence
We now consider a weakly active LJ fluid without any external potential (Ve(z) = 0),
and at subcritical temperatures such that coexistence of a gas and a liquid phase with
bulk densities ρg and ρl, respectively, is to be expected at overall intermediate densities
ρg < ρ < ρl in an elongated simulation box with periodic boundary conditions [128, 161].
A temperature kBT/ε = 0.43 and a Péclet number Pe= v0/σDr = 3.0 are used in this
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Figure 5.2: Height-dependence of (a) density ρ(z), (b) polarization mz(z)/ρ(z), (c) swim
potential Vswim(z), and (d) chemical potential µ(z) (with an offset for clarity), all for an active
LJ fluid in an external gravitational potential Ve(z) = Mgz for various values of βMgσ, and
Péclet number Pe=0 (blue), 10 (green), 20 (red) as obtained from BD simulations. The height
z is scaled with respect to l, where l = v0/Dr is the persistence length for Pe=10 and 20, and
l = σ is the particle diameter for Pe=0. The compressibility factor PN (ρ, Pe)/ρ in (e) and the
intrinsic chemical potential µint(ρ, Pe) shown with an offset in (f) show a proper collapse in the
dilute limit for different βMgσ but not for Pe.
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Figure 5.3: (a) A typical configuration of a three-dimensional gas-liquid coexistence of an active
LJ fluid at Pe=3.0, and temperature kBT/ε = 0.43, along with (b) the corresponding density
profile ρ(z) and polarization profile mz(z)/ρ(z), (c) total pressure P (z) = PN (z) + Pswim(z) and
the individual contributions, and (d) total chemical potential µ(z) obtained from Eq. (5.18), and
individual contributions, along with an inset showing a magnified view of µ(z). Both P (z) and
µ(z) are spatially constant within numerical accuracy, demonstrating mechanical and diffusive
equilibrium of the coexisting gas and liquid phase.
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Figure 5.4: (a) Scaled pressure-density P -ρ, and (b) chemical potential-pressure µ-P relations
of an active LJ fluid at several temperatures kBT/ε and Péclet Pe= v0/σDr = 2.7. The inset
shows the temperature-density gas-liquid binodals as obtained from direct coexistence simula-
tions (�) and from equating µ and P in the coexisting phases (�) of an active LJ fluid.

case. In Fig. 5.3(a), we show a typical configuration of a liquid slab in the center of the
simulation box in coexistence with a gas phase on either side. In Fig. 5.3(b) we plot the
corresponding density profile ρ(z) which can be fitted to a hyperbolic tangent function
(Eq. (5.27)), independently for z > 0 and z < 0, to obtain the coexistence densities ρ(zg)
and ρ(zl) of the two bulk phases as fit parameters, with zg and zl a position in the bulk gas
and liquid respectively. In the same figure we also plot the polarization profile mz(z)/ρ(z),
showing that the swimming direction of the particles at the liquid-gas interface is pointing
from the liquid phase towards the gas phase, i.e., against the attractive interparticle forces
from the liquid[128, 164].

In Fig. 5.3(c) and (d) we plot the profiles of total pressure P (z) and chemical potential
µ(z), respectively, which clearly show that both are spatially constant. We hence conclude
that P (zg) = P (zl) and µ(zg) = µ(zl), demonstrating mechanical and diffusive equilibrium
of the coexisting gas and liquid phase. For completeness, in Fig. 5.3(c) we also plot the
individual contributions to the total pressure P (z) = PN(z) + Pswim(z), where Pswim(z) is
the swim pressure obtained from Eq. (5.22), and PN(z) = PN,idl(z)+PN,vir(z) is the normal
pressure with the ideal pressure PN,idl(z) and the virial contribution to the normal pressure
PN,vir(z) as obtained from Eq. (5.21). Similarly we plot the contributions to the chemical
potential µ(z) = µint(z) + Vswim(z) in Fig. 5.3(d), where the intrinsic chemical potential
µint(z) = kBT ln ρ(z) + µex(z) represents the sum of ideal and excess chemical potential.
The swim potential Vswim(z) is calculated from the measured polarization profiles using
Eq. (5.15).

In order to investigate if we can predict phase coexistence solely from bulk quantities,
we perform BD simulations of bulk states of ABPs at several temperatures kBT/ε and
Péclet number Pe=2.7. We measure the bulk pressure P as a function of density ρ in a
simulation box small enough to prevent phase separation and plot the equations of state
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P (ρ) for several subcritical temperatures in Fig. 5.4(a). Now, within a Local Density
Approximation (LDA), we apply the Gibbs-Duhem relation Eq. (5.26) and obtain µ(P )
by integrating the equation of state P (ρ) for several T ’s as shown in Fig. 5.4(b). We
emphasize here that we refer to µ(ρ) as the µ obtained by applying Eq. (5.26) which is
not to be confused with µ(z). The intersection of the curve µ(P ) gives the coexistence
µg = µl and Pg = Pl. In the inset of Fig. 5.4(b) we compare the binodals in the (scaled)
temperature-density plane as obtained from the density profiles from direct coexistence
simulations (ρ(zg) and ρ(zl)) and from the bulk µ(P ) intersections (ρg and ρl). We
find good agreement between the two results and thus conclude that the corresponding
coexistence densities ρg and ρl could, in this (low Pe) case at least, be determined from the
bulk equations of state. Note that the activity has a huge effect on the gas-liquid binodals
(shown in the inset of Fig. 5.4(b)) as the critical temperature shifts from kBT/ε ≈ 1.15
in the passive case to kBT/ε ≈ 0.54 in the active case for Pe=2.7 (see Ref. [128] for full
comparison).

5.4.4 Motility Induced Phase Separation
In this section we discuss the swim potential and the chemical potential in a two-dimensional
system of strongly active particles exhibiting motility induced phase separation at high
Pe. We choose our planar geometry in the yz plane and assume homogeneity in the y
direction to be consistent with previous definitions. The particles interact with the WCA
potential given by UW CA(r) = ULJ(r) + ε, with a cut-off beyond r ≥ rc = 21/6σ to make
the particles purely repulsive. The particle orientations can be described in terms of
the angle θi as ui = (cos θi, sin θi). The translational equation of motion in 2D is simi-
lar to Eq. (5.1) and the rotational diffusion follows θ̇i =

√
2DrΛr

i , with Λr
i a zero-mean

unit-variance Gaussian random variable.
As before, we fix rotational and translation diffusion coefficients to correspond to

the particle interaction length scale σ =
√

3Dt/Dr and change the self-propulsion speed
v0 to vary Pe. At high Pe, we find that the system phase separates into a gas phase
and a dense phase, both of well-defined densities, separated by a planar interface in an
elongated simulation box[40]. For Pe=50 the typical density and polarization profiles are
shown in Fig. 5.5(a). Notably, the polarization profiles are now reversed with respect to
Fig. 5.3(b) as the particles at the interfaces are now pointing towards the dense phase.
We measure the normal component of the total pressure P (z) and the chemical potential
µ(z) by summing the individual contributions, and plot them in Fig. 5.5(c) and (d),
respectively for z > 0. We clearly observe that both the quantities P (z) and µ(z) are
spatially constant, demonstrating mechanical and diffusive equilibrium of the coexisting
phases. With the polarization profiles reversed, Pswim(z) and Vswim(z) are now higher in
the gas phase as compared to the denser phase.

Further, we perform a Maxwell equal-area construction on the equation of state. The
P − ρ curves shown in Fig. 5.5(b) are obtained again using a small system size for which
there is no global phase separation at intermediate densities. We confirm the results of the
homogeneous states with larger system sizes and find that the agreement is satisfactory
for our analysis. Performing a Maxwell construction on P as a function of 1/ρ gives the
equal-area pressure PMaxwell shown as the dashed horizontal line in Fig. 5.5(b). In the same
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Figure 5.5: (a) Density ρ(z)σ2 and polarization mz(z)/ρ(z) profiles of an active fluid with WCA
interactions exhibiting MIPS at Pe = 50, and temperature kBT/ε = 0.1. (b) Pressure βP (ρ)σ2

vs. density ρσ2 curve obtained from bulk simulations of small systems (solid circles) and large
systems (open circles), together with Maxwell equal-area pressure (dashed line) and coexistence
pressure Pcoex = P (z) (dotted line) as measured in (c). The inset shows a comparison of bulk
densities from direct coexistence simulations (�) and the Maxwell equal-area construction (�)
for various Pe. (c) Total pressure P (z) = PN (z) + Pswim(z) profile, with the ideal, virial and
swim contributions, and (d) total chemical potential µ(z) profile with individual contributions,
for z > 0, corresponding to the system described in (a). The inset shows the ideal contribution
βµid(z) = ln ρ(z)σ2 and that µ(z) is constant within an accuracy of 3kBT .

figure, we also show the coexistence pressure Pcoex obtained from the direct coexistence
simulation of the phases coexisting at the corresponding set of parameters. From the two
curves it is evident that the coexistence densities predicted by the Maxwell construction
and the direct-coexistence simulations do not agree. We perform the same procedure on
a set of Pe in the range 30 − 60 and plot the corresponding coexistence densities and
the densities predicted by the Maxwell construction in the inset of Fig. 5.5(b). From
the disagreement between the two binodals we conclude that the Maxwell equal-area
construction does not correspond to the coexisting states as obtained from the direct
coexistence simulations, noted previously as well in Refs. [46, 70]. We have checked that
using our P (ρ) data with the definition of the chemical potential introduced in Ref. [41]
yields the same binodals as predicted here despite the difference of the factor concerning
the solvent volume fraction.
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5.5 Technical Discussion
The results from the previous section show that the Maxwell equal-area construction,
and hence the Gibbs-Duhem equation (5.26), cannot be used in general to predict the
coexisting densities ρg and ρl [46, 70] in systems of ABPs. In other words, even though
µ(zg) = µ(zl) in a phase-separated system (where zg and zl are locations far from interfaces
such that the local densities are ρg and ρl, respectively) , the chemical potentials obtained
from the Gibbs-Duhem equation (5.26) may not be equal, i.e. µ(ρg) �= µ(ρl). The nonzero
difference between µ(ρg) and µ(ρl) is caused by the failure of the LDA assumed in the
derivation of Eq. (5.26), as we will show below. In particular, the values of Vswim(z) and
µex(z) in a bulk state at position z and density ρb do not only depend on ρb (and other
system parameters such as Pe) but also on the interface between the bulk state and the
reference state at z0. This implies that neither Vswim nor µex as expressed in Eqs. (5.15)
and (5.19), respectively, are state functions of the density. Below we show an example for
Vswim(z) which demonstrates this breakdown of the LDA in the case of a 2D active ideal
gas (for which µex(z) ≡ 0) in a particular external potential.

The setup consists of a ramp-like external potential βVe(z) = λz/σ in the region
0 < z < 5σ which separates a bulk region at the left (where βVe(z) = 0 for z < 0) from
the bulk on the right (where βVe(z) = 5λ for z > 5σ). These external potentials are
plotted in Fig. 5.6(a) as dash-dot lines for λ = 0, 0.5, 1, and 2. The probability density
ψ(z, θ) is obtained by solving Eq. (5.3) for U(r) = 0 numerically, at Pe = 1 with a fixed
density boundary condition ρσ2 = 1.0 for z0 = −10σ and with a hard wall placed at
z = 15σ. The density and polarization profiles for increasing λ are plotted in Fig. 5.6(a)
and (b), respectively.

In order to determine Vswim(z) for this non-interacting system (with U(r) ≡ 0,) we
substitute mz(z) from Eq. (5.11) with ∂tmz(z) = 0 into Eq. (5.14) to obtain

Vswim(z) − Vswim(z0) = v2
0

2βDtDr

ln
(

ρ(z)
ρ(z0)

)
(5.35)

+ v0

βDr

zˆ

z0

dz′ 1
ρ(z′)

d
dz′


 v0

Dt

Szz(z′) − βmz(z′)∂Ve(z′)
∂z′ − ∂mz(z′)

∂z′


.

The Vswim(z) profiles, obtained equivalently from Eq. (5.35) or from Eq. (5.15), are plotted
as solid lines in Fig. 5.6(c) where we have taken z0 = −10σ as the reference state where
Vswim(z0) = 0. If we would approximate the vicinity of any point z′ as an isotropic bulk
with density ρ(z′) in evaluating the swim potential Vswim(z′), i.e. assume in Eq. (5.35)
Szz(z′) ≈ mz(z′) ≈ 0 such that the term in square brackets vanishes for every z′, we obtain

βV LDA

swim(ρ(z)) = v2
0

2DtDr

ln ρ(z)σ2

which we refer to as the local density approximation (LDA) of Eq. (5.35). Note that
Eq. (5.35) follows from the Fokker-Planck formalism, and this LDA does not refer to an
approximation of a free-energy functional. This V LDA

swim(ρ(z)), plotted as dotted lines in
Fig. 5.6(c), is equal to Vswim(ρ) obtained from the swim component of the Gibbs-Duhem-
like relation (5.26). We find that Vswim(z) and V LDA

swim(ρ(z)) start to deviate at high λ
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Figure 5.6: (a) Density profiles ρ(z) and (b) mean-orientation profiles mz(z)/ρ(z) of a non-
interacting active fluid at Pe=1 in a ramp-shaped external potential with slope λ = 0, 0.5, 1, 2
shown as broken lines in (a). (c) Comparison of Vswim(z) obtained using Eq. (5.15) and
βV LDA

swim(ρ(z)) = (v2
0/2DtDr) ln ρ(z)σ2 obtained using LDA.

and do not coincide in the right bulk. Hence, we can conclude that the values for V LDA
swim

obtained from the Gibbs-Duhem equation are not correct in general. This is due to the
failure of LDA, i.e. due to the anisotropy in the interface that renders the integral on the
right hand side in Eq. (5.35) non-negligible as compared to the first term. In Fig. 5.6(b)
we see that the polarization within the interface increases with λ, consistent with this
idea of increasing anistropy. For an interacting system the forces between particles would
add another contribution to mz(z)/ρ(z), which could also become a source of failure for
the LDA.

In Section 5.4.3 we observed that the Maxwell construction was able to predict the
coexistence densities for the active LJ case with reasonable accuracy, but was in disagree-
ment at higher activity in Section 5.4.4 for MIPS. We now assert that the error made
in the chemical potential by assuming the LDA translates into an error in the predicted
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coexisting densities that is small for the active LJ particles, but significant for MIPS.
We define the error in predicted coexistence densities of the gas and the dense phase,
respectively, as ∆ρerr

g = ρ(zg) − ρg and ∆ρerr
l = ρ(zl) − ρl, where ρ(zg) and ρ(zl) are the

bulk coexistence densities and ρg and ρl denote the estimates obtained by performing a
Maxwell construction. If we define the gas state as the reference state for the chemical
potential, i.e. µ(z0) = µ(ρg) in Eq. (5.18) with z0 = zg, then the error made in deter-
mining the chemical potential of the dense phase by using the Gibbs-Duhem equation
(5.26) is ∆µerr

l = µ(ρl) − µ(zl), where we recall that µ(ρl) is the chemical potential of the
dense phase obtained from the Gibbs-Duhem relation, whereas µ(zl) is the true chemical
potential determined in the coexistence simulation. From ∆µerr

l the relative error in the
predicted density of the dense phase can be estimated as

∆ρerr
l

ρ(zl)
≈ 1

ρ(zl)
∆µerr

l

(dµ/dρ)l

.

Similarly, the error in the predicted density of the gas phase can be estimated by using the
dense phase as the reference state (µ(z0) = µ(ρl)). The relative density error estimated
in this manner is less than 5% for the active LJ case, whereas it is of the order of 100%
for the MIPS case, which agrees with our findings in Fig. 5.4(b) and 5.5(b), respectively.

We wish to make a note that the anisotropy terms identified here resemble the inter-
facial contributions discussed in Ref. [46] for pairwise-interacting particles. Although it
requires explicit measurement of these interfacial contributions by performing phase co-
existence simulations, Solon et al. were able to suggest a modified Maxwell construction
for estimating the binodals in Ref. [46].

Moreover, our elongated simulation box in Section 5.4.3 and 5.4.4 forces the system to
phase separate with a planar interface. Only for such a geometry Jz(z) = 0, allowing us
to write explicit expressions for mechanical and diffusive equilibrium. In other geometries
the stationary state condition ∇ · J = 0 still allows for swirls that correspond to non-
zero ∇ × J, for which our expressions for mechanical and diffusive equilibrium break
down and a whole new framework is needed. Furthermore, the regime of applicability
of Eq. (5.18) is limited by the underlying dynamic DFT relation, where a ρ-independent
diffusion coefficient Dt is assumed; an extension to account for a ρ-dependent diffusion
coefficient is left for a future study.

5.6 Conclusions & Discussion
In conclusion, we have constructed expression (5.17) for the local chemical potential µ(z)
for active fluids in a planar geometry, which includes the swim potential Vswim(z) defined
by Eq. (5.15) in addition to ideal, excess, and external contributions well-known from
equilibrium. Our BD simulations confirm that µ(z) is spatially constant in steady states
of several inhomogeneous ideal and interacting fluids of active particles, with Vswim(z) an
important contribution that counteracts either the external potential Ve(z) or the excess
contribution µex(z). In the low activity regime studied for active LJ fluid, the chemical
potential provides a method to predict the coexisting densities from bulk simulations.
At high activity the anisotropy in the interface causes the Gibbs-Duhem relation to be
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invalid, which which is similar to the finding of Ref. [46], where interfacial contributions
are also required to determine the coexisting bulk densities.

The question that remains is this: have we been considering the wrong bulk equations of
state, and can the coexisting densities be found from bulk quantities other than µ(ρ) and
P (ρ) (possiblity 1)? Or is it generally impossible to find the coexisting densities from bulk
equations of state, and is information about the interface always required (possibility 2)?

Support for possibility 1 is provided by the work by van der Meer et al. [131]. For
a phase coexistence of a mixture of active particles, they connect both coexisting phases
to a (separate) reservoir via a membrane that is permeable to a single species only. Re-
markably, they find that the two reservoirs attain equal densities in steady state. This
equality - together with the equality of pressure P (ρ) - allows them to correctly predict
the coexisting densities. The finding that the reservoir densities are equal is a striking
and nontrivial result. Yet, it is unclear why they are equal, and whether this translates
into the equality of a quantity that can be measured in the bulk of the coexisting phases
- rather than in the reservoirs - is still an open question.

The recent work by Hermann et al. [148] also provides support for possibility 1. This
work defines a non-equilibrium chemical potential different from the one in this chapter,
and proposes an ansatz for the crucial component of this chemical potential, which is
the component that generates the ideal forces and adiabaticb interaction forces [31, 148].
With the help of two fit parameters, that represent the jamming density and the strength
of the said chemical potential component, they find the coexisting densities to good accu-
racy. To the author of this thesis, this seems to be an impressive result. Yet, the proposed
chemical potential is not fully microscopic, and a definite proof that possibility 1 rather
than possiblity 2 is true would require a statistical proof that the agreement between the
predicted and simulated coexisting densities is significant when taking the usage of the
fit parameters into account.

As for possibility 2: one may think it very unlikely that the bulk densities of the
coexisting phases are influenced by the interface. After all, the bulks can be very largec,
so that would mean that the interface affects the steady-state density profile at very large
distances away. However, such an effect is not unheard of in active systems: in chapter
6, we give an example of a system where the steady-state density profile depends on the
details of an external potential that is located an arbitrarily large distance away. Even
though this effect is due to an external influence - rather than an internal one - it illus-
trates that such ‘long-range dependencies’ are possible, and therefore that possibility 2
cannot be ruled out - at least not on the grounds that the distance between the interface
and (parts of the) bulks can be very large.

bSee the footnote on p. 76 for an explanation of this term.
cIn square-box computer simulations well into the MIPS regime, Siddharth Paliwal always found

one dense cluster, rather than several clusters (provided the box is not too small) [165]. This suggests
that there is no maximum cluster size. The largest cluster he obtained filled approximately 70% of a
250σ × 250σ box, where the box size was limited by the required computation time. This cluster size
corresponds to approximately three times the persistence length �p = v0/Dr, since the Péclet number was
Pe = �p/σ ≈ 70. Therefore, even though the author of this thesis sees no reason why a maximum cluster
size should exist, it cannot be ruled out that there is a maximum cluster size larger than approximately
3�p.
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The effect of an external potential:
ratchet-induced variations in bulk

states of an active ideal gas

In this chapter, we present another effect that makes the statistical physics of ABPs chal-
lenging: the steady-state density profile of ABPs can depend on the external potential
arbitrarily far away.

In order to illustrate this effect in the simplest setting possible, we study the distri-
bution of noninteracting ABPs over two bulk states separated by a ratchet potential. We
show that, in a flux-free setting, the ratchet potential affects the steady-state distribution
of particles over the bulks, which can be of arbitrarily large size. We characterize how
the difference in bulk densities depends on activity and on the ratchet potential, and
identify power law dependencies in several limiting cases. We rationalize our results by
a simple transition state model that presumes particles to cross the potential barrier by
Arrhenius rates modified for activity. While this model does not quantitatively describe
the difference in bulk densities for feasible parameter values, it does reproduce - in its
regime of applicability - the complete power law behavior correctly.

This chapter is based on the publication “Ratchet-induced variations in bulk states of an
active ideal gas” [166], and is part of a collaboration with Siddharth Paliwal, Marjolein
de Jager, Peter Bolhuis (University of Amsterdam), Marjolein Dijkstra and René van
Roij. While the author of this thesis obtained all the results presented in this chapter,
Siddharth Paliwal validated the density and polarization profiles using particle-based
computer simulations, Marjolein de Jager validated the same profiles using a lattice model
and first obtained the power laws of section 6.3.2, and Peter Bolhuis conceptualized the
transition state model of section 6.5.
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Figure 6.1: (Dimensionless) ratchet potential βV , as a function of the Cartesian x-coordinate
in units of the diffusive length scale �. The ratchet can be characterized by its height βVmax,
the width of its left side xl/�, and its asymmetry a = (xl − xr)/xr.

6.1 Introduction

In chapter 5, we saw that it proved difficult to find the coexisting densities of the highly
active MIPS, but also that they could be found for weakly active Lennard-Jones coexis-
tences. This fits a trend: at small activity, active system are well understood by effective
equilibrium approaches [130, 167–170]. In particular, it is well established that noninter-
acting particles at small activity can be described as an equilibrium system at an effective
temperature [36, 130, 171–173]. For example, inserting the effective temperature in the
Einstein relation yields the enhanced diffusion coefficient of an active particle, and using
the effective temperature in the Boltzmann distribution gives the distribution of weakly
active particles in a gravitational field [91, 91, 120, 173–177].

However, even weakly active systems can display behavior very different from equi-
librium systems [99, 178–185]. For instance, a single array of funnel-shaped barriers, that
is more easily crossed from one lateral direction than from the other, can induce a steady
state with ratchet currents that span the entire system [181]. Alternatively, when the
boundary conditions deny such a system-wide flux, the result is a steady state with a
higher density on one side of the array than on the other [179, 181]. As the system can be
arbitrarily long in the lateral direction, the presence of the funnels influences the steady-
state density profile at arbitrarily large distance.

Characterizing such a long-range effect is a challenge, and the natural place to start
is in a setting as simple as possible. As we shall show, having an external potential with
a long-range influence on the steady-state density profile is only possible with the key
ingredients of (1) activity, and (2) an external potential that is nonlinear. Therefore, a
good candidate for a minimal model is to study the distribution of active particles over
two bulks separated by a potential barrier that is only piecewise linear. Here, we focus on
a sawtooth-shaped barrier, known as a ratchet potential (see Fig. 6.1). As we will see, the
asymmetry of the ratchet induces a flux-free steady state with different densities in both
bulks. Since the bulk sizes can be arbitrarily large, the ratchet potential indeed influences
the steady-state density profile at arbitrarily large distance away. This system has ac-
tually already been studied, both experimentally [186] and theoretically [187]. However,
the former study was performed at high degree of activity, and the latter study neglected
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Brownian fluctuations, such that the degree of activity could not be quantified. Thereby,
the regime of weak activity, where the statistical physics generally seems best understood
[130, 141, 167–170], remains largely unexplored.

In this work, we study the effect of an external potential on arbitrarily large bulk
regions with as few complications as possible. To this end, we investigate how a ratchet
potential affects active particles that also undergo translational Brownian motion, such
that the degree of activity can be quantified. We ask the questions: can we characterize
how the external potential influences the density distribution as a function of activity?
And can we understand this distribution in the limit of weak activity?

This chapter is organized as follows. In section 6.2, we introduce two active particle
models, as well as the ratchet potential. In section 6.3, we numerically solve the density
and polarization profiles of these active particles in the ratchet potential, and we study
how the difference in bulk densities depends on activity, and on the ratchet potential. In
section 6.4, we specialize to the limit of weak activity, and provide an analytical solution
that explicitly shows that the nonzero difference in bulk densities cannot be understood by
the use of an effective temperature. Instead, in section 6.5, we propose to understand the
density difference in terms of a simple transition state model. We end with a discussion,
in section 6.6, on what ingredients are necessary to have the external potential affect the
densities in such a (highly) nonlocal way, and with concluding remarks in section 6.7.

6.2 Models

6.2.1 2D active Brownian particles
In order to investigate the behavior of active particles in a ratchet potential, we consider
the widely employed model of active Brownian particles [109] (ABPs) in two dimensions.
For simplicity, we consider spherical, noninteracting particles. Every particle is repre-
sented by its position r(t) = x(t)x̂ + y(t)ŷ, where x̂ and ŷ are Cartesian unit vectors and
t is time, as well as by its orientation ê(t) ≡ cos θ(t)x̂ + sin θ(t)ŷ. Its time evolution is
governed by the overdamped Langevin equations

∂tr(t) = v0ê(t) − γ−1∇V (r) +
√

2Dtηt(t), (6.1a)

∂tθ(t) =
√

2Drηr(t). (6.1b)

Eq. (6.1a) expresses that a particle’s position changes in response to (i) a propulsion force,
that acts in the direction of ê, and that gives rise to a propulsion speed v0, (ii) an external
force, generated by the external potential V (r), and (iii) the unit-variance Wiener process
ηt(t), that gives rise to translational diffusion with diffusion coefficient Dt. Here γ is
the friction coefficient. Note that β ≡ (γDt)−1 is an inverse energy scale, and that in
thermodynamic equilibrium the Einstein relation implies β = (kBT )−1, where kB is the
Boltzmann constant and T the temperature. Eq. (6.1b) expresses that the orientation of
a particle changes due to the unit-variance Wiener process ηr(t), which leads to rotational
diffusion with diffusion coefficient Dr.
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The stochastic Langevin equations (6.1) induce a probability density ψ(r, θ, t), whose
time evolution follows the Smoluchowski equation

∂tψ = −∇ ·
(

v0êψ − 1
γ

(∇V )ψ − Dt∇ψ
)

+Dr∂θθψ. (6.2)

Here ∇ = (∂x, ∂y)T is the two-dimensional spatial gradient operator. Two useful functions
to characterize the probability density ψ(r, θ, t) are the density ρ(r, t) ≡

´
dθψ(r, θ, t)

and the polarization m(r, t) ≡
´

dθψ(r, θ, t)ê(θ). Their time-evolutions follow from the
Smoluchowski equation (6.2) as

∂tρ = −∇ ·
{

v0m − 1
γ

(∇V )ρ − Dt∇ρ
}

, (6.3)

∂tm = −∇ ·
{

v0
(
S + I

2ρ
)

− 1
γ

(∇V )m − Dt∇m
}

− Drm,

where I is the 2 × 2 identity matrix, and where S(r, t) ≡
´

dθψ(r, θ, t)(ê(θ)ê(θ) − I/2)
is the 2 × 2 nematic alignment tensor. Due to the appearance of S, Eqs. (6.3) are not
closed. Therefore, solving Eqs. (6.3), rather than the full Smoluchowski Eq. (6.2), requires
a closure, an example of which we discuss in section 6.2.2.

We consider a planar geometry that is invariant in the y-direction, i.e. V (r) = V (x),
such that ψ(r, θ, t) = ψ(x, θ, t), ρ(r, t) = ρ(x, t), m(r, t) = mx(x, t)x̂ etc. The geometry
consists of two bulks, located at x � 0 and x � 0. These bulk systems are separated by
the ratchet potential

V (x) =




0, for x < −xl,

Vmax

(
x

xl

+ 1
)

, for − xl < x < 0,

Vmax

(
1 − x

xr

)
, for 0 < x < xr,

0, for xr < x,

(6.4)

where xl and xr are both positive. This sawtooth-shaped potential is illustrated in Fig. 6.1.
Note that the potential is generally asymmetric, the degree of which is characterized by
the asymmetry factor a ≡ (xl − xr)/xr. Without loss of generality, we only consider
ratchets for which xl > xr, such that a > 0.

The complete problem is specified by four dimensionless parameters. We use the
rotational time D−1

r , and the diffusive length scale 
 ≡
√

Dt/Dr, which is proportional to
the size of a particle undergoing free translational and rotational diffusion, to obtain the
Péclet number

Pe ≡ 1√
2

v0

Dr

, as a measure for the degree of activity,

βVmax, the barrier height,
xl



, the width of the ratchet’s left side,

a, the asymmetry of the ratchet.

(6.5)

We caution the reader that the factor 1/
√

2 is often omitted from the definition of the
Péclet number; it is included here to connect to the model described below.
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6.2.2 1D Run-and-Tumble particles
The fact that there is only one nontrivial dimension in the problem suggests a simpler,
one-dimensional model with the same physical ingredients. In this model, which we refer
to as the 1D Run-and-Tumble (RnT) model, particles are characterized by a position
x(t), as well as by an orientation ex(t) that points in either the positive or the negative
x-direction, i.e. ex = ±1. The orientation ex can flip with probability Dr per unit time.
Every particle performs overdamped motion driven by (i) a propulsion force, that acts in
the direction of its orientation, (ii) an external force, generated by the ratchet potential
(6.4), and (iii) Brownian motion, with associated diffusion constant Dt. The problem
can be specified in terms of probability density functions ψ±(x, t) to find particles with
orientation ex = ±1. For our purposes, it is more convenient to consider the density
ρ(x, t) ≡ ψ+(x, t) + ψ−(x, t), and polarization mx(x, t) ≡ [ψ+(x, t) − ψ−(x, t)]/

√
2. These

fields evolve as

∂tρ = −∂x

{√
2v0mx − 1

γ
(∂xV )ρ − Dt∂xρ

}
,

∂tmx = −∂x

{
v0√

2
ρ − 1

γ
(∂xV )mx − Dt∂xmx

}
−Drmx.

(6.6)

Note the similarity of Eqs. (6.6) with Eqs. (6.3) of the 2D ABP model. In fact, if we define
the Péclet number for the 1D RnT model as Pe ≡ v0/(Dr�), then supplying the 2D ABP
model with the closure S(r, t) = 0 maps Eqs. (6.3) to the 1D RnT model. The mapping is
such that if one uses the same values for the dimensionless parameters Pe, βVmax, xl/�, and
a, then both models yield equal density profiles ρ(x) and polarization profiles mx(x, t).
As the closure S(r, t) = 0 is exact in the limit of weak activity, i.e. Pe � 1, this mapping
is expected to give good agreement between the two models for small values of the Péclet
number Pe.

6.3 Numerical solutions

6.3.1 Density and mean orientation profiles
We study steady state solutions of both 2D ABPs and 1D RnT particles in the ratchet
potential (6.4). To find the solutions, for the 2D ABP model we numerically solve Eq. (6.2)
with ∂tψ = 0, whereas for the 1D model we numerically solve Eqs. (6.6) with ∂tρ = ∂tmx =
0. We impose the following three boundary conditions.

1. To the left of the ratchet, we imagine an infinitely large reservoir that fixes the
density to be ρl at xres � −xl, i.e. we impose ψ(xres, θ) = (2π)−1ρl for the 2D case,
and ρ(xres) = ρl, mx(xres) = 0 for the 1D case.

2. To the right of the ratchet, we assume an isotropic bulk that is thermodynamically
large, yet finite, such that its density follows from the solution of the equations. In
technical terms, at xmax � xr we impose ∂xψ(xmax, θ) = 0 for the 2D case, and
∂xρ(xmax) = 0, mx(xmax) = 0 for the 1D case.
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Figure 6.2: (a) Density profiles ρ(x)/ρl and (b) mean orientation profiles mx(x)/ρ(x) of 2D
ABPs, and 1D RnT particles, as indicated, in a ratchet potential V (x) of height βVmax = 4,
width xl/� = 1, and asymmetry a = 3. The dashed, vertical lines indicate the positions of the
barrier peak (x = 0) and the ratchet sides (x = −xl and x = xr). The bulk density to the left of
the ratchet is ρ(x � −xl) = ρl. Passive particles (Pe = 0) are distributed isotropically (mx = 0),
with a density profile given by the Boltzmann weight ρ(x) = ρl exp(−βV (x)). Consequently, the
densities ρl and ρr in the bulks on either side of the ratchet are equal. Active particles (Pe = 1)
display much richer behaviour, with an accumulation of particles at either side of the ratchet,
with a mean orientation towards the barrier peak, with a depletion of particles near the top of
the ratchet, and with the right bulk density ρr exceeding the left bulk density ρl.
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3. Additionally, for the 2D case we identify θ = 0 with θ = 2π, i.e. ψ(x, 0) = ψ(x, 2π)
and ∂θψ(x, 0) = ∂θψ(x, 2π) for all x.

In order to allow the profiles to decay to their bulk values specified by boundary condi-
tions 1 and 2, in our numerical calculations we always ensure the distance between xres (or
xmax) and the ratchet potential to be at least a multitude of the most significant length
scale.

Typical solutions are shown in Fig. 6.2. The considered ratchet potential, with height
βVmax = 4, width xl/� = 1, and asymmetry a = 3, is shown as the dashed line in
Fig. 6.2(a). We consider both a passive system (Pe = 0) and an active system (Pe = 1),
using xres = −11l and xmax = 10.25l in this case. The resulting density profiles and
mean orientation profiles are shown in Fig. 6.2(a) and Fig. 6.2(b), respectively. For the
passive system, the solution is isotropic (i.e. ψ(x, θ) ∝ ρ(x) and mx(x) = 0 everywhere),
and given by the Boltzmann weight ρ(x) = ρl exp(−βV (x)). One checks that these solu-
tions indeed solve Eqs. (6.2) and (6.6) when the propulsion speed v0 equals 0. Thus, in
accordance with this Boltzmann distribution, the density in the passive system is lower
in the ratchet region than in the left bulk, and its value ρr ≡ ρ(xmax) in the right bulk
satisfies ρr = ρl, with ρl the density in the left bulk. This is a necessity in thermodynamic
equilibrium, even for interacting systems: the equality of the external potential implies
equal densities of the bulks.

For the active case (Pe = 1), the behavior is much richer. Firstly, the solution is
anisotropic in the ratchet region, even though the external potential is isotropic. Indeed,
Fig. 6.2(b) shows a mean orientation of particles directed towards the barrier on either
side of the ratchet. This is consistent with the finding that active particles tend to align
against a constant external force [174, 188], but is also reminiscent of active particles near
a repulsive wall. Indeed, at walls particles tend to accumulate with a mean orientation
towards the wall [114, 189], and a similar accumulation is displayed by the density profiles
of Fig. 6.2(a) at the ratchet sides x = −xl and x = xr. The overall result is an accu-
mulation of particles at the ratchet sides, a depletion of particles near the center of the
ratchet, and, remarkably, a density ρr in the right bulk that is higher than the density ρl

in the left bulk.
The fact that the difference in bulk densities ∆ρ ≡ ρr − ρl is positive is caused by the

asymmetry of the ratchet: due to their propulsion force, particles can cross the potential
barrier more easily from the shallower, left side than from the steeper, right side. This
argument is easily understood in the absence of translational Brownian motion (Dt = 0),
i.e. when the only force that makes particles move (apart from the external force) is the
propulsion force. Indeed, in this case, one can even think of ratchet potentials whose
asymmetry is such that particles can climb it from the shallow side, but not from the
steep side [187]. For such a ratchet potential, all particles eventually end up on the right
side of the ratchet, such that clearly the right bulk density ρr exceeds the left bulk density
ρl. The effect of having nonzero translational Brownian motion (Dt > 0) is that particles
always have some probability to climb also the steep side of the ratchet. This leads to a
density difference ∆ρ that is smaller than in the Dt = 0 case. Yet, as long as the ratchet
is asymmetric, the density difference always turns out positive for any positive activity Pe.
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Figure 6.3: Normalized density difference ∆ρ/ρl as a function of (a) activity Pe, (b) barrier
height βVmax, (c) barrier width xl/�, and (d) barrier asymmetry a. Results are shown for both
the 2D ABP and 1D RnT models, as indicated. In the limiting cases of small and large values of
its arguments, the density difference shows power law behavior. The corresponding exponents
are listed in Table 6.1. Additionally, (a) shows the density difference obtained analytically in the
limit of weak activity (see section 6.4), for the same ratchet parameters as used for the numerical
solutions. The analytical and numerical solutions show good agreement up to Pe ≈ 0.5.

We stress that the fact that ρr > ρl is actually quite remarkable. The reason is that,
whereas the ratchet potential is localized around x = 0, the right bulk can be arbitrarily
large. Since our results clearly show that the right bulk density ρr is influenced by the
ratchet, this means that the steady-state density profile depends on the details of the
external potential at arbitrarily large distance.

Note that the instantaneous profile is, according to Eq. (6.2), only influenced by the
external potential locally. What is happening is that the ratchet potential acts as a
particle ‘pump’: if one starts with equal and homogeneous densities on either side of
the ratchet potential, then the ratchet will locally generate a particle current. This
particle current will change the density profile immediately adjacent to the ratchet. These
density perturbations, in turn, will spread over the adjacent bulks. If the bulks are indeed
arbitrarily large, then the time it takes the density perturbations to spread over the entire
bulks will also be arbitrarily large, and the same will be true for the time it takes the
system to reach its final steady state. Nonetheless, if one wants to find the final steady-
state density at a given location, then one needs to know the details of the external
potential at arbitrarily large distance awaya - and this makes it much harder to find the
steady-state density profile for an active than for a passive system.

aand/or solve for the complete history of the system.
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exponent

base limit
numerical
solution

Pe � 1
solution

transition state
model

Pe Pe � 1 2 2 2
Pe � 1 -4

βVmax βVmax � 1 3 3
βVmax � 1 0 0 0

xl/� xl/� � 1 2 2 2
xl/� � 1 * -3

a a � 1 1 1 1
a � 1 0 0 0

*depends on Pe. For Pe � 1, this exponent equals −3.

Table 6.1: Power laws ∆ρ ∝ baseexponent, for limiting values of the base. Here the base denotes
either the activity Pe, the barrier height βVmax, the barrier width xl/�, or the barrier asymmetry
a. Exponents were obtained numerically for the 1D RnT and 2D ABP models (yielding consistent
exponents), analytically for the case of small activity Pe � 1, and for a simple transition state
model. Exponents are shown only in limits where the corresponding solution is applicable.

6.3.2 Scaling of the bulk density difference ∆ρ

Next, we examine, one by one, how the density difference ∆ρ depends on activity Pe,
the barrier height βVmax, the barrier width xl/�, and on the barrier asymmetry a. The
results are shown in Figs. 6.3(a)-(d), for both the 2D ABP and the 1D RnT models. In
all cases, both models give density differences that are quantitatively somewhat different,
but qualitatively similar, as they are both consistent with identical power lawsb.

Fig. 6.3(a) shows the density difference as a function of activity Pe, for two different
ratchet potentials. For small Pe, the figure shows that the density difference increases
as Pe2. For large Pe, the density difference decreases again, to decay to 0 in the limit
Pe → ∞. The reason for this decrease is that particles with high activity can easily climb
either side of the ratchet potential, such that they hardly notice the presence of the barrier
at all. As shown by Fig. 6.3(a), this decay follows the power law ∆ρ ∝ Pe−4. Whereas
the prefactors of these power laws are different for the two different ratchet potentials
considered, the exponents were found to be independent of the ratchet parameters, which
was tested for many more values of βVmax, xl/�, and a.

Fig. 6.3(b) shows the density difference as a function of the barrier height βVmax. The
barrier width, xl/� = 1, and asymmetry, a = 3, are kept fixed, and two levels of activity,
Pe = 1 and Pe = 4, are considered. For all cases, we find the power law ∆ρ ∝ (βVmax)3,
up to values of the barrier height βVmax ≈ 3. Exploring the behavior for large values of
the barrier height βVmax was numerically not feasible, but the fact that the curves for ac-

bFor numerical reasons, fewer results were obtained for the 2D ABP model than for the 1D RnT
model. Therefore, not all of the power laws obtained for the 1D model could be tested for the 2D model.
Yet, all 2D results seem consistent with all of the power laws.
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tivity Pe = 1 level off for barrier heights βVmax ≥ 5 seems consistent with the asymptotic
behavior for βVmax � 1 that we shall obtain, in section 6.4, in the limit of weak activity.

Fig. 6.3(c) shows the density difference as a function of the width xl/� of the left side
of the ratchet. Here the barrier height and asymmetry are fixed, at βVmax = 2 and a = 1,
respectively, whereas the degree of activity is varied as Pe = 0.1, 0.3, and 1. For small
barrier widths, i.e. for xl/� � 1, the curves show the power law ∆ρ ∝ (xl/�)2, independent
of the activity Pe. For very wide barriers, i.e. for xl/� � 1, the curves show power law
behavior with an exponent that does depend on the activity Pe. For the smallest degree
of activity, Pe = 0.1, this exponent is found to equal −3. This scaling, ∆ρ ∝ (xl/�)−3

for large widths xl/� � 1, will also be obtained analytically in section 6.4 for the case of
weak activity.

Finally, Fig. 6.3(d) shows the density difference as a function of the barrier asymmetry
a. The barrier height and width are fixed, at βVmax = 1 and xl/� = 1, respectively, and
the degree of activity is varied as Pe = 1 and Pe = 4. For nearly symmetric ratchets,
i.e. for a � 1, all curves show ∆ρ ∝ a, whereas for large asymmetries a � 1 the curves
suggest asymptotic behavior, i.e. ∆ρ ∝ a0. This asymptotic behavior can be understood
on physical grounds, as the limit a → ∞ corresponds to a ratchet whose right slope is
vertical, a situation that we expect to lead to a finite density difference indeed.

All discussed scalings are summarized in Table 6.1. Of these, the scaling ∆ρ ∝ Pe2

for small activity Pe � 1 can be regarded as trivial. The reason is that, in an expansion
of the density difference ∆ρ around Pe = 0, the quadratic term is the first term to be
expected on general grounds: (i) Eqs. (6.2) and (6.6) are invariant under a simultaneous
inversion of the self-propulsion speed (v0 → −v0) and the orientation (ê → −ê, and hence
mx → −mx), such that the expansion of the density difference ∆ρ contains only even
powers of Pe, and (ii) for the passive case (Pe = 0), the density difference ∆ρ equals 0,
such that the zeroth order term is absent. Similarly, the obtained scaling ∆ρ ∝ a is as
expected: since a symmetric ratchet (a = 0) leads to the density difference ∆ρ = 0, the
leading order term one expects in an expansion of the density difference ∆ρ around a = 0
is linear in the asymmetry a. However, all other scalings listed in Table 6.1 cannot be
predicted by such general arguments, and are therefore nontrivial findings.

We emphasize that these results have been obtained and verified by multiple ap-
proaches independently. While the presented results have been obtained by numerically
solving the differential equations (6.2) and (6.6) as explained above, both the 2D ABP
model and the 1D RnT model were also solved by separate approaches. For the 2D
ABP model, results were additionally obtained by numerically integrating the Langevin
equations (6.1) in particle-based computer simulations. For the 1D RnT model, results
were also obtained by solving a lattice model, where particles can hop to neighbouring
lattice sites, and change their orientation, with probabilities that reflect the same phys-
ical processes of self-propulsion, external forcing, translational Brownian motion, and
tumbling[190]. For both the 2D ABP and the 1D RnT model, the two alternative ap-
proaches showed full agreement with the presented results.
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Figure 6.4: (a) Normalized polarization profiles mx(x)/ρl and (b) deviations of the density ρ(x)
from the passive solution ρ0(x), for a ratchet potential of height βVmax = 4, width xl/� = 1, and
asymmetry a = 3. The dashed, vertical lines indicate the positions of the barrier peak (x = 0)
and the ratchet sides (x = −xl and x = xr). Results are shown for the analytical Pe � 1
solution, and for the numerical solutions to the 1D RnT model, for activity levels Pe = 0.1, 0.5
and 1. The polarizations and density deviations are divided by Pe and Pe2, respectively, such
that the curves for the analytical solution are independent of Pe.
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6.4 Weak activity limit
Having characterized how the ratchet potential influences the densities of the adjoining
bulks, we now turn to the question whether we can better understand this effect. We first
try to answer this question for the simplest case possible, and therefore focus on the limit
of weak activity, i.e. Pe � 1. Recall that in this limit the 2D ABP model and the 1D RnT
model are equivalent. In this section, we present an analytical solution for the Pe � 1
limit. In the next section, we propose to rationalize its results by a simple transition state
model, that is valid for, but not limited to, weak activity.
In case of a small propulsion force, i.e. of Pe � 1, the density can be expanded as
ρ(x) = ρ0(x) + Pe2ρ2(x) + O(Pe4), and the polarization as mx(x) = Pe m1(x) + O(Pe3).
Here ρ0(x), ρ2(x) and m1(x) are assumed to be independent of Pe. We used the arguments
that the density ρ(x) is an even function of Pe, and the polarization mx(x) an odd function
of Pe, as explained in section 6.3.2. With these expansions, Eqs. (6.6) can be solved
perturbatively in Pe, separately for each region where the ratchet potential (6.4) is defined.
As shown in the appendix, the solutions within one region are

ρ0(x) =A0e
−βV (x),

m1(x) = − A0√
2

fe−βV (x) + B+ec+x/� + B−ec−x/�,

ρ2(x) =
[
A2 − A0f

x

�

]
e−βV (x)

+
√

2B+

c+ − f
ec+x/� +

√
2B−

c− − f
ec−x/�. (6.7)

Here we defined the non-dimensionalized external force f(x) ≡ −β�∂xV (x), such that
f = 0 for x < −xl, f = −βVmax�/xl for −xl < x < 0, f = βVmax�/xr for 0 < x < xr,
and f = 0 for x > xr, in accordance with Eq. (6.4). Furthermore, we defined c± ≡
(f ±

√
f 2 + 4)/2. The integration constants A0, A2, B+, and B− are found separately for

each region, by applying the boundary conditions ρ(−∞) = ρl, m(∞) = m(−∞) = 0,
and the appropriate continuity conditions at the region boundaries x = −xl, x = 0 and
x = xr. Applying these conditions to the solutions ρ0(x) in Eq. (6.7) shows that the
leading order solution is given by the Boltzmann weight, i.e. ρ0(x) = ρl exp(−βV (x)) for
all x. Clearly, this is the correct passive solution. The higher order solutions that follow,
i.e. the polarization profile m1(x) and the density correction ρ2(x), are plotted in Fig. 6.4.
Qualitatively, these plots show the same features as displayed by the numerical solutions
in Fig. 6.2: an accumulation of particles facing the barrier at the ratchet sides x = −xl

and x = xr, and a right bulk density ρr that exceeds the left bulk density ρl. To allow
for a quantitative comparison, Fig. 6.4 also shows polarization profiles mx(x) and density
corrections ρ(x)−ρ0(x) that were obtained for the 1D RnT model numerically. While the
ratchet potential is fixed, with barrier height βVmax = 4, width xl/� = 1, and asymmetry
a = 3, the comparison is made for several degrees of activity, namely Pe = 0.1, 0.5, and 1.
The analytical and numerical results show good agreement for Pe = 0.1, reasonable agree-
ment for Pe = 0.5, and deviate significantly for Pe = 1. All of these observations are as
expected, since the analytical solutions (6.7) are obtained under the assumption Pe � 1.

The most interesting part of solution (6.7) is the density correction ρ2(x), as this
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Figure 6.5: Normalized leading order coefficient (∆ρ)2 in the expansion of the density difference
∆ρ for small activity Pe, as found from the analytical Pe � 1 solution and as predicted by the
transition state model, (a) as a function of the barrier height βVmax, at fixed barrier width
xl/� = 1 and asymmetry a = 1, (b) as a function of the barrier width xl/�, at fixed barrier
height βVmax = 1 and asymmetry a = 1, and (c) as a function of the asymmetry a, at fixed
barrier height βVmax = 2 and barrier width xl/� = 1. The power laws shown by the transition
state model in its regime of applicability, i.e. for βVmax � 1 and xl/� � 1, have exponents that
agree with the power laws of the analytical solution. These exponents can be found in Table
6.1. The analytical and transition state solution do not agree quantitavely for these parameter
values.
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correction contains the leading order contribution to the difference in bulk densities ∆ρ.
To gain some understanding for the meaning of the various terms contributing to ρ2(x),
we point out that for small activity, i.e. for Pe � 1, active particles are often understood
as passive particles at an effective temperature [36, 120, 130, 171–173]. In our convention,
this effective temperature reads Teff = T (1 + Pe2). Therefore, one might think that for
our weakly active system the density profile is given by Boltzmann weight at this effective
temperature, i.e. by ρ(x) = A exp(−V (x)/kBTeff) within one region. Here the prefactor
A can depend on the activity Pe. Expanding this effective Boltzmann weight for small
Pe yields the passive solution ρ0(x), and the terms on the first line of ρ2(x) in Eq. (6.7).
However, it does not reproduce the final two terms that contribute to ρ2(x) in Eq. (6.7).
Precisely these last two terms are crucial to obtain a nonzero difference ∆ρ in bulk den-
sities. Indeed, a density profile given solely by the effective Boltzmann weight necessarily
yields equal bulk densities ρl = ρr, as the external potential V (x) is equal on either side
of the ratchet.

The analytical expression for the difference in bulk densities ∆ρ, implied by the solu-
tions (6.7), is rather lengthy and intransparent, and is therefore not shown here. Instead,
we show the dependence of ∆ρ on the activity Pe graphically, in Fig. 6.3(a), for the same
two ratchet potentials as used for the numerical solutions. As the density difference ∆ρ
follows from the correction ρ2(x), it scales as Pe2, just like the numerical solutions for
Pe � 1. As shown by Fig. 6.3(a), the analytical and numerical solutions agree quanti-
tatively up to Pe ≈ 0.5, as also found in Fig. 6.4. Before we illustrate how the density
difference ∆ρ depends on the ratchet potential, we extract its dependence on activity
Pe by considering (∆ρ)2 = ∆ρ/Pe2, i.e. the leading order coefficient in an expansion of
∆ρ around Pe = 0. The coefficient (∆ρ)2 is independent of Pe, but still depends on the
barrier height βVmax, the barrier width xl/�, and the asymmetry a. Its dependence on
these ratchet parameters is plotted in Figs. 6.5(a)-(c), respectively. These figures display
all the power law behavior that was obtained numerically in section 6.3. The power laws
are summarized in Table 6.1.

6.5 Transition State Model

As argued in the previous section, the nonzero difference in bulk densities ∆ρ cannot be
accounted for by the effective temperature that is often employed in the weak activity
limit. Instead, to understand the behavior of the bulk density difference ∆ρ better, we
propose the following simple transition state model. The model consists of four states,
designed to mimic the 1D RnT model in a minimal way. Particles in the bulk to the
left of the ratchet, with an orientation in the positive (negative) x-direction, are said
to be in state l+(l−), whereas particles in the bulk to the right of the ratchet, with
positive (negative) x-orientation, are in state r+(r−). This setting is illustrated in Fig. 6.6.
Particles can change their orientation, i.e. transition from l± to l∓, and from r± to r∓, with
a rate Dr. Furthermore, particles can cross the potential barrier and transition between
the l- and r-states. The associated rate constants are assumed to be given by modified
Arrhenius rates [191–193], where the effect of self-propulsion is to effectively increase or
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Figure 6.6: Illustration of the states in the transition state model. Particles in the left bulk
with positive (negative) x-orientation are in state l+(l−). Similarly, particles in the right bulk are
in state r+ or r−. Within one bulk, particles can change their orientation with rate constant Dr.
Between the bulks, particles can transition by crossing the potential barrier with the effective
Arrhenius rates of Eqs. (6.8) and (6.9), where the effect of self-propulsion is to shift the potential
barrier Vmax by the work γv0xl (γv0xr) performed by the propulsion force when a particles climbs
the left (right) slope of the ratchet.

decrease the potential barrier. For example, the rate to transition from l+ to r+ is

kl+→r+ = νl

Ll

exp [−β(Vmax − γv0xl)] . (6.8)

As the propulsion force helps the particle to cross the barrier, it effectively lowers the
potential barrier Vmax by the work γv0xl that the propulsion force performs when the
particle climbs the left slope of the ratchet. This modified Arrhenius rate is expected
to be valid under the assumptions (a) of a large barrier height βVmax � 1, which is a
condition for the Arrhenius rates to be valid even for passive systems [194], (b) of a ratchet
potential that is typically crossed faster than a particle reorients, which can be achieved
by making the barrier width xl/� sufficiently small, and (c) that the work γv0xl performed
by the propulsion force is much smaller than the barrier height Vmax. We point out that
assumption (c) can be rewritten as Pe � βVmax�/xl. This means that if assumptions (a)
and (b) are satisfied, which imply that βVmax�/xl � 1, then assumption (c) is not much
further restrictive on the activity Pe. The remaining rate constants follow along a similar
reasoning as

kl−→r− = νl

Ll

exp [−β(Vmax + γv0xl)] ,

kr+→l+ = νr

Lr

exp [−β(Vmax + γv0xr)] ,

kr−→l− = νr

Lr

exp [−β(Vmax − γv0xr)] .

(6.9)

For large bulks on either side of the ratchet, the attempt frequencies in the rate expressions
(6.8) and (6.9) are inversely proportional to the size of the bulk that is being transitioned
from. This size is denoted by Ll for the left bulk, and by Lr for the right bulk. Therefore,
the factors νl and νr are independent of the bulk sizes Ll and Lr, and can only depend
on the shape of the rachet potential, i.e. on its height βVmax, on its width xl/�, and on
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its asymmetry a.
We denote the number of particles in the l± and r± states by Nl±(t) and Nr±(t),

respectively. The time evolution of these particle numbers follows from the rates outlined
above. For example, the number of particles Nl+(t) in state l+ evolves according to the
rate equation

∂tNl+ =−
(
Dr + kl+→r+

)
Nl+ + DrNl− + kr+→l+Nr+. (6.10)

Similar equations hold for the particle numbers Nl−(t), Nr+(t) and Nr−(t). These rate
equations can be solved in steady state, i.e. when ∂tNl± = ∂tNr± = 0, for the particle
numbers Nl± and Nr± . We consider infinitely large bulks, i.e. Ll, Lr → ∞. In this
case, the solutions show that Nl+ = Nl− and Nr+ = Nr− , such that the l and r states
correspond to isotropic bulks. Furthermore, the solution shows that the bulk densities
ρl = (Nl+ + Nl−)/Ll and ρr = (Nr+ + Nr−)/Lr differ by an amount ∆ρ = ρr − ρl given by

∆ρ

ρl

= νl

νr

cosh (Pe xl/�) − cosh (Pe xr/�)
cosh (Pe xr/�) , (6.11)

where we recall that xr = (1 + a)−1xl. We point out that the ratio νl/νr can generally
depend on the ratchet parameters βVmax, xl/�, and a. However, in the following we simply
assume νl/νr = 1, which is justified for nearly symmetric ratchets.

To enable a comparison with the analytical solution of the previous section, we now
focus on the limit of weak activity, i.e. of Pe � 1. This ensures assumption (c) to be satis-
fied, but we emphasize that the transition state model is not limited to weak activity. We
expand the density difference (6.11) as ∆ρ = (∆ρ)2 Pe2 +O(Pe4), and compare the coeffi-
cient (∆ρ)2 with the same coefficient obtained in section 6.3 for the analytical solution in
the weak activity limit. The coefficient (∆ρ)2 is plotted in Figs. 6.5(a)-(c), as a function
of the of the barrier height βVmax, the barrier width xl/�, and the barrier asymmetry a,
respectively. Fig. 6.5(a) merely illustrates that the density difference (6.11) is indepen-
dent of the barrier height βVmax. This independency agrees with the asymptotic behavior
displayed by the analytical solution for large barrier heights βVmax � 1. Note that the
regime βVmax � 1 is indeed assumed for the modified Arrhenius rates (assumption (b)).
Fig. 6.5(b) illustrates that the density difference predicted by the transition state model
scales quadratically with the barrier width, i.e. that ∆ρ ∝ (xl/�)2. This scaling agrees
with the scaling of the analytical solution for the regime of small barrier widths xl/� � 1.
Again, this regime is assumed for the modified Arrhenius rates, as having a small barrier
width is required for having particles cross the ratchet faster than they typically reorient
(assumption (c)). Finally, Fig. 6.5(c) illustrates that the density difference predicted by
the transition state model scales linearly with the barrier asymmetry for nearly symmet-
ric ratchets, i.e. ∆ρ ∝ a for a � 1, and asymptotically for very asymmetric ratchets, i.e.
∆ρ ∝ a0 for a � 1. Both scalings are also displayed by the analytical solution. All these
power laws can again be found in Table 6.1.

Of course, the transition state model reproduces only the power laws that lie inside
its regime of applicability. However, the fact this simple model does reproduce all these
power laws is quite remarkable, since, as discussed in section 6.3, most of these scalings
are nontrivial. Furthermore, we note that the transition state model can also be solved
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for finite bulk sizes, which in fact predicts a turnover of the density difference ∆ρ as a
function of activity Pe, as observed in Fig. 6.3(a).

Quantitatively, Fig. 6.5 clearly shows that the predictions of the transition state model
typically differ from the analytical solution by an order of magnitude. A possible reason
for this disagreement is that these plots are made for parameters values that do not sat-
isfy assumptions (a) and (b) that underly the modified Arrhenius rates. In fact, it turned
out to be impossible to satisfy these assumptions simultaneously with feasible parameter
values. The root of the difficulty is that the time it takes a particle to cross the potential
barrier increases with the barrier height βVmax. As a consequence, having a barrier that
is simultaneously very high (assumption (a)), and typically crossed faster than a particle
reorients (assumption (b)), turns out to require unrealistically small barrier widths xl/�.
The quantitative mismatch of the transition state model with the full solution for small
activity might also be attributed to the assumption that the prefactors νl and νr in the
rate expressions (6.8) and (6.9) are not exactly identical, but in fact might depend on the
precise shape of the barrier. However, this possibility goes beyond the current scope of
this chapter, and we leave it for future study.

We conclude that, whereas it was not possible to test the predictions of the transition
state model in its regime of applicability quantitatively, the model does reproduce the
complete power law behavior of this regime correctly.

6.6 Discussion
The most interesting aspect of the studied system is that the external potential has a long-
range influence on the steady-state density profile. This is in sharp contrast to an ideal
gas in equilibrium, whose density profile is only a function of the local external potential.
So what ingredients are necessary to obtain this effect? To answer this question, we
consider the 1D RnT model subject to a general external potential V (x). Furthermore,
we introduce the particle current J(x) and the orientation current Jm(x) that appear in
the evolution equations (6.6), i.e.

J(x) =
√

2v0mx − 1
γ

(∂xV )ρ − Dt∂xρ,

Jm(x) = v0√
2

ρ − 1
γ

(∂xV )mx − Dt∂xmx.
(6.12)

We focus on a state that is steady, such that J(x) = constant ≡ J , and flux-free, such that
J = 0. Then Eqs. (6.6) and (6.12) can be recast into the first order differential equation

�∂xY(x) = M(x)Y(x) (6.13)

for the three (non-dimensionalized) unknowns Y(x) ≡ (�ρ(x), �mx(x), Jm(x)/Dr)T . The
coefficient matrix in Eq. (6.13) is given by

M(x) =




f(x)
√

2Pe 0
Pe/

√
2 f(x) −1

0 −1 0


 , (6.14)
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where f(x) ≡ −β�∂xV (x) is the dimensionless external force, that is now a function of
position x. For a passive system (Pe = 0), Eqs. (6.13) and (6.14) show that the density
equation decouples. In this case, the density profile is solved by the Boltzmann weight, i.e.
ρ(x) ∝ exp(−βV (x)), as required in thermodynamic equilibrium. For the general case,
we observe that, if the coefficient matrix M(x) commutes with its integral

´ x

x0
dx′M(x′),

then Eq. (6.13) is solved by

Y(x) = exp
(

1
�

ˆ x

x0

dx′M(x′)
)

·




c1
c2
c3


 , (6.15)

where the integration constants c1, c2 and c3 are to be determined from boundary condi-
tions. Here x0 is an arbitrary reference position. By virtue of

´ x

x0
dx′f(x′) = −β�V (x),

the solution (6.15) is a local function of the external potential. An explicit calculation of
the commutator shows that [M(x),

´ x

x0
dx′M(x′)] = 0 if and only if β(V (x) − V (x0)) =

−f(x) (x − x0)/�, i.e. if the external potential is a linear function of x. Therefore, for
linear potentials, the density profile is a local function of the external potential. This
explains why in a gravitational field the density profile can be found as a local function
of the external potential, and why sedimentation profiles stand a chance to be described
in terms of an effective temperature in the first place[35, 91, 120, 173–177, 188, 195–197].
However, for nonlinear external potentials, e.g. for the ratchet studied here that is only
piecewise linear, the solution (6.15) is not valid, and a nonlocal dependence on the ex-
ternal potential is to be expected. Therefore, for the ratchet potential (6.4), the kinks
at x = −xl, x = 0 and x = xr are crucial to have a density that depends nonlocally on
the external potential. Indeed, in the analytical solution for weak activity, presented in
section 6.4, the nonlocal dependence of the right bulk density ρr on the external potential
enters through the fact that the integration constants in Eq. (6.7) are found from conti-
nuity conditions that are applied precisely at the positions of these kinks.

Summarizing, in order to have the external potential influence the steady-state density
of ideal particles in a nonlocal way, one needs to have (1) particles that are active (such
that the system is out of thermodynamic equilibrium), and (2) an external potential that
is nonlinear. Thereby, the 1D RnT particles in the ratchet potential (6.4) illustrate the
nonlocal, and even long-range, influence of the external potential in a most minimal way.

In the discussion above, we have only shown that a linear external potential yields
a density profile that is a strictly local function of the potential. Thereby, a nonlinear
potential is not guaranteed to influence the density (arbitrarily) far away, and indeed
other criteria have been discussed in the literature. For example, in the context of active
Ornstein-Uhlenbeck particles, approximate locality was shown for a wide class of nonlin-
ear potentials [93, 130], and it was argued that in order to lose this property it is crucial
to have an external potential with nonconvex regions [198]. More generally, the fact that
the potential barrier is more easily crossed from one side than from the other is a rectifi-
cation effect, and it has been shown that such effects can occur when the dynamics break
time-reversal symmetry, while also the spatial mirror symmetry is broken [199, 200]. In
our case, these criteria are met by the presence of activity, and by having a ratchet that
is asymmetric (a �= 0), respectively.

Our results are also fully consistent with the work by Baek et al. [185], who study the
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effect of placing a nonspherical body in a two-dimensional fluid of ABPs. They show that
such an inclusion leads to a steady state with a density perturbation that scales in the far
field as 1/r, where r is the distance to the body. Repeating their derivation for the 1D
RnT model in our setting yields a far-field density perturbation that is simply constant,
i.e. independent of r. This is consistent with our findings. Furthermore, under suitable
conditions, in particular that the external potential is small everywhere, the authors of
[185] derive that the far-field density perturbation scales as (Vmax)3. This confirms our
finding of the powerlaw ∆ρ ∝ (βVmax)3 for small potential barriers βVmax � 1. More-
over, it suggests that this scaling is not limited to the sawtooth-shaped potential barrier
considered here, but also holds for external potentials of more general shape.

6.7 Conclusions

We have studied the distribution of noninteracting, active particles over two bulks sepa-
rated by a ratchet potential. The active particles were modelled both as two-dimensional
ABPs, and as one-dimensional RnT particles. Our numerical solutions to the steady
state Smoluchowski equations show that the ratchet potential influences the distribution
of particles over the bulks, even though the potential is short-ranged itself. Thus, the
external potential influences the steady-state density profile at large distance away. We
have shown that such a (highly) nonlocal influence can occur for noninteracting particles
only when they are (1) active, and (2) subject to an external potential that is nonlinear.
Thereby, the piecewise linear setup considered in this chapter captures this long-range
influence in a most minimal way.

To characterize the influence of the external potential, we have described how the
difference in bulk densities depends on activity, as well as on the ratchet potential itself.
Both models of active particles showed consistent power law behavior that is summarized
in Table 6.1.

To understand the “long-range influence” of the potential in the simplest case possible,
we focussed on the limit of weak activity. While weakly active systems are often described
by an effective temperature, our analytical solution explicitly shows that the influence of
the ratchet potential cannot be rationalized in this way. Instead, we propose a simple
transition state model, in which particles can cross the potential barrier by Arrhenius
rates with an effective barrier height that depends on the degree of activity. While the
model could not be tested quantitatively, as its underlying assumptions could not be si-
multaneously satisfied for feasible parameter values, it does reproduce - in its regime of
applicability - the complete power law behavior of the distribution of particles over the
bulks.

Future questions are whether the power law behavior can be understood also outside
the regime where the transition state model applies, and whether the power laws also
hold for potential barriers of more generic shape than the sawtooth of Fig. 6.1. Our work
illustrates that even weakly active, noninteracting particles pose challenges that are fun-
damental to nonequilibrium systems, and, moreover, that an external potential can affect
the steady-state profile arbitrarily far away in such systems. We express the hope that
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such long-range and nonlocal effects can be incorporated into a more generic statistical
mechanical description of nonequilibrium systems.
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Appendix 6.A Weak Activity Solution
In this appendix, we derive the analytical solutions (6.7), i.e. the steady state solutions
to the 1D RnT Eqs. (6.6) in the limit of weak activity. First, we define the particle flux
J(x) ≡

√
2v0mx − γ−1(∂xV )ρ − Dt∂xρ, such that the evolution equation for the density,

given by Eq. (6.6), reads ∂tρ = −∂xJ(x). Having a steady state (∂tρ = 0) implies that
J(x) ≡ J is constant, i.e. independent of x. The boundary condition of having a bulk
at x = xmax that is homogeneous and isotropic, and hence flux-free, then implies J = 0.
The equation J(x) = 0 has to be solved together with the steady state condition for the
polarization implied by Eq. (6.6). In dimensionless form, these equations read

0 =
√

2Pe mx + f(x)ρ − �∂xρ,

0 = −�∂x

{
Pe√

2
ρ + f(x)mx − �∂xmx

}
− mx.

(6.16)

Here, we defined the non-dimensionalized external force f(x) ≡ −β�∂xV (x). We shall
solve Eqs. (6.16) separately for every region where the ratchet potential (6.4) is a linear
function. Within one such region, f(x) = f is constant, namely f = 0 to the left and
to the right of the potential barrier, f = −βVmax�/xl on the left slope of the barrier,
and f = −βVmax�/xr on the right slope. We treat these cases simultaneously by simply
writing f(x) = f , and keeping in mind that the solution holds only within one region.
Furthermore, we focus on the limit of weak activity, i.e. of Pe � 1, and expand the density
as ρ(x) = ρ0(x)+Pe2ρ2(x)+O(Pe4), and the polarization as mx(x) = Pe m1(x)+O(Pe3),
as explained in the main text. We insert these expansions into Eqs. (6.16), and solve
order by order in Pe. To zeroth order in Pe, the equations read fρ0 − �∂xρ0 = 0, and are
solved by

ρ0(x) = A0e
fx/�, (6.17)

where A0 is an integration constant. Note that Eq. (6.17) is the Boltzmann weight, and
hence the correct passive solution for noninteracting particles. To linear order in Pe, the
equations read

−�∂x (fm1 − �∂xm1) − m1 = 1√
2

�∂xρ0, (6.18)

where ρ0(x) is given by Eq. (6.17). The solution to Eq. (6.18) is

m1(x) = − A0√
2

fefx/� + B+ec+x/� + B−ec−x/�, (6.19)
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where B+ and B− are integration constants, and where c± ≡ (f ±
√

f 2 + 4)/2. To
quadratic order in Pe, the equations read

fρ2 − �∂xρ2 = −
√

2m1, (6.20)

where m1(x) is given by Eq. (6.19). The solution to Eq. (6.20) is given by

ρ2(x) = [A2 − A0fx/�] efx/� +
√

2B+

c+ − f
ec+x/�

+
√

2B−

c− − f
ec−x/�,

(6.21)

where A2 is another integration constant. Together, Eqs. (6.17), (6.19) and (6.21) consti-
tute the solution (6.7) of the main text.

As emphasized above, these solutions hold within every region separately. There-
fore, the values of the integration constants A0, A2, B+, and B− can differ per region.
These values are determined from the boundary conditions outlined in section 6.3.1, i.e.
ρ(−∞) = ρl, mx(−∞) = 0, and mx(∞) = 0 (we take xres → −∞ and xmax → ∞), and
from the requirements that the density ρ(x), the polarization mx(x), and the orienta-
tion flux Jm(x) ≡ Pe ρ/

√
2 + f(x)mx − �∂xmx all be continuous at the region boundaries

x = −xl, x = 0 and x = xr. The conditions that ρ(−∞) = ρl and that the the density
ρ(x) be continuous straightforwardly imply that A0 = ρl everywhere. However, the values
that follow for the other integration constants A2, B+, and B− are mostly lengthy, and
intransparent, and therefore not shown. The same is true for the leading order difference
in bulk densities ∆ρ = ρr − ρl = Pe2A2|x>xr , whose dependence on the parameters of the
problem is instead depicted graphically, in Figs. 6.3(a) and 6.5(a)-(c).



7

Conclusions

In this chapter, we summarize the research of this thesis, and discuss what we have learnt
from the research as a whole. Also, we provide directions for future research.
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7.1 Summary

In this thesis we studied the thermodynamic variables pressure, chemical potential and
surface tension for active Brownian particles (ABPs). The motivation comes largely
from the motility-induced phase separation (MIPS) that purely repulsive particles at
high enough density can undergo when they are made sufficiently active. MIPS was in-
troduced in chapter 2. We presented phase diagrams, and explained its onset from a
stability analysis of the homogeneous isotropic phase. Additionally, we studied the influ-
ence of particle shape on MIPS, and showed that the phase separation disappears when
perfectly isotropic particles are turned into slightly elongated rods.

The phenomenon of MIPS inspired two research questions that are central to this thesis.
The first question is: can the coexisting densities be found by equating the pressure and
chemical potentials of the two phases?

Since ABPs are out of equilibrium, a pressure and chemical potential first need to be
defined. Chapters 3, 4 and 5 studied the definition of pressure. While complications
arise for particles that are anisotropic (chapter 3), or whose propulsion speed is spatially
dependent (chapter 4), the situation is relatively straightforward for isotropic particles
with homogeneous propulsion speed: the total pressure of the system is the sum of the
‘bare’ pressure, which has the same functional form as the equilibrium pressure, and the
swim pressure, which is induced by the activity. If one takes into account the fact that
the ABPs swim in a solvent (chapter 3), then the bare pressure is associated with the
colloids, while the swim pressure is identified as the pressure of the solvent. Their sum is
then indeed the total pressure of the suspension.

For these isotropic particles with homogeneous propulsion speed, chapter 5 studied
the definition of a chemical potential. It used a Gibbs-Duhem-like equation to define a
quantity that plays the role of chemical potential, and tested whether, together with the
pressure, it could be used to predict the coexisting densities. While the densities could
be accurately predicted for a coexistence of weakly active Lennard-Jones particles, this
was not the case for the highly active MIPS. The discrepancy is a consequence of the fact
that the chemical potential-like quantity is not a state function, and that its bulk value
depends on the profiles in the interface.

The second question concerns the interface of MIPS. In Ref. [26] it was found that its
interfacial tension is negative. What does this precisely mean, and why is the interface
nonetheless stable? These questions were studied in chapter 4. This chapter did not
directly study the MIPS interface, but a simpler system that we showed to share impor-
tant qualitative features: the interface formed by an active ideal gas in between two bulks
with different propulsion speeds. We proposed two possible definitions of the interfacial
tension, and investigated the stability of the interface. Remarkably, just like for MIPS,
the normal force on a piece of perturbed interface acts in the same direction as the pertur-
bation, and thus seems to have a destabilizing effect. Nonetheless, we found the interface
to be stable. The reason is that the interfacial tension depends on the lateral position in
the interface. This leads, by a Marangoni-like effect, to tangential currents that restore
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the interface to its original state.

Finally, in chapter 6, we studied another effect that makes the statistical physics of
ABPs challenging: in the presence of an external potential, the steady-state density pro-
file can depend on the details of the external potential at locations arbitrarily far away.
We studied this effect in a minimal setting, by applying an external “sawtooth” potential
in between two bulks of an active ideal gas. We showed that the steady-state densities
in the two bulks, which can be arbitrarly large size, indeed depend on the parameters of
the sawtooth potential. To explain this dependence we proposed a simple transition state
model, which, in its regime of applicability, indeed captures the correct trends.

7.2 Concluding remarks
A priori, it may not be clear how thermodynamic variables, defined in thermodynamic
equilibrium, can be extended to active systems. The route to follow is most clear for
the pressure and surface tension, for they have a mechanical interpretation, that can be
extended to active systems. However, correctly interpreting their meaning requires a care-
ful analysis, and simply applying equations that are valid in equilibrium does generally
not suffice. For example, whereas in equilibrium the pressure exerted on the wall always
equals the pressure that follows from the trace of the local stress tensor [88, 129], this is
not true for ABPs that are anisotropic. As another example, an interfacial tension that
is negative does not necessarily imply that the interface is unstable, and the stabilizing
mechanism in chapter 4 was found only after analyzing carefully how the interface re-
sponds to a perturbation.

In contrast to the pressure and surface tension, the chemical potential cannot be de-
fined mechanically. Therefore, its extension to active systems is more challenging. As a
result, the literature shows a variety of definitions that sometimes seem difficult to relate
[41, 46, 57, 89, 131, 147, 201], and we simply presented the definition that seemed most
natural us: the chemical potential as the scalar function along whose gradient particles
move.

So how useful are these thermodynamic variables for ABPs? A certain benefit is that they
provide extra intuition. For example, the fact that in MIPS the dense phase of repulsive
particles does not simply expand into the dilute phase, can be understood from the fact
that the particles effectively move slower in the dense phase, such that the swim pressure
is lower than in the dilute phase. As another example, the fact that active particles in a
gravitational field have a larger sedimentation length than passive particles can be under-
stood from the fact that the gravitational potential is counteracted by the swim potential.

On the other hand, the fact that the pressure and chemical potential could not predict
the coexising densities of MIPS shows that they are not as effective as their equilibrium
counterparts. This was confirmed in chapter 6: whereas for an ideal gas in equilibrium
the density is a local function of the chemical potential, for and active ideal gas the den-
sity depends on values of the external potential - and thus of the chemical potential -



140 Chapter 7

at locations arbitrarily far away. In the author’s opinion, this does not as much reflect
on the use of thermodynamic variables for active systems, as on their effectiveness for
equilibrium systems. In fact, performing this research made the author appreciate how
strong the thermodynamic framework in equilibrium really is.

In hindsight, it is perhaps not so surprising that the highly non-equilibrium phenomenon
of MIPS cannot be described by the variables pressure and chemical potential, since
they are, in principle, equilibrium concepts. Seen in this light, the fact that they do
describe the coexistence of weakly active Lennard-Jones particles is already quite an
achievement. An interesting future question is whether active system can be described
by other thermodynamic variables that explicitly account for the ‘non-equilibriumness’ of
the system. For example, there have already been studies on the entropy production of
active systems [202–205], but is it also minimized [206] for active steady states? Another
interesting approach is to note that the forces that do not map to an equilibrium system
are the non-conservative ones. Since the conservative and non-conservative forces are
separately accounted for in power functional theory [207], we deem the application of
power functional theory to active systems [148, 208, 209] an interesting direction for
future research as well.
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Samenvatting

Heeft u ooit de tijd genomen om een zwerm vliegende spreeuwen te bekijken? Een zwerm,
die uit wel 100.000 vogels kan bestaan, vormt soms patronen die bijna hypnotiserend zijn
om naar te kijken (voor een voorbeeld zie Fig. 1.1 in hoofdstuk 1). Als u dit wel eens
gezien heeft, dan heeft u zich misschien ook wel afgevraagd hoe de vogels deze patronen
vormen. De beweging wordt namelijk niet gecoördineerd door één of meerdere vogels die
de leiding hebben. In plaats daarvan vormen de patronen spontaan: ze volgen op de één
of andere manier uit de manier waarop elke individuele spreeuw vliegt en reageert op de
aanwezigheid van andere vogels in de buurt. Maar hoe de patronen dan precies uit dat
individuele gedrag volgen is geen eenvoudige vraag. Iets scherper gesteld luidt deze vraag
als volgt. Stel we weten precies hoe elke individuele spreeuw beweegt en hoe zij inter-
acteert met andere spreeuwen, kunnen we dan het gedrag van een grote groep spreeuwen
voorspellen?

Het gedrag van een groep spreeuwen is onderdeel van een onderzoeksveld dat bekend
staat als actieve materie. Andere voorbeelden van actieve materie zijn scholen vissen
en mensenmassa’s, maar hieronder vallen ook zwemmende bacteriën en zwemmende mi-
crodeeltjes die gecreëerd zijn in het laboratorium. Actieve materie heet actief omdat alle
objecten energie verbruiken en deze meestal omzetten in beweging. Waarom het materie
wordt genoemd is in eerste instantie misschien niet duidelijk, maar het suggereert dat
we een dergelijke systeem kunnen beschrijven zoals we ‘gewone’ materie beschrijven, dus
alsof het bijvoorbeeld een gas of een vloeistof is. Gewone materie bestaat namelijk ook
uit een groot aantal éénheden: moleculen. Het verschil is dat de moleculen (meestal) geen
energie verbruiken, en dus niet actief maar passief zijn.

Passieve materie in evenwicht wordt beschreven door de statistische fysica. Deze the-
orie doet voor passieve materie precies wat we voor actieve materie hopen te bereiken:
gegeven hoe individuele moleculen met elkaar interacteren, voorspelt de statistische fysica
hoe het geheel van alle moleculen tezamen zich gedraagt. Het collectief van de moleculen
beschrijven we dan simpelweg als één stof, die we dan karakterizeren door, bijvoorbeeld,
de druk en temperatuur te geven. De druk en temperatuur zijn voorbeelden van thermo-
dynamische variabelen. De statistische fysica kan dan ook voorspellen bij welke waarden
van de thermodyamische variabelen een stof in een bepaalde fase is: wanneer vormt een
stof een gas, wanneer een vloeistof en wanneer een vaste stof? Zo kunnen we bijvoorbeeld
berekenen bij welke temperatuur water kookt boven op de Mount Everest, maar uitein-
delijk ligt deze theorie ook ten grondslag aan de motoren die onze auto’s en vliegtuigen
aandrijven.

In hoeverre kan actieve materie ook worden beschreven door thermodynamische vari-
abelen? Die vraag staat centraal in dit proefschrift. Daarbij focussen we op de thermo-
dynamische variabelen druk, chemische potentiaal en oppervlaktespanning. We hebben
hun gebruik niet onderzocht voor actieve materie in het algemeen, maar voor het simpele
model van actieve Brownse deeltjes. Actieve Brownse deeltjes zijn, kort gezegd, gelijk aan
passieve deeltjes, maar met het extra ingrediënt dat elk deeltje een voortstuwingskracht
voelt in een richting die willekeurig verandert in de tijd. Deze voorstuwingskracht maakt
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dat de deeltjes niet passief maar actief zijn.
De motivatie voor dit onderzoek komt voor een belangrijk deel uit het fenomeen dat

bekend staat als motiliteitsgeïnduceerde fasescheiding. Om uit te leggen wat dit inhoudt
volgt nu eerst een korte uitleg over normale fasescheiding. Passieve moleculen, zoals wa-
termoleculen, kunnen bij de juiste omstandigheden scheiden in twee fases. Deze fases
bestaan dan tegelijkertijd naast elkaar. Zo kan bijvoorbeeld een gas naast een vloeistof
bestaan. Voor het optreden van een dergelijke gas-vloeistof scheiding is het essentieel
dat de deeltjes elkaar (op bepaalde afstand) aantrekken - deze aantrekkingskracht zorgt
ervoor dat de deeltjes niet slechts één gasfase vormen, maar ook een fase met hogere
dichtheid: de vloeistof. Deeltjes die elkaar enkel afstoten vormen daarentegen slechts
één gasfase. Wat blijkt nu: deeltjes die elkaar enkel afstoten, maar wel voldoende actief
zijn, vertonen wel weer een dergelijke fasescheiding. De fasescheiding wordt nu dus niet
veroorzaakt door een aantrekkingskracht, maar door door het feit dat de deeltjes actief
zijn - met andere woorden, doordat ze een hoge motiliteit hebben. Daarom heet dit ver-
schijnsel motilitieitsgeïnduceerde fasescheiding. De engelse benaming is motility-induced
phase separation; de afkorting daarvan - MIPS - zal ik ook hier gebruiken. Hoofdstuk
2 beschrijft MIPS in detail.

MIPS heeft geleid tot twee belangrijke vragen die dit onderzoek probeert te beantwoorden.
Om de eerste vraag te introduceren is het belangrijk om te weten hoe thermodynamische
variabelen van nut zijn in de beschrijving van een ‘normale’ gas-vloeistof fasescheiding.
Een gas en een vloeistof die naast elkaar bestaan hebben namelijk altijd, naast dezelfde
temperatuur, ook 1) dezelfde druk en 2) dezelfde chemische potentiaal. Deze twee geli-
jkheden (bij vaste temperatuur) stellen ons in staat om de dichtheden van het gas en de
vloeistof te voorspellen. De eerste vraag is dan: kunnen we ook voor actieve deeltjes een
druk en chemische potentiaal definiëren, en kunnen we daarmee de dichtheden voorspellen
van de twee fases die in MIPS naast elkaar bestaan?

De definitie van de druk wordt behandeld in de hoofdstukken 3, 4 en 5. Elk hoofd-
stuk behandelt verschillende aspecten. Wat gebeurt er als de deeltjes niet bolvormig zijn
(hoofdstuk 3)? Wat is de invloed van de vloeistof waar actieve deeltjes vaak in zwemmen
(hoofdstuk 3)? Wat gebeurt er als de voorstuwingskracht niet overal gelijk is (hoofd-
stuk 4)? En hoe komen interacties tussen de deeltjes tot uiting in de druk (hoofdstuk
5)? De situatie blijkt het éénvoudigst voor deeltjes die bolvormig zijn en overal een gelijke
voorstuwingskracht ondervinden. Voor deze deeltjes zorgt de activiteit er simpelweg voor
dat de druk een extra bijdrage krijgt die bekend staat als de zwemdruk.

En voor deze deeltjes onderzoekt hoofdstuk 5 dan ook de definitie van de chemische
potentiaal. Dit hoofdstuk onderzoekt ook of de chemische poteniaal samen met de druk
kan worden gebruikt om de dichtheden te voorspellen van actieve fasescheidingen. Dit
blijkt goed te werken voor fasescheidingen van attractieve deeltjes bij lage activiteit, maar
niet bij de MIPS die gevormd wordt door repulsieve deeltjes bij hoge activiteit.

De tweede vraag gaat over het grensvlak dat de twee fases in MIPS scheidt. Eerder
onderzoek [26] vond dat dat de oppervlaktespanning van dit grensvlak negatief is. Dit
roept vragen op. Bijvoorbeeld: wat betekent een negatieve oppervlaktespanning eigenlijk
precies? En: bij passieve deeltjes zorgt de - altijd positieve - oppervlaktespanning voor
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de stabiliteit van het grensvlak, dus hoe kan het dat de grensvlakspanning van MIPS
negatief is terwijl het grensvlak wel stabiel is? Hoofdstuk 4 behandelt deze vragen.
Het hoofdstuk bekijkt niet direct MIPS, maar een eenvoudiger systeem dat erop lijkt:
het grensvlak dat gevormd wordt door actieve deeltjes zonder interacties tussen twee ge-
bieden met verschillende voorstuwingskracht. Het hoofdstuk laat zien de stabiliteit van
dit grensvlak niet bepaald wordt door het feit dat de oppervlaktespanning positief dan
wel negatief is. In plaats daarvan wordt de stabiliteit gegarandeerd door het Marangoni
effect. Bij een verstoring van het grensvlak leidt dit effect tot een deeltjesstroom langs het
grensvlak op een dusdanige manier dat het grensvlak weer in zijn oorspronkelijke staat
hersteld wordt.

Hoofdstuk 7 presenteert een slotbeschouwing. Hoe nuttig kunnen we nu zeggen dat
thermodynamische variabelen zijn voor actieve Brownse deeltjes? Een zeker voordeel is
dat ze extra intuïtie verschaffen voor het gedrag van actieve materie. Daarbij zijn ze
voornamelijk bij lage activiteit ook kwantitatief nuttig. We hebben bijvoorbeeld gezien
dat de druk en de chemische potentiaal gebruikt kunnen worden om de dichtheden van
licht actieve fasescheidingen te voorspellen.

Er zijn echter nog wel grote uitdagingen in de beschrijving van actieve materie. Het
is bijvoorbeeld tot op heden niet gelukt om thermodynamische variabelen (met een mi-
croscopische uitdrukking) te vinden die de dichtheden van MIPS voorspellen. Een ander
voorbeeld is het gedrag van actieve deeltjes zonder interacties - een zogenaamd actief
ideaal gas - in een extern veld. Waar het dichtheidsprofiel van een passief ideaal gas in
stabiele toestand direct volgt uit de lokale waarde van de externe potentiaal, laat hoofd-
stuk 6 zien dat dit dichtheidsprofiel voor een actief ideaal gas afhangt van de waarden
van de externe potentiaal op willekeurig grote afstanden.

Dus, hoewel thermodynamische variabelen zeker extra inzicht verschaffen in actieve
systemen, vormen ze (nog) geen theoretisch raamwerk dat vergelijkbaar is met de statis-
che fysica van passieve systemen in evenwicht. Naar de bescheiden mening van de auteur
benadrukt dit vooral hoe krachtig de laatstgenoemde theorie is.
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