SENSE/KvK Autumn School 'Dealing with uncertainties in research for climate adaptation', Bunnik, 9-10 Oct 2012

Framework for visualisation of uncertainties

Dr. Arjan Wardekker

Guest researcher, Copernicus Institute, Utrecht University Scientific officer, Health Council of the Netherlands

Copernicus Institute of Sustainable Development Utrecht University

Various types of visualisation

- (Metaphors)
- Qualitative descriptors
- Ranges
- Comparisons
- Dedicated uncertainty graphs

Tabel 1 Trends in de milieudruk en -kwaliteit, het halen van doelen (2010), en milieukosten (in miljoenen euro per jaar, prijspeil 2004).							
Milieuprobleem	Trend 1985-2004	Beleidsdoel bereikt? ²⁾	Milieukosten samenleving ¹⁾ 2004	w.v. Rijks- begroting gem. per jaar (2005-2009)			
Klimaat: binnenlands Klimaat: 'Kyoto-instrumenten' Energie-efficiëntie Duurzame energie Duurzame elektriciteit		EU	1.130	924			
Emissies NO ₂ , SO ₂ Emissies VOS, NH ₃ Emissies fijn stof Depositie N / zuur op natuur Luchtkwaliteit ozon Luchtkwaliteit fijn stof, NO ₂		EU EU EU EU EU	1.769	34			
Nutriëntenverlies landbouw Nitraat in grondwater Gebruik dierlijke mest Fosfaatverzadiging in bodem Bestrijdingsmiddelen Oppervlaktewaterkwaliteit		EU EU EU 	2.602	102			
Biologische landbouw Verdroging Geluid Externe veiligheid ³⁾ Bodemsanering Afvalbeheer			Niet bekend Niet bekend 505 Niet bekend 614 3.577	9 Niet bekend 481 Niet bekend 278 24			

Color codes

- Is policy goal achieved? (col.3)
 - Green: likely, red: likely not. _
 - Yellow: chance of about 50% OR cannot be determined.
- Policymakers: good, quick overview. Heavily used.
- However: •
 - Chance 50% and unknown are very different; don't combine.
 - Not much information

MNP (2005)

Tabel 4.2.1 Emissies van SO ₂ , NO _x , NH ₃ , VOS en PM_{10} , in kiloton per jaar. [028t-mb05]								
Stof	Emissie 1990 ¹⁾	es 2000 ¹⁾	2003 ¹⁾	Raming 2010 ²⁾	NEC plafond	Gothenburg Protocol		
SO ₂	191	75	65	67 (62-71)	50	50		
NO	576	414	393	288 (242-334)	260	266		
$NH_{3}^{(3)}$	249	152	130	126 (104-146)	128	128		
voš	493	269	224	176 (140-213)	185	191		
PM ₁₀	78	49	42	44 (38-49)	geen	Geen		

Onzekerheden van gerealiseerde emissies zijn vermeld in tabel B1.2c van bijlage 1.
Betekenis kleuren: zie bijlage 3.
Zie hoofdstuk 3.

MNP (2005)

Color codes

- Adding colors to tables with more detailed information
- Appreciated by both policymakers and advisors
- Higher information density
 - Does the location of the table warrant this?

Figuur 4.1.1 DALY's in 2000 voor chronische blootstelling aan fijn stof, geluid, UV-straling en acute blootstelling aan fijn stof en ozon (Knol et al., 2005).

Verbal codes

- E.g. 'Level of scientific knowledge' (LOSU)
- Both policymakers and policy advisors liked such qualifiers
 - Quick and good overview
- However:
 - Suggest correlation with presented uncertainty ranges?

Sources: Knol et al. (2005) (top) IPCC (2007) (bottom)

- Useful for quick overview
- Don't offer much information
 - Is this a problem for your target audience?
- Useful for audiences who work on high conceptual level ('grote lijnen'); e.g.
 - Politicians, strategic policymakers
 - Broad interest groups, press?
- For other audiences useful:
 - In summaries/overviews: quick comparison across topics/fields
 - As extra qualifier, added to more detailled information.

- Indication of range, magnitude of uncertainty
- 'Uncertainty awareness'
- Easy to link to policy goal

Reactions:

- Policymakers: range is very small, what is exact amount?
- Advisors: probability density for target year?

- Option: 'broken axis' or 'offset'
 - Zooms in on relevant part of graph

However:

- Scale effect
 - Uncertainty seems huge or tiny, regardless of actual size
- Obscuring proportions, rates of change, etc.

Scatterplot

- Effective for showing variability
 - (Lipkus & Hollands, 1999)

Mean (precipitation, mm/yr)

Grid uncertainty maps

- Uncertainty map (e.g. σ or 2σ)
- Percentile maps
- Don't plot uncertainty in map showing the mean

Standard deviation

5% and 95% percentiles

Original

Adding range not always practical

- Does it clarify what you want to say?
- Not too much info in one graph!
- Interesting: comparison uncertainty & past policy performance

Alternative A

Alternative B

- Indication of range/magnitude of uncertainty
- Not sufficient if exact number is needed
 - Is this a problem for your target audience?
- Useful for most audiences; e.g.
 - Policymakers, societal actors: 'uncertainty awareness', robustness of results, range of outcomes?
 - Scientists: 'good practice' reporting, intercomparison

Comparisons

- Showing multiple realisations, futures, alternatives
- Concept of scenarios is familiar to policymakers
- Key things to make clear:
 - Key differences in basis and results
 - Implications

Copernicus Institute

Comparisons

Difference map

- Land use in Utrecht, 1993
- Left: Statistics Netherlands (CBS) map
- Right: PBL 'Environment Explorer' map.
- Bottom: differences, high (green) to poor (red) similarity

Comparisons

Ensembles

- Different outcomes of one or more models
- Set of experiments
- Comparing models, measurements, etc.
- Useful for discussing:
 - Methodological issues and reliability
 - Unusual/rare outcomes
- Difficult to interpret for non-experts

Comparisons

- Exploring different possibilities, futures
- Are the implications clear?
- Useful if well-explained for:
 - Policymakers: range of futures, policy scenarios
 - Policy advisors: robustness of options/developments, uncovering policy risks & opportunities
- Always a treat for:
 - Scientists: exploring potential futures, methodological issues, uncertainty analyses (e.g. sensitivity analyses).

- Probability density function (PDF):
 - peak (mode) 'stands out'
 - people assume peak is the most likely value
- Cumulative density function (CDF):
 - CDF alone can also mislead in estimating the mean
- Clearly indicate key info
 - I&M (1987): PDF + CDF with mean clearly indicated

- PDF: people preferred left-skewed investments
 (B) to right-skewed ones
- CDF: preferences are reversed

Vrecko et al., 2009

Vrecko et al., 2009

- Bias reduced for:
 - Rotated CDF (RCDF)
 - 10-state-chart

The position indicates the pedigree score						
Pedigree	low	high				
Parameter: Example						
Proxy						
Empirical basis	•					
Theoretical understanding						
Methodological rigour						
Validation						
Value-ladenness						

- Pedigree chart
- Some policymakers:
 - Information perhaps a bit detailed?
- Policy advisors:
 - Useful: relativing numbers
 - Opponents also know these things (be prepared)
 - Terms need explaination
- Traffic light analogy is easy to interpret

PBL good practice example (Visser & Petersen, 2010)

Risk maps

- Useful to discuss risk:
 - …of reaching dangerous or undesirable values
 - ...of not meeting policy targets/norms

Probability of >1000 mm/yr

- Detailled representation of uncertainties
- Can be difficult to interpret
- Generally useful for:
 - Policy advisors: robustness of research results, specific details that might reveal policy risks & opportunities
 - Scientists: detailled analysis of magnitude, type, shape, relevance of various uncertainties and risks
- Use with some caution:
 - Policymakers: useful to make/support a specific point

Some general lessons

- Graphs/maps are good at showing proportions
 - but watch out for issues that distort these.
- Don't put too much info in a single graph/map.
- Keep in mind: what message am I trying to send?
 - Clearly indicate key info you're trying to communicate.
- Linking to implications relevant for target audience is helpful.
 - e.g. policy goals, risks, good/bad outcomes
- Best visualisation depends on target audience and its information needs
- Multiple types of visualisation & communication needed?
 - Multiple target groups and `ways of learning'
 - Changing information needs over time

References

- Ibrekk, H., M.G. Morgan (1987). "Graphical communication of uncertain quantities to non-technical people". *Risk Analysis*, 7 (4), pp. 519-529.
- IPCC (2007). "*Climate change 2007: The physical science basis*". Contribution of WG I, Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
- Kloprogge, P., J.P. van der Sluijs, J.A. Wardekker (2007). "Uncertainty Communication: Issues and good practice". Copernicus Institute, Utrecht University, Utrecht.
- Knol, A.B., B.A.M. Staatsen, A.J.P. van Overveld, C.B. Ameling (2005). "*Trends in the environmental burden of disease in the Netherlands 1980-2002*". RIVM, Bilthoven.
- Lipkus, I.M., J.G. Hollands (1999). "The visual communication of risk". *Journal of the National Cancer Institute Monographs*, 25, pp. 149-163.
- MNP (2005). "*Milieubalans 2005"* [Environmental Balance 2005]. Netherlands Environmental Assessment Agency, Bilthoven.
- Visser, H., A.C. Petersen, A.H.W. Beusen, P.S.C. Heuberger, P.H.M. Janssen (2005). "*Checklist for uncertainty in spatial information and visualising spatial uncertainty*". 'Guidance for uncertainty assessment and communication' series, part 5. Netherlands Environmental Assessment Agency, Bilthoven.
- Visser, H., A.C. Petersen (2010). "*Visualising uncertainty in maps*". Presentation at CIRCLE 2 meeting, Stockholm. http://www.circle-era.eu/np4/%7B\$clientServletPath%7D/?newsId=185&fileName=CIRCLE2_WS_Uncert_Day2_sessionB_APeterse.pdf
- Vrecko, D., A. Klos, T. Langer (2009). "Impact of presentation format and self-reported risk aversion on revealed skewness preferences". *Decision Analysis*, 6 (2), pp. 57-74.
- Wardekker, J.A. (2011). "*Climate change impact assessment and adaptation under uncertainty*". PhD thesis. Utrecht University, Utrecht.
- Wardekker, J.A., J.P. van der Sluijs (2006). "*Evaluatie van onzekerheidscommunicatie in de Milieubalans 2005*". Synthesis report. Copernicus Institute, Utrecht University, Utrecht.
- Wardekker, J.A., J.P. van der Sluijs, P.H.M. Janssen, P. Kloprogge, A.C. Petersen (2008). "Uncertainty communication in environmental assessments: Views from the Dutch science-policy interface". *Environmental Science & Policy*, 11 (7), pp. 627-641.

