

Reassessing the nitrogen isotope composition of sediments from the proto-North Atlantic during Oceanic Anoxic Event 2

I. Ruvalcaba Baroni*, N. A. G. M. van Helmond, I. Tsandev, J. J. Middelburg and C. P. Slomp

*i.ruvalcababaroni@uu.nl

Introduction

Sediment records of the stable isotopic composition of nitrogen ($\delta^{15}N$) show exceptionally light $\delta^{15}N$ values at several sites in the proto-North Atlantic during Oceanic Anoxic Event 2 (OAE2) (~94 Ma). The low $\delta^{15}N$ during the event is generally attributed to an increase in N₂-fixation^[1,2].

Surprisingly, published $\delta^{15}N$ values for OAE2 vary widely, even for similar locations. Using analyses of $\delta^{15}N$ for sediments from three open-ocean and two coastal sites, we show that this reported variation is likely related to the treatment of sediment samples with acid prior to the $\delta^{15}N$ analysis. Here, a compilation of pre-OAE2 and OAE2 mean values of $\delta^{15}N$ measured in unacidified samples for the proto-North Atlantic is presented (fig. 1). A box model of total N and ¹⁵N cycling is used to further detect N fluxes contributing to the δ^{15} N signal.

Results

erc

 $\delta^{15}N_{TN}$

 $\delta^{15}N_{TN}$

TOC/N

Π

0

N

Figure 1. Map of the proto-North Atlantic during OAE2, indicating the location of the sites where $\delta^{15}N$ were not measured in samples treated with acid. Published data are from ^[1,2,3,4].

% can be observe in the $\delta^{15}N$ signal. b) Relation between TOC content and the $\delta^{15}N$ signal measured in samples treated with acid. Most values fall below the $\delta^{15}N$ reference of -3 %...

Figure 3. Geochemical profiles across OAE2 at a) Wunstorf and b) Bass River and c) 386, d) 641 and e) 1276. Abbreviations stand for TOC to total phosphorus (TOC/P_{tot}), total nitrogen content (N) and meters below surface (mbs). Here, new data is only for N and $\delta^{15}N$ measured in samples not treated with acid.

New $\delta^{15}N$ data measured in samples treated with acid show lower values than those measured in samples not treated with acid (Fig. 2). Addition of acid potentially leads to selective removal of N compounds if followed by removal of supernatant ^[5]. Data of δ¹⁵N measured in samples treated with acid should not be used to interpret N dynamics in past environments.

All sites show similar trends in $\delta^{15}N$, with the OAE2 perturbation being most pronounced in the central open ocean (Fig. 3). In the euxinic southern proto-North Atlantic, the absolute shift in $\delta^{15}N$ is, however, smaller than in the central open ocean.

Figure 4. Model results for Experiments 1 to 3, simulating the mean shift in $\delta^{15}N$ from pre-OAE2 to OAE2 in the different areas of the proto-North Atlantic:

E1 = No fractionation due to primary productivity E2 = Fractionation effect by primary productivity

Conclusions

• $\delta^{15}N$ data should not be measured in samples treated with acid.

• $\delta^{15}N$ values for OAE2 in the open ocean are the lowest, but never lower than -3 ‰.

Intra-basinal transport of ammonium was important during OAE2 and contributed, besides, N2-fixation, to lower the $\delta^{15}N$ signal in the proto-North Atlantic.

- due to incomplete uptake of ammonium. Ammonium input to surface waters is assumed to be only from upwelling.
- E3 = Same as E2, but the input to surface waters is assumed to be from upwelling and lateral transport.
- "ref" = reference model^[6]
- "high" = model with higher rates of denitrification and nitrification.

Best results are from E3

Standard deviation (horizontal black lines) and the lowest and highest value during OAE2 (stars) are also plotted.

Acknowledgments

This research was funded by a "Focus & Massa project" granted to C. P. Slomp and H. Brinkhuis by Utrecht University and by the European Research Council under the European Community's Seventh Framework Program, ERC Starting Grant #278364. Additional financial support was provided by Statoil and the Netherlands Earth System Science Centre.

References

1 Kuypers, M. M., Y. van Breugel, S. Schouten, E. Erba, and J. S. Sinninghe Damste, N2-fixing cyanobacteria supplied nutrient N for Cretaceous oceanic anoxic events, Geology, 32 (10), 853-856, 2004 2 Junium, C. K., and M. A. Arthur, Nitrogen cycling during the Cretaceous, Cenomanian-Turonian Oceanic Anoxic Event II, Geochemistry Geophysics Geosystems, 8 (3), 1-18, 2007 3 Higgins, M. B., R. S. Robinson, J. M. Husson, S. J. Carter, and A. Pearson, Dominant eukaryotic export production during ocean anoxic events reflects the importance of recycled NH⁺, Proceedings of the National Academy of Sciences, 109 (7), 2269-2274, 2012. 4 Blumenberg, M., and F. Wiese, Imbalanced nutrients as triggers for black shale formation in a shallow shelf setting during the OAE2 (Wunstorf, Germany), Biogeosciences, 9, 4139-4153, 2012. 5 Lohse, L., R. T. Kloosterhuis, H. C. de Stigter, W. Helder, W. van Raaphorst, and T. C.van Weering, Carbonate removal by acidication causes loss of nitrogenous compounds Nin continental margin sediments, Marine Chemistry, 69 (3), 193-201, 2000. 6 Ruvalcaba Baroni, I., I. Tsandev, and C. P. Slomp, Nitrogen dynamics during the Cenomanian-Turonian oceanic Anoxic Event 2: A model study for the proto-North Atlantic, Geochemistry, Geophysics, Geosystems, doi:10.1002/2014GC005453, 2014