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Abstract

Natural languages make prolific use of conventional constituent-ordering patterns to indicate

“who did what to whom,” yet the mechanisms through which these regularities arise are not well

understood. A series of recent experiments demonstrates that, when prompted to express meanings

through silent gesture, people bypass native language conventions, revealing apparent biases

underpinning word order usage, based on the semantic properties of the information to be con-

veyed. We extend the scope of these studies by focusing, experimentally and computationally, on

the interpretation of silent gesture. We show cross-linguistic experimental evidence that people

use variability in constituent order as a cue to obtain different interpretations. To illuminate the

computational principles that govern interpretation of non-conventional communication, we derive

a Bayesian model of interpretation via biased inductive inference and estimate these biases from

the experimental data. Our analyses suggest people’s interpretations balance the ambiguity that is

characteristic of emerging language systems, with ordering preferences that are skewed and asym-

metric, but defeasible.

Keywords: Silent gesture; Word order; Bayesian inference; Interpretation; Semantics; Cognitive

biases

1. Introduction

1.1. Language production without conventions: Evidence from silent gesture

When people do not have an existing set of linguistic rules to use and to communicate,

they use principles for structuring their utterances that are independent of their native
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language. This has been observed in lab experiments where na€ıve adult participants are

asked to describe simple events using only gesture and no speech (silent gesture). The

silent gesture paradigm has been used to investigate several core features of language,

such as how a communication system can be bootstrapped through iconicity (Fay, Arbib,

& Garrod, 2013). In particular, the paradigm has provided notable insight into the origins

of the ordering of Subject, Object, and Verb in human language.1 For instance, it has

been shown that when people describe transitive actions through space in this paradigm,

they prefer the SOV word order, irrespective of the dominant order of their native lan-

guage (Goldin-Meadow, So, €Ozy€urek, & Mylander, 2008). Given the dominance of SOV

in emerging language systems (e.g., Padden et al., 2010), it has, been suggested that SOV

may have been important in the emergence of language in humans. However, more recent

publications show that under certain circumstances SOV is not the dominant order (Gib-

son, Piantadosi, Brink, Bergen, Lim, & Saxe, 2013; Hall, Mayberry, & Ferreira, 2013;

Langus & Nespor, 2010; Meir, Lifshitz, _Ilkbasaran, & Padden, 2010; Schouwstra & de

Swart, 2014; Schouwstra, 2017). Investigation of this variability in word order has

sparked a debate about the mechanisms that play a role when people communicate in the

absence of a shared linguistic system, and, indirectly, about the conventionalization of

word order in the emergence of language. The silent gesture paradigm is relatively new,

and many questions are still unanswered. However, two semantic distinctions, that

between reversible and non-reversible events and that between extensional and intensional

events, have been studied in some detail, and they provide a picture of how semantic

information can influence word order in emerging language.

1.2. Semantic properties influence constituent structure in silent gesture production

Whether or not an event is reversible (typically events in which there are two ani-

mates, such as “woman kicks man”) influences the word order that is used (Gibson et al.,

2013; Hall et al., 2013). The usage of SOV ordered strings drops for reversible events,

and SVO usage becomes more likely.2 Various explanations for the phenomenon have

been offered, but there is no conclusive evidence for whether the pattern is rooted in

communicative or cognitive principles (or even potentially the result of modality-specific

processes (Gibson et al., 2013; Hall et al., 2013; Kline, Salinas, Lim, Fedorenko, & Gib-

son, 2017).

Another semantic effect on word order variation was observed by Schouwstra and de

Swart (2014), who compared two semantic classes of transitive events: extensional and

intensional events. The former is a class of events in which a direct object is manipulated

in an action through space, similarly to the motion events used by Goldin-Meadow, So,
€Ozy€urek, and Mylander (2008). Some examples are throwing (“pirate throws guitar”) or

carrying (“princess carries ball”) events. Intensional events (e.g., “pirate searches for gui-

tar,” “princess thinks of ball”, but also “cook hears violin” and “witch builds house”) are

typically described using intensional verbs, and for the interpretation of such descriptions,

the intension (meaning) of their arguments, and in particular the direct object, is more
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important than the extension (object in the world). This makes the direct object more

abstract, and possibly non-existent or non-specific.

Schouwstra and de Swart (2014) show that in silent gesture, participants prefer to use

SVO word order over SOV for intensional events and SOV order over SVO for exten-

sional events. They observe that word order flexibility on the basis of such meaning dif-

ferences in the verb do not exist in fully conventional languages, and they argue that they

are typical for situations where there are no (or where there is only a limited set of) lin-

guistic conventions: People use their cognitive biases (rooted in the semantic properties

of events) and build their improvised utterances flexibly, according to these biases. This

position contrasts with previous hypotheses in which word order in emerging language

systems is seen as something rigid rather than variable (Goldin-Meadow et al., 2008;

Newmeyer, 2000). The distinction between intensional and extensional events turns out to

be of influence on constituent order, not only in the gestural domain, but also in the vocal

domain, as shown in a study in which participants improvise to produce non-word sounds

to convey information (Mudd, Kirby, & Schouwstra, 2018), a finding that is interesting

given potential issues about modality specificity; see above and Kline et al. (2017).

All in all, the improvised gesture paradigm can reveal pressures that are important

when there is no system of linguistic conventions in place, and thus help reveal the pro-

cess that takes us from no language to full linguistic regularity in a controlled laboratory

setting. This setting allows us to study not only improvised production, but also other

processes that play a role in language use, such as interpretation, communicative interac-

tion, and cultural transmission. In this paper, we will take one step from improvised ges-

ture production toward full linguistic systems, by focusing on the interpretation of

improvised gesture, and comparing it to its production. We will do this by employing a

novel combination of a silent gesture experiment and an experimentally informed Baye-

sian model.

1.3. Silent gesture: Production versus interpretation

If silent gesture is to offer a comprehensive test ground for communication without

existing conventions, it should not only concern production, as communication is a pro-

cess with two directions: production and interpretation. These two directions may exert

different pressures in the emergence of a language system (Burling, 2000; MacDonald,

2013).

The interpretation of strings in the silent gesture paradigm has received little attention,

with the exception of two recent studies: one in which participants are asked to recognize

the intended meaning of silent gesture strings in a timed forced-choice setup (Langus &

Nespor, 2010), and one in which participants are asked to choose an interpretation for

ambiguous reversible events (Hall, Ahn, Mayberry, & Ferreira, 2015).

Langus and Nespor (2010) asked adult participants to watch video clips of gesture

sequences describing simple transitive events through space in a two-alternative forced-

choice task. Participants, native speakers of Italian (SVO) and Turkish (SOV), saw video

clips in all possible orderings of S, O, and V. Both groups of participants showed fastest
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reaction times for SOV ordered video clips, which shows that, like in production, SOV

order is preferred in improvised gesture comprehension, independently of the dominant

order of the native language of the observer. In other words, when naive observers are

presented with improvised gesture, they by-pass the dominant patterns of their native lan-

guage. Langus and Nespor (2010) claim that this effect is due to the fact that in this task,

participants disregard their computational system of grammar.

Hall et al. (2015) focused on the interpretation of reversible events and came to very

different conclusions. They showed participants silent gesture strings that were made up

of an action and two animate participants, in three possible orders (Action-Participant1-

Participant2, Participant1-Action-Participant2, Participant1-Participant2-Action). Each

order was ambiguous: It was not made explicit which participant had the role of agent

and which patient. For each string, participants were asked to choose an interpretation

from two line drawings: one with the first participant in the role of agent, and one with

the second participant in the role of agent. They found that participants take the element

mentioned first in the gesture string to be the agent, that is i.e., “woman man push” is

interpreted most robustly with the woman in the role of the pusher.

They conclude that interpretation of these ambiguous strings is governed by a semantic

constraint, “agent first,” and they emphasize the difference between interpretation and

production: the latter is motivated by production constraints—that is, gesturers will often

use their own body to take on roles of the event participants, and using SOV word order

involves more “role switches” than using SVO order, which makes SVO more fluent than

SOV (Hall et al., 2013; Hall, Ferreira, & Mayberry, 2014).

To summarize, silent gesture investigates the cognitive constraints that play a role

when a system of linguistic conventions is not in place. Investigating production and

interpretation of silent gesture can help us gain insight into how these two processes con-

tribute to an emerging linguistic system. From what we have seen above, it is not entirely

clear how production and interpretation, in the absence of linguistic conventions, relate to

each other. Hall et al. (2015) emphasize the difference between silent gesture production

and interpretation. They postulate procedural, production-related constraints for produc-

tion, and a semantic heuristic (“agent first”) for interpretation. Langus and Nespor (2010),

on the other hand, emphasize the similarities between silent gesture production and inter-

pretation: Both are governed, not by grammatical rules, but by cognitive constraints.

We add crucial evidence to the question whether production and interpretation of

improvised language are intrinsically similar or rather different from each other. Present-

ing a silent gesture interpretation experiment, along with a Bayesian computational model

for the experimental task, we will point out in which respects production is crucially dif-

ferent from interpretation, in emerging language situations. Our starting point is the

semantic differences between extensional and intensional events that are driving word

order variability in silent gesture production (Schouwstra & de Swart, 2014). We ask if

participants will use these semantic principles when they interpret silent gesture, and

what this can tell us about their underlying biases. Our interpretation experiment is the

first to mirror a silent gesture production task, and this allows us to investigate the link

between meaning and word order, not only qualitatively (“does word order influence the
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meaning an interpreter derives?”), but also quantitatively: By specifying computational

principles that sub-serve interpretation of silent gesture under uncertainty, we are able to

reason backwards from experimental results to a quantitative estimate of the cognitive

biases guiding word order usage. Our estimates of participants’ biases align with the pat-

tern of results observed independently in production experiments: Our results suggest

skewed but defeasible event-class-conditional word-order preferences, whose effects on

silent-gesture interpretation may be mediated by more general principles of inference

under uncertainty.

2. Experiment: Improvised gesture interpretation

To test if the order of constituents influences the way in which participants interpret

gesture strings, we presented participants with video clips of gesture strings with an

ambiguous action (verb) gesture plus its two arguments. An example of an ambiguous

action gesture is shown in Fig. 1. This gesture can be interpreted as a climbing action,

but also as a building action. Together with the constituents “witch” and “house,” this

results in two possible interpretations: “witch climbs house” (an extensional event), and

“witch builds house” (an intensional event). We construed videos in two possible orders,

SOV and SVO.3 We hypothesized, based on the production results in Schouwstra and de

Swart (2014), plus the similarities between production and interpretation found in Langus

and Nespor (2010), that the gesture order would have an influence on interpretation, and

predicted that, when engaged in a dual forced-choice task (that presents the two possible

interpretations as answer options), participants would be more likely to interpret SVO

ordered gesture strings as intensional events than as extensional events, and vice versa.

Fig. 1. The figure depicts different stages of an ambiguous action being acted out. This action can be inter-

preted as “build” or as “climb.” The experiment investigates if the order of the constituents in a gesture

sequence has an influence on the interpretation of such ambiguous actions.
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2.1. Method

2.1.1. Participants
Forty-one native speakers of Dutch (16 male, 25 female) were recruited from the

Utrecht University library in Utrecht, the Netherlands, and 40 native speakers of Turkish

(12 male, 28 female) were recruited from the Bogazici University library in Istanbul, Tur-

key. Note that Dutch is an SVO language in main clauses, while Turkish is SOV. None

of the participants received monetary compensation.

2.1.2. Materials
We created video clips showing three gestured elements: an actor, a patient, and an

action. The three elements for each video were recorded separately, and for each video

clip, three fragments were concatenated using white flash transitions. The actions in each

video were ambiguous: They could be interpreted as an extensional verb or an intensional

verb. For each ambiguous action, we created two ambiguous gesture sequences: one in

SVO order and one in SOV order, resulting in 12 pairs of videos. Note that for each pair

of differently ordered strings, we used exactly the same video material (but ordered dif-

ferently). The 12 pairs of ambiguous strings were randomly distributed over two versions

such that each version consisted of 6 SOV videos and 6 SVO videos, while at the same

time, each ambiguous action occurred only once per version.

Four filler items were created: videos of gesture sequences with unambiguous actions

(two intensional and two extensional). For each ambiguous video, two line drawings were

made that represented the two alternative interpretations for the ambiguous items. For

each filler, we created one line drawing depicting the right answer and one depicting the

same actor and patient, but a different action.

2.1.3. Procedure
The participants were shown videos on a laptop screen in a two-alternative forced-

choice task; pictures of the corresponding intensional and extensional events were shown

as the two answer possibilities. First, two practice items with unambiguous verbs were

shown, followed by the ambiguous items and fillers. The items were presented in random

order, and the order was different for each participant. The two answer possibilities were

shown before each video and again afterwards.4 The order of the two answer possibilities

was randomly determined. The experiment took about 10 minutes to complete.

2.2. Analysis and results

The data were analyzed using a logit mixed effects regression, implementing the lme4
package (Bates et al., 2015) in R (R Core Team, 2014).5 Our model analyzed the fixed

effects of gesture order and native language (both sum coded) on the interpretation. Par-

ticipant was included as random intercept6 and random slopes of gesture order were

included for item. The model revealed that participants were slightly more likely to

choose an extensional response, as indicated by the model intercept: b = 0.759,
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SE = 0.415, p = .067. A significant effect of gesture order was found (b = 0.414,

SE = 0.103, p < .001), but no effect of native language (b = 0.001, SE = 0.086,

p = .984).7 Fig. 2 depicts the proportions of videos interpreted as extensional events, by

gesture order.

Accuracy for the filler items was almost at the ceiling level, with 98% overall accu-

racy, and at most 1 wrong answer per participant.

2.3. Baseline study

To further investigate the overall preference for extensional interpretations, and to

establish a baseline measure for each individual ambiguous action (independent of word

order), we carried out an additional experiment. This experiment presented participants

with the ambiguous action gestures only, instead of strings containing actor, action, and

patient gestures. Data were collected online (N = 40; all participants except one were

native speakers of English), on a crowd-sourcing platform (Crowdflower; see

www.crowdflower.com).
Like in the full-string experiment, participants were presented with ambiguous experi-

mental items (10) and fillers (4), presented in random order in a two-alternative forced-

choice task. For each trial, the participant would first see the two possible interpretations,

presented as line drawings. Subsequently, the participant observed a video of an
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Fig. 2. On the left: main interpretation results. Mean proportions of videos interpreted as extensional event

are shown for SOV and SVO video orders. Error bars indicate 95% confidence intervals. The results show

that participants were more likely to interpret SOV ordered videos as extensional than SVO videos. On the

right: production results from Schouwstra and de Swart (2014) for comparison. Proportion of strings in SOV

order are displayed by event type (extensional and intensional). Error bars indicate 95% confidence intervals.

These results show that in production participants strongly prefer SOV for extensional events, and SVO for

intensional events.
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ambiguous action gesture; they then saw the two line drawings again and were asked to

select the drawing that they thought best matched the gesture in the video.

Ten experimental responses plus four filler responses per participant were collected.

Because the task was a two-alternative forced-choice task, there were no missing data points.

2.4. Results: Preference for extensional events

To compare the overall preference for extensional events in the full-string experiment

to that in the verb-only experiment, we merged the data sets. We then ran a logit mixed

effects regression to model interpretation, with Experiment (verb-only vs full-string, null-

coded) as fixed effect, and random intercepts and random slopes of experiment for item.

A preference for extensional interpretations in the Verb experiment was reflected in the

model intercept: b = 0.953, SE = 0.368, p < .01. Crucially, no significant effect of exper-

iment was observed (b = �0.215, SE = 0.2659, p < .419). From this we conclude that

the two experiments saw no difference in the level of preference for extensional events.

2.5. Results: Model with baseline values

To use the verb-only experiment results as a by-item baseline for the original (full-

string) study, we calculated the proportion of extensional interpretations for each item,

resulting in 10 baseline values. We incorporated these baseline values into the data for

the full-string experiment, by creating normalized responses per trial: We took numeric

conversions for the responses per trial (1 for extensional and 0 for intensional) and sub-

tracted the baseline value (based on the item ID), adding 1 to the resulting value.8 A lin-

ear mixed effects model was performed on these normalized values, taking gesture order

and native language as fixed effects, and random intercepts for item and participant, as

well as random slopes for gesture order on item. The full model revealed a significantly

better fit than the reduced model which only had native language as a predictor

(v2 ¼ 7:99, p < .001), while no significant difference was found between the full model

and the model that omitted native language as a predictor (v2 ¼ 0:21, p = .90).

2.6. Discussion

There are two main conclusions we can draw from the experimental results. First of

all, the order in which the ambiguous gesture strings was presented did indeed influence

the way they were interpreted by participants: A video clip was more likely to be inter-

preted as an extensional event when it was presented in SOV order than when it was pre-

sented in SVO order, and vice versa. The fact that variability between SOV and SVO is

picked up as a cue for interpretation shows that this variability, as it occurs in production,

matters for communication.

The second important conclusion is that—in comparison to the results of the produc-

tion experiment—the effect of word order on meaning in interpretation is modest. For

comparison, the right-hand graph in Fig. 2 depicts the effect of meaning on word order,
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taken from the production results presented in Schouwstra and de Swart (2014). What

does this quantitative difference tell us about the nature of word-order biases in this con-

text? Given the striking asymmetries in production, it is tempting to expect similarly

striking asymmetry in interpretation. This expectation may be misleading, because inter-

pretation involves reasoning under uncertainty. If participants are accounting for this

uncertainty, then the impact of the word order biases may be dampened.

For example, the interpretation task—perhaps more so than the production task—is

implicitly interactive: Participants are interpreting the behavior of another speaker. Partic-

ipants have no knowledge of the speaker’s linguistic system and may be accounting for

this uncertainty when making their decisions. A learner following these principles may be

forced to consider disfavored ordering systems that would be unlikely to play a role in

the participant’s own spontaneous productions: For all but the most strongly biased learn-

ers, this could lead to a scenario in which low-level ordering preferences can drive strik-

ing asymmetries in improvised production, but these asymmetries are attenuated by

uncertainty during interpretation. To apply a classic analogy: production can be likened

to repeatedly flipping a weighted coin to decide SOV or SVO, one for Extensional and

one for Intensional events, where the bias of the coin corresponds to a low-level semantic

bias; interpretation, on the other hand, forces an ideal observer to account for the fact that

the gesturer may be holding completely different coins—a more abstract consideration

which could lead to uncertainty. In addition to these considerations, any a priori bias the

observer has toward one event class over the other could dilute the influence of word-

order biases (in a way that would not play a role during production).

These factors, which we will discuss in greater detail below, may break the direct link

between biases evident in production and their impact on interpretation. Drawing conclu-

sions about word-order biases from interpretation implicitly assumes a model of partici-

pants’ decisions. In the next section, we develop an explicit model and use the model to

estimate participants’ biases from our experimental data.

3. Model: A computational analysis of gesture interpretation

The role of word-order biases in interpretation of improvised gestural communication

has, to the best of our knowledge, received no formal attention whatsoever. While the

experimental literature reviewed in section 1.3 provides intriguing hypotheses—such as

the hypothesis that independent heuristics drive production and interpretation (Hall et al.,

2015)—there remains no general computational framework for deriving and testing their

quantitative predictions. Here, we present a model which allows us to test a simple model

of interpretation against the experimental data. Our model is based around the idea that

non-conventional gestural communication recruits similar biases to production, but the

effects of those biases may be mediated by uncertainty. Our approach is to lay out a sim-

ple computational model which formalizes the logic discussed here and elsewhere in

related literature: The model can be tested against the experimental data, and it can act as

a benchmark against which alternative accounts can be contrasted.
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The central abstraction in our analysis is that participant behavior can be productively

broken down into two components: a set of preferences or dispositions that favor the use

of particular orderings in particular contexts; and a procedure for employing these prefer-

ences when reasoning about the gesture orderings produced by another individual—in

contexts where the intended meaning is unknown and must be reverse-engineered.

The Bayesian framework provides a natural model for this division of labor. This

approach to statistical inference specifies a simple formula describing how a rational lear-

ner should update its beliefs about the nature of an unobserved mechanism responsible

for generating an observed set of data: Under this perspective, the task of a learner (e.g.,

a language learner) is to evaluate competing hypotheses about the nature of the underly-

ing mechanism in light of the data observed (Perfors, Tenenbaum, Griffiths, & Xu, 2011).

In particular, the framework allows us to explicitly model biases as prior distributions.
The principles underpinning Bayesian inductive inference align with human learning in

many psychological domains (Chater, Oaksford, Hahn, & Heit, 2010; Griffiths, Chater,

Kemp, Perfors, & Tenenbaum, 2010). With respect to language, models of probabilistic

rational inference have been applied to numerous aspects of linguistic structure (Chater &

Manning, 2006), including word order generalizations in artificial grammar learning (Cul-

bertson & Smolensky, 2012), and have been used to model the pragmatic principles

underpinning production and interpretation of speech (Frank & Goodman, 2012; Good-

man & Frank, 2016; Goodman & Stuhlm€uller, 2013), but have not previously been

explored as a model for the learning mechanisms that sub-serve improvised gesture.

Interpretation of improvised, not-yet-conventionalized communication is a particularly

exciting focus for computational modeling of this sort because, in terms of the structure

of the computational problem facing the interpreter, it has a distinctive character that is

a-typical of linguistic communication: The interpreter is—knowingly—largely or com-

pletely in the dark with respect to the gesturer’s linguistic system. This distinguishes

improvised gesture from typical artificial language learning scenarios in which the learner

is explicitly taught new conventions.

In other words, the improvised gesture interpreter, who we know has certain produc-

tion preferences, is faced with data from a producer, but it is unknown to this interpreter

if the producer was acting according to a system of conventions. Whether and how inter-

preters account for this uncertainty and accordingly lean on their own biases in the

absence of helpful evidence about the gesturer is an open question with important impli-

cations for emerging language systems. By constructing an inferential model for the

experimental task at hand, we can make inroads on this question in a simple problem

where, thanks to existing results (Schouwstra & de Swart, 2014), we already have a good

impression of people’s biases in production, allowing cross-validation of our conclusions.

3.1. Interpreting gestures through Bayesian inference

Our model casts a gesture interpretation as probabilistic inductive inference from an

ordered gesture g to an unobserved intended meaning m. Given the principles of Bayesian

inference, we model selection of a meaning as a random sample from the posterior
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distribution over meanings given an observed gesture, p(m|g): The learner arrives at pos-

terior beliefs by combining its prior expectations p(m) about the relative probability of

meanings m, and the likelihood of observing gesture g if m were the true intended mean-

ing. Under this model, the probability of choosing a meaning m as the intended meaning

behind an observed gesture g is given by:

pðmjgÞ ¼ pðgjmÞpðmÞ
pðgÞ ; ð1Þ

where p(g) is simply a normalizing constant.9 Learners’ a priori expectations about the prob-

ability of each event type, p(m), can be captured with a single parameter k, such that k = p
(m = Extensional) = 1�p(m = Intensional). However, the likelihood p(g|m) of observing a

gesture g in the event that the gesturer were expressing meaning m is not inherently speci-

fied by that meaning. Rather, it reflects the gesturer’s system for associating meanings and

ordering patterns. To interpret the utterances of another speaker, we must make some

assumption about the speaker’s system for producing utterances. This principle has been

central to models of pragmatic language processing (Goodman & Frank, 2016), and it is just

as important in situations like ours where no existing linguistic conventions are established.

3.2. Probabilistic conditional word-order usage

Let p~ ¼ ðpext; pintÞ be a simple probabilistic model describing preferential usage, condi-

tional on semantic properties of the verb, of the two possible orderings for subject-first ges-

tures composed of a single verb and object (SVO and SOV).10 Here pext is the probability of

employing SVO to express an Extensional event: pðg ¼ SVOjm ¼ ExtÞ ¼ pext; likewise
pint is the probability of using SVO to express an Intensional event: p(g = SVO|m = Int).

The probabilities of employing SOV for Extensional and Intensional events, respectively,

are pðg ¼ SOVjm ¼ ExtÞ ¼ 1� pext and pðg ¼ SOVjm ¼ IntÞ ¼ 1� pint.
An underlying system of associations p~ is tacitly assumed in Eq. 1, since p(g|m) is a

function of p~. In our experiment, which featured no labeled examples or feedback, partic-

ipants faced an inherent uncertainty about the gesturer’s system p~. For example, the ges-

turer could be speaking a language that does not condition the ordering of verbs and their

objects on this semantic distinction, consistently expressing both extensional and inten-

sional events using SVO (i.e., pext ¼ pint � 1) or SOV (i.e., pext ¼ pint � 0). Likewise,

these ordering patterns could be in free variation (pext ¼ pint ¼ 1=2), strong complemen-

tary conditioned usage (i.e., pext ¼ 1; pint ¼ 0 or pext ¼ 1; pint ¼ 0), weaker comple-

mentary usage (i.e., pext ¼ 1� pint), or anything in between. We aim to compute a

probability model for the decisions of a learner who accounts for this uncertainty.

3.2.1. Accounting for uncertainty about p~
One simple way to achieve this computationally is to model a learner who considers

all possible systems p~, accounting for the implications each variant entails for her
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decision.11 Crucially, such a learner need not treat all p~s as equally plausible. We allow

the computation to reflect a weighted sum, taken over a prior distribution pðp~Þ which

specifies the learner’s biases over the space of possible systems. This is how we model

the influence of inductive biases on inference whilst also accommodating the uncertainty

inherent in the learner’s observations. Under these assumptions the probability of choos-

ing meaning m after observing gesture g is:

pðmjgÞ ¼
Z Z

p~

pðmjg; p~Þpðp~Þ dpextdpint ð2Þ

Here pðmjg; p~Þ is given by Eq. (1), with the conditioning on p~made explicit. The quantity pðp~Þ
can be understood to reflect the learner’s prior beliefs: cognitive biases for conditional associa-

tion of ordering patterns and semantic properties of the verb. These biases impose probabilistic

preferences on the space of possible association systems and can be modeled with the Beta dis-

tribution (see Appendix A for details): pðp~Þ ¼ pðpextÞpðpintÞ ¼ Betaðpext; aext; bextÞ�
Betaðpint; aint;bintÞ. The shape and strength of these preferences are determined by the prior

parameters aext, bext, aint, and bint. An intuitive way to view these parameters is as pseudo-
counts, or counts that are added to the observed counts when predicting the probability of an

outcome (a being the pseudo-count for SVO gestures, and b for SOV).

3.3. Results

3.3.1. Model predictions
We analyzed three versions of the model and compared their predictions to the experimen-

tal data (Fig. 3). A baseline unbiased version of the model (M0), in which we fixed neutral

priors over meanings (k = 1/2) and event-ordering association systems (aext ¼ bext ¼
aint ¼ bint ¼ 1), is unsurprisingly the poorest predictor of the experimental data, affording

participants’ responses a combined log-likelihood of �256.98: this model predicts 50–50

interpretation responses to both SOV and SVO gestures, failing to capture the asymmetry in

responses across ordering patterns, and the overall preference for Extensional events.

In order to ask whether the experimental result is being driven by general preferences for

one event type over another, and not by conditional associations between events and order-

ing patterns, we computed the predictions of a semi-biased version of the model (M1): Here

we fixed a neutral prior over association systems (aext ¼ bext ¼ aint ¼ bint ¼ 1) but fit k
to the experimental data. The maximum-likelihood estimate is k̂ ¼ 0:68: This model

affords the data a combined log-likelihood of �225.00. The model-fit suggests a slight over-

all preference for Extensional events independent of gesture ordering, and this is reflected in

the model’s predictions (Fig. 3). This bias is in line with the results of our baseline experi-

ment presented above, in which an overall proportion of 0.68 of actions was interpreted as

extensional events. We found k to be one of the most consistent parameter estimates in our

model. Though M1 is a better fit to the data than M0, it nevertheless fails to capture the

asymmetry between responses to SVO and SOV gestures.
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These versions of the model suggest that—to account for the pattern of experimental

results—the learning model, we have described must include a non-neutral preference for

some systems of event-ordering association over others. We fit the full model (M2) to the

experimental data, by inferring maximum-likelihood estimates (see Appendix A for

details) for pðp~Þ. Drawing inferences about the shape of this prior is challenging, but pos-

sible under the relatively weak assumption that participants’ constituent ordering prefer-

ences are approximately complementary across event-types: however strongly I prefer
one ordering pattern for Extensional events, that is how strongly I prefer the alternative
ordering pattern for Intensional events. More formally, we limit the space of possibilities

for pðp~Þ by assuming pðpextÞ�Betaða;bÞ and pðpintÞ�Betaðb;aÞ, thereby reducing the

parameter space to two dimensions rather than four.

This assumption may seem restrictive, but it is justified by both theoretical and practical

considerations. In practical terms, the space of possible priors defined by allowing four

freely varying parameters is too broad to make reliable inferences about their values given

the model we defined and the available data: Many possible priors lead to equivalent or near

equivalent values for p(m|g), so the experimental data cannot choose between alternative

Fig. 3. Comparison of model predictions and experimental results. The biased model (M2), but not the unbi-

ased (M0) or the event-biased (M1) model, predicts both experimental results: asymmetric responses to SOV

and SVO gestures, and an overall preference for Extensional events. Model predictions show the predicted

probability of interpreting SVO/SOV gestures as Extensional events p(m = Ext|g = SVO,a,b) and p(m = Ext|

g = SOV,a,b).
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priors reliably.12 A natural solution is to reduce the number of model parameters to create a

space of possible priors in which we can perform reliable inference. Moreover, this reduc-

tion can even be a desirable restriction if there are theoretical reasons to focus on a particu-

lar subspace of priors, and it is possible to check that the reduction does not also lead to a

dramatic reduction in the likelihood of the data (compared to the higher-dimensional

model). In our case, both of these conditions are met (more details below).

Fixing p(m) at its maximum-likelihood value inferred from M2 (k = 0.68), the maxi-

mum-likelihood parameter estimates for pðp~Þ are â ¼ 0:9 and b̂ ¼ 1:18, affording the

data a combined log-likelihood of �215.98, correctly predicting participants’ chosen

interpretation with average probability 0.77. Fig. 3 demonstrates the close correspondence

between the model’s predictions and participants’ responses in our experiment.

A natural concern is that we are building in the assumption that SVO and SOV are

used to communicate the semantic distinction in a somewhat complementary way, by

assuming pðpextÞ�Betaða; bÞ and pðpintÞ�Betaðb; aÞ. In addition to the practical issues

raised above, there are a number of theoretical reasons that this should not be a major

concern. First, while we are not able to identify a single best-fitting prior in the four-

dimensional case, we are able to identify the maximum of the data likelihood function in

this model (achievable under multiple “best-fitting” priors). Crucially, this maximum

value is identical to the maximum value achievable under the two-parameter “comple-

mentary priors” model (�215.98). In other words, the assumption of complementary

biases does not reduce the likelihood of the data, suggesting that we should prefer the

two-parameter version on grounds of parsimony anyway.

Second, we also analyzed alternative assumptions within the restriction that only two

parameters define the prior, and found these to be inferior. For example, rather than assum-

ing “complementary” priors across event types (aext ¼ bint; aint ¼ bext), we could assume

independent priors which are each defined by a single parameter, such that

pðpextÞ�Betaða;aÞ and pðpintÞ�Betaðb; bÞ, or identical priors defined by two parameters,

so that pðpextÞ�Betaða;bÞ and pðpintÞ�Betaða; bÞ. Neither of these assumptions can

explain the data as well as the “complementary prior” assumption; respectively, the maxi-

mum of the likelihood function in these models is �216.92 and �225.03. Maximum likeli-

hood analysis favors the complementary priors model, although the independent single-

parameter model achieves relatively comparable log-likelihood and may therefore also be

worthy of further investigation as an alternative description of participants’ biases. Taken

together, these analyses suggest that the “complementary priors” assumption is justified over

alternatives, both practically and theoretically, so we will proceed to focus on this case.

3.3.2. Inferred priors
Fig. 4 shows the inferred prior pðp~Þ. First, the model suggests a clear asymmetry in order-

ing preferences across event types: The prior favors SOV for Extensional events, and SVO

for Intensional events. Second, the prior demonstrates a bias toward regularity: Consistent
usage of the favored ordering is preferred over variable usage (probability density peaks

close to 0 for Extensional events and 1 for Intensional events). This aspect of the prior is in

keeping with the regularization bias: a general preference for regularity—motivated by

14 of 27 M. Schouwstra, H. de Swart, B. Thompson / Cognitive Science 43 (2019)



simplicity principles and thought to be relevant to cognition in general—that has been pro-

posed in various linguistic (Culbertson & Smolensky, 2012; Reali & Griffiths, 2009; Smith

& Wonnacott, 2010) and non-linguistic (Ferdinand, Thompson, Smith, & Kirby, 2013)

domains.13 Third, the prior expresses preferences that are skewed but weak; it encodes
asymmetric ordering preferences, but these defeasible preferences could be easily over-

turned by observing contradictory data about p~. A common measure for the strength of pref-

erences imposed by prior beliefs modeled using the Beta distribution is the effective sample
size (ESS): s = a+b. If, as is common, the prior is viewed as expressing a set of imaginary
data-points, then the ESS reflects their number, and thus their power to over-rule observed

data-points. In the inferred prior, s = 2.08, suggesting just a handful of contradictory data-

points could lead the learner to entertain disfavored systems p~.
A simple way to test the credibility of the model is to ask how well its predictions

generalize to production, having been inferred from interpretation only. Our reasoning

about the differences between production and interpretation in this context predicts that

the shape of the inferred prior should be broadly compatible with the distribution of pro-

ductions across participants, favoring most strongly the kinds of systems evidenced in

Fig. 4. Lines show probability density functions for priors pðpextÞ (top) and pðpintÞ (bottom) inferred from

production data, superimposed on the (normalized) histograms of estimates of individual participants’ p̂ext
(top) and p̂int inferred from Schouwstra and de Swart’s (2014) production data.
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production, but should also reserve some probability mass over a wider range of possible

systems p~ than those which were most prominent in production. This is what we find.

Together with the results presented in Fig. 3, these results show that our model is consis-

tent with the differences we are attempting to explain between production and interpreta-

tion experimental results.

We analyzed production data from Schouwstra and de Swart (2014)’s experiment and

inferred maximum-likelihood estimates p̂ext and p̂int for each individual participant (see

Appendix C for details). Fig. 4 shows the (normalized) histograms of these estimates,

superimposed on the priors pðpextÞ and pðpintÞ we inferred from interpretation. A corre-

spondence between the distributions is clear: The biases we inferred from interpretation

are consistent with the pattern of results observed independently in production. The prior

favors the same strongly biased ordering systems that were most prominent in production,

but also reserves some non-zero probability for alternative ordering systems that were not

prominent in production. This is consistent with our hypothesis that the same biases play

a role in production and interpretation, but that low probability ordering systems are

accounted for during interpretation, which dilutes the stronger asymmetry observed in

production that was driven by favored, higher probability ordering systems.

It is also possible to directly compute the likelihood of the production data under the

prior inferred from participants’ interpretations (see Appendix C or details): This analysis

shows that the model correctly predicts the use of SVO and SOV in production with

average probability 0.77 for extensional gestures and 0.74 for intensional gestures.

3.4. Discussion

Our model provides one possible computational account for the main experimental

finding that when interpreting gestures, participants used constituent ordering patterns as

a cue to meaning. The model we described is a first approximation to the inferences that

underpin production and interpretation of improvised communication. However, the basic

proposal—that interpretation involves inference and estimation, and that the Bayesian

framework provides a natural and useful model for understanding how learners bring their

biases to bear on this uncertainty—is not tied to these experimental conditions or this par-

ticular model. For example, the inferential model makes specific predictions about the

posterior beliefs participants should entertain after observing labeled training examples,

and it would be straightforward to construct experimental procedures that test these pre-

dictions. Likewise, plausible alternative explanations for asymmetry between production

and interpretation could be formulated within this framework and directly compared.

Our model assumes that during interpretation, uncertain observers have principled

motivation to fall back on a more abstract layer of knowledge—a prior over possible

ordering systems—which can in theory dilute the lower-level ordering biases evident in

participants’ responses in a matched production experiment. We have suggested that this

principle offers an explanation for the difference in effect we observe between production

and interpretation experiments. This explanation rests on the hypothesis that production

in this particular scenario does not invoke the same abstract considerations (at least not
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to the same degree), but follows a lower level sampling process driven by favored order-

ing systems. These favored ordering schemes will have high probability under the prior

thanks to the same semantic biases, but we shouldn’t expect that these biases are so

strong as to rule out consideration of alternative ordering schemes. While the asymmetry

may not hold for more interactive production scenarios in general, we believe this

assumption is a conservative starting point which could easily be tested in future experi-

ments that manipulate the degree of interactivity in production. An emerging body of

research on the pragmatics of speech production and interpretation (Goodman & Frank,

2016) provides a road map for these kinds of questions.

In general, we hope our analysis can motivate further experimental and computational

efforts to illuminate how individuals use and process improvised communication systems

under uncertainty. Computational modeling will be a crucial component in understanding

how production and interpretation interact during communication and learning to shape

the dynamics of an emerging language, particularly as those forces play out in popula-

tions. Having experimentally-informed computational accounts of these processes is an

important step in that direction.

4. General discussion

In the silent gesture paradigm, people are forced to communicate while they cannot rely

on an existing language system: They have to improvise. Previous work has shown that

when people improvise, there are some general principles for the organization of their utter-

ances: They prefer SOV word order for simple transitive events that involve motion through

space, but they switch to other orders for other kinds of events. This kind of meaning-based

word order alternation is not generally observed in fully conventionalized languages.

In this paper, we have looked at the interpretation of silent gesture and compared it to

silent gesture production. We used a laboratory experiment as well as a computational

model to investigate the mechanisms that underpin the emergence of linguistic rules, par-

ticularly how language production and language comprehension relate to each other. We

started from the observation (Schouwstra & de Swart, 2014) that when people improvise,

the organization of their utterances depends on their semantic properties: Extensional and

intensional events give rise to SOV and SVO word orders, respectively. Using a silent

gesture interpretation experiment, we showed that a similar connection between meaning

and form is present in the interpretation of improvised gesture. However, the effect in

interpretation appeared modest in comparison to production. In the second part of the

paper, we proposed an explanation for this: When people interpret improvised gesture,

they face an inherent uncertainty about the gesturer’s linguistic system. An ideal learner

would account for this uncertainty and shape her interpretation decisions accordingly.

In the introduction section, we saw that previous interpretation experiments have led to

differing conclusions. Either interpretation of improvised gesture, like production, bypasses

the grammatical system and prefers SOV order for simple transitive (extensional) events

(Langus & Nespor, 2010), or production and interpretation each call for rather different
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explanations: a simple semantics-based heuristic (“agent first”) for interpretation, and speci-

fic production-related constraints (i.e., role conflict for reversible events) for production (Hall

et al., 2015). In this paper we used the combination of an experiment and Bayesian modeling

to obtain a more detailed picture of the improvisation situation. With our experiment, we

showed that in silent gesture interpretation (like in its production), meaning type and struc-

ture are connected in a way that is not generally observed in existing languages. The heuristic

that we have focused on in this paper (the one that connects SOV to extensional and SVO to

intensional events) is different from the one that is described by Hall et al. (2015), but they

are both clearly semantics based, and certainly compatible with one another.14

At the same time, there are important differences between silent gesture production

and interpretation. While in both production and interpretation experiments, participants

must improvise and cannot use their own language or any conventional language they

know, the production experiment is more clearly than the interpretation experiment a situ-

ation that lacks linguistic conventions. Participants produce their gestures to the camera,

and although there is an experimenter present, this experimenter is not engaged in the

improvisation task. In the interpretation experiment, participants are not alone in the

improvisation act: They observe another person’s linguistic behaviors, and they may

entertain the possibility that this person behaves according to a set of existing or emerg-

ing rules or tendencies in production. We constructed a computational model of interpre-

tation through inductive inference, based around the principle that learners account for

this uncertainty surrounding another individual’s language use. The model suggests that

participants’ decisions—which varied by word order but nevertheless portrayed uncer-

tainty—may reflect motivated uncertainty in response to this unknown. Casting interpreta-

tion in this framework (Perfors et al., 2011) connects improvised gesture with inference

and estimation in other domains (e.g., Clayards, Tanenhaus, Aslin, & Jacobs, 2008; Cul-

bertson, Smolensky, & Legendre, 2012; Goldwater, Griffiths, & Johnson, 2009; Hsu, Cha-

ter, & Vit�anyi, 2011; Perfors, Tenenbaum, & Regier, 2011) through domain-general

principles of inductive inference. Formulating questions about the emergence of linguistic

rules/conventions in probabilistic models of cognition is fruitful because it explicitly

addresses how learners represent and reason about the uncertainty that surrounds other

minds in the absence of helpful evidence. Going forward, we aim to explore principles

for inductive inference further, in semi-supervised learning scenarios that systematically

confirm or contradict the biases we inferred: for example, how much evidence must learn-
ers observe before they are confident in their estimate of another individual’s linguistic
system? Can seemingly disfavored ordering patterns be easily learned? The computa-

tional principles governing when and how people bring their biases to bear on language

use under uncertainty are at present only superficially understood. Improvised gesture

offers a rich testing ground for these questions, which we believe will be best understood

through synthesis of experimental and computational analysis.

In the context of this paper, production and comprehension are studied separately, but

in real life, production and interpretation are not separated as strictly. In natural interac-

tive situations, they are always combined, and often even done at the same time (Picker-

ing & Garrod, 2013). A logical next step is to extend the silent gesture paradigm to
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include communication (Christensen, Fusaroli, & Tyl�en, 2016) and cultural transmission

through artificial generations of lab participants (Motamedi, Schouwstra, Smith, Culbert-

son, & Kirby, 2018; Schouwstra, Smith, & Kirby, 2016).

Together, the experiment and the model presented here clarified our thinking about the

mechanisms at play when a new language system emerges. The experiment showed that the

interpretation of silent gesture favors ordering preferences that are conditioned on mean-

ing—similar to what was observed for silent gesture production. Fitting a computational

model to the experimental data allowed us to estimate these ordering preferences: They

appear to be skewed and asymmetric across event types, but weak. This implies that they

lead to stronger conditioning of order on meaning when there are no linguistic observations,

a pattern that is confirmed by the silent gesture production results from Schouwstra and de

Swart (2014). On the other hand, the conditioned word order alternation may be easily over-

turned by contradictory linguistic observations. This observation appears consistent with the

fact that there are no languages in which word order is conditioned on verb type as it

appears to be in silent gesture production. However, it is well known that, under the right

circumstances, weak inductive biases can shape regularities—sometimes even dispropor-

tionately strong regularities—over the course of cultural transmission (Boyd & Richerson,

1985; Griffiths & Kalish, 2007; Kirby, Dowman, & Griffiths, 2007; Reali & Griffiths, 2009;

Smith & Wonnacott, 2010). Understanding the cultural evolutionary forces that suppress

this alternation in natural language is therefore a key priority for future research.

Acknowledgments

The authors thank Marianne Smit, Nicky Mari€en, C�ağlar Yali, Anouschka van Leeu-
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Notes

1. We recognize that in improvised gesture, where there are no linguistic conventions

for word order, the (syntactic) terms Subject, Object, and Verb are not meaningful.

We will use them as a convenient shorthand for the more appropriate terms Agent,

Patient, and Action.

2. Note that more recently, it was argued that rather the effect might be the result of

a preference to describe human participants first, and this would mean that

reversibility is not the crucial factor (Kocab, Lam, & Snedeker, 2018; Meir et al.,

2017). These studies discuss evidence from silent gesture and emergent sign lan-

guages, but the effect is well established in spoken language production too (Brani-

gan, Pickering, & Tanaka, 2008).
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3. Two example videos (“princess sleeps-on/dreams-of book”) are included in the sup-

porting material.

4. Showing the answer possibilities before the gesture videos was necessary, because

a pilot experiment suggested that the task was too hard when we did not show the

answers first.

5. All data and code are provided in the supplementary material folder.

6. Including random slopes of gesture order resulted in high correlations between

fixed and random effect; moreover, the model that implements both random slopes

does not reveal an improved fit over the model that was eventually used

(v2 ¼ 0:000, p = .99).

7. Upon re-analysis of the video clips we decided to exclude two videos from the

results: “Pirate drops/searches ball” and “Girl kisses/thinks of doll.” These two

videos differ from the others in the sense that the ambiguous actions they depict

consist of two sub-gestures (a “drop”-gesture followed by a “search” gesture for

the former, and a “think of” gesture followed by a “kiss” gesture for the latter),

whereas for all other ambiguous actions, only one gesture is used. Including the

two deleted item in the analysis still yields significant main effect of gesture order:

b = 0.302, SE = 0.075, p < .001.

8. The latter was done to ensure all values were above 0. The resulting values were

all between 0 and 2.

9. The constant p(g) = p(g|m = Ext)p(m = Ext)+p(g|m = Int)p(m = Int) captures the

degree of evidence conveyed by the gesture, summed over both possible hypothe-

sized event types.

10. For brevity, we will call these S-First gestures. The model describes the computa-

tions that underpin usage of just these two orderings: Though more are possible,

we are interested primarily in the balance of SVO and SOV, and as such we ignore

alternatives, though we note that the model could easily be extended to reserve

probability mass for alternative orderings. This is a reasonable simplification since

our experiment concerned just SOV and SVO.

11. Technically, we assume the learner considers all systems p~ that could have gener-

ated the observed gesture. An infinitesimally small subset of possible systems p~
represents a misspecified model for the gesturer under certain observations (ob-

served gesture orderings). For example, if the learner observes an SVO gesture, the

system p~ ¼ ð0; 0Þ is a mis-specified model of the world, since neither event type

could have generated the data under this model: As a result, the posterior distribu-

tion pðmjg; p~Þ over event types is improper, being zero for both types of meaning,

leading to p(g) = 0. So in equation (2), a misspecified model of the gesturer will

make no contribution to the sum, even if it reserves probability mass under the

prior pðp~Þ, since pðmjg; p~Þ will evaluate to zero whatever the meaning. We thank

Simon Kirby for raising this point.

12. This is a common obstacle in model fitting, and it is often referred to in technical

terms as weak identifiability. Appendix D includes MCMC samples from the poste-

rior distribution over these parameters.
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13. Note that the kind of regularity observed here is conditioned regularity. Had there

not been an asymmetry in ordering preference (the first aspect of the prior dis-

cussed above), then regularization would have pushed the system toward one word

order.

14. In fact, there is no reason to assume that the “agent first” heuristic does not play a

role in the production data discussed in Hall et al. (2015), because the data do not

provide counter evidence against this principle. The principle alone is simply not

enough to explain the word order patterns.
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Appendix A: Experimental stimuli and results by item

The following strings were used in the experiment (one ambiguous action per pair of

verbs). The experimental results plotted by item can be found in Fig. A1. Item numbers

in the table correspond with those in the figure, and the baseline values correspond to the

proportion of extensional interpretations chosen in the verb-only experiment (see section

2.3). All experiment items, as well as the raw data and code for analysis, are available on

https://osf.io/tfqcp/.

Item Description Baseline Value

1 Princess smashes/carves vase 0.73

2 Gnome cuts/draws pizza 0.65

3 Witch eats/wants banana 0.45

4 Witch decorates/paints table 0.63

5 Girl sleeps on/dreams of book 0.30

6 Princess talks to/talks about teddybear 0.90

7 Pirate throws/hears guitar 0.85

8 Cook stirs/smells 0.90

9 Gnome pats/feels book 0.45

10 Witch climbs/builds house 0.95
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Appendix B: ML estimation of interpretation model parameters

The model formulates each chosen interpretation as an independent Bernoulli trial over

Intensional and Extensional interpretations. The likelihood of a given participant’s set of

decisions is the product of two Binomial likelihoods, one for interpretations of SVO ges-

tures and another for SOV gestures. The combined log-likelihood of the entire experimen-

tal data set D, taken over all n participants, as a function of model parameters Θ = (a,b,
k) is:

LLðDjHÞ ¼
Xn
i¼1

ln½Binomialðksvoi ; hsvo;NsvoÞ� þ ln½Binomialðksovi ; hsov;NsovÞ� ðB1Þ

where hsvo ¼ pðm ¼ Ext.jg ¼ SVOÞ and hsov ¼ pðm ¼ Ext.jg ¼ SOVÞ are computed

with Eq. (2), which is given in explicit form below. ksvoi and ksovi give the number of

SVO and SOV gestures interpreted as Extensional events by the ith participant, respec-

tively, while Nsvo and Nsvo give the total number of SVO and SOV gestures observed,

which did not vary across participants. For the main two-parameter complementary priors
version of the model, Eq. (2) can be written more explicitly than the version in the main

text. Separating the two gesture orderings:

hsvo ¼
Z 1

0

Z 1

0

kpext
kpext þ ð1� kÞpint

b

Bða; bÞ2 dpextdpint ðB2Þ
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Fig. A1. This shows the experimental results per item. The y axis shows the proportion of extensional inter-

pretations.
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hsov ¼
Z 1

0

Z 1

0

kð1� pextÞ
kð1� pextÞ þ ð1� kÞð1� pintÞ

b

Bða; bÞ2 dpextdpint ðB3Þ

b ¼ ½ð1� pintÞ � pext�a�1 � ½pintð1� pextÞ�b�1 ðB4Þ

The first term in equations (B.2) and (B.3) gives pðm ¼ Extensionaljg; p~; kÞ. The sec-

ond term in both gives the prior over ordering systems pðp~Þ, which is a combination of

two Beta densities (the combination can be written this way thanks to the symmetry in

the parameters and the identity B(a,b) = B(b,a) in the Beta function). Maximum likeli-

hood estimates were obtained through numerical minimization of (the inverse of) Eq.

(B.1). Predictive probabilities reported throughout refer to the geometric mean of the

combined log likelihood of all decisions. All optimization procedures reported were car-

ried out using the Python library Scipy. Fig. B1 shows the two-parameter version of the

model in graphical form.

Fig. B1. The model in graphical form, assuming complementary priors pext �Betaða; bÞ and pint �Betaðb; aÞ.
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Appendix C: ML estimation of p~ from production

Maximum likelihood estimates for pext and pint inferred from production data for the

ith participant are:
p̂ext ¼ kexti =Next

i ðC1Þ
p̂int ¼ kinti =Nint

i ; ðC2Þ

where kexti and kinti give the number of Extensional and Intensional events expressed using

SVO, and Next
i and Nint

i are the total number of S-First gestures the ith participant pro-

duced for Extensional and Intensional events, respectively. When we report the probabil-

ity of the production data under the prior inferred from interpretation, we are computing

the marginal likelihood of the binomial data under the beta prior determined by the

inferred parameters—the beta-binomial compound distribution.

Appendix D: Independent beta priors analysis

Figure D1 shows 500,000 MCMC samples from the marginal posterior distributions

for logðaextÞ, logðbextÞ, logðaintÞ, and logðbintÞ in the “independent Beta priors” version of

Fig. D1. Posterior marginal samples in the independent priors version of the model, which allows four free

parameters to determine prior distributions with independent shapes.
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the model which allows four free parameters (with k = .68 fixed). Samples were collected

under a uniform prior using an ensemble sampler with 250 walkers (Foreman-Mackey,

Hogg, Lang & Goodman, 2013) initialized uniformly at random in [�10,10]. We col-

lected so many samples because the data likelihood surface in this model is erratic: The

model parameters are only weakly identifiable given the experimental data. We omit pair-

wise correlation plots because they are largely uninformative. Note, however, the corre-

spondence between the distributions for aext and bint, which is broadly consistent with the

idea that pðpextÞ and pðpintÞ encode somewhat complimentary preferences, though we cau-

tion against overinterpreting parameter estimates in this version of model.

Supporting Information

Additional Supporting Information may be found

online in the supporting information tab for this article:

Supplemental Materials.
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