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Climate change mitigation requires rapid decarbonization of the current energy systems 

worldwide (International Energy Agency, 2019). Over the last decade, advances in clean 

technologies in energy generation (e.g. solar photovoltaic and wind power), storage (e.g. 

Li-ion batteries), and consumption (e.g. electric vehicles, solid-state lighting) offer a great 

promise for achieving this transition.  

The increasing global interdependence of energy transitions allows countries to obtain 

resources like knowledge, market access and finance from other countries in their 

development of clean energy technologies (Meckling and Hughes, 2018). However, the 

understanding of place-specificity in developing clean energy technologies is crucial for 

formulating better policies and transition pathways for individual countries and for 

facilitating future technology development (Hansen and Coenen, 2015).  

First, countries differ in their capabilities and choices of new clean energy technologies 

(Negro et al., 2012; Sbardella et al., 2018). The innovation performances of countries in 

clean energy technologies are shaped by their unique history, their existing knowledge base 

as well as by a broader set of institutional and geographical conditions (Hansen and 

Coenen, 2015). Thus, countries contribute differently to the rapid cost reduction in clean 

energy technologies in different stages of the technology life-cycle (Kavlak et al., 2018; 

Meckling and Hughes, 2018; Nemet, 2019).  

Second, national efforts to promote clean energy transitions have become increasingly 

important over time. The intended nationally determined contributions agreed in the 2015 

Paris Agreements replaced the previous national targets and timetables for industrialized 

states to reduce carbon emissions established in the 1997 Kyoto Protocol. Countries can 

play a more active role in transforming their energy sectors instead of adopting top-down 

policies. Thus, the national policy choices aggregate to global commitments.  

Third, government intervention is one of the driving forces of the surge in clean energy 

investment from both developed and emerging countries (Harrison et al., 2017; Rodrik, 

2014). The motives of governmental policies go beyond sheer environmental concerns 

(Matsuo and Schmidt, 2019; Schmidt et al., 2019). Promoting industry development for 

economic reasons is becoming increasingly important, especially in many emerging 

countries where the new low-carbon technological paradigm is seen as an opportunity  for 

industrial catching-up (Harrison et al., 2017; Kemp and Never, 2017; Rodrik, 2014).  

1.1 Theoretical background: evolutionary economic geography 

Rooted in evolutionary economics (Dosi, 1982; Nelson and Winter, 1982), recent literature 

in evolutionary economic geography considers the new path development of a country 

(region) as a branching process that builds on the existing capabilities of a country (region) 

(Frenken and Boschma, 2007; Martin and Sunley, 2006). This local related diversification 
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process originates from tacitness of knowledge which makes replicating knowledge in other 

context difficult (Antonelli, 1999; Gertler, 2003). Firms tent to diversify into related 

industries because of the economies of scale (Klepper, 2007). Labour flows also tend to 

happen between related industries (Neffke and Henning, 2013). Furthermore, most of the 

channels for transferring tacit knowledge are geographically bounded, such as spin-off 

processes, inventor collaborations and labour flows (Klepper, 2007; Breschi and Lissoni, 

2009; Eriksson, 2011). 

The thesis that countries (and regions) diversify into related industries has been 

confirmed by recent quantitative studies (for extensive reviews, see Content and Frenken 

(2016) and Boschma (2017)). The seminal study by Hidalgo et al. (2007) is the first to 

analyse whether the likelihood of a country exporting new products is conditioned by its 

national capabilities. They constructed a ‘product space’ based on the product proximity 

concept, which is calculated using the frequency of co-occurrence of products in countries’ 

export portfolios. The proximity captures similar capabilities required to make products co-

locate in the same country. Hence, two products are considered proximate if they co-locate 

in many countries. Based on this ‘product space’ concept, Hausmann and Klinger (2007) 

further provide systematic evidence that countries tend to develop new export products that 

are related in product space with existing export products.  

Inspired by these two seminal papers, Neffke et al. (2011) analyse the regional industry 

evolution systematically. They calculated the relatedness using labour flows between 

industries, and found that regional industry structure will condition the new industry 

entering the region. The related diversification approach has been replicated to study the 

industry evolution of United States metropolitan regions (Essletzbichler, 2015), European 

countries or regions (Boschma et al., 2013, 2017b; Boschma and Capone, 2015, 2016; Xiao 

et al., 2018) and Chinese prefecture-level cities (Guo and He, 2017; He et al., 2018; Zhu et 

al., 2017). Using different measures of relatedness, these studies all confirm the importance 

of local related capabilities in developing new industry at the regional and national level.  

Inspired by the ‘product space’ concept, Kogler et al. (2013) construct the ‘technology 

space’ using technology proximity measure based on the co-occurrence of technology 

classes at the patent level. Rigby (2015) and Boschma et al. (2015) further systematically 

investigate the entry and exit of technologies in US metropolitan regions. Kogler et al. 

(2017) focus on the technology evolution of NUTS 2 regions in EU 15 countries. Petralia et 

al. (2017) look at the development of new technology at the country level. The related 

diversification process is again observed in all these studies that countries and regions are 

more likely to develop new technologies related to their existing knowledge base.  

The impact of relatedness can differ across countries and regions. More importantly, 

unrelated diversification is important for the long-term development of countries and 
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regions (Pinheiro et al., 2018; Saviotti and Frenken, 2008). Petralia et al. (2017) find that 

the relatedness is more important for countries with a lower level of economic 

development, whereas developed countries are more likely to develop new technologies 

less and even unrelated to their existing knowledge bases. Recent empirical studies in EEG 

literature start to investigate the enabling conditions for unrelated diversifications. Both 

Zhu et al. (2017) and Xiao et al. (2018) find that regions with a stronger innovation 

capacity are more likely to make long jumps in their industry evolution. Montresor and 

Quatraro (2017) show that the presence of key enabling technologies in a region can 

facilitate the branching process to less related technologies. Both formal and informal 

institutions play an important role in facilitating unrelated diversification. Boschma and 

Capone (2015) find that liberal market economies are more likely to develop new products 

less related to their existing knowledge base. Cortinovis et al. (2017) further show that 

informal institutions that can bridge different social groups can facilitate unrelated 

diversification, especially when formal institutions are lacking. At the micro-level, Neffke 

et al. (2018) find that unrelated diversification mostly originates via new establishments, 

especially via those with nonlocal roots. Hausmann and Neffke (2019) further show that 

plants that pioneer an industry in a location hire more workers from outside their industry 

and from outside their region, especially when workers come from closely related industries 

or are highly skilled.  

The obstacles in developing new technology might differ across technologies. Following 

the methodologies proposed by Hidalgo and Hausmann (2009) and Balland and Rigby 

(2017) in calculating technology complexity, Petralia et al. (2017) show that countries are 

less likely to develop complex technologies. However, Balland et al. (2019) show that 

develop complex technologies related to the existing knowledge base is a feasible solution 

for entering complex technologies. A similar pattern is also observed in Heimeriks et al. 

(2019) that NUTS-2 level regions in EU countries are more likely to develop complex 

scientific topics related to their existing knowledge base.  

The related diversification process has also been observed in the development of 

emerging technologies, such as rDNA technology (Feldman et al., 2015), nanotechnology 

(Colombelli et al., 2014), and biotech (Boschma et al., 2014; Heimeriks and Boschma, 

2014).  The emergence of new technological paradigms offers windows of opportunities for 

countries and regions to catch up (Perez and Soete, 1988). Several empirical studies in 

recent EEG literature also confirm the related diversification process in clean technologies 

(Montresor and Quatraro, 2019; Perruchas et al., 2019; Santoalha and Boschma, 2019; 

Tanner, 2016, 2014; van den Berge et al., 2019), providing evidences on how countries and 

regions can catch up in the recent clean technological paradigm (Mathews, 2013; Perez, 

2016, 2013).  
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The recent empirical studies focusing on the development of clean technologies help 

understand the role of local capabilities in both green and non-green technologies in the 

development of clean energy technologies. Although the clean technologies are considered 

radical and disruptive (Geels, 2018), the knowledge and skills accumulated in the region 

can be used for the development of clean technologies (Montresor and Quatraro, 2019; 

Tanner, 2016). Van den Berge et al. (2019) even show that instead of traditional thinking 

that the presence of dirty technologies may hamper the development of clean technologies, 

some clean technologies even develop out the capabilities of dirty technologies. Moreover, 

Perruchas et al. (2019) find that the complexity is not an obstacle for the development of 

clean technologies, even for emerging countries. Countries move along cumulative paths of 

specialisation, and towards more complex clean technologies. 

In sum, the EEG literature offers successful explanations of the uneven geographical 

distribution of innovation activities and the unique technology development trajectories of 

countries (and regions) based on their capabilities accumulated in the past. The unique 

existing knowledge base of countries (and regions) constrains as well as opens 

opportunities for the development of new technologies (Boschma, 2017; Boschma et al., 

2017a; Content and Frenken, 2016; Henning, 2019; Hidalgo et al., 2018). 

1.2 Limitations of current EEG literature 

Given the significant progress made over the past decade in EEG literature in the 

understanding the role of local related capabilities in the development of new technologies, 

there are some still limitations in current EEG literature in providing a comprehensive 

insight into the global innovation dynamics of renewable energy technologies.  

First, the current EEG literature only considers the activities new to a region and whether 

they build on the existing local related capabilities. There lacks understanding of how local 

knowledge production can affect the global technology dynamics. How to break out the 

path-dependent technology development is a key issue for sustainability transitions since 

clean energy technologies which are usually considered complex and novel (Barbieri et al., 

2020), and with the potential to disrupt the energy and transport sector (Alkemade et al., 

2009; Geels, 2018; Markard and Truffer, 2006). However, this process is under 

conceptualized in current EEG literature. If a new activity emerging in a region is also 

novel to the world, to what extent the novel technology builds on local knowledge base 

instead of global knowledge base is still less focused in the EEG literature.  

The path-dependence of local technological development is assumed to stem from the 

path-dependence of global technology development in current EEG literature. This is also 

reflected in the calculation of the technological relatedness using all patents worldwide, i.e., 

a single distance measure between each pair of technologies that is the same worldwide. 
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Hence, the notion of technology evolution being path-dependent is saying that the global 

technology dynamics is path-dependent (Heimeriks and Boschma, 2014).  

Recent attempts in identifying the heterogenous effects of relatedness across countries 

and regions help better understand the place-dependence of technological change next to 

the path dependence of technology development at the global level. Some countries 

(regions) are indeed able to develop less related technologies (Boschma, 2017). However, it 

is still not clear in these studies whether the less related activities emerging in a region or 

country are only new to the region, or also new to the world. And, a follow up question 

holds to what extent the new-to-the-world activities can affect global technological 

trajectories.  

Linking EEG to sustainability transitions literature, Boschma et al. (2017a) proposed a 

typology of regional diversification along both regional dimension (related versus unrelated 

diversification) and sectoral dimensions (niche technology vs. regime technology). A new 

activity emerging in a country (region) can build on its existing knowledge base (related 

diversification) or on global knowledge base (unrelated diversification). Along the sectoral 

dimension, a country (region) can develop a new technology which is either only new to the 

region (an existing regime technology) or new to the world (a new niche technology). 

Hence, the path-dependence and place-dependence refer two different processes. Path-

dependence refers to cumulative technology development within global regime technology, 

whereas place-dependence refers to the local reproduction of localized knowledge. A place-

dependent process then, can nevertheless break with global path dependencies. Think of 

Silicon Valley Internet firms that diversify into related technologies (place dependence) but 

continue to disrupt many global regimes (e.g., in retail, media, music, cars, tourism, etc.) 

thus breaking with path dependencies at the global level.  

More systematically, from a conceptual point of view, one can distinguish between four 

diversification trajectories (Boschma et al., 2017a). A country (region) can diversify into 

already existing global regime technologies (hence, new to the region but not new to the 

world). They can achieve this by relying on their existing knowledge base through related 

diversification (replication) or based on external knowledge (transplantation). A country 

can also diversify into new niche technologies that differ from existing global regime 

technology (hence, not only new to the region, but also new to the world). They can 

develop such truly new niche technology by either building on related technologies in the 

region as the Silicon Valley example illustrated (exaptation) or by developing a new niche 

technology fully from scratch (saltation). While useful as a conceptual framework, the four 

trajectories have not been empirically investigated in a systematic manner. 

Having established the distinction between global path-dependence and local place-

dependence, the local-global interactions can be approached from two angles: one can study 
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the impact of local technology development on global technology development, and, vice 

versa, one can study the impact of global technology development on local technology 

development. The idea of local-global interactions in technology development resonates 

with the multi-scalar dynamics proposed by Binz and Truffer (2017) in their construction of 

global innovation system concept. Multi-scalar innovation dynamics consist of the 

generation of resources at different locations and the connectivity between them (Binz and 

Truffer, 2017). Emerging technologies like clean energy technologies evolve in interactions 

between different knowledge and other resources from different technologies in different 

countries (Carlsson and Stankiewicz, 1991; Hekkert et al., 2007). Both inter-technology 

knowledge spillovers (Battke et al., 2016; Nemet, 2012; Stephan et al., 2019) and 

international knowledge spillovers play an important role in the development of renewable 

energy technologies (Conti et al., 2018; Garrone et al., 2014; Verdolini and Galeotti, 2011; 

Wu and Mathews, 2012).  

However, the global perspective is still under-conceptualized in current EEG literature. 

Besides the aforementioned lack of understanding of how local capabilities can contribute 

to the global technology development, it is also unclear how countries can catch up in clean 

energy technologies by utilizing global knowledge inputs. Although recent empirical 

studies in EEG have started to look at the role of external linkages in the development of 

new activities, such as inventor networks (Feldman et al., 2015; Rigby, 2015), trade 

linkages (Boschma and Capone, 2016; Mao and He, 2019) and geographical adjacencies 

(Bahar et al., 2014; Boschma et al., 2017b; Kogler et al., 2017), whether countries differ in 

their ability in utilizing global knowledge remains an open question in EEG.  

Moreover, as a result of the lack of distinction between technologies that are new to the 

world and technologies that are new to the region, the diffusion perspective is also missing 

in current EEG literature (Henning, 2019). The focus has been on explaining the patenting 

rates of countries (regions) in different technology classes given the stock of patents already 

present in related technology classes. However, the understanding of the subsequent 

diffusion of new technologies, or a lack thereof, is also important especially in the light of 

sustainability transitions. Without such diffusion taking place, sustainability transitions 

simply do not happen (Grubler et al., 2016; Sovacool, 2016), so it is important to focus also 

on the spatial-temporal diffusion of new clean energy technologies. 

The diffusion perspective is also relevant in understanding how local contexts can benefit 

from global knowledge inputs. The process of catching up for lagging countries (regions) is 

very much driven by the diffusion process of new technologies from particular centres to 

peripheries. In this process, a real catch-up can be only achieved if countries can enter as 

early imitators of new technologies, so that lagging countries are not just passive adopters 

of technologies developed elsewhere, but can also develop an innovation capacity on their 
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own and start contributing to the global stock of knowledge and technology as well (Perez 

and Soete, 1988).   

1.3 Thesis Outline 

The goal of this thesis is to bring the global perspective into EEG literature by investigating 

the local-global interactions in technology development. I do so by specifically focusing on 

the development of renewable energy technologies. This thesis consists of four empirical 

chapters, and focuses on three sets of research questions:  

1) What aspects of place-dependence drive the innovation activities of renewable energy 

technologies? 

2) How does place-dependence affect the global development trajectories of renewable 

energy technologies?  

3) How do countries catch up in renewable energy technologies by utilizing local and 

global knowledge? 

Table 1.1 summaries the three research questions, the data used, and unit of analysis, for 

each of the four empirical chapters. Below, I shortly introduce each of the four empirical 

chapters. The final chapter of the thesis provides a summary of results discusses the main 

overall conclusions, contributions and limitations of the thesis, followed by an outlook for 

future research and policy implications based on the empirical findings of this thesis.  

Chapter 2 focuses on the development of new specialisations in different types of 

renewable energy technology (solar photovoltaic, solar thermal, wind, ocean, biofuel and 

geothermal) in 64 countries during the post Kyoto protocol period 1998-2012. My goal in 

this chapter is to investigate the aspects of place-dependence in renewable energy 

technologies and how countries can develop renewable energy technologies based on both 

local and global knowledge.  

Evolutionary economic geography literature suggests that the place-dependence 

originates in the path-dependence of the local knowledge production towards related 

technologies (Boschma et al., 2017a). By contrast, the geography of sustainability 

transitions and innovation systems literatures suggest that place-dependence originates from 

the idiosyncratic configuration between resources like knowledge, market, finance and 

legitimation at different locations and the connectivity between them across locations (Binz 

and Truffer, 2017; Hansen and Coenen, 2015). For renewable energy technologies, market 

formation resulting from domestic demand-pull policies has played an important role in 

facilitating innovation output (Bettencourt et al., 2013; Johnstone et al., 2010; Nicolli and 

Vona, 2016). However, the role of market formation in the development of new technology 

is less studied in current EEG literature, with the exception of the study by Tanner (2014).  
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Building on these streams of literature, I operationalize the research question in three 

steps. First, building on established studies in EEG, I investigate whether technological 

relatedness and international knowledge spillovers help a country to develop renewable 

energy technologies. Second, I explore the heterogenous benefits from local and global 

knowledge across countries with different domestic markets for renewables. Third, I 

compare high-income countries with middle- and low-income countries to test whether the 

moderating effect of domestic market for renewables on the impact of local and global 

knowledge differs across income groups.  

Although Chapter 2 explores the multi-scalar knowledge dynamics and establishes the 

presence of place-dependence of renewable energy technologies, it still fails to address how 

local knowledge production can affect the global technology development. Chapter 3 

focuses on the knowledge flows in global renewable energy innovation systems and their 

impacts on future technology development using 30720 patents in six types of renewable 

energy technology during the period 1990-2010, and their backward and forward citations.  

Building on the global innovation system concept proposed by Binz and Truffer (2017), I 

argue in this chapter that the comprehensive understanding of the knowledge development 

in global renewable energy innovation systems requires a consideration of both 

technological and geographical dimensions. Moreover, I highlight the importance role of 

absorptive capacity of countries, resulting from the positive feedback loops in the 

knowledge diffusion between actors in national innovation systems, in moderating the 

impacts of knowledge flows from different TISs and NISs.  

To empirically test the hypotheses, I first categorize, using the backward citations of 

renewable energy patents, all knowledge flows into four types: along technological 

dimension (within a TIS and between TISs) and geographical dimensions (within a NIS and 

between NISs). I proxy the absorptive capacity of a country with the extent of actors in a 

NIS building knowledge from other actors within the NIS. Then I investigate the impacts of 

these knowledge flows on the subsequent impact of renewable energy technologies, and the 

moderating role of the absorptive capacity of countries.  

Having established how place-dependence can affect global technology development in 

Chapter 3, Chapter 4 focuses on the emergence of breakthrough inventions with a potential 

to set up new technological trajectories in solar photovoltaic technology in 599 regions of 

OECD and BRICS (Brazil, Russia, India, China and South Africa) countries during 1997-

2012. Building on the notion that breakthrough inventions are results from the 

recombination of existing technologies in novel ways (Arthur, 2007; Henderson and Clark, 

1990), Chapter 4 redefines path-dependence as the combination of existing related 

technologies, and place-dependence as the combination of locally available technologies. In 

this chapter, I focus on how place-dependence can break the path-dependence in facilitating 
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breakthrough inventions in solar photovoltaic technology. Following the policy framework 

proposed by Janssen and Frenken (2019) that putting crossovers between unrelated 

technologies within an economy can facilitate radical innovations, I investigate whether 

breakthrough inventions mostly build on local knowledge base instead of global knowledge 

base.  

The research question is operationalized in three steps. First, I identify breakthrough 

inventions in solar photovoltaic technology using the co-occurrence analysis of patent 

classes at the patent level following Verhoeven et al. (2016). Second, I calculate the 

technological distance between patent classes using backward citations between them. 

Third, I investigate empirically how likely unrelated technologies strongly present in a 

region are to be recombined in the breakthrough inventions. Finally, I investigate whether 

such process is specific to renewable energy technologies by comparing different types of 

renewable energy technology, and renewable energy technologies with all technologies.  

The emerging low-carbon technological paradigm offer windows of opportunity for 

latecomer countries to catch-up (Mathews, 2013; Perez, 2016, 2013). However, the 

evolutionary perspective of technological change suggest that an effective catch-up process 

requires latecomer countries to enter as imitator early on and start improving new 

technologies on their own (Perez and Soete, 1988). Chapter 5 further investigates the 

conditions that affect latecomer countries to catch up in clean energy technology paradigm 

by analysing the spatial-temporal diffusion of these breakthrough inventions in renewable 

energy technologies.  

Empirically, I use the same method in identifying breakthrough inventions as in Chapter 

4 by looking at the co-occurrence of patent classes. Furthermore, I trace the time needed for 

countries to adopt the breakthrough inventions for the first time. In particular, I investigate 

whether local capabilities – as a source of place dependence – facilitate early adoption. In 

order to shed light upon the different locational effects of technology specific 

characteristics, I compare the diffusion patterns of breakthrough inventions in solar 

photovoltaic technology and wind power technology. 
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Table 1.1 Summary of empirical chapters 
 

RQ

1 

RQ

2 

RQ

3 

Type of 

invention 

Data Unit of analysis 

Ch 2 X 

 

X New 

specialisation 

Renewable energy patents 

between 1998-2012 

Six renewable 

energy 

technologies, 64 

countries 

Ch 3 X X 

 

Technological 

impact of 

renewable 

energy patents 

Renewable energy patents 

between 1990-2010 and their 

backward and forward 

citations 

30720 patents in 

six renewable 

energy 

technologies 

Ch 4 X X 

 

New 

combinations of 

technological 

classes 

Solar PV patents between 

1997-2012 

599 regions in 

OECD + BRICS 

countries 

Ch 5 X 

 

X Adoption of new 

combinations 

Solar PV and wind power 

patents between 1993-2007 

49 countries 

(OECD + 

BRICS 

countries) 
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Chapter 2 

  

2 The emergence of renewable 

energy technologies at country 

level: relatedness, international 

knowledge spillovers and domestic 

energy markets 

 

 

This chapter is co-authored with Gaston Heimeriks and Floor 

Alkemade, and has been published in Industry and Innovation as 

“Deyu Li, Gaston Heimeriks & Floor Alkemade (2020) The 

emergence of renewable energy technologies at country level: 

relatedness, international knowledge spillovers and domestic 

energy markets, Industry and Innovation, DOI: 

10.1080/13662716.2020.1713734” 
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Abstract 

Global sustainable development critically depends on a fundamental transformation of our 

current energy systems. This paper looks at how countries develop different types of 

renewable energy technology to achieve this transformation. We highlight the place-

dependence in the global innovation systems of renewable energy technologies by focusing 

on how countries benefit from local and global knowledge. We show that both the 

relatedness of a country’s knowledge base, and international knowledge spillovers 

contribute to the development of renewable energy technologies. For low- and middle- 

income countries, domestic markets for renewables play a crucial role in absorbing and 

utilizing these international knowledge spillovers. The results provide a better 

understanding of how countries can acquire new knowledge in renewable energy 

technologies. 
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2.1 Introduction 

Global sustainable development critically depends on a fundamental transformation of the 

current energy systems (IEA, 2015). This low-carbon transition requires worldwide 

innovation efforts to develop and deploy renewable energy technologies (Wilson and 

Grubler, 2011), although the energy transition pathways in individual countries may differ 

(Geels et al., 2016b; Cherp et al., 2017).  

Of all the elements that shape energy transition pathways, knowledge is the most 

fundamental and powerful driver of innovation for climate change mitigation (Gallagher et 

al., 2012; Negro et al., 2012). Although the knowledge base of renewable energy 

technologies is increasingly global (Bettencourt et al., 2013; Noailly and Ryfisch, 2015), 

the development of new knowledge is unevenly distributed (Dechezleprêtre et al., 2011), 

and individual countries contribute markedly different knowledge to the global knowledge 

stock of renewable energy technologies (Sbardella et al., 2018). This paper analyses these 

differences in how countries benefit from local and global knowledge in developing 

renewable energy technologies.  

Several bodies of literature provide relevant insights. First, evolutionary perspectives 

consider knowledge production as a path- and place-dependent process (Dosi, 1982; Nelson 

and Winter, 1982; Boschma et al., 2017a), where countries tend to develop new knowledge 

that is related to their existing knowledge bases (Boschma, 2017; Hidalgo et al., 2018). 

Second, the sustainability transitions literature highlights the multi-scalar knowledge 

dynamics in the global innovation systems of sustainable technologies (Binz and Truffer, 

2017). On the one hand, this literature suggests that the place-dependence of sustainable 

innovations results from the idiosyncratic social-technical configuration processes at the 

local level (Hansen and Coenen, 2015). More specifically, innovation activities in 

renewable energy technologies are heavily influenced by the energy and environmental 

policies at the national level (Johnstone et al., 2010; Nicolli and Vona, 2016). On the other 

hand, this literature suggests a role for international knowledge spillovers, especially when 

a country lacks capabilities in developing renewable energy technologies (Binz and 

Anadon, 2018; Gosens et al., 2015). But countries benefit differently from these 

international knowledge spillovers due to different levels of absorptive capacities (Cohen 

and Levinthal, 1990; Mancusi, 2008; Verdolini and Galeotti, 2011). Both effects may thus 

be location-specific.   

In order to systematically analyse the place-dependent impacts of relatedness and 

international knowledge spillovers, we study renewable energy patents for the post-Kyoto 

period between 1998 and 2012. We use transnational priority patents of inventors from 64 

countries in the Worldwide Patent Statistical Database (PATSTAT, October 2015 version) 
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maintained and distributed by the European Patent Office (EPO). We identify patents 

protecting inventions related to renewable energy technologies using the Y02 class in the 

Cooperative Patent Classification (Veefkind et al., 2012a). For our econometric analysis, 

we investigate whether the technological relatedness of a country’s existing knowledge 

base to renewables and international knowledge spillovers help it develop renewable energy 

technologies. We further test whether their effects are location-specific by including the 

effects of domestic markets for renewables in our analyses.  

Our contribution is twofold. First, we operationalize the global innovation systems 

concept proposed by Binz and Truffer (2017) by taking both the local knowledge base and 

international knowledge spillovers into consideration in explaining why countries differ 

markedly in their contributions to the global knowledge stock. Second, we highlight the 

place-dependent development trajectories of renewable energy technologies by focusing on 

the heterogenous impacts of relatedness and international knowledge spillovers across 

countries following the call for more place-based evidences in related diversification 

research (Boschma, 2017).  

The remaining sections are organized as follows: Section 2 summarises the theoretical 

debates and describes the conceptual framework for the empirical analysis. Section 3 

describes the data, methodology and variables. Section 4 contains the results of our 

descriptive and econometric analyses. We discuss these results and conclude in Section 5. 

2.2 Conceptual framework 

In evolutionary thinking, technological change is considered a path-dependent process 

(Dosi, 1982; Nelson and Winter, 1982). As a consequence, not every country has the same 

opportunities to develop new knowledge in energy technologies. Inventors and firms in a 

country tend to search locally, because they are able to understand, absorb and utilize 

external knowledge close to their own knowledge bases (Cohen and Levinthal, 1990; 

Kauffman, 1993; March, 1991). Thus, the existing knowledge base is a relevant 

determinant of the direction and rate of technological change (Breschi et al., 2003; Malerba, 

2002). 

The path-dependence of technological change thus leads to the place-dependence, in that 

a country’s existing knowledge base creates opportunities, and sets constraints for future 

knowledge production within that country (Heimeriks and Boschma, 2014; Boschma et al., 

2017a). Knowledge is localized in tacit learning processes,  is specific to the context in 

which it is created, and consequently costly to use elsewhere (Antonelli, 1999). Moreover, 

most of the channels for transferring tacit knowledge are geographically bounded, such as 

spin-off processes, inventor collaborations and labour flows (Klepper, 2007; Breschi and 
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Lissoni, 2009; Eriksson, 2011). Knowledge production is also strongly affected by national 

institutions (Malerba and Orsenigo, 1996; Antonelli, 1999; Boschma and Capone, 2015).  

Technological relatedness plays an important role in technological diversification by 

facilitating the learning process, and creating opportunities for combining related 

technologies (Boschma, 2017; Breschi et al., 2003; Hidalgo et al., 2018). Knowledge 

spillovers from related technologies reduce the uncertainty in developing new technologies 

(Mowery and Rosenberg, 1998a). Given the fact that renewable energy technologies draw 

knowledge heavily from related technologies (Nemet, 2012; van den Berge et al., 2019), 

their presence will help a country develop new knowledge in such technology. In addition, 

the presence of related technologies provides opportunities for successful and less risky 

recombinant innovation (Fleming, 2001; Fleming and Sorenson, 2001). This is especially 

important for renewable energy technologies that can be considered as radical innovations 

resulting from the combination of existing technologies in novel ways (Markard and 

Truffer, 2006; Alkemade et al., 2009; Barbieri et al., 2020). We thus expect a positive effect 

of relatedness on developing renewable energy technologies. 

The effect of relatedness may differ across countries (Boschma and Capone, 2015; 

Montresor and Quatraro, 2017; Petralia et al., 2017). The geography of sustainability 

transitions literature highlights that the place-dependence of sustainable innovations results 

from the unique social-technical configuration process at different locations (Hansen and 

Coenen, 2015). The development of renewable energy technologies is strongly affected by 

environmental and energy policies, and market liberalization processes at the national level 

(Johnstone et al., 2010; Nesta et al., 2014; Nicolli and Vona, 2016; Veugelers, 2012). 

Market formation and development have been identified as important for the development 

of technological innovation systems in renewable energy technologies (Hekkert et al., 2007; 

Negro et al., 2012). Growing markets have formed a vital complement to public R&D in 

driving innovation activities through various channels, including learning by doing, 

economies of scale, and private R&D investments (Bettencourt et al., 2013; Trancik et al., 

2015). However, these market stimulating policies are also found to mostly introduce 

incremental innovations in renewable energy technologies (Nemet, 2009; Hoppmann et al., 

2013; Schmidt et al., 2016; Trancik et al., 2015). Thus, we expect that the presence of a 

domestic market for renewables will strengthen the path-dependent process towards related 

renewable energy technologies. 

With increasing globalization, international knowledge spillovers have become an  

important input for the inventive processes, either embodied in traded goods or services, or 

in various disembodied forms through cross-border flows of people, ideas and face-to-face 

contacts (Keller 2004). Many studies have shown how geographical proximity facilitates 

the flow of knowledge (Jaffe et al., 1993). More recently, the role of social proximity 
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through inventor collaborations has also been studied (Breschi and Lissoni, 2001). Inventor 

collaborations can accelerate the knowledge spillover process, especially for complex 

knowledge (Singh, 2005; Sorenson et al., 2006). Thus, social proximity can compensate for 

the lack of cognitive proximity in the innovation process (Boschma, 2005; Breschi and 

Lissoni, 2009).  

Countries benefit from these international knowledge spillovers when developing new 

technologies (Mancusi, 2008; Malerba et al., 2013). International knowledge spillovers are 

especially important for producing knowledge in renewable energy technologies (Conti et 

al., 2018; Garrone et al., 2014; Verdolini and Galeotti, 2011; Wu and Mathews, 2012). 

Countries can utilize international knowledge to reduce their energy R&D investments 

(Bosetti et al., 2008). This is vital in preventing underinvestment in R&D for renewable 

energy technologies due to the ‘double externality problem’ ‒ the unappropriated social 

benefits from both the positive knowledge spillovers during the R&D process, as well as 

the reduced greenhouse gas emissions during the deployment of renewable energy 

technologies (Rennings, 2000; Jaffe et al., 2002). In addition, the exchange of external 

knowledge is essential for reducing uncertainty in the inventive process and for introducing 

successful innovations (Antonelli, 1999; Giuliani et al., 2016; Singh and Fleming, 2010). 

This is especially important as renewable energy technologies are often characterized by 

high uncertainty (Negro et al., 2012). Thus, we expect a positive effect of international 

spillovers on developing renewable energy technologies.  

Countries may benefit differently from international knowledge spillovers due to  

different levels of absorptive capacity (Cohen and Levinthal, 1990; Mancusi, 2008; 

Verdolini and Galeotti, 2011). Cohen and Levinthal (1990) suggested that R&D has two 

faces: innovation and learning. Knowledge accumulated in previous R&D helps absorbing 

and utilizing external knowledge. Furthermore, learning during the adoption and diffusion 

of new technologies can also increase the absorptive capacity of a country (Carlsson and 

Stankiewicz, 1991; Hekkert et al., 2007). In addition, we thus expect that countries with 

larger domestic markets for renewables can benefit more from international knowledge 

spillovers from renewable energy technologies.  

2.3 Data, methods and variables 

2.3.1 Patent data 

Patent data is widely used to study knowledge generation and diffusion (Jaffe and 

Trajtenberg, 2002). Although patents do not capture the overall innovative output (Pavitt, 

1985; Griliches, 1990), they provide one of the most comprehensive and systematic 

overviews of knowledge production. Technology classifications of patents are widely used 
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to study technological change (Fleming, 2001; Fleming and Sorenson, 2001) and to 

characterize firms and countries’ knowledge bases (Antonelli et al., 2010; Nesta and 

Saviotti, 2005). Inventor information enables studies on the evolution of inventor 

collaborations and the ensuing knowledge spillovers (Breschi and Lissoni, 2009; Singh, 

2005). Integrating these earlier methods, we use the filing date of patent applications, the 

inventor’s address, and technology classifications from the Worldwide Patent Statistical 

Database (PATSTAT, 2015 October edition, maintained and distributed by European 

Patent Office, EPO) to empirically test how countries’ knowledge bases and international 

knowledge spillovers shape the technological changes in renewable energy technology.  

We use transnational priority patents (i.e. with subsequent filings protecting the same 

invention abroad) filed between 1998 and 2012, at whichever patent office. This 

methodology gives us a global perspective of technological development and a 

comprehensive assessment of countries’ inventive performance suitable for international 

comparison (Alkemade et al., 2015; Haščič et al., 2015). We assign patents based on the 

inventor’s country of residence, following de Rassenfosse et al. (2013), who employed a 

systematic approach to retrieve missing information on inventors in the PATSTAT database 

by examining subsequent filings of the same invention that may include this information. 

The inventor’s country of residence better reflects the geographical origin of the inventive 

activity, as counting patents based on the applicant country tends to underestimate a 

country’s inventive output when there are a large number of foreign-owned R&D 

laboratories located in the country (Alkemade et al., 2015; Guellec and van Pottelsberghe 

de la Potterie, 2001). We fractionally split patents with multiple inventors across countries 

based on the proportion of inventors located in each country. For example, if a patent 

document lists three inventors, two living in country A and one in country B, two-thirds of 

that patent is allocated to country A and one-third to country B.  

To identify patents relating to renewable energy technologies, we use the Y02 class taken 

from the Cooperative Patent Classification (CPC) table in the PATSTAT database. The 

Y02 class identifies patents relating to inventions or technologies for mitigation or 

adaptation against global climate change. EPO experts developed this class by combining 

existing International and European Patent Classifications with a lexical analysis of 

abstracts or claims (Veefkind et al., 2012a), and this has been widely adopted by 

researchers (Fankhauser et al., 2013; Bointner, 2014; Haščič and Migotto, 2015; Laurens et 

al., 2017; Choi, 2018).  

To measure the knowledge bases of renewable energy technologies at the country level, 

we use an extended version of the IPC-based WIPO technology classification developed by 

Alkemade et al. (2015), which identifies 401 technologies. We fractionally split patents 

across technologies based on the share of IPC codes in each technology. For example, if the 
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patent lists three different IPC codes, two in Semiconductor Devices and one in Data 

Processing Systems, two thirds of the patent are allocated to Semiconductor Devices and 

one third to Data Processing Systems. Furthermore, we assume that all inventors contribute 

the same technological information to the patent.  

Of the total sample of 3,960,563 transnational priority patents, 40,264 are inventions in 

renewable energy technologies. Figure 1 shows the number of patents for different types of 

renewable energy technology in the post-Kyoto period between 1998 and 2012. Solar 

photovoltaics and wind (left-axis) have the highest number of patents, followed by solar 

thermal, biofuel and waste (right axis). Patenting in all types of renewable energy 

technology, except geothermal, has increased rapidly since 2000. The number of 

transnational priority patents in recent years on the right of Figure 1 is potentially 

underestimated, due to censoring issues and incomplete data. The time needed for filing a 

subsequent application varies between international patenting strategies, from one year 

under the Paris Convention to 30 months under the Patent Cooperation Treaty 

(Dechezleprêtre et al., 2017). 

 

Figure 2.1 Number of patents by type of renewable energy technology (3-year moving 

average). Note: Solar thermal, tidal, wave and ocean, biofuel and waste and geothermal are 

shown on the right axis.  
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2.3.2 Variables  

2.3.2.1 Measuring specialisation patterns of countries 

We use the revealed symmetric technological advantage (RSTA) index proposed by Laursen 

(2015) to indicate a country’s specialisation in different renewable energy technologies. 

This index captures a country’s share of technological knowledge produced in a given 

technology relative to the world average:  

𝑅𝑆𝑇𝐴𝑐,𝑖,𝑡 =
(𝑅𝑇𝐴𝑐,𝑖,𝑡 − 1)

(𝑅𝑇𝐴𝑐,𝑖,𝑡 + 1)
(2.1) 

with: 

𝑅𝑇𝐴𝑐,𝑖,𝑡 =  

𝑃𝑐,𝑖,𝑡

∑ 𝑃𝑐,𝑖,𝑡𝑖

∑ 𝑃𝑐,𝑖,𝑡𝑐

∑ ∑ 𝑃𝑐,𝑖,𝑡𝑐𝑖

(2.2) 

where 𝑃𝑐,𝑖,𝑡 denotes the number of patents in a given technology i in country c at time t. 

The value of 𝑅𝑆𝑇𝐴𝑐,𝑖,𝑡 equals -1 if country c holds no patent in technology i, is equal to 0 if 

country c’s share in technology i equals its share in all technologies (no specialisation) and 

is greater than 0 if a specialisation is observed. The RSTA index corrects for the differences 

in patenting propensity across technologies and countries (Soete and Wyatt, 1983).  

2.3.2.2 Characterizing a country’s knowledge base  

We characterize a country’s knowledge base by mapping the technological knowledge 

production in the country on the global technology space. Inspired by the “product space” 

framework (Hidalgo et al., 2007), the global technology space is a network representation 

of technological knowledge production, where nodes represent technological fields and ties 

indicate their degree of proximity. Related technologies are close together on the global 

technology space. We quantify the proximity between each pair of technologies by 

counting their co-occurrences at the patent level. The proximity between technology i and j 

at time t is measured as follows:   

𝛷𝑖,𝑗,𝑡 =
𝑃𝑖,𝑗,𝑡

√𝑃𝑖,𝑡 ∗ 𝑃𝑗,𝑡

(2.3) 

where 𝑃𝑖,𝑗,𝑡 is the number of patents which list both technology i and j in the patent 

document at time t. 𝑃𝑖,𝑡 and 𝑃𝑗,𝑡 are the numbers of patents in technology i and j at time t.  

The density index (Hidalgo et al., 2007) captures the relatedness of a given technology to 

the knowledge base of a given country by measuring the extent to which new technology 

produced in a given country tends to cluster around existing technologies within that 
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country. To calculate the relatedness of renewable energy technologies to a country’s 

knowledge base requires a number of steps. First, 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑐,𝑖,𝑡 is defined as the degree to 

which technology i is related to all other technologies j that country c specializes in at time 

t, divided by the total relatedness of technology i to all other technologies in the global 

technology space at time t:  

𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑐,𝑖,𝑡 =
∑ 𝛷𝑖,𝑗,𝑡 ∗ 𝜒𝑐,𝑗,𝑡𝑗≠𝑖

∑ 𝛷𝑖,𝑗,𝑡𝑗≠𝑖

(2.4) 

where χ𝑐,𝑗,𝑡 is a binary variable, indicating whether country c specializes in technology j 

(𝜒𝑐,𝑗,𝑡 = 1), or not (𝜒𝑐,𝑗,𝑡 = 0).  

Finally, the relatedness of the country c’s knowledge base to renewable energy 

technology r at time t is defined as the weighted average of the 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑐,𝑖,𝑡 measure:  

𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑐,𝑟,𝑡 = ∑ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑐,𝑖,𝑡 ∗ 𝜒𝑐,𝑖,𝑡 ∗
𝑃𝑖,𝑟,𝑡

𝑃 𝑟,𝑡𝑖
(2.5) 

where 𝜒𝑐,𝑖,𝑡 denotes whether country c specializes in technology i (𝜒𝑐,𝑖,𝑡 = 1), or not 

(𝜒𝑐,𝑖,𝑡 = 0). 𝑃𝑖,𝑟,𝑡 denotes the number of patents in renewable energy technology r which 

lists technology i in the patent document. 𝑃 𝑟,𝑡 denotes the number of patents in renewable 

energy technology r at time t. A higher value of 𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑐,𝑟,𝑡 indicates that renewable 

energy technology r is more related to the knowledge base of country c at time t.  

2.3.2.3. International knowledge spillovers 

𝐶𝑜_𝑖𝑛𝑣𝑐,𝑟,𝑡 captures international knowledge spillovers measured as the number of co-

invented patents between country c and countries which specialized in renewable energy 

technology r at time t (Rigby, 2015). We only include the top 10 co-inventing countries for 

each renewable energy technology, focussing on knowledge spillovers from the global 

technological frontier. These countries account for 70-90% of all patents in the different 

renewable energy technologies.  

2.3.2.4 The domestic market for renewables  

We calculated the share of electricity generated from non-hydro renewable sources in 

country c at time t, 𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒𝑠𝑐,𝑡 ,to capture the development of the domestic market for 

renewables following Schimdt and Sewerin (2018). Electricity production data is extracted 

from the World Energy Balances (International Energy Agency, 2014 edition).  

2.3.2.5 Level of economic development 

We control for the level of economic development of countries using the constant (based on 

2005) and PPP adjusted GDP per capita (Petralia et al., 2017). The data on PPP adjusted 

GDP and population of countries are extracted from the World Bank's Open Data Catalog. 
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We thereby distinguish high-, and or low- and middle- income countries using the World 

Bank income classifications.  

2.3.3 Econometric Specification 

To empirically test our research questions, we estimate the following econometric equation:  

𝜒𝑐,𝑟,𝑡 = 𝛽0 + 𝛽1𝜒𝑐,𝑟,𝑡−1 + 𝛽2𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑐,𝑟,𝑡−1 + 𝛽3𝐶𝑜_𝑖𝑛𝑣𝑐,𝑟,𝑡−1

+ 𝛽4𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑐,𝑟,𝑡−1 ∗ 𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒𝑠𝑐,𝑡−1 + 𝛽5𝐶𝑜𝑖𝑛𝑣𝑐,𝑟,𝑡−1

∗ 𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒𝑠𝑐,𝑡−1 +  𝛽6𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑐,𝑟,𝑡−1 ∗ 𝐺𝐷𝑃𝑐,𝑡−1 + 𝛽7𝐶𝑜𝑖𝑛𝑣𝑐,𝑟,𝑡−1

∗ 𝐺𝐷𝑃𝑐,𝑡−1 + ∅𝑐,𝑡 + 𝜑𝑟,𝑡

+ 𝜖𝑐,𝑟,𝑡                                                                                                 (2.6) 

where χ𝑐,𝑟,𝑡 is a binary variable, indicating whether country c has a specialisation in 

renewable energy technology r (χ𝑐,𝑟,𝑡 = 1), or not (χ𝑐,𝑟,𝑡 = 0). 𝛽1 captures the correlation 

between specialisation at time t-1 with specialisation at time t. 𝛽2 and 𝛽3 capture the 

correlation between relatedness and international knowledge spillovers with specialisation. 

𝛽4 and 𝛽5 capture whether the correlations between relatedness and international 

knowledge spillovers with specialisation differ among countries with different domestic 

market for renewables. 𝛽6 and 𝛽7 capture whether the correlations between relatedness and 

international knowledge spillovers with specialisation differ among countries with different 

levels of economic development. All the independent variables are lagged for one period to 

avoid potential endogeneity issues.  

We also include fixed effects in the econometric equation, ∅𝑐,𝑡 for the time-varying 

characteristics of a country c and 𝜑𝑖,𝑡 for those of a renewable energy technology i. The 

time-varying country fixed effects and time-varying technology fixed effects are included 

in the model using dummy variables for each country-time pair and each technology-time 

pair. 𝜖𝑐,r,𝑡 denotes the regression residue.  

In the econometric analysis, we estimate equation (6) using a linear probability ordinary 

least square regression through which we can estimate the probability of observing 0 (no 

specialisation) or 1 (with specialisation). Scholars usually use logit or probit models if the 

dependent variable is binary because the linear probability model suffers from drawbacks; 

it usually generates biased and inconsistent estimates (Horrace and Oaxaca, 2006), and it 

does not deal with measurement error in the dependent variable (Hausman et al., 1998). 

However, fixed effects logit or probit models with a large number of dummy variables may 

lead to biased and inconsistent coefficients due to incidental parameter problems when the 

number of time periods is limited (Greene, 2011). The linear probability model does not 

suffer from this problem. Moreover, the average effects obtained from the linear probability 

model are quite similar to marginal effects from non-linear models (Riedl and Geishecker, 

2014). Thus, the linear probability model is widely used in diversification literature 
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(Colombelli et al., 2014; Montresor and Quatraro, 2017; Petralia et al., 2017). Our use of 

the RSTA index as a robustness check thereby addresses the measurement error.  

We include the lagged dependent variable to capture the persistence of knowledge 

production in renewable energy technologies at the country level. The time-varying country 

fixed effects in our model exploit variation within technologies, and the technology-time 

fixed effects exploit variation of countries, thus not correlating with time shocks in the error 

term, which is the usual bias in a fixed effects panel with lagged dependent variable 

(Arellano and Bond, 1991; Boschma and Capone, 2015). Furthermore, we use the system-

GMM technique to estimate dynamic panel data models as a robustness check to ensure 

consistent estimates and address potential endogeneity problems (Blundell and Bond, 

1998). All independent variables and the lagged dependent variable are treated endogenous, 

and all possible lags are used as instruments. 

We divide the period 1998-2012 into five non-overlapping intervals of 3 years: 1998-

2000, 2001-2003, 2004-2006, 2007-2009, and 2010-2012 following existing empirical 

studies in the regional diversification literature to avoid the impact of volatility in patent 

statistics on the calculation of our dependent variable (Montresor and Quatraro, 2017; 

Petralia et al., 2017). We include those countries with more than 10 patents in all five 

intervals resulting in 1920 observations; 64 countries, 6 renewable energy technologies and 

5 time periods (see Table A1). Table A2 shows the correlation statistics of the independent 

variables. The correlations between independent variables are not high.  
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2.4 Empirical results 

2.4.1 Descriptive analysis 

Table 2.1 shows the main specialisations in renewable energy technology of the top 10 

patenting countries in renewable energy over time. Countries differ greatly in their 

contribution to the global knowledge stock. For most countries, the most specialized 

renewable energy technologies remain stable over time. Emerging economies like Korea, 

China and Taiwan contributed intensively in recent periods.  

Table 2.1 Specialisations of top 10 patenting countries in renewable energies 

1998-2000 2004-2006 2010-2012 

Japan Solar PV, 

Biofuel 

United 

States 

Biofuel, 

Solar PV 

Japan Solar PV, 

Wind 

Germany Wind, Solar 

TH 

Japan Solar PV, 

Biofuel 

United 

States 

Biofuel, Geo 

TH 

United States Geo TH, 

Biofuel 

Germany Geo TH, 

Solar TH 

Germany Solar TH, 

Wind 

Netherlands Ocean, Solar 

TH 

United 

Kingdom 

Ocean, Wind Korea Solar PV, 

Ocean 

United 

Kingdom 

Ocean, Solar 

TH 

Korea Solar PV, 

Geo TH 

Taiwan Solar PV, 

Geo TH 

France Biofuel, 

Solar TH 

France Solar TH, 

Geo TH 

Denmark Wind, 

Biofuel 

Denmark Wind, Ocean Spain Wind,  

Solar TH 

France Ocean, Solar 

TH 

Switzerland Geo TH, 

Solar TH 

Denmark Wind, 

Biofuel 

China Solar TH, 

Wind 

Sweden Geo TH, 

Wind 

Canada Geo TH, 

Ocean 

United 

Kingdom 

Ocean, Wind 

Australia Solar TH, 

Ocean 

Italy Geo TH, 

Solar TH 

Italy Solar TH, 

Geo TH 

Summary statistics in Table 2.2 show that the knowledge production of renewable energy 

technologies is persistent over time. 23.8% of the observations are countries maintaining 

their specialisations, whereas only 14.3% of the observations represent the development of 
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new specialisations0F

1.  

We further show the top 10 countries in the share of electricity generated from 

renewables. These are mostly European countries that have been promoting renewables to 

diversify energy supply and decrease their dependence on fossil fuel imports.  

Table 2.2 Summary statistics of knowledge production in renewable energy technologies 

Independent Variables Observations Mean SD Min Max 

χ𝑐,𝑟,𝑡−1 1,920 0.345 0.475 0 1 

 χ𝑐,𝑟,𝑡 = 0 χ𝑐,𝑟,𝑡 = 1 

χ𝑐,𝑟,𝑡−1 = 0 51.3% 14.3% 

χ𝑐,𝑟,𝑡−1 = 1 10.7% 23.8% 

𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑐,𝑟,𝑡−1 1,920 0.168 0.169 0 0.810 

𝐶𝑜_𝑖𝑛𝑣𝑐,𝑟,𝑡−1 1,920 0.235 0.626 0 4.317 

Country level independent variables 

𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒𝑠𝑟,𝑐,𝑡−1 1,920 0.03 0.049 0 0.276 

𝐺𝐷𝑃𝑐,𝑡−1 1,920 9.715 0.748 7.617 11.498 

Note: Top 10 countries in 𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒𝑠𝑟,𝑐,𝑡: Philippines, Iceland, Denmark, Finland, New Zealand, 

Portugal, Spain, Germany, Luxembourg, Austria.  

2.4.2 Model outcomes 

Table 2.3 shows the estimation results of equation (2.6). A specialisation at time t-1 is 

significantly correlated with a specialisation at time t, supporting the path-dependence of 

knowledge production in renewable energy technologies at the country level. As expected, 

the coefficient of 𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑟,𝑐,𝑡−1 is significantly positive in all columns of Table 2.3, 

confirming a correlation between specialisation and a country’s knowledge base in related 

technologies. The results suggest that for renewable energy technologies which are 

considered more radical and complex, relatedness is still an important driver of knowledge 

production (Boschma, 2017; Hidalgo et al., 2018).  

Regarding the interaction terms, the coefficients of 𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑟,𝑐,𝑡−1 ∗

𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒𝑠𝑐,𝑟,𝑡−1 are significantly positive in both columns (4) and (5), suggesting that 

specialisation is more likely to be observed in countries with both higher relatedness and a 

larger domestic market for renewables. Thus, domestic markets for renewables are likely to 

 

 

1 The tetrachoric correlation between dependent variable and lagged dependent variable is 

0.67, also indicating the path-dependence and place-dependence of knowledge production 

in renewable energy technologies. 
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strengthen the path-dependence towards related technologies given the positive correlation 

between relatedness and specialisation.  

The coefficients of 𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑟,𝑐,𝑡 ∗ 𝐺𝐷𝑃𝑐,𝑡−1 are negative in column (2) and (6). The 

results imply that specialisation is less likely to be observed in countries that have higher 

relatedness and at the same time higher levels of economic development. However, the 

interaction term is not significant. A possible explanation could be that although higher 

income countries tend to have more capabilities, like larger public R&D investment in 

renewable energy technologies, to support the development of less related technologies 

(Bointner, 2014; Hidalgo and Hausmann, 2009), they also tend to have larger domestic 

markets for renewables favouring more related technologies. As shown in Table 2.2, of the 

top 10 countries with the largest share of electricity generated from renewable sources 9 are 

high-income countries. These two effects offset each other.  

When we consider the effects of international knowledge spillovers, the coefficients of 

𝐶𝑜_𝑖𝑛𝑣𝑟,𝑐,𝑡−1 are significantly positive in columns (3) and (5), indicating that specialisation 

are correlated with international knowledge spillovers. Binz and Truffer (2017) argue that 

the knowledge dynamics of the global innovation systems consist the generation of 

knowledge in locational subsystems, and the structural coupling among them. Our findings 

that both relatedness at the national level, and international knowledge spillovers are 

important for the development of renewable energy technologies provide a first empirical 

support of these multi-scalar dynamics.  

The coefficients of 𝐶𝑜_𝑖𝑛𝑣𝑟,𝑐,𝑡−1 ∗ 𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒𝑠𝑐,𝑟,𝑡−1 and 𝐶𝑜_𝑖𝑛𝑣𝑟,𝑐,𝑡−1 ∗ 𝐺𝐷𝑃𝑐,𝑡−1 are 

both positive, suggesting that specialisation is more likely to be observed in countries with 

more collaborations with countries that are on the technological frontier, and at the same 

time have larger domestic markets for renewables or higher level of economic 

development. Interestingly, these two interaction terms are not significant. This result is not 

in line with our expectations.   

In Table 2.4 we further investigate this by looking at the subsamples of high-, of low- 

and middle-income countries. The coefficients of 𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑟,𝑐,𝑡−1 are significantly 

positive in both subsamples, confirming path-dependence. However, the coefficient of 

𝐶𝑜_𝑖𝑛𝑣𝑟,𝑐,𝑡−1 is only significantly positive independently in the subsample of high-income 

countries. High-income countries tend to have larger absorptive capacities for utilizing 

international knowledge spillovers resulting from previous public R&D (Bointner, 2014; 

Mancusi, 2008).   
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Table 2.3 Model outcomes (1998-2012) 
 

Dependent variable: χ𝑐,𝑟,𝑡  

(1) (2) (3) (4) (5) (6) 

χ𝑐,𝑟,𝑡−1 0.252*** 0.252*** 0.287*** 0.287*** 0.246*** 0.245*** 

(0.039) (0.038) (0.039) (0.039) (0.038) (0.038) 

𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑐,𝑟,𝑡−1 0.656*** 0.681*** 

  

0.648*** 0.676*** 

(0.101) (0.196) 

  

(0.098) (0.196) 

𝐶𝑜_𝑖𝑛𝑣𝑐,𝑟,𝑡−1 

  

0.048* 0.041 0.038* 0.018   

(0.024) (0.075) (0.021) (0.069) 

𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑐,𝑟,𝑡−1

∗ 𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒𝑠𝑐,𝑟,𝑡−1 

 

3.737** 

   

3.848**  

(1.652) 

   

(1.709) 

𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑐,𝑟,𝑡−1

∗ 𝐺𝐷𝑃𝑐,𝑡−1 

 

-0.006 

   

-0.006  

(0.007) 

   

(0.007) 

𝐶𝑜_𝑖𝑛𝑣𝑐,𝑟,𝑡−1

∗ 𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒𝑠𝑐,𝑟,𝑡−1 

   

-0.036 

 

0.191    

(0.434) 

 

(0.337) 

𝐶𝑜𝑖𝑛𝑣𝑐,𝑟,𝑡−1
 

∗ 𝐺𝐷𝑃𝑐,𝑡−1 

   

0.0003 

 

0.0004    

(0.002) 

 

(0.002) 

Constant 0.169*** 0.187*** 0.125*** 0.125*** 0.170*** 0.189*** 

(0.033) (0.037) (0.035) (0.035) (0.034) (0.038) 

Observations 1,920 1,920 1,920 1,920 1,920 1,920 

R2 0.466 0.467 0.450 0.450 0.467 0.468 

Note: country-clustered standard errors are in parentheses. Country + time and technology + time 

dummy variables are included in the linear probability model; ***, **, * statistically 

significant at .01 percent, .05 percent and .1 percent, respectively. 

An important exception here are low- and middle-income countries with large domestic 

markets for renewables. Although the coefficient of 𝐶𝑜_𝑖𝑛𝑣𝑟,𝑐,𝑡−1 is significantly negative, 

the coefficient of 𝐶𝑜_𝑖𝑛𝑣𝑟,𝑐,𝑡−1 ∗ 𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒𝑠𝑐,𝑡−1 is significantly positive in column (4). 

The results suggest an important role for domestic markets for renewables in low- and 

middle-income countries in utilizing international knowledge spillovers. Although low- and 

middle-income countries can succeed in developing renewable energy technologies without 

the development of domestic markets, this type of exporting-oriented development is 

vulnerable to external shocks. An example is the Chinese solar PV industry which rapidly 

increased manufacturing output for international markets (Binz and Anadon, 2018; de la 

Tour et al., 2011; Luo et al., 2017; Quitzow, 2015). The innovation output of the Chinese 

solar PV industry lagged behind the manufacturing output and the industry experienced a 
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great shake-out during the trade conflicts with EU and US (Binz et al., 2017b; Binz and 

Anadon, 2018).  

The coefficient of 𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑟,𝑐,𝑡−1 ∗ 𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒𝑠𝑐,𝑡−1 is only significantly positive in 

the subsample of low- and middle-income countries, suggesting that the role of domestic 

market for renewables in strengthening the path-dependent process towards related 

renewable energy technology is more prominent in low- and middle-income countries. 

High-income countries tend to have more capabilities for developing less related 

technologies (Hidalgo and Hausmann, 2009; Petralia et al., 2017).  

Table 2.4 Model outcomes (1998-2012): Income level 
 

(1) (2) (3) (4) 

Model Linear Probability 

Dependent variable χ𝑐,𝑟,𝑡 

Subsamples High-income  Low- and Middle- income 

χ𝑐,𝑟,𝑡−1 
0.268*** 0.269*** 0.203*** 0.178*** 

(0.054) (0.053) (0.053) (0.051) 

𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑐,𝑟,𝑡−1 
0.680*** 0.558*** 0.598*** 0.429** 

(0.117) (0.146) (0.183) (0.194) 

𝐶𝑜_𝑖𝑛𝑣𝑐,𝑟,𝑡−1 
0.048* 0.051 0.034 -0.094** 

(0.028) (0.037) (0.066) (0.046) 

𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑐,𝑟,𝑡−1

∗ 𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒𝑠𝑐,𝑟,𝑡−1 

 

2.714 

 

12.278***  

(1.744) 

 

(4.677) 

𝐶𝑜𝑖𝑛𝑣𝑐,𝑟,𝑡−1
 

∗ 𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒𝑠𝑐,𝑟,𝑡−1 

 

-0.051 

 

5.412***  

(0.389) 

 

(0.616) 

Constant 
0.181*** 0.181*** 0.237*** 0.240*** 

(0.058) (0.059) (0.037) (0.038) 

Observations 960 960 960 960 

R2 0.461 0.462 0.430 0.446 

Note: country-clustered standard errors are in parentheses. Country + time and technology + time 

dummy variables are included in the linear probability model; ***, **, * are statistically 

significant at .01 percent, .05 percent and .1 percent, respectively. 
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2.4.3 Robustness check 

We run two additional analyses to check the robustness of our results. First, we re-estimate 

equation (2.6) using the RSTA index directly as our dependent variable. Second, we apply 

the system-GMM techniques. The results are shown in Table 2.5 and 2.6. The Sargan test 

tests whether the model is weakened by overidentifying restrictions. Only model column 

(3) in Table 5 suffers from this issue with a Sargen test p value smaller than 0.05. All p 

values from Autoregressive test (1) are smaller than 0.05 and all p values from 

Autoregressive test (2) are larger than 0.05, indicating that all system-GMM estimations are 

valid. The coefficients of the lagged dependent variable, 𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑐,𝑟,𝑡−1 and 

𝐶𝑜_𝑖𝑛𝑣𝑐,𝑟,𝑡−1 are consistent with our estimations in Table 3 and Table 4.  

The coefficients of 𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑟,𝑐,𝑡−1 ∗ 𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒𝑠𝑐,𝑟,𝑡−1 are significantly positive in 

column (2) in Table 2.5 and column (3) in Table 6 under a linear model setting using the 

RSTA index as dependent variable, so also consistent with the results in Table 2.3 and Table 

2.4. However, this interaction term is not significant under system-GMM setting. We 

interpret this result as the presence of reverse causality as past successes in renewable 

energy technologies may facilitate the legitimation and implementation of market 

stimulating policies for renewables (Popp et al., 2011). For example, maintaining industry 

leadership is an explicit goal of German energy policy in addition to conventional goals like 

reducing environmental burden, reducing energy cost, and securing energy supply (Cherp et 

al., 2017; Schmidt et al., 2019). The effect of the domestic market for renewables is biased 

upwardly when endogeneity is not properly controlled for; it disappears under the system-

GMM setting. This result is in line with recent papers of Popp, Hascic, and Medhi (2011) 

and Nesta, Vona, and Nicolli (2014).  

The coefficient of 𝐶𝑜_𝑖𝑛𝑣𝑟,𝑐,𝑡−1 is significantly positive in column (2) in Table 2.6, 

indicating that high-income countries can benefit from international knowledge spillovers. 

This is consistent with the findings in column (1) in Table 2.5. The coefficients of 

𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑟,𝑐,𝑡−1 ∗ 𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒𝑠𝑐,𝑟,𝑡−1 and 𝐶𝑜𝑖𝑛𝑣𝑟,𝑐,𝑡−1
∗ 𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒𝑠𝑐,𝑡−1 remain 

significantly positive in the system-GMM model for low- and middle- income countries, 

further confirming the importance of domestic markets for renewables in low- and middle- 

income countries for utilizing both domestic knowledge base in related technologies and 

international knowledge spillovers.  
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Table 2.5 Robustness check (1998-2012) 
 

(1) (2) (3) (4) 

Model OLS System GMM 

Dependent variable 𝑅𝑆𝑇𝐴𝑐,𝑟,𝑡 χ𝑐,𝑟,𝑡 

𝑅𝑆𝑇𝐴𝑐,𝑟,𝑡−1 0.227*** 0.223***   

(0.041) (0.039)   

χ𝑐,𝑟,𝑡−1   0.257*** 0.257*** 

  (0.047) (0.047) 

𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑐,𝑟,𝑡−1 0.606*** 0.796*** 1.074*** 0.995*** 

(0.114) (0.272) (0.127) (0.224) 

𝐶𝑜_𝑖𝑛𝑣𝑐,𝑟,𝑡−1 0.048* 0.076 0.066** 0.011 

(0.028) (0.089) (0.027) (0.066) 

𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑐,𝑟,𝑡−1𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒𝑠𝑐,𝑟,𝑡−1  4.721**  1.123 

 (2.235)  (1.582) 

𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑐,𝑟,𝑡−1 ∗ 𝐺𝐷𝑃𝑐,𝑡−1  -0.013  0.008 

 (0.009)  (0.008) 

𝐶𝑜𝑖𝑛𝑣𝑐,𝑟,𝑡−1
∗ 𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒𝑠𝑐,𝑟,𝑡−1  0.936**  -0.245 

 (0.421)  (0.341) 

𝐶𝑜𝑖𝑛𝑣𝑐,𝑟,𝑡−1
∗ 𝐺𝐷𝑃𝑐,𝑡−1  -0.003  0.001 

 (0.003)  (0.002) 

Constant -0.337*** -0.299***   

(0.049) (0.056)   

R2 0.496 0.499   

Sargan test p value   0.017 0.112 

AR test (1) in first difference p value   0.000 0.000 

AR test (2) in first difference p value   0.132 0.106 

Observations 1,920 1,920 1920 1920 

Note: In the linear probability model, country-clustered standard errors are in parentheses. In 

system-GMM model, robust standard errors are in parentheses. Country + time and 

technology + time dummy variables are included in the linear probability model; ***, **, * 

are statistically significant at .01 percent, .05 percent and .1 percent, respectively. 
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Table 2.6 Robustness check (1998-2012): Income level 
 

(1) (2) (3) (4) 

Subsamples High income  Low- and Middle- income 

Model OLS System-

GMM 

OLS System-

GMM 

Dependent variable 𝑅𝑆𝑇𝐴𝑐,𝑟,𝑡 χ𝑐,𝑟,𝑡 𝑅𝑆𝑇𝐴𝑐,𝑟,𝑡 χ𝑐,𝑟,𝑡 

𝑅𝑆𝑇𝐴𝑐,𝑟,𝑡−1 0.283***  0.134**  

(0.043)  (0.056)  

χ𝑐,𝑟,𝑡−1  0.279***  0.209*** 

 (0.062)  (0.078) 

𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑐,𝑟,𝑡−1 0.438*** 1.148*** 0.393 1.165*** 

(0.152) (0.181) (0.293) (0.187) 

𝐶𝑜_𝑖𝑛𝑣𝑐,𝑟,𝑡−1 0.008 0.060* -0.066 -0.018 

(0.031) (0.037) (0.061) (0.049) 

𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑐,𝑟,𝑡−1

∗ 𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒𝑠𝑐,𝑟,𝑡−1 

2.923 1.363 25.646*** 3.947 

(1.995) (1.395) (6.988) (6.982) 

𝐶𝑜𝑖𝑛𝑣𝑐,𝑟,𝑡−1
 

∗ 𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒𝑠𝑐,𝑟,𝑡−1 

0.643*** -0.345 8.013*** 3.378*** 

(0.242) (0.332) (1.055) (1.202) 

Constant -0.279***  -0.379***  

(0.080)  (0.082)  

R2 0.504  0.451  

Sargan j test p value  0.208  0.855 

AR test (1) in first difference p 

value 

 0.000  0.000 

AR test (2) in first difference p 

value 

 0.094  0.700 

Observations 960 960 960 960 

Note: In linear probability model, country-clustered standard errors are in parentheses. In system-

GMM model, robust standard errors are in parentheses. Country + time and technology + time 

dummy variables are included in the linear probability model; ***, **, * are statistically 

significant at .01 percent, .05 percent and .1 percent, respectively. 
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2.5 Conclusion and implications 

This paper systematically studies the development of knowledge for renewable energy 

technologies at the country level during the post-Kyoto period from 1998 to 2012. Building 

on evolutionary economics and the sustainability transitions literature, we empirically test 

the impacts of relatedness and international knowledge spillovers. Overall our study 

confirms the path- and place-dependencies of renewable energy technology development: 

countries tend to produce more knowledge in renewable energy technologies related to their 

existing knowledge base. 

Furthermore, our results confirm our expectations based on the sustainability transitions 

literature that the development of emerging sustainable technologies requires both local and 

global knowledge inputs. The paper thereby provides a first empirical operationalization of 

global innovation systems framework proposed by Binz and Truffer (2017). More 

specifically, we find that international knowledge spillovers help countries to develop new 

renewable energy technologies. Additionally, in our sample for low- and middle- income 

countries, we found an important role for domestic market development in utilizing these 

international knowledge spillovers. This provides implications for the catching-up strategy 

of latecomer countries. Sustainability transitions open new opportunities for latecomer 

countries to catch up by engaging with the global innovation systems of clean energy 

technologies (Mathews, 2013; Meckling and Hughes, 2018; Perez, 2016) and the creation 

of domestic markets can help latecomer countries to seize these opportunities (Binz et al., 

2017a; Yap and Truffer, 2019).  

In this paper we highlighted the place-dependence in the global innovation systems of 

renewable energy technologies. A better understanding of how knowledge and other 

resources are articulated and combined in the global innovation systems requires further 

study to also investigate (1) what type of policy can facilitate more radical and unrelated 

innovations in sustainable technologies to avoid technological lock-in caused by the focus 

on related technology (Janssen and Frenken, 2019; Safarzyńska and van den Bergh, 2013; 

Zeppini and van den Bergh, 2011); (2) whether countries also benefit from international 

knowledge spillovers from other technologies in developing renewable energy technologies 

(Nemet, 2012), and through which channels international knowledge can be better 

transferred across countries (Popp, 2011).  
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Appendices 

Table 2.A.1: Countries included in the econometric analyses and the number of 

transnational priority patents in each country between 1998 and 2012 

Country ISO country code Number of patents 

Argentina AR 1571 

Australia AU 28591 

Austria AT 27787 

Belarus BY 297 

Belgium BE 20879 

Brazil BR 5396 

Bulgaria BG 428 

Canada CA 60748 

Chile CL 698 

China (PR of China and Hong Kong) CN 89355 

Chinese Taipei TW 116691 

Colombia CO 448 

Croatia HR 621 

Cuba CU 205 

Cyprus CY 155 

Czech Republic CZ 3092 

Denmark DK 17215 

Egypt EG 249 

Estonia EE 418 

Finland FI 26124 

France FR 136374 

Germany DE 426272 

Greece GR 1419 

Hungary HU 3089 

Iceland IS 480 

India IN 13387 

Indonesia ID 222 

Ireland IE 5680 

Israel IL 25916 
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Italy IT 73456 

Japan JP 910112 

Kazakhstan KZ 110 

Korea KR 236260 

Latvia LV 279 

Lithuania LT 242 

Luxembourg LU 1209 

Malaysia MY 2117 

Mexico MX 2401 

Morocco MA 102 

Netherlands NL 46995 

New Zealand NZ 5519 

Norway NO 9578 

Philippines PH 400 

Poland PL 3309 

Portugal PT 1349 

Romania RO 518 

Russian Federation RU 9459 

Saudi Arabia SA 706 

Serbia RS 256 

Singapore SG 8873 

Slovakia SK 700 

Slovenia SI 1615 

South Africa ZA 4492 

Spain ES 20003 

Sweden SE 42634 

Switzerland CH 42564 

Thailand TH 659 

Turkey TR 3226 

Ukraine UA 2063 

United Arab Emirates AE 245 

United Kingdom GB 120499 

United States US 732948 
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Uruguay UY 161 

Venezuela VE 177 

 

Table 2.A.2. Correlation Statistics 
 

χ𝑐,𝑟,𝑡 𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑐,𝑟,𝑡 𝐶𝑜_𝑖𝑛𝑣𝑐,𝑟,𝑡 𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒𝑠𝑐,𝑡 𝐺𝐷𝑃𝑐,𝑡 

χ𝑐,𝑟,𝑡 1.000 0.461 0.237 0.130 0.153 

𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑐,𝑟,𝑡 0.461 1.000 0.172 0.121 0.127 

𝐶𝑜_𝑖𝑛𝑣𝑐,𝑟,𝑡 0.237 0.172 1.000 0.168 0.231 

𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒𝑠𝑐,𝑡 0.130 0.121 0.168 1.000 0.128 

𝐺𝐷𝑃𝑐,𝑡 0.153 0.127 0.231 0.128 1.000 
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This chapter is co-authored with Gaston Heimeriks and Floor 
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Abstract 

Understanding the global knowledge dynamics of renewable energy technologies requires 

consideration of both technological and geographical dimensions. This paper assesses the 

relative importance of technological and geographical distant knowledge flows in the future 

knowledge development of technological innovation systems (TIS) of renewables. Using 

global renewable energy patents, we quantify the absorptive capacity of countries as the 

knowledge diffusion between domestic actors in a TIS. Our results show that international 

knowledge flows within a TIS are more important for countries with smaller absorptive 

capacity, whereas countries with larger absorptive capacity benefit more from domestic 

knowledge originating in other TISs. Consequently, each country faces unique 

opportunities and constraints with respect to global technological developments when 

developing renewable energy technologies. These findings lead to policy implications that 

are specific to developing renewable energy technologies in different countries. 
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3.1 Introduction 

The development and deployment of clean energy innovations play a key role in the global 

sustainability transitions (Gallagher et al., 2012). Technological change, i.e. the invention, 

innovation and diffusion of new technologies, is considered a cumulative and recombinant 

process in which new technologies result from the recombination of existing technologies 

in novel ways (Arthur, 2007; Dosi, 1982; Henderson and Clark, 1990). This process 

requires interactions between actors with different backgrounds for knowledge 

development and diffusion, which is a key mechanism highlighted in the innovation system 

approaches (Carlsson et al., 2002; Lundvall, 1992; Malerba, 2002; Nelson, 1993). 

Among the different innovation system approaches, the technological innovation system 

(TIS) concept contributed significantly to the understanding of the emergence of 

sustainable technologies in energy, transport and water sectors (Bergek et al., 2015, 2008; 

Carlsson and Stankiewicz, 1991; Hekkert et al., 2007; Markard et al., 2015). A focal TIS 

evolves in interactions with parts of various national innovation systems and with various 

other TISs which in turn, are embedded in national system of innovations (Carlsson and 

Stankiewicz, 1991; Hekkert et al., 2007). These interactions have however been under-

conceptualized in TIS literature (Bergek et al., 2015), leading to the insight that both the 

endogenous and exogenous factors that influence the dynamics of a TIS should be taken 

into account (Bergek et al., 2015; Markard et al., 2015).  

More specifically, knowledge originating in other TISs has been found to play an 

important role in emerging TISs (Andersen et al., 2019; Mäkitie et al., 2018; Malhotra et 

al., 2019; Stephan et al., 2017; van den Berge et al., 2019). Furthermore, the knowledge 

needed for the development of a renewable energy TIS may originate in different countries 

resulting from their distinct knowledge development trajectories (Boschma, 2017; Hidalgo 

et al., 2018; Petralia et al., 2017; Sbardella et al., 2018). Although the TIS concept 

inherently embraces this global perspective (Carlsson, 2006; Carlsson et al., 2002; Hekkert 

et al., 2007), most of the early empirical TIS applications were carried out within national 

boundaries (Coenen et al., 2012).  

Both knowledge flows between TISs (Battke et al., 2016; Malhotra et al., 2019; Nemet, 

2012; Stephan et al., 2019) and international knowledge flows (Conti et al., 2018; Verdolini 

and Galeotti, 2011; Wu and Mathews, 2012) are found to be important for the development 

of renewable energy technologies. While the recent literature on global innovation systems 

acknowledge these multi-scalar knowledge dynamics (Binz and Truffer, 2017; Martin, 

2016; Weber and Truffer, 2017), there is a lack of systematic evidence on how different 

knowledge flows between TISs and NISs influence future knowledge development in 

global renewable energy innovation systems. 
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In order to address this gap, we investigate knowledge flows along both technological 

and geographical dimensions. We thereby take the role of the absorptive capacity of 

countries, resulting from the positive feedback loops in the knowledge diffusion between 

actors within renewable energy TISs in a country into account. We base our analysis on 

patents, and their backward and forward citations. Insights in the relative importance of the 

different knowledge flows helps to identify the opportunities and constraints for the 

development of successful energy technologies at different locations. 

The paper is structured as follows. In section 2, we review the literature and establish our 

conceptual framework. In section 3, we describe the data, variables and specifications of 

econometric models. In section 4, we present the results of descriptive analysis and 

econometric analyses. We conclude by discussing the implications of our findings in 

section 5.  

3.2 Theoretical background 

The production of economically useful new knowledge is considered to result from the 

collective actions of different actors within an innovation system connected by linkages 

ranging from informal to formalized network relationships (Lundvall, 1992). Based on 

different delineations of system boundaries, several innovation system approaches have 

emerged over the years. National innovation systems (Lundvall, 1992; Nelson, 1993) set 

system boundaries along the geographical boundaries of countries. In other cases, system 

boundaries are set along a technology (Carlsson and Stankiewicz, 1991) or a sector 

(Malerba, 2002).  

In recent years, the technological innovation systems (TISs) concept has been 

prominently applied in analysing the dynamics of system building and industry formation 

of emerging sustainable technologies (Bergek et al., 2015; Markard et al., 2015). The TIS 

functions and system building literature help understand how specific technological fields 

have evolved in interaction with firms and knowledge institutions (Bergek et al., 2008; 

Hekkert et al., 2007; Hekkert and Negro, 2009; Suurs and Hekkert, 2009).  

The interaction between a focal TIS and its specific context is less studied but equally 

important. Initially, emerging technologies have to build on and recombine the available 

knowledge and institutions of existing technologies (Arthur, 2007; Henderson and Clark, 

1990). Technologies mature by developing their own technological trajectories and 

supporting institutions, thereby reducing their reliance on other technologies over time 

(Cohen and Levinthal, 1990; Dosi, 1982).  

Knowledge flows between TISs are therefore considered important, as they often 

underlie successful new knowledge recombination (Arthur, 2007; Henderson and Clark, 

1990; Mowery and Rosenberg, 1998b; Scherer, 1982). Several studies have aimed at 
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identifying their impact on subsequent technology development in low-carbon TISs. Both 

Nemet (2012) and Battke et al. (2016) found that knowledge flows between TISs are more 

likely to increase the impacts of low-carbon innovations. Moreover, without knowledge 

from other TISs to provide new technological opportunities, the limits to incremental 

improvement to existing technologies can soon be reached (Safarzyńska and van den 

Bergh, 2013; Zeppini and van den Bergh, 2011).  

3.2.1 The geographical dimension of TIS 

Although the TIS approach was originally formulated as a critique of territorial innovation 

system approaches (Carlsson, 2006; Carlsson and Stankiewicz, 1991) by explicitly claiming 

that new technologies may emerge in fluid global networks with actors simultaneously 

operating at multiple geographical scales (Carlsson et al., 2002; Hekkert et al., 2007), most 

earlier empirical applications of the TIS concept were carried out within national 

boundaries (Coenen et al., 2012). Recent systematic empirical evidence shows that 

countries contribute markedly different new knowledge to the global knowledge base of 

low-carbon technologies (Sbardella et al., 2018), suggesting that countries differ in their 

capabilities for identifying, absorbing and exploiting global technological opportunities.  

Rooted in evolutionary economics, recent literature in evolutionary economic geography 

highlights the path- and place-dependence of knowledge production (Boschma et al., 

2017a). The unique existing knowledge base of countries (and regions) constrains, as well 

as opens up, opportunities for the development of new technologies (Boschma et al., 2014; 

Heimeriks and Boschma, 2014). Countries (and regions) are more likely to develop new 

technologies that are related to their existing knowledge bases (Boschma, 2017; Hidalgo et 

al., 2018, 2007; Petralia et al., 2017). This related diversification process at the local level is 

also observed in the development of sustainable technologies (Montresor and Quatraro, 

2019; Perruchas et al., 2019; Tanner, 2016; van den Berge et al., 2019). 

The place-dependence matters for the knowledge development of emerging low-carbon 

TISs in two ways. First, although the emerging low-carbon technologies are often 

considered radical (Markard and Truffer, 2006), the skills and competences required may 

still emerge from the existing technologies in the country (Hansen and Coenen, 2015). In a 

recent review of social-technical transitions research, Geels (2018) pointed out that 

‘incumbent actors can resist, delay or derail low-carbon transitions, but they can also 

accelerate them if they reorient their strategies and resources towards niche-innovations’. 

Empirically, Van den Berge et al. (2019) found that some clean technologies may even 

partly have developed out of fossil fuel knowledge. The recent case study of the Norwegian 

oil and gas industries and their roles in the development of offshore wind technology also 

supports this argument (Mäkitie et al., 2018). Given the disruptive role of emerging low-

carbon technologies in the energy sector, bringing together technologically distant 
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technologies within an economy will face less pressure from existing institutions (Frenken, 

2017; Janssen and Frenken, 2019).  

Second, the uneven distribution of knowledge across countries also points to the 

importance of global knowledge networks in tapping into knowledge developed elsewhere 

(Bergek et al., 2015; Binz and Truffer, 2017; Coenen et al., 2012; Hansen and Coenen, 

2015; Markard et al., 2015; Meckling and Hughes, 2018). For example, Binz et al. (2014) 

analysed how actors in the TIS of membrane bioreactor technology are connected through 

knowledge networks at the global scale. Gosens et al. (2015) summarized how global 

linkages can influence the formation of TISs in emerging economies. Quitzow (2015) 

analysed the co-evolution of the solar photovoltaic TIS in Germany and China to show how 

TIS functions in different countries build upon, and complement each other. Similarly, 

Bento and Fontes (2015) demonstrated the coupled dynamics between wind energy TISs in 

Denmark and Portugal. These studies point to the importance of international knowledge 

flows within a global innovation system.  

3.2.2 Multi-scalar knowledge dynamics 

The recent theoretical and empirical attempts in bringing a geographical dimension into TIS 

research cumulated into the formation of the global innovation systems (GIS) concept (Binz 

and Truffer, 2017; Martin, 2016). Global innovation systems can be understood as resulting 

from two dynamics, the generation of resources in different locational subsystems, and the 

strategic coupling among them (Bergek et al., 2015; Binz and Truffer, 2017).  

The multi-scalar dynamics are important for analysing the knowledge flows in emerging 

TISs. Along the technological dimension, innovations vary in the extent to which they build 

knowledge along a technology’s own trajectory (within a TIS) or other technologies 

(between TISs). Along the geographical dimensions, innovations vary in the extent to which 

they build on domestic sources of knowledge (within a NIS) and international sources of 

knowledge (between NISs). 

Knowledge development processes in emerging TISs often bridge technological and/or 

geographical distance to bring together and recombine knowledge originating in different 

TISs and NISs (Arthur, 2007; Henderson and Clark, 1990). This is particularly true for 

renewable energy technologies: First, renewable energy technologies are considered as 

complex technologies which require knowledge input from various technologies (Barbieri 

et al., 2020; Malhotra et al., 2019; Nemet, 2012); Second, knowledge in renewable energy 

technologies is unevenly distributed across countries (Conti et al., 2018; Sbardella et al., 

2018). Thus, a proper analysis of the knowledge flows in global renewable energy 

innovation systems has to take into account both technological and geographical 

dimensions.  
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Although the novelty associated with external knowledge flows tends to increase with 

the distance of knowledge in geographical or technological dimensions (Boschma, 2005), 

the difficulties in absorbing and integrating this external knowledge also increase (Baldwin 

and Clark, 2000; Cohen and Levinthal, 1990; Nooteboom, 2000). The impacts of 

technologically or geographically distant knowledge flows thus also depend on the 

absorptive capacity of countries (Guan and Yan, 2016; Mancusi, 2008; Phene et al., 2006). 

This absorptive capacity results from the knowledge diffusion through networks of 

domestic actors within the TIS (Carlsson et al., 2002); the interactions between actors in an 

innovation system create positive feedback loops that are important for innovation system 

functioning and growth (Suurs and Hekkert, 2009). Consequently, we expect the impacts of 

technologically or geographically distant knowledge on future technology development to 

differ for countries with different levels of absorptive capacity.  

3.3. Data and Methods 

3.3.1 Patent data 

The data used in this paper are patent applications filed at the European patent office 

(EPO), the United States Patent and Trademark Office (USPTO) and through the Patent 

Cooperation Treaty (PCT-route) from 1980 to 2015. Patent applications are extracted from 

the European Patent Office Worldwide Patent Statistics Database PATSTAT (EPO, 2018 

Autumn Version). Since multiple equivalent patent applications can be filed at different 

patent offices to protect the intellectual property rights of the same invention, we use the 

DOCDB patent family as the unit of analysis in this paper (Martínez, 2011). The year of a 

DOCDB patent family is based on the application year of the earliest patent in the family. 

In the following, one “patent” represents one “DOCDB patent family”, and citations 

between patents represent citations between patent families. Moreover, we only focus on 

patents assigned to companies and institutions following Mancusi (2008). The type of 

applicant is identified using the PATSTAT Standardized Name Table developed by 

ECOOM in KU Leuven (Du Plessis et al., 2009; Magerman et al., 2009).  
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Patents relating to different types of renewable energy technology are identified using the 

Y02 class in the newly launched Cooperative Patent Classification (CPC) 1F

2. The Y02 class 

is developed by EPO experts by combining existing International Patent Classifications 

(IPC) and European Patent Classifications with a lexical analysis of abstracts or claims 

(Veefkind et al., 2012b), and has been widely adopted by researchers to study climate 

change mitigation and adaptation technologies (Haščič and Migotto, 2015; Sbardella et al., 

2018).  

3.3.2 Variables 

3.3.2.1 Dependent variable: technological impact within TIS 

We aim to assess the impacts of technologically or geographically distant knowledge on 

subsequent technology development in renewable energy TISs. Hence, we are interested in 

the relative technological impact of inventions drawing on knowledge from the past in 

various ways. Counts of forward citations received by patents have been widely used as a 

proxy for the technological impact of inventions (for a review, see Jaffe & de Rassenfosse 

(2017)). Following Nemet (2012) and Battke et al. (2016), we count the number of forward 

citations within the same type of renewable energy technology received by a patent to 

measure its technological impact within the focal TIS. We count the number of forward 

citations within the 5-year citation buffer window. As a result, we include patents applied 

until 2010 in the analyses. In the robustness check, we also use a 10-year citation buffer 

window. 

3.3.2.2 Technological and geographical distance 

Backward citations of patents are frequently used as an indicator of the extent to which an 

invention relies on previous technology (Jaffe and de Rassenfosse, 2017). We identify a 

backward citation as a knowledge flow between TISs (i.e., an innovation building on 

technologically distant knowledge) when the cited patent is not labelled as the same type of 

renewable energy technology as the citing patent following Battke et al. (2016). Since our 

sample started from 1980, we only consider patents applied after 1990 to ensure that each 

patent has a minimum of 10 years of patent history from which it can cite prior art 

following Nemet (2012).  

 

 

2We focus on six types of non-hydro renewable energy technology: solar photovoltaic 

(Y02E10/5), solar thermal (Y02E10/4), wind (Y02E10/7), Ocean (Y02E10/3), biofuel 

(Y02E50/1) and geothermal (Y02E10/1).  
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Backward citations are also frequently used to trace knowledge flows across 

geographical boundaries (Jaffe et al., 1993). We assign each patent to the country of 

residence of the first named inventor in the patent document following Mancusi (2008). 

The inventor’s address can better identify where the R&D was performed given the 

significant presence of multinational corporations (Alkemade et al., 2015; de Rassenfosse 

and Seliger, 2019). A knowledge flow is considered international when the focal patent 

cited a foreign patent. Otherwise, the knowledge flow is considered domestic.  

We then classify each of the backward citations into four mutually exclusive categories 

along both geographical and technological dimensions: Domestic Proximate (domestic 

knowledge flows within the focal TIS), Domestic Distant (domestic knowledge flows 

between TISs), International Proximate (international knowledge flows within the focal 

TIS), and International Distant (international knowledge flows between TISs). We count 

the numbers of backward citations of a focal patent in all four categories and include them 

in the regression as independent variables. To avoid strategic citations to prior art, self-

citations are excluded by removing backward citations in which the cited patent is assigned 

to the same applicant as the citing patent (Hall et al., 2005).   

3.3.2.3 Absorptive capacity of countries 

We proxy the Absorptive Capacity of a country in a specific type of renewable energy 

technology with the average number of backward citations to domestic patents in this 

technology per patent. We calculate this variable using patents applied in the five years to 

the application year of the focal renewable energy patent. This variable is adapted from the 

absorptive capacity variable used in Mancusi (2008) who counted the average number of 

self-citations per patent in a country in an industry and argued that self-citations indicate 

knowledge accumulation internal to the firm, and thus are a good proxy for absorptive 

capacity resulting from internal R&D.  

Similarly, we use the domestic knowledge flows within the focal TIS per patent to 

capture the domestic knowledge accumulation within the focal TIS. Since self-citations are 

excluded in the calculation, this variable captures the positive feedback loops resulting from 

the knowledge diffusions in the interactions between domestic actors in an innovation 

system (Suurs and Hekkert, 2009). This variable thus captures both the size of the 

knowledge stock of a focal renewable energy TIS in a country, and how strongly the actors 

in a country build upon knowledge created by other domestic actors in the focal TIS.  

3.3.2.4 Control variables 

Following earlier work on knowledge flows and forward citations, we included five control 

variables. First, we control for the size of the patent family (Family size). Since filing patent 

applications at different patent offices is costly, companies will only do so for their 
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important innovations. A positive effect of Family size is therefore expected. Second, we 

control for the size of the team by including the number of inventors (Team size). A 

positive effect of Team size is expected since larger teams tend to have a more diverse 

knowledge pool to tap from previous inventions, and larger teams also tend to have larger 

collaboration network which increases the likelihood of the invention being used by other 

inventors in the future (Singh and Fleming, 2010). Third, we include the dummy variable 

Public to indicate whether a patent is assigned to universities or public research institutes. 

Nemet (2012) found that patent assigned to companies are more likely to receive more 

citations. Fourth, the existing literature shows that patents incorporating scientific 

knowledge are more likely to receive more forward citations (Sorenson and Fleming, 

2004). We control for this influence by including the number of citations to the non-patent 

literature by the focal patent (Non-Patent Literature). Since the distribution of the number 

of non-patent literature citations is highly skewed, we include the log transformed value in 

the model. Finally, following Nemet (2012), we control for the average backward citation 

lag. A negative effect of Citation lag is expected since the value of the cited patent 

decreases with its age (Criscuolo and Verspagen, 2008). For patents without any backward 

citation, we use zero for citation lag, following Battke et al. (2016). In the robustness check, 

we exclude the patents without backward citations. The results are consistent. 

3.3.3 Empirical strategy 

Since our dependent variable, the number of forward citations, is a count variable, we use 

the negative binominal regression model to test our hypotheses. We included the country, 

technology, and time dummies to control for unobserved heterogeneities. Summary 

statistics for variables used in the regression are presented in Table 3.1. The independent 

variables are not highly correlated.  
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3.4. Results  

3.4.1 Results 

Table 3.2 presents the results of the econometric analyses. Domestic_Proximate and 

International_Proximate are positively associated with the technological impacts of 

renewable energy inventions in both columns, suggesting the cumulative knowledge 

development within a TIS (Suurs and Hekkert, 2009). The coefficient of 

International_Proximate is larger than the coefficient of Domestic_Proximate in column 

(1), indicating the importance of international origins of knowledge flows within a TIS. 

However, the coefficients of their interactions with Absorptive_Capacity are significantly 

negative, indicating that there exist diminishing returns to the incremental improvements 

along a technology’s own trajectory. Furthermore, the absolute value of the coefficient of 

Domestic_Proximate* Absorptive_Capacity is larger than the coefficient of 

International_Proximate* Absorptive_Capacity, indicating that international origins can 

also compensate for the diminishing return of knowledge flows within a TIS.  

Domestic_Distant and International_Distant are negatively correlated with the 

technology impacts of renewable energy technology inventions. This finding is different 

from the findings in previous studies (Battke et al., 2016; Nemet, 2012; Stephan et al., 

2019). However, the interaction term Domestic_Distant*Absorptive_Capacity is 

significantly positive, whereas the interaction term 

International_Distant*Absorptive_Capacity is significantly negative. The results suggest 

that only countries with larger absorptive capacity are likely to benefit from technologically 

distant knowledge of domestic sources.  

Of the controls, Family size and Team size are positively correlated with the 

technological impact of renewable energy innovations, as expected. Citation Lag is 

negatively correlated with the technological impact, also as expected. Non-Patent 

Literature is positively correlated with the technological impact, probably indicating the 

role of science as an especially relevant source for invention. The coefficient of Public is, 

however, significantly negative. This indicates that universities or public research institutes 

have a relatively minor role in generating high-impact inventions compared to businesses.  
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Table 3.2 Negative Binominal Regression Results:  
 

(1) (2) 

Time period 1990-2010 1990-2010 

Domestic_Proximate 0.026*** 0.099*** 

(0.002) (0.005) 

Domestic_Distant -0.004*** -0.022*** 

(0.001) (0.002) 

International_Proximate 0.053*** 0.071*** 

(0.001) (0.002) 

International_Distant -0.010*** -0.008*** 

(0.001) (0.001) 

Domestic_Proximate 

 

-0.011*** 

*Absorptive_Capacity  

 

(0.001) 

Domestic_Distant 

 

0.004*** 

*Absorptive_Capacity 

 

(0.0005) 

International_Proximate 

 

-0.008*** 

*Absorptive_Capacity 

 

(0.001) 

International_Distant 

 

-0.002*** 

*Absorptiv_Capacity 

 

(0.0004) 

Family size 0.041*** 0.041*** 

(0.002) (0.002) 

Team size 0.036*** 0.038*** 

(0.004) (0.004) 

Public -0.159*** -0.167*** 

(0.023) (0.022) 

Non-Patent Literature 0.082*** 0.077*** 

(0.008) (0.008) 

Citation lag -0.003 -0.003 

(0.002) (0.002) 

Constant -0.970*** -1.063*** 

(0.135) (0.135) 

Observations 30,720 30,720 

Log Likelihood -70,186.110 -69,962.870 

* Significant at 0.1, **Significant at 0.05 and ***significant at 0.01. Robust standard errors are 

reported in the parentheses. Country, technology and time fixed effects are included.  
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3.4.2 Robustness check 

Several complementary analyses were run in order to check the robustness of our findings. 

Table 3.3 presents the results. First, we use a 10-year citation buffer window. 

Consequently, we limit the period to 1990-2005. Second, we exclude patents without any 

backward citation following Battke et al. (2016) to test the robustness of using zero for 

citation lag in patents without any backward citation. Third, we change the estimation 

strategy and employ a logit regression model to explore the correlation between different 

types of knowledge flows of a patent with the likelihood of being highly-cited. Following 

Arts and Veugelers (2015), we consider a patent as highly-cited if the number of its forward 

citations is larger than the mean plus two standard deviations of the number of forward 

citations in the cohort of the same type of renewable energy technology patents applied in 

the same year. The results of these robustness checks in Table 3.3 show that our findings 

considering the heterogenous impacts of different types of knowledge flows on the 

technological impact of renewable energy innovations are highly robust.  
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Table 3.3 Robutness check 
 

(1) (2) (3) 

Model Negative Binomial Negative Binomial Logit 

Dependent variable 10-year citations 
Patent with at least 

one backward citation 
Highly-cited 

Time period 1990-2005 1990-2010 1990-2010 

Domestic_Proximate 
0.159*** 0.095*** 0.122*** 

(0.014) (0.005) (0.013) 

Domestic_Distant 
-0.037*** -0.022*** -0.036*** 

(0.006) (0.002) (0.008) 

Intentational_Proximate 
0.114*** 0.069*** 0.067*** 

(0.005) (0.002) (0.007) 

International_Distant 
-0.007*** -0.008*** -0.015*** 

(0.002) (0.001) (0.004) 

Domestic_Proximate 

*Absorptive_Capacity 

-0.020*** -0.010*** -0.013*** 

(0.004) (0.001) (0.002) 

Domestic_Distant 

*Absorptive_Capacity 

0.010*** 0.004*** 0.007*** 

(0.002) (0.0005) (0.001) 

Intentational_Proximate 

*Absorptive_Capacity 

-0.022*** -0.008*** -0.007*** 

(0.002) (0.001) (0.002) 

International_Distant 

*Absorptive_Capacity 

-0.004** -0.002*** -0.001 

(0.002) (0.0004) (0.002) 

Family size 
0.040*** 0.039*** 0.062*** 

(0.003) (0.002) (0.005) 

Team size 
0.027*** 0.036*** 0.092*** 

(0.008) (0.004) (0.015) 

Public 
-0.137*** -0.163*** -0.278*** 

(0.038) (0.023) (0.094) 

Non-Patent Literature 
0.111*** 0.075*** 0.155*** 

(0.014) (0.008) (0.027) 

Citation lag 
0.003 -0.009*** -0.014* 

(0.004) (0.002) (0.008) 

Constant 
-0.194 -0.943*** -4.569*** 

(0.169) (0.138) (0.532) 

Observations 9,203 29,383 30,720 

Log Likelihood -27,991.640 -67,842.070 -5,024.277 

* Significant at 0.1, **Significant at 0.05 and ***significant at 0.01. Robust standard errors are 

reported in the parentheses. Country, technology and time fixed effects are included. 
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3.5 Conclusions and implications 

3.5.1 Conclusions 

Both geographical and technological dimensions are important in understanding the 

impacts of external knowledge flows on future knowledge development in emerging TISs 

(Andersen et al., 2019; Bergek et al., 2015; Binz et al., 2020, 2014; Köhler et al., 2019; 

Stephan et al., 2017). This paper provides a systematic empirical analysis of the multi-

scalar knowledge dynamics in the global innovation systems proposed by Binz and Truffer 

(2017). Most importantly, our results show the relative importance of different external 

knowledge flows critically depends on the absorptive capacity of countries, which results 

from the knowledge diffusion between domestic actors in an innovation system. 

Understanding this place-specificity in the global renewable energy innovation systems is 

crucial for formulating country-specific transition pathways and facilitating future 

technology development (Hansen and Coenen, 2015). 

More specifically, our results point at the importance of the domestic origin of 

technological distant technologies in future technology development, which is understudied 

in previous studies focusing on such knowledge flows in TIS research (Battke et al., 2016; 

Stephan et al., 2019). Furthermore, our results indicate that geographical proximity alone is 

not enough to compensate for a lack of cognitive proximity in integrating technological 

distant knowledge from other TISs. Sufficient absorptive capacity of a country is required 

for identifying and utilizing technological opportunities outside the focal TIS (Carlsson et 

al., 2002; Cohen and Levinthal, 1990). Since actors may be active in multiple TISs at the 

same time, the knowledge diffusion between domestic actors in a TIS can facilitate the 

learning between different TISs to generate the positive feedback loops which are important 

for system functioning and growth (Malhotra et al., 2019; Suurs and Hekkert, 2009).  

Our results also highlight the importance of international knowledge flows, especially in 

countries without a well-functioning TIS. In contrast to the findings of Mancusi (2008) that 

latecomer countries are mostly recipients of international knowledge, our results suggest 

that the diffusion of existing technologies in latecomer countries can still generate new 

insights for future technology development. Latecomer countries like China and India have 

unique social-technical systems which can help to further improve the existing 

technological trajectory within a TIS (Hansen and Coenen, 2015). At the same time, 

latecomer countries can also benefit from ‘learning-by-doing’ integrating international 

knowledge flows and initiate positive feedback loops for building domestic renewable 

energy innovation systems (Gosens et al., 2015).  
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3.5.2 Limitations and future research 

In this paper, we explore the multi-scalar knowledge dynamics in global renewable energy 

innovation systems and highlight the important role of national systems of innovations in 

moderating the impacts of knowledge flows between TISs and NISs. Several authors have 

found that the innovation dynamics of renewable energy technologies are also affected by 

technology-related differences (Quitzow et al., 2017; Schmidt and Huenteler, 2016). 

Different types of renewable energy technology exhibit different levels of complexity in 

terms of the structure of supply chain network and the reliance on scientific knowledge 

(Binz and Truffer, 2017; Huenteler et al., 2016; Malhotra et al., 2019; Schmidt and 

Huenteler, 2016). It might be more difficult for latecomer countries to develop complex 

renewable energy technologies by utilizing international knowledge since the spatial 

diffusions of complex knowledge is difficult (Balland and Rigby, 2017; Sorenson et al., 

2006).  

Since many countries intend to build innovation systems to better deploy renewable 

energy technologies at home, insights into how to mobilize resources from different sources 

are crucial for overcoming the difficulties associated with this complexity. The emergence 

of global supply chains of renewable energy technologies offers opportunities for latecomer 

countries to start from the less complex segments of the supply chains and move to core 

segments through learning-by-doing (Malhotra et al., 2019; Meckling and Hughes, 2018). 

Furthermore, the role of scientific knowledge and government funded research have 

become increasingly important in the development of renewable energy technologies 

(Popp, 2017, 2016). Future research therefore should focus on the impacts of knowledge 

flows between different supply chain segments of renewable energy technologies (Battke et 

al., 2016; Malhotra et al., 2019; Stephan et al., 2019), and knowledge flows from scientific 

research (Fleming et al., 2019; Popp, 2017, 2016).  

3.5.3 Policy implications 

Our results offer policy implications for developing renewable energy technologies in 

different locations. The policy focus should be on how to facilitate the knowledge diffusion 

between both domestic and international actors within the focal TIS. Our results suggest an 

important role of international knowledge for latecomer countries in line with previous 

studies (Binz and Anadon, 2018; Gosens et al., 2015; Quitzow, 2015). Moreover, the 

international diffusion of new knowledge in latecomer countries can also influence the 

technology development globally. Therefore, policy makers from both advanced countries 

and latecomer countries should work together to facilitate technology transfer.  

However, for countries with an already well-functioning renewable energy innovation 

system (e.g. advanced countries like United States, Germany and Japan), the focus should 
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be shifted to bringing in knowledge, skills and experiences from other domestic 

technologies to facilitate learning process for knowledge recombination. Such an approach 

has been successfully employed by Denmark in developing modern wind turbine 

technologies (Garud and Karnøe, 2003). The ‘cross-specialisation’ policy framework 

proposed by Janssen and Frenken (2019) also suggest that promoting crossovers between 

distant technologies in an economy can help facilitate radical innovations. The learning 

process between TISs in these countries can generate great impacts on future development 

of renewable energy technologies.  
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Chapter 4 

 

4 Recombinant invention in solar 

photovoltaic technology: can 

geographical proximity bridge 

technological distance? 

 

 

This chapter is co-authored with Gaston Heimeriks and Floor 

Alkemade, and is under review. 
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Abstract 

This paper explores the emergence of new combinations of technologies with a large 

technological distance at the regional level. Our analyses show that such unrelated 

technologies are more likely to be recombined in solar photovoltaic inventions when they 

strongly co-locate in the same region rather than in different regions. Furthermore, we show 

that this pattern is common to different types of renewable energy technology, while such a 

pattern is not observed in all technologies. This paper helps understand how place-

dependence can break the path-dependence of recombining related technologies.  
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4.1 Introduction 

New inventions often result from the recombination of existing technologies, knowledge 

and capabilities in new and often more complicated ways (Arthur, 2007; Henderson and 

Clark, 1990). Cognitive capabilities play an important role in this recombination process 

(Cohen and Levinthal, 1990; Galunic and Rodan, 1998; Kogut and Zander, 1992; 

Nooteboom, 2000). Recombinant innovation involves the reconfiguration of different types 

and pieces of knowledge in a new way, generating unexpected effects. Hence, it is 

generally easier to recombine technologies that are technologically related then unrelated 

(Caviggioli, 2016). This effect of technological distance has indeed been shown in that the 

presence of related technological variety enhances the rate of patenting (Castaldi et al., 

2015; Miguelez and Moreno, 2018; Tavassoli and Carbonara, 2014).  

The processes behind the recombination of unrelated technologies are less clear. 

Assuming that breakthrough inventions often stem from new combinations of unrelated 

technologies, the occurrence of breakthrough inventions can be associated with the 

presence of ‘unrelated variety’ within a region. Indeed, Castaldi, Frenken and Los (2015) 

found that breakthrough inventions, as measured by highly cited patents, occurrs more 

often in regions with more unrelated variety. However, this study did not investigate 

whether the breakthrough inventions were, indeed, the result of the recombination of 

unrelated technologies that are strongly present in the same region. Only then, promoting 

crossovers between unrelated technologies strongly present in a region, which Janssen and 

Frenken (2019) called “cross-specialisation”, may be an effective technology policy.  

The objective of this paper is therefore to investigate empirically whether breakthrough 

inventions in renewable energy technologies are place-dependent in the sense of building 

mostly on the local knowledge base rather than on the global knowledge base. Inventions in 

renewable energy technologies not only require knowledge input from various unrelated 

technologies (Barbieri et al., 2020; Nemet, 2012), but also face legitimacy challenges 

because of their disruptive roles in energy sector (Alkemade et al., 2009; Markard and 

Truffer, 2006). The recombination of unrelated technologies strongly present in a region 

can expect support from the strongly present technologies it builds upon (Janssen and 

Frenken, 2019).  

We operationalize the research question by testing how likely unrelated technologies are 

to be recombined when they are both strongly present in the same region using patents 

applied at USPTO, EPO, and through the PCT route between 1980 and 2012. We focus on 

the new combinations in renewable energy technologies from regions in OECD countries 

and BRICS countries (Brazil, Russia, India, China and South Africa) during the period 

1998-2012. This paper aims to contribute to existing literature in two ways. First, we 
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provide the first empirical support of the “cross-specialisation” policy framework proposed 

by Janssen and Frenken (2019) which extends the recent smart specialisation strategies by 

highlighting the importance of linking strong but unrelated technologies in an economy in 

facilitating radical innovations. Second, we discuss how our results can be relevant for 

supporting a regional perspective on innovation policies aimed at solving societal 

challenges like climate change (Coenen et al., 2015; Wanzenböck and Frenken, 2018).  

The paper is structured as follows. In Section 2, we review the literature on the path- and 

place-dependencies of technological change, and how they interact in introducing 

recombinant innovations. In Section 3, we describe the data, econometric model and 

variables. In Section 4, we present the results of descriptive analysis and econometric 

analysis. We conclude by discussing the implications of our findings in Section 5.  

4.2 Literature Review 

4.2.1 Recombinant inventions and renewable energy technology 

In line with the combinatorial view of technological change, new inventions can be viewed 

as either new combinations of existing and/or new technological components, or as 

refinements of previous combinations of technological components (Fleming, 2001; 

Strumsky and Lobo, 2015; Verhoeven et al., 2016). Although most inventions reuse 

existing combinations, recombining existing technologies in novel ways can increase the 

likelihood of achieving high impact inventions (Arts and Veugelers, 2015; Strumsky and 

Lobo, 2015; Verhoeven et al., 2016).  

Compared to recombining related technologies, recombining unrelated technologies is 

more risky and uncertain because inventors need cognitive capabilities to understand how 

technologies interact with each other to achieve recombination (Cohen and Levinthal, 1990; 

Galunic and Rodan, 1998; Kaplan and Tripsas, 2008; Nooteboom et al., 2007). Thus, one 

can expect that new combinations of related technologies occur more frequent than new 

combinations of unrelated technologies (Caviggioli, 2016). Ferguson and Carnabuci (2017) 

further showed that patents that combine knowledge from unrelated technology domains 

are also less likely to be granted.  

However, the recombination of unrelated technologies is important for the evolution of 

the knowledge base of technologies over the technology life cycle. Leydesdorff (2015) 

found that the technology life-cycle of solar PV technology is correlated with the increases 

and decreases of the variety of its knowledge base. Krafft, Quatraro and Saviotti (2011) 

further showed that unrelated variety is more important at the earlier stage of technology 

life-cycle, whereas in the later stage related variety is more prominent. These results are 
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consistent with the assumption that unrelated variety supports radical innovation (Castaldi 

et al., 2015), which concentrate at early stages of a technology life-cycle. 

Renewable energy technologies are considered more complex and radical than non-green 

technology because they rely on diverse knowledge inputs from unrelated technologies 

(Barbieri et al., 2020; Nemet, 2012). Barbieri, Perruchas, and Consoli (2018) found a 

similar pattern as in the aforementioned study by Krafft, Quatraro and Saviotti (2011) that 

unrelated variety is the main driver of the development of green technology in early stages 

whereas related variety becomes more prominent as the technology becomes mature. 

Sbardella et al. (2018) also found that innovation in green technology went through a period 

of deeper specialisation within diverse domains. 

However, there is a trade-off between short-term and long-term benefits (Zeppini and 

van den Bergh, 2011). The recombination of related technologies can facilitate the 

immediate technology improvement. The recent rapid growth of innovative activities in 

renewable energy technologies results from private sector activities incentivized by 

growing markets supported by government demand-pull policies (Bettencourt et al., 2013; 

Trancik et al., 2015). Evidence suggests that private sector activities tend to focus on 

incremental refinements to technology and manufacturing (Hoppmann et al., 2013; Trancik 

et al., 2015). Without the recombination of unrelated technologies to facilitate the 

convergence of unrelated technologies and offer new opportunities for future technology 

development, it may soon reach the limits to incremental improvements and lead to lock-in 

(Safarzyńska and van den Bergh, 2013).  

4.2.2 Path-dependence and place-dependence 

Although technology opportunities increase as the number of technological components 

increases, the difficulty and uncertainty of the recombinant search process also increase 

along with the opportunity (Baldwin and Clark, 2000). Inventors and decision-makers in 

firms have limited cognitive capabilities, limiting their abilities to identify potentially 

fruitful combinations of technologies that seem unrelated to their existing knowledge bases 

and/or to each other (Cohen and Levinthal, 1990; Nooteboom, 2000). Thus, their 

innovation patterns are myopic, cumulative and path-dependent in that inventors typically 

explore new combinations of related rather than unrelated technologies (Dosi, 1982; Nelson 

and Winter, 1982).  

This path-dependence can be also observed at the regional level: The growth trajectories 

of regions are simultaneously the outcome of the path-dependent process of economic 

evolution and a major determinant of future development (Henning et al., 2013; Martin, 

2010; Martin and Sunley, 2006). Inspired by the seminal work by Hidalgo et al. (2007), 

recent systematic empirical studies of regional diversification find that regions tend to 

develop new technologies which are related to the technologies in their current portfolio 
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(Boschma, 2017; Colombelli et al., 2014; Feldman et al., 2015; Tanner, 2016). Thus, the 

path-dependent process of regional development is to a large extent conditioned by the past 

economic structure and knowledge base of regions, and hence place-dependent (Heimeriks 

and Boschma, 2014; Martin and Sunley, 2006). 

The place-dependence also suggests that regions may develop new technologies which 

are less related or even unrelated to their existing knowledge bases, provided that 

supportive conditions are present (Heimeriks & Boschma, 2014; Montresor & Quatraro, 

2017; Petralia, Balland, & Morrison, 2017). However, technological relatedness does not 

need be defined visavis the region (the new thing being related or unrelated to what was 

already present in the region). Following the combinatory view of new inventions, the 

place-dependence could be redefined as the recombination of locally available 

technologies. Indeed, individuals working on unrelated technologies might nonetheless be 

using similar skills and thus learn quite easily from each other (Desrochers and Leppälä, 

2011). Thus, a region’s capability of introducing new combinations is associated with the 

diversity of its knowledge base (Breschi and Lenzi, 2015; Castaldi et al., 2015; Desrochers 

and Leppälä, 2011; Miguelez and Moreno, 2018). However, the question whether these 

new combinations, especially the new combinations of unrelated technologies, are indeed 

building on the locally available technologies remains open.   

4.2.3 Cross-specialisation: interaction of path-dependence and place-

dependence 

Although path-dependence and place-dependence refer to two distinct processes, these 

processes interact with each other in the knowledge production process. Place-dependence 

may help to break the path-dependent logic of new technologies building on related 

technologies, through the recombination of locally available, unrelated technologies.  

Though technological distance can indeed be a challenge in the recombination process, it 

can most easily be bridged through the frequent face-to-face interactions of diverse 

individuals, which is obviously facilitated if they are all located in close geographical 

proximity (Desrochers and Leppälä, 2011; Storper and Venables, 2004). Learning is the 

mechanism behind the dynamics of cognitive proximity between actors with different 

backgrounds (Balland et al., 2015). The creation of a new combination requires a minimum 

level of knowledge in both technological components to reduce the uncertainty in the 

inventive process (Clancy, 2018; Fleming, 2001; Perez and Soete, 1988). Thus, the 

presence of critical mass of unrelated technologies in the same region can facilitate the 

learning process between them, a logic that has been referred to as “cross-specialisation” 

(Janssen and Frenken, 2019).  

Geographical proximity can facilitate the learning process between unrelated 

technologies in two ways. On the one hand, co-location in close geographical proximity 
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enables cooperating actors to monitor each other constantly, closely and almost without 

effort or cost (Malmberg and Maskell, 2002). Such local knowledge spillovers can increase 

the cognitive proximity between two cooperating actors and as a result the knowledge bases 

of the two actors become more similar (Balland et al., 2015). This increases their capacity 

to identify and test potential new combinations (Desrochers and Leppälä, 2011; Galunic 

and Rodan, 1998), which is especially useful in immature technological environments 

where the effects of interactions are uncertain or unknown and alternative technological 

options compete (Sbardella et al., 2018). 

On the other hand, geographical proximity can also facilitate cognitive proximity through 

other forms of proximity (Balland et al., 2015; Boschma, 2005; Torre and Rallet, 2005). For 

example, geographical proximity can facilitate social proximity. Most of the carriers of 

social proximity tend to be geographically bounded, such as spin-off processes, inventive 

collaborations and labour mobility (Breschi and Lissoni, 2009; Eriksson, 2011; Klepper, 

2007). The formal or informal collaboration of individuals possessing different skills and 

backgrounds is important for the creation of new combinations (Desrochers and Leppälä, 

2011).  

In sum, we expect that unrelated technologies are more likely to be recombined when 

they are both strongly present in the same region. That is, geographical proximity can 

bridge technological distance in creating new combinations.   

4.3 Research Design 

4.3.1 Sample 

For our empirical analyses we focus on new combinations in solar PV technology during 

the period 1998-2012. We focus on solar PV as it represents the leading renewable energy 

technology and has long-term potential (Trancik et al., 2015). Both electricity production 

capacities and patenting activities of solar PV grow the fastest among all renewable sources 

since 1997 when The Kyoto Protocol was signed (Bettencourt et al., 2013). Solar PV is 

selected by many countries as the main solution to achieve their intended national 

determined contributions (IRENA, 2017).   

Although the existing literature suggests renewable energy technologies might enter a 

mature phase because of the observed relative dominance of related variety, we also 

observe novel developments. Whereas crystalline silicon PV modules have a long history 

and dominant market share in PV technologies, new generations of solar PV technologies 

emerged during the period of investigation (Fraunhofer Institute, 2019; National Renewable 

Energy Laboratory, 2019). These new generations of solar PV technologies are different 

from current dominant crystalline silicon PV technology in terms of efficiency, materials 
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use, and manufacturing complexity and cost (Jean et al., 2015). However, given the fact 

that most of these new generations of PV technologies are still far from commercialization, 

continuous innovation efforts are required in improving these emerging PV technologies 

(MIT Energy Initiative, 2015).  

Moreover, considering the growth potential of the solar PV market share under the 

intended national determined contributions of The Paris Agreement, both the material 

scalability and the intermittency of solar resources require to be addressed (Trancik et al., 

2015). On one hand, reaching full growth potential of solar PV requires finding more 

abundant active cell materials for some emerging PV technologies and substituting a more 

abundant material for the silver electrodes for current dominant crystalline silicon PV 

technology (Trancik et al., 2015). On the other hand, further development of system 

integration and interoperability between solar PV technology and other climate change 

mitigation technologies like storage technologies and long-distance transmission 

technology are required (Sbardella et al., 2018). Therefore, both the difference between PV 

and existing energy technologies and the large innovation needs make this an interesting 

technology for our analysis. 

However, in order to gain evidence on whether the observed patterns are common to 

other technology fields, we first compare solar PV technology to another two leading 

renewable energy technologies, wind and biofuel technology. Then, we compare the results 

of renewable energy technologies with results of all technologies.  

4.3.2 Data 

Technological classifications capture the technological components and principles of an 

invention, and are widely used to assess the recombination of technologies (Fleming, 2001; 

Strumsky and Lobo, 2015). We use the pairwise combinations of subclass-level 

International Patent Classification (IPC) codes assigned to a patent to proxy recombination 

following Verhoeven, Bakker, and Veugelers (2016). More specifically, for each pair of 

IPC subclasses, we assess its previous existence in the body of solar PV patents filed before 

the application date of the patent under consideration.  

We use all patent applications filed at European patent office (EPO), United States Patent 

and Trademark Office (USPTO) and through the Patent Cooperation Treaty (PCT-route) 

between 1980 and 2012. The patent applications are extracted from European Patent Office 

Worldwide Patent Statistics Database PATSTAT (EPO, 2017 Spring Version). Since non-

granted USPTO patent applications are only partly present from 2001 onwards, we 

excluded non-granted EPO patents and patents through PCT-route which are not granted by 

any patent office.  

In order to remedy the issue of multiple equivalent patent applications protecting the 

intellectual property rights of the same invention in different patent offices, we use 
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residence addresses of inventors and IPC codes of all patents in the same DOCDB patent 

family as the locations and technological classifications of the invention under 

consideration (Martínez, 2011). The year of a DOCDB patent family is based on the 

application year of the first patent application in the patent family.  

The solar PV patents are identified using the Y02E10/5 code in the Cooperative Patent 

Classification (CPC). The Y02 classes are developed by EPO experts by combining 

existing International Patent Classifications (IPC) and European Patent Classifications with 

lexical analyses of abstracts or claims in the patent documents (Veefkind et al., 2012a), and 

have been widely adopted by researchers to study the technology change of climate change 

mitigation technologies (Haščič and Migotto, 2015; Leydesdorff et al., 2015; Sbardella et 

al., 2018).  

Patents, and their combination of IPC subclasses are assigned to regions based on the 

residential addresses of inventors listed in the patent documents. Inventors’ addresses of 

patents filed at EPO and through the PCT-route are extracted from OECD REGPAT 

database (OECD, REGPAT database, March 2018). Inventors’ addresses of USPTO patents 

are extracted from PatentsView database (2018 May Version) and assigned to regions 

based on their geographical coordinates. We use the Territorial Level 2 regions in the 

REGPAT database for OECD countries, and the highest administrative breakdowns for 

BRICS countries (Brazil, Russia, India, China and South Africa). There are 599 regions in 

all OECD and BRICS countries.  

4.3.3 Variables 

4.3.3.1 Dependent Variable 

In order to explore the emergence of new combinations at the regional level, we use the 

binary variable 𝑁𝐶𝑟,𝑖𝑗 to indicate whether region r recombines IPC subclass i and j for the 

first time in history in the body of solar PV patents. Although assessing new combinations 

in the body of all patents can better capture the novelty of inventions (Verhoeven et al., 

2016), the combinations of technologies might function differently in different technology 

fields (Boschma et al., 2017a). We therefore measure novelty as new-to -solar-PV-

technology instead of new-to-the-world in this paper.  

For the construction of the dependent variable, we only consider patents in which only 

inventors located in the focal region were reported in the document following Breschi and 

Lenzi (2015). Cross-region collaborations can also facilitate the creation of new 

combinations by bringing together individuals with different backgrounds in different 

locations (Breschi and Lenzi, 2015; Giuliani et al., 2016). By excluding new combinations 

that are the outcome of cross-region collaborative patents, this variable can be considered 

as a measure of a region’s indigenous combinatorial and inventive capabilities. New 
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combinations introduced by inventors from the same region account for 66 percent of all 

new combinations introduced between 1998 and 2012. 

4.3.3.2 Independent Variables  

As independent variables we use the technological relatedness between IPC subclasses i 

and j, 𝑇𝑅𝑖𝑗 , as a measure of path-dependence, and the level of cross-specialisation of 

region r in IPC subclasses i and j 𝐶𝑆𝑟,𝑖𝑗 to measure place-dependence. We will describe 

each variable in more detail below.  

𝑇𝑅𝑖𝑗 measures the technological relatedness between IPC subclasses i and j at each 

moment in time. Two IPC subclasses are considered related if they cite each other 

frequently (Caviggioli, 2016; Rigby, 2015), a widely used measure of the relatedness 

between technologies (Jaffe and de Rassenfosse, 2017). We first calculate the share of 

patents in IPC subclass j citing patents in IPC subclass i over the total number of patents in 

IPC subclass j (P𝑗𝑖) in the five years before they were recombined. Then, the 𝑇𝑅𝑖𝑗 takes the 

average value of P𝑗𝑖 and P𝑖𝑗.  

𝐶𝑆𝑟,𝑖𝑗 captures whether the IPC subclasses being recombined are strongly co-present in 

the region. It takes the minimum value of the number of regional patents in IPC subclass i 

and the number of regional patents in IPC subclass j in region r in the five years before the 

recombination following Clancy (2018). We exclude patents with inventors external to the 

region to capture the scale effects associated with the agglomeration of inventive activities 

at the regional level (Breschi and Lenzi, 2015; Lobo and Strumsky, 2008). The larger value 

of 𝐶𝑆𝑟,𝑖𝑗 indicates regions have larger knowledge stock in both IPC subclasses.  

4.3.3.3 Control variables 

In order to control the regional factors’ impacts on the recombination of IPC subclasses, we 

include three regional level variables in the econometric model.  

First, 𝑉𝑎𝑟𝑖𝑒𝑡𝑦𝑟 captures the variety of the knowledge base in region r. We calculate this 

variable using the entropy index following Castaldi, Los and Frenken (2015):  

𝑉𝑎𝑟𝑖𝑒𝑡𝑦𝑟 = ∑ 𝑃𝑘,𝑟 ∗ 𝑙𝑛 (
1

𝑃𝑘,𝑟
)

𝑘
(4.1) 

where 𝑃𝑘,𝑟 is share of internal patents in IPC subclass k in region r over the total number 

of internal patents in region r in the five years before the recombination of IPC subclass i 

and IPC subclass j.  

Second, 𝐸𝑥𝑡𝑟𝑒𝑛𝑎𝑙𝑟 captures the extent of external network connections following Lobo 

and Strumsky(2008). It is the ratio of the number of patents with inventors from outside the 

focal region over the number of internal patents. We use this variable to control the 

potential impacts of extra-regional knowledge spillovers.  
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Third, 𝐶𝑜𝑢𝑛𝑡_𝑓𝑖𝑒𝑙𝑑𝑟 captures the knowledge stock of region r in solar PV technology. 

𝐶𝑜𝑢𝑛𝑡_𝑓𝑖𝑒𝑙𝑑𝑟 takes the number of internal solar PV patents in region r in the five years 

before IPC subclass i and IPC subclass j were recombined.  

4.3.4 Empirical Model 

Our estimation strategy is based on a conditional logit model that is similar to those used in 

studies on location choice of firms (Schmidheiny and Brülhart, 2011). More specifically, at 

each point in time t, the probability of a new combination of IPC subclass i and IPC 

subclass j emerging in a region r is a function of the observable characteristics of region r 

described by equation (4.2): 

𝑃(𝑁𝐶𝑟,𝑖𝑗) = 𝛽1𝐶𝑆𝑟,𝑖𝑗 + 𝛽2𝑉𝑎𝑟𝑖𝑒𝑡𝑦𝑟 + 𝛽3𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝑟 + 𝛽4𝐶𝑜𝑢𝑛𝑡𝑓𝑖𝑒𝑙𝑑𝑟

+𝐶𝑜𝑢𝑛𝑡𝑟𝑦 + 𝑁𝐶𝑖𝑗 + 𝜀                             (4.2)
                                                                         

where 𝛽1 captures the impact of cross-specialisation of regions on introducing new 

combination. We expect the positive value of 𝛽1 due to the place-dependence of 

technological change. 𝛽2, 𝛽3 and 𝛽4 capture the impacts of regional factors on recombining 

IPC subclasses i and j. We also include country dummies to control for the unobserved 

heterogeneities of regions in different countries since the inventive patterns of solar PV 

technology differ significantly across countries (Kalthaus, 2019). 

In order to test whether geographical proximity can indeed bridge technological distance, 

we add the interaction term of cross-specialisation 𝐶𝑆𝑟,𝑖𝑗 and technological relatedness 𝑇𝑅𝑖𝑗 

to the model. As the fixed effect of new combinations is already included in the conditional 

logit model, technological relatedness 𝑇𝑅𝑖𝑗 is not introduced in the model individually 

because 𝑇𝑅𝑖𝑗 is invariable across regions, thus correlating with the error term. We estimate 

equation (4.3) as follows: 

𝑃(𝑁𝐶𝑟,𝑖𝑗) = 𝛽1𝐶𝑆𝑟,𝑖𝑗 + 𝛽2𝑉𝑎𝑟𝑖𝑒𝑡𝑦𝑟 + 𝛽3𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝑟 + 𝛽4𝐶𝑜𝑢𝑛𝑡_𝑓𝑖𝑒𝑙𝑑𝑟 + 𝛽5𝐶𝑆𝑟,𝑖𝑗 ∗ 𝑇𝑅𝑖𝑗

+ 𝐶𝑜𝑢𝑛𝑡𝑟𝑦 + 𝑁𝐶𝑖𝑗 + 𝜀                                       (4.3) 

where 𝛽5 measures whether the impact of cross-specialisation differs across new 

combinations with different levels of technological relatedness. We expect a negative 

coefficient of 𝛽5, as we expect that the impact of cross-specialisation is larger for new 

combinations of unrelated technologies than for related technologies. Table 4.1 and Table 

4.2 present summary and correlation statistics.  
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Table 4.1 Descriptive statistics 

Variable Obs Mean Std. Dev. Min Max 

𝐶𝑆𝑟,𝑖𝑗 1,568,182 1.633 16.534 0 5362.98 

𝑇𝑅𝑖𝑗 1,568,182 0.087 0.101 0 0.764 

𝑉𝑎𝑟𝑖𝑒𝑡𝑦𝑟 1,568,182 2.914 1.760 0 5.477 

𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝑟 1,568,182 0.373 0.835 0 40 

𝐶𝑜𝑢𝑛𝑡_𝑓𝑖𝑒𝑙𝑑𝑟 1,568,182 4.402 30.623 0 969 

Table 4.2 Correlation statistics 
 

𝐶𝑆𝑟,𝑖𝑗 𝑇𝑅𝑖𝑗 𝑉𝑎𝑟𝑖𝑒𝑡𝑦𝑟 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝑟 𝐶𝑜𝑢𝑛𝑡_𝑓𝑖𝑒𝑙𝑑𝑟 

𝐶𝑆𝑟,𝑖𝑗 1 

    

𝑇𝑅𝑖𝑗 0.037 1 

   

𝑉𝑎𝑟𝑖𝑒𝑡𝑦𝑟 0.105 0.001 1 

  

𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝑟 0.018 0.038 0.292 1 

 

𝐶𝑜𝑢𝑛𝑡_𝑓𝑖𝑒𝑙𝑑𝑟 0.341 0.001 0.146 0.020 1 
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4.4 Results 

4.4.1 Descriptive results 

Figure 4.1 shows the number of solar PV patents (left y-axis), the number of solar PV 

patents with new combinations of IPC subclasses (left y-axis) and the share of patents with 

new combinations among all solar PV patents (right y-axis) over time. The share of patents 

with new combinations among all solar PV patents starts to decrease after 2004 because of 

the rapid growth of the number of solar PV patents and the relatively stable growth of the 

number of solar PV patents with new combinations. The rapid growth of incremental 

inventions are the results of market stimulating policies which incentive the private sector 

activities in focusing on refinement to technology and manufacturing (Hoppmann et al., 

2013; Trancik et al., 2015). The relative dominance of increment innovations suggest the 

development of solar PV technology might enter a more mature stage (Barbieri et al., 2018; 

Sbardella et al., 2018).  

 

Figure 4.1 Evolution of number of solar PV patents (left y-axis), number of solar PV 

patents with new combinations of IPC subclasses (left y-axis) and share of patents with new 

combinations among all solar PV patents (right y-axis) 
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The number of solar PV patents with new combinations starts to decrease after 2010 in 

Figure 4.1. A possible explanation for this could be the industry shakeout that started 2010 

(Furr and Kapoor, 2018). On the one hand, there is a decrease in patenting activities in solar 

PV industry because of the decreasing number of patenting firms during the industry 

shakeout (Carvalho et al., 2017; Furr and Kapoor, 2018). On the other hand, during the 

industry shakeout, the innovation focus of firms shifted from developing new products to 

reducing production costs, leading to a decrease of recombinant inventions (Carvalho et al., 

2017).  

Figure 4.2 shows the evolution of the average technological relatedness between new 

combinations of IPC subclasses and the average technological relatedness between IPC 

subclasses which are not recombined. The average technological relatedness between new 

combinations of IPC subclasses is larger than the average technological relatedness 

between IPC subclasses which are not combined, indicating that technological change in 

solar PV technology is indeed path-dependent and that related technologies are more likely 

to be recombined than unrelated technologies.  

 

 

Figure 4.2 Average of technological relatedness between new combination of IPC 

subclasses and potential combination of IPC subclasses 
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Table 4.3 shows the top 15 regions with number of new combinations in solar PV 

technology. Top regions are concentrated in Japan, Germany and the United States. The 

number of new combinations from the top 15 regions accounts for 56% of the total number 

of new combinations during the period 1998-2012.  

Table 4.3 Top regions in the number of patents with new combinations of IPC subclasses 

Region 

Number of 

new 

combinations 

Share Region 

Number of 

new 

combinations 

Share 

California, US 610 14.6% 
Northern-

Kanto, JP 
90 2.1% 

Southern-Kanto, JP 349 8.4% 
Michigan, 

US 
82 2.0% 

Texas, US 205 4.9% Hesse, DE 79 1.9% 

Massachusetts, US 152 3.6% 
New Jersey, 

US 
79 1.9% 

Kansai region, JP 143 3.4% 

North Rhine-

Westphalia, 

DE 

78 1.9% 

Seoul region, KR 125 3.0% 

Baden-

Württemberg, 

DE 

72 1.7% 

New York, US 121 2.9% 
Chinese 

Taipei 
72 1.7% 

Bavaria, DE 102 2.4% 

Top 15 

regions in 

total 

2360 56.4% 

4.4.2 Econometric results 

Table 4.4 presents the results of our econometric analysis. Column (1) reports the model 

with the 𝐶𝑆𝑟,𝑖𝑗 and control variables. Column (2) adds the interaction term of 𝐶𝑆𝑟,𝑖𝑗 and 

𝑇𝑅𝑖𝑗 The coefficient of 𝐶𝑆𝑟,𝑖𝑗 is positively significant in column (1), indicating that regions 

are more likely to recombine two technologies when they have a larger knowledge stock in 

both technologies. This shows that there is place-dependence in the creation of new 

combinations:  regions are more likely to recombine technologies strongly present in their 

technology portfolios. In column (2), the interaction term of 𝐶𝑆𝑟,𝑖𝑗 and 𝑇𝑅𝑖𝑗 is significantly 

negative, indicating that the impact of 𝐶𝑆𝑟,𝑖𝑗 on creating a new combination is larger when 
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the focal technologies are unrelated. This result suggests that geographical proximity can 

indeed bridge technological distance in the creation of new combinations, as we 

hypothesized.  

Regarding to the control variables, the coefficients of 𝑉𝑎𝑟𝑖𝑒𝑡𝑦𝑟 and 𝐶𝑜𝑢𝑛𝑡_𝑓𝑖𝑒𝑙𝑑𝑟 are 

significantly positive in both Column (1) and Column (2), indicating that new combinations 

are more likely to emerge in regions with more diverse knowledge base of larger 

knowledge stock in solar PV technology. However, the coefficient of 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝑟 is 

significantly negative in both Column (1) and Column (2), indicating that new 

combinations are less likely to emerge in regions which are more reliant on extra-regional 

knowledge flows.  

Table 4.4 Econometric Results 
 

(1) (2) 

𝐶𝑆𝑟,𝑖𝑗 0.002*** 0.004*** 

(0.00) (0.00) 

𝐶𝑆𝑟,𝑖𝑗 ∗ 𝑇𝑅𝑖𝑗  -0.005*** 

 (0.00) 

𝑉𝑎𝑟𝑖𝑒𝑡𝑦𝑟 0.686*** 0.684*** 

 (0.05) (0.05) 

𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝑟 -0.303*** -0.294***  

(0.04) (0.04) 

𝐶𝑜𝑢𝑛𝑡_𝑓𝑖𝑒𝑙𝑑𝑟 0.006*** 0.005*** 

(0.00) (0.00) 

Country Fixed Effects Yes Yes 

Number of Observations 1568182 1568182 

Log Likelihood -11812.867 -11789.490 

* Significant at 0.1, **Significant at 0.05 and ***significant at 0.01. Robust standard errors are reported 

in the parentheses 

4.4.3 Robustness Check 

We now move to testing whether the results presented for solar PV technologies are 

common to other fields. To this end, we first re-estimate Equation (3.2) and (3.3) using 

patents in wind and biofuel technology respectively. We identify patents in wind energy 

technology using Y02E10/7 code, and biofuel patents using Y02E50/1 code in the CPC.  

The results in Table 4.5 are consistent with the results shown in Table 4.4 except the 

coefficient of the interaction term of 𝐶𝑆𝑟,𝑖𝑗 and 𝑇𝑅𝑖𝑗 is insignificant for wind technology. 

The difference may be explained by the fact that offshore wind technology partly builds on 
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the onshore wind technology, whereas the knowledge bases of different generations of solar 

PV technology and biofuel technology are significantly different (Carvalho et al., 2017; 

Costantini et al., 2015; Kalthaus, 2019; Wieczorek et al., 2013).  

Table 4.5 Robustness check: wind power and biofuel 
 

Wind power Biofuel  

(1) (2) (3) (4) 

𝐶𝑆𝑟,𝑖𝑗 0.002** 0.004** 0.008*** 0.012***  

(0.00) (0.00) (0.00) (0.00) 

𝐶𝑆𝑟,𝑖𝑗 ∗ 𝑇𝑅𝑖𝑗 

 

-0.007 

 

-0.021***   

(0.00) 

 

(0.00) 

𝑉𝑎𝑟𝑖𝑒𝑡𝑦𝑟 0.908*** 0.904*** 0.642*** 0.641***  

(0.06) (0.06) (0.03) (0.03) 

𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝑟 -0.278*** -0.268*** -0.102* -0.092*  

(0.04) (0.04) (0.04) (0.04) 

𝐶𝑜𝑢𝑛𝑡_𝑓𝑖𝑒𝑙𝑑𝑟 0.015*** 0.015*** 0.023*** 0.023***  

(0.00) (0.00) (0.00) (0.00) 

Country Fixed Effects Yes Yes Yes Yes 

Number of Observations 1231544 1231544 1304622 1304622 

Log Likelihood -9828.229 -9820.885 -10726.156 -10705.494 

* Significant at 0.1, **Significant at 0.05 and ***significant at 0.01. Robust standard errors are reported 

in the parentheses 

We further compare the results using all renewable energy technologies patents and the 

results using all patents in Table 4.6. The results for renewable energy technologies in 

column (1) and (2) are consistent with the results in Table 4.4 and Table 4.5, indicating that 

the observed pattern that geographical proximity can bridge technology distance in the 

creation of new combinations is common to renewable energy technologies. The coefficient 

of the interaction term of 𝐶𝑆𝑟,𝑖𝑗 and 𝑇𝑅𝑖𝑗 in column (4) is significantly positive in the 

regressions using all technologies, indicating that the pattern is different that place-

dependence will further strengthen the path-dependence in recombining related 

technologies.  
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Table 4.6 Robustness check: renewable energy technologies and all technologies 
 

Renewable energy technologies All technologies  

(1) (2) (1) (2) 

𝐶𝑆𝑟,𝑖𝑗 0.008*** 0.010*** 0.030*** 0.022***  

(0.00) (0.00) (0.00) (0.00) 

𝐶𝑆𝑟,𝑖𝑗 ∗ 𝑇𝑅𝑖𝑗 

 

-0.015*** 

 

1.764***   

(0.00) 

 

(0.25) 

𝑉𝑎𝑟𝑖𝑒𝑡𝑦𝑟 0.763*** 0.757*** 1.189*** 1.186***  

(0.02) (0.02) (0.02) (0.02) 

𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝑟 -0.364*** -0.354*** -0.024* -0.024*  

(0.02) (0.02) (0.01) (0.01) 

Country Fixed Effects Yes Yes Yes Yes 

Number of Observations 4721318 4721318 17412063 17412063 

Log Likelihood -38745.498 -38719.690 -147116.956 -147027.895 

* Significant at 0.1, **Significant at 0.05 and ***significant at 0.01. Robust standard errors are reported 

in the parentheses 

4.5 Conclusion and discussion 

This paper studies the emergence of new combinations in solar PV technology at the 

regional level in all OECD and BRICS countries. The results show that unrelated 

technologies are more likely to be recombined when they are strongly present in the same 

region, indicating that geographical proximity can bridge technological distance in creating 

new combinations. Moreover, this pattern is common to renewable energy technologies, 

while a similar pattern is not observed using all technologies.  

This paper presents the first empirical support of the policy framework ‘cross-

specialisation’ proposed by Janssen and Frenken (2019). The ‘cross-specialisation’ policy 

framework extended the recent smart specialisation strategies approach which was 

integrated into the reformed cohesion policy for European Union (Foray, 2018a). Beyond 

the emphasis on leveraging existing competences of regions for growth opportunities, the 

‘cross-specialisation’ policy framework further highlights the importance of linking strong 

but unrelated knowledge base in such process (Janssen & Frenken, 2019). Both smart 

specialisation strategies approach and ‘cross-specialisation’ approach highlight the 

importance of place-based or place-dependent capabilities (Boschma et al., 2017a). Our 

results show that the place-dependent capabilities are especially important in searching for 

new combinations of unrelated technologies in the domain of renewable energy technology. 
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We understand the outcome to reflect that linking unrelated technologies that are already 

strongly present in the same region, can reduce both the search cost and the risk of failure 

the process.  

Our findings show that the process in which place-dependence can break the path-

dependence of recombining related technologies is common to renewable energy 

technologies. The development of radical innovations like renewable energy technologies 

on one hand face the challenge from the overcoming technological distance, on the other 

hand face the challenge of legitimacy because their potential in disrupting existing social-

technical systems (Markard and Truffer, 2008). Thus, the recombination of unrelated 

technologies in an economy can be viewed as middle road where the strongly present 

technologies being recombined can still provide support for radical innovations (Frenken, 

2017). Moreover, given the uneven knowledge accumulation across regions, the 

recombination of unrelated technologies strongly present in regions can offer various new 

recombination for selection to avoid technological lock-in (Safarzyńska and van den Bergh, 

2013; Sbardella et al., 2018; Zeppini and van den Bergh, 2011). Thus, our findings also 

provide an empirical support for the geographical perspective of innovation policies aimed 

at addressing societal challenges like climate change (Coenen et al., 2015; Foray et al., 

2012; Foray, 2018a; Frenken, 2017; Wanzenböck and Frenken, 2018).  

Although our results show strong correlation between the strong co-presence of unrelated 

technologies in a region and the likelihood of them being recombined, we have not focused 

on whether the new combinations of unrelated technologies resulted from ‘cross-

specialisation’ policies. Some new combinations of unrelated technologies might occur 

without any policy interventions, while others require special coordination process (Foray, 

2018b). The recent empirical evaluation of the effectiveness of implemented smart 

specialisation strategies at the regional level opens future research avenues (D’Adda et al., 

2019). Moreover, the potential effectiveness of such ‘cross-specialisation’ policies depends 

on the assumption that the recombination of unrelated technologies can facilitate the 

convergence between them. A dynamic perspective of relatedness is therefore required to 

assess the impacts of recombination on the evolution of relatedness between technologies 

(Castaldi, Los & Frenken, 2015; Boschma, 2017).  

Furthermore, learning between unrelated technologies might occur at different spatial 

level at the same time through different proximities (Malmberg & Maskell, 2002). It is 

important to further explore the channels through which unrelated technologies within a 

region are brought together and recombined. Inter-firm networks might operate at higher, 

more aggregate level, while spin-off dynamics, labour mobility and daily face-to-face 

interactions might operate at local level (Boschma, 2005). The micro-processes underlying 
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proximities can help better designing regional innovation policy tools for facilitating the 

recombination of unrelated technologies (Janssen and Frenken, 2019).   

Finally, although our result show that unrelated technologies strongly present in the same 

region are more likely to be recombined, new combinations are still heavily concentrated in 

regions on the technology frontier. It could be the case that the lagging regions may lack the 

necessary capabilities for achieving such recombination of unrelated technologies. Regions 

with less diverse knowledge have less options in their search for new combinations. 

Moreover, the technological distance could be a challenge for lagging regions more than for 

regions on the technology frontier. Thus, it is important to focus on how lagging regions 

can access a variety of extra-regional knowledge elements to build up necessary capabilities 

for future recombinant inventions (Breschi and Lenzi, 2015; Giuliani et al., 2016; 

Hausmann and Neffke, 2019; Mudambi et al., 2018; Neffke et al., 2018). 
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Chapter 5 

 

5 Catching up in renewable energy 

technological paradigm: can 

knowledge base facilitate early 

adoptions of breakthrough 

inventions 

 

 

This chapter is co-authored with Koen Frenken, Gaston Heimeriks 

and Floor Alkemade, and in preparation for journal submission.  
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Abstract   

How we can accelerate the diffusion of new clean energy technologies worldwide is a 

question of high relevance for energy and climate policies, as well as industrial policies. By 

tracing the time lag between the introduction and the diffusion of breakthrough inventions 

in solar photovoltaic technology and wind power technology, this paper shows that the 

knowledge base of countries facilitates the early adoptions of breakthroughs in both 

technologies, especially in latecomer countries. The importance of knowledge base in the 

catching-up process also differs between technologies. There are more opportunities in 

more dynamic technologies like solar photovoltaic technology. The results of this paper 

help better understand the catching-up process of countries in the clean energy 

technological paradigm. 
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5.1 Introduction 

The decarbonization of our current energy systems to meet the climate change mitigation 

goal is crucial and urgent, requiring a faster diffusion of new clean energy technologies 

worldwide. This challenge is especially acute in latecomer countries where the demands for 

energy grow rapidly (Grubler et al., 2016; Sovacool, 2016). Besides the goal for climate 

change mitigation, the emergence of the clean energy technological paradigm also offers 

latecomer countries windows of opportunity to catch up with countries on the technological 

frontier (Mathews, 2013; Perez, 2016, 2013).  

Although existing literature shows that latecomer countries can deploy new clean energy 

products relatively faster than first movers (Bento et al., 2018; Grubler et al., 2016), for 

economic development purposes a catch-up can only be achieved through acquiring the 

capacity for participating in the generation and improvement of technologies instead of the 

simple use of them (Perez and Soete, 1988). Thus, the capability of being able to enter as 

early imitators is important for the catching-up process of latecomer countries.  

Recent empirical studies in evolutionary economic geography (EEG) highlight the 

importance of local related capabilities in the development of new technologies (for 

reviews, see: Boschma, 2017; Hidalgo et al., 2018). It has been found that countries tend to 

diversify into new technologies that require capabilities also needed for other technologies 

that a country already masters. Hence, one can expect that a technology diffuses faster to 

countries with related technologies already present. 

Most catch-up studies, however, assume that latecomer countries will follow a strategy to 

imitate new technologies by leveraging other factors like location, connectivity, natural 

resources and low labour cost (Fu et al., 2011). Next to these factors, absorptive capacity 

has been highlighted as important, generally conceptualized in generic terms referring to a 

country’s science base, R&D investment or human capital. Systematic evidence on the role 

of absorptive capacity vis-à-vis a particular technology is still lacking.  

This paper focuses on the catching-up process for radically new clean energy 

technologies by investigating the speed at which countries adopt new clean energy 

technologies. Note that adoption here thus not refer to the use of a radically new technology 

developed abroad, but to the incremental improvement of a radically new technology 

developed abroad. Following the recent large-scale assessment of breakthrough inventions 

based on patent classes (Fleming, 2001; Verhoeven et al., 2016), we traces the spatial-

temporal diffusion of breakthroughs in solar photovoltaic technology and wind power 

technology, and quantify the impacts of local, related capabilities on the time lag between 

the emergence and the adoption of these breakthroughs across countries.  
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The main contributions of this paper are threefold. First, we quantify the catching-up 

process of latecomer countries in the new clean energy technological paradigm by focusing 

on the time lag between the emergence and adoption of breakthrough inventions. Second, in 

a more general sense, we contribute to a better understanding of the temporal dimension in 

evolutionary economic geography literature by highlighting the importance of local 

capabilities in facilitating faster adoption of new technologies (Henning, 2019). Third, we 

shed light upon the locational effects of technology characteristics by comparing the 

spatial-temporal diffusion pattern of solar photovoltaic technology and wind power 

technology (Binz and Truffer, 2017; Schmidt and Huenteler, 2016).  

The remainder of the paper is structured as follows. In Section 2, we review the relevant 

literature on the temporal and spatial diffusion of new technologies. In Section 3, we 

describe the data, econometric model and variables. In Section 4, we present the results of 

descriptive analysis and econometric analysis. We conclude by discussing the implications 

of our findings in Section 5.  

5.2. Theoretical background  

5.2.1 Windows of opportunity and the timing of entry 

The diffusion of new technology is inherently spatial in that new technologies usually 

emerge in technology centres, and disseminate, through a hierarchy of sub-centres, to the 

periphery (Hägerstrand, 1973). During the spatial diffusion process, some industrialized 

countries entered early on, while the comparative advantage would shift to latecomer 

countries with the further international diffusion of technologies as they reach maturity 

(Perez and Soete, 1988).  

The emergence of radically new technologies often opens windows of opportunity for 

latecomers to catch up through imitating and improving new technologies earlier (Perez and 

Soete, 1988). Lee and Malerba (2017) extended the notion of windows of opportunity to 

various building blocks of sectoral innovation systems. They explain that, besides 

technological breakthroughs, other forces such as major shifts in market structures and 

large shifts in politics, could also open such windows of opportunity. Yap and Truffer 

(2019) further argued that the latter two processes are especially important for the catching-

up process in clean energy technologies.  

The timing of entry is key for the catching-up process of latecomer countries when a 

window of opportunity emerges (Perez and Soete, 1988). The evolutionary view of 

technological change suggests that incremental improvements come along with the 

diffusion of new technology (Dosi, 1991; Metcalfe, 1981; Rosenberg, 1982). Thus, 

technologies evolve in a path-dependent way along defined technological trajectories. The 
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improvements have a cost and come with the generation of additional experience and skills. 

Thus, later entry indicates a larger gap with the technological frontier. Moreover, the 

emergence of a new technological paradigm can shift incumbent trajectories to new 

directions (Dosi, 1982). Although it might be easier for latecomer countries to enter a new 

technology at a more mature stage, late entry might lead to a lock-in in a technological 

paradigm which has exhausted its technological dynamism (Perez and Soete, 1988).  

The importance of early entry is further corroborated by recent studies on the search 

behaviour of inventors and firms show that the utilization of emerging knowledge 

correlates with a higher technological impact of inventions (Capaldo et al., 2017; Kok et al., 

2019; Mukherjee et al., 2017). Moreover, higher utilization rates of recent technologies are 

also associated with the improvement in performance, or the cost reduction of new 

technologies (Benson and Magee, 2015, 2014).  

However, empirical insights on the timing of entry remain largely qualitative in the 

catch-up literature (Lee and Malerba, 2017; Perez and Soete, 1988). Kwon, Lee & Lee 

(2017) is the first to systematically quantify the catching-up process by investigating the 

time needed for inventors of a particular country to cite an invention from technological 

frontier. They showed that Korea, Israel and Taiwan managed to narrow the gap with 

technological frontier, whereas similar progress is not observed in China and India. 

However, they only focus on the overall technological progress of specific countries, and 

fail to explain why certain countries are able to adopt new technologies earlier. We lack 

systematic quantitative research on the determinants of early entry of latecomer countries in 

new technology paradigm earlier. 

5.2.2 Local capabilities and the temporal dimension in evolution economic 

geography 

The original windows of opportunity concept suggested that the diffusion of radically new 

technologies and new industries is rather independent of the precise industrial structures in 

the adopting region (Perez and Soete, 1988; Storper and Walker, 1989). Here, the reasoning 

was that radically new technologies are fundamentally different from previous technology. 

Hence, what is learnt in the past is of very limited relevance for understanding, and 

institutionalising, the new technology. Only generic absorptive capacity was considered 

important.  

However, innovations do not diffuse automatically and in isolation (Grubler et al., 2016). 

Latecomer countries need the capacity to absorb and assimilate the new technology, and 

overcome the costs of entry (Cohen and Levinthal, 1990; Maskell and Malmberg, 1999; 

Perez and Soete, 1988). The recent EEG literature highlights the path-and place-

dependencies of technological change, it shows that countries and regions are more likely 

to diversify into new products and new technologies that are related to their existing 
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knowledge bases (see a review in Boschma (2017) and Hidalgo et al. (2018)). The 

capabilities of a country open up new opportunities, as well as set constraints, for its future 

technology development. The logic of related diversification offers a framework that not 

only enables one to say that “history matters” for territorial development, but also how it 

matters for particular technologies ( Petralia et al., 2017; Sbardella et al., 2018).  

However, as pointed out by Henning (2019), current EEG research only compares the 

new technology emerging in a country (or region) with the technology structure of the focal 

country (or region) in the past. It ignores whether the technology that is new to a country 

(or region) is in itself, at the global level, a recent invention or an existing one. Put 

differently, EEG focused overwhelmingly on the introduction of novelty while neglecting 

the diffusion of innovations. The temporal dimension in these studies thus remains rather 

abstract (Henning, 2019). 

A better understanding of the windows of opportunity and the catching-up process 

requires tracking the real time diffusion of radically new technologies across countries. 

Bridging the EEG literature with transition studies, Boschma et al. (2017a) categorized new 

activities emerging in a country (region) along both the geographical dimension and the 

sectoral dimension. In their view, innovations are seen as activities new to the world, 

whereas imitations can be seen as new to the country. Countries can imitate a new 

technology based on their existing related capabilities (replication), or based on external 

linkages (transplantation).  

In this study, we focus on innovations that are new to the world and investigate to what 

extent the existing related capabilities in a country matter for the speed at which countries 

adopt a new invention. Radically new technologies or breakthrough inventions are 

considered the results from the combination of existing knowledge, technologies and 

artefacts in novel ways (Arthur, 2007; Arts and Veugelers, 2015; Fleming, 2001; 

Henderson and Clark, 1990; Strumsky and Lobo, 2015; Verhoeven et al., 2016). Building 

on this view, Pezzoni, Veugelers and Visentin (2019) traced the diffusions of new 

technologies, and found that the new technologies of which the components were familiar 

to the inventors’ community can diffuse faster. We therefore expect that the local related 

capabilities of countries can facilitate earlier adoptions. 

Note that our theoretical reasoning is similar to the original concept of related 

diversification (Hidalgo et al., 2007) as we study the local conditions that affect the 

likelihood that a country diversifies into a new technology. Yet, we offer a new perspective 

on this process in two ways. First, we look exclusively at radically new technologies. 

Second, we go beyond the typical research question of whether or not a country diversifies 

into a particular technology by analysing how fast a country is able to diversify into this 

radically new technology.  
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5.3 Research Design 

5.3.1 Sample and Data 

The data used in this paper are patent applications filed at European patent office (EPO), 

United States Patent and Trademark Office (USPTO) and through the Patent Cooperation 

Treaty (PCT-route) from 1980 to 2015. Patent applications are extracted from European 

Patent Office Worldwide Patent Statistics Database PATSTAT (EPO, 2018 Autumn 

Version). We only focus on patents assigned to companies and institutions following 

Mancusi (2008). The type and the unique identifier of applicants are extracted from the 

PATSTAT Standardized Name table developed by ECOOM in KU Leuven (Du Plessis et 

al., 2009; Magerman et al., 2009).  

Since multiple equivalent patent applications can be filed at different patent offices to 

protect the intellectual property rights of the same invention, we use IPC codes of all patent 

applications in the same DOCDB patent family as the technological classifications of the 

invention under consideration (Martínez, 2011). The year of a DOCDB patent family is 

based on the application year of its first patent application.  

Patent classification codes in which a patent is assigned are considered as proxies for the 

specific technology components associated with the patented invention (Fleming, 2001). 

Although some studies also use the backward citations to proxy the knowledge 

recombination (see the review by Jaffe & de Rassenfosse (2017)), technological codes are 

determined by patent examiners; thus, unlike patent citations, they are not biased by firms’ 

strategic considerations. For that reason, co-occurrences of technology codes at the patent 

level are ideal for determining the technological combinations that led to a patented 

innovation (Fleming, 2001; Fleming et al., 2007). 

We identify the breakthroughs by assessing the new combinations of patent technology 

codes at the main group level of the International Patent Classifications (IPC) following 

Verhoeven et al. (2016). A pairwise combination of IPC main groups is considered new if 

they appear for the first time in (recent) history. We use all the patents applied between 

1980 and 1992 to find the already existing combinations and track the emergence of 

breakthroughs from 1993.  

We assign each patent to the country of residence of the first named inventor in the 

patent document of the first patent in a patent family following Mancusi (2008). The 

inventor’s address can better identify where the R&D was performed given the significant 

presence of technology sourcing from multinational corporations (Alkemade et al., 2015; de 

Rassenfosse and Seliger, 2019).  

We focus on the diffusion of breakthroughs in two leading clean energy technologies: 

solar photovoltaic and wind power. Patents relating to these two technologies are identified 
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using the Y02E10/5 code (solar PV) and Y02E10/7 code (wind power) in the newly 

launched Cooperative Patent Classification (CPC). The Y02 class is developed by EPO 

experts by combining existing International Patent Classifications (IPC) and European 

Patent Classifications with a lexical analysis of abstracts or claims in identifying cross-

sectoral technologies with potential in climate change mitigations (Veefkind et al., 2012a).  

5.3.2 Econometric Model 

In order to trace the determinants of the speed in the spatial-temporal diffusion of 

breakthroughs in clean energy technologies that are new to the world, we applied the Cox 

proportional hazard model (Cox, 1972) which has the advantage of estimating the hazard 

ratios without specifying baseline hazards. We focus on the number of days a country 

adopts a breakthrough for the first time (new to the country) since the introduction of the 

breakthrough (new to the world). Hence, we differ from the more typical measurement of 

diversification as becoming specialised in a particular technology relative to all other 

countries. 

We consider all breakthroughs introduced between 1993 and 2007 to leave an 8-year 

window forward to this last cohort. We only focus on breakthroughs which are adopted 

more than 20 times as to be able to apply a threshold for the impacts of new technologies 

following Pezzoni et al. (2019). Moreover, we focus on breakthroughs introduced by 

inventors from United States to proxy new technologies developed at the technology 

frontier following Kwon et al. (2017). As a robustness check, we also use breakthroughs 

introduced by inventors from Germany and Japan as a robustness check. The number of 

breakthroughs introduced by these three countries accounts for 70 percent of all 

breakthroughs introduced during the period 1993-2007. Leydesdorff et al. (2015) show that 

these three countries are also at the technological frontier of solar photovoltaic technology.  

We take the set of breakthroughs and regress them on characteristics of countries 

adopting them. As emphasised by Griffith et al. (2011), it is crucial to control for 

unobserved heterogeneity at the new technology level since some technologies diffuse more 

quickly than others, for example, due to their level of codification or usefulness. The Cox 

model allows estimating different hazard ratios across groups. We include four variables to 

stratify our breakthroughs to control the different diffusion speeds across breakthroughs.  

First, we include the technological distance between technological components being 

recombined in the breakthrough inventions by exploring the hierarchical structure of the 

IPC code classification following Pezzoni et al. (2019). We include a same field dummy 

(stating whether the IPC main groups in the new combination are from the same 

technological field) and a same sector dummy (stating whether the pairwise IPC main 

groups are from different technological fields but the same sector). The IPC main groups 

are linked to technological fields and sectors based on the concordance table developed by 
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Schmoch (2008). Second, we include the intra-technology dummy (stating whether the 

breakthrough invention is introduced by the same type of renewable energy technology that 

adopts it). Third, we also include the year in which the focal breakthrough is introduced.  

As pointed out by Jaffe, Trajtenberg & Henderson (1993), and Griffith, Lee & Reenen 

(2011), new technologies are more likely to diffuse locally. Thus, we only focus on the 

international diffusion of breakthroughs to avoid the home bias. We include all OECD 

countries, EU 28 countries and BRICS countries (Brazil, Russia, India, China and South 

Africa) as the potential adopting country. Finally, we cluster the standard errors at the 

country level to control for the unobserved heterogeneity in adopting breakthroughs across 

countries.   

5.3.3 Explanatory Variables  

The main explanatory variable we are focusing on in this paper is the familiarity of 

inventors in a country with the technology components being used in a new combination. 

Familiarity takes the minimum value of the number of patents in a country among the IPC 

main groups of the breakthrough invention, in the past five years before the adoption taking 

place, following Clancy (2018). We exclude patents with inventors external to the country 

to capture the scale effects associated with the agglomeration of inventive activities 

(Breschi and Lenzi, 2015; Lobo and Strumsky, 2008). A larger value of Familiarity 

indicates that inventors in the country have a larger knowledge stock in both technological 

components used in the new combination, thus more likely to adopt new technologies 

earlier.  

We add five control variables to control for the country-level factors which might affect 

the adoption speed of new technologies. First, we include GDP per capita to control for the 

level of economic development of a country using data extracted from the Penn States 

Table 9.1 (Feenstra et al., 2015). Second, we take into account whether the adopting 

country specializes in solar photovoltaic technology (wind power technology) using the 

Revealed Technology Advantage index (RTA) following Soete and Wyatt (1983). The RTA 

takes the value 1 if the share of the solar photovoltaic patents (wind power patents) of a 

focal country in its total number of patents is larger than the share of solar photovoltaic 

patents (wind power patents) worldwide, and 0 otherwise. Third, we include the amount of 

electricity generated from solar photovoltaic (wind power) to control for the impact of 

domestic market development on the development of new technologies. Fourth, the impact 

of geographical distance on the speed of spatial diffusion is controlled for using the 

distance between the capital of United States (Germany/Japan) and the capital of the 

reusing country. The distance data are extracted from the CEPII database (Mayer and 

Zignago, 2011). Fifth, we control for the impact of international linkages through 

multinationals by including the number of patents invented by inventors in the focal 
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country while assigned to the same assignee abroad who introduced the new combination in 

the previous 5 years before the reuse. We expect positive impacts from GDP, RTA, Market, 

and Same assignee, and negative impact from Distance.  

Finally, in order to trace whether latecomer countries are closing the gap with countries 

at the technological frontier, we include the interactions of Familiarity with GDP per 

capita and RTA to test whether the impact of Familiarity differs across countries. Here, we 

expect that being familiar with the technologies being recombined especially helps 

countries at lower levels of development and countries with a lack of specialisations in 

solar (wind), to compensate for these unfavourable conditions.  

5.4. Results 

5.4.1 Descriptive results 

We focus on the spatial-temporal diffusions of 110 breakthrough inventions in solar 

photovoltaic technology and 65 breakthrough inventions in wind power technology 

introduced by US inventors among 47 countries, therefore 5170 observations for solar 

photovoltaic and 3055 observations for wind power. Figure 5.1 shows the distributions of 

the number of countries adopting of breakthroughs (X-axis) in solar photovoltaic (upper 

panel) and wind power (lower panel). Most of breakthroughs in both technologies are only 

adopted by less than 15 countries.  

Table 5.1 and Table 5.2 show the summary statistics and the correlation between the 

explanatory variables for solar photovoltaic and wind power technology respectively. The 

correlation between independent variables are not high.  
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Figure 5.1 Descriptive analysis of the number of adopting countries in solar photovoltaic 

technology (upper-panel) and wind power technology (lower-panel) 

5.4.2 Econometric results 

Table 5.3 shows the econometric results of solar photovoltaic technology using new 

combinations introduced by inventors from United States. We divide our sample into pre-

2000 and post-2000 subsamples. Since the ratification of the Kyoto protocol in 1999, the 

number of patents in renewable energy technologies grew significantly (Bettencourt et al., 

2013). We therefore divide our sample into pre-2000 and post-2000 subsamples following 

Conti et al. (2018). 
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The coefficients of Familiarity are significantly positive in all six models, indicating that 

countries adopt new combinations earlier if they are familiar with the technology 

components used in the new combinations. Although the coefficients of GDP are not 

significant, the coefficients of Familiarity*GDP are significantly positive in the full 

sample, and in the sub-sample of pre-2000 new combinations, and significantly negative in 

the sub-sample of post-2000 new combinations. The results indicate that the impacts of 

Familiarity on the speed of adoption have become more important for emerging countries 

in the recent years. This indicates an acceleration of the spatial diffusion of solar 

photovoltaic technology (Binz et al., 2017b).   

The coefficients of RTA are not significant. However, after the introduction the 

interaction term Familiarity*RTA, the coefficients of RTA are positive in the full sample 

and sub-sample of pre-2000 model, while the coefficients of Familiarity*RTA are 

significantly negative in all three models. The results show that familiarity with the 

technological components used in the new combination is more important for countries 

without a specialization in solar photovoltaic technology. This can be explained by the 

dynamic inventive pattern of solar photovoltaic technologies; several new types of solar 

photovoltaic cells emerged during the focal period (Kalthaus, 2019), allowing latecomer 

countries to catch-up.  

Of other control variables, the coefficients of Same assignee are significantly positive in 

the full sample and in the sub-sample of new combinations introduced after 2000, 

indicating that knowledge transfer is faster within the network of multinational companies. 

This is in line with the findings in Phene et al. (2005). The coefficients of Distance and 

Market are not significant (with the exception that Market is significantly negative in 

column (2)). This indicates, unexpectedly, that the size of the domestic market may slow 

down the adoption of new technologies. This may be related to findings that suggest that 

demand-pull polices are more likely to introduce incremental improvement (Hoppmann et 

al., 2013; Nemet, 2009), thus less likely to facilitate more risky early adoptions of 

breakthrough inventions. Moreover, the diffusion of early generations of new technologies 

can also lead to technological lock-in which hampers the development of new generations 

of technologies (Franceschini and Alkemade, 2016).  
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Table 5.3 Econometric results: Solar photovoltaic 

 (1) (2) (3) (4) (5) (6) 

 1993-2007 Pre-2000 Post-2000 

Familiarity 0.211*** 1.576*** 0.213*** 1.889*** 1.007*** 2.426*** 

 (0.04) (0.20) (0.04) (0.23) (0.16) (0.37) 

RTA 0.675 0.560 0.665 0.568 0.543 0.488 

 (0.44) (0.44) (0.47) (0.45) (0.43) (0.42) 

GDP 0.034 0.053 -0.044 -0.017 0.139 -0.079 

 (0.18) (0.17) (0.19) (0.18) (0.17) (0.13) 

Market -0.220 -0.537* -0.392 -0.882 -0.086 -0.200 

 (0.20) (0.32) (0.37) (0.78) (0.10) (0.12) 

Distance 0.139 0.160 0.126 0.149 0.184 0.150 

 (0.22) (0.22) (0.24) (0.23) (0.19) (0.20) 

Same assignee 0.081*** 0.075*** 0.050 0.032 0.533*** 0.530*** 

 (0.03) (0.03) (0.04) (0.04) (0.11) (0.11) 

Familiarity*GDP  0.210*  0.341*  -1.254*** 

  (0.12)  (0.18)  (0.35) 

Familiarity*RTA  -1.425***  -1.774***  -0.927*** 

  (0.19)  (0.23)  (0.23) 

Observations 5170 5170 2961 2961 1739 1739 

Log likelihood -3889.248 -3799.358 -2118.874 -2039.937 -1367.174 -1342.662 

Table 5.3 shows the econometric results of wind power technology. Similar to solar 

photovoltaic technology, the coefficients of Familiarity are significantly positive in all six 

columns. Of the controls, the Distance and Market are not significant again, whereas the 

Same assignee are positive significant in the full sample and the sub-sample of post-2000.  

Although the coefficients of GDP are not significant, the coefficients of 

Familiarity*GDP are significantly positive in the full sample and in the sub-sample of post-

2000 new combinations. The results also show that the impacts of Familiarity on the speed 

of adoption becomes more important for emerging countries in wind power technology in 

the recent years.  

The coefficients of RTA are also not significant. However, the coefficients of 

Familiarity*RTA are significantly positive in the full model and the sub-sample of the post-

2000 model. The results show that the familiarity with technological components used in 

the new combination is more important for countries already specialized in wind power 

technology, indicating a strong path-dependent process.   
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Table 5.4 Econometric results: Wind power 

 
(1) (2) (3) (4) (5) (6) 

 
1993-2007 Pre-2000 Post-2000 

Familiarity 0.256*** 0.422*** 0.221*** 0.445*** 0.263*** 0.461*** 

 
(0.04) (0.08) (0.05) (0.13) (0.04) (0.09) 

RTA 0.471 0.495 0.341 0.413 0.636 0.621 

 
(0.41) (0.43) (0.42) (0.42) (0.40) (0.45) 

GDP 0.216 0.110 0.229 0.136 0.233 0.099 

 
(0.17) (0.16) (0.16) (0.17) (0.17) (0.16) 

Market 0.069 -0.185 0.155 -0.157 0.041 -0.258 

 
(0.11) (0.22) (0.11) (0.35) (0.12) (0.22) 

Distance -0.006 -0.054 -0.032 -0.091 0.026 -0.032 

 
(0.16) (0.18) (0.20) (0.23) (0.16) (0.19) 

Same assignee 0.073** 0.038 0.013 -0.041 0.078** 0.036 

 
(0.04) (0.04) (0.10) (0.09) (0.04) (0.04) 

Familiarity 

*GDP 

 
-0.462** 

 
-0.403 

 
-0.594*** 

  
(0.18) 

 
(0.30) 

 
(0.20) 

Familiarity 

*RTA 
 0.173* 

 
0.093 

 
0.216** 

  (0.10) 
 

(0.16) 
 

(0.09) 

Observations 3055 3055.000 893 893 1786.000 1786.000 

Log  

likelihood 
-2444.059 -2424.017 -781.850 -775.303 -1351.962 -1335.566 

The different results between solar photovoltaic technology and wind power technology 

indicate that the spatial-temporal diffusion of new technologies is influenced by the 

technology characteristics. Lee and Malerba (2017) also highlight heterogeneity across 

technologies and sectors in the catching-up process. The recent conceptual framework of 

the Global Innovation Systems (GISs) further categorized solar photovoltaic technology as 

a more footloose GIS, and wind turbine technology as more spatial sticky GIS (Binz and 

Truffer, 2017; Schmidt and Huenteler, 2016). The difference of the locational impacts 

arises from the difference in the technology characteristics (Huenteler et al., 2016). Solar 

photovoltaic technology is considered to follow the STI (science-technology-innovation) 

innovation model and standardized massive production which requires more manufacturing 

capabilities, whereas wind turbine technology is considered to follow the DUI (doing, using 
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and interacting) innovation mode which requires more design capabilities. Knowledge 

transfer in solar photovoltaic technology is often embodied in capital goods like 

manufacturing equipment which can be transferred across globalized markets, whereas the 

knowledge transfer in wind turbine technology is mostly the transfer of tacit knowledge 

(Binz and Truffer, 2017; Schmidt and Huenteler, 2016). Thus, it is more difficult for 

countries without previous knowledge accumulation to catch up to the technological 

frontier for wind turbine technology.  

5.4.3 Robustness check 

In order to check the robustness of our results, we first focus on the spatial-temporal 

diffusions of new combinations introduced by inventors from Japan and Germany. Table 

5.5 and Table 5.6 show the results from the robustness check for solar photovoltaic and 

wind power respectively. Most results are consistent with the results in Table 5.3 and Table 

5.4. One interesting finding is the different impacts of Distance on the diffusion speed of 

new combinations introduced by inventors Japan and Germany in solar photovoltaic 

technology. The impacts of Distance are negative on the diffusion of new combinations 

introduced by Japanese inventors, whereas these are positive on the diffusion of new 

combinations introduced by German inventors. This confirms the global leadership of 

Germany in solar photovoltaic industry (Binz and Anadon, 2018; Nemet, 2019; Quitzow, 

2015; Wu and Mathews, 2012).   

Second, we re-estimated the model by calculating the hazard rate for each new 

combination instead of using stratified groups. The results are shown in column (1)-(3) in 

Table 5.7 and Table 5.8. Third, we only focus on the Top one percent of the new 

combinations introduced each year to test whether the results are sensitive to the change of 

threshold for breakthroughs. The results are shown in column (4)-(6) in Table 5.7 and Table 

5.8. A final concern is that our results might be driven by the adoption of new combinations 

made by the same assignee which introduced the new combination (Phene et al., 2005). We 

therefore dropped adoption of new combinations from the same assignee and re-estimated 

all models. The results are shown in column (7)-(9). The results in Table 5.7 and Table 5.8 

are consistent with the results in Table 5.2 and Table 5.3.  
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Table 5.5 Robustness check: Solar photovoltaic  

 
Japan Germany 

 
Full sample Post-2000 Full sample Post-2000 

 
(1) (2) (3) (4) (5) (6) 

Familiarity 0.298*** 0.369*** 1.480*** 0.145*** 1.775*** 5.680*** 

 
(0.03) (0.10) (0.46) (0.04) (0.24) (1.06) 

RTA -0.293 -0.278 -0.212 0.565 0.474 0.225 

 
(0.67) (0.64) (0.65) (0.52) (0.49) (0.54) 

GDP 0.160 0.154 -0.001 0.141 -0.038 -0.473** 

 
(0.19) (0.19) (0.19) (0.21) (0.20) (0.20) 

Market -0.320 -0.355 -0.348 -0.617 -0.721* -1.326*** 

 
(0.22) (0.24) (0.30) (0.58) (0.37) (0.47) 

Distance -0.649** -0.631* -0.543* 0.337** 0.331** 0.306* 

 
(0.31) (0.35) (0.30) (0.16) (0.16) (0.18) 

Same assignee 0.024** 0.025* 0.026** 0.303*** 0.201*** 0.189** 

 
(0.01) (0.01) (0.01) (0.03) (0.02) (0.08) 

Familiarity*GDP 
 

-0.063 -0.999*** 
 

-1.075*** -4.286*** 

  
(0.09) (0.36) 

 
(0.16) (0.89) 

Familiarity*RTA 
 

-0.039 -0.208 
 

-1.317*** -3.014*** 

  
(0.27) (0.37) 

 
(0.17) (0.83) 

Observations 5875.000 5875.000 1833.000 2397.000 2397.000 470.000 

Log likelihood -3985.301 -3983.446 -1219.283 -1732.007 -1672.767 -256.738 
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Table 5.6 Robustness check: Wind power 
 

Japan Germany  

Full sample Post-2000 Full sample Post-2000  

(1) (2) (3) (4) (5) (6) 

Familiarity 0.445*** 0.368*** -0.012 0.309*** 0.333*** 0.286***  

(0.09) (0.07) (0.19) (0.05) (0.06) (0.05) 

RTA 0.560 0.493 0.557 0.383 0.371 0.479  

(0.49) (0.49) (0.46) (0.42) (0.42) (0.46) 

GDP 0.200 0.180 0.130 0.230 0.225 0.224  

(0.17) (0.18) (0.18) (0.16) (0.16) (0.17) 

Market 0.029 0.028 0.048 -0.029 -0.028 0.009  

(0.11) (0.11) (0.16) (0.07) (0.07) (0.07) 

Distance -0.266 -0.284 -0.335* 0.037 0.039 0.101  

(0.19) (0.20) (0.20) (0.17) (0.17) (0.16) 

Same assignee 0.184* 0.205*** 0.533*** 0.090*** 0.095*** 0.084***  

(0.11) (0.08) (0.09) (0.01) (0.01) (0.01) 

Familiarity 

*GDP 

 

-0.006 -0.178 

 

-0.059 0.002 

  

(0.05) (0.15) 

 

(0.04) (0.05) 

Familiarity 

*RTA 

 

0.187 0.810*** 

 

0.173 0.150 

 

 

(0.13) (0.18) 

 

(0.13) (0.12) 

Observations 846.000 846.000 376.000 4747.000 4747.000 2538.000 

Log likelihood -582.500 -580.423 -279.338 -5102.293 -5089.371 -2458.478 
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5.5. Conclusions 

The catching-up of latecomer countries in emerging technological paradigms can only be 

achieved through imitating and improving the new technologies as early imitators (Perez 

and Soete, 1988). In this paper, we focus on the determinants of early entry in clean energy 

technologies by tracing the spatial-temporal diffusions of breakthroughs in solar 

photovoltaic technology and wind power technology. Following the view of breakthroughs 

as the recombination of existing technologies, our results suggest that the familiarity of 

countries with the technology components recombined in the breakthroughs can facilitate 

earlier adoptions in both technologies, especially in countries with lower levels of economic 

development.  

Our results provide the first systematic evidence of whether and how countries catching-

up process of latecomer countries in clean energy technological paradigm (Mathews, 2013; 

Perez, 2016, 2013). We highlight the importance of local capabilities in reducing the risk 

and uncertainty of early entry. Hence, our analysis extends the research program of 

Evolutionary Economic Geography in two ways. First, where most studies lump new and 

old technologies together in a single analysis, we look exclusively at radically new 

technologies in order to study the spatial-temporal diffusion of novelty. Second, we do not 

just analyse whether a country diversifies into new technology or not, as is common in 

related diversification studies so far, but analyse how fast a country is able to diversify into 

this radically new technology. On a methodological note, our study design also has the 

advantage that we can we measure diversification is a straightforward way by simply 

observing at what date a country first adopts a radically new technology. Here, we differ 

from previous studies that measure diversification as becoming specialised in a particular 

technology relative to all other countries. Such studies rely on the Relative Technological 

Advantage index to indicate specialisation (RTA>1), which has known disadvantages 

(Laursen, 2015). 

Furthermore, our comparison of the two technologies shows that for solar photovoltaic 

technology, the knowledge base of countries is more important for countries without 

specialisation, whereas for wind power technology, the knowledge base of countries is 

more important for countries with specialisation. This finding suggests that the catching-up 

process of latecomer countries is also affected by the technology characteristics of different 

clean energy technologies (Binz and Truffer, 2017; Lee and Malerba, 2017; Schmidt and 

Huenteler, 2016).  

This paper highlights the importance of knowledge base of countries in the early 

adoption of new technologies. Several questions remain for the future research. First, as our 

results show that international linkages are also important for the earlier adoption of new 

technologies, more actor-level analyses are required in order to understand the introduction 
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of novelty in a region and the structural change processes that may follow (Boschma, 2017; 

Hausmann and Neffke, 2019; Henning, 2019; Neffke et al., 2018). Second, although we 

find that the knowledge base of countries can facilitate early adoptions, institutional and 

organizational changes might be necessary to enhance local absorptive capacity for scaling 

up new technologies faster (Grubler et al., 2016). Third, it is important to focus on the 

impacts of the spatial-temporal diffusion on the cost reduction and performance 

improvement of new technologies to better understand the technology evolution in real time 

(Benson and Magee, 2015, 2014; Kavlak et al., 2018; Nemet, 2019).  
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This thesis aimed to bring a global perspective to the Evolutionary Economic Geography 

(EEG) literature by investigating the local-global interactions in technology development, 

specifically focusing on the development of renewable energy technologies. The main 

research question addressed in this thesis are: 

1) What aspects of place-dependence drive the innovation activities of renewable energy 

technologies? 

2) How does place-dependence affect the global development trajectories of renewable 

energy technologies?  

3) How do countries catch up in renewable energy technologies by utilizing local and 

global knowledge? 

In this concluding chapter, I first summarize the main empirical findings. Next, main 

conclusions derived from these findings are provided. I further discuss the contributions 

and limitations of this work, and highlight some important issues for further research. 

Finally, I provide policy implications following our empirical findings. 

6.1 Main empirical findings 

Chapter 2 focuses on the knowledge production of countries in renewable energy 

technologies. Previous studies in EEG suggest that countries (regions) are more likely to 

develop new technologies related to their existing local knowledge base (Boschma, 2017; 

Boschma et al., 2017a; Content and Frenken, 2016; Hidalgo et al., 2018). A similar pattern 

is also observed in the development of clean technologies (Montresor and Quatraro, 2019; 

Perruchas et al., 2019; Tanner, 2016, 2014; van den Berge et al., 2019). This chapter 

calculates technological specialisations of countries, technological relatedness and 

international knowledge spillovers in inventor networks using patent data. The empirical 

findings show that countries benefit from both the local and the global related knowledge 

base in developing renewable energy technologies, providing empirical evidence for the 

global innovation systems concept proposed by Binz and Truffer (2017). 

Chapter 2 further highlights the place-dependence of renewable energy technologies by 

investigating the heterogeneous benefits countries derive from local and global related 

knowledge in developing renewable energy technologies. The empirical findings show that 

domestic market formation and development play an important role in shaping the place-

specific benefits from local and global knowledge. First, technological relatedness has a 

larger impact in countries with a larger domestic market for renewables, suggesting an 

important role of market formation and development in strengthening the path-dependent 

process towards more related renewable energy technologies. Second, for middle- and low-

income countries, the domestic market for renewables of a country helps better utilize 

global knowledge. This has implications for the catching-up strategy of latecomer 
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countries: Sustainability transitions open new opportunities for latecomer countries to catch 

up by engaging with the global innovation systems of clean energy technologies (Mathews, 

2013; Meckling and Hughes, 2018; Perez, 2016) and the creation of domestic markets can 

help latecomer countries to seize these opportunities (Binz et al., 2017a; Yap and Truffer, 

2019). 

The knowledge dynamics of the global renewable energy innovation systems are multi-

scalar in that both knowledge flows between different TISs and NISs are important for 

future knowledge development (Binz and Truffer, 2017). Chapter 3 provides a first 

systematic empirical analysis of these multi-scalar knowledge dynamics by considering 

both technological and geographical dimensions. Furthermore, this chapter highlights the 

importance of national innovation systems in the knowledge development of global 

renewable energy innovation systems. Although sustainability transitions are increasingly 

global (Meckling and Hughes, 2018), the understanding of place-specificity is crucial for 

formulating better transition pathways for individual countries and facilitating future 

technology development (Hansen and Coenen, 2015).  

This chapter employs renewable energy patents and patent citations in studying the 

impacts of knowledge flows following Nemet (2012). The empirical findings show that the 

impacts of external knowledge flows critically depend on the absorptive capacity of 

countries, resulting from the knowledge diffusion between domestic actors in an innovation 

system. Countries with larger absorptive capacity benefit from domestic knowledge 

originating in other TISs, whereas international knowledge flows within a TIS are more 

important for countries with smaller knowledge bases. The findings complement previous 

studies focusing on such knowledge flows in TIS research (Battke et al., 2016; Stephan et 

al., 2019) that under conceptualize the importance of geographical dimension. The analysis 

in this chapter addresses place-specificity by showing that countries with different levels of 

absorptive capacity should explore different dimensions (technological or geographical) in 

searching for external knowledge.  

Recent studies in EEG show that countries and regions occasionally develop new 

technologies that are rather unrelated to their existing knowledge base (Montresor and 

Quatraro, 2017; Neffke et al., 2018; Petralia et al., 2017). In such studies, however, it 

remains unclear whether the new technologies emerging at the local level also represent the  

global new niches deviating from the regime technology. Chapter 4 engages with this 

question by building on the diversification typology proposed by Boschma et al. (2017). In 

the study, I distinguish between local place-dependence and global path-dependence. 

Following the recombinant view of technological change, this chapter identifies 

breakthrough inventions in solar photovoltaic technology that have the potential to disrupt 
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global path-dependence, and investigates whether the emergence of breakthrough 

inventions is place-dependent in building on locally available yet unrelated technologies.  

This chapter identifies breakthrough inventions by looking at the new combination of 

patent classes in solar photovoltaic technology. The empirical results show that unrelated 

technologies are more likely to be recombined when they are strongly present in the same 

region, indicating that place-dependence can indeed break global path-dependence. 

Moreover, this pattern is common to renewable energy technologies which are considered 

radical and complex (Barbieri et al., 2020), while a similar pattern is not observed using all 

technologies. Thus, the recombination of unrelated technologies already existing locally 

can be viewed as a smart way to aim for breakthrough inventions while still building on 

local capabilities (Frenken, 2017).  

Having identified conditions for breakthrough inventions in Chapter 4, Chapter 5 further 

focuses on the catching-up of countries in the clean energy technology paradigm by 

comparing the spatial-temporal diffusions of breakthrough inventions in solar photovoltaic 

and wind power technology. Perez and Soete (1988) suggest that the catching-up of 

latecomer countries in emerging technological paradigms can only be achieved through 

imitating and improving the new technologies as early imitators. The empirical findings 

suggest that the local related capabilities can facilitate earlier adoptions of breakthroughs in 

both technologies, especially in countries with lower levels of economic development. Our 

results provide the first systematic evidence of latecomer countries catch up in the new 

clean energy technological paradigm based on local related capabilities (Mathews, 2013; 

Perez, 2016, 2013).  

Furthermore, the spatial-temporal diffusion patterns of solar photovoltaic technology and 

wind power technology are different in that there are more opportunities for latecomer 

countries to catch up based on related capabilities in solar photovoltaic technology than for 

wind power technology. This finding suggests that the catching-up process of latecomer 

countries is also affected by the technology characteristics of the different clean energy 

technologies (Binz and Truffer, 2017; Schmidt and Huenteler, 2016). 

6.2 Conclusions 

This thesis investigates the multi-scalar knowledge dynamics in global renewable energy 

innovation systems, highlighting the place-dependence of renewable energy technologies. 

Chapter 2 confirms that place-dependence of renewable energy technologies originates in 

the path-dependent process towards technologies related to a country’s existing knowledge 

base. Place-dependence also helps to understand how countries benefit differently from 

local and global knowledge. Chapter 2 and Chapter 3 show that the absorptive capacity of 

countries resulting from domestic markets for renewables and knowledge diffusion between 
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actors within an innovation system moderates the impacts of local and global knowledge.  

Place-dependent local technology development can also affect global technology 

development. The empirical findings of Chapter 3 and Chapter 4 show that the 

recombination of locally available, yet unrelated technologies can contribute to global 

technology development. More importantly, Chapter 4 shows that such approach can 

facilitate the emergence of breakthrough inventions with the potential to shift existing 

technological trajectories to new directions, i.e., break global path-dependence. However, 

such a process is most likely to be observed in countries and regions with large absorptive 

capacity.  

The thesis also answers the research question of how countries can catch up in the global 

renewable energy innovation system. The empirical findings of Chapter 2 and Chapter 5 

show that both local and global knowledge can help countries catch up in renewable energy 

technologies, both in developing new specialisations and in adopting breakthrough 

inventions earlier. For middle- and low-income countries, domestic markets for renewables 

help utilize both local and global knowledge. Local related capabilities are also more 

important in these countries in facilitating early adoptions of breakthrough inventions.  

6.3 Contributions, limitations and future research 

The main contribution of thesis is that it brings the global perspective into evolutionary 

economic geography (EEG), and provides a comprehensive understanding of the multi-

scalar knowledge dynamics in the conceptual framework of ‘global innovation systems’ 

proposed by Binz and Truffer (2017). More specifically, this thesis provides systematic 

evidences on how renewable energy technologies are place-dependent by articulating how 

local technology development can contribute to global technology development.  

Theoretical and methodological pluralism have gained increasingly recognition in both 

the EEG literature (Boschma et al., 2017a; Hassink et al., 2014) and the sustainability 

transition literature (Geels et al., 2016a; Roberts et al., 2018; Turnheim et al., 2015). This 

thesis adds to these developments by linking the EEG literature with the TIS approach in 

sustainability transition literature in two ways.  

First, the global perspective of technology development in the TIS literature helps to 

distinguish place-dependence from global path-dependence. Implementing the 

diversification typology along geographical and technological dimensions proposed by 

Boschma et al. (2017a), this thesis identifies breakthrough inventions with potentials to 

disrupt path-dependence following the recombinant view of technological change (Arthur, 

2007; Fleming, 2001; Henderson and Clark, 1990; Verhoeven et al., 2016). This thesis 

provides empirical evidence on how place-dependence can break global path-dependence 

by introducing breakthrough inventions new to a technology based on local knowledge in 
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unrelated technologies. Furthermore, the focus on spatial-temporal diffusion of new 

technologies provides empirical evidence on how local capabilities can facilitate catching-

up of countries when windows of opportunities emerge, which is still largely conceptual 

(without convincing empirical support) in the current EEG literature (Boschma et al., 

2017a; Lee and Malerba, 2017). 

Second, the TIS approach in the sustainability transition literature can help to better 

understand how emerging technologies evolve in interactions between knowledge and other 

resources like market and finance, and between actors from different technologies and 

countries (Binz and Truffer, 2017; Hekkert et al., 2007). The TIS functions and how they 

interact with each other in generating positive feedback loops therefore help EEG literature 

understand the unique opportunities and constrains for countries with respect to global 

technology development beyond the local knowledge base perspective. This thesis points 

out the moderating roles of market formation and knowledge diffusions between domestic 

actors in an innovation system in utilizing both local and global knowledge.  

This thesis is not without limitation. First, this thesis employs patents to proxy the 

inventions, and patent citations as well as the adoption of new combinations as diffusion of 

inventions. Patent statistics suffer from the drawback that not all innovations are patented 

(Griliches, 1990; Pavitt, 1985), especially process innovations which play a significant role 

in the cost reduction of renewable energy technologies (Kavlak et al., 2018). Moreover, this 

thesis identifies breakthrough inventions based on the technology classes, there lacks 

evidence on the extent the novelty indicator this thesis employs captures the truly radical 

inventions in renewable energy technologies. Thus, future research should focus on how to 

implement mixed methods in identifying key breakthroughs in renewable energy 

technologies.  

Second, although this thesis explores the place-dependence of renewable energy 

technologies, recent studies show that the spatial trajectories of renewable energy 

technologies are also influenced by technology-specific characteristics (Binz and Truffer, 

2017; Schmidt and Huenteler, 2016). The difference between the spatial-temporal diffusion 

patterns between solar photovoltaic technology and wind power technology shown in 

Chapter 5 sheds light upon this topic that the catching-up process of latecomer countries is 

also affected by the technology characteristics (Lee and Malerba, 2017). There are more 

opportunities for catching up in more dynamic technologies like solar photovoltaic 

technology. However, this thesis does not systematically investigate the difference between 

different types of renewable energy technology, and the difference between renewable 

energy technologies and other technologies.  

Most renewable energy technologies consist of multiple components in their value chains 

(Malhotra et al., 2019; Stephan et al., 2017). Hence, the difficulties in developing new 
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technologies also lies in the way how different components of the focal technology interact 

with each other (Frenken, 2006; McNerney et al., 2011; Murmann and Frenken, 2006). 

Modularity of components also affects the spatial trajectories of technologies, yet this is 

understudied in current EEG literature. For complex technologies with a high level of 

modularity like solar photovoltaic technology, latecomer countries can enter in relatively 

less complex segments of the value chain and move along the value chain through learning 

by interacting (Binz and Anadon, 2018; Malhotra et al., 2019). From a view of supply chain 

management, components of high complexity and low modularity are less likely to be 

outsourced, leaving less opportunities for latecomer countries (Novak and Eppinger, 2001). 

Thus, future research should focus on the systematic delineation of characteristics of 

renewable energy technologies taking into account both complexity and modularity, and 

investigate the location choices of supply chain outsourcing.  

Third, a comprehensive understanding of the place-dependence of technology evolution 

also requires a micro-perspective, which could be taken up in follow-up research 

(Boschma, 2017; Henning, 2019). For example, Chapter 2 results suggest that global 

inventor network can facilitate the catch-up of renewable energy technologies. It is thus 

important to further understand how such networks form as well as what other channels 

exist through which knowledge are transferred globally (Popp, 2011). Besides investment 

and mobility of inventors across borders (Binz and Anadon, 2018; Hausmann and Neffke, 

2019; Luo et al., 2017; Neffke et al., 2018), global innovation networks maintained by 

MNCs also gain increasing attentions recently (Cano-Kollmann et al., 2016; Mudambi et 

al., 2018; Noailly and Ryfisch, 2015). Indeed, the results in Chapter 5 show that the 

innovation network within the MNCs can facilitate earlier adoptions of breakthrough 

inventions. Hence, how to leverage resources to tap into global innovation networks is an 

important research topic for EEG and GIS, especially for latecomer countries. Furthermore, 

it should also be important to focus on how external actors can induce structural change of 

a region (Breschi and Lenzi, 2015; Hausmann and Neffke, 2019; Neffke et al., 2018). 

The empirical findings of Chapter 3 and Chapter 4 further suggest that the recombination 

of locally available unrelated technologies can facilitate breakthrough inventions. However, 

there lack insights on the actors introducing the breakthroughs in such process. Public 

actors (Corradini and De Propris, 2017; Fleming et al., 2019; Gilbert and Campbell, 2015) 

and spin-offs from other segments of the supply chain (Adams et al., 2015; Klepper, 2007) 

play an important role in this process. It is therefore important to focus on the boundary 

spanning actors and the determinants of their boundary spanning activities. Overall, the 

micro-perspective can help evaluate the impacts of policies by focusing on how actors 

respond to multi-level policy interventions and how they actively engage in the policy 

making process to facilitate structural change (Uyarra et al., 2017). 
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A final limitation worth noting is that demand in this thesis is investigated in a rather 

simple way by looking at the size of domestic market for renewables in each country. 

Market development in one country can facilitate the technology development in other 

countries (Binz and Anadon, 2018; Binz and Truffer, 2017; Dechezleprêtre and Glachant, 

2014; Horbach et al., 2014; Quitzow, 2015). Furthermore, the TIS and sustainability 

transition literature highlight the importance of niche market creation (Dewald and Truffer, 

2011; Hekkert et al., 2007). Frequent interactions between inventors and pioneer users 

could facilitate radical technological change (Garud and Karnøe, 2003). Thus, future 

research could further investigate the impacts of both international and niche market on the 

innovative performance of countries in renewable energy technologies.  

6.4 Policy implications 

The current achievements of clean energy innovations are heavily influenced by various 

government policies (Harrison et al., 2017; Rodrik, 2014), and are shaped by vested 

interests in clean energy innovations (Schmidt et al., 2019). Given the urgency of climate 

change mitigation, policy interventions will continue to play an important role in 

facilitating innovations with potential to address climate change and other societal 

challenges (Boon and Edler, 2018; Foray et al., 2012; Frenken, 2017; Mazzucato, 2018; 

Weber and Rohracher, 2012).  

Based on the empirical findings, this thesis formulates different policy implications in 

developing renewable energy technologies at different locations. For countries with large 

absorptive capacities, this thesis provides empirical support for the ‘cross-specialisation’ 

policy framework proposed by Janssen and Frenken (2019). They suggest that promoting 

crossovers between unrelated technologies in an economy can facilitate the emergence of 

radical innovations. The strong presence of unrelated technologies in a region can 

compensate the lack of cognitive proximity as well as provide institutional support for the 

radical innovations (Frenken, 2017; Janssen and Frenken, 2019). Leveraging local 

capabilities in building new competences in regions is the key policy goal of the recent 

smart specialisation strategies which have been integrated in the European regional policy 

(Balland et al., 2019; Foray, 2018b).  

For middle- and low-income countries, this thesis suggests that domestic market for 

renewables plays an important role in utilizing local and global related knowledge to catch 

up in renewable energy technologies. This is in line with the recent call for demand-side 

innovation policies (Boon and Edler, 2018). Market formation and development can 

increase the public acceptance of innovation, as well as provides legitimacy and guidance 

for the innovation process itself (Frenken, 2017; Weber and Rohracher, 2012). Through 

active shaping of the selection environment and guiding the search process for both local 
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and global resources, latecomer countries can endogenize the windows of opportunity in 

catching-up process (Yap and Truffer, 2019).  

Overall, this thesis highlights the patterns of place-dependence in the multi-scalar 

innovation dynamics of renewable energy technologies. Given the clear direction in 

facilitating innovations to address climate change, this policy implications formulated based 

on the empirical findings of this thesis resonate with the recent mission-oriented policies 

(Foray, 2018a; Foray et al., 2012; Mazzucato, 2018). Most importantly, this thesis 

contributes to the understanding of the geography dimension in mission-oriented innovation 

policies (Foray, 2018a; Uyarra et al., 2020; Wanzenböck and Frenken, 2018). Policies for a 

country or region need consideration of the place-specific conditions, and how the focal 

country and region are connected to global technology regimes as well as to emerging 

niches at different locations. In doing so, mission-oriented policies can better guide the 

search process for resources needed to address place-specific climate change challenges, 

and at the same time collectively contribute to the global climate change mitigation.  
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Summary 

Climate change mitigation requires rapid decarbonization of the current energy systems 

worldwide. Developing renewable energy technologies is not only an important way to help 

countries achieve their carbon emission reduction goals, but is also considered increasingly 

promising for economic development in both industrialized and emerging countries. 

Government interventions will therefore continue to play an important role in developing 

renewable energy technologies.  

The increasing globalization of technology development allows countries to obtain 

resources like knowledge, market access and finance from other countries for developing 

domestic renewable energy technologies. However, countries differ significantly in their 

capabilities and choices of renewable energy technologies as a result of their unique 

history, their existing knowledge base as well as a broader set of institutional and 

geographical conditions.  

The goal of this thesis is therefore to increase our understanding of the place-dependence 

of renewable energy technologies for formulating better policies to guide the technology 

development and transition pathway of countries. This thesis consists of four empirical 

chapters, and focuses on three sets of research questions: 1) What aspects of place-

dependence drive the innovation activities of renewable energy technologies? 2) How does 

place-dependence affect the global development trajectories of renewable energy 

technologies?  3) How do countries catch up in renewable energy technologies by utilizing 

local and global knowledge? 

Chapter 2 focuses on the knowledge production of countries in renewable energy 

technologies. I test whether countries are more likely to develop renewable energy 

technologies based on their existing knowledge base in related technologies. The empirical 

findings show that countries benefit from both the local and the global related knowledge 

base in developing renewable energy technologies. Moreover, the domestic market for 

renewables plays an important role in shaping the place-specific benefits from local and 

global knowledge that middle- and low-income countries with larger domestic market can 

benefit more from global related knowledge base.  

Chapter 3 focuses on the impacts of external knowledge on the development of 

renewable energy technologies. Both technological and geographical dimensions are 

important in the search process of external knowledge. The empirical findings show that the 

impacts of external knowledge critically depend on the absorptive capacity of countries, 

resulting from the knowledge diffusion between domestic actors in an innovation system. 
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Domestic knowledge from other technologies are important for countries with larger 

absorptive capacity, whereas countries with smaller absorptive capacity benefits more from 

international knowledge in the same technology.  

Chapter 4 further shows how the place-dependence can shift the direction of global 

technology development. I identify breakthrough inventions in solar photovoltaic 

technology based on the new combination of unrelated technologies which has potential to 

break the path-dependence of global technology trajectories. I then investigate whether the 

breakthrough inventions are place-dependent in building on locally available technologies. 

The empirical results show that unrelated technologies are more likely to be combined in 

breakthrough inventions when they are strongly present in the same region. Moreover, this 

pattern is common to renewable energy technologies which are considered radical and 

complex, while a similar pattern is not observed using all technologies.  

Chapter 5 focuses on how countries can catch up in the low-carbon energy paradigm by 

adopting breakthrough inventions in renewable energy technologies earlier. I test whether 

the knowledge base of countries in related technologies can accelerate the catching up 

process. The empirical findings suggest that the domestic capabilities of countries in related 

technologies can facilitate the earlier adoptions of breakthrough inventions, especially in 

countries with lower levels of economic development. However, the spatial-temporal 

diffusion patterns of solar photovoltaic technology and wind power technology are different 

that there are more opportunities for latecomer countries to catch up in solar photovoltaic 

technology than for wind power technology.  

In sum, this thesis leads to three conclusions. First, the place-dependence of renewable 

energy technologies originates from the path-dependent process towards technologies 

related to a country’s existing knowledge base and the different benefits that countries 

enjoy from the availability of locally and globally related knowledge. Second, place-

dependence can affect the global development of renewable energy technologies. Locally 

available - yet unrelated- technologies can offer different opportunities for breakthrough 

inventions with potential to shift the global technology trajectories. Third, for middle- and 

low-income countries, domestic markets for renewables help utilize both local and global 

knowledge. The domestically related capabilities are also more important in these countries 

in facilitating early adoptions of breakthrough inventions. 
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Samenvatting 

De beperking van klimaatverandering vereist een snelle decarbonisatie van de huidige 

energiesystemen wereldwijd. Het ontwikkelen van hernieuwbare energietechnologieën is 

niet alleen een belangrijke manier om landen te helpen hun doelstellingen voor 

vermindering van de CO2-emissie te bereiken, maar wordt ook steeds meer als 

veelbelovend beschouwd voor de economische ontwikkeling in zowel geïndustrialiseerde 

als opkomende landen. Overheidsinterventies zullen daarom een belangrijke rol blijven 

spelen bij de ontwikkeling van hernieuwbare energietechnologieën. 

Door de toenemende globalisering van technologieontwikkeling kunnen landen middelen 

zoals kennis, markttoegang en financiering uit andere landen verwerven voor het 

ontwikkelen van eigen hernieuwbare energietechnologieën. Landen verschillen echter 

aanzienlijk in hun capaciteiten en keuzes voor hernieuwbare energietechnologieën als 

gevolg van hun unieke geschiedenis, kennisbasis en bredere institutionele en geografische 

omstandigheden. 

Het doel van dit proefschrift is daarom om het inzicht in de plaatsafhankelijkheid van 

hernieuwbare energietechnologieën te vergroten om daarmee beter beleid te formuleren om 

de technologische ontwikkeling en het transitiepad van landen te sturen. Dit proefschrift 

bestaat uit vier empirische hoofdstukken en richt zich op drie sets onderzoeksvragen: 1) 

Welke aspecten van plaatsafhankelijkheid sturen de innovatieactiviteiten van hernieuwbare 

energietechnologieën? 2) Hoe beïnvloedt plaatsafhankelijkheid de mondiale 

ontwikkelingstrajecten van hernieuwbare energietechnologieën? 3) Hoe halen landen 

achterstand in de ontwikkeling van hernieuwbare energietechnologie  in door gebruik te 

maken van lokale en globale kennis? 

Hoofdstuk 2 richt zich op de landelijke kennisproductie op het gebied van hernieuwbare 

energietechnologieën. Ik test of landen meer kans hebben om hernieuwbare 

energietechnologieën te ontwikkelen op basis van hun bestaande capaciteiten in 

gerelateerde technologieën. De empirische bevindingen tonen aan dat landen profiteren van 

zowel de lokale als de globale gerelateerde kennisbasis bij het ontwikkelen van 

hernieuwbare energietechnologieën. Bovendien speelt de binnenlandse markt voor 

hernieuwbare energiebronnen een belangrijke rol bij het vormgeven van de plaatsgebonden 

voordelen van lokale en mondiale kennis, zodat landen met een middelhoog en laag 

inkomen met een grotere binnenlandse markt meer kunnen profiteren van de globale 

kennisbasis. 

Hoofdstuk 3 richt zich op de effecten van externe kennis op de ontwikkeling van 

hernieuwbare energietechnologieën. Zowel technologische als geografische dimensies zijn 

belangrijk in het zoeken naar externe kennis. Uit de empirische bevindingen blijkt dat de 
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effecten van externe kennis kritisch afhangen van het absorptievermogen van landen als 

gevolg van de kennisverspreiding tussen binnenlandse actoren in een innovatiesysteem. 

Binnenlandse kennis van andere technologieën is belangrijk voor landen met een groter 

absorptievermogen, terwijl landen met een kleiner absorptievermogen meer profiteren van 

internationale kennis in dezelfde technologie. 

Hoofdstuk 4 laat verder zien hoe de plaatsafhankelijkheid de richting van globale 

technologische ontwikkeling kan veranderen. Ik identificeer baanbrekende uitvindingen 

(breakthrough inventions) in fotovoltaïsche zonnetechnologie die op basis van een nieuwe 

combinatie van niet-verwante technologieën de padafhankelijkheid van mondiale 

technologietrajecten kan doorbreken. Vervolgens onderzoek ik of deze uitvindingen 

plaatsafhankelijk zijn bij het voortbouwen op lokaal beschikbare technologieën. De 

empirische resultaten tonen aan dat niet-verwante technologieën vaker worden 

gecombineerd in baanbrekende uitvindingen wanneer ze sterk aanwezig zijn in dezelfde 

regio. Bovendien is dit patroon gebruikelijk bij hernieuwbare energietechnologieën die als 

radicaal en complex worden beschouwd, terwijl een vergelijkbaar patroon niet wordt 

waargenomen bij alle technologieën. 

Hoofdstuk 5 richt zich op hoe landen een inhaalslag kunnen maken in het duurzame 

energieparadigma door eerdere baanbrekende uitvindingen in hernieuwbare 

energietechnologieën over te nemen. Ik test of de kennisbasis van landen in gerelateerde 

technologieën dit inhaalproces kan versnellen. De empirische bevindingen suggereren dat 

de binnenlandse capaciteiten van landen in aanverwante technologieën eerdere adoptie van 

baanbrekende uitvindingen kunnen vergemakkelijken, vooral in landen met een lager 

niveau van economische ontwikkeling. De ruimtelijk-temporele diffusiepatronen van 

fotovoltaïsche zonne-energietechnologie en windenergietechnologie zijn echter 

verschillend;voor laatkomer-landen zijn er meer kansen om de zonne-fotovoltaïsche 

technologie in te halen dan voor windenergie-technologie. 

Samenvattend leidt dit proefschrift tot drie conclusies. Ten eerste komt de 

plaatsafhankelijkheid van hernieuwbare energietechnologieën voort uit het padafhankelijke 

proces naar technologieën, welke verband houden met de bestaande kennisbasis van een 

land en met de verschillende voordelen van lokale en globale gerelateerde kennis van 

landen. Ten tweede kan de plaatsafhankelijkheid van invloed zijn op de globale 

technologische ontwikkeling doordat lokaal beschikbare, maar niet-verwante technologieën 

kansen kunnen bieden voor baanbrekende uitvindingen die de globale technologietrajecten 

op het gebied van hernieuwbare energietechnologieën kunnen veranderen. Ten derde 

helpen de binnenlandse markten voor hernieuwbare energiebronnen voor landen met een 

midden- en een laag inkomen de lokale en globale kennis te benutten. De binnenlandse 
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capaciteiten zijn in deze landen ook belangrijker bij het vergemakkelijken van vroege 

adoptie van baanbrekende uitvindingen. 
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