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Abstract
Public health policymakers face increasingly complex questions and decisions and 
need to deal with an increasing quantity of data and information. For policy advisors 
to make use of scientific evidence and to assess available intervention options effec-
tively and therefore indirectly for those deciding on and implementing public health 
policies, mathematical modeling has proven to be a useful tool. In some areas, the 
use of mathematical modeling for public health policy support has become standard 
practice at various levels of decision-making. To make use of this tool effectively 
within public health organizations, it is necessary to provide good infrastructure and 
ensure close collaboration between modelers and policymakers. Based on experi-
ence from a national public health institute, we discuss the strategic requirements 
for good modeling practice for public health. For modeling to be of maximal value 
for a public health institute, the organization and budgeting of mathematical mode-
ling should be transparent, and a long-term strategy for how to position and develop 
mathematical modeling should be in place.
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Mathematical modeling for policy support

Public health policymakers confront increasingly complex questions and deci-
sions and need to deal with increasing amounts of data and information. Public 
health institutes form a link between scientific research and public health poli-
cymaking and practice, and in this role they provide guidance and advice to pub-
lic health policymakers. To do so, they need to make use of scientific evidence 
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and to assess available intervention options effectively. For researchers and 
policy advisors who compile and evaluate scientific evidence for health inter-
ventions, mathematical modeling has proven to be a useful tool. Developing a 
mathematical model helps to synthesize information from different sources into 
a consistent framework that allows an integrated analysis of complex problems 
[1, 2]. Researchers in public health, who provide advice to policymakers, often 
use mathematical models to simulate the impact of various interventions or pub-
lic health strategies, and to provide quantitative predictions of how interventions 
might affect population health in the future.

In some areas, the use of mathematical modeling for public health policy sup-
port has become standard practice at various levels of decision-making [3–5]. In 
the field of infectious disease control, mathematical modeling has a long history 
and has become an important tool in decision-making for public health in the 
last two decades. During the influenza pandemic of 2009, mathematical modeling 
helped the World Health Organization (WHO) outbreak response team and deci-
sion-makers in national outbreak response units with interpretation of outbreak 
data during the early phase of the epidemic [3]. Results from modeling studies 
also supported decisions about vaccination strategies during later stages of the 
outbreak by providing estimates of the basic reproduction number and evaluat-
ing how timing and targeting of vaccination to different population groups might 
impact the epidemic peak and duration [6–8]. More recently, during the large 
Ebola outbreak in West Africa, mathematical modelers estimated key param-
eters for outbreak control such as the impact of case isolation, contact-tracing 
with quarantine, and sanitary funeral practices on the numbers of new infections 
[9, 10]. When a vaccine against Ebola became available, mathematical modeling 
helped researchers and outbreak responders to design ring vaccination trials that 
could lead to successful testing of the vaccine despite a decreasing exposure risk 
during the declining epidemic phase [11, 12]. This experience has led the WHO 
to publish a guidance document on the design of vaccine efficacy trials during 
public health emergencies [13]. In the field of HIV prevention, modeling work by 
Granich and colleagues [14] has paved the way for UNAIDS to introduce the test-
and-treat strategy with the long-term goal of elimination of HIV [15]. In the area 
of chronic diseases, models are used to generate projections of population health 
given demographic changes, distributions, and trends of risk factors in a popula-
tion and possible effects of intervention programs [16–19].

Conceptual ideas and quantitative results from mathematical models are at the 
core of many reports and documents produced at public health institutes containing 
advice for policymakers. Therefore, modeling—often in combination with health 
economic assessments—potentially has great influence on policy decisions. Promi-
nent examples include policy decisions concerning national immunization pro-
grams, where health authorities routinely perform or commission cost-effectiveness 
analyses before introducing new vaccines. The analysts usually base their work on 
‘scenario analysis’ (i.e., a comparison of various possible intervention strategies in 
a systematic way) using ‘dynamic transmission models’ [20, 21]. The latter describe 
transmission between susceptible and infected individuals as a mechanistic process 
and are able to account for non-linear effects such as herd immunity.
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Nevertheless, the contribution of modeling to generating the quantitative basis 
for public health information and decisions is often not visible and remains under-
rated by policymakers who base their decisions on advice produced by public health 
research and institutions. Even within public health institutes themselves, the impor-
tance of having broad and stable expertise in mathematical modeling is often under-
valued. This creates a danger of insufficient investment for continuity and quality of 
modeling expertise. Responsible public health managers and communication offic-
ers, but also mathematical modelers themselves, need to make more effort to com-
municate with policymakers and public health professionals about the importance of 
models for policy analysis [22].

At present, several public health institutes around the world make use of math-
ematical modeling for policy advice. In the United Kingdom, the mathematical 
modeling unit of Public Health England works closely with the ministry of health. 
The Institute Pasteur in France, Robert Koch-Institute in Germany, and the National 
Institute of Public Health and the Environment (RIVM) in The Netherlands maintain 
modeling groups in their organizations. In North America, the United States (US) 
Centers for Disease Control and Prevention (CDC) and the Public Health Agency of 
Canada support internal modeling groups or collaborate with modelers in academia.

At the author’s organization, the RIVM, a dedicated group of senior scientists and 
policy advisors discussed the infrastructure and positioning of mathematical mode-
ling with the aim of consolidating the existing expertise and developing a long-term 
strategy [23]. Here, we summarize uses of mathematical modeling, organization 
within the institute, and future challenges for disease modeling for public health.

Areas of application and challenges

Mathematical modeling—broadly interpreted as using mathematical tools to con-
ceptualize, formulate rigorously, and qualitatively and quantitatively analyze a prob-
lem at hand—permeates a large proportion of all research and policy advice pro-
duced at our institute, the National Institute for Public Health and the Environment 
(RIVM). The RIVM has a central role in infectious disease control and national pre-
vention and population screening programs in the Netherlands and conducts inde-
pendent (scientific) research in the field of public health, health services, environ-
mental safety, and security. In this role, the RIVM produces numerous reports and 
publications on all aspects of public health, nutrition and food, health care, disaster 
management, nature, and the environment each year. Besides the ‘classical’ areas 
of application of mathematical modeling in infectious and chronic diseases, and to 
assess health effects of air pollution, we use models in the environmental sector for 
predicting the transport of substances through water and air [24], assessing the risks 
of exposure to toxic substances, and impact of radiation on health. Furthermore, 
there is a large area of application of microbial risk modeling [25] for establishing 
risk assessment for food safety or, more broadly, multi-criteria risk analysis includ-
ing risk ranking of emerging infectious diseases [26]. In the health field as well as 
the environmental field, we use burden of disease measures, leading to the necessity 
of developing underlying models for exposure and disease progression [27, 28]. In 
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public health, we use estimates of disease burden in terms of disability adjusted life 
years (DALYs) to compare the impact of various diseases on population health and 
to provide guidance for policymakers on how resources should be used effectively to 
achieve health gains in the population [29] (Fig. 1).

We use mathematical models on various levels of (biological) organization, 
namely within host modeling (including dose response models [30], models for 
development of cancer following radiation [31], models for immune response after 
vaccination [32]), population-level modeling (epidemiological models and health 
economic models), and complex system modeling [33, 34]. The last includes mod-
els used for strategic aims, such as describing interactions of stakeholder networks, 
modeling of health care systems (for example, waiting lists [35]), or models to help 
with complex decision-making.

Mathematical modelers in public health institutes are facing various types of 
challenges including practical ones of limited budgets and lack of infrastructure (see 
next section) and new scientific challenges posed by developments in other fields of 
science. One challenge of the latter type is the increased public health attention for 
risk perception and behavioral aspects of health and interventions. This has sparked 
collaboration between social scientists and modelers endeavoring to incorporate 
these factors into disease models [36]. Another—perhaps the most important—
challenge of the last decade was the increasing availability of data from genome 
sequencing and other ‘omics’ data, or more generally big data sets [37].

Increasing availability and use of genomic data for diagnostic and surveillance 
purposes has revolutionized outbreak investigation, risk assessment, and epide-
miological research. We need to develop new mathematical modeling tools to link 
genomic and other epidemiological data to create consistent frameworks. An entire 
new branch of modeling is developing; it can be subsumed under the term “phylody-
namics” coined by Grenfell and colleagues [38]. A public health relevant application 
of such models is prediction of future strain composition of seasonal influenza using 
evolutionary models and genetic sequence information [39].

These developments in modeling methodology pose not only technical prob-
lems of availability of the required hardware and software, but also the necessity to 
develop knowledge among colleagues within the institute for using this type of data 
for public health. For mathematical modeling, it means that scientific computing is 
becoming increasingly important, which requires a further professionalization of 
computing. Where in the past smaller models could be developed and managed on 
desk top computers by modelers themselves, it is now becoming increasingly neces-
sary to use high-performance computing clusters to deal with large amounts of data 
and computing intensive simulation models. For ensuring reproducibility of mod-
eling results, efficient programming, proper documentation, archiving, and version 
management are necessary.

Focusing more and more on the computational aspects of modeling entails the 
danger of neglecting interpretation and synthesis on a conceptual level. Here lies 
an important task for strategic models, such as systems dynamics models [33], that 
describe interaction among components of a system more qualitatively than quan-
titatively. For the field of evolutionary biology, Servedio and colleague, biologists, 
discussed so-called proof-of-concept models and their value for developing and 
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Fig. 1   Applications of mathematical modeling
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testing hypotheses [40]. These models are not yet sufficiently established and used, 
even if their contribution to integrating knowledge over various sectors and disci-
plines could potentially be large. They have the strong advantage that qualitative 
results can often be obtained by mathematical analysis, leading to broader and more 
generalizable insights than computational results.

Well-known examples include the importance of sufficient vaccination coverage 
for achieving herd immunity, and the increase of average age at infection in vacci-
nated populations. That these are not merely theoretical results, but may have consid-
erable public health impact, is demonstrated by a recent modeling study. Its authors 
calculated the increased risk for severe disease outcomes due to the increased age 
at infection for unvaccinated individuals in highly vaccinated populations, an effect 
that is often overlooked by vaccine critics, who weigh benefits against risks of vac-
cination [41]. In a study investigating the impact of vaccination against pertussis, 
Aguas et al. used a simple mathematical model to show that increased vaccination 
coverage can lead to an increase in the incidence of severe pertussis cases [42]. Sim-
ilarly, for foodborne infections with acquired immunity, Swart et  al. [43] showed 
that decreasing environmental contamination with campylobacter might lead to an 
increase in the number of symptomatic infections individuals experience during 
their lifetime. The increasing focus on computational models has led researchers of 
all disciplines and users of modeling studies to underappreciate analytic results and 
theoretical insights. More generally, using modeling to generate knowledge requires 
a scientific approach, and a modeling study should lead to new insights on the topic 
at hand. Computation is only a small part of this process, whereas model design and 
interpretation are just as important for a good modeling study.

Embedding into public health

How can we organize expertise in mathematical modeling in a large public health 
institute to ensure high quality of disease modeling? There are two opposing tenden-
cies, centralization and decentralization, with arguments for and against each.

•	 A central modeling unit working for the entire institute has the advantage of a 
critical mass of modelers who can exchange ideas and information about techni-
cal aspects of modeling and can act as an internal peer review group to ensure 
best modeling quality.

•	 Decentralizing modelers, integrated in working groups with researchers of other 
fields (biology, epidemiology, immunology, environmental sciences), has the 
advantage of ensuring communication between modelers and researchers from 
other disciplines from the start. This improves synergy of diverse research fields, 
to improve alignment of study design (i.e., data collection) and model develop-
ment, and generates innovative research ideas. The disadvantage is that modelers 
may become isolated from other modeling colleagues and get insufficient feed-
back on technical aspects of their work [44]. Experience shows recurring move-
ment from more centralized to decentralized organization of modeling at large 
public health institutes (such as those mentioned above).
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The situation of mathematical modeling in an institute that generates, compiles, 
and interprets scientific knowledge for policymakers is similar to that of other meth-
odological disciplines, such as bioinformatics. That is because modelers work on a 
broad range of topics in interdisciplinary projects and are, therefore, often scattered 
across a variety of units in their organizations. For the infrastructural organization of 
bioinformatics, Kallioniemi recommended distinguishing two organizational levels: 
a central core unit operating institute-wide and smaller peripheral units embedded in 
research groups [45]. These authors stress the importance of sufficient contact of the 
embedded units with the others; the core unit can facilitate this. Also for mathemati-
cal modeling, an organizational structure that combines advantages of centralization 
and decentralization is preferable, because it retains the close collaboration of mod-
elers with scientists of other disciplines while also providing sufficient critical mass 
for methodological feedback for modelers. The central core unit needs to assure 
transparency of its tasks and responsibilities for the entire institute. Each institute 
needs to budget funds to organize activities and communication for connecting mod-
elers working outside the core unit to those inside it.

Non-modelers usually underestimate how much time and budget is needed to 
develop and maintain mathematical models. The entire modeling cycle (Fig.  2) 
requires collaboration and input from many disciplines and stakeholders, but many 
of the steps of the cycle do not receive sufficient funding in regular institutional 
budgets often geared to having modelers answer ad hoc questions of policymakers 
rather than consolidating of results in the context of a long-term strategy. Model 
development is often performed in projects with limited duration, after which it is 
difficult to update and maintain the model [44]. Also, elements of implementation 
are often neglected. Dissemination of results to stakeholders and policymakers often 
receives less attention, and little allocated time or budget. Consequently, models are 
often poorly maintained and are not exploited fully for public health policy support 
[4]. For example, disease models used for generating projections for the national 
public health ‘foresight studies’ [46] suffer from underfunding and a lack of critical 
mass of modelers to keep the model up to date with respect to modeling methods 
and input data [44]. (Foresight studies aim to predict developments in population 
health and help policymakers to anticipate problems they need to deal with in the 
future.) For improvement, structural support of modeling activities independent of 
specific research and policy questions is necessary.

Also, public health institutes and in particular modelers themselves need to 
make more effort to communicate to policymakers and to the general public 
what the contributions are of modeling to evidence-based decision-making [4, 
22]. Contributions of modeling to evidence-based decisions in public health pol-
icymaking are often not explicitly acknowledged, while they are instrumental in 
generating projections and estimates of health impact of interventions. A promi-
nent example was the decision of the minister of health in the Netherlands about 
intervention strategies during the 2009 influenza pandemic [47, 48]. Mathemati-
cal modelers generated advice, almost daily, about the possible impact of vacci-
nation, about vaccination strategies, and about number of vaccine doses needed. 
While use and impact of vaccination was discussed nationwide by media and 
public, most were never aware of the basis on which the Dutch Health Council 
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provided advice and the minister of health decided about vaccine stockpiles and 
strategies. Thus, the value of the modeling could not be judged by a broader 
audience [49]. To improve the situation in the future, public health managers 
could organize communication between modelers and policymakers in so-called 
communities of practice, (i.e., groups that share a common concern such as a 
specific public health problem and try to find solutions together interactively), as 
suggested by Driedger et al. [50].

Finally, to maintain modeling expertise within a public health institute, it is 
important to have a long-term recruitment strategy with opportunities for young 
researchers. Institutes also need career options for senior staff [44]. To achieve 
a balanced composition of staff in terms of age and expertise, strategic planning 
for the institute should entail a vision for how to develop modeling staff and 
expertise. To consolidate modeling expertise in the institute, continuous educa-
tion of staff is necessary, for example, by offering researchers opportunities to 
participate in conferences and workshops. The central unit can organize training 
activities to establish common standards for software use and documentation, 
and these events can increase communication between modelers.

Fig. 2   Life cycle of a model. The phases in Fig. 2 are not necessarily occurring in exactly that order in 
time. Publication can take place at several points in the cycle. The first publication could be on the theo-
retical framework of the model that can be before validation using real data. Later on, applied analyses 
using a validated version of the model can also be peer-reviewed and published
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Modeling research and application

Mathematical modeling for public health is a field that requires scientific thinking 
and precision, development of novel methods, and a broad perspective to inte-
grate knowledge from other fields. To use modeling potential effectively, math-
ematical modeling tools need to be ‘state of the art’ in terms of mathematical 
formulation, implementation into computer code, numerical algorithms, and 
statistical approaches [51]. Mathematical modeling is a scientific discipline that 
entails mathematical modelers having the ambition to do research in modeling 
(including space to do so), publish in dedicated journals, and participate actively 
in activities of the growing international modeling community. It is essential for a 
public health institute to have expert modelers who produce and publish interna-
tionally recognized modeling studies. The research questions pursued should be 
inspired by public health policy questions, articulated by public health colleagues 
with varied expertise and those with whom they interact, along with questions 
of concern to the general public as voiced by media (discussion about risks and 
benefits of vaccination). Results should be judged by their applicability for poli-
cymakers [22]. This is a delicate balance that requires continuous critical assess-
ment of scientific and societal impact of modeling studies.

Modelers have an important role to play in key issues of modern societies. 
They are needed for analysis of big data, interpretation of data obtained by data 
mining, and machine learning. And mathematical models will be needed to assess 
the impact of e-health and artificial intelligence on public health [5, 52]. Exam-
ples of these developments are the use of internet data streams for infectious 
disease forecasting [53], and more generally, the development of digital epide-
miology as a field where collection of digital data, machine learning, and com-
putational science come together [54, 55]. Mathematical modeling is an integral 
part of these emerging interdisciplinary research fields.

Conclusions and recommendations

We provide conclusions and recommendations, based on our experience at a 
national public health institute [23, 44]. We hope these will be useful for other 
public health institutes or organizations, which use mathematical modeling as a 
tool for policy support.

•	 Modeling is more than computation: it is a method of abstraction and under-
standing complex systems in a systematic manner.

•	 Modeling needs to be a scientific activity with state of the art approaches, if it 
is to produce relevant answers to policy questions.

•	 Contributions of modeling to the evidence base of policy decisions should be 
acknowledged more explicitly.
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•	 For modeling to be of maximal value for a public health institute, the organiza-
tion and budgeting of mathematical modeling in the institute should be transpar-
ent.

•	 A long-term strategy for how to position and develop mathematical modeling 
within the institute and with external partners should be in place.

As public health policy decisions are becoming more complex in a globalized 
and digitalized world, the benefits that mathematical models can offer for analyzing 
problems and quantifying the possible impact of interventions are huge [5]. These 
benefits can only be fully reaped, if mathematical modeling is sufficiently supported 
and facilitated within the organization of public health institutes.
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