
Discrete Applied Mathematics 272 (2020) 2–15

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Complexity of independency and cliquy trees
Katrin Casel d, Jan Dreier c, Henning Fernau a, Moritz Gobbert a, Philipp Kuinke c,
Fernando Sánchez Villaamil c, Markus L. Schmid a, Erik Jan van Leeuwen b,∗

a Fachbereich 4 – Abteilung Informatikwissenschaften, CIRT, Universität Trier, 54286 Trier, Germany
b Departement of Information and Computing Sciences, Utrecht University, PO Box 80.089, 3508 TB Utrecht, The Netherlands
c Lehr- und Forschungsgebiet Theoretische Informatik, RWTH Aachen, 52074 Aachen, Germany
d Hasso Plattner Institute, University of Potsdam, 14482 Potsdam, Germany

a r t i c l e i n f o

Article history:
Received 31 December 2017
Received in revised form 14 June 2018
Accepted 21 August 2018
Available online 26 October 2018

Keywords:
Independency tree
Cliquy tree
Parameterized complexity
Kernelization algorithms
Exact algorithms

a b s t r a c t

An independency (cliquy) tree of an n-vertex graph G is a spanning tree of G in which the
set of leaves induces an independent set (clique). We study the problems of minimizing or
maximizing the number of leaves of such trees, and fully characterize their parameterized
complexity. We show that all four variants of deciding if an independency/cliquy tree with
at least/most ℓ leaves exists parameterized by ℓ are either Para-NP- or W[1]-hard. We
prove that minimizing the number of leaves of a cliquy tree parameterized by the number
of internal vertices is Para-NP-hard too. However, we show that minimizing the number of
leaves of an independency tree parameterized by the number k of internal vertices has
an O∗(4k)-time algorithm and a 2k vertex kernel. Moreover, we prove that maximizing
the number of leaves of an independency/cliquy tree parameterized by the number k of
internal vertices both have an O∗(18k)-time algorithm and an O(k 2k) vertex kernel, but
no polynomial kernel unless the polynomial hierarchy collapses to the third level. Finally,
we present an O(3n

· f (n))-time algorithm to find a spanning tree where the leaf set has a
property that can be decided in f (n) time and has minimum or maximum size.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The well-known notion of a spanning tree has inspired the study of many variants [3,14], such as Steiner trees and
connected vertex covers. Fitting in this broad line of research, this paper considers two variants of a spanning tree obtained
by restricting the structure of the leaves of the tree. The first considered variant is an independency tree1: a spanning tree in a
graph Gwhere the set L of its leaves is an independent set in G, i.e., the subgraph of G induced by L is edgeless. Independency
trees were introduced by Böhme et al. [2] for two different graph-theoretic reasons. First, these trees block a certain local-
search heuristic from finding Hamiltonian cycles in graphs. Second, they allow a(nother) proof of Brooks’ theorem on the
chromatic number of bounded-degree graphs. Böhmeet al. [2] characterized then-vertex graphs that admit an independency
tree as those not isomorphic to the complete graph Kn, the cycle Cn, or (if n is even) the complete bipartite graph K n

2 , n2
.

Eppstein and Le [19] characterized the graphs in which every spanning tree is an independency tree as those in which the
set of any two adjacent vertices of degree more than one is a separator.

∗ Corresponding author.
E-mail addresses: Katrin.Casel@hpi.de (K. Casel), dreier@cs.rwth-aachen.de (J. Dreier), fernau@uni-trier.de (H. Fernau), gobbert@uni-trier.de

(M. Gobbert), kuinke@cs.rwth-aachen.de (P. Kuinke), fernando.sanchez@cs.rwth-aachen.de (F. Sánchez Villaamil), mschmid@uni-trier.de (M.L. Schmid),
e.j.vanleeuwen@uu.nl (E.J. van Leeuwen).
1 This notion of independency trees should not be confused with the one introduced by Gutin [16].

https://doi.org/10.1016/j.dam.2018.08.011
0166-218X/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.dam.2018.08.011
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dam.2018.08.011&domain=pdf
mailto:Katrin.Casel@hpi.de
mailto:dreier@cs.rwth-aachen.de
mailto:fernau@uni-trier.de
mailto:gobbert@uni-trier.de
mailto:kuinke@cs.rwth-aachen.de
mailto:fernando.sanchez@cs.rwth-aachen.de
mailto:mschmid@uni-trier.de
mailto:e.j.vanleeuwen@uu.nl
https://doi.org/10.1016/j.dam.2018.08.011

K. Casel, J. Dreier, H. Fernau et al. / Discrete Applied Mathematics 272 (2020) 2–15 3

Table 1
Summary of the results in this paper. The problem definitions are explained in the text. The results can be
found in Sections 3–5.

ℓ = #leaves k = #internal vertices Exact
algorithm

Algorithm Kernel, #vertices

Min Leaf IT Para-NP-hard O∗(4k) 2k kernel O∗(3n)

Max Leaf IT W[1]-hard O∗(18k) O(k 2k), no poly kernel O∗(3n)

Min Leaf CT Para-NP-hard Para-NP-hard O∗(3n)

Max Leaf CT Para-NP-hard O∗(18k) O(k 2k), no poly kernel O∗(3n)

The second considered variant –a natural antonym to independency trees – is a cliquy tree: a spanning tree in a graph
G where the set L of its leaves is a clique in G, i.e., the subgraph of G induced by L is complete. It seems that the origin of
this variant are discussions on the well-known scientific Internet forums stackexchange [21] and mathoverflow [20], where
cliquy trees were introduced under the name completeness trees by Le [21]. Moreover, Le also characterized the n-vertex
graphs in which every spanning tree is a cliquy tree as those isomorphic to the complete graph Kn or the cycle Cn [20].
Eppstein observed that in a triangle-free graph, a graph has a cliquy tree if and only if it admits a Hamiltonian cycle [21].

Only basic facts are known about the complexity of natural computational problems surrounding independency and
cliquy trees. The characterization by Böhme et al. [2] implies a polynomial-time algorithm to decide whether a graph admits
an independency tree, and if so, find one through a depth-first search. In contrast, the problem to decide whether a graph
admits a cliquy tree is NP-hard, as shown by Eppstein [21]: combine the aforementioned observation that in a triangle-free
graph, a graph admits a cliquy tree if and only if it admits a Hamiltonian cycle, with the fact that Hamiltonian Cycle is
NP-hard on triangle-free graphs [22, Theorem 2.1]. TheMin Leaf IT problem, aiming to minimize the number of leaves of an
independency tree, is clearlyNP-hard by reduction fromHamiltonian Path [2]. Prior to this paper, it was unknownwhether
themaximization variantMax Leaf ITwasNP-hard. The correspondingminimization andmaximization problems for cliquy
trees, Min Leaf CT and Max Leaf CT, are NP-hard by the aforementioned result by Eppstein [21].

We are not aware of any further studies investigating the computational complexity of these problems, neither from the
point of view of parameterized nor of approximation algorithms.

Results. In this paper, we initiate the study ofMin Leaf IT,Max Leaf IT,Min Leaf CT, andMax Leaf CT from a parameterized
point of view. We consider two natural parameters: the number ℓ of leaves of the independency or cliquy tree, and the
number k of internal vertices. We completely settle the parameterized complexity each of the four problems under each of
the two parameterizations.

The main results of the paper are summarized in Table 1. Here, the problem Min Leaf IT with parameter ℓ, written as
Min Leaf IT (leaf), should be interpreted as the problem to decide whether a graph G has an independency tree with at most
ℓ leaves. The problemMin Leaf ITwith parameter k, written asMin Leaf IT (internal), should be interpreted as the problem
to minimize the number of leaves of an independency tree with at least k internal vertices. Similar definitions apply with
respect to the other three problems.

We also give an O∗(3n) time exact algorithm for a generalization of all considered problems, which implies the results in
the final column of Table 1.

Theorem 1. Let G be a graph of order n. There exists an algorithm running in time O(3n
· f (n)) and space O(3n) that constructs

a spanning tree of G with a maximal/minimal number of leaves, where the leaves satisfy a property P that can be checked in time
f (n).

We also argue that no subexponential-time parameterized or exact algorithms exist for any of the studied problems,
unless the Exponential Time Hypothesis fails.

Comparison to other spanning tree variants and further results. It seems natural to compare the problems studied in this paper
to other spanning tree problems, such as Max-Leaf Spanning Tree and Max-Internal Spanning Tree. The Max-Internal
Spanning Tree problem asks to decide if a graph has a spanning tree with at least k internal vertices [1,23,24,28–30]. Note
that Min Leaf IT (internal) and Min Leaf CT (internal) can be seen as the variant of this problem where the leaves of the
spanning tree should induce an independent set respectively a clique.Max-Leaf Spanning Tree asks to decide if a graph has
a spanning tree with at least k leaves [1,4,7]. Similarly, Max Leaf IT (leaf) and Max Leaf CT (leaf) can be seen as variants of
this problem. Both Max-Internal Spanning Tree and Max-Leaf Spanning Tree are fixed-parameter tractable with respect
to their standard parameter; see [1,7].

Another natural notion to compare independency trees to is connected vertex cover. A connected vertex cover of a graph
is a connected subgraph whose complement is an independent set. The internal vertices of an independency tree form a
connected vertex cover of the graph. Every connected graph admits a connected vertex cover, but there exist connected
graphswithout an independency tree [2]. Even in connected graphs that do admit an independency tree, not every connected

4 K. Casel, J. Dreier, H. Fernau et al. / Discrete Applied Mathematics 272 (2020) 2–15

vertex cover induces an independency tree: add a pendant vertex to an n − 1 vertex cycle to obtain a graph that has two
independency trees and O(n) connected vertex covers. Hence, these notions seem incomparable and their algorithms not
interchangeable.

Salamon [30], however, conjectured the following connection, which we disprove in Section 2.

Conjecture 1 (Salamon [30]). For any graph G with an independency tree and with a minimum connected vertex cover of size c,
there is an independency tree with at most c internal vertices.

Theorem 2. Conjecture 1 is false.

Preliminaries. In this work wewill use common graph theory notation [9]. We do not introduce new notation and readers of
previouswork should feel familiarwith theway the results are presented.We only consider undirected, finite, simple graphs.
For a graph G let V (G) be the vertex set and E(G) the edge set. For v ∈ V (G) we denote the open and closed neighborhoods of
v by NG(v) and NG[v], respectively (or simply by N(v) and N[v], if G is clear from the context). For X ⊆ V we write N(X) for⋃

v∈X N(v). The degree of a vertex v in graph G is denoted by deg(v). We write G′ ⊆ G if G′ is a subgraph of G. For X ⊆ V (G)
we denote by G[X] the subgraph of G induced by X . The graph G[V (G) − X] is denoted by G − X . A vertex of degree one is
called a leaf. The size of a tree is its number of vertices. If v is a non-leaf vertex in a tree we call it an internal vertex of the tree.
A complete matching from A to B is a matching that matches every vertex in Awith a vertex in B. We denote a complete graph
on n vertices by Kn and a complete bipartite graph with independent sets of size n and m by Kn,m. Moreover, Cn denotes a
cycle on n vertices.

We use the concepts of classical and parameterized complexity in the common way and any reader with the respective
background should be able to follow our technical statements (for further information, we refer to the textbooks [6,12,17]).
In order to prove Para-NP-hardness, we use the fact that a parameterized problem is Para-NP-hard if and only if the union
of finitely many of its slices2 is NP-hard [17, Theorem 2.14].

2. Relation to connected vertex cover

Connected Vertex Cover (Dominating Set) asks for a given graph G = (V , E) and an integer k if there exists a subset
C of V of cardinality at most k such that C is a vertex cover (dominating set) in G and such that G[C] is connected. The
internal vertices of a spanning tree are a connected dominating set. It is known that if d is the size of the smallest connected
dominating set and ℓ the leaf number of the max-leaf spanning tree, we have n = d+ ℓ, therefore Connected Dominating
Set andMax-Leaf Spanning Tree are equivalent [11]. If one forces the leaf set to be independent, we enforce that the internal
vertices are not only a dominating set but also a vertex cover. It has been conjectured that the analogous version of the above
relationship still holds; that is, if c is the size of the smallest connected vertex cover and ℓ the leaf number of the max-leaf
independency tree it holds that n = c + ℓ [30, Conjecture 4.10, Corollary 4.13]; see Conjecture 1.

We show that this conjecture is not true by constructing a graph Γd, that has an even stronger property in that the
independency tree with themaximum number of leaves does not even have aminimal connected vertex cover as its internal
vertices and thus also rules out potential weaker formulations of Conjecture 1. Theorem 2 follows as a corollary from the
following theorem:

Theorem 3. For any integer d > 0 there is a graph Γd with n = 43d + 2 vertices that has an independency tree and every
independency tree with a maximum number of leaves has d = O(n) internal vertices which have to be removed from the set of
internal vertices to form a minimal connected vertex cover.

Construction of Γd First, for each integer i, j ≥ 1, let Hi,j be the graph with fourteen vertices depicted in Fig. 1.
Next, for each i ≥ 1, let Xi (see Fig. 2) be the 43-vertex graph obtained from Hi,1,Hi,2 and Hi,3 by adding a new vertex vi

and the following 9 new edges:

• viv
11
i,j , viv

13
i,j for j = 1, 2, 3, and

• v6
i,1v

4
i,2, v

6
i,2v

4
i,3, v

6
i,3v

4
i,1.

Now, Γd (see Fig. 3) is obtained from X1, . . . , Xd by adding two new vertices v and w and the following 2d+2 new edges:

• vw;
• vvi, 1 ≤ i ≤ d;
• vv4

1,1, vv6
d,3;

• v6
i,3v

4
i+1,1, 1 ≤ i < d.

Note that Γd has 43d+ 2 vertices (and it can be seen that Γd is planar).

2 For a constant c , the cth slice of a parameterized problem is the classical decision problem containing all positive instances, where the parameter
equals c .

K. Casel, J. Dreier, H. Fernau et al. / Discrete Applied Mathematics 272 (2020) 2–15 5

Fig. 1. The graph Hi,j .

Fig. 2. The graph Xi (left) and its symbolic drawing (right).

Fig. 3. The graph Γd .

Fact 1. Γd has an independency tree. An independency tree with 18d+ 1 leaves v2
i,j, v

5
i,j, v

8
i,j, v

10
i,j , v

12
i,j , v

14
i,j , 1 ≤ i ≤ d, 1 ≤ j ≤ 3,

and w, consists of the following 43d+ 1 edges:

• vw, vvi, 1 ≤ i ≤ d; viv
11
i,j , 1 ≤ i ≤ d, 1 ≤ j ≤ 3;

• v1
i,jv

2
i,j, v

1
i,jv

4
i,j, v

3
i,jv

4
i,j, v

3
i,jv

14
i,j , v

4
i,jv

5
i,j, v

4
i,jv

6
i,j, v

4
i,jv

13
i,j , v

6
i,jv

7
i,j, v

6
i,jv

9
i,j, v

6
i,jv

11
i,j , v

7
i,jv

10
i,j , v

8
i,jv

9
i , v

12
i,j v

13
i,j , 1 ≤ i ≤ d, 1 ≤ j ≤ 3.

By the structure of Hi,j, Xi and Γd we have the following facts for any independency tree T in Γd.

Fact 2. v is an internal vertex of any independency tree T , and for each 1 ≤ i ≤ d, 1 ≤ j ≤ 3, we have the following situation.

6 K. Casel, J. Dreier, H. Fernau et al. / Discrete Applied Mathematics 272 (2020) 2–15

(i) v4
i,j and v6

i,j are internal vertices of T ;
(ii) T has at most two leaves in {v1

i,j, v
2
i,j, v

3
i,j, v

4
i,j, v

13
i,j , v

14
i,j } and at most two leaves in {v6

i,j, v
7
i,j, v

8
i,j, v

9
i,j, v

10
i,j , v

11
i,j }. Hence, with v5

i,j
and v12

i,j , T has at most six leaves in Hi,j.
(iii) If v11

i,j or v13
i,j is a leaf of T , then T has at most five leaves in Hi,j.

(iv) If v10
i,j v

11
i,j or v13

i,j v
14
i,j is an edge of T , then T has at most five leaves in Hi,j.

Proof. Because of w, v must be an internal vertex of T .

(i) Assume that for some i and j, v4
i,j is a leaf of T . Then v5

i,jv
6
i,j must be an edge of T (as v5

i,j has degree 2 in Γd). As T is an
independency tree, v1

i,j, v
3
i,j, v

5
i,j, v

6
i,j and v13

i,j are not leaves. Hence, T contains the edge v5
i,jv

4
i,j. Now, since v1

i,j and v3
i,j are

internal vertices of T and have degree 3 in Γd, the four edges v1
i,jv

2
i,j, v

1
i,jv

14
i,j , v

3
i,jv

2
i,j, v

3
i,jv

14
i,j are edges in T . But they form a

cycle in T , a contradiction. Thus, for any 1 ≤ i ≤ d and any 1 ≤ j ≤ 3, v4
i,j, and, by symmetry, v6

i,j are internal vertices
of T .

(ii) This can be easily seen by inspection.
(iii) If v11

i,j or v13
i,j is a leaf of T , then v12

i,j is an internal vertex, hence, by (ii), T has at most five leaves in Hi,j.
(iv) By symmetrywe consider only the casewhen v10

i,j v
11
i,j is an edge of T . Then v10

i,j must be an internal vertex of T (otherwise,
as v7

i,j and v9
i,j have degree 3 in Γd, v7

i,j, v
8
i,j, v

9
i,j, v

6
i,j would induce a cycle in T , or two leaves among these vertices must

be neighbors). Since at most one of v7
i,j, v

8
i,j, v

9
i,j is a leaf of T (as v8

i,j has degree 2 in Γd), it follows with (i) and (ii) that T
has at most one leaf in {v6

i,j, v
7
i,j, v

8
i,j, v

9
i,j, v

10
i,j , v

11
i,j }. Hence T has at most five leaves in Hi,j. □

Fact 3. For any 1 ≤ i ≤ d, T has at most 18 leaves in Xi. If vi is a leaf, then T has at most 17 leaves in Xi.

Proof. First we claim that if, for some 1 ≤ i ≤ d and some 1 ≤ j ≤ 3, viv
11
i,j and viv

13
i,j are not edges of T , then T has at most

five leaves in Hi,j. By Fact 2 (ii), this is clear if v12
i,j is not a leaf of T . Thus, let us assume that v12

i,j is a leaf of T . By symmetry, let
v11
i,j v

12
i,j be the v12

i,j -edge in T . Since the edge viv
13
i,j is not in T , we have that v13

i,j v
14
i,j must be an edge in T . Therefore, by Fact 2

(iv), T has at most five leaves in Hi,j.
Now, if vi is not a leaf of T , then T has at most 18 leaves in Xi by Fact 2 (ii). Assume that vi is a leaf of T . Then, by the claim

above and by Fact 2 (ii) again, T has at most 1+ 6+ 5+ 5 = 17 leaves in Xi. □

Fact 4. T has at most 18d+ 1 leaves. If, for some 1 ≤ i ≤ d, vi is a leaf of T , then T has at most 18d leaves.

Proof. First, with w and Fact 3, T has at most 1+ 18d leaves.
Next, let I = {vi | 1 ≤ i ≤ d, vi is a leaf of T }. By Fact 3 again, T has at most 1 + 17|I| + 18(d − |I|) ≤ 18d many leaves,

provided I ̸= ∅. □

Proof of Theorem 3. Consider an arbitrary independency tree T of Γd with a maximal number of 18d+ 1 leaves (by Facts 1
and 4). By Fact 4 and Fact 2 (iii), D = {v1, . . . , vd} is an independent set of internal vertices and all neighbors of D are internal
vertices in T . Thus,

{u | u /∈ D is internal vertex of T }

is a vertex cover of Γd. By Fact 2(i), this is a connected vertex cover of Γd. □

3. Parameterizing by the number of leaves

In this sectionwe consider the natural parameterization by the number of leaves. Recall that aHamiltonian cycle in a graph
G is a subgraph of G that forms a cycle and contains all vertices of G. Clearly, removing any edge from a Hamiltonian cycle of
G yields a spanning tree for Gwith exactly two leaves which are adjacent. The corresponding decision problemHamiltonian
Cycle asks for the existence of a Hamiltonian cycle in an input graph. Asking for a cliquy tree with exactly or at most two
leaves is hence equivalent to Hamiltonian Cycle. Now, consider any graph G = (V , E) with at least three vertices and pick
any vertex x ∈ V . Construct the supergraph G′ = (V ′, E ′) of G by V ′ = V ∪ {x′, ℓ, ℓ′}, E ′ = E ∪ {x′y | y ∈ NG(x)} ∪ {xℓ, x′ℓ′}. As
|V | ≥ 3, G has a Hamiltonian cycle if and only if G′ has a spanning tree with exactly two leaves, namely, ℓ and ℓ′, which are
not adjacent. Notice that G is triangle-free if and only if G′ is triangle-free. Finally, observe that a triangle-free graph admits
any cliquy tree if and only if it admits a cliquy tree with at most two leaves. As Hamiltonian Cycle is already NP-hard
when restricted to triangle-free graphs [22], our observations (inspired by the considerations of Eppstein mentioned in the
introduction) yield the following result.

Proposition 1. Min Leaf CT (leaf),Max Leaf CT (leaf) andMin Leaf IT (leaf) are Para-NP-hard, even on the class of triangle-free
graphs.

K. Casel, J. Dreier, H. Fernau et al. / Discrete Applied Mathematics 272 (2020) 2–15 7

For Max Leaf IT (leaf), we find that the requirement on the leaf set to be an independent set implicitly transfers the
difficulty of the problem Independent Set. Simply by joining a large clique to a given, w.l.o.g., not complete, input graph G
gives a graph G′ for which it becomes possible and also trivial to build a spanning tree with any given subset of original
vertices as leaves (assuming that this set has cardinality at least two). This way, finding an independency tree for G′ is
equivalent to finding an independent set in G which in particular shows that Max Leaf IT is NP-hard and also yields the
following result.

Proposition 2. Max Leaf IT (leaf) is W[1]-hard.

Proof. We reduce from Independent Set. Given a graph G of order n and parameter k ≥ 2, add a clique C of size n−k+1 and
connect these new vertices with edges to all other vertices of the graph, yielding a new graph G′. If G′ has an independency
tree with leaf set I of size at least k, then, since I ∩ C = ∅ (recall that every vertex of C is connected with every vertex in G′),
I is an independent set for G.

If I is an independent set of size k in G, then we construct an independency tree for G′ with leaf set I as follows. We first
note that G′ − I contains Kn−k+1,n−k as a subgraph (with C and G − I being the partite sets of size n − k + 1 and n − k,
respectively); thus G′ − I contains a Hamiltonian path P from x ∈ C to y ∈ C . This path P with the vertices of I arbitrarily
connected to the vertices x and y (in such a way that at least one vertex of I is connected to x and at least one vertex of I is
connected to y) is an independency tree for G′ with a leaf set of size k. □

4. Parameterizing by the number of internal vertices

As we have seen in Section 3, parameterization by the number of leaves is hard. In this section we will therefore consider
the dual parameter: the number of internal vertices. The problem Max Leaf IT (internal), for example, is about deciding
whether a graph admits an independency tree with at most k internal vertices, where k is the parameter.

This kind of dual parameterization is a common and in most cases successful strategy for graph-problems which are
unlikely to be fixed parameter tractable by standard parameterization. For example, the fixed-parameter tractable problem
Nonblocker is the dual to the W[2]-complete Dominating Set. We will see that this dual parameterization yields fixed-
parameter tractability for most of the problems discussed in this paper, with the exception ofMin Leaf CT (internal).

Theorem 4. Min Leaf CT (internal) is Para-NP-hard, even on the class of triangle-free graphs.

Proof. Recall that a graph of order n ≥ 3 has a cliquy tree if and only if it has some cliquy tree with at least 1 internal vertex
(thus, at most n−1 leaves). On triangle-free graphs, this is equivalent to the existence of a Hamiltonian cycle. Consequently,
Hamiltonian Cycle for triangle-free graphs reduces to Min Leaf CT (internal), where the parameter number of internal
vertices is fixed to 1. □

In the following, wewill show that parameterizing by the number of internal vertices ismore successful for the remaining
problems.

4.1. Kernelizations for the max-leaf-variants

In this section, we will show that Max Leaf IT (internal) and Max Leaf CT (internal) are in FPT by first proving
the existence of single-exponential kernels and then designing single-exponential algorithms. Further, we will see that
Min Leaf IT (internal) is in a sense equivalent to the fixed parameter tractableMax-Internal Spanning Tree.

Similar to Buss’ rule for Vertex Cover, one can observe that for any input graph, a vertex of degree more than k cannot be
a leaf of an independency tree with at most k internal vertices. The number of vertices of low degree not exclusively adjacent
to high degree vertices is then bounded by k(k + 1). When constructing a kernel for Max Leaf IT (internal), however, it is
not possible to delete vertices of high degree. It is only possible to remove some of the vertices exclusively adjacent to them,
keeping only k+ 1 for each twin equivalence class (there are at most k vertices of degree larger than k, so there are at most
2k equivalence classes). This kind of reduction gives the following result.

Theorem 5. There is a kernel for Max Leaf IT (internal) with at most 2k(k+ 1)+ k2 + 2k vertices.

Proof. Let G = (V , E) be a graph of order n and k ∈ N. A vertex v ∈ V with degree larger than k cannot be in an independent
set of cardinality at least n−k, so if there exists an independency tree for Gwith at most k internal vertices, v cannot be a leaf
of this tree. Let V ′ := {v ∈ V : deg(v) > k}. If |V ′| > k, then there exists no independency tree with at most k internal vertices
forG. Further, consider the set of vertices incident to edgeswhich are not covered byV ′, given by R := {v ∈ V \V ′:N(v) ̸⊆ V ′}.
Covering the edges in G[R] requires a subset of R of cardinality at least |R|/(k+ 1), since all vertices in R have degree at most
k. Since the internal vertices of any independency tree are a vertex cover for G, we know that |R| ≤ k(k + 1) or (G, k) is a
no-instance forMax Leaf IT (internal).

The vertices L := V \ (V ′ ∪ R) only have neighbors in V ′ and especially form an independent set in G by the definition of
R. Consider the set VS := {v ∈ L:N(v) = S} for some S ⊆ V ′. If |VS | > k + 1, then deleting |VS | − k − 1 vertices from VS

8 K. Casel, J. Dreier, H. Fernau et al. / Discrete Applied Mathematics 272 (2020) 2–15

is a valid reduction rule. To see this, consider G[V \ C] for a C ⊂ VS with |C | = |VS | − k − 1. In any independency tree for
G[V \C]with atmost k internal vertices, the vertices inV ′ have to be internal, since their degree inG[V \C] is still larger than k.
Consequently, if an independency treewith atmost k internal vertices for G[V \C] exists, thenwe can build an independency
tree for G by arbitrarily attaching the vertices in C to some vertex in V ′; this does not violate the independence of the leaves,
since N(w) ⊆ V ′ for all w ∈ C ⊆ L, and does not increase the number of internal vertices. Let, on the other hand, T be an
independency tree for G and let I be its set of internal vertices with |I| ≤ k. We know that in T , a vertex v ∈ VS is either in I
or a leaf attached to a vertex in V ′. This means that |VS \ I| vertices from VS are attached as leaves to |V ′| ≤ |I \ VS | internal
vertices. By the pigeonhole principle, it is possible to delete at least |VS \ I| − |V ′| ≥ |VS | − k of these without decreasing the
number of internal vertices of T . Since vertices in VS have the same properties with respect to their role in an independency
tree, deleting |VS | − k− 1 vertices from VS \ I in this way yields an independency tree for G[V \ C].

After deleting |VS |− k−1 vertices from any VS with |VS | > k+1, we can conclude that |L| ≤ |{S: S ⊆ V ′}| · (k+1), which
overall yields a reduced graph with at most 2k(k+ 1)+ k2 + 2k vertices, as |V ′| ≤ k. □

Conversely, a vertex of degree less than n− k cannot be a leaf of a cliquy tree with at most k internal vertices. As the set
of internal vertices of a cliquy tree is a vertex cover of the complement graph, a similar reduction as for Theorem 5 yields:

Theorem 6. There is a kernel for Max Leaf CT (internal) with at most 2k(k+ 1)+ k2 + 2k vertices.

Proof. Let G = (V , E) be a graph of order n and k ∈ N. Complementary toMax Leaf IT (internal), a vertex v ∈ V with degree
smaller than n−k cannot be in a clique of cardinality at least n−k, so if there exists a cliquy tree for Gwith at most k internal
vertices, then v cannot be a leaf of this tree. Let V ′ := {v ∈ V : deg(v) < n − k}. If |V ′| > k, then there exists no cliquy tree
with at most k internal vertices for G. Looking at the complement graph Ḡ, it follows that the set of internal vertices of a
cliquy tree for G is especially a vertex cover for Ḡ. Vertices in V \ V ′ have degree at most k in Ḡ, so we can define the set R
with similar properties as in Theorem 5 with respect to Ḡ.

So, consider the set of vertices adjacent to edges in Ḡwhich are not covered byV ′, given by R := {v ∈ V \V ′: V \N(v) ̸⊆ V ′}.
Covering the edges in Ḡ[R] requires a subset of R of cardinality at least |R|/(k+ 1), since all vertices in R have degree at most
k in Ḡ. Since the internal vertices of any cliquy tree for G are a vertex cover for Ḡ, we know that |R| ≤ k(k + 1) or (G, k) is a
no-instance forMax Leaf CT (internal).

The vertices L := V \ (V ′ ∪ R) form an independent set in Ḡ and are also by definition adjacent to every vertex in R. Now,
we can argue just like in Theorem 5 with the sets VS := {v ∈ L:N(v) ∩ V ′ = S} for S ⊆ V ′ that if |VS | > k+ 1, then deleting
|VS | − k − 1 vertices from VS is a valid reduction rule. Again, consider G[V \ C] for a C ⊂ VS with |C | = |VS | − k − 1. In
any cliquy tree for G[V \ C] with at most k internal vertices, the vertices in V ′ have to be internal: if v ∈ S then C ⊂ N[v]
and the degree of v in G[V \ C] is less than n − |C | − k; if v /∈ S, then VS ⊆ V \ N[v], so the degree of v in G[V \ C] is at
most n− |C | − |VS \ C | = n− |C | − k− 1. Consequently, if a cliquy tree with at most k internal vertices for G[V \ C] exists,
then we can build a cliquy tree for G by arbitrarily attaching the vertices in C to some vertex in V ′; this does not violate the
property of the leaves being a clique, since R ∪ L ⊆ N(v) for all v ∈ C and does not increase the number of internal vertices.
On the other hand, let T be a cliquy tree for G and let I be its set of internal vertices with |I| ≤ k. We know that in T , a vertex
v ∈ VS is either in I or a leaf. This means that |VS \ I| vertices from VS are attached as leaves. By the pigeonhole principle, it
is possible to delete at least |VS \ I| − |I \ VS | ≥ |VS | − k of these from T without creating a leaf that is not adjacent to all
other leaves (the only candidates for such a leaf are in I \ VS). Since vertices in VS have the same properties with respect to
their role in a cliquy tree, deleting |VS | − k− 1 vertices from VS \ I in this way yields a cliquy tree for G[V \ C].

After deleting |VS |− k−1 vertices from any VS with |VS | > k+1, we can conclude that |L| ≤ |{S: S ⊆ V ′}| · (k+1), which
overall yields a reduced graph with at most 2k(k+ 1)+ k2 + 2k vertices. □

These exponential kernels prove membership in FPT but also raise the question if we can do better. Connected Vertex
Cover considered as parameterized problem with the size of the cover as parameter is in FPT [5]. The close relation with
Max Leaf IT only seems to transfer negative results in this perspective. It is known that, unless the polynomial time
hierarchy collapses to the third level, Connected Vertex Coverwith standard parameterization does not admit a polynomial
kernel [10]. We will use a similar construction to show that same negative result holds forMax Leaf IT (internal).

We reduce from Red–Blue Dominating Set (RBDS), which is the following problem: Given a bipartite graphG = (R∪B, E)
and an integer k, does there exist a set X ⊆ R, |X | ≤ k, such thatN(X) = B? As a parameter, one can (even) choose k+|B|. This
problem admits no polynomial-size kernel unless the polynomial-time hierarchy collapses to the third level [10, Theorem
4.3].

Theorem 7. Unless the polynomial-time hierarchy collapses to the third level, there is no polynomial-size kernel for Max Leaf IT
(internal).

Proof. Given a bipartite graph G = (R ∪ B, E) as input for RBDS, we construct a bipartite graph G′ = (V , E ′) with
V = R∪B∪ B̄∪{v}where B̄ := {w̄:w ∈ B} is a copy of B and v is a new vertex, and E ′ = E∪{(v, w):w ∈ R}∪{(w, w̄):w ∈ B};
observe that B ∪ {v} and R ∪ B̄ is a bipartition of G′. For this construction, there exists a red–blue dominating set of size at
most k for G if and only if there exists an independency tree for G′ with at most |B|+ k+1 internal vertices. Obviously, every
vertex from B is internal (as only possible parent to its copy in B̄) in an independency tree for G′. The only path connecting

K. Casel, J. Dreier, H. Fernau et al. / Discrete Applied Mathematics 272 (2020) 2–15 9

two vertices in Bwhich do not have a commonneighbor in R contains v, so, unless there is a dominating set of cardinality one,
v is also an internal vertex. Reaching all vertices in B from v with a minimum number of vertices from R is hence equivalent
to finding a minimum red–blue dominating set for G and equivalently gives an independency tree for G′ with a maximum
number of leaves. □

Theorem 8. Unless the polynomial-time hierarchy collapses to the third level, there is no polynomial-size kernel for the problem
Max Leaf CT (internal).

Proof. Given a bipartite graph G = (R ∪ B, E) and integer k as input for RBDS, we construct a split graph G′ = (V ′, E ′) with
V ′ = R ∪ B ∪ B̄ ∪ C where B̄ := {w̄:w ∈ B} is a copy of B and C contains k + 2 new vertices. Furthermore, E ′ contains all
edges from E, all edges from {(w, w̄):w ∈ B} and additional edges that turn R ∪ B̄ ∪ C into a clique. We shall prove that G′
has a cliquy tree with at least |R| + |B| + 2 leaves if and only if there exists a red–blue dominating set for G of cardinality at
most k.

We start with the only if direction and assume that G′ has a cliquy tree with a leaf set L with a cardinality of at least
|R| + |B| + 2 and a set I of internal vertices with a cardinality of at most |V ′| − (|R| + |B| + 2) = k+ |B|. Since every leaf of
the cliquy tree must have a degree of at least |R| + |B| + 1 (w. r. t. G′) and every b ∈ B has a degree of at most |R| + 1, we
conclude that B ⊆ I . Let D = I \ B with |D| ≤ k the remaining internal vertices. For every b ∈ B not dominated by D, every
neighbor of b in R (w. r. t. the cliquy tree) must be a leaf, which implies b̄ ∈ I . Consequently, R ∩ I with |R ∩ I| = k − k′ for
some k′, 0 ≤ k′ ≤ k, dominate |B|− k′ vertices of B, which implies that there is a red–blue dominating set for G of cardinality
at most k.

In order to prove the if direction, we assume that D ⊆ R is a red–blue dominating set for G of cardinality k (any red–blue
dominating set with cardinality less than k can be extended to one with cardinality exactly k). A cliquy tree for G′ with at
least |R|+|B|+2 leaves can be constructed as follows.We connect all vertices ofD to a path in arbitrary order and connect all
vertices from B to this path by a single edge each (this is possible since D is a red–blue dominating set for G). The remaining
|V ′| − (|B| + k) = |R| + |B| + 2 vertices, which are all members of the clique R∪ B̄∪ C , are now connected to some vertex of
D ∪ B by a single edge each; thus, they are the leaves of the cliquy tree. □

Wenote that these reductions especially imply thatMax Leaf IT restricted to bipartite graphs, andMax Leaf CT restricted
to split graphs remains NP-hard.

4.2. Fpt-Algorithms for max-leaf-variants

Given the kernelizations from the previous section, a brute-force algorithm on the kernel yields an fpt-algorithm for
Max Leaf IT (internal) and Max Leaf CT (internal), however with a rather unpleasant running time. For Connected Vertex
Cover with standard parameterization there exists an O∗(2k) algorithm [5] and it is tempting to try and use this approach
to design a similar algorithm for Max Leaf IT (internal). This algorithm, however, relies on the fact that Connected Vertex
Cover is closed under edge-contraction, a property that does not hold for independency trees; observe that edge contraction
can even turn a graph with independency tree into a graph that has no independency tree at all (e. g., K4 minus one edge
becomes K3 after an edge contraction).

In this section we will use a different approach to design a single-exponential fpt-algorithm for Max Leaf IT (internal)
andMax Leaf CT (internal). After providing some useful definitions, we proceed by proving in Lemmas 1 and 2 a connection
between independency trees with minimal number of internal vertices and a variant of minimal Steiner trees. We use this
result in Theorem 10 to solveMax Leaf IT (internal) by enumerating minimal vertex covers and universal sets.

Definition 1 (Match-cover property). Let G be a connected graphwith vertex set V and let C, L,N be subsets of V . We say that
(G, C, L,N) satisfies thematch-cover property if C is a vertex cover of G and L ⊆ C , such that there exists a completematching
from L toN . For (G, C, L,N) satisfying thematch-cover property, we define ITG(C, L,N) to be the set of all independency trees
T on G such that

• all vertices in C are internal vertices of T ,
• every vertex that has only leaves as children in T is contained in L,
• no internal vertex of T is contained in N .

Furthermore, we define STG(C, L,N) to be the set of all trees T on G such that

• every vertex from C is contained in T ,
• the leaf set of T is a subset of L,
• no vertex of T is contained in N .

Lemma 1. Let (G, C, L,N) be a tuple which satisfies the match-cover property. The set STG(C, L,N) contains a tree with at most
k vertices if and only if ITG(C, L,N) contains an independency tree with at most k internal vertices.

10 K. Casel, J. Dreier, H. Fernau et al. / Discrete Applied Mathematics 272 (2020) 2–15

Proof. For the first direction let T ∈ STG(C, L,N) with |T | = k. We construct an independency tree T ′ on G such that the
internal vertices of T ′ are exactly the vertices of T . Every leaf of T is contained in L. In order to become internal vertices, these
vertices need at least one child. There exists a perfect matching from L to N and no vertex of N is contained in T . Thus, we
can extend T by appending a private child from N to every leaf of T . Furthermore, G is connected and T contains the vertex
cover C , so every vertex not in C is adjacent to at least one vertex in T . We attach all remaining vertices to arbitrary vertices
in T . The result is an independency tree T ′ ∈ ITG(C, L,N) with k internal vertices.

For the inverse direction, let T ∈ ITG(C, L,N) be an independency tree with k internal vertices. We remove all leaves from
T . The result is a tree T ′ ∈ STG(C, L,N) of size k. □

Wewill later decide whether a graph admits an independency tree with at most k internal vertices by searching for such
a tree in various sets ITG(C, L,N). Lemma 1 states that we might as well check if a set STG(C, L,N) contains a tree of size at
most k. This subproblem is very similar to the well known problem Steiner Tree which asks for a given graph G = (V , E)
and integer k and a set of terminals C ⊆ V whether there exists a tree T of size at most k in G which contains C . However, a
tree T ∈ STG(C, L,N) needs to satisfy the additional requirement that the leaf set is a subset of L.

We will solve this problem by modifying the classical Dreyfus–Wagner algorithm [13], which runs in O∗(3|C |) time, in
such a way, that we also check if the leaf set is a subset of L. For input (G, C, L,N) our algorithm computes for every subset X
of C with X ∩ L ̸= ∅ and each v ∈ X \ L, if possible, the smallest among all spanning trees for X such that the set of leaves is
a subset of L ∪ {v}. The important idea here is that we can build up a tree with leaf set L bottom-up from subtrees for which
at most one leaf is not in L, so that we have to remember at most one vertex v ∈ X \ L for which a further edge is needed.
Otherwise, just like in the dynamic program for the classical Steiner tree problem, we consider for X not just all subsets of C
but all subsets S ⊂ V with |S \ C | ≤ 1, hence remembering one Steiner vertex in order to possibly append more subtrees to
it. Here we make explicit use of the fact that C is a vertex cover, and thus G \ C contains no edges (and particularly no edges
of the Steiner tree). This yields the following result.

Algorithm 1: GenSteinerTree
Input : G = (V , E), C ⊆ V , L ⊆ C, k ∈ N
Output: Size k Steiner tree for Gwith terminal set C and leaves from L

1 for every S ⊆ V with |S \ C |≤ 1 and v ∈ V do
2 s[S] ← ∞; sv[S] ← ∞; edges[S] ← ∅; edgesv[S] ← ∅;
3 for every u ∈ L do
4 s[{u}] ← 0; su[{u}] ← 0;
5 for every i, 2 ≤ i ≤ |C | do
6 for every X ⊆ V with |X \ C |≤ 1, X ∩ L ̸= ∅ and |X |= i do
7 for every X ′ ⊂ X with ∅ ̸= X ′ do
8 for every (u, w) ∈ E ∩ (X ′ × (X \ X ′)) do
9 if su[X ′] + sw[X \ X ′] < min{s[X], k+ 1− |C |} then

10 s[X] ← su[X ′] + sw[X \ X ′];
11 edges[X] ← edgesu[X ′] ∪ edgesw[X \ X ′] ∪ {(u, w)};
12 for every v ∈ X \ L do
13 for every u ∈ N(v) ∩ X do
14 if su[X \ {v}] + |{v} \ C |< min{sv[X], k+ 1− |C |} then
15 sv[X] ← su[X \ {v}] + |{v} \ C |;
16 edgesv[X] ← edgesu[X \ {v}] ∪ {(u, v)};
17 if s[X] < sv[X] then
18 sv[X] ← s[X]; edgesv[X] ← edges[X];
19 return edges[C];

Lemma 2. Let (G, C, L,N) be a tuple which satisfies the match-cover property and k ≥ |C | be the parameter. It is possible to
decide in time O∗(3|C |) and space O∗(2|C |) whether STG(C, L,N) contains a tree of size at most k.

Proof. For simplicity, we first assume that N = ∅. Assume there exists a tree T ∈ STG(C, L,N) of size at most k. We say that
a tree T ′ has property P iff at least one vertex is from L and at most one leaf of T ′ is not in L. Let T ′ be a subtree of T with
property P with at least two vertices. It is always possible to either delete an edge from T ′ to split it into two connected
components which both satisfy property P or to delete the only vertex from V \ L of degree one in T ′ and its adjacent edge
to create a tree with property P . Indeed, if a tree T ′ with property P has no degree-one vertex which is not in L, deleting any
arbitrary edge yields two components of property P . For a tree T ′ which has exactly one degree-one vertex v which is not
in L, removing v and the edge that connects v to T ′ yields another tree with property P . Obviously, T itself has property P ,
so bottom-up, starting with {v} for all v ∈ L as exactly the smallest subtrees of T with property P , we can hence inductively
build up T by connecting two trees of property P by an edge or by appending one vertex from V \ L to a tree of property P .

K. Casel, J. Dreier, H. Fernau et al. / Discrete Applied Mathematics 272 (2020) 2–15 11

We claim that Algorithm 1 computes a tree in STG(C, L,N) of size at most k or it returns the empty set in case no such
tree exists. The algorithm computes, for every subset X of C with X ∩ L ̸= ∅ and each v ∈ X \ L, if possible, the smallest
among all spanning trees for X such that the set of leaves is a subset of L ∪ {v}. It stores the number of Steiner-nodes used
in the table s[X] if the tree has only leaves in L and in the table sv[X] if v ∈ X is the only leaf which is not in L and stores the
corresponding edge-set in table edges[X] and edgesv[X], respectively. Hence, finally edges[C] stores the requested solution,
a description of a Steiner tree of size k for Gwith terminal set C and leaves from L.

Just like in the dynamic program for the classical Steiner tree problem, we consider for X not just all subsets of C but
all subsets S ⊂ V with |S \ C | ≤ 1, hence remembering one Steiner vertex in order to possibly append more subtrees to
it. Trying all partitions into two non-empty subsets of X as subtrees and all vertices v ∈ X to append as degree-one vertex
in V \ L covers all possibilities to build the best tree for X and inductively computes the smallest Steiner tree for C with
leaves from L. The correctness of the algorithm follows inductively along the same lines as a proof of the correctness of the
Dreyfus–Wagner algorithm that can be found in any textbook. We therefore refrain from giving more details.

Note that we use this algorithm for the specific case that the set of Steiner vertices is an independent set which means
that when combining two subtrees by an edge (u, w), as done in Algorithm 1, u andw cannot both be Steiner vertices. Hence
it is enough to only remember one Steiner vertex in our case. For a more general scenario with non-independent Steiner
vertices, one has to keep track of two Steiner vertices but this does not affect the asymptotic running time in O∗(3|C |) of the
algorithm which is dominated by checking all partitions of subsets of C .

At last, forbidding the set of vertices N in case N ̸= ∅ from being used in building a tree spanning the vertices from C is
done by simply running Algorithm 1 for the graph G[V \ N]. □

We note that there are faster known algorithms for Steiner Tree than Dreyfus–Wagner, for example the algorithm due
to Nederlof [27] which runs in time O∗(2k) and polynomial space. Our modifications, however, do not seem to be trivially
extensible to these other algorithms. Combining Lemmas 1 and 2 yields the following result.

Theorem 9. Let (G, C, L,N) be a tuple which satisfies the match-cover property and k be the parameter. It is possible to decide
in time O∗(3|C |) and space O∗(2|C |) whether ITG(C, L,N) contains an independency tree with at most k internal vertices.

So far, we can efficiently check whether a set ITG(C, L,N) contains an independency tree with at most k internal vertices.
Furthermore we know that every independency tree is contained in at least one set ITG(C, L,N). We could solve the problem
by iterating over all possible choices for C, L,N and return yes if any independency tree in ITG(C, L,N) has at most k internal
vertices. Although we can enumerate all minimal vertex covers of size at most k of a graph in O∗(2k) (see [15] and [8,
Theorem 4]), there are too many possibilities to check for the set N if we simply brute-force through all subsets of V \ C .

If for fixed sets C and L, there exists some setN such that ITG(C, L,N) contains an independency tree of size atmost k, then
we know that a setN of cardinality |L| is sufficient, asN is only needed to block thematching leaves of the independency tree
from falsely being chosen as internal vertices. On the other hand, at most k− |C | vertices from V \ N are needed as internal
vertices to build an independency tree in ITG(C, L,N). Hence we only need to consider sets N which select from V \ C a set
that contains the |L| vertices needed as leaves but does not include the k− |C | vertices needed as internal vertices. Sets with
this property are contained in a (|V \ C |, |L| + k − |C |)-universal set for V \ C , where a (n, l)-universal set for some ground
set X of cardinality n is family Φl of subsets of X such that 2S

= {A ∩ S: A ∈ Φl} for any S ⊆ X with |S| ≤ l. It is possible to
construct an (n, l)-universal set in time O∗(2l) (see [26]), which gives the following result.

Lemma 3. Let C be a vertex cover of G. It can be decided in time O∗(9k) and space O∗(2k)whether G admits an independency tree
T with at most k internal vertices such that all vertices in C are internal vertices of T .

Proof. If |C | > k, then no such tree exists, so from now on we assume |C | ≤ k. Let Φl be an (n, l)-universal set [26] over V
with l = |L| + k − |C |. This means that Φl is a family of subsets of V such that 2S

= {A ∩ S: A ∈ Φl} for any S ⊆ V with
|S| ≤ l. Consider the following algorithm: Let T be the set of tuples (L,N) such that L ⊆ C and N ∈ Φ|L|+k−|C | such that there
exists a perfect matching from L to N . The algorithm proceeds by iterating over all tuples (L,N) ∈ T and uses Theorem 9 to
decide whether ITG(C, L,N) contains an independency tree with at most k internal vertices. It accepts if one set ITG(C, L,N)
contains such an independency tree, otherwise it rejects.

We show that the algorithm is correct by proving that, for every independency tree T ∗ with at most k internal vertices
such that all vertices in C are internal vertices of T , there exists a tuple (L∗,N∗) ∈ T with T ∗ ∈ ITG(C, L∗,N∗). We choose
(L∗,N∗) ∈ T as follows: Let L∗ be the set of internal vertices of T ∗ which have only leaves as children. Suppose that there
exists a vertex x ∈ L∗ \ C . The vertex x is internal, thus it has at least two neighbors y, z in T ∗. Since x is not part of the vertex
cover C , y, z ∈ C . Thus, y, z are internal vertices and x ̸∈ L∗. This is a contradiction. It follows that L∗ ⊆ C . Furthermore, let
X be the set of internal vertices of T ∗ not contained in C and let M be a set which contains exactly one leaf of every vertex
in L∗. Let l∗ := |L| + k − |C |. It holds that X ∩ M = ∅ and |X | + |M| ≤ l∗. We choose N∗ ∈ Φl∗ such that X ∩ N∗ = ∅ and
M ⊆ N∗. Thus, no internal vertex of T ∗ is contained in N∗ and there exists a perfect matching from L∗ to N∗. In summary, it
holds that:

• C is a vertex cover of G and all vertices of C are internal vertices of T ∗.
• L∗ ⊆ C and every vertex of T ∗ which has only leaves as children is contained in L∗.

12 K. Casel, J. Dreier, H. Fernau et al. / Discrete Applied Mathematics 272 (2020) 2–15

• There exists a perfect matching from L∗ to N∗ and no internal vertex of T ∗ is contained in N∗.

We can conclude that (G, C, L∗,N∗) fulfills the match-cover property and T ∗ ∈ ITG(C, L∗,N∗). Thus, the algorithm is correct.
We now consider the run time. We iterate over every subset L ∈ 2C . By a result from Naor, Schulman and Srinivasan [26],

one can construct an (n, l)-universal set of sizeO∗(2l) in timeO∗(2l). For sets C, L, we need a family of (n, |L|+k−|C |)-universal
sets. The total number of tuples is bounded by

|C |∑
l=0

(
|C |
l

)
· O∗(2l+k−|C |) = O∗(2k−|C |

· 3|C |) = O∗(2k
· 1.5|C |)

Furthermore, it takes O∗(3|C |) time to decide whether ITG(C, L,N) contains an independency tree with at most k internal
vertices. Since |C | ≤ k, we arrive at a total running time of O∗(9k). □

Applying Lemma 3, we can provide the claimed fpt-algorithm forMax Leaf IT (internal).

Theorem 10. Max Leaf IT (internal) can be decided in time O∗(18k) and space O∗(2k).

Proof. Assume G admits an independency tree T with at most k internal vertices. Since the leaf set of T is an independent
set, the internal vertices form a vertex cover. Thus, there exists a minimal vertex cover C of G of size at most k such that the
internal vertices of T are a superset of C .

We enumerate all minimal vertex covers C of size at most k and use Lemma 3 to accept if there exists an independency
tree with at most k internal vertices such that its set of internal vertices is a superset of C . Otherwise we reject.

There are at most 2k minimal vertex covers of size at most k, which can be enumerated in O∗(2k) time; see [15] and [8,
Theorem 4]. Furthermore, according to Lemma 3 we can decide in time O∗(9k) whether G admits an independency tree T
with at most k internal vertices such that all vertices in C are internal vertices of T . The total running time is O∗(18k). □

In the following we show that Cliquy Tree can be reduced to solving Independency Tree. Instead of looking at vertex
covers in G we look at vertex covers C in the complement graph G. At first, it seems that an equivalent construction as in
Lemma 1 is possible, but since C is no longer a vertex cover in Gwe cannot assume that every vertex has edges into this set.
For that reason, we reduce it to independency tree by exchanging edges.

For the next statements, we denote for a graph G = (V , E) and any set X ⊆ V by G|X the graph constructed from G by
deleting every edge (u, v) with u, v ̸∈ X .

Lemma 4. Let G = (V , E) be a graph. Let C be a vertex cover of G of size at most k. There exists a cliquy tree with at most k
internal vertices whose internal vertices are a superset of C if and only if (i) or (ii) holds:

(i) There exists an independency tree in G|C whose internal vertices are exactly the vertices in C.
(ii) There exist an x ∈ V \ C and an independency tree with at most k internal vertices in G|C∪{x} whose internal vertices are a

superset of C ∪ {x}.

Proof. Assume (i) or (ii) is true. There exists an independency tree T in G|C or G|C∪{x} such that its internal vertices are a
superset of C . Hence, its leaves are a subset of G \C . Since C is a vertex cover in G, G \C forms a clique in G. Thus, T is a cliquy
tree in G. Furthermore, T contains at most k internal vertices and its internal vertices are a superset of C .

For the other direction, assume that T is a cliquy treewith atmost k internal verticeswhose internal vertices are a superset
of C . If the internal vertices are exactly C , then T is an independency tree on G|C and we are done. Otherwise, let x ̸∈ C be an
internal vertex of T . Let v, w ∈ V \ (C ∪ {x}) such that (v, w) is an edge in T . We can assume that there is a path from x to w
in T which does not touch v (otherwise exchange v and w). We remove (v, w) from T and add (x, v). This is possible since
x and v are part of a clique. Since w and x already were internal vertices, the resulting tree does not have fewer leaves. We
repeat this procedure until T induced on V \ C forms a star with root x. Now T is an independency tree of size at most k in
G|C∪{x} whose internal vertices are a superset of C ∪ {x}. □

We are now ready to extend the statement of Theorem 10 toMax Leaf CT (internal).

Theorem 11. Max Leaf CT (internal) can be decided in time O∗(18k) and space O∗(2k).

Proof. Assume G admits a cliquy tree T with at most k internal vertices. Since the leaf set of T forms an independent set in
G, the internal vertices form a vertex cover in G. Thus, there exists a minimal vertex cover C of G of size at most k such that
the internal vertices of T are a superset of C .

We enumerate all minimal vertex covers C of G of size at most k. If there exists an independency tree in G|C whose
internal vertices are exactly C , then we accept. Otherwise, we iterate over all vertices x ∈ V \ C and accept if there exists an
independency tree of size at most k in G|C∪{x} whose internal vertices are a superset of C ∪ {x}. According to Lemma 4, we
accept if and only if there exists a cliquy tree with at most k internal vertices whose internal vertices are a superset of C .

There are at most 2k minimal vertex covers of size at most k in G, which can be enumerated in O∗(2k) time; see [15] and
[8, Theorem 4]. Furthermore, the sets C and C ∪ {x} form a vertex cover in G|C and G|C∪{x}, respectively. Thus, according to
Lemma 3, we can decide in time O∗(9k) whether G|C∪{x} or G|X admit an appropriate independency tree. The total running
time is O∗(18k). □

K. Casel, J. Dreier, H. Fernau et al. / Discrete Applied Mathematics 272 (2020) 2–15 13

4.3. Fpt-Algorithm and 2k-Kernel for Min Leaf IT (internal)

In this section,we show thatMin Leaf IT (internal) is in FPT.We do so by showing a strong relation between independency
treeswith aminimal number of leaves and spanning treeswith aminimal number of leaves. The problemof decidingwhether
a graph contains a spanning tree with at most k leaves, parameterized by the number of internal vertices, is known asMax-
Internal Spanning Tree. This problem is in FPT with current best known running time O∗(4k) [24]. We use this result to
decide whether a graph contains an independency tree with at most k leaves, parameterized by the number of internal
vertices, i.e., we solveMin Leaf IT (internal). For this, we need the following lemma:

Lemma 5. For any graph G that has an independency tree, the minimal number of leaves of a spanning tree of G equals the
minimal number of leaves of an independency tree of G.

Proof. Let G = (V , E) be any graphwhich admits an independency tree. Let T be a spanning tree of Gwith aminimal number
of leaves. We distinguish between two cases:

First case: T has two leaves, i.e., T is a Hamiltonian path. According to Böhme et al. [2], every Hamiltonian graph which
admits an independency tree also admits a Hamiltonian path with non-adjacent endpoints. Such a path is an independency
tree with two leaves.

Second case: T has at least three leaves. Assume there are leaves x, y of T which are adjacent in G. There exists a vertex
z of degree at least three which connects x and y in T . Let z ′ be the first vertex along the path from z to x. We create a new
spanning tree T ′ from T by removing the edge (z, z ′) and adding the edge (x, y). The leaves x, y become internal vertices in T ′
and the internal vertex z ′ becomes a leaf in T ′. The tree T ′ has one leaf less than T . However, T was assumed to be a spanning
tree with a minimal number of leaves. Thus, the assumption that some leaves of T were adjacent in G was false, and hence,
T is an independency tree.

For everyminimal spanning treewehave found an independency treewith the samenumber of leaves. This independency
tree is minimal, because every independency tree is also a spanning tree. □

This connection allows to transfer the 2k vertex kernel forMax-Internal Spanning Tree [24].

Theorem 12. There is a kernel of at most 2k vertices for Min Leaf IT (internal).

Proof. Let (G, k) be the input for the problem,whereG is a connected graph and k is an integer.We describe the kernelization
procedure in the following. First, we check if G is isomorphic to Cn, Kn or Kn/2,n/2. If this is the case, then we output a
trivial no-instance, because G has no independency tree [2]. Otherwise, Lemma 5 shows that (G, k) is a yes-instance to
Min Leaf IT (internal) if and only if G has a spanning tree with at least k internal vertices. Now, we employ the kernel for
Max-Internal Spanning Tree by Li et al. [24], which is a 2k vertex kernel. If the resulting graph G′ is isomorphic to Cn, Kn or
Kn/2,n/2, then we can solve Max-Internal Spanning Tree in polynomial-time on this Max-Internal Spanning Tree-kernel
and output a trivial yes- or no-instance for Min Leaf IT (internal). Otherwise, we output G′ (and k′) without any further
change. The correctness follows directly from Lemma 5. □

We can now also use Lemma 5 to transfer results fromMax-Internal Spanning Tree to Min Leaf IT (internal).

Lemma 6. Min Leaf IT (internal) can be solved in time O∗(4k) and polynomial space.

Proof. Let (G, k) be the input for the problem, where G is a connected graph and k an integer. First, we check if G is
isomorphic to Cn, Kn or Kn/2,n/2. If this is the case, then we output a trivial no-instance, because G has no independency
tree [2]. Otherwise, an independency tree exists, and we use an O∗(4k) algorithm [24] to solveMax-Internal Spanning Tree
for (G, k). By Lemma 5, this algorithm is successful in computing a spanning tree with at least k internal vertices if and only
if there exists an independency tree in Gwith at least k internal vertices. □

If we want to give a corresponding independency tree in case of a yes-instance, then we start with the spanning tree T
computed for Max-Internal Spanning Tree. If any two leaves of T are not independent, then we successively create a tree
with strictly less leaves with the procedure used in the argument of the proof for Lemma 5. This way, we either arrive at
an independency tree with even more than k internal vertices or at a Hamiltonian cycle. Since G is not isomorphic to Cn, Kn,
or Kn/2,n/2, there exists a Hamiltonian path in G which is not a cycle [2]. The argument used for this result gives a quadratic
number of possible Hamiltonian paths in G of which at least one has to be an independency tree.

5. An exact exponential-time algorithm for all variants

In this section we present an exact exponential algorithm for Min/Max Leaf IT and Min/Max Leaf CT. To be precise, we
will construct a more general algorithm for finding spanning trees where the leaf set is maximal or minimal and satisfies
some properties. The running time will depend on the time required to check the property.

The basic idea is to enumerate all possible partitions into internal vertices and leaves. Since we do not care about the
internal structure it is not necessary to enumerate all spanning trees.We have to check if for a given partition some spanning

14 K. Casel, J. Dreier, H. Fernau et al. / Discrete Applied Mathematics 272 (2020) 2–15

tree exists. This subproblem, i. e., given a graph G = (V , E) and L ⊆ V , check whether G has a spanning tree with leaf set
L, is already a hard problem by reduction from Hamiltonian Path: A graph G has a Hamiltonian path from vertex x to y if
and only if G has a spanning tree with leaf set {x, y}. We will iteratively compute partial solutions in parallel for all possible
leaf-sets via dynamic programming: At any given time, Ai contains all possible partitions into internal vertices and leaves of
a spanning tree of any subgraph with i vertices. The set Ai+1 is then constructed from Ai by checking if the trees of Ai can be
extended with a new vertex. The final table An contains all possible partitions into internal vertices and leaves of a spanning
tree of the whole graph. For any graph G = (V , E) and i, 1 ≤ i ≤ |V |, let Ai be equal to

{(K , L): K , L ⊆ V , |K | + |L| = i,G[K ∪ L] has a spanning tree with leaf set L}.

We will now show how we can extend Ai−1 to Ai by adding a vertex.

Lemma 7. (K , L) ∈ Ai if and only if there exist k ∈ K , l ∈ L and (k, l) ∈ E, such that either

(i) (K \ {k}, (L \ {l}) ∪ {k}) ∈ Ai−1, or
(ii) (K , L \ {l}) ∈ Ai−1.

Proof. Let T be a spanning tree of G[K ∪ L]with non-empty leaf set L. Let l be any leaf in T with parent vertex k. Let T ′ be the
spanning tree of G[(K ∪ L) \ {l}] obtained by removing l from T . If k is a leaf in T ′ then (i) holds, otherwise (ii).

Assume (i) or (ii) holds for some k ∈ K , l ∈ L which are adjacent in G. There exists a spanning tree T ′ on G[K ∪ L′] with
leaf set L′ = L \ {l}. We obtain a spanning tree T on G[K ∪ L] by adding the vertex l and the edge (k, l) to T ′. The vertex k is
not a leaf in T . If (i) holds, then k is a leaf in T ′. The leaf set of T equals (L′ ∪ {l}) \ {k} = L. If (ii) holds, then k is not a leaf in
T ′. The leaf set of T equals L′ ∪ {l} = L. So T is a spanning tree on G[K ∪ L]with leaf set L. □

We can now apply Lemma 7 to prove Theorem 1. The basic idea for this result is to compute the set An in O(3n
· (n+m))

time, where m is the number of edges, using dynamic programming and Lemma 7. We then simply filter the entries of An,
only keeping those where the leaf set satisfies the property P , and select the entry which maximizes/minimizes the leaf set.

Theorem 1 (restated). Let G be a graph of order n. There exists an algorithm running in time O(3n
· f (n)) and space O(3n)

that constructs a spanning tree with a maximal/minimal number of leaves, where the leaves satisfy a property P that can be
checked in time O(f (n)).

Proof. We prove this for graphs with one component and at least one edge. For i ∈ {2, . . . , n} let Ai ∈ 2V
× 2V be the set of

all tuples (K , L) such that

• K ∩ L = ∅
• |K | + |L| = i
• there exists a spanning tree on G[K ∪ L]with leaf set L.

The desired output can easily be derived from An in polynomial time.We iteratively construct Ai for increasing values of i. For
a graph of size two the spanning tree consists of a single edge, thus the base case is given by A2 = {(∅, {v, u}) | (v, u) ∈ E}.
We proceed by computing Ai+1 from Ai. We iterate over all tuples (K , L) ∈ 2V

× 2V with K ∩ L = ∅ and |K | + |L| = i+ 1. If
L = ∅we can skip the tuple, since every tree needs to have at least one leaf. Otherwise, for every l ∈ L, we add (K , L) to Ai+1
if for some k ∈ N(l) ∩ K , one of the following holds:

(i) (K \ {k}, (L \ {l}) ∪ {k}) ∈ Ai, or
(ii) (K , L \ {l}) ∈ Ai.

From Lemma 7, we know that this is enough to find all entries in Ai+1. During the course of computing A1, . . . , An we iterate
over

∑n
i=1

(n
i

)
2i
= 3n

− 1 many (K , L) tuples. For each such (K , L) with |K | + |L| = i we pick a leaf l ∈ L and evaluate (i)
and (ii) by checking Ai at at most |N(l)| + 1 positions. Thus, An can be constructed in O(3n

· (n+m)), wherem is the number
of edges. In the last step we filter the entries of An, only keeping those where the leaf set satisfies the property P . We then
select the entry which maximizes/minimizes the leaf set. We then construct the optimal spanning tree via backtracking. It
is easy to see that we only ever need to keep Ai and Ai−1 in memory, which leads to the claimed space requirement. □

Since checking if a set is an independent set or a clique canbedone in polynomial time,we arrive at the following corollary.

Corollary 1. There exists an O∗(3n) time and O(3n) space algorithm for graphs of order n to construct an independency (cliquy)
tree of G with a maximal/minimal number of leaves.

Remark 1. While it might be possible (though challenging) to design algorithms that solve these problems, say, in time
O∗(2n), we can rule out algorithms with running times of 2o(n) under the Exponential Time Hypothesis (ETH). Theorem 7
was proven by a reduction from RBDS to Max Leaf IT which only requires a linear blowup in the number of vertices of the
input graph. AsDominating Set is, quite obviously, linearly reducible to RBDS, this also shows that there exists no 2o(n) exact
algorithm for Max Leaf IT, unless ETH fails [25]. The same holds for Max Leaf CT with the reduction used for Theorem 8.
Min Leaf IT and Min Leaf CT are for k = 2 equivalent to Hamiltonian Cycle; see Proposition 1. This shows the claim by
looking at classical reductions that show NP-hardness of Hamiltonian Cycle [18,25].

K. Casel, J. Dreier, H. Fernau et al. / Discrete Applied Mathematics 272 (2020) 2–15 15

6. Conclusions

In Theorem 10 we showed that Max Leaf IT (internal) can be decided by an algorithm which runs in time O∗(18k) and
exponential space. This algorithm needs to compute a slight modification of a Steiner tree as a subroutine. We currently
do this using a modified version of the classical Dreyfus–Wagner algorithm, which runs, just like the original algorithm, in
time O∗(3k) and exponential space, where k is the number of terminal nodes. This is also the only part in our algorithm that
needs exponential space. Usingmore advancedmethods however, one can solve the Steiner tree problem in time O∗(2k) and
polynomial space [27]. The running time of this subroutine is a multiplicative factor in the running time of our algorithm.
It would be interesting to check if it is possible to adapt these advanced methods for solving Steiner Tree to our problem,
and thereby solve Max Leaf IT (internal) in polynomial space or obtain a faster single-exponential time (we would obtain
O∗(12k) time by using the best known algorithm).

We only considered parameters intrinsic to the problem. A question for further research is to parameterize the problem
by structural parameters like treewidth or vertex cover number. Especially vertex cover has a deep connection to the
independency tree versions, since if the vertex cover number is high, there is no independency tree with many leaves. The
only part of our algorithm for Max Leaf IT (internal) that requires the number of internal vertices k and not just the vertex
cover size as parameter is the iteration over all universal sets.

We have developed exact algorithms for constructing spanning trees assuming that the set of leaves satisfies a certain
well-computable property P . It would be interesting to study this type of problems in the framework of parameterized
complexity. For which properties P can we prove fpt results, and for which W[1]-hardness results?

Finally, we hope this paper spurs interest in faster fpt algorithms for the problems studied in this paper, and steady
improvement is obtained just like for other spanning tree variants, such as Max-Leaf Spanning Tree and Max-Internal
Spanning Tree.

Acknowledgments

We are very grateful for discussions with Van Bang Le. He was so kind to send us the construction on which Theorem 3
is based. Previously, we only found examples that refuted Conjecture 1 in a weaker form. The first author was subsidized by
DFG grant FE 560/6-1 (Germany). We are also grateful to the reviewers whose comments helped improve the presentation
of our results.

References

[1] D. Binkele-Raible, H. Fernau, S. Gaspers, M. Liedloff, Exact and parameterized algorithms for Max Internal Spanning Tree, Algorithmica 65 (2013)
95–128.

[2] T. Böhme, H. Broersma, F. Göbel, A.V. Kostochka, M. Stiebitz, Spanning trees with pairwise nonadjacent endvertices, Discrete Math. 170 (1–3) (1997)
219–222.

[3] P.M. Camerini, G. Galbiati, F. Maffioli, Complexity of spanning tree problems: part I, European J. Oper. Res. 5 (5) (1980) 346–352.
[4] S. Chen, I. Ljubic, S. Raghavan, The regenerator location problem, Networks 55 (3) (2010) 205–220.
[5] M. Cygan, Deterministic parameterized connected vertex cover, in: F.V. Fomin, P. Kaski (Eds.), Algorithm Theory – SWAT 2012 – 13th Scandinavian

Symposium and Workshops, in: LNCS, vol. 7357, Springer, 2012, pp. 95–106.
[6] M. Cygan, F. Fomin, Ł. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, S. Saurabh, Parameterized Algorithms, Springer, 2015.
[7] J. Daligault, G. Gutin, E.J. Kim, A. Yeo, FPT algorithms and kernels for the Directed k-Leaf problem, J. Comput. System Sci. 76 (2) (2010) 144–152.
[8] P. Damaschke, Parameterized enumeration, transversals, and imperfect phylogeny reconstruction, Theoret. Comput. Sci. 351 (3) (2006) 337–350.
[9] R. Diestel, Graph Theory, in: Graduate Texts in Mathematics, vol. 173, Springer, 2000.

[10] M. Dom, D. Lokshtanov, S. Saurabh, Kernelization lower bounds through colors and IDs, ACM Trans. Algorithms 11 (2) (2014) 13:1–13:20.
[11] R.J. Douglas, NP-completeness and degree restricted spanning trees, Discrete Math. 105 (1–3) (1992) 41–47.
[12] R.G. Downey, M.R. Fellows, Fundamentals of Parameterized Complexity, in: Texts in Computer Science, Springer, 2013.
[13] S.E. Dreyfus, R.A. Wagner, The Steiner problem in graphs, Networks 1 (3) (1971) 195–207.
[14] M.R. Fellows, D.K. Friesen, M.A. Langston, On finding optimal and near-optimal lineal spanning trees, Algorithmica 3 (1988) 549–560.
[15] H. Fernau, On parameterized enumeration, in: O.H. Ibarra, L. Zhang (Eds.), Computing and Combinatorics, Proceedings COCOON 2002, in: LNCS, vol.

2383, Springer, 2002, pp. 564–573.
[16] M.J. Flores, J.A. Gámez, S. Moral, The independency tree model: a new approach for clustering and factorisation, in: M. Studený, J. Vomlel (Eds.), Third

European Workshop on Probabilistic Graphical Models, 2006, pp. 83–90.
[17] J. Flum, M. Grohe, Parameterized Complexity Theory, in: Text in Theoretical Computer Science, Springer, 2006.
[18] M.R. Garey, D.S. Johnson, Computers and Intractability, Freeman, New York, 1979.
[19] Internet forum ‘‘mathoverflow’’, Graphs in which every spanning tree is an independency tree. https://mathoverflow.net/questions/141355/graphs-

in-which-every-spanning-tree-is-an-independency-tree.
[20] Internet forum ‘‘mathoverflow’’, On ‘‘super connected’’ graphs. https://mathoverflow.net/questions/140200/on-super-connected-graphs.
[21] Internet forum ‘‘stackexchange’’, Completeness spanning trees, https://cstheory.stackexchange.com/questions/18875/completeness-spanning-trees.
[22] A. Itai, C.H. Papadimitriou, J.L. Szwarcfiter, Hamiltonian paths in grid graphs, SIAM J. Comput. 11 (4) (1982) 676–686.
[23] M. Knauer, J. Spoerhase, Better approximation algorithms for the maximum internal spanning tree problem, Algorithmica 71 (4) (2015) 797–811.
[24] W. Li, Y. Cao, J. Chen, J. Wang, Deeper local search for parameterized and approximation algorithms for maximum internal spanning tree, Inform. and

Comput. 252 (2017) 187–200.
[25] D. Lokshtanov, D. Marx, S. Saurabh, Lower bounds based on the Exponential Time Hypothesis, EATCS Bull. 105 (2011) 41–72.
[26] M. Naor, L.J. Schulman, A. Srinivasan, Splitters and near-optimal derandomization, in: 36th Annual Symposium on Foundations of Computer Science,

FOCS, IEEE Computer Society, 1995, pp. 182–191.
[27] J. Nederlof, Fast polynomial-space algorithms using inclusion-exclusion; improving on Steiner tree and related problems, Algorithmica 65 (4) (2013)

868–884.
[28] E. Prieto, C. Sloper, Either/or: using vertex cover structure in designing FPT-algorithms—the case of k-Internal Spanning Tree, in: F.K.H.A. Dehne, J.-R.

Sack, M.H.M. Smid (Eds.), Proceedings ofWADS 2003, Workshop on Algorithms and Data Structures, in: LNCS, vol. 2748, Springer, 2003, pp. 465–483.
[29] G. Salamon, Approximating the maximum internal spanning tree problem, Theoret. Comput. Sci. 410 (2009) 5273–5284.
[30] G. Salamon, Vulnerability bounds on the number of spanning tree leaves, Ars Math. Contemp. 2 (2009) 77–92.

http://refhub.elsevier.com/S0166-218X(18)30450-5/sb1
http://refhub.elsevier.com/S0166-218X(18)30450-5/sb1
http://refhub.elsevier.com/S0166-218X(18)30450-5/sb1
http://refhub.elsevier.com/S0166-218X(18)30450-5/sb2
http://refhub.elsevier.com/S0166-218X(18)30450-5/sb2
http://refhub.elsevier.com/S0166-218X(18)30450-5/sb2
http://refhub.elsevier.com/S0166-218X(18)30450-5/sb3
http://refhub.elsevier.com/S0166-218X(18)30450-5/sb4
http://refhub.elsevier.com/S0166-218X(18)30450-5/sb5
http://refhub.elsevier.com/S0166-218X(18)30450-5/sb5
http://refhub.elsevier.com/S0166-218X(18)30450-5/sb5
http://refhub.elsevier.com/S0166-218X(18)30450-5/sb6
http://refhub.elsevier.com/S0166-218X(18)30450-5/sb7
http://refhub.elsevier.com/S0166-218X(18)30450-5/sb8
http://refhub.elsevier.com/S0166-218X(18)30450-5/sb9
http://refhub.elsevier.com/S0166-218X(18)30450-5/sb10
http://refhub.elsevier.com/S0166-218X(18)30450-5/sb11
http://refhub.elsevier.com/S0166-218X(18)30450-5/sb12
http://refhub.elsevier.com/S0166-218X(18)30450-5/sb13
http://refhub.elsevier.com/S0166-218X(18)30450-5/sb14
http://refhub.elsevier.com/S0166-218X(18)30450-5/sb15
http://refhub.elsevier.com/S0166-218X(18)30450-5/sb15
http://refhub.elsevier.com/S0166-218X(18)30450-5/sb15
http://refhub.elsevier.com/S0166-218X(18)30450-5/sb16
http://refhub.elsevier.com/S0166-218X(18)30450-5/sb16
http://refhub.elsevier.com/S0166-218X(18)30450-5/sb16
http://refhub.elsevier.com/S0166-218X(18)30450-5/sb17
http://refhub.elsevier.com/S0166-218X(18)30450-5/sb18
https://mathoverflow.net/questions/141355/graphs-in-which-every-spanning-tree-is-an-independency-tree
https://mathoverflow.net/questions/141355/graphs-in-which-every-spanning-tree-is-an-independency-tree
https://mathoverflow.net/questions/141355/graphs-in-which-every-spanning-tree-is-an-independency-tree
https://mathoverflow.net/questions/140200/on-super-connected-graphs
https://cstheory.stackexchange.com/questions/18875/completeness-spanning-trees
http://refhub.elsevier.com/S0166-218X(18)30450-5/sb22
http://refhub.elsevier.com/S0166-218X(18)30450-5/sb23
http://refhub.elsevier.com/S0166-218X(18)30450-5/sb24
http://refhub.elsevier.com/S0166-218X(18)30450-5/sb24
http://refhub.elsevier.com/S0166-218X(18)30450-5/sb24
http://refhub.elsevier.com/S0166-218X(18)30450-5/sb25
http://refhub.elsevier.com/S0166-218X(18)30450-5/sb26
http://refhub.elsevier.com/S0166-218X(18)30450-5/sb26
http://refhub.elsevier.com/S0166-218X(18)30450-5/sb26
http://refhub.elsevier.com/S0166-218X(18)30450-5/sb27
http://refhub.elsevier.com/S0166-218X(18)30450-5/sb27
http://refhub.elsevier.com/S0166-218X(18)30450-5/sb27
http://refhub.elsevier.com/S0166-218X(18)30450-5/sb28
http://refhub.elsevier.com/S0166-218X(18)30450-5/sb28
http://refhub.elsevier.com/S0166-218X(18)30450-5/sb28
http://refhub.elsevier.com/S0166-218X(18)30450-5/sb29
http://refhub.elsevier.com/S0166-218X(18)30450-5/sb30

	Complexity of independency and cliquy trees
	Introduction
	Relation to Connected Vertex Cover
	Parameterizing by the Number of Leaves
	Parameterizing by the Number of Internal Vertices
	Kernelizations for the Max-Leaf-Variants
	Fpt-Algorithms for Max-Leaf-Variants
	Fpt-Algorithm and 2k-Kernel for Min Leaf IT (internal)

	An Exact Exponential-Time Algorithm for All Variants
	Conclusions
	Acknowledgments
	References

