
SoftwareX 11 (2020) 100361

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

PyLops—A linear-operator Python library for scalable algebra and
optimization
Matteo Ravasi a,∗, Ivan Vasconcelos b

a Equinor ASA - Sandslivegen 90, Sandsli, 5254, Norway
b Utrecht University, Vening Meineszgebouw A, Princetonlaan 8a, Room 242, 3584 CB, Utrecht, The Netherlands

a r t i c l e i n f o

Article history:
Received 4 April 2019
Received in revised form 13November 2019
Accepted 19 November 2019

Keywords:
Python
Linear algebra
Inverse problems
Optimization
Linear operator

a b s t r a c t

Linear operators and optimization are at the core of many algorithms used in signal and image pro-
cessing, remote sensing, and inverse problems. For small to medium-scale problems, existing software
packages (e.g., MATLAB, Python NumPy and SciPy) allow to explicitly build dense or sparse matrices
and perform algebraic operations with syntax that closely represents their equivalent mathematical
notation. However, many real-application, large-scale operators do not lend themselves to explicit
matrix representations, usually forcing practitioners to forego the convenient linear-algebra syntax
available for their explicit-matrix counterparts. PyLops is an open-source Python library providing a
flexible framework for the creation and combination of so-called linear operators, class-based entities
that represent matrices and inherit their associated syntax convenience, but do not rely on the creation
of explicit matrices. We show that PyLops operators can dramatically reduce the memory load and
CPU computations compared to explicit-matrix calculations, while still allowing users to seamlessly
use their existing knowledge of compact matrix-based syntax that scales to any problem size because
no explicit matrices are required.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version v1.7.0
Permanent link to code/repository used of this code version github.com/equinor/pylops
Legal Code License LGPL-3.0
Code versioning system used git
Software code languages, tools, and services used Python; CI travis; Azure Pipelines; readthedocs; codacy; Docker
Compilation requirements, operating environments & dependencies Python ≥ 3.5; Linux, OSX, Windows; Requirements provided in requirement.txt or

environment.yml files in repository.
If available Link to developer documentation/manual pylops.readthedocs.io
Support email for questions matteoravasi@gmail.com

1. Introduction

Numerical linear algebra is at the core of many problems in
signal processing [1], image processing [2], inverse problems [3,4]
with applications to remote sensing [5], geophysics [6], medical
imaging [7], and even some areas of machine learning such as
deep neural networks [8].

Commonly used within these disciplines is the notion of linear
operator, mapping vectors from one space, generally referred to
as the model space, to another space, referred to as the data or

∗ Corresponding author.
E-mail address: matteoravasi@gmail.com (M. Ravasi).

observation space. Conversely, an inverse problem is the process
of estimating from a set of observations the causal factors that
produced them, that is, the underlying model (e.g., [3]).

Three alternative approaches can be identified for solving an
inverse problem: direct solvers with explicit (dense or sparse)
matrices, iterative solvers with explicit matrices, and iterative
solvers with linear operators. For problems of limited size, one
can first create a matrix and subsequently exploit the power
of direct solvers to factorize the system of equations or use
analytical pseudo-inverse formulas to invert such a matrix. In the
latter case, the inverse matrix is multiplied to the observation
vector to obtain an estimate of the model. However, this route is
not always viable and iterative solvers such as gradient-descent

https://doi.org/10.1016/j.softx.2019.100361
2352-7110/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2019.100361
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2019.100361&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX_2019_106
https://pylops.readthedocs.io
mailto:matteoravasi@gmail.com
mailto:matteoravasi@gmail.com
https://doi.org/10.1016/j.softx.2019.100361
http://creativecommons.org/licenses/by/4.0/


2 M. Ravasi and I. Vasconcelos / SoftwareX 11 (2020) 100361

methods are usually employed. A clear advantage of these solvers
is that one does not need direct access to the matrix, rather it only
needs to be able to compute the forward and sometimes adjoint
operations.

Nowadays, several software packages provide core function-
alities for dealing with arrays and matrices, as well as a suite
of direct and iterative numerical solvers: this is for example
the case of MATLAB, the Python scientific libraries NumPy and
SciPy, as well as the more low level libraries BLAS and LAPACK.
Moreover, several open-source projects provide high-level, easy-
to-use routines for the numerical treatment of ill-posed problems,
such as the Regularization Tools package [9]. The widespread
need to perform core linear algebra operations as efficiently and
fast as possible has also led to large computing technology invest-
ments in the last two decades, focused on the search for efficient
implementations on CPUs using both multi-threading as well as
multi-core paradigms, GPUs, and more recently TPUs [10]. For ex-
ample the field of machine learning has massively benefited from
such advances; this is especially the case for deep learning where
highly complex, deep neural networks with millions of weights
(i.e., model parameters) can now be solved in a matter of hours,
mostly because of the speedup in matrix-matrix and matrix–
vector computations that GPUs and TPUs provide when compared
to CPUs. Frameworks such as Theano [11], TensorFlow [12] or
PyTorch [13] have been developed to specifically satisfy such a
need and take advantage of advances in hardware components.

Nevertheless, when dealing with a large variety of physics-
based inverse problems, the underlying linear operators are of-
ten far from being dense matrices (as opposed to, for example,
dense layers in a neural network). Instead, they can be rep-
resented via sparse, structured matrices with fewer non-zero
elements compared to the zero ones. By taking advantage of
this property, we can write computer code for the linear op-
erator resulting in a more efficient application of the forward
and adjoint operations that scale with problem size. Such com-
puter code can be written in a manner that inherits the syntax
convenience of analytical linear algebra, by simply represent-
ing forward and adjoint operations via class-defined methods
that reproduce the result of otherwise explicit matrix–vector
products. This construct not only serves both sparse (e.g. physics-
based) and dense operators (e.g., convolution with Green’s func-
tions or neural-network layers) equally well, but it also pro-
vides full functionality for the use of iterative solvers. Conve-
niently, the Python library SciPy provides a barebone, generic
class for the definition and application of linear operators, which
we leverage from and build on within the PyLops package as
discussed below. Other examples of currently available software
packages that provide a general interface to linear operators are
the C++ Rice Vector Library [14], the MATLAB Spot and
Waveform packages [15,16], the Python fastmat library [17],
and the Julia LinearMaps.jl and JOLI.jl packages [18,19].
Moreover, some open-source software packages that employ a
similar construct to solve domain-specific inverse problems are
the ASTRA-toolbox [20], Seplib [6,21], Madagascar [22], and
Devito [23]. Many of the packages mentioned above however
tend to prioritize the ability of solving large inverse problems
efficiently in exchange for a loss in the convenient linear-algebra
syntax. To the best of our knowledge, only the MATLAB Spot
package, and to a lesser degree the Python fastmat library,
achieve the best of both worlds. PyLops is a Python library that ac-
complishes the very same goal while at the same time being more
tightly connected to the Python ecosystem by directly building on
top of the linear operator definition within the SciPy library.

2. A brief tour of linear operators

A discrete linear operator can be formally represented as a
matrix–vector multiplication:

y = Ax (1)

where A in R(N×M) is an operator that maps a model vector x
belonging to the real space RM into a data vector y belonging
to the real space RN . Note that the same theory is also valid for
complex spaces.

The linear mapping from a known set of input parameters
(x) into a vector in the data space (y) is generally referred to
as modeling or the forward problem. Similarly, we can define the
mapping from a vector in the data space to a vector in the model
space as adjoint modeling. Finally, the process of undoing the
effect of the modeling operator from a data vector is referred to
as inverse modeling or the inverse problem.

As already mentioned, several linear mappings tend to obey
to a certain structure and exploiting such a structure when ap-
plying them to a vector can usually lead to a significant gain
in both computation speed and memory efficiency. This is for
example the case of operators that can be expressed in terms
of a convolution (correlation) between the model (data) vector
and a compact kernel. Operators of such a kind can be imple-
mented by creating a Toeplitz matrix that contains the elements
of the kernel, followed by a matrix–vector multiplication with
the model or data vector. When the kernel is compact, such
matrix is a very sparse, band matrix with few non-zero ele-
ments around the main diagonal and zeros elsewhere. Performing
the matrix–vector multiplication leads to poor performance, as
many multiplications and summations with zero elements are
performed. For example, imagine we want to apply a first-order
derivative to a vector x: the first-order derivative, in its simplest
form, can be approximated by a two-sample forward difference
stencil [1/∆x, −1/∆x] applied to each pair of samples of the
input vector; as for any convolutional operator with a generic ker-
nel, the very same operation can be performed in three different
ways:

1. Create a dense matrix with 1/∆x along the main diago-
nal and −1/∆x along the first lower diagonal (and zero
elsewhere), followed by a matrix–vector multiplication,

2. Convolve the input signal by the stencil,
3. Subtract each sample of the input vector by the previous

sample, i.e., yi = (xi+1 − xi)/∆x.

This very last approach is the one adopted in the PyLops imple-
mentation of a first-order derivative as it does not only remove
the need for storing −1/∆x and 1/∆x values, but it also reduces
the number of operations to one summation and one multipli-
cation for each sample of the output vector. More in general,
PyLops aims to provide efficient implementations of operators by
exploiting their specific structure, and reduce both memory usage
and computational cost.

An additional benefit of using linear operators becomes ev-
ident when attempting to solve an inverse problem. Without
loss in generality, we consider the least-squares solution to an
over-determined inverse problem (n > m):

x̂ = argmin
x

(J(x) = ∥y − Ax∥2) → x̂ = (AHA)−1AHy (2)

Notice how the solution x̂ that minimizes the cost function J
requires both the operator A and its adjoint AH . This is not only
the case when an explicit solution is used, but also when solv-
ing the problem by means of an iterative gradient-based solver.
Working with explicit matrices requires creating and storing also
the adjoint matrix, doubling the amount of data in memory. On



M. Ravasi and I. Vasconcelos / SoftwareX 11 (2020) 100361 3

Fig. 1. Code snippet for creation and application of forward, adjoint and inverse Restriction operator to a vector.

the other hand, linear operators can implement the adjoint in a
similar fashion as the forward by exploiting the structure of the
operator itself, leading to limited or in most cases no additional
storage being required.

3. Code example

In this section we present a pedagogic example showing how
the PyLops library can be used to frame and solve an interpolation
problem by using linear operators. More specifically, we aim
at interpolating onto a regular grid a one dimensional signal
composed of three sinusoids that has been sampled at irregularly
and coarsely spaced positions along the time axis. This is obtained
by inverting the so-called restriction operator R, an operator that
extracts a subset of N values at locations l = [l1, l2, lM ] (referred
to as iava in the code) from an input (or model) vector x in
forward mode:

yi = xli ∀i = 1, 2, . . . ,M (3)

In adjoint mode, the action of the operator is such that values
in the data vector y are placed at locations l in the model vector:

xli = yi ∀i = 1, 2, . . . ,M (4)

where xj = 0 ∀j = 1, 2, . . . ,N (j ̸∈ l) (i.e., at all other locations
in input vector).

In the following we present a complete code snippet and guide
the reader through some of PyLops’ code patterns. A more de-
tailed description of the software package and its implementation
details follows in Section 4.

3.1. Sample code snippet

Fig. 1 shows the code snippet used to solve the interpo-
lation problem discussed above. We start by creating an in-
put signal composed of three sinusoids in the frequency do-
main (lines 5–15), convert it to time domain using the py-
lops.signalprocessing.FFT linear operator (18–19), define
indices for sampling the signal at irregular locations (22–24),
create the pylops.Restriction operator (27), apply it in for-
ward mode to the input signal (30–31), apply its adjoint to the
calculated data (34), and finally invert the operator (37).

Fig. 2 shows that the operator R is ill-posed and the inverse
problem cannot be successfully solved by simply employing the
/ operator. Such method does in fact implement the vanilla least-
squares inversion (Eq. (1)) by means of the scipy.sparse.
linalg.lsqr solver.



4 M. Ravasi and I. Vasconcelos / SoftwareX 11 (2020) 100361

Fig. 2. Input signal in (a) frequency domain X and (b) time domain x. Sampled signal (y - green dots) and inverted signal (xinv - red) are also shown in panel (b).

In this example we show how we can improve our esti-
mate by either (i) including a regularization term that favors a
smooth model by penalizing its second-order derivative (D2x),
implemented via the pylops.SecondDerivative operator or
(ii) taking advantage of the sparsity of the model in the fre-
quency domain and by using a sparsity promoting solver such
as pylops.optimization.sparsity.FISTA [24]. As shown in
Fig. 3, the estimate of the input signal is very much improved in
both cases.

Finally, while this example shows the potential of our li-
brary to solve inverse problems of any kind, several domain
specific examples are created using Sphinx-Gallery and are avail-
able as part of the official documentation.1 At this point in time,
PyLops is particularly used within the geophysical imaging com-
munity as linear operators are ideally suited for solving multi-
dimensional convolutional integral equations which are ubiq-
uitous in processing of large multi-channel, time-series-based
datasets (e.g., seismic data).2

4. Software framework

PyLops’ goal is to provide an easy-to-use Application Program-
ming Interface (API) to create and solve inverse problems by
means of linear operators and express them in a way that mimics
as closely as possible the mathematical linear algebra formalism
used to describe the problem in the first place. Moreover, the
library is suited to solve problems of any size, as shown in the

1 The official documentation is hosted at pylops.readthedocs.io. Moreover,
more in-depth code examples can be found at github.com/mrava87/pylops/
_notebooks.
2 Examples of such applications can be found at https://pylops.

readthedocs.io/en/latest/tutorials/mdd.html#sphx-glr-tutorials-mdd-py and
https://pylops.readthedocs.io/en/latest/tutorials/marchenko.html#sphx-glr-
tutorials-marchenko-py.

benchmarking tests in Section 5. To achieve this goal, each linear
operator is a class-based entity which can be used independently,
combined together with other operators by means of basic math-
ematical operations (e.g., + , −, ∗; see below for more details), or
fed directly into various solvers. Taking a modular approach to the
creation of linear operators, the library makes it easy for other
developers to implement new ones and to seamlessly include
them in the framework. This ultimately enables the combination
of any new and existing operators, providing an easy and quick
way to experiment with novel problems.

The API can be loosely seen as composed of three inter-
connected units as shown in Fig. 4.

4.1. Linear operators

The first unit contains the entire suite of linear operators.
pylops.LinearOperator is the main class of the library which
is used as parent class for all other linear operators, such that
they inherit its various internal methods as described below. Sub-
modules are used to create an organized stack of operators and
separate basic operators that are used within several applications
from more domain-specific ones, such as those used within the
signalprocessing submodule.

pylops.LinearOperator creates a generic interface for
matrix–vector (and matrix-matrix) products that can ultimately
be used to solve any forward or inverse problem of the form
y = Ax. This is achieved by overloading the SciPy class scipy.
sparse.linalg.LinearOperator, on top of which additional
properties and methods are defined. Forward and adjoint matrix–
vector operations are achieved by implementing the method
_matvec for the forward, and _rmatvec for the adjoint. The
attributes shape (tuple of two integers) and dtype must also
be provided during initialization to identify the shape and data
type of the operator itself. Moreover, pylops.LinearOperator

https://pylops.readthedocs.io
https://github.com/mrava87/pylops/_notebooks
https://github.com/mrava87/pylops/_notebooks
https://pylops.readthedocs.io/en/latest/tutorials/mdd.html#sphx-glr-tutorials-mdd-py
https://pylops.readthedocs.io/en/latest/tutorials/mdd.html#sphx-glr-tutorials-mdd-py
https://pylops.readthedocs.io/en/latest/tutorials/marchenko.html#sphx-glr-tutorials-marchenko-py
https://pylops.readthedocs.io/en/latest/tutorials/marchenko.html#sphx-glr-tutorials-marchenko-py


M. Ravasi and I. Vasconcelos / SoftwareX 11 (2020) 100361 5

Fig. 3. Recovered signal using regularized least-squares inversion (red) and sparsity-promoting inversion (cyan), and input signal (black). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Schematic representation of the software API. Colors indicate which library is used in the back-end of a linear operator (or solver).

requires an additional boolean attribute explicit, which iden-
tifies whether the operator has an explicit or implicit matrix
representation. This allows the inference of the most appropriate
solver to be used when invoking the __truediv__ method as
explained below.

As a linear operator is both concept- and syntax-wise equiv-
alent to a matrix, enabling users to combine those operators
actually reduces to implementing the following five elementary
operations: sum, multiply by a scalar, multiply (or chain) op-
erators, stack vertically and stack horizontally. In this context,
vertical stacking is equivalent to creating a list that contains mul-
tiple operators, applying each operator to the model vector and
concatenating the resulting data. On the other hand, horizontal

stacking requires applying each operator to a portion of the model
(of equal size to the operator column span) and summing the
resulting data vectors.

To be able to write code that resembles as much as possible
the underlying mathematical equations, we take advantage of
the ability of Python to perform operator overloading of various
magic methods – those being Python methods with the dou-
ble underscores at the beginning and the end – to allow using
mathematical symbols such as + , −, ∗, and / to perform those
elementary operations. More specifically, the following operator
overloads are implemented:



6 M. Ravasi and I. Vasconcelos / SoftwareX 11 (2020) 100361

• __matmul__ (called via @) or __mul__ (*): when applied
to a NumPy ndarray vector, executes the forward com-
putation of matrix-matrix or matrix–vector multiplication,
respectively;

• __mul__ (∗): when applied to a scalar, left- or right-
multiplies the operator by a scalar, while when applied to
another LinearOperator, chains the two operators;

• __add__ (+ ): when applied to another LinearOperator,
sums the two operators;

• H and T: creates the transpose (or hermitian operator) and
performs the adjoint computation when combined with a *
(i.e., .H*);

• __truediv__ (\): when applied to a NumPy ndarray vec-
tor, solves the inverse problem y = Ax with either explicit
or iterative solver.

Additionally, two other convenience methods are
implemented within the pylops.LinearOperator class:

• eigs: estimate the singular values of the operator using the
SciPy wrapper of ARPACK Fortran package [25].

• cond: use the eigs method to compute the conditioning
number (the ratio of the largest-to-smallest eigenvalues).

4.2. Solvers

Solving a linear problem by means of an off-the-shelf least-
squares cost function as in Eq. (1) may not always provide a good
estimate of the input model (e.g., [3]). This is always the case in
the presence of noisy data and for ill-posed linear operators that
cannot be inverted directly such as the Restriction operator
used in the numerical example in Section 3. In order to obtain
an improved estimate of the input model, regularization terms
can be included in the cost function. It is possible to either
add terms which constrain the solution space such as the well-
known Tikhonov regularization ∥x∥2 or sparsity promoting terms
such as ∥x∥1 or to solve for a preconditioned model p such that
x = Pp where P could be a smoothing operator). While a large
variety of linear solvers – e.g., conjugate-gradient solver [26]
or the LSQR solver [27] – is currently available in the public
domain, for example as part of the SciPy package, the user
is generally left with the task of adding regularization and/or
preconditioning terms. PyLops provides thin wrappers around
some of those solvers and eases the use of regularization and/or
preconditioning in inverse problems with minimal extra code.
Our entire suite of enriched solvers is provided in the submod-
ule pylops.optimization and subdivided into least-squares
within pylops.optimization.leastsquares and sparsity-
promoting solvers within pylops.optimization.sparsity.

4.3. Applications

Finally, the application layer is aimed at end users that wish
to easily setup and solve specific problems (without digging into
their implementation details — i.e., the creation and setup of
linear operators and solvers). Various geophysical problems like
those mentioned in the previous section are thus wrapped into a
single high-level function call, which requires the user to simply
provide the input dataset and a set of additional parameters.

5. Software dependencies

PyLops relies and builds on top of the two main external
libraries for scientific computing in Python, namely NumPy [28]
and SciPy [29], for all its linear operators and solvers.

In some circumstances, additional back-ends are also imple-
mented to improve the performance of forward and adjoint op-
erations. This is for example the case of the FFT operator, where a
fast implementation of the Fast Fourier Transform (FFT) algorithm
is provided by the library pyfftw, which is a python wrapper
around the famous FFTW library [30]. In this case PyLops pro-
vides two back-end options (referred in the code as engine),
one using NumPy’s implementation of fft and ifft, and another
using pyfftw. In the case a user uses engine=’fftw’ whilst
not having pyfftw and FTTW installed, PyLops automatically falls
back to the NumPy implementation. A similar approach is taken
also for the Radon2D operator, where numba [31] is used in this
case to speed-up for loops computations: again, a fallback NumPy
engine is implemented to keep numba as an optional dependency.

6. Testing and operator validation

In the framework of linear operators, it is of vital importance
to verify the correctness of the implementation of the forward
and adjoint operations. Failure to do so may lead to sub-optimal
convergence of iterative solvers when we attempt to invert a
set of observations for their modeling operator. A very strong
indication of the correctness of the two implementations is the
so-called dot-test [6]. More specifically, two vectors u and v of
size [M × 1] and [N × 1] are generated randomly, forward and
adjoint operations performed as in Eq. (5), and the following
equality tested within a certain tolerance:

(Op ∗ u)H ∗ v = uH
∗ (OpH

∗ v) (5)

Alongside the dot-test, we always solve a small-scale inverse
problem for every linear operator. The inverted model is com-
pared to the original one used to model the data and it is checked
that the two vectors match within a more or less strict tolerance.
It is important to remember that some inverse problems, espe-
cially those with an under-determined operator (N < M), do not
always have a unique solution and a satisfactory inverted model
can only be obtained by including additional prior information in
the form of additional regularization.

Tests have been implemented using pytest and are con-
nected to two continuous integration systems (CI-Travis and
Azure Pipelines). Automated tests cover all the linear operators,
and multiple tests have been implemented to validate different
combinations of both mandatory and optional input parameters.
At the time of writing, PyLops has over 300 automated test with
a code coverage of 86% (estimate provided by Codacy).

7. Contributing to the software

We foresee contributions from across different areas of sci-
entific computing where inverse problems are applicable. In or-
der to facilitate contributions we have created a check-list of
four mandatory steps that are required for a new operator to
be accepted to become part of the codebase of PyLops.3 By
strictly adhering to these requirements, we strive to keep a well-
maintained, well-tested, and well-documented codebase, while
strongly encouraging external contributions.

8. Benchmarking

Finally, we analyze the three different linear operators used in
the example from the standpoints of computational performance
and memory usage. For each operator, we perform a benchmark
test comparing the time it takes to apply the forward operator
to an input vector using the PyLops implementation of such an

3 Refer to pylops.readthedocs.io/en/latest/adding.html for more details.

https://pylops.readthedocs.io/en/latest/adding.html


M. Ravasi and I. Vasconcelos / SoftwareX 11 (2020) 100361 7

Fig. 5. Performance benchmark of (a) Restriction operator, (b) FirstDerivative operator, and (c) FFT operator.

operator versus the application of a dot product with a matrix
that produces the same outcome. The comparison is done for op-
erators of increasing size and the forward modeling is performed
200 times and logged via the Python timeit.timeit function.
Comparisons are performed on a MacBook Air 1.3 GHz Intel Core
i5 with a 8 GB 1600 MHz DDR3 RAM. Moreover, NumPy and SciPy

are installed via the conda distribution and linked to the Intel
MKL implementation of BLAS library for linear algebra. This leads
to the best performance for the dot product on a CPU architecture
as discussed in [32].

For the Restriction operator (Fig. 5a) we create both a
dense matrix using numpy.ndarray and a sparse matrix using



8 M. Ravasi and I. Vasconcelos / SoftwareX 11 (2020) 100361

scipy.sparse.csr_matrix as well as a PyLops operator. Py-
Lops’ implementation outperforms the naive dot product with
either dense or sparse matrices. Moreover, if we consider a model
vector with M = 105, and a subsampling factor of 10, the
resulting data vector has size N = 104. The dense matrix used to
perform such a restriction has therefore N ∗ M = 109 elements.
Using 8-bit unsigned integers, this amounts to 8 GB of memory
to store the matrix, and the same for its adjoint.

The memory usage is dramatically reduced for a sparse matrix,
as three values need to be stored for each index where the
input signal is sampled (row index, column index, and value);
this amounts to 3 ∗ N = 3 ∗ 104 elements (120 kB if we use
int32 type – 4 Bytes – for indices and values). A linear operator
requires instead only storing the indices at which the input signal
is sampled; in this case, that means only N = 104 values (40 kB
if we use int32 type for the indices).

We now consider the two-point FirstDerivative operator
(Fig. 5b). This operator is convolutional in essence as it can be
applied by convolving the input signal by a compact filter. The Py-
Lops implementation outperforms the explicit dot product with
a dense NumPy matrix, while a similar performance is obtained
in this case when a using a sparse-matrix. Though true for this
isolated benchmark, we note that in real-applications multiple
operators are generally chained (or stacked). Chaining explicit
matrices generally increases the complexity of the resulting ma-
trix and densifies it, meaning that the resulting matrix is less
sparse and the dot product less efficient. This is not the case
for linear operators, where the computational time of a chained
operator is equivalent to the sum of computational time of each
operator. Moreover, the memory usage for the FirstDeriva-
tive operator reduces to a single value, the step size ∆x, while
for a dense matrix the size quadratically increases with the size
of the model.

Lastly, we benchmark the Fast Fourier Transform FFT operator
(Fig. 5c). This is a peculiar case, as the FFT can be easily written
as a fully-dense matrix and combined with other dense matrices
as well as applied by means of a matrix–vector product. Using a
linear operator we can however leverage available open-source
implementations of the FFT algorithm such as those in NumPy or
FFTW libraries. The operator storage in this case is also limited to
a single number, the size of the FFT, while the required storage
for the corresponding dense matrix increases again quadratically
with the size of the model.

As a final remark, we wish to point out that linear operators
should not always be preferred to dense matrices. It is clear
from our benchmark tests that for small scale problems (N ≤

102), the most performant implementation is represented by the
highly optimized dot-product available in NumPy. Nevertheless,
both memory and computation benefits arise when using linear
operators for problems of larger size (N > 102) and the linear
operator paradigm should be the go-to solution to efficiently
solve large scale inverse problems.

9. Conclusions

We present a general-purpose Python library for linear opti-
mization, which scales from didactic numerical experiments to
large-scale, real-life problems. Using the concept of linear operator
classes and taking advantage of operator overloading in Python, a
framework is created whereby linear forward and inverse prob-
lems can be solved in a fully scalable manner (from tens to
millions of model parameters) without the need to store large
matrices in memory. By design, PyLops maintains a compact no-
tation that closely mimics the underlying analytical linear-algebra
formulation of any chosen problem. Benchmark testing confirms
that linear operators in PyLops scale well and efficiently with

respect to more ‘naive‘ implementations of the same operators by
means of explicit matrices. Moreover, the software architecture
is created in a modular fashion, in such a way that it is very
straightforward to create and include new linear operators (or
solvers). Although not part of the current version of the project,
the framework is not limited to linear inverse problems: PyLops
could be used for solving nonlinear inverse with optimization
methods that rely on linearized forward modeling, such as the
widespread adjoint-state method. Similarly, despite most of the
current applications are focused on geophysical processing and
imaging, the framework is generic and suited for any other dis-
cipline that deals with complex inverse problems, or requires
complex linear algebra calculations. One point of note is that
in its current form the PyLops operator objects capture some
of the algebraic properties of their theoretical counterparts —
namely those related to metric spaces and operations commonly
invoked in optimization and inverse problems. For those inter-
ested in extending operator objects to include other algebraic
properties, our software framework would easily allow for such
extensions, thereby facilitating advances in numerical analysis in
support of analytical algebra. Finally, two recent additions to the
PyLops project, namely PyLops-GPU and PyLops-distributed, take
advantage of high-performance computing (GPUs and out-of-
memory computations via distributed computing) when dealing
with linear operators and solvers.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

MR thanks Equinor for allowing the publication of this work.
We also thank Joost van der Neut, Yanadet Sripanich, and Tristan
van Leeuwen for insightful discussions. Jupyter notebooks are
used to create Figs. 2, 3, and 5 can be found at github.com/
mrava87/pylops_notebooks/tree/master/papers/softwareX_2019.
The authors cannot be held liable for any inappropriate use of
this software library.

References

[1] Kay SM. Fundamentals of statistical signal processing: Estimation. Prentice
Hall; 1993.

[2] Gonzalez RC, Woods RE. Digital image processing. Pearson Education; 2017.
[3] Hansen PC. Discrete inverse problems: Insight and algorithms (funda-

mentals of algorithms). Society for Industrial and Applied Mathematics;
2010.

[4] Bertero M, Boccacci P. Introduction to inverse problems in imaging. CRC
Press; 1998.

[5] Twomey S. Introduction to the mathematics of inversion in remote sensing
and indirect measurements. Dover Publications; 1997.

[6] Claerbout J, Fomel S. Geophysical image estimation by example, Reading,
MA.

[7] Suetens P. Fundamentals of medical imaging. Cambridge University Press;
2009.

[8] Goodfellow I, Bengio Y, Courville A. Deep learning. MIT Press Ltd; 2017.
[9] Hansen PC. Regularization tools version 4.0 for matlab 7.3. Numer

Algorithms 2007;46:189–94.
[10] Jouppi NP, Young C, Patil N, co authors. In-datacenter performance analysis

of a tensor processing unit. 2017, Arxiv.
[11] Al-Rfou R, Alain G, Almahairi A, Angermueller C, et al., Theano Develop-

ment Team Collaboration Theano: A Python framework for fast compu-
tation of mathematical expressions. 2016, arXiv e-prints, abs/1605.02688,
URL http://arxiv.org/abs/1605.02688.

[12] Abadi M, Agarwal A, Barham P, et al. Tensorflow: Large-scale machine
learning on heterogeneous systems. 2015, URL https://www.tensorflow.
org/, Software available from tensorflow.org.

https://github.com/mrava87/pylops_notebooks/tree/master/papers/softwareX_2019
https://github.com/mrava87/pylops_notebooks/tree/master/papers/softwareX_2019
https://github.com/mrava87/pylops_notebooks/tree/master/papers/softwareX_2019
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb1
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb1
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb1
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb2
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb3
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb3
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb3
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb3
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb3
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb4
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb4
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb4
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb5
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb5
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb5
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb7
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb7
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb7
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb8
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb9
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb9
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb9
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb10
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb10
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb10
http://arxiv.org/abs/1605.02688
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/


M. Ravasi and I. Vasconcelos / SoftwareX 11 (2020) 100361 9

[13] Paszke A, Gross S, Chintala S, Chanan G, et al. Automatic differentiation in
pytorch. In: NIPS-W. 2017.

[14] D.Padula A, Scott SD, Symes WW. A software framework for abstract
expression of coordinate-free linear algebra and optimization algorithms.
ACM Trans Math Software 2009;36(2):8:1–36. http://dx.doi.org/10.1145/
1499096.1499097, URL http://doi.acm.org/10.1145/1499096.1499097.

[15] van den Berg E, Friedlander MP. SPOT – a linear-operator toolbox. 2013,
URL http://www.cs.ubc.ca/labs/scl/spot/.

[16] Silva CD, Herrmann FJ. A unified 2d/3d large-scale software environment
for nonlinear inverse problems. ACM Trans Math Software 2019.

[17] Wagner C, Semper S. Fast linear transformations in python. Math Softw
2017.

[18] Karrasch D, contributors. LinearMaps.jl – a julia package for defining and
working with linear maps, also known as linear transformations or linear
operators acting on vectors. 2019, https://github.com/Jutho/LinearMaps.jl.

[19] Modzelewski H, Louboutin M. Joli.jl – julia framework for constructing
matrix-free linear operators with explicite domain/range type control and
applying them in basic algebraic matrix-vector operations. 2019, https:
//github.com/slimgroup/JOLI.jl.

[20] van Aarle W, Palenstijn WJ, Beenhouwer JD, Altantzis T, Bals S, Baten-
burg KJ, Sijbers J. The ASTRA toolbox: A platform for advanced algorithm
development in electron tomography. Ultramicroscopy 2015;157:35–47.

[21] Clapp R. Seplib. In: 74th EAGE conference and exhibition - workshops.
2012.

[22] Fomel S, Sava P, Ioan Vlad YL, Bashkardin V. Madagascar: open-source
software project for multidimensional data analysis and reproducible
computational experiments. J Open Res Softw 2013;1(1). e8.

[23] Louboutin M, Lange M, Luporini F, Kukreja N, Witte PA, Herrmann FJ,
Velesko P, Gorman GJ. Devito (v3.1.0): an embedded domain-specific
language for finite differences and geophysical exploration. Geosci Model
Dev 2019;12:1165–87, URL https://doi.org/10.5194/gmd-12-1165-2019.

[24] Beck A, Teboulle M. Shrinkage-thresholding algorithm for linear inverse
problems. SIAM J Imaging Sci 2009;183–202.

[25] Lehoucq RB, Sorensen DC, Yang C. Arpack users’ guide solution of large-
scale eigenvalue problems with implicitly restarted arnoldi methods. Soc
Ind Appl Math 1998.

[26] Hestenes MR, Stiefel E. Methods of conjugate gradients for solving linear
systems. J Res Natl Bur Stand 1952;49.

[27] Paige CC, Saunders MA. LSQR: An algorithm for sparse linear equations
and sparse least squares. ACM TOMS 1952;8.

[28] Oliphant T. Numpy: a guide to numpy. USA: Trelgol Publishing; 2006, URL
http://www.numpy.org/.

[29] Eric Jones PP, Travis Oliphant. Scipy: Open source scientific tools for
python. 2001.

[30] Frigo M, Johnson SG. FFTW: an adaptive software architecture for the
fft. In: IEEE international conference on acoustics, speech and signal
processing, Vol. 3. 1998, p. 1381–4.

[31] Lam SK, Pitrou A, Seibert S. Numba: A llvm-based python jit com-
piler. In: Proceedings of the Second Workshop on the LLVM Compiler
Infrastructure in HPC. LLVM ’15, New York, NY, USA: ACM; 2015, p. 7:1–
6. http://dx.doi.org/10.1145/2833157.2833162, URL http://doi.acm.org/10.
1145/2833157.2833162.

[32] Bauke H. Boosting NumPy with MKL. 2016, URL https://www.
numbercrunch.de/blog/2016/03/boosting-numpy-with-mkl/.

http://refhub.elsevier.com/S2352-7110(19)30108-6/sb13
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb13
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb13
http://dx.doi.org/10.1145/1499096.1499097
http://dx.doi.org/10.1145/1499096.1499097
http://dx.doi.org/10.1145/1499096.1499097
http://doi.acm.org/10.1145/1499096.1499097
http://www.cs.ubc.ca/labs/scl/spot/
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb16
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb16
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb16
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb17
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb17
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb17
https://github.com/Jutho/LinearMaps.jl
https://github.com/slimgroup/JOLI.jl
https://github.com/slimgroup/JOLI.jl
https://github.com/slimgroup/JOLI.jl
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb20
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb20
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb20
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb20
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb20
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb21
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb21
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb21
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb22
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb22
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb22
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb22
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb22
https://doi.org/10.5194/gmd-12-1165-2019
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb24
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb24
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb24
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb25
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb25
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb25
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb25
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb25
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb26
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb26
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb26
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb27
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb27
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb27
http://www.numpy.org/
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb29
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb29
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb29
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb30
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb30
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb30
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb30
http://refhub.elsevier.com/S2352-7110(19)30108-6/sb30
http://dx.doi.org/10.1145/2833157.2833162
http://doi.acm.org/10.1145/2833157.2833162
http://doi.acm.org/10.1145/2833157.2833162
http://doi.acm.org/10.1145/2833157.2833162
https://www.numbercrunch.de/blog/2016/03/boosting-numpy-with-mkl/
https://www.numbercrunch.de/blog/2016/03/boosting-numpy-with-mkl/
https://www.numbercrunch.de/blog/2016/03/boosting-numpy-with-mkl/

	PyLops—A linear-operator Python library for scalable algebra and optimization
	Introduction
	A brief tour of linear operators
	Code example
	Sample code snippet

	Software framework
	Linear operators
	Solvers
	Applications

	Software dependencies
	Testing and operator validation
	Contributing to the software
	Benchmarking
	Conclusions
	Declaration of competing interest
	Acknowledgments
	References


