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• Background and Aims It is important to have an in-depth mechanistic understanding of tidal marsh establish-
ment and dynamics to ensure the long-term persistence of these valuable ecosystems. As wave forcing may be ex-
pected to impact seedling establishment, we studied the effect of water-imposed drag forces on seedling survival, 
morphology and biomechanical properties of three marsh pioneer species that are dominant along the salinity 
gradient in many areas around the world: Spartina anglica (salt to brackish), Scirpus maritimus (brackish) and 
Phragmites australis (brackish to fresh).
• Methods Using a newly developed plant-shaking mesocosm (PSM) that mimicked water-imposed wave drag 
forces, the effect of wave stress on seedling survival was examined, together with impacts on morphology and 
biomechanical properties.
• Key Results After 7 weeks of exposure to wave stress, lowered seedling survival and growth for all species was 
revealed. Wave treatments increased the root/shoot biomass ratio to enhance anchorage and made seedlings more 
flexible (i.e. reduced flexural rigidity), which might be regarded as a mixed outcome between a stress avoidance 
and stress tolerance strategy.
• Conclusions The different biomechanical responses between the three dominant marsh pioneer species, 
overall, make them less resistant to external stress. Therefore, our results indicate that the likelihood of marshes 
becoming established is reduced if wave energy increases. Despite the different biomechanical response of these 
three pioneer species to waves, the seedlings of all species were found to have low resistance to external stresses.

Keywords: Tidal marshes, establishment, seedling, wave effects, biomechanical response, Spartina anglica, 
Scirpus maritimus, Phragmites australis.

INTRODUCTION

Tidal marsh ecosystems are increasingly valued for their wave 
attenuation service (Bouma et al., 2005, 2010) even under ex-
treme storm conditions (Möller et al., 2014). In coping with the 
growing risk of coastal flooding under accelerating sea-level 
rise (Craft et al., 2008; Lin et al., 2012; Kirwan and Megonigal, 
2013), the conservation and restoration of tidal marshes 
are now widely appreciated as long-term sustainable pro-
tective solutions (Borsje et al., 2011; van Slobbe et al., 2013; 
Temmerman et  al., 2013). Tidal marshes are also valued for 
many other valuable ecosystem services such as conservation 
of biodiversity, regulation of nutrients via nutrient cycling, and 
regulation of climate via organic carbon sequestration (Gedan 
et al., 2009; Barbier et al., 2011; Burden et al., 2013). Although 
there is strong evidence that tidal marshes can survive sea-level 
rise due to sediment-trapping plant-growth feedbacks (Kirwan 
and Megonigal, 2013; Kirwan et al., 2016), over the last few 

decades tidal marshes have rapidly degraded on a global scale 
(Silliman et al., 2009; Tonelli et al., 2010; Temmerman et al., 
2012). The high value of tidal marshes and the loss of such 
important ecosystems emphasize the needs to conserve and re-
store them. The latter requires in-depth understanding of both 
tidal marsh (re)establishment and lateral expansion under ex-
ternal stressors (Fagherazzi et al., 2013; Bouma et al., 2014; 
van Belzen et al., 2017; and references therein).

In many coastal areas around the world, seedling establish-
ment is of particular importance for the (re)colonization of 
large bare tidal flats. This may be especially important for those 
erosional marsh edges where the height of the erosional marsh-
cliff may prevent plants that are growing on top of this cliff 
from expanding clonally onto the lower tidal flat in front of the 
cliff. This kind of disconnection between marsh and tidal flats 
may be especially important in macro-tidal systems. In these 
areas, seedling establishment is regarded as the first critical 
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threshold that needs to be surpassed to initiate the transition 
from a bare mud flat to vegetated state (Wang and Temmerman, 
2013; Balke et al., 2014; Bouma et al., 2016). Once seedlings 
have established, further marsh expansion may be expected by 
lateral clonal growth (van der Wal et al., 2008; Vandenbruwaene 
et al., 2011). Recent studies have shown that for some species 
waves may hamper seedling establishment (Silinski et al., 2015, 
2016) via wave-induced sediment dynamics (Callaghan et al., 
2010; Hu et al., 2015; Bouma et al., 2016). However, the direct 
effect of waves on newly establishing seedlings remains poorly 
understood. We still lack insight as to whether this may vary 
among marsh pioneer species that occur along the salinity gra-
dient of estuaries, where wave exposure may also be expected 
to decrease due to narrowing of the system.

Wave exposure is known to be of critical importance for 
understanding long-term marsh development (Callaghan et al., 
2010; Fagherazzi et  al., 2012; Bouma et  al., 2014). For ex-
ample, recent studies have demonstrated that wave exposure 
can induce cliff formation at the marsh edge, causing lateral 
erosion (Callaghan et al., 2010; Marani et al., 2011; Fagherazzi 
et al., 2013; Wang et al., 2017). In contrast, surprisingly little is 
known on how wave stress affect tidal marsh plants during the 
establishment phase. Previous studies indicate that waves can 
affect individual plants, either directly by imposition of drag/
pull on the plants (Coops et al., 1991, 1994, 1996; Coops and 
Van der Velde, 1996; La Nafie et al., 2012; Silinski et al., 2018), 
or indirectly via sediment scouring around the stems (Bouma 
et al., 2009a; Silinski et al., 2015). As yet, the direct mechan-
isms that limit or allow marsh establishment are only starting 
to be quantified by experimental studies (Silinski et al., 2015).

Current knowledge gaps on the direct effects of waves on 
plants may be partly due to methodological limitations. Studies 
assessing the interaction between waves and vegetation have 
conventionally used wave flumes of different scales (Bouma 
et al., 2005, 2009b, 2010; Möller et al., 2014; Silinski et al., 
2015, 2018). Whereas wave flumes typically provide a perfect 
method to mimic hydrodynamic conditions, the high construc-
tion and operational costs of such infrastructure makes these 
experiments generally too expensive to do long-term growth 
experiments or have high numbers of replicates. Long-term 
studies are commonly carried out in wave tanks (Coops et al., 
1996; Coops and Van der Velde, 1996; La Nafie et al., 2012; 
Wang et al., 2017), in which hydrodynamic conditions are typ-
ically less ideal than in flumes, but due to lower costs some 
level of replication is possible. In this study, we provide an 
even more simple approach to assess wave effects on plants 
by designing a tidal plant-shaking mesocosm (PSM). The PSM 
mimics wave-induced drag stress on the seedlings, by moving 
the plants (seedling) back and forth through the water, rather 
than by moving the water around the plants.

Species-specific insight into the responses of pioneers to en-
hanced wave climate is important to inform future restoration 
projects. As wave exposure may be expected to decrease with 
salinity, due to the typical narrowing of the estuarine system, 
species with a higher salt tolerance will perhaps be better 
adapted to wave exposure. The present study aims to extend 
current knowledge by studying the direct effect of wave stress 
on the survival, morphology and biomechanical properties of 
newly establishing seedlings of marsh pioneers, using novel 
tidal PSM. We compare this for three dominant marsh pioneer 

species that occur along the estuaries with decreasing salinity 
gradient: Spartina anglica (salt to brackish), Scirpus maritimus 
(brackish) and Phragmites australis (brackish to fresh).

MATERIALS AND METHODS

Plant material

Seedlings of Sp. anglica, Sc. maritimus and P. australis were 
obtained from seeds that had been collected from the Scheldt 
estuary (The Netherlands) in November 2016. Seeds were cool 
stored in a fridge at 4 °C until being germinated in a container 
with an alternating temperature condition (25 °C during the day 
and 30 °C at night to speed up germination, practical choice). 
Seeds with a visible germ were identified as seedlings suitable 
for transplantation. All seedlings were prepared 1 week before 
transplantation and stored in an incubator with the same ger-
mination conditions as described above. The plants were re-
garded to be in the seedling stage during the whole period of the 
experiment, as they remained short compared to fully grown 
individuals (longest shoots  =  17.7  ± 2.4  cm for Sp. anglica; 
34.9 ± 4.3 cm for Sc. maritimus; 44.5 ± 7.2 cm for P. australis). 
For each species, we transplanted 24 seedlings individually to 
PVC pots (160 mm height × 110 mm inner diameter) by plan-
ting them at 1 cm depth of the sediment. The sediment (with 
an average D50 of 29.93  µm) used was macrobenthos-free 
(by sieving) and selected in a primary test to have negligible 
scouring under our experimental conditions.

Experimental design

The experiment was carried out using four tidal mesocosms 
in a climate room (NIOZ Royal Netherlands Institute for Sea 
Research, Yerseke, The Netherlands), where light was provided 
with 12 h d−1 (550 μmol m−2 s−1 photosynthetically active ra-
diation), and temperature was controlled at 25  °C during the 
day and 18  °C during night (for more details see references 
in Cao et al., 2018). In each mesocosm, a semi-diurnal 1.5-h 
inundation regime was mimicked with a mix of fresh water 
and Scheldt sea water (which gives a salinity of 12.61 ppt). All 
pots were equally distributed in the four systems with six seed-
lings of each species per mesocosm, which gives 12 replicate 
seedlings per species for each treatment. The water depth of all 
mesocosms was 21 cm from the sediment top during high tide.

Two of the mesocosms were set as controls (C) and the other 
two were equipped with plant-shakers to impose continuous 
drag forces during mimicked high tide. Each PSM consists of a 
piston-moved cuboid metal frame with a cribriform bottom that 
can hold many pots with plants. To simulate a wave like stress 
(W treatment), the plant-shaker was inserted onto the top tank 
of a tidal mesocosm. The piston was provided with air pres-
sure that was controlled by a timer, to allow the device to move 
back and forth during tidal inundation. The distance of the mo-
tion was 30  cm in both directions, over a period of 2.6  s in 
the experimental tank, during the semi-diurnal 1.5 h of inunda-
tion. In this way, we approximated the drag imposed by regular 
waves with an average frequency of 0.38 Hz. This is to mimic 
the measured windy weather wave conditions at tidal marshes 
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in the Scheldt estuary (this compares with ~0.5 Hz for similar 
significant wind waves at tidal marsh fronts in the Scheldt es-
tuary field sites, see references in Callaghan et al., 2010; Wang 
et al., 2017).

Plant morphology and biomechanical properties measuring

The mesocosm experiment lasted for 7 weeks, during which 
seedling health (survived, toppled or dead) and plant height 
(soil to leaf top) were surveyed weekly. To compare the overall 
growth rate of seedlings, the plant height change at each week 
interval was calculated. To test plant stem flexibility under 
bending forces, as occurs under wave forcing (Rupprecht et al., 
2015), all survived seedlings were carefully cleaned from the 
sediment at the end of the seventh week.

We measured biomechanical traits by three-point bending 
tests on the 5-cm-long basal stem fragments from survived 
seedlings, using a universal testing machine (Instron 5942, 
Canton, MA, USA). The tests were performed by applying a 
constant extension rate to the midpoint of each stem sample on 
two supports of the test machine jaw. The following biomech-
anical traits that related to bending were calculated:

Young’s modulus (E; kPa), which quantifies the stiffness of 
the stem and describes how much force is needed to bend a 
stem (a higher E value indicates a stiffer stem), is calculated as 
the slope of the stress–strain curve in the elastic deformation 
region;

the second moment of area (I; m4), which quantifies the dis-
tribution of material around the axis of bending (increases with 
diameter), is calculated using the formula for triangular cross-
sections: I = (bh3)/36, in which b and h are the base and height 
of the cross-section;

flexural stiffness (EI, N m−2), which was calculated by multi-
plying E (Young’s modulus) and I (the second moment of area) 
to compare the overall flexural rigidity of the seedlings (a 
higher EI value indicates less flexibility of individual plants).

The stem was considered to break or fold when it reaches the 
maximum bending stress.

The breaking force (F, N) was then calculated to compare the 
maximum force that samples can withstand before mechanical 
failure (a higher F value indicates more resistance to tensile 
stress).

The breaking force is thus a measurement of the external 
stress that seedlings can resist during the establishment phase 
(Rupprecht et al., 2015; Silinski et al., 2015, 2018; Vuik et al., 
2018). Due to mortality, we used five replicates for each species 
per treatment for the biomechanical test. For calculation, all the 
stem samples were deemed as circular in cross-section because 
hollow stems had not yet developed for all young seedlings in 
our experiment. Finally, the dry biomass of survived seedlings 
was measured after oven-drying at 60 °C for 72 h to compare 
root/shoot biomass.

Statistics

Seedling survival was analysed with the Kaplan–Meier 
method applying the log-rank for treatment comparisons, with 
seedling toppling and death set as hazard events. Seedling 

growth rates were calculated based on the average change in 
plant height after 7 weeks. Two-way ANOVAs were carried out 
to analyse the effects of wave disturbance and species on the 
growth rate, root/shoot biomass and biomechanical parameters. 
All results were tested in SPSS 18.0 software (SPSS, Chicago, 
IL, USA) with a significance level of 5 %. We tested for nor-
mality and homoscedasticity of the data, and these assumptions 
were passed.

RESULTS

Seedling survival and growth

In the control groups (C), all seedlings survived (100 %) 
throughout the experiment, regardless of species (Fig. 1). 
However, when subjected to mimicked wave stress (W), the 
percentage of survived seedlings decreased over time. Kaplan–
Meier tests showed that wave treatment significantly reduced 
overall seedling survival (Fig. 1, Table 1; P < 0.05). Although 
growth of seedlings was non-linear in our experiment (Fig. 2A), 
for all three pioneer marsh species, the average growth rate cal-
culated from the change in plant height (soil to leaf top) during 
the 7 weeks was also significantly lower under wave treatments 
as compared to the control groups (Fig. 2, Table 2; P < 0.05). 
No significant difference in survival or growth rate was ob-
served between the three pioneer marsh species (Figs 1 and 2). 
These results show that wave exposure is a common important 
factor that hampers marsh establishment at the seedling phase.

Seedling biomechanical and morphological traits

When comparing the biomechanical strength of the survived 
seedlings, two-way ANOVAs shows significant main effects 
of both wave treatment and species (Table 2). In particular, 
measurements of Young’s modulus of elasticity (E; kPa) in-
dicate that seedlings exposed to the wave treatment were sig-
nificantly more flexible (i.e. reduced E) (Fig. 3A, P  =  0.022 
for Sp. anglica, P  =  0.014 for Sc. maritimus, P  =  0.003 for 
P. australis). A less stiff stem material together with a reduced 
second moment of area (I, Fig. 3B, P = 0.01 for Sp. anglica, 
P = 0.011 for Sc. maritimus, P = 0.347 for P. australis) led to 
significantly decreased overall flexural stiffness (EI) values of 
seedling stems for all three marsh species in response to wave 
treatments (Fig. 3C, P = 0.017 for Sp. anglica, P = 0.002 for 
Sc. maritimus, P = 0.003 for P. australis). Consistently, we also 
observed that the breaking force (F) of all three marsh seed-
lings showed a significant decrease after wave treatments (Fig. 
3D, P  =  0.041 for Sp. anglica, P  =  0.033 for Sc. maritimus, 
P = 0.008 for P. australis). Thus, the overall results of the three-
point bending test showed that marsh seedlings became more 
flexible and less resistant to tensile stress after continuous wave 
exposure due to different material properties as well as reduced 
stem diameter.

However, in spite of these general biomechanical trends, the 
pattern of parameters shifted between marsh species. For ex-
ample, Sp. anglica seedlings showed the lowest flexural stiff-
ness (EI, Fig. 3C) and lowest resistance to tensile stress (F, Fig. 
3D). Stem diameter (I, Fig. 3B) was highest for Sc. maritimus 
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seedlings, giving them the highest mechanical resistance (F, 
Fig. 3D). For P.  australis seedlings, although stem diameter 
(I, Fig. 3B) was comparable between the control (C) and wave 
treatment groups (W), the significant decrease in stem flexi-
bility (E and EI; Fig. 2A, C) nevertheless reduced the external 
stress that they were able to withstand (Fig. 3D).

Measurements of morphological traits at harvest showed 
that constant wave exposure also significantly increased the 
root/shoot biomass ratio of survived seedlings (Fig. 4, Table 
2, P < 0.05). Interestingly, the root/shoot biomass ratio of Sp. 
anglica seedling was significantly higher than for the other two 
species after wave stress treatment (Fig. 4, P = 0.023 compared 
to Sc. maritimus; P = 0.016 compared to P. australis).

DISCUSSION

An in-depth understanding of how various physical and bio-
logical factors affect thresholds of tidal marsh establishment is 
essential for enabling restoration and sustainable management 
of these valuable ecosystems (Moreno-Mateos et  al., 2012; 
Bouma et al., 2014). As yet, mechanistic studies on the direct 
effect of waves on the probability of establishment and devel-
opmental consequences for marsh seedlings are only starting 
to emerge (see references in Silinski et  al., 2015 for the in-
fluence of different wave regimes on the survival chances of 
Sc. maritimus from different life stages; see references in 
Rupprecht et  al., 2015 for field observations of biophysical 

properties of NW European salt marshes; but also see refer-
ences in Zhu et al., 2019 for the effects of salinity, inundation 
and seasonality on the biomechanical properties of marsh vege-
tation). The present study shows, for the first time, the direct 
effects of wave treatments on the early seedling establishment 
of three pioneer marsh species, by using tidal PSMs. We found 

Table 1. Results of Kaplan–Meier log-rank test on the effects 
of wave treatments and species on seedling survival during the 
course of the mesocosm experiment. Both toppling and death of 

seedlings were set at hazard events during the test

Variable χ 2 d.f. P

Wave treatment 25.98 1 <0.001
Species 0.32 2 0.85
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that wave treatments directly reduced seedling survival, en-
hanced the root/shoot biomass ratio to enlarge anchorage, and 
made seedlings more flexible (reduced flexural rigidity). The 
different biomechanical responses between the three dom-
inant marsh pioneer species: Sp. anglica (salt to brackish), 
Sc. maritimus (brackish) and P.  australis (brackish to fresh), 
overall, make them less resistant to external stress.

Effects of wave stress on seedling establishment and growth

Our results clearly show for all three pioneer marsh species 
that waves are a stress that may create a threshold that directly 
hampers both seedling establishment and seedling growth. 
Marsh recovery has been regarded as a critical transition 

Table 2. Two-way ANOVAs table of main effects of wave treatment and species and their interactions on the plant traits of seedlings

Response variable Deviance source d.f. Mean square F P

Growth rate (cm per week) Wave treatment 1 55.2 8.84 0.005
 Species 2 17.1 2.73 0.077
 Wave treatment × Species 2 6.9 1.10 0.341
Yong’s modulus (kPa) Wave treatment 1 86.2 19.67 <0.001
 Species 2 107.8 24.59 <0.001
 Wave treatment × Species 2 59.3 13.52 <0.001
Second moment of area (m4) Wave treatment 1 0.35 10.56 0.004
 Species 2 0.76 22.98 <0.001
 Wave treatment × Species 2 0.33 9.93 0.001
Flexural stiffness (N mm2) Wave treatment 1 390 940 32.56 <0.001
 Species 2 176 809 14.73 <0.001
 Wave treatment × Species 2 87 799 7.31 0.003
Breaking force (N) Wave treatment 1 2.83 12.82 0.002
 Species 2 1.11 5.03 0.015
 Wave treatment × Species 2 0.70 3.17 0.061
Root/shoot biomass Wave treatment 1 1.85 9.84 0.003
 Species 2 0.33 1.78 0.180
 Wave treatment × Species 2 0.69 3.68 0.033
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between two alternative stable states (the bare tidal flat state 
versus the vegetated state; Wang and Temmerman, 2013; van 
Belzen et al., 2017). The present results thus underline the re-
quirement for wave-free periods to provide ‘windows of op-
portunity’ for a marsh to establish (Balke et al., 2014; Bouma 
et  al., 2014). Whereas previous studies related the need for 
a wave-free period to prevent uprooting due to sediment dy-
namics (Bouma et al., 2014, 2016; Cao et al., 2018), we show 
here that there are also direct effects on seedling growth. As the 
windows of opportunity concept for seedling establishment re-
quires a disturbance-free period for the seedlings to grow large 
enough to be able to resist hydrodynamic disturbances (e.g. 
by having longer roots and stronger shoots; Balke et al., 2013, 
2014; Hu et al., 2015; and references therein), reduced seedling 
growth implies that marsh establishment could be much more 
vulnerable to waves than previously anticipated. Moreover, 
as ship-generated waves and extreme weather events may be 
expected to increase in the near future (Silinski et al., 2015), 
wave-free windows of opportunity will become more rare. In 
these cases, site-specific conditions will have to be taken into 
account (e.g. how much wave stress would be tolerable, or how 
many windows of opportunity are available) for engineering or 
management measures that focus on creating mashes by redu-
cing waves on the foreshore.

Response of seedlings in biomechanical traits

Plascticity indiced by wave stress can be beneficial to en-
hance the performance of aquatic plants in coping with external 
forces (Puijalon et al., 2005, 2008, 2011). For example, a signifi-
cant increase in root/shoot biomass ratio indicates an increased 
investment of seedlings to below-ground biomass to reinforce 
anchorage strength: a ‘tolerance strategy’ to resist greater drag 
force. This is in line with more commonly observed anchorage 
increase under flow in other aquatic plant species, such as 
Luronium natans, Mentha aquatica, Potamogeton coloratus 
and Sparganium emersum (Puijalon et  al., 2008). Unlike the 
seedlings in the control group that can tolerate higher breaking 
force, a decrease in flexural rigidity of seedlings under wave 
stress enables them to expose less frontal surface areas to in-
coming waves: an ‘avoidance strategy’ to experience lower drag 
forces. This supports a well-recognized adaptation of plants to 
cope with exposure to strong hydrodynamics (see references in 
Gaylord et al., 2003 for kelp canopies; Bouma et al., 2005 for 
salt marshes; Bal et al., 2011; Puijalon et al., 2011 for fresh-
water aquatic plants and La Nafie et al., 2012 for seagrasses). 
In an earlier study by Silinski et al. (2015), the authors reported 
that a shift between avoidance and tolerance strategies may 
occur between life stages within one species. We found that 
both strategies are, to some extent, adopted particularly during 
the early seedling phase.

In addition to the above-mentioned similar adjustment in 
biomechanical traits for all three pioneer marsh seedlings, we 
also compared interspecific differences in mechanical charac-
teristics, as they may play a role in the shifts of species along 
estuaries with varying wave exposure (Callaghan et al., 2010; 
Wang et  al., 2017). For example, the significantly higher 
root/shoot biomass ratio of Sp. anglica seedlings under wave 

stress can be expected to enable their establishment at higher 
hydrodynamic conditions (e.g. higher wind exposure or under 
sea-level rise) than the other two pioneer marsh species. The 
notably higher stiffness for P. australis seedlings in the control 
groups might be due to nodal stabilization in their stems (Spats 
et  al., 1990). This means that when living in sheltered areas 
with less oscillating stress, aquatic plants of P. australis should 
be more tolerant to wave attack than the other two species by 
following a ‘tolerance strategy’. The present results extend cur-
rent knowledge that salinity is an important factor governing 
spatial species distribution and plant growth (Pennings et al., 
2005; Crain et al., 2008), in showing that waves may reduce 
seedling survival by around 50 %.  It should be noted that in 
our experiment, the species were not always grown at their pre-
dominant salinity. That is, Sp. anglica was grown at a relatively 
low salinity whereas P. australis was grown at a relatively high 
salinity compared to their predominant habitat. The latter may 
have caused a somewhat higher growth rate for Sp. anglica and 
a somewhat lowered growth rate for P. australis, with poten-
tial effects on exact survival percentages. The general trend that 
waves hamper seedling survival for pioneer marsh species re-
mains clear. Moreover, recent year-round field observations by 
Zhu et al. (2019) showing that salinity did not result in major 
changes in plant biomechanical properties suggest that the pre-
sent findings of wave-effects on (biomechanical) plant traits is 
not strongly affected by using a single salinity.

Our results that Sp. anglica seedlings had the least flexural 
rigidity and resistance to tensile stress (as compared to change 
in biomechanical properties for the other two species seedlings) 
seem controversial given that Sp. anglica is well known as 
having wave attenuation value with stiff shoots (Bouma et al., 
2005). However, considering that individual seedlings were 
used in the present study and the high variability in the flex-
ural rigidity of difference life cycles of marsh plants (Rupprecht 
et al., 2015), the stem biomass of dense mature plants canopies 
may compensate for the stiffness in wave dissipation (Bouma 
et  al., 2005; Möller et  al., 2014; Rupprecht et  al., 2015). 
Therefore, the present findings are in agreement with earlier 
studies that highlight the importance of considering plant size 
and morphology when determining plant biomechanical char-
acteristics for their wave attenuation service at different loca-
tions and times (Niklas, 1992; Rupprecht et al., 2015; Silinski 
et al., 2018; Zhu et al., 2019).

Implications for tidal marsh restoration

In recent decades, physical constraints have been widely 
recognized to be the overarching control for marsh establish-
ment (Adam, 2002; Friess et al., 2012). The mechanisms re-
sponsible for determining critical a hydrodynamic threshold 
for marsh establishment and long-term evolution have mainly 
been elucidated by modelling studies (Mariotti and Fagherazzi, 
2010). For example, wave stress and the sediment surface ero-
sion they induce are predicted to be the essential processes be-
hind marsh lateral retreat (Callaghan et al., 2010; Tonelli et al., 
2010; Marani et  al., 2011; Francalanci et  al., 2013). Recent 
experimental studies have extensively looked at the threshold 
constraints in terms of sediment dynamics (Balke et al., 2014; 
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Bouma et al., 2016; Cao et al., 2018) or elevation-related inun-
dation (Wang and Temmerman, 2013; van Belzen et al., 2017). 
In this regard, our results reveal direct wave-stress effects on 
seedling survival and growth (both restriction and response) 
and provide a quantitative support for modelling studies to 
elucidate hydrodynamically driven tidal marsh dynamics. 
However, wave characteristics (direction, length, height) can 
vary strongly in space and time (Nielsen, 2009). Due to the im-
pact of increasing ship traffic or deeper water levels following 
sea-level rise, we may expect more severe wave forcing in an 
era of global change (Curtiss et al., 2009; Houser, 2010). To 
better understanding the effect of wave stress on vegetation, it is 
thus also important to quantify actual wave forcing in the field, 
and how this changes over time. Such data can then be used to 
design process-based studies that investigate the effect of waves 
with varying energy on marsh expansion both by seedling es-
tablishment and rhizome expansion (Bouma et al., 2014, 2016; 
Silinski et al., 2015, 2018).

Overall, the present study indicates that the likelihood of 
marsh establishment is reduced if wave energy increases. 
Despite the different biomechanical response of the three pi-
oneer species studied, the seedlings of all species have low 
resistance to external stresses. This type of experimental know-
ledge is essential to understand the role that coastal vegetation 
plays in mitigating risk and defending coastlines under sea-level 
rise, and to build more reliable process-based models to predict 
long-term marsh ecosystem dynamics, and evaluate measures 
for site-specific management and restoration schemes.
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