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 The climate emergency 
The potential for greenhouses gases (GHG) such as carbon dioxide (CO2) to warm the planet 
has been known to science since the late 19th century (Arrhenius, 1896). However, despite the 
expected catastrophic consequences of global warming or – as it more commonly called 
nowadays – climate change, it has taken decades to build the political will and momentum to 
address the issue. In 1992, the United Nations Framework Convention on Climate Change 
(UNFCCC) treaty was adopted with the objective to “stabilise greenhouse gas concentration 
in the atmosphere at a level that would prevent dangerous anthropogenic interference with 
the climate system”(UNFCCC, 2019), but no specific targets on GHG reductions were set. This 
was followed in 1997 with the ratification of the Kyoto Agreement which set binding GHG 
targets on a group of 37 mostly developed countries. More recently in 2016, the Paris 
Agreement was signed with the aim of keeping global warming “well below 2 °C above pre-
industrial levels and pursue efforts to limit the temperature increase to 1.5 °C above pre-
industrial levels”. This will come into force after the Kyoto Protocol lapses in 2020 (Climate 
Analytics, 2016; UNFCCC, 2017b). In response to the more ambitious target of 1.5 °C warming 
set by the Paris Agreement and concerns from many countries that the consequences of 2 °C 
warming would be too disastrous, the Intergovernmental Panel on Climate Change (IPCC) 
released its Global Warming of 1.5 ºC report in 2018, which assessed the impacts of global 
warming of 1.5°C above pre-industrial levels (IPCC, 2018)1. This report showed that despite 
the commitments made by countries to reduce their emissions indicated by their nationally 
determined contributions (NDCs) as part of the Paris Agreement, projected global emissions 
were too high to limit warming to even 2°C, highlighting that more ambitious action would 
be necessary.  

Based on integrated assessment models (IAMs), which integrate computer models describing 
human activities (e.g. energy systems and land use) with models describing natural systems 
(e.g. the climate and vegetation), the IPCC identified how much more GHG could be emitted 
in total to limit global warming to specific levels, also known as carbon budgets (Table 1-1) 
(van Vuuren et al., 2015)2. The budgets show that in order to have a 50% chance of limiting 
global warming to 2 ºC compared with pre-historical levels, mankind can emit no more than 
1500 Gt CO2 from 2018 onwards, falling to 580 Gt CO2 for the more ambitious target of 1.5 ºC 
(Rogelj et al., 2018). At 2018 emission levels of approximately 37 Gt CO2 y-1, this leads to the 
sobering conclusion that the budget giving a better chance (67%) of meeting the 1.5 ºC 
warming target will be exceeded within 11 years. This has motivated a growing number of 
organisations and governments to declare a ‘climate emergency’ (Aidt, 2019).  

While carbon budgets give the total net amount of CO2 which can be emitted over a given 
period, the IAM results show that there are many different emission trajectories or pathways 
consistent with a given budget. This is because higher emissions in the short term (i.e. before 
mid-century) can be offset by delivering net-negative emissions in the long term. To achieve 
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these net-negative emissions, techniques which remove CO2 from the atmosphere – often 
referred to as carbon dioxide removal (CDR) or negative emission technologies (NETs) – will 
be required. Major advantages of NETs are that they can offset higher GHG emissions in the 
short term, allowing for a more gradual (and potentially less costly) transition, and that they 
can offset emissions from sectors where emissions reductions are more difficult or costly to 
achieve (van Vuuren et al., 2017). Some NETs mimic natural processes to store carbon such as 
afforestation (growing more trees), soil carbon sequestration (locking up CO2 as organic 
matter in soils), enhanced weathering (locking up CO2 chemically in the ground using alkaline 
minerals), and ocean carbon storage (locking up CO2 in the oceans chemically or biologically) 
(Fuss et al., 2018). Two other NETs rely on carbon capture and storage (CCS) technology to 
store CO2 under the ground: bioenergy with carbon capture and storage (BECCS), and direct 
air carbon capture (DAC). BECCS typically involves growing biomass to capture CO2 from the 
air, releasing the CO2 from the biomass (typically by burning), then capturing and storing it 
underground. In contrast, DAC shortcuts this process by removing CO2 directly from air using 
physical or chemical means and storing it underground.  

When aiming to limit warming to a certain level by the end of the century, different emission 
pathways can lead to global temperature rise overshooting the target, as long as the 
temperature ultimately returns to the target level. However, this overshoot poses large risks 
both for human society and the environment as some impacts, such as ecosystem loss, may 
be irreversible (Hoegh-Guldberg et al., 2018). Figure 1-1 depicts four different illustrative 
model pathways (global net emission trajectories) in which the target of limiting warming 
to 1.5 ºC can be achieved but varying in the underlying assumptions on factors like future 
energy demand, land use, available technology options and population growth. As a result of 
these factors, the technologies deployed, GHG emission profiles and temperature overshoot 
vary between the different pathways. Almost all pathways that limit global warming to 1.5 °C 
with limited or no temperature overshoot will require CDR to some extent (Allen et al., 2018). 

Table 1-1 | Estimated remaining global carbon budgets from 1/1/2018 for limiting global warming 
to 1.5 and 2 ºC with varying levels of certainty. Based on Table 2.2 from (Rogelj et al., 2018). The values 
given in regular typeface are the total remaining carbon budgets in Gt CO2. The italicised values in brackets 
indicate the number of years remaining (from 1/1/2018) until the budget is exceeded, assuming global 
emissions remain at 2018 levels of approximately 37 Gt CO2 y-1.  

Approximate warming since 
period between 1850-1900 (ºC) 

Likelihood of limiting warming to specified level (%) a 

33% 50% 67% 
~1.5 ºC 840 (23) 580 (16) 420 (11) 
~2.0 ºC 2030 (55) 1500 (41) 1170 (32) 

a The budgets above are not directly equivalent with those from the IPCC 5th Assessment Report where the likelihood of limiting warming to 
a specified level is based on the fraction of model simulations which do not exceed the specified warming limit. Rather, the likelihood reported 
here is the percentile of the transient climate response to cumulative emissions of carbon, assessed by the IPCC 5th Assessment Report to 
fall likely between 0.8–2.5°C/1000 PgC considering a normal probability distribution. Note that these budgets do not include potential earth 
system feedbacks (-100 Gt CO2), and should be seen in the context of several uncertainties and their potential impact on the budget including 
(i) non-CO2 GHG emissions (±250 Gt CO2) and (ii) the climate response to these emissions (-400 to +200 Gt CO2), (iii) the distribution of the 
climate response (+100 to +200 Gt CO2), (iv) uncertainty in historical temperatures (±250  Gt CO2), and uncertainties in recent emissions (±20  
Gt CO2). 
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Figure 1-1 | Characteristics of four illustrative model pathways in relation to global warming of 
1.5°C from the IPCC. Source: (Allen et al., 2018, p. 19). These pathways show a range of potential 
mitigation approaches and vary widely in their projected energy and land use, as well as their assumptions 
about future socioeconomic developments, including economic and population growth, equity and 
sustainability. A breakdown of the global net anthropogenic CO2 emissions into the contributions in terms 
of CO2 emissions from fossil fuel and industry, agriculture, forestry and other land use (AFOLU), and 
bioenergy with carbon capture and storage (BECCS) is shown. Further characteristics for each of these 
pathways are listed below each pathway. These pathways illustrate relative global differences in mitigation 
strategies, but do not represent central estimates, national strategies, and do not indicate requirements.  
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In pathways relying less on CDR, such as P1, emissions fall more quickly than in pathways 
which use CDR, implying more urgent actions would be necessary to increase energy 
efficiency, reduce the use of fossil fuels, and deploy more low-carbon energy sources. For 
example, in P1, GHG emissions fall by nearly 60% (relative to 2010) and the share of electricity 
coming from RES reaches 60% by 2030. In pathways relying more heavily on CDR, such as P4, 
deployment of efficiency measures and renewable energy could be slower, but significant 
negative emissions must be achieved from 2030 onwards. Thus, limiting warming to 1.5 °C in 
line with the ambition of the Paris Agreement will mean either urgent decarbonisation3 of our 
energy and agricultural systems, urgent deployment of NETs, or – more likely – both.  

 The role of the electricity sector in meeting 
climate targets 

In 2018, global carbon emissions from power generation were approximately 13 Gt, or 38% of 
total energy-related CO2 emissions (IEA, 2019). This makes electricity production the largest 
CO2-emitting sector globally (Bruckner et al., 2014). Given its contribution to global emissions 
electricity plays a major role in mitigation scenarios aiming for deep cuts in GHG emissions, 
with most scenarios showing that the power sector must fully decarbonise or even deliver net-
negative emissions by 2050 (Bruckner et al., 2014; Rogelj et al., 2018). Apart from its significant 
contribution, there are three other reasons why decarbonising the electricity sector should be 
a key priority. 

The first is that many mature low-carbon technologies are already available to decarbonise 
the electricity sector (Bruckner et al., 2014). For example, hydropower is a renewable energy 
source (RES) which has been providing low-carbon electricity for more than a century and, 
with a share of 16%, continues to be the largest source of low-carbon electricity globally 
(Olivier & Peters, 2018). Thanks to subsidies and significant cost reductions, more modern RES 
technologies such as solar photovoltaic (PV) and wind power have also seen significant 
growth, which in 2017 supplied 1.7% and 4.4% of electricity respectively (Olivier & Peters, 
2018). While costlier than PV and wind, concentrating solar power (CSP) and bioelectricity are 
two other low-carbon RES technologies which have been deployed at commercial scale, with 
5 GW and 115 GW respectively installed globally by the end of 2018 (IRENA, 2019). Aside from 
RES, nuclear power is another generation technology that has been providing low-carbon 
electricity for more than half a century, and currently supplies 10% of electricity globally 
(Olivier & Peters, 2018). Lastly, CCS is a technology that can be applied to power plants using 
coal, natural gas or biomass to reduce their CO2 emissions by around 90%. At the end of 2018 
there were 18 large-scale commercial CCS facilities in operation across the globe with a further 
five under construction, and 20 in various stages of development (Global CCS Institute, 2018). 
Most of these CCS facilities are in industries such as natural gas processing where CO2 capture 
is an integral part of the process; however, there are two cases where CCS is applied to power 
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plants4. Thus, while future innovation and upscaling will reduce the costs of RES and other 
low-carbon technologies, no technical hurdles exist for their deployment. 

The second reason is that by increasing the share of electricity in total energy consumption, 
low-carbon electricity can help to decarbonise the heating, industry, and transport sectors 
(Eurelectric, 2018; Sugiyama, 2012). For example, in 2015 the share of electricity within total 
final energy consumption in the European Union (EU) was 22%, and studies show this could 
rise to between 30% and 60% by 2050 (Eurelectric, 2018; Sugiyama, 2012). With global demand 
for electricity rising by 4% annually driven by growth in developing countries (IEA, 2019), 
coupled with additional electrification of heating and transport, electricity will play an 
increasingly important role in the global energy system. 

The third reason is that BECCS and DAC, two of the NETs that may be needed to limit global 
warming to 1.5 °C, are strongly linked with the electricity sector. This is because a biomass 
power plant equipped with CCS can be expected to generate about 1.25 MWh of electricity 
for every tonne of negative CO2 emissions it delivers, whereas a DAC plant consumes about 
0.5 MWh of electricity for every tonne of negative CO2 emissions delivered (Daggash et al., 
2019). While there are a variety of other NETs available such as afforestation and biochar 
production, and BECCS can be deployed in other sectors, deploying DAC and BECCS in the 
electricity sector may offer advantages5. For example, compared with afforestation, the 
underground may be a safer long-term store for carbon as forests are vulnerable to wildfires, 
the risk of which increases as the climate warms (Settele et al., 2014).  

 Europe’s electricity sector 
In the EU, the transition to low-carbon energy sources is already underway, especially in terms 
of RES (Figure 1-2). Between 2008 and 2018, the installed wind capacity in the EU tripled from 
60 to 180 GW, and solar PV capacity increased from 10 to 115 GW (EurObserv’ER, 2018, 2019; 
Eurostat, 2017b; SolarPower Europe, 2019). Thanks to this growth, since 2015 solar PV and 
wind together have generated more electricity annually than hydro, historically the largest 
provider of RES electricity in the EU. This growth has largely been the result of policies aimed 
at increasing the share of RES in energy supply, a central tenet of EU climate policy since the 
first EU Directive on Electricity Production from Renewable Energy Sources (2001/77/EC) came 
into force in 2001 (European Parliament, 2001). The role of RES was strengthened with the 
Renewable Energy Directive (RED) (2009/28/EC) mandating for 20% of gross final energy 
consumption in the EU to come from RES by 2020 (European Parliament, 2009), and again in 
2018 with the recast RED mandating at least 32% by 2030 (European Parliament, 2018a). 
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Figure 1-2 | Historical development of total electricity generation (above) and installed generation 
capacity (below) in the EU28 countries since 1990. Based on data from Eurostat for earlier years and 
ENTSO-E  for more recent years, with the changeover year indicated by the dashed vertical lines (ENTSO-
E, 2019b; Eurostat, 2019b, 2019c). The use of different data sources leads to jumpy behaviour in the 
changeover years, and different generation categories reported. The graph regions between the two 
dashed black lines indicate the approximate RES share (excluding RES waste). Eurostat reports only gross 
generation from fossil fuels, which was converted to net generation based on the ratios between net and 
gross generation from the ENTSO-E data. Other RES includes CSP, geothermal and tidal/ocean energy. 
Waste includes both RES and non-RES. Hydro includes pumped storage. Note that the technologies are 
ordered differently in the lower graph to minimise the effect of using different data sources. 
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In addition to RES support, another key element of EU climate policy is the EU Emission Trading 
Scheme (ETS). Launched in 2005, the ETS was the world’s first international emissions trading 
system and covers around 40% of total EU GHG emissions (EEA, 2019). Each year, all large 
emitters operating in one of the covered sectors must surrender enough emission certificates 
in order to cover their total carbon emissions. As a cap and trade system, the total volume of 
carbon emissions from installations covered by the ETS is set annually, which decreases 
gradually to ensure that total emissions fall over time (Healy et al., 2019). As emitters can trade 
allowances with one another, the price of CO2 is set by the market, and emissions are reduced 
in the economy where it is cheapest to do so. As a result of an overallocation of allowances 
and weaker than expected industrial demand following the 2008 financial crisis, the allowance 
price fell from a level of 20 € t-1 in 2008 at the start of the second trading period to 5 € t-1 
in 2013, where it largely remained for the period 2013 to 2017 (Healy et al., 2019) (Figure 1-3).  

While the EU ETS has reduced the competitiveness of fossil-fuel installations, some evaluations 
(e.g. Healy et al. (2019) and Marcu et al. (2019)) are somewhat critical of the results obtained 
by the EU ETS, arguing that the effective carbon price has been insufficient to drive a major 
fuel shift from coal- to gas-fired electricity generation or encourage development of low-
carbon technologies. Meanwhile, others (e.g. Delbeke (2019)) defend the EU ETS as a system 
that successfully established an explicit price on carbon, and reduced CO2 emissions in the 
covered sectors by 26% between 2005 and 2017. In any case, thanks to reforms aimed at 
reducing the oversupply of allowances, such as the market stability reserve introduced in 
January 2019 (EC, 2020), the EU ETS is expected to become more resilient to market shocks, 
and allowance prices are expected to increase in the future. Indeed, allowance prices increased 
by more than 200% from 7 € t-1 in 2018 to 25 € t-1 in 2020.  

 
Figure 1-3 | Development of the monthly average EU ETS allowance price between 2010 and 2020. 
Source: (Markets Insider, 2020).  
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While wind and PV have seen significant deployment, growth in other RES technologies has 
been slower. For example, the installed capacity of all other RES technologies (not including 
renewable waste) merely doubled from 17 GW in 2008 to 35 GW in 2018, mostly thanks to 
solid biomass and biogas plants (Figure 1-2). In contrast to RES, growth in other low-carbon 
technologies like CCS and nuclear has been lacklustre. After several setbacks and project 
cancellations, no commercial-scale power plants equipped with CCS plants have been built in 
Europe6. Eight large-scale CCS facilities are currently in development; however, the majority of 
these are intended for industry or the production of hydrogen and not for the power sector 
(Global CCS Institute, 2018). Meanwhile, nuclear power, which has provided around 30% of 
electricity in Europe for decades, appears to be in decline. For example, Germany and Belgium 
have committed to phasing out nuclear power by 2022 and 2025 respectively (Schneider & 
Froggatt, 2018). Even France, which for many years has been a global leader in nuclear power 
and the largest electricity exporter in Europe, plans to reduce its share of nuclear from 75% to 
50% by 2035 (World Nuclear Association, 2018). If carried through, these policies will mean 
that at least 17 GW of the 120 GW of nuclear capacity installed in Europe will be 
decommissioned by 2025, rising to a total of around 32 GW by 2035. At the same time, 
only 4 GW of new capacity is under construction (Schneider & Froggatt, 2018). 

The EU has long been a global leader in combatting climate change and deploying RES 
technologies. With the resolution of the European Parliament in November 2019 to join the 
growing number of governments in declaring a climate emergency, to call for increasing the 
EU’s GHG reduction target to 55% by 2030, and to encourage member states to increase 
funding for climate action in developing countries, the EU is set to maintain its leadership role 
in the future (European Parliament, 2019). However, this means that the EU will have to 
confront the challenges of the energy transition sooner than other regions. Therefore, 
studying how to deal with the challenges of the energy transition in the EU is not only timely, 
but may yield valuable insights for other regions looking to develop their own decarbonisation 
strategies. 

 Challenges facing the European electricity 
sector  

Thanks largely to the growth in RES, GHG emissions from public electricity (and heat) 
generation in the EU fell by 24% between 2008 and 2017 to approximately 1 Gt y-1 (Eurostat, 
2019a). However, this still represents 31% of total EU CO2 emissions, or 25% of total EU GHG 
emissions7. While Europe’s electricity sector must decarbonise, it is not clear how this should 
be done as there are three broad strategies which could be followed. Firstly, studies have 
shown that cost-effective low-carbon generation portfolios can be constructed from a mix of 
RES, nuclear and fossil generation with CCS (Jenkins et al., 2018; Sepulveda et al., 2018). By 
committing to a target of net-zero emissions by 2050 and deploying a mix of RES, nuclear and 
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potentially CCS, the United Kingdom (UK) is following such as a technology-diverse approach 
(UK Government, 2019). A second strategy, followed by countries such as Denmark and 
Sweden, is to aim for a power system based almost exclusively on RES (KEFM, 2018; Swedish 
Ministry of the Environment and Energy, 2019). Germany, which has set a minimum target 
of 80% RES electricity by 2050, is following a similar high-RES strategy (BMWi, 2018). A third 
strategy would be large-scale deployment of NETs to offset emissions from continued fossil 
fuel use in the electricity or in other sectors, though this strategy is not currently being 
followed by any country. Whichever strategy is implemented, the European electricity sector 
is likely to face three major challenges over the coming decades. 

Firstly, the growing penetration of variable renewable energy sources like solar PV and 
wind is raising concerns about the reliability of the power system. For decarbonisation 
strategies targeting high levels of RES, this will be a challenge. However, given the falling cost 
of wind and PV (IRENA, 2018), many technology-diverse portfolios are also likely to rely heavily 
on solar and wind. Secondly, decarbonisation ambitions are becoming increasingly stringent 
over time, and even net-zero power sector emissions by 2050 may not be enough to meet 
a 1.5 °C warming limit. Thus, deployment of NETs may become unavoidable, and it is unclear 
what the impacts of large-scale deployment of NETs on the European electricity sector 
could be. Lastly, there are concerns whether Europe’s current liberalised electricity market 
design will be able to incentivise investment in enough low-carbon generation capacity to 
ensure security of supply. These three challenges are explained in more detail in the following 
sections. 

1.4.1 Integration of variable renewable energy sources 

In 2017, solar PV and wind represented 15% of total EU28 electricity generation (Eurostat, 
2019d). If total generation from PV and wind continues to grow at around 8% annually, these 
two technologies together could generate some 2500 TWh y-1 by 2040, or approximately 80% 
of current EU electricity demand8. While 80% in 2040 represents a large increase compared 
with today, such levels are under consideration by policymakers. For example, the Energy 
Roadmap 2050 study published by the European Commission (EC) in 2011 considers 32% 
to 65% PV and wind by 2050 (EC, 2011d), while a more recent EC study considers between 65% 
and 72% by 2050 (EC, 2018a). In their long-term planning scenarios, the European Network of 
Transmission System Operators for Electricity (ENTSO-E) consider PV and wind shares between 
48% and 58% by 2030 for the EU28 (including Norway and Switzerland), and between 65% 
and 81% by 2040 (ENTSO-E & ENTSO-G, 2018). In the academic literature the shares can be 
even higher. For example, Child et al. (2019) consider 75% to 78% by 2050 (including Turkey, 
Iceland, Ukraine and the Balkan states), while Plessman et al. (2017) consider 83% (including 
the Balkans).  Accommodating these high levels of wind and solar PV in the power system will 
be challenging as unlike traditional centralised, synchronous, dispatchable power plants (e.g. 
natural gas, nuclear, hydropower), generation from solar PV and wind is asynchronous, 
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distributed, and varies depending on the prevailing weather conditions (Hirth & Ziegenhagen, 
2015). For this reason, they are often termed intermittent or variable renewable energy sources 
(vRES)9. The variability introduced by vRES can be both short term, caused by sub-hourly 
fluctuations in wind speed and cloud movements; and long term, as a result of as interannual 
weather variability (IRENA, 2017). Another challenge of vRES is that their dependence on the 
weather makes their generation uncertain, and their generation schedules must be based on 
forecasts. As these forecasts are imperfect, transmission system operators (TSOs) must activate 
operating reserves when vRES forecast errors (together with load forecast errors and 
unplanned outages) cause electricity supply and demand to become unbalanced. As a result, 
higher vRES penetrations are likely to increase the need for operating reserves (Brouwer et al., 
2014; Ortner & Totschnig, 2019).  

Several European countries have already integrated large amounts of vRES into their power 
systems including Germany and Denmark, where vRES penetration reached 28% and 44% 
respectively in 2018 (ENTSO-E, 2019b). The transmission networks in these countries are well- 
interconnected with those of their neighbours, allowing them to rely to a large extent on cross-
border transmission to integrate vRES by importing electricity during periods of low domestic 
vRES generation, and exporting electricity during periods of surplus generation (Wynn, 2018). 
This is possible as weather conditions vary in different locations, allowing for wind and solar 
generation across geographical areas to balance out (Widén et al., 2015). However, as more 
EU countries plan to increase their shares of vRES, it is unclear whether this strategy will 
continue to be effective as with higher vRES penetrations, neighbouring countries may both 
find themselves in periods of simultaneous electricity surplus/deficit, limiting the potential for 
cross-border transmission. Apart from transmission, previous studies have shown that other 
sources of flexibility can help accommodate the variability of vRES in power systems, including 
fast-ramping generators, electricity storage, and demand-side response (Brijs et al., 2017; 
Brouwer, Van den Broek, et al., 2016). The capacity mix of solar PV and wind technologies can 
also affect their integration due to complementarity in their seasonal generation patterns 
(Heide et al., 2010). Studies have also investigated optimal spatial distributions of vRES in 
single countries (Zeyringer et al., 2018) and small regions (Jerez, Trigo, Sarsa, et al., 2013). 
However, the potential of optimising both the mix and spatial deployment of solar PV and 
wind capacity to better match electricity demand patterns across the entire European 
continent has not been explored. 

Integrating large shares of vRES will be particularly challenging for 100% RES power systems, 
which have received increasing attention as a strategy for decarbonising the power sector 
(Brown et al., 2018; Heard et al., 2017; Jacobson & Delucchi, 2018). Several scenarios for a 
100% RES European power system have been published by non-governmental organisations 
including the European Climate Foundation’s Energy Roadmap 2050 (ECF, 2010a) and 
Greenpeace’s Energy Revolution (GWEC et al., 2015). These scenarios are typically developed 
using energy system models to assess whether projected demand could be met by RES supply. 
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However, sufficient RES supply does not indicate that a 100% RES power system is feasible as, 
due to the variable and stochastic nature of vRES, keeping electricity demand and supply 
balanced is likely to become more difficult in power systems with large shares of vRES 
generation (Hirth & Ziegenhagen, 2015). Moreover, most of the existing studies on 100% RES 
power systems do not model the spatial distribution of vRES in detail, which can have complex 
effects on total system cost due to trade-offs between transmission costs, exploiting (and 
depleting) solar and wind resources at favourable locations, geographical balancing of vRES 
generation between different locations, and proximity to load centres (Gernaat, 2019; 
Zeyringer, 2017). As a result, apart from a handful of countries with significant endowment of 
dispatchable renewable sources such as hydro and geothermal (e.g. Iceland, Costa Rica, 
Norway), it is unclear whether 100% RES power systems relying on large shares of vRES are 
feasible in practice, and can deliver cost-effective, reliable electricity for society while meeting 
climate goals. Thus, if EU policymakers choose to follow a decarbonisation strategy aiming for 
100% RES in Europe (or close to it), it is important to gain a better understanding of what the 
consequences may be for system reliability and cost. 

1.4.2 Shifting climate ambition levels, Paris-compliance and the 
impact of NETs 

As a result of delayed climate action, scientists warning that the earth is warming faster than 
predicted, and public opinion coalescing behind stronger climate action, each successive 
analysis produced by governments outlining pathways to a decarbonised energy system tends 
to be more ambitious than the last. In other words, the more we come to understand about 
the energy transition, the more urgent and challenging it becomes. For example, the EC’s 
Roadmap 2050  long-term decarbonisation scenarios for the EU published in 2011 aimed for 
a reduction of power sector emissions between 96 and 99% by 2050 (EC, 2011a). To achieve 
this level of decarbonisation, the scenarios employed diverse portfolios with varying shares of 
fossil fuels (9.6% to 33.3%) mostly equipped with CCS, nuclear (2.5% to 26.4%) and RES (40.3% 
to 80.1%) (EC, 2011b). In new scenarios released as part of the Clean Planet for All package in 
2018, the share of RES increased (81% to 85%), while the shares of fossil (2% to 6%) and nuclear 
(12% to 15%) decreased compared with the 2011 scenarios (EC, 2018a). Additionally, in the 
scenarios consistent with the Paris Agreement, between 280 and 600 Mt CO2 y-1 is captured 
from the air in 2050 using a combination of biomass (84 to 276 Mt CO2 y-1) and DAC 
(123 to 210 Mt CO2 y-1), reflecting the need for NETs (EC, 2018a). This shows that the ambition 
levels for the power sector are becoming more stringent over time and, if decarbonisation is 
further delayed, may tighten again and increase the need for NETs. Moreover, some have 
concluded that by eliminating the use of fossil fuels, 100% RES power and other net-zero 
emission power systems are consistent with the ambitious goals set out in the Paris Agreement 
(Child et al., 2019). However, as shown by the most recent IPCC scenarios (see Figure 1-1), 
negative emissions may already be necessary in the 2030s to be consistent with a 1.5 ºC 
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warming target. Currently, BECCS and DAC are only demonstration-scale technologies and 
while studies have looked at their impact on individual countries (e.g. (Daggash et al., 2019; 
Pour et al., 2018), little is known about their potential impact on the power sector and 
electricity markets when deployed at scale across Europe. Thus, more insights are needed into 
the potential consequences for the European power sector of large-scale deployment of 
BECCS and DAC in the event that (i) more aggressive climate action is needed, (ii) 
decarbonisation in other sectors (e.g. aviation, agriculture) is more challenging than expected 
and the power sector must also offset emissions from these sectors, or (iii) deployment of 
other CDR technologies proves unsuccessful. 

1.4.3 Electricity market design and generator business cases 

Designing an efficient electricity industry involves identifying all the tasks that must be 
performed, assigning these tasks to different groups, and designing the necessary structures, 
rules and incentives to encourage these groups to perform their tasks effectively and efficiently 
(Biggar & Hesamzadeh, 2014, p. 73). Some of these tasks concern actions with a short-term 
horizon, such as efficient scheduling of the available generation, demand, and transmission 
resources, and ensuring supply and demand are kept in balance to maintain system frequency 
at the target level (e.g. 50 Hz in Europe). Other tasks have a long-term horizon, such as 
ensuring efficient investment in supply-side, demand-side and network resources. Historically, 
many of these tasks were in the hands of state-owned vertically integrated monopolies. 
However, since the privatisation and unbundling reforms implemented in the 1990s and 2000s, 
independent TSOs have been given the role of maintaining system frequency, and most other 
tasks have been given to liberalised electricity markets. In this context, designing the 
structures, rules and incentives which govern how the power sector operates is essentially a 
question of market design. While there are many objectives of electricity market design, the 
overarching objective historically has been to provide electricity reliably to consumers at the 
lowest possible cost (Munasinghe, 1979, p. 29). However, as society has evolved over recent 
decades, so have its expectations for the electricity sector, and the objectives of market design 
have been extended to include environmental and wider sustainability considerations. 
Satisfying these three objectives – reliability, affordability and sustainability – involves trade-
offs, and is sometimes referred to as the energy trilemma (Poudineh & Jamasb, 2012) 
(Figure 1-4). Achieving these objectives is a stated goal of the EU’s Internal Energy Market (EC, 
2014d).  

Across Europe, approximately half of all electricity is traded via power exchanges on day-ahead 
electricity markets10. In these markets, electricity suppliers (i.e. generators) make offers to 
supply a certain quantity of electricity at a given price for each market period (e.g. hourly), 
while electricity consumers (e.g. large industries, and electricity retailers representing 
households) make bids to purchase enough electricity to meet their expected demand. The 
market price in each period is set by the marginal bid (the price of the last MWh of generation 
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required to meet demand) and generation companies receive revenues based on the amount 
of energy they produce. 

Until now, these markets have served reasonably well to ensure efficient short-term market 
operation and long-term investment11. However, there are concerns that the current energy-
only market design may not be adequate to cope with the challenges facing the European 
power system, in particular the increasing penetration of vRES which, due to its almost zero 
marginal cost, tends to put downward pressure on electricity prices (Figure 1-5) (Clò et al., 
2015). In particular, studies have pointed to the increasing penetration of vRES as being an 
important (but not the only) driver behind the fall in electricity prices across Europe between 
2011 and 2015 (Figure 1-6) (Hirth, 2018). There is concern amongst some EU countries, 
policymakers and academics that if prices continue to fall due to increasing vRES deployment, 
the market may provide insufficient incentives for investment in new generation capacity, 
threatening security of supply (EC, 2016c). In response to these concerns, 15 European 
countries have implemented (or are planning to implement) capacity remuneration 
mechanisms (CRMs), which reward generators a fixed amount for their capacity irrespective of 
how much electricity they supply (ACER & CEER, 2019). However, according to ENTSO-E’s 2018 
Mid-term Adequacy Forecast (MAF), seven of these countries do not appear to be facing a 
security of supply problem in the near future (i.e. before 2025) (ACER & CEER, 2019) and 13 
European countries continue to operate energy-only markets, with all but one facing no 
security of supply problems (ENTSO-E, 2018c). Moreover, electricity prices have recovered in 
recent years from the low levels seen in 201512. Thus, it is not clear whether CRMs, which cost 
EU consumers €2.5 billion in 2018 (ACER & CEER, 2019), are a necessary element of market 
designs in the long term. 

 

 

Figure 1-4 | The energy trilemma for the electricity sector is to find the optimal balance between 
sustainability, reliability and affordability.  
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Figure 1-6 | Development of day-ahead wholesale electricity prices in €2019/MWh over time in 
selected European countries, adjusted for inflation. Germany (DE) and Austria (AT) (and Luxembourg) 
constituted a single bidding zone for most of the considered period. Some countries including Denmark 
(DK), Sweden (SE) and Norway (NO) are made up of several bidding zones, the average price is shown 
here. The prices for 2019 only include data up to November 2019. Data taken from ENTSO-E, EPEX, Nord 
Pool, and a number of literature sources (Hirth, 2018; Huisman & Kiliç, 2013; Khoshrou et al., 2019)  

P1 €/MWh

Demand

P2 €/MWh

Supply

vRES

“Merit-order
effect”

Quantity
(MW)

Price
(€/MWh)

20

30

40

50

60

70

80

90

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

Av
er

ag
e 

da
y-

ah
ea

d 
pr

ic
e (

€/
M

W
h)

DK
FR
DE/AT
NL
SE
NO

Figure 1-5 | The impact of vRES on electricity prices. The horizontal axis contains all the generator 
price-volume bids sorted according to increasing price (i.e. in merit order), which together make up the 
supply curve (in red). The price at which the demand curve (blue) intersects the supply curve determines 
the market price, P1, and the capacity dispatched. With nearly zero marginal costs, vRES technologies like 
PV and wind shift the supply curve to the right. Thus, for the same level of demand, the addition of vRES 
to the market causes the price to drop from P1 to P2. This is known as the merit-order effect. 
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Despite the recovery in day-ahead prices since 2015, it is uncertain how increasing vRES 
penetration will affect market prices in the long term, and what the flow-on consequences for 
generator revenues may be. Apart from day-ahead markets, increasing vRES penetration is 
likely to have impacts on other markets, such as the intraday and balancing markets. For 
example, studies show that requirements for balancing capacity and energy are likely to 
increase over time with increasing vRES penetration (Borne et al., 2018). Intraday trading and 
imbalance netting, which have played an important role in reducing German balancing 
requirements (Koch & Hirth, 2019), could also have a significant role at the European level. 
Some studies have explored these potential developments, but only for rather limited vRES 
penetrations of up to 27% (Ortner & Totschnig, 2019). Thus, further insights are needed about 
how these various markets may develop as a result of different decarbonisation strategies, and 
what elements of market design are more likely to support the overall objective of delivering 
low-carbon electricity reliably to consumers at the lowest possible cost. 

 Thesis aims and outline  
This thesis aims to provide insights into the consequences of following different 
decarbonisation strategies in the European electricity sector until the year 205013, and how 
these strategies address the three challenges outlined in the previous section. Thus, the main 
research question driving this thesis is:  

What are the consequences of pursuing different strategies in the European power 
sector for reliability, achievement of climate objectives, and economic viability? 

In addressing this broader question, this thesis focusses in more detail on the following sub-
questions (SQ):  

1. To what extent can the mix and spatial distribution of solar PV and wind be used to 
help integrate them into the power system? 
 

2. What are the potential consequences of aiming for a 100% renewable power system?  
 

3. What are the potential consequences of relying on BECCS and DAC in the power 
sector to meet a 1.5 ºC warming target? 
 

4. What elements should be present in future market designs to address the energy 
trilemma? 
 

These sub-questions are addressed in four core chapters (Table 1-2), which are outlined briefly 
below . 
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Chapter 2, titled ‘Can the mix and spatial distribution of wind and solar PV facilitate their 
integration in the power system?’, examines to what extent the spatial deployment of wind 
and solar PV capacity across Europe could be used to facilitate its integration into the power 
system by matching vRES generation patterns with electricity demand. This is done by 
developing and applying an algorithm to optimise the amount of solar PV and wind installed 
across Europe using a high-resolution spatial grid, so that the aggregated vRES generation 
profile across Europe matches the aggregated electricity demand profile as closely as possible. 
The algorithm is run using 36 years of weather data to account for interannual weather 
variability. The method includes constraints on vRES deployment to ensure they are only 
installed in appropriate areas. 

Chapter 3, titled ‘How might intraday and balancing markets develop in a future highly 
renewable power system?’, explores what role intraday and balancing markets could play in a 
highly renewable European power system with increasing vRES capacity. This is achieved by 
developing a new method for creating synthetic day-ahead forecasts for electricity demand 
and vRES generation, with error distributions which are consistent with historical forecasts. 
This method is then demonstrated by performing simulations for the European power system 
in which the penetration of vRES increases from 15% in 2017 to 50% in 2040. 

Chapter 4, titled ‘Is a 100% renewable European power system feasible by 2050?’  explores this 
very question by considering scenarios for a fully renewable European power system. This 
chapter tests whether these 100% RES systems could be as reliable as today’s power system, 
how they perform in terms of total costs, and whether the necessary deployment of RES 
technologies could be achieved by the year 2050. This analysis is based on detailed power 
system simulations performed using the PLEXOS power market modelling framework. 

Chapter 5, titled ‘Can liberalised electricity markets support decarbonised portfolios in line 
with the Paris Agreement? A case study of Central Western Europe’ considers two scenarios 
for a future decarbonised power system in Central Western Europe: one targeting net-zero 

Chapter Topic 
Research question 

SQ1 SQ2 SQ3 SQ4 

2 
Consequences of the mix and spatial distribution of wind 
and solar PV for residual demand 

X X   

3 
Consequences of high vRES penetration in European 
electricity sector for intraday and balancing markets 

 X  X 

4 Consequences of a 100% renewable power system X X   

5 
Consequences of aiming for a 1.5 ºC target with BECCS and 
DAC under different market designs 

  X X 

Table 1-2 | Correspondence between the chapters and research questions of this thesis 



1
Introduction 

 19 

emissions by 2040 consistent with a 2 ºC warming limit, and the other targeting significant 
net-negative emissions, consistent with a more ambitious 1.5 ºC warming limit. Using the 
PLEXOS modelling framework, this chapter explores how electricity generation portfolios 
should develop to supply electricity reliably to consumers at the lowest cost, to what extent 
these least-cost portfolios can be supported by market revenues under different archetypal 
market designs, and how the deployment of negative emission technologies could affect the 
electricity market. 

Based on the insights provided in the core chapters, Chapter 6 summarises the key findings of 
this thesis, discusses these findings in the context of the wider energy and climate debate, and 
proffers some key recommendations for policymakers and for further research. 

Each core chapter begins with a short abstract and a listing of any mathematical nomenclature. 
Abbreviations are redefined in every chapter so that they can be read independently, with a 
full list of abbreviations provided after the contents page. Footnotes are numbered separately 
per chapter and can be found at the end of each chapter. An extensive appendix is included 
at the end of this thesis providing additional explanations on the assumptions, methods, and 
results for each core chapter, as well as a description of the PLEXOS modelling framework used 
in Chapters 4 and 5.  



Chapter 1 

 20 

Footnotes to Chapter 1

1 While the 0.5 ºC difference between a 1.5 ºC and 2 ºC target seems relatively small, it has large consequences.  For 
example, coral reefs are expected to decline by 70–90% at 1.5°C warming, but will all but disappear (>99% loss) at 2ºC 
(Allen et al., 2018). Also, the number of insect, plant and vertebrate species expected to lose over half their habitat is 
likely to double for 2°C warming than for 1.5°C warming. 

2 More precisely, a carbon budget is the estimated cumulative amount of net global anthropogenic CO2 emissions from 
a given start date to the time that these emissions reach net zero that should limit warming to a specified level, with a 
certain degree of confidence (Rogelj et al., 2018) 

3 The term decarbonisation is used in this thesis to mean reducing net emissions of CO2 to the atmosphere to zero or 
even negative values, mostly in reference to the electric power system. It does not preclude the use of carbon (in all its 
forms) in the energy system and fossil fuels and biomass are still considered, providing total net emissions are reduced 
to target levels. 

4 The two examples of commercial-scale CCS applied in the electricity sector are the Boundary Dam coal power station 
in Canada, and the Petra Nova project at the WA Parish Generating Station in the US. However, these two plants use 
the captured CO2 for enhanced oil recovery, rather than permanent storage. In fact, almost 90% of the 35 Mt CO2 y-1 
CCS capture capacity installed globally in 2018 was used for enhanced oil recovery.  

5 The most common conception of BECCS is a biomass power plant equipped with CCS; however, BECCS can be deployed 
in several ways in different sectors at potentially lower cost than in the electricity sector. For example, in the transport 
sector, the fermentation of sugars to produce ethanol for road transport produces a stream of nearly pure CO2 which 
can be captured and stored, thereby also generating negative CO2 emissions (Moreira et al., 2016). In the pulp and 
paper industry, CO2 can be captured from the flue gas of a black liquor recovery boiler in Kraft pulp mills (Möllersten 
et al., 2003). However, BECCS deployment in these sectors is limited to those countries where these industries are 
present, and the global potential is limited. 

6 Some examples of high-profile CCS setbacks were the cancellation of the ROAD project by Engie and Uniper in 2017, 
which aimed to capture CO2 from a coal plant located in Rotterdam (Port of Rotterdam, 2017; van Cappellen et al., 
2018); and the UK government’s withdrawal of £1 bn of funding for CCS in 2015, which halted both the Peterhead and 
White Rose projects (Carrington, 2015). 

7 CO2 represents around 80% of total GHG emissions in the EU and globally. The remaining GHG emissions come mostly 
from methane, nitrogen oxides, and various hydrofluorocarbons.  

8 This is the compound annual growth rate over the five years between 2013-2018 based on the generation data from 
Eurostat and ENTSO-E shown in Figure 1-2. 

9 Different definitions of intermittent and variable renewable energy sources can be found in the literature. However, the 
most usual definition is generation sources which are: (i) weather-dependent, and thus have limited dispatchability, (ii) 
uncertain in their output, (iii) location constrained/specific, (iv) asynchronous (i.e. they are interfaced with the grid via 
power electronics, not directly connected and synchronised with the grid via a rotor spinning at the same frequency 
as the alternating current waveform), and (v) not necessarily connected to the transmission grid, but also to the 
distribution grid (IRENA, 2017). Solar PV and wind, while the most discussed, are not the only vRES technologies. For 
example, wave energy also depends on the weather and could be considered a vRES technology; however, its 
deployment prospects are currently so low that it is not considered in this thesis. Also, run-of-river hydropower plants 
could be considered a vRES technology, depending on the amount of storage they have available. Concentrating solar 
power is typically equipped with several hours of thermal storage, and thus not considered a vRES technology in this 
thesis. 

10 Own calculation based on day-ahead trading volumes in 2017 on the EPEX (EPEX, 2018b), Elspot (Nord Pool, 2017), 
MIBEL (Omie, 2017) and MGP (GME, 2017) exchanges, compared with 2017 demand (ENTSO-E, 2018e). 

11 This is inferred based on a Web of Science search for publications containing the words “electricity”, and either “capacity 
market” or “capacity remuneration mechanism”, and either “Europe”, “Germany”, or “United Kingdom”. Before 2005 
there were fewer than 3 such publications per year, rising to an average of 12 per year between 2005 and 2015. 
Publications peaked at 51 in 2016 (after the low electricity prices in 2015) and have since fallen to 36 per year. However, 
it is important to consider that many of Europe’s power plants (especially hydropower, nuclear and coal plants) are 
over 30 years old (Kanellopoulos, 2018; Schneider & Froggatt, 2018) and were built by state-owned utilities before 
market liberalisation in the 1990s.  

12 Assuming a loss of load expectation (LoLE) threshold of 1 hour per year. 
13 The time horizon varies between the different chapters. For example, Chapters 2 and 4 consider snapshots of the year 

2050, while Chapters 3 and 5 consider developments between 2017 and 2040 (actually up to 2100 in Chapter 5 as the 
carbon budgets are based on emission profiles for the whole 21st century). In any case, the time horizon is only 
indicative as the focus is on the long-term consequences of different decarbonisation strategies, rather than 
developments in individual years. 
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Abstract 
The integration of more variable renewable energy sources (vRES) like wind and solar 
photovoltaics (PV) is expected to play a significant role in reducing carbon dioxide emissions 
from the power sector. However, unlike conventional thermal generators, the generation 
patterns of vRES are spatially dependent, and the spatial distributions of wind and PV capacity 
can help or hinder their integration into the power system. After reviewing existing approaches 
for spatially distributing vRES, we present a new method to optimise the mix and spatial 
distribution of wind and PV capacity in Europe based on minimising residual demand. We test 
the potential of this method by modelling several scenarios exploring the effects of vRES 
penetration, alternative demand profiles, access to wind sites located far offshore, and 
alternative PV configurations. Assuming a copper-plate Europe without storage, we find an 
optimum vRES penetration rate of 82% from minimising residual demand, with an optimum 
capacity mix of 74% wind and 26% PV. We find that expanding offshore wind capacity in the 
North Sea is a ‘no regret’ option, though correlated generation patterns with onshore wind 
farms in neighbouring countries at high vRES penetration rates may lead to significant surplus 
generation. The presented method can be used to build detailed vRES spatial distributions 
and generation profiles for power system modelling studies, incorporating different 
optimisation objectives, spatial and technological constraints. However, even under the ideal 
case of a copper-plate Europe, we find that neither peak residual demand nor total residual 
demand can be significantly reduced through the spatial optimisation of vRES. 

Nomenclature 

Symbols 
 
𝐴𝐴 Left-hand-side constraint coefficient 

matrix 
𝐵𝐵 Right-hand-side constraint value 

matrix 
𝑐𝑐 Installed generation capacity (MW) 
𝐶𝐶 Vector containing values of 𝑐𝑐 
𝐶𝐶𝐶𝐶 Capacity credit (%) 
𝑑𝑑 Electricity demand (MW, MWh h¯¹) 
𝑓𝑓 Capacity factor (-) 
𝐹𝐹 Matrix containing values of 𝑓𝑓  (-) 
𝑔𝑔 Generation (MW, MWh h¯¹) 
𝑟𝑟 Residual demand (MW, MWh h¯¹) 
𝑅𝑅 Total residual demand (MWh) 
𝑇𝑇 number of generation technologies 
 

Subscripts 
 
𝑐𝑐 country 
𝑒𝑒𝑒𝑒 equality 
𝑖𝑖 vRES generation technology 
𝑖𝑖𝑖𝑖𝑖𝑖 inequality 
𝐿𝐿𝐿𝐿 long-term 
𝑆𝑆𝑆𝑆 short-term 
𝑡𝑡 time step 
𝑥𝑥 grid cell 
𝑦𝑦 year 
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 Introduction 
Decarbonisation of the electric power sector is one of the key transitions which must take 
place as part of Europe’s commitment to reducing CO2 emissions in order to avoid dangerous 
climate change (ECF, 2010b; Jägemann et al., 2013). This will be achieved mainly through the 
integration of more renewable energy sources (RES) such as onshore wind, offshore wind, solar 
photovoltaics (PV), hydro and biomass into the power system. Many studies have presented 
scenarios of what such a low-carbon European power system could look like in the long term, 
typically by 2050 (Connolly et al., 2016; Eurelectric, 2009; GWEC et al., 2015; Steinke et al., 2013; 
van de Putte & Short, 2011). These scenarios must employ nearly 100% RES, or a combination 
of RES and other low-carbon technologies such as nuclear power, bioenergy, or fossil fuels 
with carbon capture and storage (CCS). However, with several countries aiming to reduce 
nuclear power capacity and slow development of the European CCS industry (Bassi et al., 
2015), a heavier dependence on RES may be more likely1. This will pose a challenge as, without 
significant development in nuclear or CCS capacity, comparing the current installed wind and 
PV capacities with those in several high-RES scenarios (Table 2-1) suggests that an additional 
300 GW to 700 GW of wind capacity and 720 GW to 870 GW of PV capacity would need to be 
installed by 2050 (ECF, 2010b; ENTSO-E, 2015a; EREC, 2010; EWEA, 2016; GWEC et al., 2015). 
The question then arises, where should all this capacity be built? 

As generation from variable renewable energy sources (vRES) such as PV and wind is 
intermittent, the challenge is even greater as any residual demand2 – the difference between 
the total demand and vRES generation – must be provided by dispatchable fossil (e.g. coal, 
oil, gas), renewable (e.g. hydro, biomass, concentrating solar power (CSP)) or nuclear backup 
generation capacity (Brouwer et al., 2014). Given that vRES generation profiles depend on both 
the type of technology and weather regime where they are installed, optimizing the mix and 
spatial distribution of vRES has been suggested as one way of helping to integrate vRES into 
the power system (Becker et al., 2014; Budischak et al., 2013). Steps have been taken in this 
direction in the literature; however, most existing studies have shortcomings in that they: (i) 
consider complementarity between vRES generation profiles but do not consider demand 
(Alliss et al., 2011; Cassola et al., 2008; Hoicka & Rowlands, 2011; Kougias et al., 2016; Mills & 
Wiser, 2010; Monforti et al., 2014; Santos-Alamillos et al., 2014, 2015; Thomaidis et al., 2015; 
Widén, 2011); (ii) allocate, rather than optimise the spatial distribution of vRES3 (Bruninx et al., 
2015; DNV GL, 2014; Heide et al., 2011, 2010; Jerez, Thais, et al., 2015; Rodríguez et al., 2014; 
Steinke et al., 2013); (iii) consider only a limited number of vRES technologies (Grossmann et 
al., 2013, 2014; Lassonde et al., 2015, 2016), (iv) are limited in geographical scale (Abdelhaq, 
2012; Cassola et al., 2008; Jerez, Trigo, Sarsa, et al., 2013; Kost et al., 2015; Monforti et al., 2014; 
Pereira et al., 2014; Rauner et al., 2016; Santos-Alamillos et al., 2014; Thomaidis et al., 2015; 
Widén, 2011); or (v) optimise capacity, but do not examine the robustness of the resulting 
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distributions to different weather years (Clack et al., 2014; Kost et al., 2015; MacDonald et al., 
2016; Short & Diakov, 2014). 

For example, the first group of studies investigate how different vRES generation patterns can 
be used to complement or balance each other, in order to achieve more constant overall 
generation. This has typically been done from: a technology perspective, by using 
combinations of different technologies (e.g. PV and hydro (Kougias et al., 2016), wind and CSP 
(Santos-Alamillos et al., 2015; Thomaidis et al., 2015), wind and PV (Hoicka & Rowlands, 2011)); 
from a spatial perspective, using combinations of different sites (Cassola et al., 2008; Santos-
Alamillos et al., 2014); or considering both different technologies as well as site diversity (Alliss 

Generation Type 

Installed capacity 
in 2015 (GW) 

 Installed capacity in 
high-RES scenarios (GW) 

(EWEA, 2016) (ENTSO-E, 
2015a) 

(EU28+CH+NO) 

 Roadmap 
2050 (ECF, 
2010b) a 

Energy 
Revolution 

(GWEC et al., 
2015) b 

Re-thinking 
2050 

(EREC, 2010) 
c 

Onshore wind 130.6 (14%) 136.0 (13%)  245 (12%) 594 (23%) 462 (24%) 
Offshore wind 11.0 (1%)  190 (9%) 237 (9%) 
PV 95.4 (10%) 94.6 (9%)  815 (41%) 926 (36%) 962 (49%) 
Ocean 0.3 (0.03%) -  - 53 (2%) 65 (3%) 
CSP 5.0 (0.6%) -  203 (10%) 208 (8%) g 96 (5%) 
Biomass  16.7 (1.8%) 25.4 (3%)  85 (4%) 108 (4%) 100 (5%) 
Geothermal 0.82 (0.1%) -  47 (2%) 52 (2%) 77 (4%) 
Hydro 141.1 (16%) 193.9 (19%) d  205 (10%) 223 (9%) 194 (10%) 
Natural Gas 192 (21%) 216.8 (21%)  215 (11%) - - 
Coal  161 (18%) 187.0 (18%) e  - - - 
Oil 33.7 (4%) 31.8 (3%)  - - - 
Nuclear 120.2 (13%) 124.6 (12%)  - - - 
Other - 2.3 (0.2%)  - 181 (7%) h - 
Total RES 401.0 (44%) 403.9 (40%)  1790 (89%) 2401(93%) 1956 (100%) 

of which vRES f 237.3 (26%) 230.6 (23%)  1250 (62%) 1810 (70%) 1489 (76%) 
Total Non-RES 506.9 (56%) 608.4 (60%)  215 (11%) 181 (7%) - 
Total 908 1012  2005 2582 g 1956 

Table 2-1 | Comparison of the installed power generation capacity in Europe in 2015 with the 
installed capacity from several (nearly) 100% RES scenarios for Europe in 2050. The values in 
percentages indicate the share of the total portfolio. 

a 100% RES, 20% demand side management scenario, included EU27 + NO + CH 
b  5th edition, Advanced Scenario, included OECD Europe (EU27 – Baltic Countries + Turkey)  
c Included EU27 
d ENTSO-E report ‘renewable’ (145.6 GW) and ‘other’ (48.3 GW) hydro, with the former including run-of-river and hydro 

plants with storage, ‘other’ being pumped storage plants with no natural inflow. Only renewable counted in 
renewable total. 

e  Including anthracite, peat and other non-RES fuels 
f Excluding run-of-river hydro 
g Total installed capacity (2460 GW) and generation (5764 TWh) reported in original study for OECD Europe did not 

include assumed import of 620 TWh y-1 from North African CSP, thus CSP capacity increased to compensate for this 
by assuming the same capacity factor for North African CSP as for European CSP in the study (55%). 

h Hydrogen 
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et al., 2011; Mills & Wiser, 2010; Monforti et al., 2014; Widén, 2011). However, these studies 
only focus on generation, without considering electricity demand. Others have gone further 
and matched vRES generation with demand, but generally only considering single countries 
(Nagata et al., 2017; Rauner et al., 2016) without performing any spatial optimisation. Another 
group of studies allocate vRES capacity based on different factors such as government targets, 
land suitability, proximity to load or the potential resource (Bruninx et al., 2015; DNV GL, 2014; 
Jerez, Thais, et al., 2015; Rodríguez et al., 2014; Steinke et al., 2013), but make no attempt to 
optimise the actual spatial vRES distribution. Others have combined aspects of 
complementarity, demand matching and allocation studies by spatially optimizing vRES 
capacity for minimum residual demand (or a similar metric), but only for single vRES 
technologies in one (Lassonde et al., 2015, 2016) or more (Grossmann et al., 2013; Reichenberg 
et al., 2014) countries, or multiple technologies in a single country (Abdelhaq, 2012; Jerez, 
Trigo, Sarsa, et al., 2013; Killinger et al., 2015; Pereira et al., 2014). Others which have included 
a larger geographic scale and more technologies have done so only in a very aggregated way, 
typically by assuming a spatial vRES distribution, and varying the shares of wind and PV (Becker 
et al., 2014; Heide et al., 2011, 2010). Only a few studies have attempted to optimise the spatial 
distribution of vRES in a power system model (PSM) for a single country (Clack et al., 2014; 
Kost et al., 2015; MacDonald et al., 2016; Short & Diakov, 2014), including two specifically 
seeking to minimise residual load (Clack et al., 2014; Short & Diakov, 2014), but the 
optimisation was only performed for a single year and not checked for long-term performance. 
To our knowledge, no studies have examined how robust their optimised spatial distributions 
are in the long term, nor has the potential of a residual-demand-based capacity optimisation 
been assessed for Europe as a whole. 

In this study, we present a method to optimise the detailed spatial distribution of wind and PV 
by minimising residual demand and apply it to the case of a future European power system. 
Given uncertainties in weather patterns, vRES uptake, electricity demand and technology 
parameters, we apply this method for several scenarios to see the full potential and robustness 
of approach. Firstly, we spatially optimise vRES capacity using long-term weather data and test 
how robust the resulting optimised distributions are with respect to interannual weather 
variability. Secondly, we determine if the penetration of vRES affects the optimal mix and 
spatial distribution for minimising residual demand. Thirdly, we investigate how future 
changes in electricity demand, due to an expected increase in the penetration of e.g. heat 
pumps (HPs) and electric vehicles (EVs), could affect the optimum distribution of vRES for 
minimising residual demand (Barton et al., 2013; ECF, 2010b; Veldman et al., 2013). Fourthly, 
we examine the potential of floating offshore wind technology to give access to stronger and 
steadier winds located in deeper offshore waters. Fifthly, we consider the effect of alternative 
PV orientations, since several studies have shown that the tilt and azimuth (orientation) angle 
of PV panels can be used to match solar PV generation with demand (Hartner et al., 2015; 
Killinger et al., 2015)4. Lastly, we compare the minimum-residual-demand-based vRES capacity 
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optimisation with a more traditional approach of preferentially selecting vRES sites with the 
highest capacity factors. Through these contributions, we seek to answer the following 
research question: 

To what extent can optimising the mix and spatial distribution of vRES capacity 
minimise residual demand in a future European power system, and how does this 
depend on different factors? 

Our study is focussed on the EU285 countries, Switzerland and Norway. The temporal scope is 
2050, by which time we assume that high penetrations of vRES will be required. We consider 
four vRES generation technologies6: onshore wind, offshore wind, rooftop PV and ground-
based utility PV. After an explanation of the methods used (Section 2.2), the results of the 
study are presented (Section 0), followed by a discussion (Section 2.4) and conclusion (Section 
2.5). Further details on the method and results from this chapter are provided in Appendix A. 

 Method 
An overview of the steps followed in this study is shown in Figure 2-1. First, we formulate an 
optimisation algorithm in which the objective function is to minimise residual demand 
(Section 2.1). The decision variables are the installed capacities of each generation technology 
per grid cell, using an irregular spatial grid constructed across Europe (Section 2.2). Inputs to 
the optimisation are capacity factor profiles for each generation technology (Section 2.3), 
constraints on the maximum installed capacity per technology (Section 2.4), and electricity 
demand profiles (Section 2.5). This optimisation is then performed for 36 years of weather data 
for a number of scenarios  examining the effects of different assumptions on vRES penetration 
rate, electricity demand, PV panel orientation, and the extent of the spatial grid (Section 2.6). 
For each scenario, the mean and coefficient of variation (CV7) of the optimised installed 
capacity per technology are calculated for each grid cell to examine how consistently the 
method distributes vRES capacity given interannual weather uncertainty. The mean optimised 
capacity distribution is then simulated for all weather years to check how it perfoms in the 
long term.  

2.2.1 Formulate optimisation algorithm  

Treating the whole of Europe as a copper plate, we assume no losses or constraints on the 
transmission of electricity between or within countries8. In this way, Europe is treated as a 
single integrated power system and total electricity demand 𝑑𝑑𝑡𝑡 is simply the sum of the 
demand across all countries 𝑐𝑐 in hourly time step 𝑡𝑡. 

 

 𝑑𝑑𝑡𝑡 =∑𝑑𝑑𝑐𝑐,𝑡𝑡
𝑐𝑐

 (2.1) 
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Within each grid cell, different vRES generation technologies can be built. The generation from 
technology 𝑖𝑖 in grid cell 𝑥𝑥 is calculated as the product of its capacity factor 𝑓𝑓𝑖𝑖,𝑥𝑥,𝑡𝑡 and installed 
capacity, 𝑐𝑐𝑖𝑖,𝑥𝑥. 

 𝑔𝑔𝑖𝑖,𝑥𝑥,𝑡𝑡 = 𝑐𝑐𝑖𝑖,𝑥𝑥𝑓𝑓𝑖𝑖,𝑥𝑥,𝑡𝑡 (2.2) 

 
The values of 𝑐𝑐𝑖𝑖,𝑥𝑥 are the decision variables in the optimisation. As we want to explore the full 
potential of spatially optimising vRES capacity without being restricted by the current system, 
we treat Europe as a clean slate and do not consider any existing or planned PV or wind 
capacity9. Under this assumption, the lower bound of 𝑐𝑐𝑖𝑖,𝑥𝑥 is zero and the upper bound is the 
maximum installed capacity for that technology 𝑐𝑐𝑖𝑖,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 . The capacity factor profiles 𝑓𝑓𝑖𝑖,𝑥𝑥,𝑡𝑡 take a 
value between zero and one and are calculated from weather data (see Section 2.2.3). Both 
𝑐𝑐𝑖𝑖,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑓𝑓𝑖𝑖,𝑥𝑥,𝑡𝑡 are determined exogenously. The total vRES generation 𝑔𝑔𝑡𝑡 is then simply the 
sum of generation from all technologies across all grid cells. 

Figure 2-1 | Overview of study method. 
 



Chapter 2 

 
30 

 𝑔𝑔𝑡𝑡 =∑∑𝑔𝑔𝑖𝑖,𝑥𝑥,𝑡𝑡
𝑥𝑥𝑖𝑖

 (2.3) 

As we treat the whole of Europe as a copper plate, the residual demand 𝑟𝑟𝑡𝑡 is the difference 
between total demand and total generation of vRES (Figure 2-2). 

 𝑟𝑟𝑡𝑡 = 𝑑𝑑𝑡𝑡 − 𝑔𝑔𝑡𝑡 (2.4) 

When demand exceeds generation 𝑟𝑟𝑡𝑡 is positive. Conversely, when vRES generation exceeds 
demand then 𝑟𝑟𝑡𝑡 is negative. Positive residual demand is not desirable in a power system as 
this represents costs in the form of dispatchable backup capacity and backup energy. Negative 
residual demand (or surplus generation) is also not desirable as it represents costs in the form 
of storage requirements, or economic losses due to curtailment of electricity which has no 
market value10. Thus, the objective is to minimise both negative and positive residual demand 
simultaneously. However, with 36 years of weather data, 8760 time steps per year, four 
technologies and more than 2000 grid cells, the problem quickly becomes intractable and 
difficult to solve. To avoid non-linearities associated with taking the absolute value of the 
residual demand, we formulate the optimisation as a linear least squares (LLSQ) problem, 
constrained by linear equality and bound constraints, where 𝐶𝐶 is a stacked column vector 
containing the values of 𝑐𝑐𝑖𝑖,𝑥𝑥 to be optimised, 𝐹𝐹 is a matrix containing the hourly capacity 
factors 𝑓𝑓𝑖𝑖,𝑥𝑥,𝑡𝑡 for each technology, 𝐷𝐷 is a column vector containing the hourly aggregated 

Figure 2-2 | Example of curtailment and residual demand in a power system. 
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demand values 𝑑𝑑𝑡𝑡 , and 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 is a matrix containing the maximum capacities per technology 
per grid cell 𝑐𝑐𝑖𝑖,𝑥𝑥

𝑚𝑚𝑚𝑚𝑚𝑚 (i.e. upper bound constraints). 

 min
𝐶𝐶

1
2 ‖𝐹𝐹 ∙ 𝐶𝐶 − 𝐷𝐷‖2

2     such that {
                       0 ≤ 𝐶𝐶 ≤ 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚

𝐴𝐴𝑒𝑒𝑒𝑒 ∙ 𝐶𝐶 = 𝐵𝐵𝑒𝑒𝑒𝑒
𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖 ∙ 𝐶𝐶 ≤ 𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖

 (2.5) 

The matrices 𝐴𝐴𝑒𝑒𝑒𝑒 and 𝐵𝐵𝑒𝑒𝑒𝑒 can be used to supply additional equality constraints to the 
optimisation, such as constraints on total annual generation, or the total installed capacity per 
technology. 𝐴𝐴𝑒𝑒𝑒𝑒 is a coefficient matrix for the elements of 𝐶𝐶 specifying the left-hand side of 
the equality constraints11, with the right-hand side specified in 𝐵𝐵𝑒𝑒𝑒𝑒 . Similarly, the coefficient 
matrices 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖 and 𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖 can be used to add inequality constraints to the optimisation if desired, 
such as minimum installed vRES capacities for a particular country in order to take into account 
government policies on vRES deployment.  

2.2.2 Construct spatial grid 

The spatial grid is built using the software ArcGIS Pro12 by incorporating a number of spatial 
datasets. These include European country borders (Eurostat, 2014), Exclusive Economic Zone 
(EEZ) marine boundaries (Claus et al., 2016), bathymetry data (British Oceanographic Data 
Centre, 2015), and the 2012 Corine Land Cover Inventory (CLC2012) (EEA, 2016a; Kosztra & 
Arnold, 2014). The starting point is a regular grid of 0.75° x 0.75° constructed across Europe, 
corresponding to the resolution of the weather dataset (Section 2.2.3). These regular grid cells 
are cut by the land and marine borders of each country so that the resulting irregular grid 
respects all national borders and the installed vRES capacity can be easily calculated or 
constrained per country in the optimisation. Each cell retains information about the latitude 
and longitude of its parent grid cell so that it can be associated with the correct wind and PV 
capacity factor profiles (Section 2.2.3). This irregular grid is merged with the high resolution 
(100 m x 100 m) CLC2012 raster dataset so that the area of each Corine Land Cover (CLC) class 
per grid cell can be deduced and used to set capacity constraints for each technology. Grid 
cells are classified as onshore, offshore, or coastal. 

Water depth and distance to shore are two major factors limiting the expansion of offshore 
wind technology. Due to the high cost and technical limitations of current foundation types 
such as monopiles, gravity based foundations, jackets, and tripods (Rodrigues et al., 2015), 
offshore wind farms are typically located up to a distance of 100 km offshore in water depths 
of up to 50 m (EWEA, 2013; Rodrigues et al., 2015). In this study, we assume that water depth 
is a greater challenge for the development of offshore wind than distance from shore and limit 
offshore grid cells to a water depth of 50 m (EWEA, 2013)13. However, in the long term Europe 
is expected to turn to more distant offshore locations in deeper waters to increase offshore 
wind capacity as many of the most favourable offshore wind sites close to the shore become 
exploited (EWEA, 2013; Zountouridou et al., 2015). To examine the potential of floating 
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offshore wind technology in the future and the role it could play in minimising residual 
demand, a second grid variant is built including all offshore locations within the EEZ of each 
country, irrespective of water depth14. The resulting two spatial grid variants are shown in 
Figure 2-3. 

2.2.3 Build hourly capacity factor profiles 

The capacity factor profiles are based on the European Reanalysis Interim (ERA-Interim) 
weather dataset produced by the European Centre for Medium-Range Weather Forecasts 
(ECMFW) (ECMWF, n.d.). This is a global atmospheric reanalysis covering 36 years from 1979 
to the present (2016). Comprising 3-hourly data on various meteorological parameters 
including wind speed, solar radiation and temperature, it has a spatial resolution of 0.75° x 
0.75° or approximately 50 km x 50 km15 (Dee et al., 2011; ECMWF, n.d.). Reanalyses combine 
data from a variety of weather observational systems by integrating them with a numerical 
weather prediction model to produce a temporally and spatially consistent dataset and have 
been used in a number of vRES integration and power system studies (EWEA, 2009; Gonzalez 
Aparicio & Zucker, 2015). The ERA-Interim reanalysis is selected due to its extensive 
geographical coverage (including offshore sites), high spatial and temporal resolution, and 
inclusion of both wind speed and solar radiation over a long timeframe16. As we base our 
model on historical weather data, any potential impacts of climate change on European 
weather patterns are beyond the scope of this study and not considered. The 3-hourly ERA-
Interim data is downscaled to hourly resolution in order to match the demand data. 

Based on recent developments and future expectations, we assume hub heights of 150 m 
and 100 m for onshore and offshore wind turbines respectively. Extrapolating the 10-m wind 
speed from the ERA-Interim dataset to hub height and interpolating to hourly values, we 
assign each grid cell a wind turbine class according to International Electrotechnical 

 
c 

50-m water depth grid 
Full EEZ grid 
Included countries 

Water depth below 50 m 
Excluded countries 

Figure 2-3 | Extents of the 50-m water depth (left) and full EEZ (right) spatial grids 
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Commission (IEC) 61400 guidelines (International Electrotechnical Commission, 2005)17. Based 
on this wind class (IEC Class S, I, II, III, or IV) we select an appropriate wind turbine and power 
curve from a major commercial manufacturer, which we subsequently convolute so that 
aggregated wind generation better reflects generation profiles from real wind farms 
(Norgaard & Holttinen, 2004). Additional losses of 13% (including wake/array (8%), electrical 
conversion (2%) and other (3%) losses) are assumed in accordance with values taken from the 
literature (McKenna et al., 2014; Myhr et al., 2014; Rivas et al., 2009).  

PV generation profiles are synthesised by using linear interpolation to first downscale the raw 
3-hourly radiation data to hourly irradiance values. Solar position and radiation models from 
the literature are then used to calculate PV production, assuming a southerly orientation and 
35° mounting angle for both PV technologies (Erbs et al., 1982; Reindl et al., 1990). We take 
high-efficiency (21.5%) monocrystalline silicon and lower-efficiency (16.8%) polycrystalline 
silicon modules as the basis for the rooftop and utility PV calculations respectively18. Finally, a 
performance ratio (PR) of 90% is assumed in line with reported values for recent PV 
installations (Fraunhofer ISE, 2016), thus accounting for inverter inefficiency, wiring, cell 
mismatch, shading and other losses.  

2.2.4 Formulate grid cell capacity constraints 

Grid cell capacity constraints for each technology are determined following the approach 
shown in Figure 2-4. First, the suitable land (or sea) area for each technology is calculated by 
assuming that each technology can only be built in specific suitable CLC classes. For onshore 
wind and utility PV these include mainly agricultural and grasslands19. We assume rooftop PV 
can only be built in urban areas, and offshore wind only in open water. Protected areas (land 
and sea) are excluded using data from the European Environment Agency’s (EEA) Common 
Database on Designated Areas (CDDA) dataset (EEA, 2016b). With the suitable land area 
determined, we then assume how much of this suitable land is available and could be used for 
vRES, based on values reported in literature. For onshore wind, we assume a land availability 
factor of 6% in line with (Bruninx et al., 2015; Deng et al., 2015), and for offshore wind we 
assume a uniform 20% availability irrespective of water depth or distance to shore20. For utility 
PV we consider a land availability of 1%, within the range of values found in the literature. We 
assume that utility PV and onshore wind can be installed in the same location on the basis 
that there are examples of such co-located/hybrid parks gaining increasing attention and 
already being constructed (AECOM Australia, 2016; Cuff, 2016). With shading only affecting 
the direct component of sunlight, PV losses due to turbine shading are reportedly less than 
1% (Mamia & Appelbaum, 2016). 

For both wind technologies, we use a representative wind farm capacity density ranging from 
4.2 MW km-2 to 6 MW km-2 (based on the IEC wind turbine class) to calculate the maximum 
capacity per grid cell from the available area. For the two PV technologies, the panel area is 
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first required. For utility PV, we assume a panel density of 0.337 m2 panel m⁻² land, based on 
a 35° installation angle and allowing 15° between the top of one panel row and the base of 
the next to minimise shading. For rooftop PV, we estimate maximum rooftop PV panel area 
by first calculating the fraction of urban CLC classes covered by buildings using building 
footprint data from the UK and the Netherlands. Then, assuming 1.22 m2 roof per m-2 building 
footprint (based on trigonometry), we consider a roof availability factor of 30% based on the 
literature. The resulting rooftop and utility PV panel areas are multiplied by nominal module 
specific power densities of 211 and 167 W m-2 respectively, based on manufacturer data. 

2.2.5 Synthesise demand profiles 

An examination of the literature shows that there is no consensus on total expected electricity 
demand in 2050 with values ranging from 3377 TWh (EC, 2011a) to 6020 TWh21 (GWEC et al., 
2015), depending on the assumed trends in efficiency measures, economic growth, and 
electrification of other sectors such as transport, heating, and heavy industry (Bruninx et al., 
2015; EC, 2011a, 2016b; ECF, 2010b; EREC, 2010; GWEC et al., 2015; PwC et al., 2010). In light 
of this, we consider different demand levels in this study. As a base case, we take actual hourly 
2015 demand data from the European Network of Transmission System Operators for 
Electricity (ENTSO-E) (ENTSO-E, 2016a)22 and assume that total annual demand (3111 TWh y⁻¹) 
remains essentially unchanged, under the assumption that general demand increases due to 
economic and population growth until 2050 will be largely offset by energy efficiency 
measures23. 

Then, in order to investigate higher levels of demand and how increased penetration of EVs 
and HPs may affect the optimal distribution of vRES, we create additional demand profile 
variants by adding 500 TWh and 800 TWh for HPs and EVs respectively to the base 2015 
demand. In addition to the base 2015 demand, this results in three further variants: (1) base 
with EVs, (2) base with HPs, and (3) base with both EVs and HPs. Annual HP demand is 
distributed throughout the year based on the number of heating degree hours (HDH), while 
EV demand is distributed used a charging profile model developed by the European 
Commission Joint Research Centre (JRC)24(Pasaoglu et al., 2013). Table 2-2 shows the total 
annual demand, peak demand and minimum demand for all four demand profile variants.  

Even though our study uses only one year of demand data (2015), electricity demand follows 
quite consistent and predictable patterns (e.g. daily fluctuations, weekly fluctuations, seasonal 
differences) and we consider including additional years of demand data less important than 
additional years of weather data. A justification for this, as well as further details about the 
demand profile formulations, is provided in the appendix. 
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Figure 2-4 | Overview of method used to calculate installed capacity constraints by technology. 

 

Table 2-2 | Total, maximum and minimum demand of the base profile and three variants (including 
grid losses) 

 

  

Parameter Base (2015) Base + HPs Base + EVs Base + HPs +EVs 

Total demand (TWh y⁻¹) 3111 3611 3911 4411 

Maximum demand (GW) 504 640 745 882 

Minimum demand (GW) 230 236 236 241 
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2.2.6 Perform scenario optimisation runs 

The minimum residual load optimisation algorithm is implemented and solved using the 
software Matlab25. The optimisation is performed for a number of different scenarios in order 
to investigate the effects of different factors and uncertainties, as shown in . 

• Scenario 1 is the base case minimum residual demand optimisation using the 50-m 
water depth grid. 

• Scenarios 2a-d investigate how minimising residual demand is affected by vRES 
penetration rate by constraining vRES generation to 25%, 50%, 75% and 100% of total 
demand respectively. 

• Scenarios 3a-c examine the impact of uncertainty in future electricity demand patterns 
by adding additional demand from HPs and EVs to the base demand.  

• Scenario 4 considers the potential of utilising the full EEZ grid with floating offshore 
wind farms. 

• Scenarios 5a-c assess the impact of using alternative PV panel orientations for rooftop 
PV and full two-axis tracking for utility PV. 

• Scenario 6 compares the minimum-residual-load-based vRES capacity optimisation with 
the more common approach of selecting sites with the highest capacity factors26 by 
modifying the objective function to maximisation of vRES generation, while setting 
constraints on the capacity per technology to be equal to the mean optimised capacities 
from Scenario 1. 

 
Each scenario is optimised for all 36 years of weather data seperately27, from which the mean 
and CV of installed capacity per grid cell is calculated for each technology in order to test how 
sensitive the capacity distributions produced by the optimisation algorithm are to individual 
weather years. Then, the mean optimised distribution is simulated for the full 36 years of 
weather data to see how it performs in the long term. For each scenario, the mean installed 
capacity per technology, maximum, minimum and residual demand, surplus generation, net 
vRES penetration28, and vRES capacity credit are calculated. Note that in all scenarios except 
Scenarios 2a-d, we impose no constraint on total annual vRES generation; hence the solver is 
free to determine the optimum level of vRES penetration. The vRES capacity credit represents 
the reduction in dispatchable generation capacity that would be possible due to vRES, 
considering demand and generation from all vRES technologies together at a European level. 
We calculate the short-term annual capacity credit (𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆) for a given year, 𝑦𝑦, following the 
method of (IEA, 2011) as the difference between the maximum demand and maximum residual 
demand in that year, divided by the total installed vRES capacity as shown in Eq. (2.6). 

 𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆,𝑦𝑦 =
max (𝑑𝑑𝑡𝑡,𝑦𝑦) − max (𝑟𝑟𝑡𝑡,𝑦𝑦)

∑ 𝑐𝑐𝑖𝑖,𝑥𝑥𝑖𝑖𝑖𝑖
 (2.6) 
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Figure 2-5 | Approach to calculating long-term capacity credit. Figure based on (IEA, 2011). 
 

 

Max 
demand 

  (GW) 
Mean 

residual 
demand 

Max 
residual 
demand 

σ      based on this 
difference 

Fr
eq
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nc

y (
%

) 

Scenario Objective 
Function 

Grid 
Type 

Demand 
Profile Additional Constraints/Other 

1 
Minimum 
residual 
demand 

50 m 
depth Base - 

2 

a 

Minimum 
residual 
demand 

50 m 
depth Base 

Constraint on 
total vRES 

generation a 

= 778 TWh y⁻¹ 
(25% penetration) 

b = 1556 TWh y⁻¹ 
(50% penetration) 

c = 2333 TWh y⁻¹ 
(75% penetration) 

d = 3111 TWh y⁻¹ 
(100% penetration) 

3 

a Minimum 
residual 
demand 

50 m 
depth 

Base + HP - 

b Base + EV - 

c Base + HP + EV - 

4 
Minimum 
residual 
demand 

EEZ Base - 

5 
a Minimum 

residual 
demand 

50 m 
depth Base 

West-facing rooftop PV 

b East-facing rooftop PV 
c Two-axis tracking utility PV 

6 Maximum 
generation 

50 m 
depth Base Total installed capacity per technology 

based on mean result from Scenario 1 

Table 2-3 | Overview of optimisation scenarios performed. The italicised text highlights the differences 
between each scenario and the Base scenario (Scenario 1). 

a     Based on total vRES generation, including any surplus generation. 
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However, as long-term investment decisions regarding backup capacity are not made 
annually, it is the long-term capacity credit (𝐶𝐶𝐶𝐶𝐿𝐿𝐿𝐿) which is more relevant for system planning. 
While there are many methods of determining capacity credit in the literature (Amelin, 2009; 
Dent et al., 2010; Ensslin et al., 2008), in this study we again follow the appoach of (IEA, 2011) 
but instead of assuming maximum residual demand is normally distributed from one year to 
the next, we base 𝐶𝐶𝐶𝐶𝐿𝐿𝐿𝐿 on the worst-case year when maximum residual demand is highest 
(Figure 2-5). In this way, the long-term capacity credit is equal to the minimum short-term 
capacity credit (i.e. 𝐶𝐶𝐶𝐶𝐿𝐿𝐿𝐿 = min (𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆,𝑦𝑦)). 
 

 Results 
The overall results for the optimisation runs are shown in Table 2-4, while Table 2-5 presents 
the overall results from the simulation runs. In addition to the mean and CV, the minimum and 
maximum values are also shown. As the mean results from the optimised and simulated runs 
differ only slightly (typically less than 3%), using the mean optimised capacity across a number 
of weather years – as an alternative to simultaneously optimising all years at once – can 
generate a single optimised capacity distribution that performs in line with long-term 
expectations. 

The overall results, as well as the detailed vRES distributions, are discussed in the following 
sections with Scenario 1 – the base minimum residual demand optimisation – serving as a 
reference with which the other scenarios are compared. Note that in the optimised runs, the 
capacity distribution may change for each year of the optimisation and the interannual results 
represent the ‘ideal’ case, while in the simulation runs, the capacity distribution is the same 
each year. Thus, unless otherwise stated, overall results are discussed on the basis of the 
simulation runs as these give a better indication of the interannual variability. However, 
comparing the results for residual demand across all scenarios, Table 2-4 and Table 2-5 show 
that neither peak residual demand nor total residual demand can be significantly reduced 
through spatial optimisation of vRES, even for the ideal case of a copper-plate Europe. 

2.3.1 Base minimum residual demand optimisation  

When spatially optimised, vRES can satisfy 82% of annual European electricity demand with 
an installed capacity of 1144 GW. The optimum capacity mix is 74% wind (of which 65% is 
offshore) and 26% solar PV (of which 67% is rooftop). Figure 2-6 shows the mean installed 
capacity per grid cell for each technology based on all weather years. Onshore wind is mostly 
installed at the periphery of southern29, northern, western and eastern Europe, while very little 
capacity is installed in countries surrounding the North Sea, which instead host considerable 
offshore wind capacity. Rooftop PV is mainly installed in a band extending from Portugal to 
the Nordic countries. Utility PV follows a similar pattern except that total installed capacity is 
lower, and the capacity shares in Ireland and Norway are higher than for rooftop PV. 
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Figure 2-6 | Mean optimised capacity per technology in GW per grid cell for Scenario 1 for (a) 
onshore wind (b) offshore wind (c) rooftop PV and (d) utility PV. Sites in which no capacity is ever installed 
are left blank. Note that the axis scale varies per technology.  

Notably, only 17% of total PV capacity is installed in the southern European countries of Spain, 
France and Italy which typically host the largest shares of PV capacity in high-RES studies. 
Figure 2-7 depicts the calculated CV of optimised installed capacity in each grid cell based on 
all weather years, showing that capacity is installed more consistently in certain regions than 
in others. For example, the same onshore wind capacity is almost always built in the Iberian 
Peninsula, Ireland and the west coast of Britain, southern France, northern Scandinavia, and 
far-eastern Europe; but varies considerably in central France and Italy. Comparing Figure 2-6 
and Figure 2-7 shows that not only does the robustness of the capacity distributions vary 
between the four technologies, but also that the cells with low CVs are often those cells in 
which the most capacity is installed. This is demonstrated clearly by Figure 2-8, which gives 
the share of cumulative installed capacity for each technology as a function of the CV of 
installed capacity. Offshore wind capacity is distributed most robustly by the optimisation with 
66% of capacity installed in the same location each year. The distribution of onshore wind is 
more variable with only 38% of capacity installed in the same location. By contrast, no locations 
receive the same rooftop and utility PV capacity each year. 
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Figure 2-7 | CV of installed capacity per technology for Scenario 1 for (a) onshore wind (b) offshore 
wind (c) rooftop PV and (d) utility PV. Cells in which the variability in installed capacity from year to year 
is very low (e.g. CV < 0.1) are coloured green, while cells with high CV are coloured red. Cells in which no 
capacity is ever built are shown as white. 

 

Figure 2-8 | Share of cumulative installed capacity as a function of CV of installed capacity for each 
grid cell in Scenario 1.  
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To examine the temporal aspects of how the algorithm optimises residual demand, Figure 2-9 
shows hourly box plots of total demand, generation and residual demand for weather year 
2015 (as an example), averaged across a representative winter month (January), a 
representative summer month (July), and the full year. Figure 2-10 shows similar plots for the 
hourly generation of each technology. In winter, demand increases sharply from 4:00 before 
peaking at 11:00. It peaks again at 18:00 before falling steeply until the minimum at 4:00. In 
contrast, total vRES generation is quite steady throughout the day at approximately 400 GW, 
mainly supplied by offshore wind, with a slight rise at midday due to PV. This combination of 
demand and vRES generation profiles tends to result in surplus electricity early in the morning 
and late at night, generation largely matching demand between 7:00 and 16:00, and unmet 
demand during the evening peak between 17:00 and 20:00. In summer, the demand profile is 
similar to that in winter, except that the double-peak and sharp evening decline are replaced 
by a gradual fall in demand, extending from noon until 4:00.  

Again, offshore wind provides steady generation of approximately 200 GW (nearly 50% lower 
than in the winter). This combination of patterns results in unmet demand in both the morning 
and late evening hours. In contrast to offshore wind, onshore wind generation increases 

Figure 2-9 | Box plots of hourly demand, vRES generation and residual demand in Scenario 1 for 
2015 averaged for all days in January, July and the full year. Box plots are based on the 25th (Q1) 
and 75th (Q3) percentile values. The central line in each box indicates the 50th percentile (Q2) or median. 
The ‘+’ signs indicate outliers with values larger than [Q3 + 1.5(Q3 – Q1)] or smaller than 
[Q1 - 1.5(Q3 – Q1)], or approximately ±2.7σ from the mean. Reference lines are drawn for the mean 
demand, generation, and zero residual demand for each time period.  
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notably during the day and peaks in the afternoon before falling off during the night30. The 
net effect of these seasonal differences is that demand can be largely matched by vRES 
generation between 3:00 and 15:00 across the full year of the optimisation. However, the 
evening peak demand cannot be covered by installing more wind or PV without increasing 
surplus electricity production during other periods. As could be expected, PV plays a greater 
role in summer than in winter in meeting peak daytime demand. However, the algorithm 
installs far less PV capacity than it could with only 9% and 11% of total rooftop and utility PV 
potential installed, compared with 55% and 73% for onshore and offshore wind. An 
explanation for this can be found in Figure 2-9 which reveals that, with demand and generation 
largely balanced between 8:00 and 15:00, any further midday generation in either winter or 
summer would lead to negative residual demand and surplus electricity. 

Looking in more detail at long term residual demand, Figure 2-11 presents a probability plot 
of the hourly residual demand for Scenario 1 calculated for all weather years, showing that 
residual demand is normally distributed with a mean of 39 GW and standard deviation of 
104 GW31. Based on the maximum observed residual demand of 378 GW, the long-term vRES 
capacity credit of 11% (see Table 2-5) highlights that even when the mix and distribution of 

Figure 2-10 | Hourly vRES generation by technology in Scenario 1 for 2015 averaged for January, 
July and the full year. Box plots are based on the 25th (Q1) and 75th (Q3) percentile values. The central 
line in each box indicates the 50th percentile (Q2) or median. The ‘+’ signs indicate outliers with values 
larger than [Q3 + 1.5(Q3 – Q1)] or smaller than [Q1 - 1.5(Q3 – Q1)], or approximately ±2.7σ from the 
mean. Reference lines are drawn for the mean demand, generation, and zero residual demand for each 
time period. 
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vRES are fully optimised, dispatchable backup capacity of at least 75% of peak demand would 
still be required to ensure demand could be met in the most challenging year. 
 

2.3.2 Effect of vRES penetration 

We find that the penetration of vRES affects not only surplus generation and capacity credit, 
but also the spatial distribution of vRES capacity. In the first instance, Scenarios 2a and 2b 
show that by optimising the shares and spatial distribution of vRES capacity, it is possible to 
supply at least 50% of electricity demand in a copper-plate Europe without any curtailment 
(Figure 2-12). Attempting to reach a gross penetration rate of 75% (Scenario 2c), results 
in 2.6% of surplus generation, giving an effective net penetration rate of 73%32. The results 
from Scenario 1 show that the optimum gross vRES penetration is approximately 89% (82% 
net penetration) as attempting to achieve higher penetration of vRES in Scenario 2d results in 
an increase in surplus generation, and an increase in total residual.  

The long-term vRES capacity credit falls with increasing vRES penetration rate as once the 
available capacity in the optimum locations is fully exploited at low penetration rates, 
additional capacity is deployed at less optimal sites. In terms of the mix of vRES technologies, 
Figure 2-12 also shows that despite a small increase in the share of offshore wind at low 
penetration rates, the optimum mix of wind and PV is largely independent of vRES penetration.  

The effect of vRES penetration on its spatial distribution is best explained with Figure 2-13, 
which depicts the percentage of the maximum possible capacity built in each grid cell for 25% 

Figure 2-11 | Probability plot of hourly residual demand for Scenario 1 based on all 36 years of 
weather data from 1979-2015. Hourly residual demand is binned into 5 GW increments. The red line 
shows the peak demand of 504 GW. 
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and 75% vRES penetration for onshore wind (Figure 2-13a-b) and rooftop PV (Figure 2-13 c-d). 
At 25% penetration, onshore wind is almost completely deployed in grid cells located in 
northern Norway, Ireland, the Iberian Peninsula, and far eastern Europe (Figure 2-13a). As vRES 
penetration increases to 75% in Scenario 2c (Figure 2-13) (and even 89% in Scenario 1, 
see Figure 2-6a), these regions of saturated capacity extend further inland. The reason for this 
is that while the optimisation would prefer to continue installing capacity in locations like 
Portugal, Ireland and northern Scandinavia, the available capacity in these regions is exhausted 
and the optimisation must install capacity at sites with similar – but less optimal – wind 
patterns. However, the most preferable underlying locations for onshore wind are 
independent of the penetration of vRES.  
 
Rather than filling outwards from specific locations as with onshore wind, the distribution of 
PV capacity shifts with increasing vRES penetration. At 25% vRES penetration, rooftop PV 
capacity is built almost entirely in southern Portugal and Spain (Figure 2-13c). However, at 
50% vRES penetration this capacity shifts to the west, and at 75% penetration additional 
capacity is added in northern Europe (Figure 2-13d). The reason for this is that at low 
penetration rates when demand significantly exceeds vRES generation, residual demand is 

Figure 2-12 | Effect of gross vRES penetration rate on surplus generation, capacity credit, optimum 
technology shares and total residual when minimum residual demand is optimised. Based on results from 
Scenarios 2a-d and Scenario 1. The long-term (LT) vRES capacity credit is based on the year with the 
maximum peak residual demand. 
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minimised by maximising generation, and hence sites with high capacity factors in southern 
Europe can be selected without resulting in significant surplus generation. At higher 
penetrations however, peaks in summer PV production – coupled with increasing wind 
generation – mean that this is no longer the case, and the model builds capacity in the west 
and north. In these locations, PV generation can better match demand without resulting in 
excessive surplus generation during summer. 
 

2.3.3 Effect of demand profile 

The results from Scenario 3a show that adding 500 TWh of demand from HPs increases total 
net installed vRES capacity by 150 GW (13%) compared with Scenario 1. This additional 
capacity results from increases in onshore (+85 GW) and offshore (+92 GW) wind, which are 
partly offset by a fall in PV capacity (-27 GW). Mean ST vRES capacity credit increases by 1.9% 
(in absolute terms) to 16.5%, showing that the demand profile of HPs matches better with 
wind generation patterns than it does with PV. However, the LT capacity credit remains 
unchanged. In Scenario 3b, adding 800 TWh of demand from EVs results in similar increases 
in onshore (+75 GW) and offshore (+103 GW) wind capacity, as well as increases in rooftop 

Figure 2-13 | Percentage of maximum installed capacity per grid cell for onshore wind at (a) 25% 
vRES penetration (Scenario 2a) and (b) 75% vRES penetration (Scenario 2c); and rooftop PV at (c) 25% 
vRES penetration (Scenario 2a), (d) 75% vRES penetration (Scenario 2c). 
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(+68 GW) and utility (+41 GW) PV capacity in western Europe. The decrease in LT capacity 
credit in Scenario 3b compared with Scenario 1 shows that vRES generation profiles correlate 
less well with demand from EVs than with base demand. 

These impacts can be explained by the different demand, generation and residual demand 
profiles for each scenario (Figure 2-14). Demand from HPs is largely seasonal, occurring mainly 
during winter and remaining largely constant throughout the day. For this reason, an increase 
in wind capacity is to be expected, given these periods are also associated with higher wind 
generation (see Figure 2-10). Additional PV capacity is not installed as this would increase 
surplus electricity during daylight hours in the summer (Figure 2-14b), and contribute only 
marginally to covering daytime winter HP demand. As a result, the residual demand for 
Scenario 3a is higher than Scenario 1 in winter, but lower in summer. 

Unlike HPs, demand from EVs occurs all year round and exhibits more diurnal variation with 
peaks during the day and in the late evening when EV batteries start charging as people arrive 
home. This demand profile is more conducive to PV, which can help meet additional daytime 
demand in both winter and summer. Additional wind capacity is also useful in covering EV 
demand in the early morning and late evening once PV generation falls off, particularly in 
winter. In terms of residual demand, Figure 2-14c shows that the seasonal impact of HPs is 
largely balanced when the full year is considered. However, the morning and evening demand 
peaks produced by EVs cannot be covered by vRES, resulting in much higher residual demand 
in these periods. 

Adding demand from HPs and EVs changes not only the total amount of vRES installed, but 
also the distribution of PV capacity. When HP demand is added (Scenario 3a), the net 26 GW 
fall in total PV capacity is actually the result of 94 GW being removed from cells in western, 
central and northern Europe and 68 GW being added in southern Europe. The reason for this 
is that higher capacity factor sites at lower latitudes allow more daytime demand from HPs to 
be covered during winter. When EV demand is added (Scenario 3b), the net 109 GW increase 
in PV capacity is the result of 76 GW being removed from eastern Europe and 185 GW being 
added to western Europe (Figure 2-15) as, with more PV located in western Europe, PV 
generation can be extended later into the day as the sun sets helping to cover evening demand 
from EV charging. 

When demand from both HP and EVs is added (Scenario 3c), onshore and offshore wind 
capacities increase by 180 GW and 155 GW respectively compared to Scenario 1, showing that 
wind requirements are essentially additive for meeting HP and EV demand as these loads 
largely coincide.  
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Figure 2-15 | Installed capacity difference maps for Scenario 3b with respect to Scenario 1 for (a) 
rooftop PV and (b) utility PV. 

2.3.4 Effect of deep offshore waters 

Extending the spatial grid to include the entire European EEZ (Scenario 4) reduces total vRES 
installed capacity by 19% and increases long-term capacity credit to nearly 20%. This is mainly 
due to a shift towards higher capacity factor wind sites at the extremes of the EEZ in the 
Atlantic, North and Norwegian seas. As a result, the maximum peak and total residual demands 
of 323 GW and 555 TWh in Scenario 4 are the lowest observed in all scenarios, being 14% 
and 35% lower respectively than in Scenario 1, and 16% and 55% lower respectively than in 
the maximum capacity factor distribution (Scenario 6). Onshore wind capacity decreases by 
82% compared to Scenario 1 while offshore wind capacity increases by only 23%, showing that 
the development of higher capacity factor sites located far offshore allows less wind capacity 
to be installed overall. Total PV capacity is reduced by 33% compared with Scenario 1 though 
the spatial distribution remains largely unchanged. This shows that even with access to the 
most favourable wind sites, some PV is still beneficial for minimising residual demand.  

2.3.5 Effect of PV configurations 

When all rooftop PV panels are set to face west (Scenario 5a), the bulk of rooftop PV capacity 
is installed in the western extremes of Europe (e.g. Portugal, Ireland, UK, France). This extends 
rooftop PV generation further into the day helping to cover peak evening demand, especially 
during the summer. As a consequence, however, morning rooftop PV generation falls which 
would result in unmet demand if the optimisation did not compensate for this by 
redistributing utility PV capacity to eastern Europe, thus providing additional generation in the 
morning. This shows that while west-facing PV can be advantageous for meeting peak 
European evening demand, some morning PV generation is still required. When rooftop PV 
panels are instead set to face East (Scenario 5b), most rooftop PV capacity is built in north-
eastern Europe and again the optimisation compensates by shifting utility PV west. 
Implementing two-axis tracking for utility PV (Scenario 5c) results in rooftop PV capacity being 
completely replaced by utility PV, which now generates electricity over a longer period 
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extending from about 5:00 until 19:00. As a result, total residual falls by 3% compared to 
Scenario 1 and long-term vRES capacity credit increases slightly to 11.5%. 

2.3.6 Comparison with max capacity factors 

When the optimised capacities per technology from Scenario 1 are redistributed to maximise 
capacity factor (Scenario 6), onshore wind capacity shifts to the central European locations 
previously devoid of capacity such as northern France, Belgium, the Netherlands, Germany 
and Poland. PV capacity moves to southern Europe as expected due to the higher irradiance. 
With these higher capacity factor sites, total generation increases by 640 TWh (23%). However, 
only a fraction (23%) of this can be used to meet demand, leading to far higher surplus 
generation (707 TWh, 21%) than in Scenario 1. 

As peak residual demand remains largely unchanged between Scenarios 1 and 6, backup 
requirements would be the same irrespective of whether a minimum-residual-demand or 
maximum-capacity-factor approach was taken. The net effect is that long-term capacity credit 
falls slightly to 10.6%. 

Mean capacity factors for onshore and offshore wind, rooftop and utility PV rise from 22%, 
38%, 14% and 13% in Scenario 1 to 31%, 43%, 21% and 22% respectively in Scenario 6. This 
shows that the minimum residual demand optimisation installs significant capacity in locations 
with rather low capacity factors. Figure 2-16 depicts cumulative installed capacity against 
capacity factor, showing that for onshore wind and both PV technologies, the bottom 50% of 
installed capacity in Scenario 1 has a capacity factor approximately 10% (absolute) lower than 
in Scenario 6. The difference is less for offshore wind as there are fewer sites available for this 
technology, and capacity factors are typically higher than onshore.  

2.3.7 Seasonal effects of minimising residual demand 

Figure 2-9 showed that spatially optimising residual demand does not result in generation 
matching demand every hour of the day. Instead, the optimisation (on average) results in 
largely steady generation throughout the day, with a small daytime peak from PV. This can be 
explained by the seasonal variability of wind and PV generation depicted in Figure 2-17, which 
gives the monthly generation by technology for Scenario 1. This shows that while wind 
generation is approximately 50% lower in summer than in winter, PV generation is six-times 
higher in summer than in winter. Additional PV capacity could be installed to cover the summer 
shortfall but this would result in winter surpluses, thus the optimisation must make trade-offs 
between seasonal surpluses and deficits. As a result, the optimisation installs enough wind 
capacity to largely cover winter demand, while leaving some unserved demand during 
summer. 

 



Chapter 2 

 
52 

 

 
Figure 2-16 | Share of cumulative installed capacity as a function of mean grid cell capacity factor 
for Scenarios 1 and 6. 
 
 

 
Figure 2-17 | Monthly generation by technology for Scenario 1 in 2015. 
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This seasonal pattern is somewhat contrary to those in other studies which typically exhibit 
significant (or even surplus) PV generation and minimal backup requirements during the 
summer, with unmet demand and significant backup required during the winter. However, 
these studies do not achieve such high vRES penetration as we do in our study (89% gross 
energy penetration for Scenario 1, compared with 48% in (ECF, 2010b), 56% in (GWEC et al., 
2015), 61% in (EREC, 2010) and 78% in (Haller et al., 2012)) and typically include storage ((ECF, 
2010b; Haller et al., 2012)).  

Although we do not include storage, we can look at its possible implications by examining 
how residual demand is distributed throughout the year. Figure 2-18 shows the range of 
accumulated hourly residual demand for Scenario 1 across all weather years. A flat gradient in 
this figure indicates that short- to medium-term imbalances largely cancel out, and daily or 
weekly storage could be used to cover mismatch; while a sustained positive or negative 
gradient indicates that short- to medium-term imbalances accumulate, and long-term 
seasonal storage would be beneficial. Thus, Figure 2-18 shows that short-term storage in the 
order of 100 TWh would be sufficient in most years to ensure that demand could be met from 
September until late January with wind and PV alone without generation from additional 
sources33. From February until September the accumulated residual follows a negative trend, 
showing that short- to medium-term imbalances do not balance out, and additional 
generation capacity or seasonal storage would be required. However, as most years exhibit no 

 

Figure 2-18 | Accumulated hourly residual demand for Scenario 1 based on simulated years 1979-
2015. The starting point is 1:00 on January 1st. The black line indicates the median value. The orange and 
purple regions indicate the interquartile and full range of values respectively. 
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sustained periods with a positive gradient, no opportunities for charging long-term storage 
exist and Scenario 1 results in a net annual deficit of 200 TWh to 500 TWh. If seasonal storage 
were added to the model so that curtailment could be reduced, it is likely that additional 
capacity would be built to cover this shortfall. 

2.3.8 Understanding the spatial distribution 

One might expect that the residual demand minimisation would install wind and PV capacity 
evenly across Europe in order to maximise site diversity. However, the results in Figure 2-6 
show that this does not occur. Instead, we find that onshore wind capacity is installed mainly 
at the periphery of Europe, offshore wind is quite evenly distributed (though concentrated in 
the North and Baltic seas), and rooftop and utility PV are mostly installed in a band extending 
from Portugal to Finland.  

To understand the reason behind these phenomena, it is necessary to consider the different 
wind and solar radiation patterns across Europe. Figure 2-19 shows the correlation coefficient 
between time series as a function of distance between sites for both wind speed and solar 

Figure 2-19 | Pearson correlation coefficient between time series as a function of distance for            
10 m-wind speed and downwards surface solar radiation (SSRD). Correlations based on 3-hourly 
values from ERA-Interim. The box plots are based on all grid cells in the 50-m water depth grid for weather 
year 2015. With a regular grid spacing of 0.75°, the distance in kilometres is approximated by assuming 
an average grid cell spacing of 50 km. 
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radiation. This figure highlights that wind generation patterns are strongly spatially correlated, 
with sites within a radius of five grid cells (approximately 250 km) having correlation 
coefficients above 0.5. Only at distances in excess of 800 km does the correlation between 
sites start to turn negative, and generation patterns become complementary. As a result, the 
optimisation attempts to maximise the distance between wind sites by pushing wind capacity 
to the geographical extremes of Europe, leading to significant offshore wind capacity in 
shallow waters around Europe’s coastline. The same effect occurs on land, with onshore wind 
pushed to Europe’s land borders. However, the total wind potential at these geographically 
extreme locations is limited, and restricting capacity only to these sites would result in 
significant unserved energy at night when PV is not generating. Thus, additional offshore wind 
capacity is placed in the North Sea due to its favourable generation patterns, which – to avoid 
excess correlated generation in this region - results in less onshore wind in countries 
surrounding the North sea (Figure 2-6a). From Figure 2-19, solar radiation is even more 
strongly correlated than wind with correlation coefficients above 0.8 even at distances of up 
to 1000 km, thus spatial complementarity does not explain the observed distributions.  

To understand the placement of PV, it is necessary to look in more detail at the spatial 
differences in hourly generation. These are shown in Figure 2-20, which depicts hourly 
generation by region for (a) the first week of January and (b) the first week of July. Figure 2-20 
shows that by installing PV capacity in the Nordic countries, PV generation in the summer can 
be increased while avoiding surplus PV generation in winter when wind production is highest 
(Figure 2-20a). Furthermore, the summer generation profile (Figure 2-20b) shows that not only 
is PV generation increased in the morning due to the easterly latitude34, but it also generates 
for longer due to the extended daylight hours at northern latitudes. PV capacity in western 
locations like Iberia and the British Isles also extends PV generation later into the day, helping 
to cover evening demand. Although we do not explicitly quantify transmission flows in our 
study, an examination of aggregated hourly net surplus generation (vRES generation minus 
demand) from each region (Figure 2-21) shows that with vRES capacity distributed to minimise 
residual demand, the British Isles and Nordic countries would typically be net exporters of 
vRES electricity, while the Iberia, Eastern and Central regions would typically be net importers. 
Thus, in order to bring vRES generation from where it is generated to where it is consumed, 
significant expansion in transmission infrastructure would be required.  
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Figure 2-20 | Generation by technology in Scenario 1 for (a) the first week of January and (b) the first 
week of July 2015. Generation from the two wind and PV technologies is aggregated into regions based 
on the following groups: British Isles - IE, UK; Iberia – PT, ES; Nordic – NO, SE, FI; Eastern – EE, LT, LV, PL, 
SK, HU, RO, BG, EL, CY; Central: all others. 
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Figure 2-21 | Duration curve of net surplus by region for Scenario 1 for weather year 2015. Regions 
included: British Isles - IE, UK; Iberia – PT, ES; Nordic – NO, SE, FI; Eastern – EE, LT, LV, PL, SK, HU, RO, BG, 
EL, CY; Central: all others. 
 

 Discussion 
2.4.1 Limitations of study 

This study considers explores how optimising the mix and spatial distribution of PV and wind 
generation capacity can minimise residual demand depending on different factors. 
Nevertheless, scope limitations mean that some aspects are not considered:  

• while the ERA-Interim dataset limits the spatial resolution to 0.75°, higher spatial resolution 
is unlikely to make a large impact given the strong spatial correlations identified (Figure 2-
19). Extending the geographic scope to include other regions could also add further 
potential for minimising residual demand, however, it remains to be seen whether long-
term cooperation and integration of electricity markets, even at the EU level, is achievable. 

 
• a result of the LLSQ formulation is that the optimisation weights hours with higher residual 

demand more heavily. This represents an intermediate approach between a residual 
energy-based minimisation (minimising backup/storage energy requirements i.e. TWh), 
and a residual capacity-based minimisation (minimising backup/storage capacity i.e. GW) 
which are likely to yield different results35.  
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• A further consequence of the LLSQ formulation is that it was not possible to include 
transmission and distribution, nor flexibility-improving technologies such as demand 
response and storage. By assuming a copper-plate Europe, congestion limitations and line 
losses, which would erode the benefits of spatial optimisation by increasing curtailment 
and other losses, are not considered36. This would likely result in vRES capacity being built 
closer to load centres, rather than more remote locations observed in this study. 
Furthermore, there are many hurdles to constructing long-distance transmission lines (e.g. 
social acceptance, environmental impacts, high cost (Doukas et al., 2011)) we do not 
consider which, if taken into account, would impose additional constraints on transmission 
and reduce the potential benefits of spatial vRES optimisation. However, despite these 
transmission simplifications, we show that even in the idealised case of a copper-plate 
Europe, neither peak residual demand nor total residual demand can be significantly 
reduced through spatial optimisation of vRES.  

 
• The exclusion of transmission and flexibility technologies means that this study could not 

directly consider total system costs. Only by considering the total costs of vRES investment 
capacity, dispatchable backup capacity, distribution and transmission infrastructure, and 
the provision of reserves could the overall cost-effectiveness of a minimum-residual-
demand based optimisation be assessed and compared with other methods37. However, 
by minimising residual demand the costs of vRES curtailment and backup capacity have 
been considered indirectly. Any flexibility limitations on the implied portfolio of 
dispatchable backup technologies (e.g. ramp up/down rates, minimum start-up and shut-
down times) are not considered. However, some ex post analysis of hourly changes in 
residual demand (see Appendix A) suggests that dispatchable ramping requirements for 
Scenario 1 would be approximately 70-80% higher than today38, but 50% lower than if 
vRES were distributed to maximise capacity factor (Scenario 6). 

 
• Government policies, and incentive schemes in particular, can have a significant impact on 

where renewable technologies are deployed, which were also not considered. Their impact 
can be clearly seen from Germany’s Energiewende which, in the period between 2006 and 
2016, resulted in higher wind (+30 GW) and PV (+38 GW) deployment in Germany than in 
any other European country (Eurostat, 2017b; Pegels & Lütkenhorst, 2014), despite the fact 
that Germany’s wind and solar resources are relatively less competitive than other 
countries (EEA, 2009; Perpiña Castillo et al., 2016), and (from this study) do not coincide 
particularly well with demand. Alternatively, subsidies could be used to encourage wind 
and PV deployment in locations which would be more advantageous for the power system 
by better matching generation with demand. 

 
• As we consider only the power sector, we neglect any potential synergies with other sectors 

of the economy (e.g. transport, industry). Including technologies which could convert 
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surplus generation to other energy carriers (e.g. power-to-gas) for use in other sectors 
would reduce the ‘penalty’ associated with surplus generation, likely leading to a higher 
share of PV and increased utilisation of high capacity wind and PV sites.  

 
• Any large-scale decarbonisation of the European power sector should not consider only 

the technical transformation required, but also broader environmental, social and 
economic aspects of sustainability (Steurer & Hametner, 2013). Thus, other factors such as 
the full lifecycle impacts of the generation technologies, employment, social acceptance, 
and potential impacts on natural flora and fauna due to large-scale investments would 
need to be taken into account. However, these aspects were beyond the scope of this 
paper. 

Uncertainty in the underlying data and assumptions made in this study also introduce several 
potential sources of error: 

• variations in demand profiles would have a large impact on the results. By using only one 
year of base demand data and a fixed HP demand, neither the base nor HP demand profiles 
take into account increased demand in colder years. Furthermore, our HP demand profiles 
do not consider the effects of temperature on HP efficiency39, thermal energy storage, or 
different end-user preferences; while the EV charging profiles assume charging station 
availabilities, driving patterns and charging preferences which may change in the future. A 
preference for night-time charging, for example, would likely lead to a higher share of wind 
capacity. Increased demand for air conditioning may also change the optimal mix and 
placement of vRES, potentially favouring solar PV due to its correlation with cooling 
demand40. 

 
• Estimating vRES generation profiles from the underlying weather data requires several 

steps which each entail uncertainties. For example, due to their poor treatment of aerosols, 
reanalyses like ERA-Interim can predict clear sky conditions when they may in fact be 
cloudy, leading to an overestimation of solar generation (Boilley & Wald, 2015). However, 
this overestimation is reportedly less for ERA-Interim compared with other reanalysis 
datasets, and is partly offset by periods when clear sky conditions are reported as cloudy 
(Rienecker et al., 2011). Using more advanced weather models or satellite-derived radiation 
data which include the effects of aerosols would allow for more accurate estimates of PV 
production, however this was not possible in our study. Also, assuming a logarithmic 
vertical wind speed profile does not account for reduced wind speed variability at higher 
altitudes due to lower turbulence, and may underestimate wind potential (Becker et al., 
2014). 

 
• Aside from systemic uncertainties and biases in the weather dataset, the spatial and 

temporal resolution of the dataset also affects the accuracy of our results. For example, the 
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need to interpolate from the 3-hourly data in ERA-Interim to hourly can introduce errors 
for PV during sunrise and sunset hours, but as these are periods of low radiation the impact 
is likely to be small. The main effect of linear interpolation is that the wind and PV 
generation profiles may be smoother than they would be in reality. However, it has been 
shown that significant spatial smoothing of wind and PV profiles occurs across large areas 
due to geographical diversity. For PV for example, one study found that the relative 
aggregate output variability of PV plants sited 20 km apart was six times less than the 
output variability of a single site, even at time scales less than 15 minutes (Mills & Wiser, 
2010). For wind, significant smoothing effects are observed when wind farms are placed 
over a wider geographical area due to i) the mitigating effect of many turbines in a wind 
farm which absorb short-term (sub-hourly) wind gusts, and ii) greater geographical 
diversity reducing the impact of (multi-hour) diurnal and synoptic wind variations (Albadi 
& El-Saadany, 2010; Drake & Hubacek, 2007)41. Furthermore, the spatial coarseness of the 
reanalysis dataset means that local terrain features such as hills, trees, and buildings which 
could affect wind speeds are not considered (Staffell & Pfenninger, 2016). However, given 
that the focus of our study is balancing vRES output at the continental scale and not trying 
to accurately reproduce the output of individual wind or PV farms, we consider the 0.75° 
and hourly resolution sufficiently accurate for this purpose. As in the current power system, 
sub-hourly power imbalances would need to be managed by balancing power flows using 
the transmission network, operational reserves, and flexible dispatchable generators which 
are beyond the scope of this study. 

 
• We assume grid cell independence in that kinetic energy harvested from the wind in one 

cell does not affect wind speeds in neighbouring cells. In reality, this is not strictly true with 
one study finding competition among turbines reducing peak wind speeds averaged over 
a 400 km radius reducing by 1 m s¯¹ (Jacobson, Delucchi, Cameron, et al., 2015), however 
including these effects was not possible with the current model. 

 
• Future changes in European weather patterns due to climate change are not considered. 

However, recent studies on the PV (Jerez, Tobin, et al., 2015) and wind (Tobin et al., 2015) 
suggest that these impacts are likely to be small. 

 
• Together, the assumed capacity densities and land availabilities dictate vRES capacity 

constraints. If technologies improve42 and capacity densities increase, then more capacity 
could be installed in optimum locations. Conversely if fewer land classes are suitable or 
less land is available, the potential for spatial optimisation would reduce. As neither total 
PV nor wind potential is fully exploited in any optimisation run, the impact on the results 
is likely to be minor. 
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2.4.2 Practical implications 

It is important to reflect on what residual demand minimisation could mean in practice: 

• Although optimising the mix and distribution of different vRES technologies has the 
potential to smooth generation or minimise residual demand, there is little evidence of 
this being done in practice (Thomaidis et al., 2015).  
 

• Wind and PV capacity factors at some sites may be too low to be economically viable (e.g. 
northern Europe, from Figure 2-16). However, if wind and PV costs continue to fall and 
these sites produce electricity when residual demand and market prices are high (e.g. early 
morning or late evening), the market value of the electricity generated at these sites may 
be sufficient to make them economically attractive (IEA, 2016b)43. 
 

• While they may be potential benefits for Europe as a whole from distributing capacity on 
a European-wide scale and integrating energy markets in line with current EU policy 
objectives (EC, n.d.; Schmid & Knopf, 2015), the geopolitics of energy cannot be ignored 
and individual governments may resist an increasing reliance on supranational generation 
and interconnectors (Scholten & Bosman, 2016). Thus, a European ‘supergrid’ – upon which 
this and many similar studies rely – may never materialise (Macilwain, 2010; van Hertem & 
Ghandhari, 2010).  

2.4.3 Comparison with existing literature 

Considering the mix of wind and PV capacity, minimising residual demand calls for a higher 
share of wind (74% in Scenario 1) compared with several studies (e.g. 32% (EREC, 2010), 47% 
(GWEC et al., 2015), 50% (Tröster et al., 2011), 54% (Bruninx et al., 2015)44, 56% (EC, 2016b)), 
though in a similar range to others (e.g. 71% (Pfluger et al., 2011), 75% (Bruninx et al., 2015)45, 
82% (Rodríguez et al., 2014), 60-90% (Heide et al., 2011)). Aside from the fact that many studies 
assign capacity exogenously, the main reason for these differences is that we do not include 
storage. If short-term (daily) storage were included then the diurnal variability of PV would 
result in less residual demand, and the optimum share of PV would likely increase (Heide et 
al., 2011). Conversely, including seasonal storage would most likely increase the optimum 
share of wind. 

In terms of how vRES capacity is spatially distributed, no study could be found including a 
grid-level spatial distribution for the whole of Europe for comparison. However, when 
aggregated at the national level, Figure 2-22 shows that our results are mostly within the range 
of other studies, though there are several exceptions. Namely, our study shows (i) less wind 
and PV capacity in Germany, (ii) less PV in southern European countries (e.g. Italy, Spain), and 
(iii) more PV in northern Europe. The main reasons for this are that many studies allocate 
capacity based on current deployment and future policy plans rather than optimising it (hence 
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significant capacity in Germany), and the fact that we did not consider costs, storage, or 
transmission. Including storage would help to reduce summer PV generation peaks making 
PV more attractive in southern Europe, while including transmission constraints and losses 
would most likely reduce capacity in the north of Europe and shift capacity closer to load 
centres in central Europe, for the reasons already discussed.  

In terms of potential transmission requirements, distributing vRES capacity to minimise 
residual demand would require massive expansion of transmission and distribution 
infrastructure, however this feature is common to many other scenarios of high-vRES 
European power systems ((Couckuyt et al., 2015; ECF, 2010b; ENTSO-E, 2016c; Grossmann et 
al., 2013, 2014; Haller et al., 2012; Mileva et al., 2016; Rodríguez et al., 2014)). Furthermore, 
ENTSO-E’s Ten-Year Network Development Plan (TYNDP) includes the connections between 
central Europe and the British Isles, Nordic countries, Iberian Peninsula, and eastern Europe in 
their 10 key transmission corridors requiring further expansion (ENTSO-E, 2016c). We find that 
these corridors would also be important for a power system with vRES capacity optimised to 
minimise residual demand, though the direction and volume of these flows may differ.  

Depending on the demand level assumed, the results for unmet demand in our study of 
566 TWh (Scenario 1, lowest assumed demand) to 998 TWh (Scenario 3c, highest assumed 
demand), or 18% to 23% of annual demand, are largely in agreement with (Steinke et al., 2013) 
who report backup energy requirements of 20% in a 100% RES copper-plate Europe. However, 
assuming that the 194 GW of hydro capacity (see Table 2-1) remains unchanged until 2050 
and providing 460 TWh of generation annually46, the resulting demand shortfall of 
104 TWh y⁻¹ (Scenario 1) to 536 TWh y⁻¹ (Scenario 3c) could be met by a combination of stored 
surplus generation and other dispatchable generation technologies. 

In terms of required backup dispatchable capacity, subtracting the current hydro capacity 
from the peak long-term residual demand of 377 GW (Scenario 1) or 738 GW (Scenario 3c), 
suggests that at least 180 GW (Scenario 1) to 544 GW (Scenario 3c) of additional dispatchable 
capacity would be required to ensure demand could be met in the most challenging year. 
Compared with existing studies (Table 2-1), these dispatchable requirements – and the 
resulting total capacity requirements47 of 1521 GW (Scenario 1) to 2316 GW (Scenario 3c) – 
are in a similar range. However, it should be kept in mind that we include no demand response 
or storage capacity, which would further reduce backup requirements. Moreover, we calculate 
backup requirements based on the maximum observed residual demand in 36 years of 
weather data, while most studies consider only one year. 
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Figure 2-22 | Comparison of total installed wind and PV capacity by country in several high-RES 
scenarios for Europe. (Sources: Energynautics (Tröster et al., 2011), Fraunhofer (Pfluger et al., 2011), e-
Highway 2050 (Couckuyt et al., 2015), EU Reference Scenario 2016 (EC, 2016b)). The legend also shows 
the total installed capacity and capacity share for each technology per scenario. 
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 Conclusion 
In this paper, we have presented a method to optimise the spatial distribution of wind and PV 
capacity by minimising residual demand, incorporating long-term weather data to ensure the 
robustness of the optimised capacity distributions to different weather years. Using this 
approach, we considered the effects of vRES penetration, alternative demand profiles, access 
to remote offshore sites, and alternative PV configurations. Our method can be used by power 
system modellers to build detailed vRES spatial distributions and generation profiles for PSM 
studies, incorporating different optimisation objectives (e.g. minimum residual demand, 
maximum capacity factor), spatial and technological constraints. From a methodological point 
of view, we find that using the mean optimised capacity across a number of weather years can 
generate a single optimised capacity distribution that performs in line with long-term 
expectations. However, the long-term robustness of the capacity distributions produced by 
minimising residual demand varies by technology, with wind capacity distributed more 
consistently than PV. 

Our results show that when minimising residual demand under the idealised assumption of a 
copper-plate Europe and in the absence of storage: 

• In the base case optimisation (Scenario 1), wind and PV can provide 82% of annual 
European electricity demand with a total installed capacity of 1144 GW. The optimum 
capacity mix for minimising residual demand is 74% wind and 26% solar PV, resulting 
in 8% surplus vRES generation. However, with a long-term vRES capacity credit of 
only 11%, at least 377 GW (equivalent to 33% total installed vRES capacity, or 75% peak 
demand) of dispatchable generation capacity would still be required to ensure long-term 
system adequacy. 

• With the maximum peak and total residual demand in Scenario 1 being only 2% and 31% 
lower respectively than for the traditional capacity-factor-maximisation approach 
(Scenario 6), optimising the spatial distribution of vRES can play only a minor role in 
reducing residual demand, mainly by reducing curtailment. This is achieved by exploiting 
lower capacity factor PV sites in northern, western and eastern Europe, and limiting 
onshore wind capacity in countries surrounding the North Sea where it competes with 
offshore wind capacity.  

• The greatest benefits of spatial vRES optimisation are found when water depth constraints 
are relaxed and offshore wind capacity can be built anywhere within the EEZ grid. In this 
case (Scenario 4), the maximum peak and total residual demand are 16% and 55% lower 
respectively than in the maximum capacity factor distribution (Scenario 6). Thus, floating 
offshore wind farms have the potential to deliver additional benefits to the European 
power system by granting access to sites with higher wind capacity factors and capacity 
credits. 
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• penetration rate affects the optimum spatial distribution of vRES, but has little effect on 
the optimum mix. For example, PV capacity is installed in southern Europe at low vRES 
penetration rates, but shifts north with increasing vRES penetration in order to avoid 
surplus summer generation. By contrast, the optimum regions for wind capacity remain 
the same as vRES penetration increases. 

• Changes in future demand due to HPs and EVs effect the optimum distribution of vRES. 
For example, installing PV capacity at the eastern and western extremes of Europe can 
reduce the midday peak and increase PV generation in the morning and evening, which 
may be particularly beneficial for meeting future EV demand. Meanwhile, PV in the north 
of Europe can extend the window of PV generation in summer by taking advantage of 
longer days at more northerly longitudes. 

• Expanding offshore wind capacity – especially in the North Sea – is a ‘no regret’ option 
due to its favourable correlation with demand, though correlated generation patterns with 
onshore wind farms in neighbouring countries at high vRES penetrations may lead to 
significant surplus generation.  

• Alternative PV panel orientations can play a role in matching generation with demand. 
For example, installing west-facing PV panels in western Europe can extend generation 
later into the day to help cover the evening peak, while east-facing PV panels in eastern 
Europe can increase generation in the morning.  

This study has highlighted several areas for further research: 

• A comprehensive assessment of the potential benefits of spatially optimising vRES should 
be performed using a detailed PSM based on total system costs, considering transmission 
and distribution grid reinforcement, reserves and storage. However, it remains to be seen 
whether incorporating the spatial distribution of vRES directly in a PSM at the European 
scale is computationally feasible. 

• Rather than being limited to a single PV orientation in a single optimisation run, the 
formulation should be modified to allow PV panels with different orientations to be 
installed in each grid cell (e.g. west-facing panels in western Europe, east-facing panels in 
eastern Europe) to see how the optimum PV orientation varies with location. 
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Footnotes to Chapter 2

1 In 2014, Germany, Belgium and Switzerland operated 21 nuclear reactors between them, but plan to phase out nuclear 
power by 2022, 2025 and 2034 respectively (Strunz et al., 2014). France also aims to reduce its share of nuclear 
generation from nearly 74% to 50% by 2025 (Legifrance, 2016). Despite these contractions in nuclear capacity, only 
seven new reactors are currently planned or under construction in Europe.  

2 The terms load and demand are often used synonymously, however this study adopts the ENTSO-E definition of load 
as ‘an end-use device or customer that receives power from the electric system’ with demand defined as ‘the measure 
of power that a load receives or requires’ (UCTE, 2004). 

3 We use the term allocation to refer to those studies which exogenously assume or weight vRES capacities per region 
based on parameters such as capacity factor, vRES potential, land suitability or population. This is also the approach 
taken in most high-level power system modelling studies. We use the term optimisation to indicate studies which 
actually formulate the spatial distribution as an optimisation problem with an objective function (e.g. maximum 
capacity factor, minimum residual demand, minimum cost etc.)    

4 While current wind farms are limited to water depths of 40 m to 50 m (EWEA, 2013; Zountouridou et al., 2015), floating 
offshore wind turbines have the potential to be installed in much greater water depths. This technology is still in the 
early stages of development with the world’s first pilot 30 MW floating offshore wind farm expected to become 
operational in 2017 (Statoil, 2015; Zountouridou et al., 2015). 

5 The UK is included despite the June 2016 decision to leave the EU because the UK and continental European power 
systems are likely to remain heavily integrated. 

6 While wind and solar PV are essentially only two generation technologies, we split them in order to better take into 
account their spatial constraints and technical differences. Ocean energy and run-of-river hydro can also be considered 
vRES, however, their contributions to the total installed capacity in most future high-RES scenarios are minor (see Table 
1) and so have not been considered.   

7 Calculated as the standard deviation divided by the mean, also known as the relative standard deviation. 
8 This was a necessary simplification in our model in order to reduce the number of variables and make the problem 

solvable in a reasonable amount of time. 
9 As PV panels and wind turbines typically have a lifetime of 25 to 30 years, all currently existing capacity and new capacity 

installed before 2020 is likely to be decommissioned by 2050 anyway.  
10 At times of surplus generation, the electricity price in an energy-only market falls to zero. 
11 The coefficients of Aeq are either 0 or 1 if the constraint is applied to generation capacity, or full load operating hours 

(FLH) if the constraint is applied to electricity generation. 
12 ESRI, version 1.2.0, (http://www.esri.com/) 
13 Greater distances to shore usually result in deeper waters (Rodrigues et al., 2015), however there are several remote 

locations in Baltic the North Sea where the water is not so deep. One example is Dogger Bank where the offshore 
Teesside A & B wind farms are already planned, located 196 km and 165 km from shore respectively in water depths 
of up to 40 m (4C Offshore, 2016; Forewind, 2016). Thus, we believe this assumption to be justified. 

14 While expected maximum water depths for floating wind turbines range between 300 m and 900 m (ETI, 2015; 
Zountouridou et al., 2015) and water depths in the EEZ can exceed 5000 m, floating deep-water oil platforms are 
already moored at water depths of up to 2900 m (Shell, 2016). Thus, it is possible that with further development, 
floating wind turbines could also be moored at this or even greater depths. 

15 Distance in kilometres varies with latitude from 65 km in Spain (37°N) to 30 km in northern Norway (70°N). 
16 The accuracy and choice of weather dataset is a complex topic in itself and involves trade-offs between the required 

temporal and spatial resolution, geographical coverage, meteorological parameters and accuracy. A comprehensive 
treatment was not possible in this study, however the reader is referred to (Dee et al., 2011) for an explanation of the 
development and main limitations of ERA-I, and to  (Boilley & Wald, 2015; Bojanowski et al., 2014; Mooney et al., 2011) 
for comparisons with other datasets. 

17 Based on the long term (1979-2015) mean wind speed at hub height 
18 Based on commercially available modules. For rooftop PV we use the Sunpower X21-345 (SunPower, 2014), and for 

utility PV, the TrinaSolar TSM-PD14 (TrinaSolar, 2016). 
19 These areas are more likely to be flat, accessible, and cause minimal shading for PV panels or turbulence for wind 

turbines. We exclude wetlands, forests, rocky or alpine areas as these are unlikely to be suitable for large-scale rollout 
of any technology for reasons of poor soil stability, steep/mountainous terrain or inaccessibility (Dai et al., 2016).  

20 To take into account shipping lanes, fisheries, military zones etc. 
21 This study reported 3889 TWh of base demand, 1924 TWh for hydrogen production, and 207 TWh for synthetic fuel 

production.  
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22 We do not explicitly assume a level of grid losses in this study as the raw demand data from ENTSO-E as well as the 

HP and EV demand totals from (ECF, 2010b) include grid losses. Losses were on average 6.7% of total net electricity 
production (excluding own-use) for the EU28+NO from 2006-2015 (Eurostat, 2017c). 

23 A similar assumption was made in (ECF, 2010b). 
24 The model incorporates driving patterns for the six countries in Europe with the highest number of passenger vehicles 

(DE, UK, FR, IT, ES, PL), for each day of the week. 
25 Matlab R2015b, (www.mathworks.com) 
26 Locations with high capacity factors are generally considered preferable for vRES installations as these result in the 

lowest generation costs (Huber et al., 2014; Schaber et al., 2012) 
27 Attempting to optimise capacity for all 36 years simultaneously was not feasible with the computing power available.  
28 The share of demand covered by vRES, excluding any surplus/curtailed electricity 
29In this study the terms northern, southern, western and eastern Europe are used in a general sense to describe 

geographic regions, not in a geopolitical sense referring to specific countries. 
30 This is likely due to afternoon sea breezes at coastal onshore wind sites. These are caused by cooler, denser air over 

water advecting towards less dense air over land in the evening that has been warmed during the day (Barthelmie et 
al., 1996). 

31 Incidentally, this confirms an assumption made by the IEA underpinning their calculation of capacity credit in (IEA, 
2011). 

32 Net generation divided by total demand 
33 By comparison, Europe’s current (2015) hydro storage capacity is approximately 180 TWh (including Switzerland and 

the Nordic countries, but excluding Turkey) (Mennel et al., 2015). 
34 Nearly 50% of Nordic PV capacity is in Finland 
35 In any case, it would be unwise to build vRES infrastructure to minimise peak residual capacity as, in reality, these peak 

hours would be ideal candidates for demand response technologies such as load shedding or load shifting. 
36 Distribution and transmission are particularly relevant for the spatial distribution of vRES as, with capacity spread across 

Europe and often far from load centres, the amount of grid reinforcement required is likely to be significant (DNV GL, 
2014). 

37 To our best knowledge no power system simulation model currently available allows a high-resolution spatial 
distribution of vRES to be easily incorporated, which provided motivation for this study. 

38 Based on ENTSO-E data for the EU28 + NO + CH, the gross penetration of vRES in 2015 was approximately 13% on an 
energy basis (ENTSO-E, 2017b). 

39 The performance of HPs falls at lower temperatures, thus electricity consumption would be higher at these times and 
could lead to a more ‘peaky’ demand profile. 

40 EU cooling demand in 2010 amounted to 220 TWh (8% of the space heating demand). Space cooling demand is 
expected to rise to 305 TWh (+38%) in 2020 and 379 TWh in 2030 as the climate warms (Kemna, 2014). 

41 Another study of 17 geographically dispersed wind sites in Ontario showed that aggregated wind power output 
variability was 60–70% lower compared to the output from one site for both 10-min and hourly data (AWS TrueWind 
LLC, 2005). 

42 For example higher PV cell efficiencies, larger diameter or taller wind turbines. 
43 IRENA note that the cost of PV fell by 80% from 2009 to 2015, and forecast a further 59% reduction by 2025 (IRENA, 

2016). 
44 X-7: 100% RES scenario 
45 X-5: Large-scale RES scenario 
46 Average gross hydro generation (including pumped storage generation) from 1990-2014 was 462 TWh y⁻¹ with a 

standard deviation of 38 TWh y⁻¹ (Eurostat, 2017c). It is not clear how much of this is from run of river hydro, thus for 
these rough estimates we assume full dispatchability. 

47 The total of installed vRES capacity, hydro capacity and additional dispatchable backup capacity required to meet 
(long-term) peak residual demand 
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Abstract 
More insights are needed on how large-scale deployment of variable renewable energy 
sources (vRES) such as solar and wind energy affects intraday and balancing markets. In order 
to model these markets at different timeframes, it is necessary to have forecasts of load and 
vRES at different time horizons before real time. In this study, we develop and demonstrate a 
method for synthesising forecasts which have a strong correlation with the real-time series, 
but also an error distribution comparable with real-world forecasts. The method incorporates 
a generalised autoregressive conditional heteroscedasticity (AR-GARCH) model to account for 
the daily volatility observed in historical forecast errors, and a dependence on real-time 
generation (or load) level to account for hourly volatility. We demonstrate how this method 
can be used by performing simulations of a future European power system in which the 
penetration of vRES rises from 15% in 2017 to 50% in 2040. Using our AR-GARCH method to 
synthesise day-ahead forecasts, and intraday forecasts based on persistence, we explore how 
higher vRES forecast errors could affect day-ahead, intraday and balancing market volumes, 
and to what extent these errors could be resolved by trading between vRES generators in the 
case of no cross-border trading, and a copper-plate Europe. Other factors which contribute to 
intraday trading and imbalance volumes such as forced outages, strategic deviations and 
schedule leaps are not considered. Based on our simulations, we find that potential intraday 
market volumes increase by 60 TWh y-1 (+160%) between 2017 and 2040 as a result of 
additional day-ahead forecast errors. Intraday trading within countries and between countries 
could allow between 40% (without cross-border trading) and 75% (copper plate) of day-ahead 
forecast errors to be resolved by vRES, reducing the need for dispatchable energy. In the 
absence of intraday trading, these errors would need to be resolved by transmission system 
operators on balancing markets by procuring additional reserve capacity, highlighting the role 
liquid intraday markets can play in supporting the integration of vRES in Europe. Regarding 
balancing markets, we find that full implementation of imbalance netting and a common 
Europe-wide reserve could reduce balancing energy and capacity requirements for vRES 
integration by 19% and 32% respectively in 2040 compared with country-specific reserves and 
no imbalance netting. 
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Nomenclature 

Latin letters 
𝑎𝑎 Order of the autoregressive 

component of the daily 
absolute deviation series 

𝒟𝒟 Probability density function of 
an unspecified distribution 

𝐹𝐹 Forecast (MW) 
𝐼𝐼 Imbalance (MWh) 
𝑁𝑁 Normalising factor (MW) 
𝒩𝒩 Probability density function of a 

normal distribution 
𝑝𝑝 Order of the autoregressive 

GARCH component 
𝑃𝑃 Percentile 
𝑞𝑞 Order of the moving average 

GARCH component 
𝑇𝑇 Intraday trade (MWh) 
𝑌𝑌 Real-time value (MW) 
𝑥𝑥 Random variable 
𝑧𝑧 Residuals of AR-GARCH model 
 
Greek letters 
𝛼𝛼 Moving average GARCH 

parameter 
𝛽𝛽 Autoregressive GARCH 

parameter 
𝛾𝛾 Skewness 
𝛿𝛿 Total daily absolute error 
𝜀𝜀 Forecast error (MW) 
𝜖𝜖 AR-GARCH model residual 
𝜅𝜅 Kurtosis 
𝜇𝜇 Mean 
𝜉𝜉 Generation or load-based error 
𝜙𝜙 AR model parameter 
𝜎𝜎 Standard deviation 
𝜏𝜏 Length of market period (h) 
𝜓𝜓 Fixed GARCH parameter 
 

Accents and superscripts 
  ̂ Normalised 
′ Synthetic 
̅  With daily volatility 

removed 
𝐷𝐷𝐷𝐷 Day ahead 
𝑅𝑅𝑅𝑅 Real time 
𝐼𝐼𝐼𝐼 Intraday 
 
Indices and sets 
𝑐𝑐 ∈ 𝒞𝒞 country, includes the set of 

all EU28 plus Norway and 
Switzerland 

𝑑𝑑 ∈ 𝔇𝔇 days per year, running from 
1 to 365 

𝑔𝑔 ∈ 𝒢𝒢 generation technology or 
load, including onshore 
wind, offshore wind, solar 
PV and load 

ℎ ∈ ℋ hours per day, running from 
1 to 24 

𝑚𝑚 ∈ ℳ months per year, running 
from 1 to 12 

𝑡𝑡 ∈ 𝒯𝒯 time/market periods per 
year, running from 1 to 𝒯𝒯 

𝑧𝑧 pertaining to the 
standardised residuals of 
the AR-GARCH model 
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 Introduction 
The European electricity sector will need to fully decarbonise or even turn net-negative by 
2050 if the European Union (EU) is to fulfil its role in international efforts to limit global 
warming to well below 2 °C (EC, 2011c, 2018a; UNFCCC, 2017b). Thanks to their falling costs 
and government policies supporting their deployment, variable renewable energy sources 
(vRES) such as solar photovoltaic (PV) and wind energy are likely to play a significant role in 
this decarbonisation.  Electricity supply and demand must always be kept in balance from one 
moment to another and, due to their intermittent generation, vRES make balancing electricity 
demand and supply more difficult (Huber et al., 2014). In Europe’s largely liberalised and self-
scheduling power systems, the balance between supply and demand is primarily maintained 
using electricity markets operating at different time scales. 

In 2018, around half of the electricity generated in Europe was traded on day-ahead markets 
via power exchanges (Figure 3-1), with the remainder traded either bilaterally over the counter 
(i.e. forwards), or as standardised futures products on exchanges1. On day-ahead markets, 
price-volume bids from electricity suppliers (e.g. power plants) and purchasers (e.g. retailers, 
large industrial consumers) are pooled for each trading period. In this way, forecast supply 
and demand are matched, and the electricity price during each period is determined by the 
marginal bid. Most day-ahead markets close at midday the day before delivery (D-1) to allow 
the scheduling of large thermal power plants (Figure 3-2). Intraday markets, which open shortly 
after day-ahead markets close, provide an opportunity for balance responsible parties (BRPs) 
to correct for shifts in their day-ahead nominations due to unexpected outages, or revised 
demand and generation forecasts (KU Leuven Energy Institute, 2015). This is especially relevant 
for vRES, as forecast accuracy improves the closer the forecast is made to real time (Foley et 
al., 2012; J. Zhang et al., 2015). However, despite subsequent corrections on intraday markets, 
instantaneous imbalances in supply and demand still arise in real time due to a combination 
of (i) stochastic factors such as load and vRES forecast errors, unplanned outages in generators 
or transmission lines; (ii) deterministic factors, such as discrepancies between the duration of 
different market trading periods (so-called schedule leaps) and the discretisation of 
continuous time into discrete trading periods; and (iii) deliberate strategic deviations by BRPs 
to take advantage of differences in imbalance prices (Brijs et al., 2017; Hirth & Ziegenhagen, 
2015; Koch & Hirth, 2019).  

Balancing electricity supply and demand is performed by transmission system operators 
(TSOs) using balancing2 markets by first estimating how much reserve capacity they need, 
contracting this capacity from balancing service providers (BSPs), and dispatching balancing 
energy to deal with imbalances during each imbalance settlement period (ISP) (ENTSO-E, 
2018a). Two main types of reserves are procured across Europe: (i) Frequency Containment 
Reserve (FCR), which is automatically activated within 30 seconds in response to a sudden 
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major disturbance event (e.g. outage of large power plant or transmission line); and (ii) 
Frequency Restoration Reserve (FRR), which can be either automatically activated (aFRR) or 
manually activated (mFRR) within 15 minutes. FRR is used both to free up FCR so that it can 
be used again, and to mitigate load and vRES forecast errors. A third reserve type known as 
Replacement Reserve (RR) is used by some countries to free up FRR capacity again. Upward 
reserves are activated when there is a deficit of energy (i.e. the system is short), while 
downward reserves are activated when there is a surplus of energy (i.e. the system is long)3. 
The volume of reserves required by TSOs depends on the magnitude and frequency of the 
imbalances, and the desired security level (Hirth & Ziegenhagen, 2015). While some recent 
studies have failed to show strong links between increasing vRES penetration and balancing 
reserve requirements in Europe (e.g. (Brinkel, 2018; Hirth & Ziegenhagen, 2015)), large-scale 
vRES deployment is likely to lead to higher reserve requirements in the long term (Borne et 
al., 2018; Ortner & Totschnig, 2019). With scenarios suggesting that a highly decarbonised EU 
power system could rely of vRES to supply some 80% of electricity by 20504, intraday and 
balancing markets are receiving increasing attention in the academic literature (Child et al., 
2019; EC, 2011d; ENTSO-E & ENTSO-G, 2018; Plessmann & Blechinger, 2017). 

Several ex-post empirical studies have examined the impact of increasing vRES penetration on 
EU balancing markets. A notable example is Hirth & Ziegenhagen (Hirth & Ziegenhagen, 
2015), who find that despite German vRES penetration doubling from 7% in 2008 to 15% 
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Figure 3-1 | On the left, the development of day-ahead market trading volumes (bars) in selected 
European countries over time, and as a share of total consumption (X). On the right, the day-ahead 
market trades in 2018 expressed as a percentage of annual consumption in each country. The total 
is shown only for the selected countries. Own figure based on day-ahead trade data from EPEX, Nord 
Pool, OMIE and GME annual reports (EPEX, 2019b; GME, 2019b; Nord Pool, 2019; Omie, 2019b), and 
electricity consumption data from ENTSO-E statistical reports 2012-2018 (ENTSO-E, 2019c). 
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in 2015, TSOs were able to reduce the amount of contracted balancing reserves by 15% over 
the same period. Ocker & Ehrhart (Ocker & Ehrhart, 2017) suggest this was primarily achieved 
thanks to more intraday trading, and the introduction of imbalance netting, which allows 
positive imbalances in one control area to be cancelled out against negative imbalances in a 
neighbouring control area using cross-border transmission, thereby reducing the need for 
counter activation of reserves in both areas (Doorman & van Der Veen, 2013). Koch & Hirth 
(Koch & Hirth, 2019) also find that increasing intraday trading has played an important role in 
reducing German balancing requirements. Since (Hirth & Ziegenhagen, 2015) was published, 
German intraday trading volumes have continued to increase (Figure 3-3), while the volume 
of contracted reserves has continued to decrease (Figure 3-4), supporting the findings of 
(Ocker & Ehrhart, 2017) and (Koch & Hirth, 2019). Gianfreda et al. (Gianfreda et al., 2018) find 
that balancing requirements have not increased in Italy despite vRES penetration increasing 
from less than 1% in 2005 to 15% in 2015, mirroring the findings of Hirth & Ziegenhagen for 
Germany.  
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Figure 3-2 | Overview of market timelines, reserve procurement and transmission scheduling 
processes. As market designs and rules vary across Europe, this figure is only for illustrative purposes. 
Day-ahead (DA) order books open up to 45 days before delivery. Intraday (ID) markets typically open 
shortly after day-ahead market closure, and close between one hour and up to five minutes before 
delivery  in real time (RT), depending on the country and market. Balancing markets vary widely between 
countries and between products. In some countries, BSPs must first bid to supply reserve capacity up to 
one week in advance. Bids for supplying balancing energy are typically made closer to delivery, but can 
also be made jointly with capacity. Own figure based on various sources ((ENTSO-E, 2018a; Tennet, 2018)). 
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Figure 3-3 | On the left, the development of intraday market trading volumes (bars) in selected 
European countries over time, and as a share of total consumption (X). On the right, the intraday 
market trades in 2018 expressed as a percentage of annual consumption in each country (bars), 
together with the 2018 vRES penetration (•). The total is shown only for the selected countries. Own 
figure based on intraday data from EPEX, Nord Pool, OMIE, and GME annual reports and trading platforms 
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Figure 3-4 | Volume of contracted mFRR and aFRR in Germany over time, averaged per quarter 
(ENTSO-E, 2018b). 
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Joos & Staffell (2018) compare balancing market developments in Germany and the UK, and 
also find no significant increase in balancing requirements in the UK between 2010 and 2016, 
despite vRES penetration rising from 3% to 14% over the same period. 

Aside from ex-post analysis of historical data, some studies use power system modelling to 
explore how future balancing requirements could increase with rising vRES penetration in 
individual countries (e.g. Croatia (Vasilj et al., 2016), Germany (Jost et al., 2015; Roos & 
Bolkesjø, 2018)), or larger regions. For example, Miettinen & Holttinen look at the impact of 
wind forecast errors on balancing needs in a case study of the Nordic power system up to 30% 
wind penetration (Miettinen & Holttinen, 2019). Aigner et al. find that a tripling of wind 
capacity in Northern Europe5 between 2010 and 2020 would increase gross imbalances by 
90% (Aigner et al., 2012). Despite this increase, reserve activation is only 60%–70% of the 
imbalances thanks to imbalance netting within the Nordic and continental Europe systems, 
falling to 40%–50% in the case of fully integrated Nordic and continental Europe reserve 
markets. At the European level, Ortner & Totschnig consider potential developments in 
European intraday and balancing markets in the year 2030 with a modest vRES penetration 
of 27%, finding that balancing market volumes are likely to remain only a few percentage 
points of day-ahead market volumes (Ortner & Totschnig, 2019). Dallinger et al. also analyse 
EU balancing markets in 2030 under different market design assumptions, finding that 
shortening the duration of balancing products (e.g. peak/off-peak to 4-hourly), bringing 
balancing procurement closer to real time (e.g. weekly to daily procurement), allowing non-
symmetric procurement of up- and downward reserve capacity, implementing full imbalance 
netting, and common reserve procurement between countries would lead to significant cost 
savings (Dallinger et al., 2018). 

Analysts wishing to model future power systems can use historical time series, or generate 
synthetic time series for load and weather parameters using a variety of methods such as 
autoregressive integrated moving average (ARIMA)6 models (e.g. (J. Chen & Rabiti, 2017; 
Greve et al., 2014) for wind), or generalised autoregressive conditional heteroskedastic 
(GARCH) models, originally proposed by Engle (Engle, 1982) (and developed further by 
Bollerslev (Bollerslev, 1986)) for economic applications. For example, Lojowska et al. (Lojowska 
et al., 2010) use an ARMA-GARCH model to model the volatility of wind speed time series. A 
single time series (historical or synthetic) can be used to model a market in a single timeframe 
(e.g. day-ahead or real-time). However, in order to model linked markets at different 
timeframes (e.g. intraday and balancing markets), it is necessary to have not just a single time 
series, but also forecasts of this series at different time horizons before real time. Synthesising 
these forecasts poses a challenge, as the forecasts should have a strong correlation with the 
real-time series, but also an error distribution comparable with real-world forecasts. The 
simplest approach is a persistence forecast, which assumes that the value of a variable in one 
time step is the same as in the previous time step (3TIER, 2010). Whilst persistence may deliver 
acceptable results for short time horizons (e.g. up to 1 hour), it is unsuitable for day-ahead 
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forecasting. Others use ARIMA based methods such as Weber et al., who use an ARMA model 
to represent larger wind speed forecast errors with longer forecast horizon in the Wilmar 
model (Weber et al., 2009). De Mello et al. (de Mello et al., 2011) use an optimisation routine 
to fit AR(1) models for wind speed and load forecast errors to match statistical behaviour of 
historical forecast errors to synthesise real-time, day-ahead and hour-ahead forecasts. 
Meibom et al. (Meibom et al., 2011) generate wind speed (and load) forecast errors using an 
ARMA(1,1) model and apply them to historical time series. Boone (Boone, 2005) model wind 
speed forecast errors with an ARMA(1,1) model. Some combine ARIMA with other approaches, 
like Naimo (Naimo, 2014), who synthesises wind speeds using a Weibull distribution, and 
forecast errors using an ARMA model. Despite the existing literature, we find that many 
proposed methods for generating synthetic forecasts are for the underlying weather 
parameters (e.g. wind speed, solar radiation), which require further processing by modellers 
to create generation profiles (i.e. MW) and are not convenient for ready implementation in 
power system models. Furthermore, previous simulation studies on intraday and balancing 
markets have provided few details about the methods used to generate synthetic forecasts, 
making it difficult to replicate their approaches, and necessitating significant rework.  

In this study, we present a novel method to synthesise time series for day-ahead forecasts for 
load and vRES generation based on an AR-GARCH model and give a step-by-step example of 
how to implement it. We then apply our method in simulations of a future scenario of the 
European power system in which the vRES penetration rises to 50% in 2040, to explore how 
large-scale vRES deployment could affect day-ahead, intraday and balancing markets. We 
provide an implementation of our method in Python so that other researchers and analysts 
can apply it to generate their own synthetic load, wind and PV forecasts. 

This study is structured as follows. In Section 3.2, we outline our three-part method which 
includes (i) an analysis of current day-ahead forecast performance, (ii) an explanation of our 
approach for synthesising day-ahead forecasts, and (iii) a description of the market 
simulations. In Section 3.3, we present our results including a step-by-step example of how to 
apply our day-ahead forecast method, and the findings from the market simulations. In 
Section 3.4, we discuss the limitations of our method, and round off our study with some 
concluding remarks in Section 3.5. Further details on the method and results from this chapter 
are provided in Appendix B. 

 Method 
Our study is divided into three parts (Figure 3-5). In Part A, we first analyse and determine the 
accuracy of current day-ahead forecasts for electricity demand and vRES generation based on 
historical data reported by TSOs. In Part B, we present our method to synthesise time series of 
normalised day-ahead forecast errors. In Part C, we demonstrate how this method can be used 
by applying it to the case of a future highly renewable European power system in 2040.  
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Figure 3-5 | Overview of the approach followed in this study. 
 

3.2.1 Part A – Analyse behaviour and determine performance of 
current day-ahead forecasts 

BRPs use their own forecasting methods to estimate their future production and demand, 
which inform their day-ahead bids, intraday trades, and ultimately determine their 
contribution to system imbalance. However, these data from individual BRPs are generally not 
publicly available, making it difficult to assess their forecast performance. Instead, we use 
country-level data on day-ahead forecasts and real-time vRES generation and load available 
from the European Network of Transmission System Operators for Electricity (ENTSO-E) 
(ENTSO-E, 2018b). We analyse the day-ahead forecasts for eight EU countries with the highest 
absolute installed vRES capacity (Belgium (BE), Germany (DE), Denmark (DK), Spain (ES), France 
(FR), Italy (IT), the Netherlands (NL) and the United Kingdom (UK)), assuming that TSOs in 
these countries are likely to have developed better forecasting methods. The temporal 
resolution of these data is mostly hourly, though some are 15 minutes, which are upscaled to 
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hourly for consistency. Forecasts are analysed for the years 2017 and 2018 to see the reliability 
of the forecasts across multiple years. Before any analysis or model fitting is performed, the 
raw time series are first checked for clearly erroneous or missing data, which are replaced by 
data from a nearby time period (i.e. the following hour or day). 

Several metrics are used to quantify the behaviour and accuracy of the historical forecasts 
including the root mean squared error (RMSE) (Eq. (3-1)), the mean bias error (MBE) (Eq. (3-2)), 
and the mean arctangent absolute percentage error (MAAPE) (Eq. (3-3))7. In this study, we 
adopt a sign convention such that a negative forecast error results in a net deficit of energy 
(i.e. a short position) to the system, while a positive value results in a net surplus (i.e. a long 
position)8. Thus, when calculating the absolute forecast errors (𝜀𝜀𝑡𝑡) from the day-ahead forecast 
(𝐹𝐹𝑡𝑡) and real-time values (𝑌𝑌𝑡𝑡) in each time step 𝑡𝑡, for all available periods 𝑇𝑇, the signs are 
reversed for load and vRES generation technologies (Eq. (3-4)). Note that the RMSE and MBE 
are normalised based on a normalisation factor, 𝑁𝑁, to allow a comparison between the errors 
for different parameters, for different years, and for different countries. Load errors are 
normalised to the real-time peak annual load (MW), while vRES generation errors are 
normalised to the installed capacity (MW).  

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
√1

𝑇𝑇 ∑ (𝜀𝜀𝑡𝑡)2𝑇𝑇
𝑡𝑡=1

𝑁𝑁
⁄

 
(3-1) 

 𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑇𝑇 ∑ (𝜀𝜀𝑡𝑡)𝑇𝑇

𝑡𝑡=1
𝑁𝑁

⁄  (3-2) 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑇𝑇 ∑  arctan (𝜀𝜀𝑡𝑡

𝑌𝑌𝑡𝑡
)

𝑇𝑇

𝑡𝑡=1
 (3-3) 

 where 𝜀𝜀𝑡𝑡 = {𝑌𝑌𝑡𝑡 − 𝐹𝐹𝑡𝑡       𝑓𝑓𝑓𝑓𝑟𝑟 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 
𝐹𝐹𝑡𝑡 − 𝑌𝑌𝑡𝑡       𝑓𝑓𝑓𝑓𝑓𝑓 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙                            (3-4) 

On the basis of the calculated metrics, the four best country forecast time series are used to 
fit models to generate normalised day-ahead forecast errors in Part B (section 3.2.2).  

3.2.2 Part B – Method for synthesising normalised day-ahead 
demand and vRES forecast errors 

Based on existing literature and our analysis of the normalised hourly day-ahead forecast 
errors for load and vRES generation, day-ahead errors typically exhibit certain properties. For 
example, as they are made one day ahead and are not updated, errors from hourly consecutive 
forecasts are often autocorrelated, and can exhibit diurnal patterns (Olauson et al., 2016). 
Moreover, forecast errors can display significant volatility from one day to the next, and hourly 
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errors distributions are often skewed and heavy-tailed rather than normal (Hodge et al., 2012). 
Also, forecast errors can depend on the generation (or load) level, with larger errors typically 
observed during periods with higher generation (or load) (see section 3.3.1)9.  

Our approach accounts for these properties by modelling hourly forecast errors as a function 
of the real-time generation (or load) level, with forecast errors also exhibiting daily volatility. 
This daily volatility is modelled as a generalized autoregressive conditional heteroscedasticity 
(GARCH) process to account for dependence and non-normality in the variance structure of 
the time series, with an autoregressive (AR) component to account for autocorrelation in the 
error volatility of consecutive days (Bollerslev, 1986; Engle, 1982). Our method for synthesising 
day-ahead forecast errors has nine main steps (Figure 3-6). 

 
Figure 3-6 | Overview of the proposed method for synthesising normalised day-ahead forecasts 
 

First, Steps 1 to 5 are applied to the historical data to fit the models for each variable (i.e. load, 
PV, onshore wind, offshore wind). 

Step 1. Normalise the historical raw day-ahead forecast and real-time series for vRES 
generation (or load) by dividing by the installed capacity (or peak load) (Eq. (3-5)). 
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Using these series, calculate the normalised hourly forecast error 𝜀𝜀𝑑̂𝑑,ℎ for each hour ℎ, 
for each day 𝑑𝑑 (Eq. (3-6))10.  

 𝑌̂𝑌𝑡𝑡 = 𝑌𝑌𝑡𝑡/𝑁𝑁         𝐹̂𝐹𝑡𝑡 = 𝐹𝐹𝑡𝑡/𝑁𝑁 (3-5) 

 𝜀𝜀𝑑̂𝑑,ℎ = 𝜀𝜀𝑡̂𝑡 = {𝑌̂𝑌𝑡𝑡 − 𝐹̂𝐹𝑡𝑡       𝑓𝑓𝑓𝑓𝑓𝑓 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 
𝐹̂𝐹𝑡𝑡 − 𝑌̂𝑌𝑡𝑡       𝑓𝑓𝑓𝑓𝑓𝑓 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙                            (3-6) 

 

Step 2. To capture the volatility of daily forecast errors in the historical data: 
 
a) For each day of the year 𝑑𝑑 (assuming one year of historical data), the total 

absolute daily error 𝛿𝛿𝑑𝑑 , is calculated as the sum of the absolute values of the 
normalised hourly forecast errors for the 24 hours in that day (Eq. (3-7)), 

 𝛿𝛿𝑑𝑑 =  ∑ |𝜀𝜀𝑑̂𝑑,ℎ|
ℎ=24

ℎ=1
             ∀𝑑𝑑 ∈  {1 … 365} (3-7) 

 
b) Fit an AR(𝑎𝑎)-GARCH(𝑝𝑝, 𝑞𝑞) model to the resulting daily time series 𝛿𝛿𝑑𝑑 , based on an 

analysis of its autocorrelation function (ACF) and partial autocorrelation functions 
(PACF)11. In this model, 𝛿𝛿𝑑𝑑 is an autoregressive process with mean 𝜇𝜇 and 
residual 𝜖𝜖𝑑𝑑 (Eq. (3-8)), the conditional variance of which, 𝜎𝜎𝑑𝑑

2, is a GARCH model 
(Eq. (3-9) (3-10)) (Lojowska et al., 2010). The standardized residuals 𝑧𝑧𝑑𝑑 are 
assumed to be independent and identically distributed (𝑖𝑖. 𝑖𝑖. 𝑑𝑑.) with a probability 
density function 𝒟𝒟, assumed to follow a Skewed Student 𝑡𝑡-distribution with zero 
mean, variance of 1, skewness parameter 𝛾𝛾𝑧𝑧 and kurtosis parameter 𝜅𝜅𝑧𝑧

12. The AR 
model parameters (𝜇𝜇, 𝜙𝜙1 … 𝜙𝜙𝑎𝑎) and GARCH parameters (𝜓𝜓, 𝛼𝛼1 … 𝛼𝛼𝑝𝑝, 𝛽𝛽1 … 𝛽𝛽𝑞𝑞) are fit 
using the quasi maximum likelihood method. 

 𝛿𝛿𝑑𝑑 = 𝜇𝜇 + ∑ 𝜙𝜙𝑖𝑖𝛿𝛿𝑑𝑑−𝑖𝑖

𝑎𝑎

𝑖𝑖=1
+ 𝜖𝜖𝑑𝑑 (3-8) 

 𝜖𝜖𝑑𝑑 = 𝑧𝑧𝑑𝑑𝜎𝜎𝑑𝑑   ,     𝑧𝑧𝑑𝑑~𝒟𝒟(0,1, 𝛾𝛾𝑧𝑧, 𝜅𝜅𝑧𝑧), 𝑖𝑖. 𝑖𝑖. 𝑑𝑑. (3-9) 

 𝜎𝜎𝑑𝑑
2 = 𝜓𝜓 + ∑ 𝛼𝛼𝑖𝑖𝜖𝜖𝑑𝑑−1

2
𝑝𝑝

𝑖𝑖=1
+ ∑ 𝛽𝛽𝑗𝑗𝜎𝜎𝑑𝑑−𝑗𝑗

2
𝑞𝑞

𝑗𝑗=1
 (3-10) 

Step 3. Remove the effect of daily error volatility from the hourly normalised forecast errors 
𝜀𝜀𝑑̂𝑑,ℎ to yield a new series of hourly errors 𝜀𝜀𝑑̂𝑑,ℎ̅̅ ̅̅ ̅ which does not include the daily 
volatility. This is done by dividing 𝜀𝜀𝑑̂𝑑,ℎ by the hourly conditional volatility 𝜎𝜎𝑑𝑑,ℎ of the 



3

How might intraday and balancing markets develop in a future highly renewable power system? 

 
83 

series of total daily deviations (Eq. (3-11)), which itself is calculated from the daily 
conditional volatility 𝜎𝜎𝑑𝑑, assuming a uniform forecast error volatility for each day (Eq. 
(3-12)).  

 𝜀𝜀𝑑̂𝑑,ℎ̅̅ ̅̅ ̅ =  𝜀𝜀𝑑̂𝑑,ℎ/𝜎𝜎𝑑𝑑,ℎ (3-11) 

 𝜎𝜎𝑑𝑑,ℎ = 𝜎𝜎𝑑𝑑
24      ∀ℎ ∈  {1 … 24}, ∀𝑑𝑑 ∈  {1 … 365} (3-12) 

 
Step 4. To capture the dependence of the resulting hourly errors on the real-time generation 

(or load) level, divide the 𝜀𝜀𝑑̂𝑑,ℎ̅̅ ̅̅ ̅ series into 𝑘𝑘 bins based on the normalised real-time 
generation (or load) levels, and calculate the mean 𝜇𝜇𝑘𝑘 and standard deviation 𝜎𝜎𝑘𝑘 of 
the hourly errors in each bin13. 
 

Step 5. To adjust for the overall common daily error component which is not encapsulated 
by the generation (or load) level bins, identify an appropriate probability distribution 
for the hourly forecast errors 𝜀𝜀𝑑̂𝑑,ℎ̅̅ ̅̅ ̅ (e.g. Normal, Laplace, t), and fit the parameters 
required to describe this distribution14. 

With all the required model parameters now fitted, Steps 6 to 9 are used to synthesise day-
ahead forecasts: 

Step 6. Generate a new series of total daily absolute errors, 𝛿𝛿′𝑑𝑑 , using the fitted AR(𝑎𝑎)-
GARCH(𝑝𝑝, 𝑞𝑞) model developed in Step 2 for the desired horizon (e.g. one year), 
 

Step 7. For each day 𝑑𝑑 in the horizon: 
 

a) generate a random number, 𝑥𝑥𝑑𝑑 , from the distribution fitted in Step 5, 
 

b) for each hour of the day, ℎ, calculate the raw generation (or load)-based error 𝜉𝜉′𝑑𝑑,ℎ 
by taking the 𝜇𝜇𝑘𝑘 and 𝜎𝜎𝑘𝑘 values from the bin corresponding to the real-time 
generation (or load) in that hour (from Step 4), scaling the random number 𝑥𝑥𝑑𝑑 by 
𝜎𝜎𝑘𝑘,and shifting it by 𝜇𝜇𝑘𝑘 (Eq. (3-13)).

 𝜉𝜉′𝑑𝑑,ℎ = 𝜇𝜇𝑘𝑘 + 𝑥𝑥𝑑𝑑 ∙ 𝜎𝜎𝑘𝑘 (3-13) 

 
c) multiply the raw generation (load)-based hourly error from (b) with the simulated 

total daily errors from Step 6, 𝛿𝛿′𝑑𝑑 , to yield the total synthetic error for each hour, 
𝜀𝜀̂′𝑑𝑑,ℎ (Eq. (3-14)).
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 𝜀𝜀̂′𝑑𝑑,ℎ = 𝛿𝛿′𝑑𝑑𝜉𝜉′𝑑𝑑,ℎ = 𝜀𝜀̂′𝑡𝑡 (3-14) 

Step 8. The final synthetic forecast series 𝐹𝐹′̂𝑡𝑡 is found by simply adding (or subtracting) the 
synthetic error from Step 7 to the real-time series 𝑌̂𝑌𝑡𝑡 (Eq. (3-15)). 

 𝐹𝐹′̂𝑡𝑡 = {𝑌̂𝑌𝑡𝑡−𝜀𝜀̂′𝑡𝑡       𝑓𝑓𝑓𝑓𝑓𝑓 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 
𝑌̂𝑌𝑡𝑡+𝜀𝜀̂′𝑡𝑡       𝑓𝑓𝑓𝑓𝑓𝑓 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙                            (3-15) 

Step 9. Calculate a forecast error metric (e.g. RMSE) for the synthetic forecast from Step 8 
and compare this with the same metric for the historical forecast. If the difference is 
unacceptably large, the parameters (especially the scale parameter) of the fitted 
distribution in Step 5 can be adjusted and a new forecast synthesised, until the error 
metric matches to an acceptable level. Optionally, the synthetic errors generated 
from Step 7 can also be scaled up or down to ensure synthetic forecast errors exactly 
match historical values. Assuming the comparison is based on the RMSE metric, this 
is done by scaling each synthetic error by the ratio between the target RMSE 
(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) and the RMSE of the synthetic errors (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅′) (Eq. (3-16)). 

 𝜀𝜀̂′𝑡𝑡,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝜀𝜀̂′𝑡𝑡 (
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅′ ) (3-16) 

3.2.3 Part C - Simulations for a future highly renewable Europe 

In Part C, we demonstrate our method outlined in Part B by performing simulations of 
European day-ahead, intraday and balancing markets for a future scenario in which the 
penetration of vRES increases from 15% in 2017 up to 50% by 2040. With these simulations, 
we explore how day-ahead, intraday and balancing market volumes may grow over time, to 
what extent load and vRES forecast errors can be smoothed out both within countries and 
across Europe via intraday trading and imbalance netting, and how much residual demand 
must be supplied by dispatchable technologies.  

An overview of the simulation approach is shown in Figure 3-7. First, we build one scenario for 
electricity demand and vRES capacity deployment in Europe for the years to 2017 to 2040, 
based on three scenarios from ENTSO-E’s Ten Year Network Development Plan (TYNDP) 2018 
(ENTSO-E & ENTSO-G, 2018) (Section 3.2.3.1). The geographical scope includes the EU28 
countries, Norway and Switzerland. After collecting historical vRES generation profiles to 
represent real-time generation in future years, we synthesise day-ahead forecasts of these 
real-time profiles using our method outlined in Part B (Section 3.2.2). Intraday forecasts are 
generated based on persistence. Following the approach used by Ortner & Totschnig (Ortner 
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& Totschnig, 2019), we determine the potential for intraday trading based on the difference 
between the day-ahead and intraday forecasts. Any deviations remaining between the 
intraday forecasts and real-time values must then be resolved on balancing markets 
(section 3.2.3.3). Simulations are run for 24 years from 2017 until 2040, with both electricity 
demand and the installed capacity of vRES rising over time in accordance with the TYNDP 2018 
scenarios. For each year from 2017 to 2040, we simulate the day-ahead, intraday and balancing 
markets for 32 historical weather years to assess how interannual weather variability impacts 
market volumes and reserve capacity requirements. 

 

 
Figure 3-7 | Schematic overview of the simulation procedure per country. For each year from 2017 
to 2040, simulations of day-ahead (DA), intraday (ID) trades and balancing volumes are performed using 
32 weather years of historical weather data to generate probability density distributions of forecast errors, 
trade and imbalance volumes. The real-time load and vRES generation are used to calculate the day-ahead 
forecast errors with the AR-GARCH model. The + and – symbols indicate the sign conventions used in 
calculating ID trades and imbalances. Potential cross-border trades and imbalance netting are determined 
based on net country market positions, once all trades and imbalances within each country are resolved. 
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3.2.3.1 Build future load and vRES capacity scenarios 

The scenario assumptions for European vRES deployment and load until 2040 are based on 
the most ambitious vRES deployment scenarios from ENTSO-E’s TYNDP 2018 (ENTSO-E, 
2018f)15. Starting from 96 GW of solar PV, 148 GW of onshore wind, and 15 GW of offshore 
wind capacity in 2017 (EurObserv’ER, 2018, 2019), installed capacities in 2040 reach nearly 600 
GW, 360 GW and 155 GW respectively, representing a three-fold increase in total vRES capacity 
(Figure 3-8). Based on these scenarios, average vRES deployment rates are 21 GW y-1 between 
2017 and 2025, 55 GW y-1 between 2025 and 2030, and 40 GW y-1 between 2030 and 2040. 
Starting from a total electricity demand of 3125 TWh in 2017, total demand increases 17% to 
approximately 3660 TWh in 2040, based on the same TYNDP scenarios. 

 
Figure 3-8 | Assumed deployment of vRES capacity in the study region (EU28 plus Norway and 
Switzerland), based on the ENTSO-E TYNDP 2018 Best Estimate 2020, Best Estimate 2025, Distributed 
Generation 2030 and Global Climate Action 2040 scenarios (ENTSO-E & ENTSO-G, 2018).  
 

3.2.3.2 Collect ‘real-time’ data and synthesise day-ahead and intraday 
forecasts for future load and vRES generation 

Country-specific hourly normalised generation profiles for solar PV, onshore and offshore 
wind are taken from the Renewables Ninja dataset for 32 historical weather years from 1985 
to 2016 (Pfenninger & Staffell, 2016; Staffell & Pfenninger, 2016)16. These are taken as the 
real-time vRES generation profiles, which are multiplied by the installed capacity per country 
to yield the real-time generation in MW. Similarly, the demand profiles from TYNDP 2018 are 
taken as the real-time demand profiles. Day-ahead forecasts for load and vRES generation are 
synthesised using the AR-GARCH method presented in Part B (Section 3.2.2). The AR-GARCH 
models are fit based on the best historical forecast series identified from ENTSO-E data for 
each variable (see Section 3.3.1). Intraday forecasts are based on persistence, which assumes 
that the value of a variable in the next time period is the same as the previous one (Eq. (3-17)). 
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 𝐹𝐹𝑡𝑡+1 = 𝑌𝑌𝑡𝑡 (3-17) 

For wind (onshore and offshore), we assume a simple 15-minute persistence forecast as, at the 
sub-hourly level, more elaborate methods are reportedly not significantly better than 
persistence (Widiss & Porter, 2014). For PV, we assume that intraday forecasts are 20% better 
(i.e. have 20% lower error) than 15-minute persistence forecasts, based on a comparison of 
methods available in the literature (Kumler et al., 2018)17. For load, we also assume a 20% 
improvement over 15-minute persistence forecasts as, like PV, load tends to follow a more 
predictable pattern than wind. Given that small BRPs may not have the resources to produce 
detailed intraday forecasts, while BRPs should have data on their real-time generation and 
load, we consider this a reasonable approach.  

3.2.3.3 Simulate European day-ahead, intraday and balancing markets 

To model future day-ahead, intraday and balancing markets, we use a simplified approach in 
which only the load and vRES generation in each time step is modelled, rather than the full 
dispatch of all generation technologies in the portfolio. The main assumptions made in these 
calculations are explained below. 

1. We assume four notional BRPs per country: one for load, one for all solar PV capacity, 
one for all onshore wind capacity, and one for all offshore wind capacity.  

 
2. All day-ahead, intraday and balancing markets operate with 15-minute resolution18. 
 
3. Each year from 2017 to 2040 is simulated for 32 historical weather years (1985 to 2016), 

giving a total of 768 simulation years.  
 
4. All electricity is traded on day-ahead markets, based on the day-ahead forecast 

generation (or load) 𝐹𝐹𝑔𝑔,𝑡𝑡
𝐷𝐷𝐷𝐷 for each BRP 𝑔𝑔, per market period, 𝑡𝑡. A new day-ahead forecast 

of vRES generation (and load) is synthesised for each weather year simulated. Forecast 
errors between countries and between technologies are assumed to be uncorrelated19. 

 
5. Each BRP must nominate a balanced position at the close of the intraday market20. To 

achieve this, each BRP makes intraday trades per market period 𝑇𝑇𝑔𝑔,𝑡𝑡
𝐼𝐼𝐼𝐼, based on the 

difference between their day-ahead and intraday 𝐹𝐹𝑔𝑔,𝑡𝑡
𝐼𝐼𝐼𝐼 forecasts for that period, and the 

length of the period, 𝜏𝜏 (Eq. (3-18)). Thus, we assume intraday trading volumes and 
imbalances are driven only by load and vRES forecast errors. Other factors such as forced 
outages, schedule leaps, and strategic behaviour are not considered. 

 𝑇𝑇𝑔𝑔,𝑡𝑡
𝐼𝐼𝐼𝐼 = {

(𝐹𝐹𝑔𝑔,𝑡𝑡
𝐼𝐼𝐼𝐼 − 𝐹𝐹𝑔𝑔,𝑡𝑡

𝐷𝐷𝐷𝐷)𝜏𝜏       𝑓𝑓𝑓𝑓𝑓𝑓 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 
(𝐹𝐹𝑔𝑔,𝑡𝑡

𝐷𝐷𝐷𝐷 − 𝐹𝐹𝑔𝑔,𝑡𝑡
𝐼𝐼𝐼𝐼)𝜏𝜏       𝑓𝑓𝑓𝑓𝑓𝑓 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙                            (3-18) 
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6. Transmission limitations within and between countries are not explicitly considered. 
Instead, simulations are performed for two extreme cases: (i) assuming no cross-border 
trading/imbalance netting, and (ii) treating Europe as a copper plate, with unlimited 
potential for cross-border trading/imbalance netting: 

 
➢ In the case of no cross-border trading, we assume that all possible intraday trades 

are made between vRES and load BRPs within each country first. Then, any residual 
demand (open buy offers) based on the intraday forecast which cannot be met by 
vRES is assumed to be supplied by some other dispatchable technology(s) in the 
system e.g. gas power plants, batteries, hydro. Surplus vRES generation is curtailed. 

➢ In the copper-plate case, trades can take place across country borders, and the 
requirement for residual demand/curtailment is calculated on the net residual 
demand across all countries. 

 
7. After all intraday trades are made, any remaining deviations between the intraday 

forecasts and real-time values are resolved on balancing markets. The imbalance for each 
vRES technology and load, 𝐼𝐼𝑔𝑔,𝑡𝑡, is calculated as the difference between the real-time value 
𝑌𝑌𝑔𝑔,𝑡𝑡 and the intraday forecast 𝐹𝐹𝑔𝑔,𝑡𝑡

𝐼𝐼𝐼𝐼, multiplied by the market period length 𝜏𝜏 (Eq. (3-19))21. 
Then, the net imbalance 𝐼𝐼𝑐𝑐,𝑡𝑡 per country 𝑐𝑐, is calculated as the sum of all the real-time 
vRES generation and load imbalances within each country (Eq. (3-20)).  

 𝐼𝐼𝑔𝑔,𝑡𝑡 =  {
(𝑌𝑌𝑔𝑔,𝑡𝑡  − 𝐹𝐹𝑔𝑔,𝑡𝑡

𝐼𝐼𝐼𝐼)𝜏𝜏      𝑓𝑓𝑓𝑓𝑓𝑓 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 
(𝐹𝐹𝑔𝑔,𝑡𝑡

𝐼𝐼𝐼𝐼 − 𝑌𝑌𝑔𝑔,𝑡𝑡 )𝜏𝜏       𝑓𝑓𝑓𝑓𝑓𝑓 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙                            (3-19) 

 𝐼𝐼𝑐𝑐,𝑡𝑡 = ∑ 𝐼𝐼𝑔𝑔,𝑡𝑡
𝒢𝒢
𝑔𝑔       ∀𝑐𝑐 ∈  𝒞𝒞, ∀𝑔𝑔 ∈  𝒢𝒢 (3-20) 

8. FRR requirements for balancing are calculated using a static method for each year 
between 2017 and 2040, assuming that 99.5% of imbalances must be covered, 
considering all 32 historical weather years22. 

 
➢ In the case of no cross-border trading (i.e. no imbalance netting), any remaining 

country imbalance must be met by a separate reserve per country, sized individually 
based on 𝐼𝐼𝑐𝑐,𝑡𝑡 . The total reserve capacity across Europe is then the sum of the 
individual country reserve requirements. 

➢ In the copper-plate case (i.e. with imbalance netting) with fully integrated 
balancing markets, all country imbalances are netted across Europe (Eq. (3-21)), and 
the common reserve is sized based on the remaining imbalances, 𝐼𝐼𝑡𝑡

23. 

 𝐼𝐼𝑡𝑡 = ∑ 𝐼𝐼𝑐𝑐,𝑡𝑡

𝒞𝒞

𝑐𝑐
 (3-21) 

 



3

How might intraday and balancing markets develop in a future highly renewable power system? 

 
89 

 Results 
This section presents our results. First, we analyse the country-level day-ahead load and vRES 
generation forecasts for the years 2017 and 2018 (Section 3.3.1). Then, we show step-by-step 
how to apply our AR-GARCH method to synthesise day-ahead forecast errors, using the 
selected historical data from Part A (Section 3.3.2). Lastly, we show the results of using the 
synthetic day-ahead forecasts (together with intraday persistence forecasts) in long-term 
simulations of European day-ahead, intraday and balancing markets (Section 3.3.3).  

3.3.1 Part A – Results of analysis of current day-ahead forecasts 

Metrics describing the accuracy of the day-ahead forecast load and vRES generation for the 
selected countries are shown in Table 3-1. For a given country, load and solar PV forecasts are 
typically the most accurate, while offshore wind forecasts are typically the least accurate24. For 
example, in Germany, the RMSE ranges from 1.5% for solar PV up to 8.6% for offshore wind. 
While most country forecasts have bias errors close to zero, some show quite significant errors 
(e.g. 26% for offshore wind in the Netherlands in 2017), suggesting there may be erroneous 
data reported by some TSOs to ENTSO-E. Overall, the accuracy of vRES forecasts appears to 
be highest in Germany, possibly because the higher penetration of vRES has led to better 
forecasting methods being developed, or the higher locational diversity that comes with 
higher vRES penetration leads to a greater degree of error ‘smoothing’ within the country. 
Excluding the suspect data, we find that the most accurate country forecast series for load, 
solar PV, onshore wind and offshore wind are those for Spain, Germany, France, and Denmark 
respectively. The accuracy of these forecasts is somewhat better than historical day-ahead 
forecast reported in the literature. For example, the RMSE for onshore wind for France and 
Germany is found to be around 3%, compared with a RMSE of 4.6% for wind for the whole of 
Germany reported in 2008 (Ernst et al., 2010). However, since 2008, forecast accuracy appears 
to have increased25.  

To demonstrate the behaviour of the forecasts, Figure 3-9 shows the normalised historical 
day-ahead forecast and real-time values in the first week of 2018 for the selected country 
forecasts, while Figure 3-10 shows the forecast errors for the same series. These figures show 
that the day-ahead forecasts indeed tend to under- or overestimate for several hours, or even 
a whole day. This is most likely because day-ahead forecasts are generally made only once per 
day, and any errors in the underlying model predictors (e.g. temperature, weather conditions) 
made at the time of the prediction are carried through until the next forecast26.  
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Table 3-1 | Calculated normalised mean bias error (MBE), normalised root mean square error 
(RMSE), mean arctangent absolute percentage error (MAAPE) and standard deviation (σ) of day-
ahead forecasts for electricity demand, solar PV, and wind generation for selected EU countries for 
the years 2017 and 2018 based on data reported by ENTSO-E (ENTSO-E, 2018b) and ELIA (Elia, 2019b). 
Forecast errors are normalised to the peak load in the case of demand, and installed capacity for vRES 
from (EurObserv’ER, 2018, 2019). Results in bold indicate the country with the lowest overall error metrics. 
Country Metric Parameter 

Load Solar PV Onshore Wind Offshore Wind 
  2017 2018 2017 2018 2017 2018 2017 2018 

BE 

MBE 0.8% 0.3% 0.1% -0.1% -2.0% -1.9% -0.8% -0.6% 
RMSE 2.4% 2.1% 3.1% 3.0% 5.7% 5.6% 11.1% 10.0% 
MAAPE 2.6% 2.2% 17.1% 15.8% 30.2% 29.6% 43.3% 47.6% 
σ 2.3% 2.1% 4.0% 3.2% 6.5% 5.3% 11.7% 11.7% 

          

DE 

MBE 0.7% 2.0% -0.3% 0.0% -1.2% 0.2% 0.5% -0.3% 
RMSE 2.4% 3.3% 1.6% 1.5% 2.9% 2.7% 6.7% 8.6% 
MAAPE 2.6% 3.5% 15.8% 10.1% 19.6% 13.6% 20.4% 25.6% 
σ 2.3% 2.6% 1.6% 1.5% 2.6% 2.7% 6.6% 8.6% 

          

DK 

MBE 0.0% 0.0% 0.0% -0.2% 0.6% 0.2% 1.9% 1.0% 
RMSE 1.0% 1.1% 2.9% 3.2% 4.3% 3.8% 6.3% 4.5% 
MAAPE 1.0% 1.1% 13.2% 13.7% 13.0% 15.3% 16.1% 16.9% 
σ 1.0% 1.1% 2.9% 3.2% 4.3% 3.8% 6.0% 4.4% 

          

ES 

MBE 0.0% 0.0% 0.0% d -0.5% d 0.0% d -0.1% d - - 
RMSE 1.0% 0.9% 3.3% d 4.7% d 0.6% d 2.6% d - - 
MAAPE 1.1% 0.9% 23.8% d 32.5% d 2.2% d 11.1% d - - 
σ 1.0% 0.9% 3.3% d 4.7% d 0.6% d 2.6% d   

          

FR 

MBE -0.1% -0.1% 0.2% 0.3% 0.4% 0.6% - - 
RMSE 1.3% 1.2% 3.2% 3.4% 2.8% 3.5% - - 
MAAPE 1.7% 1.7% 17.4% 20.3% 12.3% 13.4% - - 
σ 1.3% 1.2% 3.2% 3.4% 2.8% 3.0%   

          

IT 

MBE -0.2% -0.2% 0.5% 0.4% 2.6% b 1.9% - - 
RMSE 1.7% 1.7% 1.9% 2.2% 4.7% b 4.1% - - 
MAAPE 1.9% 1.9% 13.9% 14.1% 17.1% b 16.8% - - 
σ 1.7% 1.7% 1.8% 2.2% 4.0% b 3.6%   

          

NL 

MBE -4.1% b -2.9% b 0.0% a 0.0% a -3.5% b -8.7% b 26.0% b 12.5% b 

RMSE 6.2% b 5.9% b 0.9% a 0.7% a 10.3% b 14.0% b 34.9% b 24.1% b 
MAAPE 7.3% b 6.5% b 0.6% a 1.9% a 34.8% b 45.1% b 58.2% b 48.3% b 
σ 4.6% 5.1% 0.9% 0.7% 9.7% b 11.0% b 23.3% b 20.6% b 

          

UK 

MBE 3.0% b 3.4% b 0.1% -0.3% -2.9% b -7.3% b -5.6% b -7.0% b 
RMSE 5.2% b 4.7% b 3.4% 3.0% 10.1% b 9.6% b 9.0% b 10.7% b 
MAAPE 6.1% b 6.3% b 29.1% 31.1% 29.6% b 31.6% b 33.2% b 36.0% b 
σ 4.2% 3.3% 3.4% 3.0% 9.7% 6.2% 7.0% b 8.0% b 

Note: values in italics indicate problems with the raw data due to (a) extended periods with forecasts equal to the real-
time values (b) significant bias errors (>±2%), (c) the inclusion of other generation types (e.g. concentrating solar power 
(CSP) is included in PV in Spain), or (d) large differences in forecast accuracy between 2017 and 2018. As a result, these 
values are not considered in the evaluation of the best forecasts.  
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Figure 3-9 | Normalised time series of historical real-time values and day-ahead forecasts from 
ENTSO-E (ENTSO-E, 2018b) for the first week of April 2018 for the countries with the most accurate 
forecasts: (a) load in Spain (b) solar PV in Germany, (c) onshore wind in France, and (d) offshore wind in 
Denmark. Load is normalised to peak load, while vRES generation is normalised to the installed capacity. 
 

 
Figure 3-10 | Hourly forecast errors for the time series shown in Figure 3-9 for (a) load (b) solar PV, 
(c) onshore wind and (d) offshore wind.  
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3.3.2 Part B – Results of model fits for day-ahead forecast errors 

In this section, we show step-by-step the result of applying the method outlined in Part B for 
synthesising normalised day-ahead forecasts. Given space limitations, we focus on the model 
fit for onshore wind based on two years of French data from 2017 and 2018. The fitted 
parameters for the load, offshore wind and solar PV forecasts are provided in Appendix B. 

After first normalising the historical real-time values and day-ahead forecast series (Step 1), 
the total daily absolute errors are calculated (Step 2a) for each parameter as shown in 
Figure 3-11. The daily errors show volatility throughout the year, but do not display any strong 
underlying seasonality, except perhaps in the case of solar PV27. To determine the appropriate 
AR(𝑎𝑎)-GARCH(𝑝𝑝, 𝑞𝑞) model to fit (Step 2b), we plot the ACF and PACF of the total daily absolute 
error, shown in Figure 3-12 for onshore wind. Rapid decay of both the ACF and PACF after the 
first lag suggests that an AR(1)-GARCH(1,1) model would be appropriate to model the daily 
forecast volatility for this parameter. Fitting the AR-GARCH parameters (using the Python 
package arch (Sheppard et al., 2019)) leads to the following model coefficients: 𝜇𝜇 =
0.4265,𝜙𝜙1 = 0.1569,𝜓𝜓 = 0.0156, 𝛼𝛼1 = 0.00355, 𝛽𝛽1 = 0.995.  

  

  

Figure 3-11 | Total daily absolute error based on historical time series for the year 2018 for (a) load 
in Spain, (b) PV in Germany, (c) onshore wind in France, and (d) offshore wind in Denmark. 
 

(a) Load (b) Solar PV 

(c) Onshore wind (d) Offshore wind 
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After removing the daily volatility component from the hourly errors (Step 3), the hourly errors 
are binned based on the normalised real-time generation level into 20 bins (i.e. from 0 to 1 
with bin size 0.05), and the mean and standard deviation of the errors in each bin are calculated 
(Step 4). The results are shown in Figure 3-14, highlighting that error volatility generally 
increases with the generation level28. Making a probability density plot of the remaining hourly 
errors and fitting the data to several distributions shows that a Laplace distribution provides a 
good fit (Step 5) (Figure 3-13). With all the required model parameters fitted, new day-ahead 
forecasts can be synthesised for 2017 and 2018 (Steps 6,7,8). The Laplace distribution scale 
parameter is adjusted iteratively until the RMSE of the synthetic forecast matches the RMSE of 
the historical forecast, yielding a value of 1.7 (Step 9).  

 
Figure 3-12 | Autocorrelation function (ACF) and partial autocorrelation function (PACF) for the 
total daily absolute error for onshore wind (France, 2017-2018). Calculated for 30 one-hour time lags. 
 
The performance of the historical and synthetic day-ahead onshore wind forecasts is given in 
Table 3-2, as well as for load, solar PV, and offshore wind when the same method is applied. 
Given that the method is stochastic, each synthetic forecast will be slightly different; thus, the 
error metrics for the synthetic forecasts are calculated for 200 one-year forecasts to yield 
representative values29. Along with these overall metrics, the performance of the synthetic 
onshore wind forecast on an hourly basis is also shown in Figure 3-15, which depicts the 
historical real-time onshore wind normalised generation, historical day-ahead onshore wind 
forecast, and span of the synthetic day-ahead onshore wind forecasts for the first week of April 
2018. The span is calculated as the difference between the 95th percentile (P95) and 5th 
percentile (P5) values. Table 3-2 and Figure 3-15 show that our method is able to generate 
synthetic forecasts that agree well with the historical data based on high-level error metrics, 
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and generally mimic the behaviour of historical forecasts on an hourly basis. It is not possible 
to achieve complete agreement on all metrics, as adjusting the distribution parameters to 
match the historical metrics based on one parameter (i.e. RMSE) in Step 9 can cause the 
synthetic forecasts to deviate on another. 

 

 

Bin (𝑘𝑘) 𝜇𝜇𝑘𝑘 𝜎𝜎𝑘𝑘 
[0.0,0.05] -0.1% 1.0% 
(0.05,0.1] -0.3% 1.3% 
(0.1,0.15] -0.2% 1.8% 
(0.15,0.2] 0.2% 2.2% 
(0.2,0.25] 0.7% 2.9% 
(0.25,0.3] 1.6% 3.2% 
(0.3,0.35] 1.8% 3.3% 
(0.35,0.4] 2.1% 3.3% 
(0.4,0.45] 2.6% 3.6% 
(0.45,0.5] 2.1% 4.1% 
(0.5,0.55] 1.5% 4.4% 
(0.55,0.6] 1.5% 4.7% 
(0.6,0.65] 0.6% 4.4% 
(0.65,0.7] -0.5% 3.2% 
(0.7,0.75] -2.6% 2.5% 
(0.75,0.8] -2.8% 2.6% 

Figure 3-14 | Box plots of the hourly onshore wind errors with daily volatility removed, binned 
based on the normalised real-time generation level. The table on the right shows the mean 𝝁𝝁𝒌𝒌 and 
standard deviation 𝝈𝝈𝒌𝒌 of the error in each bin. The bins above 0.8 are empty. 

Figure 3-13 | Probability density plot of devolatilitsed hourly onshore wind errors for France (2017-
2018), fitted to several distributions.  
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Table 3-2 | Comparison of error metrics between the historical (2017-2018) forecast errors and 
synthetic day-ahead forecasts for load (from Spain), solar PV (from Germany), onshore wind (from 
France) and offshore wind (from Denmark). Error metrics are calculated with respect to the real-time 
series. The synthetic errors are reported as the mean value based on 200 one-year synthetic forecast 
simulations, with the 5th and 95th percentile vales (P5, P95) given alongside in brackets. 
 Load  Solar PV 
 Historical Synthetic  Historical Synthetic 
MAAPE 0.92% 0.85% (0.76%,0.96%)  10.1% 11.6% (10.9%,12.2%) 
MBE 0.0% -0.00% (-0.08%,0.07%)  -0.04% -0.01% (-0.09%,0.06%) 
RMSE 0.98% 0.97% (0.83%,1.18%)  1.5% 1.44% (1.16%,1.76%) 
σ 0.11 0.11 (0.11,0.11)  0.16 0.16 (0.16,0.16) 
Skew 0.02 0.04 (0.03,0.05)  1.43 1.46 (1.45,1.47) 
Kurtosis -1.01 -0.98 (-0.99,-0.96)  0.81 0.92 (0.87,0.97) 
 Onshore wind  Offshore wind 
 Historical Synthetic  Historical Synthetic 
MAAPE 13.5% 11.6% (10.4%,12.8%)  16.0% 14.7% (13.2%,16.2%) 
MBE 0.6% 0.24% (-0.06%,0.53%)  -1.1% -0.19% (-0.60%,0.22%) 
RMSE 3.6% 3.59% (2.99%,4.25%)  4.5% 4.61% (3.95%,5.35%) 
σ 0.14 0.15 (0.15,0.15)  0.20 0.20 (0.19,0.20) 
Skew 1.5 1.37 (1.29,1.48)  0.23 0.28 (0.24,0.34) 
Kurtosis 2.2 1.61 (1.27,2.13)  -1.23 -1.13 (-1.22,-1.00) 

 

 
Figure 3-15 | Historical real-time onshore wind generation, historical day-ahead onshore wind 
forecast, and span (P95-P5) of synthetic day-ahead onshore wind forecast for France for the first 
week of April 2018. The span is based on 200 one-year synthetic forecasts. 
 

3.3.3 Part C – Results of European day-ahead, intraday and balancing 
market simulations 

This section presents the results of the day-ahead, intraday and balancing market simulations. 
To put the volume of each of these markets in perspective, Figure 3-16 shows the average 
total volume across all weather years of the day-ahead, intraday and balancing markets 
between 2017 and 2040 for both the no transmission and copper-plate cases. We first discuss 
the day-ahead results in more detail, followed by the intraday and balancing markets.   
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Figure 3-16 | Total annual volumes traded on European day-ahead (top row), intraday (middle row) 
and balancing (bottom row) markets over time for the case of no transmission (left column) and 
unlimited transmission (right column). The values shown are the average volumes based on simulations 
for 32 weather years. For the day-ahead and intraday markets, the share which could be covered by vRES 
is shown, as well as the residual energy that would need to be provided by residual technologies in the 
portfolio. For the balancing market, the average positive and negative balancing energy are shown.  
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3.3.3.1 Day-ahead market 

Between 2017 and 2040, total day-ahead trades increase by 17% to an average of 
3660 TWh y-1, in line with the assumed increase in electricity demand (Figure 3-16). As a result 
of the large-scale vRES deployment assumptions, total vRES day-ahead traded volumes 
increase from an average of just 500 TWh y-1 in 2017 to between 1700 (no transmission) and 
1870 TWh y-1 (copper-plate) in 2040, depending on the level of vRES curtailment. Curtailment 
ranges between 23 and 46 TWh y-1 in 2040 in the copper-plate case, and 171 and 225 TWh y-1 

in the case of no transmission (Figure 3-17). The net vRES penetration averages 46% in 2040 
in the case of no transmission, increasing to 51% in the copper-plate case due to the lower 
curtailment. As a result of increasing supply from vRES, total residual demand is 870 TWh 
(33%) and 700 TWh (27%) lower in 2040 than in 2017 in the copper-plate and no transmission 
cases respectively (Figure 3-18), showing that vRES significantly reduces the need for 
dispatchable energy in the day-ahead market. 

3.3.3.2 Intraday market 

Compared with 2017, the total volume of the intraday market increases by 60 TWh y-1 (~160%) 
to nearly 100 TWh y-1 by 2040, largely as a result of the additional day-ahead forecast error 
caused by increasing vRES deployment (Figure 3-16). Without these trades, the 
additional 60 TWh y-1 of day-ahead forecast error would have to be resolved on balancing 
markets.   

In 2017, excluding cross-border transmission, trading between vRES and load BRPs could 
resolve some 33% (12 TWh y-1) of the 36 TWh y-1 of day-ahead forecast errors, leaving an 
average residual of 24 TWh y-1 which would need to be resolved by dispatchable technologies 
(Figure 3-19). In the copper-plate case, cross-border trading allows for more trades between 
vRES and load BRPs in different countries, allowing them to resolve on average 72% 
(26 TWh y-1) of day-ahead forecast errors, leaving only 10 TWh y-1 for dispatchable 
technologies. At the same time as the total intraday market increases, so does the potential 
for vRES and load trading. By 2040, intraday trading between vRES and load BRPs can 
resolve 75% (73 TWh y-1) of their day-ahead forecast errors in a copper-plate Europe, falling 
to 40% (37 TWh y-1) in the case of no cross-border trading. As a result, the requirement for 
dispatchable energy on intraday markets depends significantly on transmission: in the copper-
plate case, residual intraday volumes increase from 10 TWh y-1 in 2017 to 23 TWh y-1 in 2040, 
while for the no-transmission case they rise from 24 TWh y-1 to 58 TWh y-1. Thus, the need for 
dispatchable energy grows on the intraday market with increasing vRES penetration, but this 
is far outweighed by the decline in day-ahead dispatchable market volumes. 
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Figure 3-18 | Total annual residual demand in Europe based on day-ahead market trades for the 
copper-plate and no transmission cases, based on 32 simulated weather years. The shaded area 
between the dashed lines indicates the range of values across all weather years, while the darker shaded 
area indicates the interquartile range (P75-P25). The solid lines show the mean across all weather years. 
 

Figure 3-17 | Total annual day-ahead vRES curtailment over time in Europe in the case of unlimited 
transmission (copper-plate assumption) and no transmission, based on 32 simulated weather years. The 
area between the dashed lines indicates the range of values across all weather years, while the darker 
shaded area indicates the interquartile range (P75-P25). The solid lines show the mean value across all 
weather years. 
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Figure 3-19 | Intraday trading volumes over time. The black trend shows the total intraday trades, the 
blue trend shows the potential intraday trades between vRES and load BRPs excluding cross-border 
transmission, while the orange trend shows the potential intraday trades between vRES and load BRPs 
assuming copper-plate transmission. The light shaded area between the dashed lines indicates the range 
of values across all weather years, while the darker shaded area indicates the interquartile range (P75-P25). 
The solid line shows the mean. 

3.3.3.3 Balancing market and reserves 

Figure 3-20 shows the distribution of imbalance volumes per ISP for selected countries over 
time, without any contribution from imbalance netting. Due to the increasing penetration of 
vRES, the imbalance distributions in all countries become flatter, with significantly wider tails. 
For example, in Germany, 99.5% of imbalances lie in the range of -0.49 GWh to +0.42 GWh 
in 2017, corresponding to upward and downward reserve requirements of 1.9 GW and 1.7 GW 
respectively. However, by 2040, 99.5% of imbalances lie in the range of -1.17 GWh and 
+1.16 GWh, corresponding to a required upward reserve of 4.7 GW and downward reserve 
of 4.6 GW. At the European level, total requirements for positive balancing energy from 
dispatchable sources grow from an average of 11.6 TWh y-1 in 2017 to 26.4 TWh y-1 
in 2040 (+127%) assuming no transmission, and from 8.8 TWh y-1 to 21.3 TWh y-1 (+142%) 
assuming full imbalance netting across a copper-plate Europe (Figure 3-16). The requirements 
for negative balancing energy are comparable with those for positive balancing energy. In 
terms of balancing capacity, Figure 3-21 shows how Europe-wide reserve requirements change 
over time with increasing vRES penetration, if 99.5% of imbalances must be covered. The plot 
shows both the total reserve requirement with no imbalance netting between countries, and 
with maximum imbalance netting (copper plate) and common Europe-wide reserve 
procurement. Between 2017 and 2040, the requirements for upward balancing capacity 
increase from 11.4 GW to 23.7 GW (+108%) in the case of no cross-border transmission or 
reserve sharing, and from 8.8 GW to 16.2 GW (+84%) in the case of full imbalance netting and 
reserve sharing. Thus, implementing imbalance netting and a common reserve across Europe 
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could lead to 19% lower balancing energy requirements and 32% balancing capacity 
requirements in 2040. Reserve requirements remain relatively constant between 2017 and 
2025 before increasing until 2040. This is partly due to the slower assumed vRES deployment 
rate before 2025, but may also be a result of the difference in magnitude between load and 
vRES forecast errors. At relatively low vRES penetrations (<25%), the imbalances caused by 
load forecast errors are larger than the imbalances caused by vRES forecast errors, and are the 
main factor determining reserve requirements. However, at higher penetrations, vRES-induced 
imbalances become the dominanting factor in determining reserve requirements. The reserve 
capacities in Figure 3-20 and Figure 3-21 represent the maximum required reserve for a given 
year while, in practice, applying dynamic reserve sizing (e.g. weekly, daily, hourly) would mean 
that a lower volume of reserves could be contracted during many periods (de Vos et al., 2019).  

  

  
Figure 3-20 | Probability distribution of average imbalance volumes (GWh) and required 
reserve (GW) per 15-minute imbalance settlement period (ISP) for Belgium (BE), Germany (DE), 
France (FR) and the Netherlands (NL) for selected years, excluding any contribution from imbalance 
netting. The dashed vertical lines indicate the required reserve capacity (GW) for the years 2017 and 2040, 
assuming reserves are sized to cover 99.5% of imbalances. Values are based on simulations of 32 weather 
years (1985-2016). 
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Figure 3-21 | Required reserve capacity over time across Europe, assuming either no transmission 
and a separate reserve per country, or full imbalance netting (copper-plate transmission) and full 
reserve sharing between countries. Upward (raise) reserve capacity is shown as positive, while 
downward (lower) reserve capacity is shown as negative. The reserve requirement is sized to cover 99.5% 
of imbalances experienced based on 32 years of weather data for each year between 2017 and 2040. 
 

 Discussion 
When applying our method for synthesising day-ahead forecast errors and using them for 
market simulations, attention should be paid to several aspects. These are outlined below. 

3.4.1 Limitations of AR-GARCH method for synthetic day-ahead 
forecasts 

In this study, we demonstrate that the AR-GARCH method is a reliable way to synthesise day-
ahead forecast errors. However, in certain cases, the method may need to be adjusted for 
correlations between countries and seasonality, and could be improved with additional 
historical data: 

• Forecast errors for the same parameter (i.e. load, onshore wind, offshore wind, PV) 
between countries, as well as forecast errors for different parameters within the same 
country, are assumed to be uncorrelated. This is supported by an analysis of historical 
forecast errors in several European countries (see Appendix B). However, in other 
regions, or if significant vRES deployment occurs near national borders, forecast errors 
may become more strongly correlated (Herre et al., 2019). In this case, the method 



Chapter 3 

 
102 

needs to be extended to account for correlations between the forecast errors in 
different countries. 

 
• The method as outlined assumes no seasonality in daily forecast error volatility. As 

shown in Figure 3-11, this assumption seems valid for load, onshore and offshore wind. 
Only solar PV displays somewhat more volatile forecasts in summer. The AR-GARCH 
model can be adjusted to account for this seasonality (e.g. using a Markov-switching 
model (Haas, 2004)). 

  
• Due to limited good-quality data, we use only two years of historical data to fit the AR-

GARCH models, although more historical data would improve the fit.  
 
• We assume day-ahead and intraday forecast accuracy remains the same until 2040. 

However, country-level forecasts are likely to improve over time due to better 
forecasting methods, and greater spatial diversity over a wider area (Ernst et al., 2010). 
Our method can easily account for improved forecast accuracy (see Step 9). Improved 
day-ahead forecasts would reduce intraday trading volumes, while better intraday 
forecasts would simultaneously increase intraday trading volumes and reduce 
balancing volumes. 

3.4.2 Interpretation of market simulations  

Our market simulations provide insights into the development of day-ahead, intraday, and 
balancing markets and their interactions under different levels of vRES penetration. However, 
the results cannot be compared directly with historical data. For example, total European 
day-ahead trades for the year 2017 from the model (~3100 TWh) are more than double the 
total amount of historical day-ahead trades in 2017 (~1400 TWh, see Figure 3-1), while the 
total modelled intraday trades in 2017 (~40 TWh) are less than half of the actual intraday 
trades in 2017 (~80 TWh, see Figure 3-3). Moreover, the modelled reserve requirements for 
Germany in 2040 (~4.7 GW, see Figure 3-20) are similar to the requirements contracted today 
when far less vRES capacity is installed (see Figure 3-4). Thus, when interpreting the market 
simulation results, the following points should be considered:  

• The day-ahead results should be interpreted as indicative of the potential volume of 
all day-ahead and forwards trades concluded on longer time horizons. This assumption 
does not affect the intraday and balancing market results, as deviations from 
contracted volumes on day-ahead and longer-term markets still need to be resolved 
on these short-term markets. 

 
• Our intraday and balancing market simulations exclude factors such as forced outages, 

strategic deviations and schedule leaps. Including these factors would increase the 
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intraday and balancing trading volumes as well as balancing capacities required, 
bringing them closer to historical values. 

 
• Transmission limitations between and within countries are ignored. This may 

overestimate the potential of cross-border trading and imbalance netting, and 
underestimate the amount of intraday trading and imbalances. For comparison, in 2017 
approximately of 75% of intraday trades in Europe were made within the same price 
zone, while 25% were made between price zones (ACER & CEER, 2018). However, by 
simulating both for the case of no transmission and unlimited transmission 
(copper-plate), our results provide insights on how the relative sizes of the day-ahead, 
intraday and balancing markets could change with increasing vRES penetration, 
depending on the potential of large-scale transmission to facilitate cross-border 
intraday trading and balancing. The effect of limited transmission capacity could be 
included by incorporating the synthetic day-ahead and intraday forecasts in a unit 
commitment and dispatch model and modelling transmission explicitly. 

 
• We assume that load and vRES BRPs trade away all their day-ahead forecast errors on 

the intraday market based on revised intraday forecasts. However, vRES generators – 
especially smaller ones – currently face barriers to trading on intraday markets such as 
high transaction costs and, in some countries (e.g. Spain, Italy), gate closure times 
which are far from real time (EPEX, 2019a; Hu et al., 2018; Scharff & Amelin, 2016). 
Moreover, as shown by the relatively low trading volumes (see Figure 3-3), many of 
Europe’s intraday markets are currently rather illiquid (Hu et al., 2018). In the absence 
of well-functioning intraday markets, day-ahead forecast errors would instead need to 
be resolved on balancing markets, which could mean an additional 60 TWh y-1 by 2040 
on top of the requirements shown in Figure 3-19. While there are signs that market 
liquidity is increasing (see Figure 3-3), reforms such as shifting from continuous to 
discrete intraday auctions (Chaves-Ávila & Fernandes, 2015), and reforming balancing 
markets so that vRES receive sufficient price signals to trade on intraday markets would 
help to facilitate the integration of vRES (ACER & CEER, 2018; Hu et al., 2018). 

 
• Our AR-GARCH models for load, PV and wind day-ahead forecast errors are fit using 

data from the countries with the most accurate forecasts. Fitting separate AR-GARCH 
models to each country’s day-ahead forecasts may yield higher day-ahead forecast 
errors, resulting in higher intraday trading volumes. However, given the erroneous data 
reported for some countries on the ENTSO-E Transparency Platform, and the likely 
improvement of forecast accuracy in the worst countries, we consider our approach 
reasonable.  
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• We model only the single trades required to trade electricity on the day-ahead market, 
resolve day-ahead forecast errors, and resolve imbalances. However, electricity can be 
bought and sold more than once across markets in different time frames (e.g. forwards, 
day-ahead, intraday), and some markets are more liquid than others. For example, 
market churn rates in Germany are currently 3 to 7 times higher than in most other 
European markets (EC, 2019b)30. This makes it difficult to compare our simulation 
results directly with historical trading volumes.  

 
• We use historical vRES profiles as a proxy for weather in future years. However, climate 

change may affect weather patterns, which would impact our results. For example, 
(Wohland et al., 2017) find that wind conditions over Europe could become more 
homogenised as Europe’s climate warms. This would reduce the potential of 
geographical smoothing of vRES generation via cross-border intraday trading and 
imbalance netting, leading to higher reserve requirements. 

 Conclusion 
In this study, we outline a new method for synthesising day-ahead forecast errors for load, 
and generation from variable renewable energy sources (vRES) such as solar and wind energy. 
The method incorporates a generalised autoregressive conditional heteroscedasticity 
(AR-GARCH) model to account for the daily volatility observed in historical forecast errors, and 
a dependence on real-time generation (or load) level to account for hourly volatility. By 
applying our method to country-level data available from transmission system 
operators (TSOs), we show that it can produce day-ahead forecasts that match well with 
historical forecasts. Where previous studies have used ad-hoc or non-transparent methods, 
our study fills a gap by outlining a step-by-step approach for synthesising day-ahead forecasts 
of a given time series, requiring relatively few parameters.  

Our method can be used by power system modellers and TSOs for power system planning 
studies, based on different projections of load and vRES deployment. We demonstrate how 
this method can be used by performing simulations of a future European power system in 
which the penetration of vRES rises from 15% in 2017 to 50% in 2040. Using our AR-GARCH 
method to synthesise day-ahead forecasts, and intraday forecasts based on persistence, we 
explore how higher vRES forecast errors could affect day-ahead, intraday and balancing 
market volumes, and to what extent these errors could be resolved by trading between vRES 
generators in the case of no cross-border trading, and a copper-plate Europe. Other factors 
which contribute to intraday trading and imbalance volumes such as forced outages, strategic 
deviations and schedule leaps are not considered. 
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Based on our simulations, we find that potential intraday market volumes increase by 
60 TWh y-1 (+160%) between 2017 and 2040 as a result of additional day-ahead forecast 
errors. Intraday trading within countries and between countries could allow between 40% 
(without cross-border trading) and 75% (copper plate) of day-ahead forecast errors to be 
resolved by vRES, reducing the need for dispatchable energy. In the absence of intraday 
trading, these errors would need to be resolved by TSOs on balancing markets by procuring 
additional reserve capacity, highlighting the role liquid intraday markets can play in supporting 
the integration of vRES in Europe. Regarding balancing markets, we find that full 
implementation of imbalance netting and a common Europe-wide reserve could reduce 
balancing energy and capacity requirements for vRES integration by 19% and 32% respectively 
in 2040 compared with country-specific reserves and no imbalance netting. 

Further research could focus on extending our AR-GARCH method to account for cross-
correlations in forecast errors between different parameters and countries, and applying it 
with higher spatial resolution. Further research could also apply the method in unit 
commitment and economic dispatch simulations of sequential markets (e.g. day-ahead, 
intraday, balancing) to see the effect of forced outages and transmission limitations on 
intraday and balancing volumes, and higher temporal resolution to see the impact of schedule 
leaps. 
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Footnotes to Chapter 3

1 Both futures and forwards are contracts to deliver or consume a certain volume of electricity in the future, for a price 
agreed upon in the present. However, futures are standardized products traded on exchanges, while forwards are 
tailored bilateral agreements made over the counter (Economic Consulting Associates, 2015). 

2 Some studies (e.g. (Graabak & Korpås, 2016; Graabak et al., 2017; Grams et al., 2017; Mileva et al., 2016)) use the term 
balancing to refer to supplying residual demand (i.e. hourly demand minus vRES generation) principally on day-ahead 
markets. However, the European Commission defines balancing as “…all actions and processes, on all timelines, through 
which TSOs ensure, in a continuous way, the maintenance of system frequency within a predefined stability range” (EC, 
2017b). Thus, in this study, we use the term balancing to refer to TSOs maintaining supply and demand in balance 
using real-time balancing markets. 

3 Balancing capacity is the volume of capacity (in MW) that a BSP has agreed to hold in reserve (i.e. not offer on day-
ahead or other markets) for which they agree to submit bids for corresponding volumes of balancing energy (in MWh) 
to the TSO (EC, 2017b). 

4 For comparison, vRES represented 15% of total EU28 generation in 2017 (Eurostat, 2019d). The Energy Roadmap 2050 
study published by the European Commission (EC) in 2011 considers between 32%-65% vRES by 2050 (EC, 2011d), 
while a more recent (2018) EC study  looking at scenarios consistent with the Paris Agreement considers between 65%-
72% vRES by 2050 (EC, 2018a). Meanwhile, ENTSO-E scenarios consider vRES shares between 48%-58% by 2030, and 
between 65%-81% by 2040 (ENTSO-E & ENTSO-G, 2018). In the academic literature on nearly 100% European 
renewable power systems, the shares can be higher. For example, Child et al. consider 75% to 78% vRES by 2050 (Child 
et al., 2019), while Plessmann & Blechinger consider 83% (Plessmann & Blechinger, 2017). 

5 The geographic scope of this study included Norway, Sweden, Denmark, Belgium, the Netherlands and Germany, 
6 ARIMA models model a time series as a combination of autoregressive (AR)  and moving average (MA)  processes 

(Hyndman & Athanasopoulos, 2018). If the time series is non-stationary it must first be differenced or integrated (I). 
The order of the autoregressive 𝑝𝑝, moving average 𝑞𝑞, and level of differencing 𝑑𝑑 included in the model define it as an 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝, 𝑑𝑑, 𝑞𝑞) model. 

7 We use the MAAPE as an alternative metric to the more well-known mean absolute percentage error (MAPE), as the 
latter can yield large and undefined values for values of 𝑌𝑌𝑡𝑡 approaching zero (Kim & Kim, 2016). Essentially, MAAPE is 
a slope as an angle, while MAPE is a slope as a ratio. 

8This convention is purely for convenience so that intraday trade and balancing requirements can be simply calculated 
as the sum of all component forecast errors in section 3.2.3. 

9 In the case of wind, this is at least partly due to the fact that the wind power curve is non-linear with respect to wind 
speed (Olauson et al., 2016). 

10 We change indices here from time periods (𝑡𝑡) to days (𝑑𝑑) and hours (ℎ) to clearly show how the daily and hourly-based 
parameters are calculated; however, the series 𝜀𝜀𝑡̂𝑡  and 𝜀𝜀𝑑̂𝑑,ℎ are identical. Similarly, when we change back to period-
based indices in Step 7, the series 𝜀𝜀̂′𝑡𝑡 and 𝜀𝜀̂′𝑑𝑑,ℎ are also identical. 

11 The series 𝛿𝛿𝑑𝑑 should be checked for stationarity before fitting the AR-GARCH model. This can be done using 
standard statistical tests (e.g. Augmented Dickey Fuller) and, if necessary, transformations applied to make the series 
stationary. Possible sources of non-stationary are seasonality or, in the case of vRES, increasing deployment of vRES 
capacity during the period considered. 

12 Engle (Engle, 1982) originally proposed using a normal distribution to model disturbances. However, this sometimes 
fails to capture the higher kurtosis (i.e. “fat-tailedness”) and skewness observed in some processes. Based on our data, 
we find a Skewed Student 𝑡𝑡-distribution provides the best results. See Hansen (B. Hansen, 1994). 

13 In our approach we use bins of load or generation. Another approach would be to use bins according to the hour of 
the day, similar to hourly price forward curves employed in the literature for electricity prices (Kiesel et al., 2019). 

14 The number of parameters required will vary depending on the chosen distribution. 
15 ENTSO-E’s TYNDP 2018 presents several scenarios for the years 2020, 2025, 2030 and 2040 with varying levels of vRES 

deployment and electricity demand. In this study, we assume a vRES deployment trajectory for these years following 
the Best Estimate 2020, Best Estimate 2025, Distributed Generation 2030 and Global Climate Action 2040 scenarios 
respectively (ENTSO-E, 2018f). These scenarios are chosen for the specific time horizons as the Global Climate Action 
2040 scenario has the most ambitious vRES deployment by 2040, while the other scenarios give the most realistic 
deployment trajectory for 2020, 2025, and 2030. Demand profiles for 2017 are taken from historical data (ENTSO-E, 
2018b), and demand profiles for the key years 2020, 2025, 2030 and 2040 are taken from the respective scenarios 
chosen for the vRES deployment trajectory for consistency. The installed vRES capacity and demand in intervening 
years are based on linear interpolation between the starting year (2017) and the key scenario years (2020, 2025, 2030 
and 2040). 

16 The raw dataset contains 32 years (1985 to 2016) of weather data for solar PV, and 37 years for wind. However, it is 
important that simulations maintain temporal consistency to preserve correlations between real-time vRES profiles in 
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neighbouring countries, thus we only use data for the 32 weather years for which both wind and solar PV data are 
available (1985 to 2016). 

17 Relatively simple methods can be used to improve on persistence forecasts for solar PV, such as accounting for real-
time cloudiness, and the path of the sun across the sky. These ‘smart persistence’ methods can be up to 20% better 
than persistence for a 30-minute forecast horizon (Kumler et al., 2018). Some studies suggest 15-minute ahead PV 
forecasts made with advanced neural network techniques could be 40% to 70% better than persistence (Li et al., 2019). 
However, not all market players may have the resources to develop such advanced methods, which is why we assume 
lower values. 

18 For simplicity, we model day-ahead, intraday and balancing markets all with a time resolution of 15-minutes. However, 
most day-ahead markets are hourly, while intraday markets can be based on hourly, 30-min or 15-min products. 
Commission regulation 2017/2195 establishing a guideline on electricity balancing requires all TSOs to harmonise to 
an ISP of 15 minutes by 2021 (ENTSO-E, 2018a).  As the vRES profiles from Renewables Ninja and load profile scenarios 
from ENTSO-E are at hourly resolution, we first synthesise hourly forecasts for load and vRES generation, then 
downscale them (as well as the real-time values) to 15-minute resolution for the simulations. This allows us to account 
for the impact of vRES on intraday and balancing markets, without the impact of schedule leaps. 

19 This assumption was checked by calculating correlation coefficients for historical forecast errors in neighbouring 
countries for the years 2017 and 2018, which showed no strong correlations (see Appendix B). 

20 It is a legal requirement in Germany that BRPs nominate a balanced position at the closure of the intraday market. 
However, in the Netherlands this is not the case, as so-called ‘passive balancing’ is allowed (Brijs et al., 2017). 

21 Note that Eq. (3-18) and Eq. (3-19) follow the same sign convention as Eq. (3-6). For generators, if the intraday forecast 
generation is lower than the day-ahead forecast, the BRP will have a negative position, thus the BRP must buy energy 
on the intraday market to meet their day-ahead commitments. Conversely, a positive value for the intraday trades the 
BRP has a surplus of generation and can sell this on the intraday market. The opposite is true for load BRPs. 

22 FCR requirements are not considered as these are driven mostly by the largest generators or transmission lines in the 
system. With the possible exception of very large (offshore) wind farms, the loss of power resulting from an outage of 
a large (e.g. nuclear) power plant is likely to be much larger than the loss of power from an outage of a vRES generator 
(Brouwer et al., 2014). 

23 Many studies have been performed showing the benefits of integrating European balancing markets (e.g. (Doorman 
& van Der Veen, 2013; Farahmand et al., 2012; Farahmand & Doorman, 2012; Gebrekiros et al., 2015; van den Bergh et 
al., 2018)). 

24 Note that caution is necessary when comparing error metrics between solar PV and other parameters, as solar PV 
forecast error is zero at night, reducing the overall annual error. 

25 For example, the mean absolute error (calculated similar to MBE in Eq. (3-2) but instead taking the absolute value of 
𝜀𝜀𝑡𝑡)  of German wind and solar forecasts has increased over time; however, the relative increase in installed capacity has 
been far greater. Thus, the mean absolute error of German day-ahead wind and solar forecasts reduced by 25% and 
44% (relatively) respectively between 2010 and 2016 (Gürtler & Paulsen, 2018). 

26 Given that European day-ahead markets close at 12:00 (D-1), we checked whether day-ahead forecast error increased 
throughout the day, suspecting that errors might increase for periods later in the day from when the original day-
ahead forecasts are made. However, this did not appear to be the case. 

27 Using the Augmented Dickey Fuller test, the total daily error series for all four parameters were found to be 
stationary at a 95% significance level (p <0.05) except for solar PV, which yielded a slightly higher p-value of 0.07. 
This is most likely due to the mild seasonality observed. 

28 The choice of 20 bins is arbitrary. However, the bins should cover all possible values of the real-time generation (or 
load) if the method is to be applied to other weather years or countries. Depending on the spread of the data, this may 
mean that some bins are completely empty or contain fewer data points than others, which affects the reliability of the 
𝜇𝜇𝑘𝑘 and 𝜎𝜎𝑘𝑘 values. This problem can be addressed by including more historical data when fitting the AR-GARCH model, 
or by replacing the 𝜇𝜇𝑘𝑘 and 𝜎𝜎𝑘𝑘values in less populated (or empty bins) with more representative values.  

29 Enough simulations were performed for the mean, P5 and P95 values to converge at repeatable values. 
30 The churn rate is an estimate of how many times one MWh of electricity is traded before it is consumed, and is 

calculated as the total volume of electricity traded (including exchange executed and over-the-counter  markets on 
the spot and the curve) and electricity consumption (EC, 2019b). 
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Abstract 
In this study, we model seven scenarios for the European power system in 2050 based on 
100% renewable energy sources (RES), assuming different levels of future demand and 
technology availability, and compare them with a scenario which includes low-carbon non-
RES technologies. We find that a 100% RES European power system could operate with the 
same level of system adequacy as today when relying on European resources alone, even in 
the most challenging weather year observed in the period from 1979 to 2015 (2010). However, 
based on our scenario results, realising such a system by 2050 would require: (i) an 80% 
increase in generation capacity to at least 1.8 TW (compared with 1 TW installed today), (ii) 
reliable cross-border transmission capacity at least 140 GW higher than current levels (60 GW), 
(iii) the well-managed integration of heat pumps and electric vehicles into the power system 
to reduce demand peaks and biogas requirements, (iv) the implementation of energy 
efficiency measures to avoid even larger increases in required biomass demand, generation 
and transmission capacity, (v) wind deployment levels of 7.5 GW y-1 (currently 10.6 GW y-1) to 
be maintained, while PV deployment to increase to at least 15 GW y-1 (currently 10.5 GW y-1), 
(vi) large-scale mobilisation of Europe’s biomass resources, with power sector biomass 
consumption reaching at least 8.5 EJ in the most challenging year (compared with 1.9 EJ today), 
and (vii) increasing solid biomass and biogas capacity deployment to at least 4 GW y-1 and 
6 GW y-1 respectively. We find that even when wind and solar photovoltaic (PV) capacity is 
installed in optimum locations, the total cost of a 100% RES power system (~530 €bn y-1) 

would be approximately 30% higher than a power system which includes other low-carbon 
technologies such as nuclear, or carbon capture and storage (~410 €bn y-1). Furthermore, a 
100% RES system may not deliver the level of emission reductions necessary to achieve 
Europe’s climate goals by 2050, as negative emissions from biomass with carbon capture and 
storage may still be required to offset an increase in indirect emissions, or to realise more 
ambitious decarbonisation pathways. 
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 Introduction 
In 2011, the European Union (EU) reaffirmed its objective to reduce greenhouse gas (GHG) 
emissions by 80-95% by 2050 compared to 1990 levels, this being seen as a necessary step to 
keep global warming below 2 ºC in line with the projections of the Intergovernmental Panel 
on Climate Change (IPCC) (EC, 2011a). This was followed in 2016 by the Paris Agreement to 
keep warming “well below 2 °C above pre-industrial levels and pursue efforts to limit the 
temperature increase to 1.5 °C above pre-industrial levels” (Climate Analytics, 2016; UNFCCC, 
2017b). In order to achieve either of these goals, emissions from the power sector must fall 
essentially to zero, or even turn negative by 2050 (Anderson & Broderick, 2017; EC, 2011c). 
This will require large-scale implementation of low-carbon technologies such as renewable 
energy sources (RES), nuclear power, and carbon capture and storage (CCS).  

For one reason or another, a number of studies have excluded nuclear and CCS technologies 
and investigated whether national power systems could rely on 100% RES, such as those for 
Denmark (H. Lund & Mathiesen, 2009; Mathiesen et al., 2011), the Netherlands (Urgenda, 
2014), Germany (Knorr et al., 2014; Wagner, 2014), France  (ADEME, 2015), Ireland (Connolly 
et al., 2011), Australia (Elliston et al., 2014), New Zealand (Mason et al., 2010, 2013) and the 
United States (Jacobson, Delucchi, Bazouin, et al., 2015). Fully renewable scenarios have also 
been proposed for the whole of Europe in 2050, of which the most notable are summarised in 
Table 4-11. These scenarios are usually developed using energy system models to assess 
whether projected demand could be met by potential RES supply; however, sufficient RES 
supply does not indicate that a 100% RES power system is feasible as, due to their intermittent 
generation, variable renewable energy sources (vRES) such as wind and photovoltaics (PV) 
make balancing electricity demand and supply more difficult than in power systems without 
vRES (Huber et al., 2014; P. D. Lund et al., 2015; Papaefthymiou & Dragoon, 2016; 
Papaefthymiou et al., 2014). In a 100% RES power system, any residual demand not supplied 
by vRES must be provided by one of the dispatchable RES generation technologies (hydro, 
bioelectricity, concentrating solar thermal power (CSP), and geothermal), or storage. However, 
in the short term, technical limitations mean that it may not be possible for these plants to 
ramp up and down quickly enough to keep supply and demand in balance from one moment 
to the next, leading to over-voltages or unserved energy in the network. In the long-term, 
some years can be less sunny or windy then others, meaning that wind and PV installations 
cannot be relied upon to produce the same amount of electricity each year. Therefore, we 
consider that any assessment of the feasibility of a 100% RES power system should include 
some analysis of both its long- and short- term reliability. 
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Footnotes for Table 4-1 
a Excluding grid losses and own consumption in electricity generation sector 
b  ECF’s 100% RES scenario was based on an 80% RES scenario, increased to 100% RES by adding 15% CSP generation 

from North Africa and 5% from Enhanced Geothermal technologies. 
c Includes wave, tidal and all other forms of marine energy. 
d Hydrogen is reported as non-renewable in this table for clarity as even though some studies assume hydrogen is 

100% renewable (e.g. (GWEC et al., 2015)), it is not always clear. 
e  Final consumption (3889 TWh) reported does not include 1924 TWh of demand for hydrogen production, or 207 TWh 

for synfuel production. Once included, total final consumption is 6020 TWh. 
f Total installed capacity (2460 GW) and generation (5764 TWh) reported in original study for OECD Europe do not 

include assumed import of 620 TWh y-1 from north African CSP. Thus, CSP capacity is increased to compensate for 
this by assuming the same capacity factor for North Africa CSP as for European CSP in the study (55%). 

g Calculated from total reported demand of 4900 TWh y-1, including 10.5% grid losses as assumed in original study. 
h Based on Eurostat data for EU28 and NO, Swiss final consumption (58.2 TWh) from the Swiss Federal Office of Energy 

(Bundesamt für Energie, 2017). 
i Only aggregated generation from PV and CSP of 1021 TWh was reported in this study. Disaggregated by assuming a 

55% capacity factor for CSP. 
j  Considering wind, PV and ocean power as variable renewable energy sources (vRES). Run-of-river (RoR) hydro capacity 

could also be considered vRES, however not all studies indicate the share of RoR capacity. 
k Modelling studies were performed by Energynautics on an earlier (2009) edition of the Energy Revolution report 

(EREC & Greenpeace, 2009; Tröster et al., 2011). This included transmission but, judging from published information, 
did not model detailed generator flexibility constraints. No detailed modelling of the most recent version of the 
Energy Revolution report could be found. 

l PRIMES is an energy system model developed by the E3MLab  at the National Technical University of Athens  
(E3MLab, 2016), it is not a detailed power system model. MESAP and PlaNet are energy system and network planning 
models originally developed by the University of Stuttgart but now maintained by Seven2one (Aalborg University, 
2017). Antares is a sequential Monte-Carlo power system simulator developed by RTE (Doquet et al., 2011). 

m  Current contribution is so small that it is not reported specifically by ENTSO-E, thus the value is taken from Eurostat 
instead but not included in the total (Eurostat, 2017c).In their assessment of the feasibility of 100% RES power systems 
based on a review of 24 studies, Heard et al. (Heard et al., 2017) found no consistent definition for feasibility, and 
instead based their assessment on whether studies: (i) performed simulations using PSM to ensure that supply could 
meet demand reliably, (ii) assumed demand levels consistent with mainstream forecasts, (iii) identified the necessary 
transmission and distribution requirements, and (iv) considered the provision of ancillary services. Meanwhile, in their 
critique of Heard et al., Brown et al. (Brown et al., 2018) refuted several of their feasibility criteria as being 
surmountable at minimal cost, arguing instead that “how to reach a high share of renewables in the most cost-
effective manner while respecting environmental, social and political constraints” - is the key issue2. Thus, while there 
is no agreement in the literature on the definition of power system feasibility, achieving a reliable and cost-effective 
system seems a fundamental requirement. 

Although there is no standard definition, the Council on Large Electric Systems (CIGRE) and 
the European Network of Transmission System Operators for Electricity (ENTSO-E) define 
reliability as “the ability of the [power] system to deliver electrical energy to all points of 
utilization within acceptable standards and in the amounts desired” (EC, 2014c; UCTE, 2004)3. 
This definition of reliability incorporates two other terms: system adequacy, the ability of the 
power system to supply the required power and energy requirements, subject to outages and 
operational constraints; and system security, the extent to which a power system can 
withstand sudden disturbances (ibid.). Assessing the reliability of power systems is one of the 
objectives of power system modelling (PSM). 

Surprisingly, only two of the studies presented in Table 4-1 were supported by detailed PSM 
simulations, which revealed additional portfolio requirements (Bruninx et al., 2015; ECF, 
2010a)4. Several other studies have also investigated a high-RES European power system using 
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PSM (Brouwer, Van den Broek, et al., 2016; Bruninx et al., 2015; Bussar et al., 2016; Connolly et 
al., 2016; ECF, 2010a, 2010b; Gils et al., 2017; GWEC et al., 2015; Haller et al., 2012; Horsch & 
Brown, 2017; Plessmann & Blechinger, 2017; PwC et al., 2010; Tröster et al., 2011). However, 
even including these studies, we identify several common limitations – in addition to those 
raised by Heard et al.  (2017) and Brown et al. (2018) – which leave doubts about the feasibility 
of a 100% RES European power system: 

• Generator flexibility limitations are not included, meaning backup and balancing 
requirements may be underestimated (e.g. (Brouwer, Van den Broek, et al., 2016; Bruninx 
et al., 2015; Connolly et al., 2016; ECF, 2010a, 2010b; Haller et al., 2012)). 

• Bioelectricity is treated crudely using one fuel or generation technology, or without 
considering regional differences in supply potentials and costs (e.g. (Brouwer, Van den 
Broek, et al., 2016; ECF, 2010a; Haller et al., 2012; Tröster et al., 2011)). 

• Simulations are run for only a single arbitrary (e.g. (Brouwer, Van den Broek, et al., 2016; 
Horsch & Brown, 2017)) or several weather years (Tröster et al., 2011), which does not 
guarantee system adequacy. 

• Studies rely on significant capacities from technologies such as CSP, geothermal, and 
biomass which currently show minimal signs of growth (e.g.  (Bruninx et al., 2015; ECF, 
2010a; EREC, 2010; GWEC et al., 2015)). 

• Studies allocate vRES capacity exogenously to countries with the highest capacity factors 
(e.g. (ECF, 2010a; Plessmann & Blechinger, 2017; Tröster et al., 2011)), or using a single 
generation profile (e.g. (Brouwer, Van den Broek, et al., 2016; Bussar et al., 2016)). However, 
insufficient area may be available to support the assumed level vRES deployment, leading 
to optimistic aggregated generation profiles. Furthermore, simply allocating capacity 
ignores the potential to reduce costs by optimising the spatial distribution of vRES along 
with transmission (ECF, 2010a). 

• A fixed capacity credit is assumed for vRES technologies, whereas in reality this varies with 
both location and time (e.g. (Brouwer, Van den Broek, et al., 2016)). 

• Significant electricity is imported from the Middle East and North Africa (MENA) countries 
(e.g. (Bruninx et al., 2015; ECF, 2010a; GWEC et al., 2015; Haller et al., 2012; PwC et al., 2010; 
Tröster et al., 2011)). While still renewable, it could be considered misleading to label a 
European power system 100% renewable if it relies on significant imports of RES electricity 
from outside Europe.  

• The power system is modelled at some point in the future (e.g. 2050), without considering 
whether the transition from the current system and expansion of renewable capacity is 
practically achievable (e.g. (Brouwer, Van den Broek, et al., 2016)). 

In this study, we aim to get insights into the feasibility of a 100% RES European power system 
in 2050 without these shortcomings by building a model of the power system in which 
dispatchable generators and their flexibility limitations are modelled in detail. By including the 
spatial deployment of vRES directly in the optimisation, land availability is accounted for 
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explicitly, and vRES generation profiles are consistent with their spatial deployment. We model 
seven scenarios for a 100% RES European power system and explore the impact of 
uncertainties in future demand and technology development, and compare the costs with one 
scenario for a non-RES power system. Lastly, we use long-term weather data and detailed 
hourly simulations to assess system adequacy. Given the lack of consensus on the definitions 
of power system feasibility, we instead attempt answer the following concrete questions, 
leaving the final verdict of feasibility to the reader:  

• Could a future 100% RES European power system be supplied using European 
resources alone, and have the same level of system adequacy as today’s power 
system? 

• What is the most cost-effective portfolio of RES generation and transmission network 
capacity? 

• How do the costs of a 100% RES European power system compare with a power 
system which includes non-RES technologies? 

• Could the transition to a 100% RES power system be made by 2050? 

Our study is structured as follows. First, we outline our overall approach in Section 4.2, which 
is underpinned by significant input data (Section 4.2.2). Based on the results presented in 
Section 4.3, we discuss the implications of our study in Section 4.4. Finally, we offer some 
concluding remarks in Section 4.5. Further details on the method and results from this chapter 
are provided in Appendix C. 

 Method  
Our model of a 100% RES power system is built using the PLEXOS5 software (Section 4.2.1). 
After supplying the necessary input data and assumptions (section 4.2.2) and defining several 
scenarios (section 4.2.3), we run a long-term (LT) capacity expansion optimisation to determine 
the least-cost portfolio of generation technologies and transmission infrastructure 
investments which can meet demand reliably (Section 4.2.4.1). The optimised portfolio is then 
simulated at hourly resolution using detailed unit commitment and economic dispatch (UCED) 
calculations, to ensure that demand can be met in the short term (ST) (section 4.2.4.2).  An 
overview of our method is given in Figure 4-1.  

4.2.1 Build model 

PLEXOS is a mixed-integer linear programming (MILP) model which has been used in several 
studies on RES integration and system adequacy (e.g. (Brouwer, Van den Broek, et al., 2016; 
Deane et al., 2014, 2015; Welsch et al., 2014)). By coupling its LT Plan and ST Schedule modules, 
PLEXOS can be used to perform both capacity expansion (i.e. building new generation and 
transmission infrastructure) and UCED calculations, while considering power plant flexibility 
limitations, and flexible loads. The objective function of the LT Plan is to minimise the total net 
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present value (NPV) of build costs, fixed operation and maintenance (FOM) costs and variable 
operating and maintenance (VOM) costs (Energy Exemplar, 2015), while the objective function 
of the ST Schedule is to minimise generation costs. A detailed description of the PLEXOS model 
is provided in Appendix E. We take the geographical scope of Europe in our study as the EU28 
countries as well as Switzerland and Norway, as shown in Figure 4-26.  

Unlike traditional thermal generators, spatial considerations play a vital role in modelling vRES 
generators as their location determines not only the available, but also how much capacity can 
be deployed in a given area. To account for this, we introduce the spatial distribution of vRES 
capacity directly into the optimisation by coupling the PLEXOS model with a high-resolution 
spatial grid7. This grid, indicated in blue in Figure 4-2, is based on a regular 0.75° x 0.75° grid, 
modified to respect national boundaries (Eurostat, 2014), exclude protected conservation 
areas (EEA, 2016b), and restricted to offshore water depths of up to 50 m within the Exclusive 
Economic Zone (EEZ) of each country (Claus et al., 2016). Lastly, we combine the spatial grid 
with the Corine Land Cover (CLC2012) dataset (EEA, 2016a; Kosztra & Arnold, 2014) and 
European Reanalysis Interim (ERA-Interim) weather dataset (ECMWF, n.d.), in order to 
determine both the amount of suitable land area for vRES deployment, and the weather 

Figure 4-1 | Overview of the method used in this study. 



4

Is a 100% renewable European power system feasible by 2050? 

 117 

conditions at each location8. These are used to define the maximum installed capacity and 
generation profiles for wind and PV per grid cell. 

4.2.2 Input data and assumptions 

4.2.2.1 Electricity demand 
We take the historical electricity demand for each country for the year 2015 as our base 
demand profile. To account for expected electrification of the heating and transport sectors 
by 2050, we add additional demand of 500 TWh y-1 for heat pumps (HPs), and a further 
800 TWh y-1 for electric vehicles (EVs), based on the levels assumed in ECF’s Roadmap 2050 
study which consider almost complete electrification of passenger vehicles, and significant 
uptake of HPs (ECF, 2010a).  

In addition to the base demand profile, we consider two additional demand profile scenarios 
to account for uncertainty in future demand. In the High Demand profile, we scale up the Base  

Figure 4-2 | Countries and transmission lines considered. Countries are labelled according to ISO 
3166 except for Greece (EL) and the United Kingdom, which is split into Northern Ireland (NI) and 
Great Britain (GB). Transmission of electricity occurs between the notional load centres of each country 
using a centre of gravity approach (see section 4.2.2.3). The spatial grid is shown in blue, which includes 
all land and offshore areas within the exclusive economic zone (EEZ) of each country, up to a maximum 
water depth of 50 m for offshore wind. Countries not included in the study are shaded grey. The regions 
are only used to describe results; each country is modelled individually. 
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profile to match the Energy [R]evolution scenario annual demand of 6020 TWh y-1 (GWEC et 
al., 2015). In the Alternative Demand Profile, we take the ‘Vision 4’ demand profile from the 
European Network of Transmission System Operators for Electricity’s (ENTSO-E) Ten-Year 
Network Development Plan (TYNDP) for 2030, and scale it up to 4409 TWh y-1 so that total 
demand matches the Base 2050 demand, but the hourly profile itself is smoother9.  
 

4.2.2.2 Generation technologies 
We consider a broad portfolio of RES generation technologies including wind (onshore and 
offshore), PV (utility and rooftop), biomass, CSP, geothermal, and hydro power10. The main 
techno-economic assumptions for all generator types are given in Table 4-3. In order to 
compare the costs of a 100% RES power system with a non-RES power system, Table 4-3 also 
includes techno-economic parameters for selected natural gas and coal generation 
technologies (with and without CCS), nuclear, and bioenergy with CCS (BECCS)11.  For 
consistency, most costs are taken from the European Commission Joint Research Centre’s (JRC) 
Energy Technology Reference Indicator (ETRI) projections for 2010-2050 (JRC, 2014). As 
investments for a 100% RES power system by 2050 would need to be made before 2050, we 
take the costs for 2040. A uniform weighted average cost of capital (WACC) of 8% is used to 
annualise investment costs in new generation and transmission capacity12. A brief explanation 
of how each technology is modelled is provided in the following subsections. 

Demand Profile Source profile Modifications 
Demand 

Min 
(GW) 

Max 
(GW) 

Annual 
(TWh) 

Underlying 
source 
demand 
profiles 

Actual 2015 
demand c - - 230 504 3109 

TYNDP 2016 
Vision 4 d - - 266 563 3616 

Modelled 
demand 
profiles 

Base a Actual 2015 
demand  

HPs: + 500 TWh y-1 

EVs: + 800 TWh y-1 241 889 4409 

High Demand Base Scaled up to 
6020 TWh y-1 329 1214 6020 

Alternative 
Demand 
Profile 

TYNDP 2016 
Vision 4  

(for 2030) b 

Scaled up to 
4409 TWh y-1 324 686 4409 

a Assuming an average EV efficiency of ~140 Wh km-1 (Tesla Model 3) and mileage of 25000 km y-1, 800 TWh y-1 would 
be sufficient to cover approximately 230 million EVs, or more than 90% of the current fleet of 250 million passenger 
vehicles(Eurostat, 2016). Assuming an average coefficient of performance (COP) of 3, HP demand of 500 TWh y-1 would 
be enough to provide 1500 TWh y-1 of useful heat, equivalent to 40% of current residential and service sector heating 
requirements (Persson & Werner, 2015). 

b  Based on published information, the Vision 4 profile assumes increasing total demand, full implementation of smart-
grid technology, large-scale adoption of HPs and EVs with flexible charging and generation (~10% vehicle fleet), and 
large-scale adoption of HPs (~9% heat demand) (ENTSO-E, 2015b). 

c  Source: (ENTSO-E, 2017b) 
d  Source: (ENTSO-E, 2016d) 

Table 4-2 | Demand profile parameters 
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Table 4-3 | Assumed techno-economic parameters for generation technologies in 2040 

Generator type 
Nominal 

size (MW) 
Base 

CAPEX a 
(€ kW-1) 

FOM b 
(% y-1) 

VOM c 
(€ MWh-1) 

Nom. 
efficiency 

(%) d 

Lifetime 
(y) c 

Build 
time (y) e 

Renewable technologies 

W
in

d 

Onshore - 1320 1.9% 0 - 25 1 

Offshore - 2610 2.8% 0 - 25 1 

PV
 f  

Rooftop - 950 2% 0 22% 25 <1 

Utility - 600 1.7% 0 17% 25 1 

H
yd

ro
 g 

Run-of-river (RoR) 70 5720 1.5% 5.0 87% 60 - 

Storage (STO) 100 2840 1% 4.0 87% 60 - 

Pumped storage (PHS) 400 2840 1.5% 4.0 76% 60 - 

Bi
oe

ne
rg

y Biomass fluidised bed  
(Bio-FB) 300 2450 1.8% 3.9 38% 25 3 

Open-cycle biogas 
turbine (Bio-OCGT) 

100 k 600 3% 11.2 42% 25 1 

Concentrating solar 
power (CSP) h 

50 4930 4% 8.1 40% 30 2 

Geothermal (Geo) 50 4780 2% 0 24% 30 3 

Non-renewable, fossil and CCS technologies  i 

N
at

ur
al

 g
as

 

Open-cycle natural gas 
turbine (Gas-OCGT) 

100 600 3% 11.2 42% 30 1 

Natural gas combined 
cycle (Gas-NGCC) 

580 1000 2.5% 2.0 63% 30 3 

NGCC with CCS (Gas-
NGCC-CCS) 485 1860 2.5% 4.1 56% 30 4 

Co
al

 

Pulverised coal plant  
(Coal-PC) 

750 1980 2.5% 3.7 47% 40 4 

PC plant with CCS  
(Coal-PC-CCS) 

630 3300 2.5% 5.6 41% 40 5 

Bio-FB with CCS  
(Bio-FB-CCS) j 

255 4060 1.8% 5.9 28% 25 4 

Nuclear (3rd gen) 1500 5330 1.7% 2.6 33% 60 7 

Abbreviations: CAPEX- Capital cost, CCS – Carbon capture and storage, FOM- Fixed operating and maintenance costs, 
NGCC – Natural gas combined cycle, PV- Photovoltaic, VOM- Variable operating and maintenance costs.  
Note: All costs given in €2016 using historical Eurozone inflation rates unless otherwise stated (Inflation.eu, 2017).   
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Footnotes for Table 4-3 
a Base CAPEX represents the total capital requirement (TCR), comprising the overnight capital cost (OCC) in 2040 taken 

from JRC ETRI 2014 (JRC, 2014) (including grid connection cost), and interest during construction (IDC). 
b  FOM costs given as a percentage of OCC taken from the ETRI (JRC, 2014) (excluding IDC). 
c JRC ETRI 2014 (JRC, 2014) 
d Efficiencies and part-load performance are mostly taken from Brouwer et al. (Brouwer, Van den Broek, et al., 2016).  
e  Construction time is used to calculate IDC using an 8% discount rate. Taken from (Black & Veatch, 2012) apart from 

nuclear, which is based on more recent data (D’haeseleer, 2013). Plants built within one year have no IDC. IDC is not 
included for hydro plants as we include no new capacity. 

f Future PV cost estimates vary widely in the literature. For this reason, we include both rooftop (<100 kW) and utility 
(>2 MW) scale installations to account not only for their different spatial constraints, but also to include a range of 
investment costs as an implicit sensitivity. Efficiency is based on commercial monocrystalline silicon modules for 
rooftop PV (SunPower, 2014), and polycrystalline modules for utility PV (TrinaSolar, 2016). 

g For hydro, nominal size is based on average plant size per category from ENTSO-E (ENTSO-E, 2017b). For hydro-PHP 
plants, we assume a reservoir size of 45 GWh per plant (4.5 days) based on the mean calculated specific reservoir size 
of 113 GWh GW-1 for existing hydro-PHP plants from ENTSO-E data. As the cost of Hydro-STO plants depends on 
capacity, we use an average of the costs for plants between 10-100 MW and >100 MW (JRC, 2014). The cost for 
Hydro-STO is used for Hydro-PHS, as the source does not distinguish between plants equipped with reversible turbines, 
or plants with dedicated pumping capacity. In any case, hydro capacity is exogenous in all scenarios and the costs do 
not affect the optimisation. Once-through turbine and pumping efficiency both taken as 87% (Brouwer, Van den Broek, 
et al., 2016; Geth et al., 2015). 

h CSP plant cost includes 8 hours of molten salt thermal storage per plant (Mehos et al., 2017). The peak efficiency of 
the CSP power block component is 40%, based on electricity generation and total heat input. Overall CSP plant 
efficiency (output electricity with respect to direct normal irradiance) is approximately 17% (H. L. Zhang et al., 2013). 
Most CSP plants are in the order of 200 MW, consisting of several smaller units of around 50 MW each (IRENA, 2013). 

i Fuel costs of 7 € GJ-1, 2 € GJ-1 and 1 € GJ-1  are taken for natural gas, coal and nuclear fuel respectively based on the 2-
Degree Scenario (2DS) for 2050 from IEA’s ETP2016 (IEA, 2016a). A CO2 price of 120 € t-1 is assumed from the IEA’s 
2015 World Energy Outlook (WEO) 450 Scenario for 2040 (IEA, 2015). We assume a uniform CO2 capture rate for CCS 
technologies of 90% (JRC, 2014), and CO2 transport and storage costs of 13.5 € t -1 CO2 (Brouwer, Van den Broek, et 
al., 2016). 

j No data available for Bio-FB-CCS, estimated based on differences between ETRI reported values for Coal-PC with and 
without CCS: 60% higher CAPEX, 16% lower nominal capacity, 10% (absolute) lower efficiency, and 53% higher VOM 
than the non-CCS version. 

k Biogas plants are typically small units (< 1 MW), operating on either gas engine or gas turbine technology. However, 
modelling with such small units can lead to numerical instabilities in the solver, thus we use a higher nominal plant size 
of 100 MW, the same as Gas-OCGTs. 

 

Hourly generation from wind farms is estimated by combining wind speed profiles from ERA-
Interim with commercial wind turbine power curves. ERA-Interim is also used as the source of 
solar radiation data to model both PV and CSP. Solar PV is modelled with efficiencies of 21% 
and 17% for rooftop and utility-scaled systems respectively (SunPower, 2014; TrinaSolar, 2016), 
while CSP generators are modelled as solar tower plants equipped with two-axis-tracking 
heliostats, and 8 hours of molten salt storage at nominal load. By calculating the maximum 
suitable area for wind and PV deployment per grid cell, and limiting how much is available for 
each technology, we allow PLEXOS to optimise the spatial deployment of wind and PV 
capacity13. 

We consider two bioelectricity technologies: biomass fluidised bed combustion (Bio-FB) plants 
and open-cycle gas turbines (Bio-OCGT), which are supplied by three categories of biomass 
fuels (biogas substrates, solid woody biomass and solid waste biomass), based on country-
specific cost-supply curves for 14 different biomass feedstocks (Ruiz et al., 2015) 14. We assume 
that solid biomass is combusted in Bio-FBs, while biogas substrates – after conversion 
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to biogas – are combusted in Bio-OCGTs. Raw biomass fuel costs range from 1.4 € GJ-1 
to 14.4 € GJ-1 depending on the fuel type and country of origin, with a total supply potential 
of 10 EJ y-1 in 2050 (Ruiz et al., 2015)15. For biogas substrates, an additional cost of 
10.4 € (GJ substrate)-1 is included for the conversion by anaerobic digestion (AD) to raw biogas 
for local use, and a further 3.2 € GJ-1 for upgrading to biomethane and injection into the gas 
grid (Hengeveld et al., 2014). In order to avoid infeasible solutions, biomass supply is modelled 
as a “soft” constraint by allowing the model to draw on additional biomass supply, at 
significantly higher cost16.  

Run-of-river (RoR) and storage (STO) hydropower capacity is aggregated in each country using 
a nominal unit size, with annual capacity factors limited to historical levels (ENTSO-E, 2017b; 
Eurostat, 2017c). Pumped hydro storage (PHS) capacity is also aggregated for each country 
but storage is modelled explicitly, assuming an average storage volume of approximately five 
days at nominal load17.  

While wind turbines and PV panels can be located almost anywhere, hydro and geothermal 
power plants require sites with specific geological features, and CSP plants must be installed 
in locations with high direct normal irradiance (DNI). For these reasons, the installed capacity 
and spatial distribution of hydro, geothermal and CSP are specified exogenously: 

• We assume that total hydro capacity in 2050 remains unchanged at approximately 
200 GW, with the same geographical distribution and split between RoR (31%), STO 
(48%) and PHS (21%) capacity as today (Mennel et al., 2015).  
 

• Geothermal capacity is set at 50 GW to reflect deployment levels assumed in previous 
high-RES studies (ECF, 2010a; GWEC et al., 2015) (see Table 4-1), and allocated to 
countries in proportion to their economic geothermal potential (van Wees et al., 
2013). 
 

• CSP capacity is fixed at 200 GW, reflecting levels found in the most ambitious high-
RES scenarios (ECF, 2010a; GWEC et al., 2015) (see Table 4-1). However, many of these 
studies locate considerable CSP capacity in the MENA countries where higher annual 
DNI levels are available. In order to fit this capacity into Europe, we allocate CSP 
capacity to grid cells in order of descending DNI, while adjusting both the minimum 
cut-off DNI and assumed availabilities of suitable land classes until 200 GW is reached 
– with a preference for sparsely inhabited areas to minimise impacts on local 
communities. As a result, CSP is allocated to grid cells with average DNI levels of 
1600 kWh m-2 y-1 or higher, located mostly in Spain (158 GW), Portugal (22 GW), 
Italy (16 GW), Greece (5 GW) and Cyprus (0.8 GW). Thus, the availability of land for 
CSP is not taken as a hard constraint (as for PV and wind), but indicates the area 
which would be required to accommodate 200 GW of CSP in Europe.  
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The firm capacity for all dispatchable generators (e.g. biomass, hydro, geothermal, CSP) is 
taken as 90%, assuming 5% unavailability due to unplanned outages, and a further 5% for 
planned maintenance (ENTSO-E, 2012)18. The firm capacity for vRES technologies is estimated 
per grid cell following the approach of Milligan (Ensslin et al., 2008) as the average capacity 
factor during the peak 1% of demand hours per year. As a result, PV receives a capacity credit 
of zero in all grid cells; onshore wind capacity credit has a median of 12%, and offshore wind 
a median of 10%.  

4.2.2.3 Transmission 
We use a ‘centre-of-gravity’ approach to model transmission flows between countries, with 
the urban area-weighted centres of each country serving as node terminals. Taking the existing 
capacity in 2016  as a starting point (ENTSO-E, 2017b), new transmission capacity can be built 
if this lowers total costs, based on the costs given in Table 4-4. Subsea lines are assumed to 
be high voltage direct current (HVDC), while land-based lines are high voltage alternating 
current (HVAC). Transmission and distribution within countries is modelled as copper plate.  

For the wind and PV technologies, we also estimate the amount of grid reinforcement required 
to bring this electricity to the main transmission grid by calculating the shortest transmission 
distance (across either land or sea) to the nominal load centre, and add this amount to the 
base CAPEX from Table 4-319. 

 

Table 4-4 |Techno-economic parameters for HVAC and HVDC transmission infrastructure 

Component 
CAPEX 

FOM c 
(% CAPEX y-1) 

Losses d 
(% 100 km-1) 

Lines 
(€ MW-1 km-1) 

Substations/ 
Converters (€ MW-1) 

HVAC a 
Overhead 330 

38,800 3.5% 
0.7% 

Underground 
(Direct buried) 

3370 0.45% 

HVDC b Subsea 240 121,000 3.5% 0.35% 

Note: All costs given in €2016 unless otherwise stated. Abbreviations: CAPEX- Capital cost, FOM- Fixed operating 
and maintenance costs. A lifetime of 40 years is assumed for all transmission system components. A 6% outage 
rate is assumed for transmission lines, with a mean time to repair of 14 hours (ENTSO-E, 2016b; SKM, 2012). 
a Based on a study for the UK (Parsons Brinckerhoff, 2012), specific costs range from 333 to 605 € MW-1 km-1  for overhead 

HVAC lines and 3370 to 4780 € MW-1 km-1 for direct-buried lines respectively, depending on the line length and carrying 
capacity. The quoted values correspond to a double circuit 400 kV 75 km line with 6930 MVA carrying capacity. Given 
we consider mainly long-distance transmission, we assume a 90%/10% split between onshore overhead lines and 
underground cables. HVAC converter costs taken from (ACER, 2015) 

b A complete HVDC line includes the cable length and two converter stations. HVDC line and converter costs taken from 
(ACER, 2015). 

c Annual FOM costs equivalent to 3.5% of the base CAPEX (JRC, 2014; Parsons Brinckerhoff, 2012). 
d HVAC losses taken from (Vaillancourt, 2014), HVDC losses from (Ardelean & Minnebo, 2015). We also include losses 

of 0.65% per HVDC converter station  (average of values from (Guerrero-Lemus & Martínez-Duart, 2013; Vaillancourt, 
2014)). 
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4.2.2.4 Demand response 
Demand response, also known as demand side management (DSM), is the willingness of 
electricity consumers to shift or even curtail their load during times of peak system residual 
demand (Gils, 2014). In this study, we consider 16 GW of load shedding capacity from heavy 
industrial processes, and 82 GW of load shifting capacity from various commercial and 
residential appliances based on the technical potentials reported by Gils (Gils, 2014), and 
assumed deployment levels (as a percentage of technical potential) from Bertsch et al. (Bertsch 
et al., 2012). Demand shedding costs vary from 100 € kWh-1 to over 2000 € kWh-1 depending 
on the industry, which are activated whenever electricity prices exceed these levels. Limits are 
imposed on the volume and activation of residential and commercial DSM, depending on the 
appliance and the season20.  

4.2.2.5 Reserves 
Power systems require operating reserves in order to balance out mismatches between 
demand and generation due to (i) demand forecast errors, (ii) vRES generation forecast errors, 
and (iii) unplanned generator outages (Ela et al., 2011). In this study we include fast-
responding spinning reserves (both up and down regulation) available within five minutes, as 
well as standing reserves available within one hour. We assume a single Europe-wide reserve 
market in which all generation technologies are capable of providing reserves, including wind 
and PV21.  

4.2.3 Define scenarios 

In addition to the Base model run, we consider seven additional scenarios in order to 
understand the impact of assumptions made in this study and uncertainties involved in 
modelling a future 100% RES power system (Table 4-5). These scenarios focus on uncertainty 
in final demand, technological developments and costs:  

• In the High Demand scenario, demand is scaled up by 36% to 6020 TWh y-1  keeping 
the underlying demand profile the same, to see the impact of further growth in 
demand22; 

• In the Alternative Demand Profile scenario, we test how sensitive our results are to 
the base hourly demand profile by using the less peaky ‘Vision 4’ hourly demand 
profile from ENTSO-E, scaled to the Base annual demand (4408 TWh y-1); 

• In the No CSP or Geothermal scenario, we exclude these two dispatchable 
technologies to see how critical their future deployment is for a fully renewable 
European power system; 

• In the No Biomass scenario, we do not allow any power generation from biomass, 
reflecting possible social opposition to the technology, or complete prioritisation of 
biomass for other end-use sectors (e.g. heating, industrial processes); 

• In the Storage scenario, we allow the model to build additional grid-scale storage 
capacity in the form of compressed-air energy storage (CAES)23; 
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• In the Free RES scenario, we specify no exogenous CSP or geothermal capacity and 
leave the model free to optimise all RES capacity (excluding hydro); and 

• In the Allow non-RES scenario, we allow other low-carbon (but not necessarily 
renewable) technologies to be built, so that the costs of a fully renewable system can 
be compared with one which includes non-renewable alternatives. 

4.2.4 Perform model runs 

With hydro, geothermal, and CSP the only technologies exogenously defined, we first run 
PLEXOS’ LT Plan module in order to find the cost-optimum deployment of the remaining 
generation capacity and transmission investments which can reliably meet demand 
(section 4.2.4.1). Then, we test how this system performs at hourly resolution by performing 
detailed UCED calculations with the ST Schedule module (section 4.2.4.2)24.  

4.2.4.1 Long-term capacity optimisation 
One aspect of system adequacy is ensuring that enough generation capacity is available to 
meet demand reliably. Ideally, this would involve optimising the generation portfolio and 
transmission network considering all available weather data (i.e. from 1979-2015) 
simultaneously, to ensure that the risk of short supply is acceptable even in the most 
challenging weather year, and that the generation portfolio is not sensitive to any individual 
year. However, optimising the installed capacity of two biomass and four vRES technologies 
across more than 2000 grid cells – for 37 years of weather data – is not feasible with available 
computing power. Furthermore, due to the model complexity, it is not amenable to 
probabilistic methods. Thus, we take the simpler approach of deterministically optimising 
capacity for the most challenging weather year experienced by Europe in the period 
1979-2015. Based on the historical data, we determine 2010 as the year with the overall lowest 
potential wind and PV generation, and run the capacity expansion optimisation for this year. 
In performing the capacity expansion optimisation, we make the following assumptions: 

• Apart from a reference level of transmission (60 GW) and hydro plant capacity 
(200 GW), we take Europe as a clean slate and include no legacy generation capacity. 
Nor do we consider any government policies which may preclude technologies in 
any given country. 

• Transmission is modelled as simple active power transport, rather than a full optimal 
power flow (OPF) problem25. 

• Generator flexibility parameters and operational reserves are not considered26. 
• To ensure comparability with the 100% RES scenarios, in the Allow non-RES scenario 

we constrain total GHG emissions to 45 Mt y-1 in 205027. This represents a reduction 
of 96% compared with 1990, the level required to ensure that the EU goal of 
reducing total CO2 emissions by 80–95% by 2050 can be achieved (EC, 2011c; EEA, 
2016c; UNFCCC, 2017a).  
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Table 4-5 | Scenario runs performed. The text in bold indicates the main differences. 

Scenario 
Group Scenario 

Varied parameters 

Demand profile 

Available technologies 

Capacity 
specified 

Capacity 
optimised 

10
0%

 R
ES

 

Ba
se

 

Base Base (4408 TWh y-1) 

▪ Hydro 
▪ CSP 
▪ Geo 
▪ DSM a ▪ Wind 

▪ PV 
▪ Biomass 

De
m

an
d 

un
ce

rta
in

ty
 High 

demand 
Base, 

scaled up to 6020 TWh y-1 

Alternative 
demand 
profile 

ENTSOE 2030 Vision 4 profile, 
scaled up to 4408 TWh y-1 

Te
ch

no
lo

gy
 u

nc
er

ta
in

ty
 

No CSP or 
Geothermal Base 

▪ Hydro 
▪ CSP = 0 
 ▪ Geo = 0 
▪ DSM a 

No Biomass Base 

▪ Hydro 
▪ CSP 
▪ Geo 

▪ Biomass = 0 
▪ DSM a 

▪ Wind 
▪ PV 

 

Storage Base 

▪ Hydro 
▪ CSP 
▪ Geo 
▪ DSM a 

▪ Wind 
▪ PV 

▪ Biomass 
▪ CAES (storage) 

Free RES Base ▪ Hydro 
▪ DSM a 

All other RES 
technologies in 

Table 4-3. 

N
on

-R
ES

 
al

lo
w

ed
 

 

Allow non-RES Base ▪ Hydro 
▪ DSM a 

All other RES and 
non-RES 

technologies in 
Table 4-3. 

a Demand shedding (16 GW) is included in both the LT Plan (capacity optimisation) and ST Schedule (hourly UCED) 
modules for all scenarios, while demand shifting (82 GW) is only included in the ST Schedule runs to minimise 
computational time.  
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In assessing system adequacy, most countries allow for a LoLE between 3 h y-1 (e.g. BE, GB, FR) 
and 8 h y-1 (e.g. NI, IE, PT) (EC, 2016a). However, in our study it is not possible to target such a 
specific LoLE level as we cannot include reserve requirements in the LT Plan, and our vRES firm 
capacity estimates are not perfect28. Assuming that each country must have sufficient capacity 
reserves to cover its peak demand – either by from its own generators or exchange with 
neighbouring countries – we increase the capacity margin in each country until no unserved 
energy is observed in the LT Plan results29.  

4.2.4.2 Short-term hourly dispatch 
With the optimum generation portfolios and transmission networks determined from the LT 
Plan, we then perform detailed UCED simulations for each scenario with PLEXOS’ ST Schedule 
module for the same weather year 2010 - including both generator flexibility constraints and 
operating reserve requirements. Simulations are run at hourly resolution for one typical week 
per month, in order to reduce solution time30. In assessing system adequacy, we consider a 
maximum acceptable level of unserved energy of 0.0003% of total annual demand, based on 
the expected unserved energy for Europe’s electricity system in 2020 from ENTSO-E’s 2016 
Mid-Term Adequacy Forecast (ENTSO-E, 2016b). 

 Results 
4.3.1 System adequacy 

Based on the results of the LT Plan optimisation, feasible solutions are found for all scenarios, 
with the exception of the No Biomass scenario. This shows that with CSP, geothermal, and 
hydro capacity at their base assumed levels, a 100% RES power system is not feasible without 
biomass; hence, we do not consider this scenario any further31. After simulating the remaining 
scenarios at hourly resolution, feasible solutions are found with less than 0.0003% unserved 
energy. From this, we conclude that a 100% RES European power system can achieve the same 
level of system adequacy as today’s power system.  

4.3.2 Generation portfolio  

The optimised generation portfolio for each scenario is shown in Figure 4-3, while Figure 4-4 
shows the annual generation. All 100% RES scenarios show a significant expansion of 
generation capacity compared to today, with total installed capacity ranging from 1.9 TW in 
the Alternative Demand Profile scenario to 3.1 TW in the High Demand scenario. Aside from 
the higher assumed demand, this increase in capacity is due to the low capacity credit of wind 
and PV, which must be backed up by dispatchable capacity. With the capacity of geothermal, 
CSP and hydro set exogenously in most scenarios, the only remaining dispatchable RES 
technology is biomass, which is installed in significant quantities. Compared to the Base 
scenario, allowing non-RES technologies reduces the size of the total portfolio to 1.4 TW, 
primarily due to the rollout of some 200 GW of dispatchable zero-carbon nuclear capacity, 



4

Is a 100% renewable European power system feasible by 2050? 

 127 

and 200 GW of Gas-NGCC capacity. Approximately 50 GW of Bio-FB-CCS capacity is also 
installed as the net-negative emissions it generates allows this lower-cost Gas-NGCC capacity 
to be included in the portfolio without CCS. 

In the 100% RES scenarios, onshore wind deployment ranges between 50% (Base) and 64% 
(No CSP or Geothermal) of its maximum potential (543 GW). Due to its higher cost, offshore 
wind deployment is modest in most RES scenarios at about 17% of its maximum potential 
(754 GW); however, deployment increases when demand is higher or CSP is excluded from the 
portfolio. With 65% (Base) to 85% (High Demand) of its total potential deployed (895 GW), 
Utility PV represents the largest share of installed capacity in all 100% RES scenarios – despite 
making no contribution to firm capacity. Due to its higher cost, rooftop PV is only installed in 
appreciable amounts in the High Demand and No CSP or Geothermal scenarios, once the best 
utility PV sites are exploited.  

Turning to the dispatchable technologies, biomass plays a critical role in providing peak and 
load-following capacity in all 100% RES scenarios. This is evidenced by comparing the installed 
Bio-OCGT capacities in the Base (~470 GW) and Alternative Demand Profile (~220 GW) 
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Figure 4-3 | Installed capacity of each technology per scenario in 2050, based on weather year 2010 
(the lowest PV and wind supply). For comparison, the current (2015) installed capacity is also shown 
with coal, natural gas, PV and biomass shown as Coal-PC, Gas-NGCC, Rooftop PV, and Bio-FB respectively, 
based on ENTSO-E data (ENTSO-E, 2017b). Demand shedding capacity of 16 GW is not shown. The peak 
total system demand in each scenario is indicated by the ‘●’ symbols (left axis) and the share of vRES 
capacity indicated by the ‘×’ symbols (right axis). 
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scenarios, showing that with a lower peak demand and smoother demand profile, Bio-OCGT 
capacity is approximately 50% lower in the Alternative Demand Profile scenario. Meanwhile, 
Bio-FBs provide between 160 GW and 230 GW of load-following capacity in the 100% RES 
scenarios. When CSP capacity is optimised, only 38 GW is installed in the Free RES scenario 
and no capacity at all is installed in the Allow non-RES scenario. By contrast, geothermal 
capacity is fully exploited in all scenarios as with lower VOM costs and higher capacity factor, 
it is more competitive than CSP.  

At the assumed cost of 700 € kW-1 (88 € kWh-1), just under 80 GW (of CAES is installed in the 
Storage scenario, which displaces an equivalent amount of Bio-OCGT capacity. Total installed 
generation capacity increases by 30 GW (mostly PV) compared to the Base scenario in order 
to provide additional electricity for charging the storage, as there is no surplus (curtailed) vRES 
generation in any scenario which can be used to charge the storage32.  

Figure 4-4 | Total generation by technology per scenario in 2050, based on weather year 2010 (the 
lowest PV and wind supply). For comparison, the current (2015) generation is also given with  hydro 
(total), coal, natural gas, PV (total), wind (total) and biomass shown as Hydro-STO, Coal-PC, Gas-NGCC, 
Rooftop PV, Onshore Wind and Bio-FB respectively, based on ENTSO-E data (ENTSO-E, 2017b). The share 
of vRES generation is indicated by the ‘×’ symbols (right axis). Note that the differences in hydro 
generation are due to the different dispatch results from the ST Schedule runs during the typical weeks, 
resulting in higher hydro generation than would be observed if all 52 weeks were simulated.  
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4.3.3 Spatial capacity distribution 

Figure 4-5 shows how the optimised generation capacity from the Base scenario is deployed 
across Europe. For the spatially optimised vRES technologies (wind and PV), Figure 4-6 shows 
how this capacity is distributed within each country at the grid cell level. Onshore wind capacity 
is mainly installed in countries bordering the North and Baltic seas in a band stretching from 
the British Isles to the Baltic countries. These locations are preferred due to favourable wind 
speeds, and their central location in Europe. Offshore wind is mainly installed in the North Sea 
due to the higher wind speeds (high capacity factors), and central location. PV capacity is 
spread across most countries. Within countries, capacity is installed either in southerly 
locations or close to the load centre to reduce costs. Less utility PV capacity is installed in the 
Iberian Peninsula than might be expected, as much of the suitable land area for vRES is already 
covered by the exogenous CSP capacity, leaving less room for utility PV. Furthermore, any 
additional PV capacity in this region would further increase the transmission needs between 
Spain and France (see section 4.2.2.3).  
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-5 | Optimised generation capacity per technology in 2050 per country in the Base scenario, 
based on weather year 2010. The pie charts show the share of capacity per generation technology, while 
the area of the pie chart is proportional to the total installed capacity. The circles within each pie chart 
show the peak demand per country. Note that CSP, geothermal and hydro capacity is exogenous. 
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Figure 4-6 | Optimised 2050 spatial deployment of vRES generation capacity in the Base scenario 
in GW (grid cell)-1 for (a) Onshore wind and (b) Utility PV, and (c) Offshore wind, based on the most 
challenging weather year 2010. Only a small amount of rooftop PV is installed in the Base scenario, and 
hence not shown. Note that in almost all cases, if the model installs capacity in a cell, it exploits the full 
potential per cell. Thus, any cell with capacity installed can be considered fully exploited.  
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4.3.4 Transmission requirements 

The optimised transmission grid reinforcements (on top of the reference capacity of 60 GW) 
for each scenario are shown in Figure 4-7. In the scenarios including the 200 GW exogenous 
CSP capacity, reinforcements range from 321 GW and 416 GW, as the transmission corridors 
FR-ES, FR-DE, FR-BE, and IT-FR must be significantly reinforced to bring CSP generation from 
Iberia to the rest of Europe. However, when CSP capacity is optimised in the Free RES scenario, 
reinforcements fall to 142 GW due to the more optimal (lower) deployment of CSP. Thus, the 
exogenously defined CSP capacity has a significant impact on the configuration of the 
transmission network33. 

Very little additional transmission is built in the Allow non-RES scenario due to the lower vRES 
and no CSP deployment. In the Storage scenario, in which 77 GW of CAES are installed, 
transmission reinforcements only fall by 10 GW (3%) compared to the Base scenario. Thus, 
large-scale transmission expansion appears more cost-effective than utility-scale daily (8 hour) 
energy storage in balancing supply and demand, even when assuming optimistic reductions 
in future storage costs. One consequence of a fully interconnected power system is that the 
reliability of transmission becomes critical for ensuring system adequacy as, with a higher 
dependence on generators in neighbouring countries, the reliability of generators depends 
not only on availability, but also on the reliability of the transmission lines which deliver their 
electricity.  

4.3.5 Hourly dispatch 

Figure 4-8 shows the results of the ST Schedule hourly dispatch from the Base scenario for a 
typical summer week, while Figure 4-9 shows the hourly dispatch for a typical winter week. 
Comparing these two figures, we find that: 

• Geothermal, Hydro-STO and Hydro-RoR provide baseload capacity throughout the 
year due to their high investment but relatively low marginal cost.  

• Variable PV and wind generation fluctuates hourly, daily, and seasonally. While PV 
can usually be relied upon for significant daytime generation in summer, wind 
production is less reliable. While average wind generation tends to be higher in 
winter, Figure 4-9 shows that there can be periods of low wind generation, even in 
winter. 

• CSP plays a significant role in covering night-time demand during the summer, but 
cannot provide the same level of coverage in winter due to the lower DNI received. 

• Biomass plays quite different roles in summer and winter. In summer, Bio-FB and Bio-
OCGT capacity is cycled daily in order to meet peak evening demand, once 
generation from PV and CSP has ceased. In winter, Bio-FBs are used to provide 
baseload capacity while day- and night-time peaks – mainly caused by EVs – are met 
by Bio-OCGTs.  
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Figure 4-7 | Transmission grid reinforcements (on top of capacity installed in 2016) for the (a) Base, 
(b) High demand, (c) No CSP or Geothermal, (d) Free RES and (e) Allow non-RES scenarios. Although the 
total installed capacity is lower, the grid topology for the Storage (+334 GW) and Alternative Demand 
Profile (+321 GW) scenarios are similar to the Base scenario and hence not shown. The reference current 
transmission capacity (60 GW) is not included in the figures.  
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Figure 4-8 | Hourly dispatch for a typical summer week from the Base scenario, based on weather 
year 2010. Electricity demand for hydro pumping is shown as negative below the horizontal axis 
 

 

 
Figure 4-9 | Hourly dispatch for a typical winter week from the Base scenario, based on weather 
year 2010. Electricity demand for hydro pumping is shown as negative below the horizontal axis. 
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• DSM is used extensively to both shift and curtail demand during peak evening hours, 
particularly in winter. Hydro-PHS plays a similar role to Bio-OCGTs in providing 
flexible peak generation during evening hours, especially during summer when 
electricity from PV can be used for pumping during the day.  

Due to the imperfect forecasting of demand and vRES generation, operating reserve 
requirements in a 100% RES power system with a high vRES share would be higher than today. 
An example of this is given in Figure 4-10, which shows the provision of operating reserves by 
each generator type during the same typical summer week shown in Figure 4-8. Spin-up 
reserves are mainly provided by hydro and CSP, with Bio-OCGTs providing the majority of 
stand-up reserves. Down-regulation reserves are provided mainly by CSP and vRES, though 
practically all technologies contribute some down-regulation during the year. 

4.3.6 Biomass utilisation 

Total demand for biomass in the 100% RES scenarios ranges from 8.5 EJ in the Base scenario 
up to 12.9 EJ in the High Demand scenario. In 2015, Europe produced approximately 5 EJ of 
biomass for energy purposes, of which only 38% or 1.9 EJ was used in the production of 
electricity (Eurostat, 2017a)34. Thus, a 100% RES system would require significant increase in 
power sector biomass use compared with today. Figure 4-11 gives the consumption of 
biomass by fuel type for the Base and High Demand scenarios, showing that it is mainly lower 
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Figure 4-10 | Hourly reserve provision by generator type for a typical summer week from the Base 
scenario, based on weather year 2010. Positive values indicate total up-regulation reserves (spin-up 
plus stand-up), while negative values indicate down-regulation (spin-down) reserves. 
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cost feedstocks (e.g. primary agricultural residues, secondary forestry residues) which are used, 
with minimal exploitation more costly energy crops (e.g. willow and poplar). By contrast, all 
available biogas substrates are used, and the model is forced to draw on additional high-cost 
biogas feedstock – beyond the assumed maximum potential – in order to achieve a feasible 
solution. The quantity of additional biogas substrate varies from 0.13 EJ in the Base scenario, 
up to 3.4 EJ in the High Demand scenario. While the additional 0.13 EJ of substrate used in the 
Base scenario is relatively small and total biogas feedstock use (1.5 EJ) lies within the range of 
potentials reported in the literature35, the 4.7 EJ of additional biogas substrate required in the 
High Demand scenario far exceeds reported potentials36.  

 

 

 
Figure 4-11 | Breakdown of biomass consumption by fuel type for the Base and High Demand 
scenarios for weather year 2010. The maximum potential per fuel category is indicated by black 
horizontal bars. The graph shows that while solid biomass availability is sufficient, 0.13 EJ of additional 
biogas is required in the Base scenario than is available, rising to 3.4 EJ in the High Demand scenario 
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4.3.7 Total cost 

In terms of total system costs, Figure 4-12 shows how each scenario performs on an annualised 
basis, and in terms of the specific cost of electricity37. Comparing the costs of all scenarios we 
draw several conclusions:  
 

• Total system costs in the Base scenario, and indeed most of the 100% RES scenarios, 
are similar at approximately 560 €bn y-1. 

• The exogenous CSP capacity of 200 GW is not optimal as it forces up transmission 
costs, and squeezes lower-cost wind and PV capacity out of the portfolio. As shown 
by the Free RES scenario, a lower capacity (~40 GW) would require far less land area 
and would be more cost-effective, with costs falling to 530 €bn y-1. 

• Allowing non-RES technologies in the portfolio sees costs fall to approximately 
410 €bn y-1, or 22% cheaper than the lowest-cost 100% RES scenario. 

• The costs of a 100% RES power system increase relatively more (approximately 1.4x) 
with higher demand, as a 36% increase in demand in the High Demand scenario leads 
to a 50% increase in costs compared with the Base scenario. This is due to the higher 
capacity required, use of more costly biomass sources, a greater need for more costly 
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Figure 4-12 | Total annualised power system costs in 2050 for each scenario, based on weather 
year 2010. The total annualised costs for each scenario are shown on the left axis, while the specific 
electricity cost is indicated by the ‘×’ symbols on the right axis. Some costs elements such as CAPEX and 
FOM cost for DSM, reserves, and the cost of unserved energy are relatively small (< 3 €bn y-1) and hence 
not shown. Transmission costs from vRES to the country node centres are included in the vRES CAPEX 
costs. While existing hydro is specified exogenously in all scenarios and not built by the model, we include 
the costs here for completeness. 
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peaking generators, a shift to offshore wind, and the need to install wind and PV at 
less optimal sites38. 

• A 100% RES system is possible without CSP and geothermal, but may be more 
expensive.  

• At a cost of 700 € kW-1 (88 € kWh-1), daily storage results in negligible cost benefits 
compared to the Base scenario as the savings in Bio-OCGT and transmission costs 
are offset by the investment costs for the storage and additional generation capacity. 

• Given that Europe currently spends in the order of 300 to 400 €bn y-1 for an electricity 
demand of some 3100 TWh y-1 (Brown et al., 2018), a 100% RES power system 
costing 530 €bn y-1 and delivering 4400 TWh y-1 would be more expensive than the 
current system, but not unaffordable39. 

4.3.8 Sensitivity analysis 

So far, we have shown what different demand levels and technology availability would mean 
for a 100% RES power system. To provide a cost comparison, we also present one scenario in 
which non-RES technologies are allowed in the portfolio. However, given uncertainty in future 
fuel costs, and the fact that based on data from two nuclear plants currently under 
construction in Europe the cost of nuclear may be significantly higher, comparing the costs of 
a 100% RES system with this single non-RES scenario may not be realistic40. Thus, we perform 
some additional model runs based on the Allow non-RES scenario with: 

• 27% higher nuclear CAPEX (6800 € kW-1); 
• a higher CCS carbon capture rate of 100%, in the event that the assumed 90% CO2 

capture rate may be a limiting factor for CCS deployment at high decarbonisation 
levels; 

• a 50% lower coal price (1 € GJ-1); 
• a 50% lower natural gas price (3.5 € GJ-1); and 
• a 53% higher natural gas price (10.7 € GJ-1)41. 

Figure 4-13 shows the optimised generation portfolios for the sensitivity runs, as well as the 
original Allow-Non-RES scenario for comparison. With a higher nuclear CAPEX, nuclear 
disappears from the portfolio and is replaced by a mix of vRES, natural gas (OCGT, NGCC and 
NGCC-CCS) and additional Bio-FB-CCS capacity, which offsets the additional emissions from 
gas. Lower coal and natural gas prices also see nuclear disappear from the portfolio, and 
replaced by Coal-PC-CCS and Gas-NGCC-CCS capacity respectively. Assuming full CO2 capture 
for CCS technologies replaces some nuclear capacity replaced by Gas-NGCCs, and 
approximately 50% of Bio-OCGTs replaced by Gas-OCGTs. In all sensitivity runs, Bio-FB-CCS 
plays an important role in offsetting CO2 emissions from natural gas and coal plants, both with 
and without CCS. 
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Figure 4-13 | Total installed generation capacity in 2050 in the sensitivity analysis runs based on 
weather year 2010. The optimised portfolio from the Allow Non-RES scenario is shown again for 
comparison. 
 

 
Figure 4-14 | Total annualised power system costs in 2050 for each sensitivity run, based on weather 
year 2010. The optimised portfolio from the Allow non-RES scenario is shown again for comparison. The 
total annualised costs for each run are shown on the left axis, while the specific electricity cost is indicated 
by the ‘×’ symbols on the right axis. 
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In terms of total annualised costs, Figure 4-14 shows that almost all sensitivity runs have similar 
costs to the Allow Non-RES scenario of approximately 410 €bn y-1, despite their different 
generation portfolios. The reason for this is that under a tight emissions constraint, trying to 
replace high-cost (but zero-carbon) baseload nuclear capacity from the portfolio with lower-
cost Coal-PC-CCS, Gas-NCCC, or Gas-NCCC-CCS is not effective as some high-cost Bio-FB-
CCS must also be installed to offset the higher emissions from gas or coal (even with CCS), 
and any additional CCS capacity (from either fossil fuels or biomass) leads to a concomitant 
increase in CO2 transport and storage costs. As a result, total costs are not sensitive to the 
makeup of the portfolio, and we conclude that 410 €bn y-1 is a reasonable figure for 
benchmarking the cost of a 100% RES power system with a non-RES alternative. 

 Discussion 
4.4.1 Deployment trajectories to 100% RES 

In this study we demonstrate that in 2050, Europe’s electricity needs could be met by a 100% 
RES power system with the same level of system adequacy as today. However, we have not 
considered whether such a transformation is possible by 2050.  

Figure 4-15 shows the historical deployment of wind capacity in the EU28 countries, and linear 
deployment trajectories required to reach the 2050 installed capacity in each of our 100% RES 
scenarios42. From a starting capacity of 141 GW in 2016, if the current level of net wind 
deployment continues at approximately 10.5 GW y-1 (based on the average annual installations 
between 2007 and 2016), the installed capacity in 2050 would be sufficient for the majority of 
the 100% RES scenarios43. In fact, the 2050 levels for the Base, Alternative Demand Profile and 
Storage scenarios could even be achieved with a lower deployment of 7.5 GW y-1. Only in the 
absence of CSP and Geothermal, or a very large increase in demand, would installations need 
to rise to 14 GW y-1 or 17 GW y-1 respectively. Given that nearly 13 GW of wind was installed 
in 2015, even these higher levels seem achievable. Turning to PV in Figure 4-16, recent 
deployment levels in the EU have been erratic and in 2016, the 6.1 GW of capacity installed 
was far below the high of 22 GW achieved in 2011. If the installed capacity from the period 
2008-2016 is extrapolated (an average of 10.5 GW y-1 net PV installed annually), the installed 
capacity in 2050 would not be sufficient for any of the 100% RES scenarios. In order to achieve 
the 2050 capacity in the Base (lowest) scenario, average annual PV deployment would need to 
increase to 15 GW y-1 for every year until 2050, rising to 25 GW y-1 for the Free RES scenario, 
and 30 GW y-1 for the No CSP or Geothermal scenario. While ambitious, given that 22 GW of 
PV was installed in Europe in 2011, these levels could be achievable (GWEC, 2017). Thus, we 
assert that sufficient wind and PV capacity could be deployed by 2050 to support a 100% RES 
power system. 
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Figure 4-15 | Cumulative deployment of total (onshore + offshore) installed wind capacity in the 
EU28, showing the linear trend required to reach the installed 2050 capacity in each 100%RES 
scenario from this study. The dashed line (hidden behind the Free RES scenario) shows the linear 
extrapolation of deployment until 2050, assuming annual installations based on the average for the years 
2007 to 2016  (10.6 GW y-1), taken from GWEC (GWEC, 2017). The Base and Alternative Demand Profile 
scenario trajectories are hidden behind the Storage scenario. 
 

 
Figure 4-16 | Cumulative deployment of total installed PV capacity in the EU28, showing the linear 
trend required to reach the installed 2050 capacity in each 100% RES scenario from this study. The 
dashed line shows the linear extrapolation of deployment until 2050, assuming annual installations based 
on the average for years 2008 to 2016 (10.5 GW y-1) taken from EurObservER (EurObserv’ER, 2017). The 
trajectory of the Alternative Demand Profile scenario is hidden behind the Storage scenario. 
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However, unlike wind and PV which have significant capacity already installed and are currently 
experiencing growth, the total installed capacities of solid biomass, biogas, CSP and 
geothermal in 2015 were only 18 GW, 10 GW, 2.3 GW and 0.8 GW respectively, with recent 
deployment rates not exceeding 1 GW y-1 for any technology (Eurostat, 2017b).  In order to 
reach the installed 2050 capacities in the Base scenario, installations of CSP and geothermal 
capacity would need to average 6 GW y-1 and 1.4 GW y-1 respectively every year from 2016 
to 2050, which has never been demonstrated. Biomass presents an even greater challenge, 
with annual capacity additions needing to average between 4 GW y-1 (Free RES) and 6 GW y-1 
(High Demand) for solid biomass, and between 6 GW y-1 (Alternative Demand) and 19 GW y-1 
(High Demand) for biogas44. Even though we show that a 100% RES system is possible without 
CSP or Geothermal, the infeasibility of the No Biomass scenario and large-scale deployment 
of biomass in the remaining scenarios demonstrate the vital role of bioelectricity in a 100% 
RES power system as a provider of flexible firm capacity.  

In addition to generation capacity, we showed in Section 4.3.4 that cross-border transmission 
capacity would need to increase by between 142 GW (Free RES) and 416 GW (High Demand) 
from the 60 GW installed today, in order to support a 100% RES power system. Given 
that 58 GW of additional cross-border transmission is currently being planned for 
commissioning by the 2030s, an additional 84 GW – in line with the Free RES scenario – seems 
achievable by 205045. However, realising the transmission network in the High Demand 
scenario would require 10 GW y-1 of new transmission capacity to be installed every year from 
2016 until 2050. This seems highly unlikely, given that new interconnectors take several years 
to plan and build. 

4.4.2 Caveats and limitations 

By modelling alternative scenarios in our study and performing selected sensitivity analysis, 
we explore how other assumptions in demand and technology developments would affect our 
results. Nevertheless, modelling the future is inherently uncertain and our results should be 
seen in the context of the following uncertainties: 

• Different cost developments for the different generation technologies would affect 
both the makeup of the optimised RES portfolios, and their competitiveness with 
non-RES alternatives. While the costs of vRES have fallen rapidly in recent years, vRES 
CAPEX costs would need to fall by a further 70% from the base levels (which already 
assume significant reductions compared to today), in order for the total costs in the 
Free RES scenario to reach parity with the Allow non-RES scenario in 2050. 
 

• Our results show that biomass would play a critical role in 100% RES power system 
in 2050. However, the future cost and potential supply of biomass in 2050 are 
uncertain, and will depend on future rainfall patterns, agricultural practices, and 
demand from other sectors. Biomass imports from outside Europe, precluded from 
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this study, would also be possible; however, a 100% RES power system relying on 
biomass for firm capacity would be vulnerable to what is ultimately a scarce and 
relatively expensive fuel. 
 

• The quality of our results is underpinned by the quality of the vRES generation 
profiles, which depend first on the accuracy of the underlying weather dataset, and 
secondly on the methods used to derive generation profiles from the raw 
meteorological parameters. Both may have resulted in an overestimate of system 
adequacy: 
 

o Firstly, the period covered by ERA-Interim (1979-present) is one in which 
the winter North Atlantic Oscillation (NAO) more often exhibited a positive 
phase than a negative phase, resulting in above average wind speeds and 
temperatures in most of Europe (Beranová & Kyselý, 2013; Commin et al., 
2017; Jerez, Trigo, Vicente-Serrano, et al., 2013). However, as our study is 
based on the worst-case year with the NAO in its negative phase, our results 
are not affected.  
 

o Secondly, linearly interpolating the 3-hourly temporal resolution of ERA-
Interim to hourly values may make wind and PV generation profiles 
smoother than they would be in reality. However, the impact of this is likely 
to be small in comparison to the local smoothing which occurs at individual 
sites (Norgaard & Holttinen, 2004), and large-scale spatial smoothing across 
Europe (Albadi & El-Saadany, 2010). 
 

• The long-term impact of climate change on Europe’s weather patterns is also 
uncertain. However, recent studies suggest that, at the continental scale, these 
impacts are likely to be small (Jerez, Tobin, et al., 2015; Tobin et al., 2015). 

Due to time and research constraints the following aspects could not be considered and 
remain areas for further research: 

• Our assessment of reliability study considers only system adequacy, not system 
security. Thus, without performing transient stability analysis, we do not know how a 
100% RES system would perform under transient conditions and what facilities would 
be required to maintain security (e.g. synthetic inertia, Flexible Alternating Current 
Transmission Systems (FACTS) (Brown et al., 2018; JRC, 2014; Yan et al., 2015)). 
However, by modelling reserves we do ensure that sufficient capacity is available to 
cover forecast errors and sudden generator loss. 
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• We do not consider the low-voltage distribution grid which would need to be 
upgraded to bring electricity from PV and biogas plants to the wider power system46. 
Enhanced self-consumption with local storage could reduce distribution upgrades 
for PV (Alam et al., 2013), but biogas must provide peak supply and balancing for the 
wider system. 
 

• We consider only snapshots of possible 100% RES power systems in 2050, without 
considering the transition from the existing system in detail47. Thus, we do not 
consider whether the cumulative emissions trajectories to reach the 100% RES 
scenarios in 2050 would fit within Europe’s allowable carbon budget to limit global 
warming to 2°C, nor do we explore more ambitious decarbonisation efforts 
(beyond 2°C and preferably below 1.5°C) in light of the Paris Agreement. However, 
any of the 100% RES scenarios could be made net-carbon-negative by equipping 
some of the Bio-FB capacity with CCS.  
 

• We assume constant availability of biomass, while in fact biomass availability 
fluctuates with the seasons, harvest times, and rainfall48. Security of biomass supply 
could be improved by stockpiling biomass, but this would incur some costs for 
additional storage and treatment (e.g. torrefaction (W. H. Chen et al., 2015)) to 
stabilise the biomass, minimise degradation and methane emissions during storage 
(Alakoski et al., 2016; Röder et al., 2014).  
 

• We model biogas production and supply as fully flexible; however, current AD 
processes have limited flexibility (Hahn, Ganagin, et al., 2014). Flexibility can be 
improved with storage (either on-site storage, or upgraded gas which is injected and 
stored in the gas network) or more flexible AD processes (Hahn, Krautkremer, et al., 
2014). However, storage can be limited for safety reasons, and not all countries have 
an extensive gas pipeline network49. 
 

• We do not account for a potential increase in indirect GHG emissions, particularly 
from biomass. However, rough calculations suggest that indirect emissions from 
most 100% RES scenarios would be approximately 100 Mt CO2eq y-1: 70% higher than 
the indirect emissions from the current power system, or approximately 9% of the 
direct GHG emissions saved by converting to a 100% RES system. These could be 
offset by equipping approximately 10% of the Bio-FB capacity with CCS.  
  

• Additional technology options such as hybrid generators, co-firing, and seasonal 
storage (e.g. power-to-gas) to reduce costs and/or the reliance on biomass have not 
been considered50.   
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• In power systems with high penetrations of vRES generators, an energy-only market 
based on marginal-cost pricing may not provide sufficient revenues for generators 
to cover their costs (Brouwer, Van den Broek, et al., 2016). Thus, any 100% RES power 
system would need to be supported by an open51 electricity market environment 
which ensured generators were remunerated adequately. Scarcity pricing and 
capacity remuneration mechanisms are two possible ways to make up for this 
revenue shortfall (Hu et al., 2018; Jacobs et al., 2016), but neither have been proven 
at the European scale. 
  

• Lastly, we do not consider the impacts of social acceptance on costs. For example, 
public opposition to overhead transmission lines and onshore wind could be 
mitigated by using underground cables, and shifting wind turbines offshore (Batel et 
al., 2013; Cohen et al., 2014; Mester et al., 2017)52. Shifting nuclear and CCS offshore 
could also make these technologies more palatable for the public (Buongiorno et al., 
2016; Lipponen et al., 2017); however, offshore real estate is limited, and the cost and 
environmental consequences of shifting so much infrastructure offshore  are likely to 
be significant. 

 Conclusion 
In this study, we model seven scenarios for a fully renewable European power system in 2050 
and explore the impact of uncertainties in future demand and technology availability. We find 
that a 100% RES European power system could operate with the same level of system 
adequacy as the current power system, even when relying only on domestic European sources 
in the most challenging weather year. However, based on our scenarios, realising such a 
system by 2050 would require: 

• massively expanding generation capacity to at least 1.8 TW (based on the Alternative 
Demand Profile scenario), compared to the 1 TW installed today; 

• expanding cross-border transmission capacity by at least ~140 GW (based on the 
Free RES scenario) from current levels (60 GW), with the consequence that Europe 
becomes much more dependent on the reliability of its cross-border transmission 
capacity;    

• the well-managed integration of HPs and EVs into the power system (in response to 
the electrification of heating and transport) through smart charging and other 
demand-side technologies, in order to reduce peak demand and required OCGT 
capacity; 

• the implementation of energy efficiency measures to prevent a massive increase in 
electricity demand (on top of that expected from HPs and EVs) in order to reduce 
demand for biomass, and keep the deployment rate of new transmission and 
generation capacity manageable by 2050; 
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• wind deployment levels of at least 7.5 GW y-1 to be maintained (currently 10.6 GW y-1) 
while PV deployment to increase to at least 15 GW y-1 (currently 10.6 GW y-1) until 
2050 (based on the Base scenario); 

• the large-scale mobilisation of Europe’s biomass resources, with power sector 
biomass use reaching at least 8.5 EJ (4.5 times higher than today’s 1.9 EJ) in the most 
challenging year (based on the Base scenario); and, 

• increasing solid biomass and biogas capacity deployment to at least 4 GW y-1 and 
6 GW y-1 respectively every year until 2050 (based on the Alternative Demand Profile 
scenario). 

In addition to these requirements, we find that: 

• even when wind and PV are placed in the optimum locations, the total annualised 
costs of a 100% RES power system would be at least 530 €bn y-1 (based on the Free 
RES scenario), which are only slightly affected by the makeup of the generation 
portfolio; 

• a 100% RES power system would be approximately 30% more expensive than a 
power system in which nuclear or CCS technologies are included; and, 

• the costs of a 100% RES power system increase relatively more with higher demand, 
as a 36% increase in demand in the High Demand scenario increases costs by 50% 
compared with the Base scenario, as costlier biomass fuels and less optimal vRES 
sites must be exploited. 

• a 100% RES system may not deliver the level of emission reductions necessary to 
achieve Europe’s climate goals by 2050, as negative emissions from biomass with 
CCS may still be required to offset an increase in indirect GHG emissions, or to realise 
more ambitious decarbonisation pathways. 

Future research should investigate the flexibility of biogas production, system adequacy under 
different rainfall years, the dispatchability of RoR hydro generators and seasonal availability of 
water, the potential role of seasonal storage, heat-electricity sector coupling, system security, 
and the market conditions necessary to support a 100% RES power system. 
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Footnotes to Chapter 4

1 Several other scenario studies have also been published for the European power system in 2050 (Eurelectric, 2009; 
Haller et al., 2012; Heller et al., 2013; McKinsey, 2010; PwC et al., 2010; WWF, 2013), but these are not discussed as 
they report insufficient technical detail, or do not approach 100% RES. 

2 Brown et al. also propose the two additional criteria that the power system should not rely on fuel sources which will 
be exhausted within a few decades, or on unproven technologies. Other authors (e.g. Deane et al. (Deane et al., 2015)) 
have evaluated power systems according to their own feasibility framework. 

3ENTSO-E uses this definition in the Continental Europe Operation Handbook (2004) (UCTE, 2004), however more 
recently, ENTSO-E defines another term – security of supply – as “the ability of a power system to provide an 
adequate and secure supply of electricity in ordinary conditions" which is similar to reliability (ENTSO-E, 2016c). The 
main distinction between system adequacy and security is that security refers to the short-term operation of the 
power system (e.g. resilience to generator outages, transmission faults), whereas adequacy refers to long-term 
operation. System adequacy can also be divided into generation adequacy, and transmission adequacy (EC, 2014c). 

4 For example, in (ECF, 2010a), it was found that in addition to the base RES capacity (1790 GW), 215 GW of natural gas 
turbines were required for back-up and balancing. However, accounting for this gas use reduced the share of RES to 
97% and meant the target of 95% decarbonisation was not met. While noting that this natural gas could be replaced 
by biogas or renewable hydrogen, the consequences and costs of these options were not fully explored. Thus, 
neglecting analysis with PSM leaves uncertainty as to whether the system would actually work, whether emission 
reductions can really be achieved, and at what cost. 

5 PLEXOS (version 7.2) is developed by Energy Exemplar (http://www.energyexemplar.com/) 
6 Despite the UK’s decision in 2016 to leave the European Union, its power system is likely to remain integrated with that 

of continental Europe. While part of the Continental European network, we exclude the Balkan states due to a lack of 
data. 

7 Built using the software ArcGIS Pro from ESRI. (http://www.esri.com/) 
8 ERA-Interim is a global atmospheric reanalysis produced by the European Centre for Medium-Range Weather Forecasts 

(ECMWF) covering 1979 to the present (2017) and includes 3-hourly data on wind speed, solar radiation, and 
temperature (Dee et al., 2011; ECMWF, n.d.). The spatial grid in this study is built to match that of ERA-Interim, which 
has a resolution of 0.75° x 0.75° (approximately 50 km).  

9 The Vision 4 profile was developed for the year 2030 assuming lower penetration of HP and EVs than our Base profile, 
and includes the effects of smart EV charging and other demand-side technologies which the Base profile does not.  

10 We exclude ocean (tidal and wave) energy (Magagna, 2015; Magagna & Uihlein, 2015) and osmotic power (derived 
from salinity gradients) (Jia et al., 2014) as their slow growth makes it unlikely for them to produce significant amounts 
of electricity by 2050. 

11 Even though BECCS uses renewable biomass, we consider any technology using CCS as non-renewable as the potential 
for CO2 storage, while significant (~117 Gt CO2), is finite (EU GeoCapacity Project, 2009).  

12The cost of capital can vary significantly between countries and between technologies (Noothout et al., 2015). We 
choose 8% as a common value used in similar energy and PSM studies, assuming that perceived risks for renewable 
investments are likely to fall in the future (Trutnevyte, 2016). This is higher than the reference financial and social 
discount rates of 3% - 5% recommended by (EC, 2014b; Trutnevyte, 2016).  

13 Assumed availability is taken from the literature, ranging from 1% for utility PV on arable land to 20% for offshore wind 
on open water. 

14 Currently, most large-scale bioelectricity plants in Europe are the result of the partial (e.g. co-firing) or complete 
conversion of existing pulverised coal plants to biomass. However, as many existing coal plants will have been 
decommissioned by 2050, we do not consider the conversion of existing plants. Instead, we model future large-scale 
biomass as fluidised bed combustion plants as their projected 2050 costs are similar to coal plants with added costs 
for biomass co-firing (based on (JRC, 2014)). The alternative would be to assume future biomass plants use more 
efficient integrated gasification combined cycle (IGCC) technology (as done by (Sanchez et al., 2015)), however these 
are approximately 40% more expensive, potentially less flexible, and no large-scale units are currently operating. 

15 We do not include sugar, starch and oil crops (which we reserve for liquid biofuel production), roundwood fuel wood 
(which we reserve for firewood), nor black liquor. We include the transport of solid woody biomass between countries 
(Hoefnagels et al., 2014), while for practical reasons we assume that solid waste biomass must be used in its country 
of origin. 

16 As opposed to a ‘hard’ constraint, a ‘soft’ constraint can be violated, at the expense of a high penalty cost.  
17Based on an in-house database of Europe’s 120 largest hydro plants and their associated reservoirs incorporating data 

from various open-source databases (e.g. (Davis et al., 2015; Geth et al., 2015; ‘Global Energy Observatory’, n.d.)), we 
calculate average specific reservoir sizes of 60, 1608 and 113 MWh MW-1 for RoR, STO and PHP hydro plants 
respectively. Multiplying these values by the average plant sizes from ENTSO-E (ENTSO-E, 2017b) gives total European 
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hydro storage capacity of approximately 160 TWh. This total matches quite well with the 180 TWh reported by (Mennel 
et al., 2015). Also, the value of 60 MWh MW-1 for RoR storage shows that most RoR plants also have several hours of 
storage, and thus capable of some level of dispatchability (Kaunda et al., 2012). The resulting 56 GW of PHS capacity 
is equipped with 6.4 TWh of storage. 

18 Firm capacity (also known as capacity credit or capacity value) represents the contribution a generator makes to system 
adequacy. Put simply, it indicates the share of installed capacity which can be relied upon during times of peak demand. 
For dispatchable generators, a value of 90% is typical and allows for forced and unforced offline periods. While CSP 
generation depends on intermittent sunlight, the capacity credit of CSP plants can exceed 90% when equipped with at 
least four hours of storage, thus we assume this value (Madaeni et al., 2011). 

19 These notional ‘reinforcement lines’ are not modelled explicitly as part of the transmission network, and only serve to 
include the cost of bringing electricity from more remote vRES sites to load centres. 

20 The potential of DSM from space heating is zero in summer, and vice versa for air-conditioning. 
21 Several countries already require that wind farms connected in Europe must be able to supply primary (and in some 

cases secondary) reserves, which is possible by operating in de-loaded mode or being equipped with storage capacity 
(e.g. flywheels) (Díaz-González et al., 2014). PV plants can also provide primary reserves (Dreidy et al., 2017). 

22 This is to match demand in the Energy [R]evolution study (see Table 4-1), which assumed extensive use of electricity 
for the production of hydrogen for use in other sectors (GWEC et al., 2015). 

23 We assume storage investment costs of 700 € kW-1 (including 8 kWh of storage for every kW capacity installed), round 
trip efficiency of 63%, FOM costs of 35 € kW-1 y-1

,  and lifetime of 35 years, based on (Brouwer, Van den Broek, et al., 
2016). Equivalent to 88 € kWh-1, we acknowledge this is rather optimistic given expectations for grid-level storage costs 
are 340 USD kWh-1 (290 € kWh-1) in 2040 (Schmidt et al., 2017). However, with this scenario want to see the potential 
role of storage in the power system at a given cost, not provide an accurate cost assessment. 

24 The commercial optimization package Gurobi (Gurobi Optimization, 2016) is used to solve the system of MILP 
equations generated by PLEXOS. 

25 OPF calculations enforce active and reactive power balance constraints at each node, and would provide better 
estimates for losses and reactive power compensation requirements (e.g. capacitor banks, synchronous condensers) 
(Dixon et al., 2005; Frank & Rebennack, 2016). However, this is beyond the scope of our paper. 

26 For computational reasons, the LT plan does not simulate each hour. Instead, we slice the year into 12 monthly blocks 
and optimise based on a simplified 12-step load duration curve (LDC) in each block. As a consequence, chronology is 
only maintained between the blocks and not within them, thus ramping constraints cannot be considered (Energy 
Exemplar, 2015). However, both generator flexibility and reserves are included in the ST Schedule. 

27 We assume direct GHG emission factors of 56, 101 and 100  kg CO2 equivalent  GJ-1 (NCV) for natural gas, coal and 
biomass fuels respectively  (IPCC, 2010). Note that emissions for biomass are only considered when coupled with CCS 
in Bio-FB-CCS plants to calculate sequestered CO2. Otherwise, biomass is considered carbon-neutral as we assume that 
sufficient new biomass is grown (and CO2 absorbed) to offset that which is burned. 

28 Reserve requirements depend on vRES generation profiles, which are not known until after the LT Plan is solved. The 
vRES capacity credit is estimated based on the hours in which total European-wide demand is highest, however these 
hours do not necessarily coincide with the peak demand hours in each country. For this reason, we must ensure that 
some over-capacity is included in the LT Plan so that sufficient capacity is available to cover both reserve requirements 
and vRES firm capacity inaccuracies in the subsequent hourly simulations. 

29 Even if this approach is rather conservative and more capacity is installed by the model than actually required, this 
capacity will come in the form of OCGTs (the cheapest capacity providers) which ultimately contribute relatively minor 
amount to total costs (see section 4.3.7). 

30 Performing hourly simulations for one week for one scenario can take more than 4 hours to solve using integer 
programming with a target MIP gap of 0.1%. Thus, simulating a full year could take more than 200 hours, rising to 60 
days for all seven scenarios. Instead, we cap the solver time to two hours and solve only the first week of each month. 

31 We also attempted another scenario excluding biomass but including daily (8 hour) storage; however, this also returned 
an infeasible solution. 

32 The reason we observe no curtailment in our study is that with both transmission and vRES siting optimised 
simultaneously, transmission bottlenecks are avoided, and it is more cost-effective to balance the portfolio with firm 
non-vRES capacity – taking into account the need for peak load and reserve coverage – than install surplus vRES 
capacity. Furthermore, as we do not model the transmission or distribution grids within countries, any internal 
bottlenecks requiring vRES curtailment are neglected. 

33 If this CSP capacity was instead located in the Middle East and Northern Africa (MENA) countries, the required network 
topology would be similar as HVDC connections bringing electricity to central Europe from the MENA must go through 
Spain, Italy, or Greece. The SAPEI HVDC cable linking Sardinia with mainland Italy is the deepest in the world, with 
some sections reaching 1650 m (Ardelean & Minnebo, 2015), while significant portions of the Mediterranean Sea (i.e. 
between Algeria and France) exceed 2500 m depth. Attempting to lay cables at greater depths involves significant 
technical and cost limitations which are unlikely to be overcome before 2030, leaving only 20 years for a trans-
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Mediterranean HVDC network to be developed (Colombo, 2014; SuperGrid Institute, 2017). This leaves Spain, Italy or 
Greece as the only alternatives. 

34 The total of 5 EJ includes 3.9 EJ of solid biomass, 0.7 EJ of biogas, and 0.4 EJ of renewable municipal waste. The 38% 
use for electricity includes use in combined heat and power plants. ‘Energy purposes’ includes both electricity and heat. 
The remaining biomass not used for electricity production (62%, 3.1 EJ) was used for residential heating or in district 
heating plants. 

35 Potential biogas production for the EU28 in 2030 is reported to range between 28.8 Mtoe and 40.2 Mtoe (1.2 EJ to 1.7 
EJ) (Kampman et al., 2016). Thus, the 2050 potential may be higher than the base levels assumed in our study. 

36 This additional biogas is only required by the model in the hourly ST Schedule runs, not in the LT Plan. This highlights 
the importance of accounting for generator flexibility limitations and reserve requirements by performing detailed 
hourly simulations: neglecting them can underestimate the utilisation of peak generators. 

37 Calculated as the total annualised system costs divided by the total annual generation. Note that these are the ‘worst 
case’ costs, as generation is based on the most challenging weather year. 

38 From a single data point, it is impossible to determine exactly how costs increase with increasing demand. However, 
for the reasons given, it is likely to be non-linear. 

39 300 €bn y-1  to 400 €bn y-1 is approximately 2% to 3% of Europe’s 2015 gross domestic product (GDP) (Brown et al., 
2018). Assuming moderate GDP growth (1.5% y-1), 530 €bn y-1 would still represent 2% to 3% of GDP in 2050 (EC, 
2016b). 

40 Hinkley Point C will have a capacity of 3200 MW at a cost of £19.6 bn (BBC, 2017), while Olkiluoto-3 will have a capacity 
of 1600 MW at a cost of £8.5 bn (Ward, 2017). On this basis, the investment cost for nuclear could be in the range of 
~5300 € kW-1 to ~6800 € kW-1. However, it is not clear whether the reported costs include IDC, thus including IDC 
would increase the costs further. 

41 Higher nuclear CAPEX is based on the calculated cost of Olkiluoto-3 (Ward, 2017). The higher gas price is based on the 
4 Degree Scenario (4DS) for 2050 from the IEA’s ETP2016 (IEA, 2016a). 

42 While the deployment trend would not necessarily be linear, this demonstrates that exponential growth would not be 
required to reach the 2050 installed wind and PV capacities for most scenarios. 

43 Net deployment includes the replacement of retired capacity. 
44 Rather than new biomass installations, existing coal and natural gas plants could also be converted to run on 100% 

biomass or upgraded biogas.  
45 Based on all cross-border lines currently included in ENTSO-E’s TYNDP 2016 (ENTSO-E, 2016d). 
46 While large wind farms and centralised power plants (e.g. CSP, biomass) would be connected to the high voltage 

transmission grid, biogas plants are usually small decentralised facilities located in agricultural areas, more likely to be 
connected to the LV grid. For example, the most economical size of a biomethane plant ranges between 1 and 2 million 
Nm3 biomethane per year (approximately 500 kWe to 1 MWe), depending on availability of feedstock and transport 
costs (AEBIOM, 2009). 

47 This would require detailed data on Europe’s fleet of existing power plants which was not available. 
48 For example, the annual European supply of agricultural residues can vary by as much as +23% and -28% from the 

long-term average (Scarlat et al., 2010). 
49 For example, in the Nordic countries gas is only available in a few major cities, not in rural areas. 
50 For example, biomass-CSP hybrid generators which can burn biomass during winter and on cloudy days when DNI is 

low (Soria et al., 2015). Also, co-firing of solid biomass in coal plants (possibly retrofitted CCS) could allow existing coal 
plants to remain in operation up to (or even beyond) 2050, reducing costs by avoiding stranded assets. 

51 In Germany for example, tertiary balancing power can only be provided by plants above 5 MW (Hahn, Krautkremer, et 
al., 2014). This would be a major limitation for biogas plants which are typically small. However, aggregators could be 
used to pool generation capacity for provision of ancillary services.  

52 As shown in Table 4-3 and Table 4-4, the cost of offshore wind is twice that of onshore wind, while underground cables 
are up to 10 times more expensive than overhead transmission lines. 
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Abstract 
We model the evolution of the Central Western Europe power system until 2040 with an 
increasing carbon price and strong growth of variable renewable energy sources (vRES) for 
four electricity market designs: the current energy-only market, a reformed energy-only 
market, both also with the addition of a capacity market. Each design is modelled for two 
decarbonisation pathways: one targeting net-zero emissions by 2040 for a 2 ºC warming limit, 
and the other targeting -850 Mt CO₂ y¯¹ for a 1.5 ºC warming limit. Our key policy findings are: 
(i) no market design guarantees long-term cost recovery for all technologies, (ii) bioelectricity 
with carbon capture and storage plays an important role in decarbonised portfolios, but may 
put downward pressure on electricity prices, (iii) significant direct air carbon capture is 
deployed in the 1.5 ºC scenarios, increasing electricity demand by 200 TWh y¯¹, (iv) 
decarbonisation policies relying primarily on vRES to meet a 1.5 ºC target may increase the 
cost of the transition by 10-25% compared with more diversified portfolios, and (v) 
policymakers should consider adding a mechanism in the European emissions trading scheme 
to remunerate negative emission technologies (NETs) for the emissions they sequester, but 
this alone is unlikely to see sufficient investment in NETs. 
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 Introduction 
In order to achieve the European Union’s (EU) long-term goal of reducing greenhouse gas 
(GHG) emissions by 80-95% by 2050 compared to 1990 levels, the power sector will need to 
fully decarbonise by 2050, or even deliver net-negative GHG emissions if the objective of the 
Paris Agreement to limit global warming to well below 2 °C is to be met (EC, 2011c, 2018a; 
UNFCCC, 2017b). As a result, policies have been implemented to increase the share of 
renewable energy sources (RES) in electricity supply. These have been largely successful, with 
installed wind capacity in the EU tripling from 60 to 180 GW between 2008 to 2018, and solar 
photovoltaic (PV) capacity increasing tenfold from 10 to 115 GW over the same period 
(EurObserv’ER, 2018, 2019; Eurostat, 2017b; SolarPower Europe, 2019). As wind and PV are 
variable renewable energy sources (vRES) with nearly zero short-run marginal costs (SRMC), 
this additional capacity has displaced more costly thermal generators in the merit order, 
reduced electricity prices, and the operating hours of thermal plants (Hirth, 2018)1. Also known 
as the “merit-order” effect, this makes it more difficult for thermal plants in energy-only 
electricity markets (EOMs) to recover their fixed costs, negatively affects the business case for 
new investments, and threatens security of supply (Clò et al., 2015; EC, 2016a; Hu et al., 2018; 
Joskow, 2008; Paraschiv et al., 2014).  

In response to concerns about security of supply, and scenarios showing that up to 60% of 
electricity generated in the EU by 2040 could be provided by vRES2, several countries have 
implemented capacity remuneration mechanisms (CRMs) of various designs to supplement 
generator revenues from the EOM3. However, there is little empirical evidence of the need for 
CRMs. For example, many EU countries continue to operate EOMs with no significant reliability 
problems4. Moreover, the fall in market prices observed between 2010 and 2015 – which 
triggered much of the debate in the EU on the need for CRMs – may have been a sign of EOMs 
reacting as intended in response to an oversupply of generation capacity (Hirth & Ueckerdt, 
2014). In recent years, prices have also shown signs of recovery5. Turning to the literature, 
whether EOMs alone can provide sufficient incentives for investment in thermal generation or 
if CRMs are necessary has long been a subject of debate, with no clear resolution (Pollitt & 
Chyong, 2018). Some argue that CRMs are undesirable as they distort EOMs, instead 
suggesting that if so-called ‘market failures’ hindering the formation of scarcity prices are 
resolved, EOMs should be capable of ensuring security of supply (Bucksteeg et al., 2017; 
Cramton & Ockenfels, 2012; EC, 2016c; Henriot & Glachant, 2013; Hirth & Ueckerdt, 2014)6. 
Others posit that CRMs are necessary due to uncertain scarcity prices, and the risk-averse 
nature of investors (Petitet et al., 2017). Less attention has been given to the future profitability 
of vRES generators, whose investments to date have largely been driven by government 
subsidies (Ecorys, 2017). While there are signs that subsidy-free vRES investments are now 
possible, with continued vRES deployment the merit-order effect may become so great that 
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vRES cannibalise even their own revenues (Brouwer, Van den Broek, et al., 2016; Netherlands 
Enterprise Agency, 2019; Zipp, 2017).  

Previous studies have investigated market designs to support both thermal and high levels of 
vRES capacity in a qualitative way (e.g. (Billimoria & Poudineh, 2018; Ecorys, 2017; Finon & 
Roques, 2013; Henriot & Glachant, 2013; Keay, 2016; Newbery et al., 2018; Philipsen et al., 
2019; Poudineh & Peng, 2017)), but relatively few quantitative studies have been performed. 
Brouwer et al. (Brouwer, van den Broek, et al., 2016; Brouwer, Van den Broek, et al., 2016) find 
that the current EOM would not provide sufficient revenues for most thermal, vRES or other 
low-carbon technologies from 2030 onwards, while Pollitt & Chyong (Pollitt & Chyong, 2018) 
find that mid-merit plants could be profitable with more vRES if fuel and carbon prices were 
to rise; while vRES would still need subsidies or further cost reductions. Levin & Botterund 
(Levin & Botterud, 2015) compare various CRMs, finding that market prices collapse under all 
designs and reduce the profitability of baseload and wind plants, while mid-merit and peak 
generators are less affected. Market designs have been evaluated based on a wide variety of 
criteria, usually based on the author’s (often implicit) definition on the objectives of electricity 
market design. For example, Poudineh and Peng (Poudineh & Peng, 2017) give the purpose 
of market design as “[to provide] signals for efficient operation and investment in the power 
sector”. Some evaluation criteria that have been used in the literature are reliability (Ecorys, 
2017; Kraan et al., 2019; Newbery et al., 2018), adequacy (Petitet et al., 2017), market-based 
(Ecorys, 2017), efficiency (Poudineh & Peng, 2017), flexibility (Ecorys, 2017), complexity (Ecorys, 
2017), affordability (Ecorys, 2017; Newbery et al., 2018), clean (Newbery et al., 2018), renewable 
(Kraan et al., 2019), sustainability (Kraan et al., 2019), and social efficiency (Petitet et al., 2017).  

Despite the existing literature, we find several areas where research is lacking. Firstly, previous 
studies look mainly at snapshots of the market after the transition to a low-carbon future has 
taken place (e.g. (Brouwer, Van den Broek, et al., 2016; Ecorys, 2017; Zappa et al., 2019)), 
without considering the transition period and the impact of market design on the generation 
portfolios. Secondly, studies focus on integrating vRES as the primary means of achieving 
decarbonisation, with net-zero carbon emissions from the power sector seen as the final goal 
(e.g. (Gerbaulet et al., 2019; Kraan et al., 2019)). However, even a fully renewable net-zero 
emission system may not be consistent with the decarbonisation ambitions of the Paris 
Agreement, in which negative emission technologies (NETs) such as bioelectricity with carbon 
capture and storage (BECCS) and direct air carbon capture (DAC) may be needed (van Vuuren 
et al., 2017). Thirdly, no studies were found which investigate the economic viability of NETs 
and their potential impacts on the CWE electricity market.  

We seek to address these knowledge gaps with a case study of the electricity markets of France 
(FR), Belgium (BE), the Netherlands (NL), and Germany (DE) – collectively referred to as Central 
Western Europe (CWE). We model the CWE power system from 2017 until 2040 and address 
three main questions: (i) how should electricity portfolios develop to supply electricity reliably 
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to consumers at the lowest cost while being consistent with the Paris Agreement?, (ii) what 
effects do different market designs have on the resulting portfolios and the business cases of 
different technologies? and (iii) how could the deployment of NETs affect the electricity 
market? 

With the aims of our study thus established, in section 5.2 we outline our method. In 
section 5.3 we present our results, and discuss their implications in section 5.4. We conclude 
in section 5.5 with some key findings. Further details on the method and results from this 
chapter are provided in Appendix D. 

 Method 
Our approach consists of four main steps (Figure 5-1). First, a power system model of the CWE 
region and neighbouring countries is built using the PLEXOS modelling framework 
(section 5.2.1) (Figure 5-2). We model a total of eight scenarios by combining four different 
market designs with two different decarbonisation trajectories (section 5.2.2). Assuming that 
the overarching objective of market design is to supply low-carbon electricity reliably to 
consumers at the lowest possible cost, we first run a long-term (LT) capacity expansion 
optimisation to find the least-cost pathway of investment decisions in non-vRES generation 
capacity from the base year 2017 until 2040, taking the decarbonisation trajectories as a hard 
constraint (section 5.2.3). We assume vRES capacity increases exogenously as current policies 
are pushing the market in this direction, and it is the increasing penetration of vRES which 
drives current concerns with the existing EOM market design. Based on the resulting portfolios, 
short-term (ST) hourly unit commitment and economic dispatch (UCED) simulations of the 
day-ahead market are performed for selected years to yield more detailed results on market 
prices and system reliability; two indicators used to evaluate the different market designs. 

5.2.1 Build power system model 

Our model is built using PLEXOS, a power system modelling framework based on mixed-
integer linear programming7. By coupling its LT Plan and ST Schedule modules, PLEXOS can 
be used to perform both capacity expansion and UCED calculations, considering power plant 
flexibility limitations and flexible loads. The model has perfect foresight over the entire 24-
year period from 2017 until 2040. A detailed description of the PLEXOS model is provided in 
Appendix E. Transmission between countries is modelled based on net transfer capacities 
(NTCs), while transmission within countries is treated as copper plate. The main inputs for the 
model are: (i) the installed capacity of existing generators in the base year (2017), (ii) assumed 
developments in demand, vRES and transmission capacity, (iii) techno-economic parameters 
for generation, storage and NETs, and (iv) assumed fuel and carbon prices. These inputs are 
briefly outlined in the following sections.  
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Figure 5-1 | Overview of study method. The scenario designs are explained in section 5.2.2. 
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Figure 5-2 | Overview of the Central Western Europe focus study area (green), directly neighbouring 
countries (purple), and excluded countries (grey). 
 

5.2.1.1 Legacy generation fleet 
Data on the fleet of power plants operating in the CWE countries in 2017 are taken from a 
database of more than 700 power plants (T. Mulder, 2015), validated against the capacity 
reported by the European Network of Transmission System Operators for Electricity (ENTSO-E) 
and national statistics (ENTSO-E, 2018b) (Table 5-1). Plants are aggregated based on their type 
(e.g. coal, combined cycle gas turbines (CCGT), open cycle gas turbine (GT), nuclear), and 
decade of commissioning. Generators in neighbouring non-CWE countries are modelled more 
simply8. Several assumptions are made regarding the starting portfolio: 

• National phase-outs for coal (FR: 2022, NL: 2030, BE: 2017, DE: 2038) and nuclear 
power (BE: 2025, DE: 2022) are enforced (Bundesamt für kerntechnische 
Entsorgungssicherheit, 2018; Clean Energy Wire, 2019; Europe Beyond Coal, 2017; 
World Nuclear News, 2018)9. After the coal phase-out year, coal plants must either 
retire, be retrofitted with carbon capture and storage (CCS), and/or be converted to 
run on 100% biomass. 

• The efficiency of legacy power plants depends on their age (EPA, 2018). 
• If not retrofitted, plants must retire within five years of their nominal 

decommissioning year. 
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Table 5-1 | Installed generation capacity, demand, and capacity margin per country in 2017 

Parameter 
Country Total 

CWE BE DE FR NL 

Net generation capacity (GW) a 20.9 210.5 128.7 34.0 394.1 

Combined-cycle gas turbine (CCGT) 4.0 9.1 3.4 10.9 27.4 

Open-cycle gas turbine (GT) 0.1 9.5 0.0 4.6 14.2 

Coal 0.0 38.7 3.1 5.8 47.6 

Oil h 0.5 7.9 10.2 0.7 19.3 

Combined heat and power (CHP) 1.4 15.2 3.3 4.0 23.9 

Nuclear 6.1 10.7 63.1 0.5 80.5 

Run-of-river and storage hydro (HYDRO) b 0.0 4.7 18.6 0.0 23.2 

Pumped hydro storage (HYDRO-PHS) 1.3 8.7 5.0 0.0 15.0 

Solid biomass (BIOSOL) g  0.7 8.0 0.4 0.5 9.6 

Onshore wind (ONWIND) 2.0 50.2 13.6 3.3 69.0 

Offshore wind (OFFWIND) 0.9 5.4 0.0 1.0 7.3 

Solar photovoltaic (PV) 3.9 42.4 8.0 2.8 57.0 

Firm generation capacity (GW) c 13.6 105.0 96.8 25.3 240.8 

Curtailable load (GW) d 0 0 2.4 0.75 3.1 

Peak load (GW) 13.6 79.1 93.7 19.0 - 

Import capacity (GW) 8.0 23.6 10.0 6.9 - 

Export capacity (GW) 2.5 18.1 14.7 6.9 - 

Net import capacity (GW) e 3.8 17.5 7.5 -3.5 - 

Capacity margin (%) f 28% 55% 14% 19% - 
a Sources: ENTSO-E, Elia, Bundesnetzagentur, RTE (Bundesnetzagentur, 2018; Elia, 2018; ENTSO-E, 2018b; RTE, 2018) 
b Due to poor data availability we aggregate run-of-river (RoR) and storage hydro capacity in this study. Pumped 

storage is modelled separately. 
c Firm generation capacity is estimated assuming 90% firm capacity for all dispatchable thermal plants, 50% for hydro 

plants (based on historical availability during peak hours), 7% for wind, and 0% for PV. 
d Source: (ENTSO-E, 2018b) 
e The Net Import Capacity for a country is calculated as the firm capacity of all importing lines, minus the firm capacity 

of all exporting lines. These values are determined from a calibration run using PLEXOS for the base year 2017, 
accounting for the fact that the peak load hours in each country may not coincide. 

f Capacity Margin is reported at the time of the region peak load, and includes any potential contribution from 
transmission with neighbouring countries. It is calculated as: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (%) = (𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 +
𝐶𝐶𝐶𝐶𝑟𝑟𝑡𝑡𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑁𝑁𝑁𝑁𝑁𝑁 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)/(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) 

g Includes anaerobic digestion (BIOAD) 
h Includes all other non-renewable fuels  
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5.2.1.2 Assumptions for electricity demand, vRES and transmission 
capacity  

Future electricity demand, vRES deployment and transmission capacity in CWE are based on 
the Global Climate Action scenario from ENTSO-E’s Ten Year Network Development Plan 
(TYNDP) 2018 (ENTSO-E, 2018f). Starting from the actual 2017 demand of 1170 TWh, demand 
increases to 1256 TWh (+7% vs. 2017) in 2040, and the installed capacities of PV, onshore wind 
and offshore wind reach 269, 146 and 85 GW respectively (Figure 5-3)10. Country- and 
technology-specific hourly capacity factors for wind and PV are taken from the Renewables 
Ninja dataset (Pfenninger & Staffell, 2016; Staffell & Pfenninger, 2016). Cross-border 
transmission capacity within CWE rises from 9 GW in 2017 to 21 GW in 2040, while 
transmission between CWE and neighbouring countries rises from 23 to 60 GW.  
 

5.2.1.3 Techno-economic assumptions 

In addition to vRES, a range of dispatchable thermal, storage and NETs is 
considered (Table 5-3). Exogenous technological learning is assumed for vRES, CCS, storage 
and NETs. For example, the overnight capital costs (OCC) of PV, onshore and offshore wind 
fall 60%, 14% and 34% respectively between 2017 and 2040, based on the most optimistic 
deployment scenarios from (Tsiropoulos et al., 2018). Battery, electrolyser and DAC costs 
fall by 80%, 53% and 40% over the same period (Child et al., 2019; Keith et al., 2018; Siemens 
AG, n.d.).  

Figure 5-3 | Assumed deployment of PV and wind capacity in CWE. The 2017 capacity is based on 
historical data. The installed capacity in 2040 is taken from the Global Climate Action scenario in 
ENTSO-E’s Ten Year Network Development Plan 2018 (ENTSO-E & ENTSO-G, 2018). The installed capacity 
in 2025 is taken from the Best Estimate scenario, while the 2030 capacity is taken from the Distributed 
Generation scenario. 
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A uniform weighted average cost of capital (WACC) of 8% is assumed to annualise investment 
costs11. Generator ramping constraints, start-up costs, and part-load efficiencies are based on 
(Brouwer et al., 2015). Deployment of batteries, electrolysers and DAC is limited to 1 GW y-1 
per country12. In addition to completely new investments, two retrofit options are included for 
existing generators built between 1990 and 2016, and generators built after 2017: (i) 
retrofitting with CCS (coal, CCGT and solid biomass plants only), and (ii) full biomass 
conversion (coal plants only)13. The cost of retrofitting with CCS is assumed to be 60% of the 
cost of a new-build CCS plant (Gibbins et al., 2011), while the cost of biomass conversion is 
taken as 700 € kW-1 (Drax, 2018; JRC, 2014).  

5.2.1.4 Fuel and carbon prices 
We assume fuel prices remain constant at 2017 levels (Table 5-2). As we consider different 
climate scenarios by applying annual emission constraints (Section 5.2.2.2), we do not assume 
a carbon price in the capacity expansion algorithm. However, in the UCED runs for the years 
2020, 2030 and 2040, we assume EU Emission Trading Scheme (ETS) certificate prices of 
17, 85 and 120 € t-1 respectively, following the 450 scenario from the IEA’s World Energy 
Outlook 2016 (IEA, 2016d)14. Another key assumption we make is that NETs are remunerated 
for the negative emissions they generate at the same level as the carbon price.  

Table 5-2 | Assumed fuel prices in 2017  

Commodity Price (€ GJ -1) Source 

Natural gas 5.3 (EC, 2018b) 

Coal 2.5 (EC, 2018b) 

Oil 8.5 (EC, 2018b) 

Nuclear 0.9 (Bles et al., 2011; Polish Ministry of Economy, 2011) 

Biomass a 8 (Argus, 2018; Thrän et al., 2019) 
a Prices for biomass vary per region and biomass type. In 2017, the spot price of pellets imported to CWE were 

approximately 9 € GJ -1 (Thrän et al., 2019), while wood chips were 7 € GJ -1 (Argus, 2018). The value assumed in this 
study is an average of wood pellets and chips. 
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Table 5-3 | Techno-economic parameters for technologies in the year 2030. The costs for vRES, CCS, 
storage and NETs are assumed to fall over time due to technological learning.  

Generator 
Type a 

OCC k 

(€ kW-1) 
Build 

time (y) 
Economic. 

life (y) 
TCR k 

(€ kW-1) 
Efficiency l 

(%LHV) 
VOM 

(€ MWh-1) 
FOM 

(€ kW-1 y-1) Refs. 

Thermal technologies  m 

COAL 1600 4 40 1950 48% 3.6 40 o 

COAL-CCS* b 2740 4 40 3300 35% 5.5 69 o,p 

GT* 550 2 30 620 43% 11 17 o 

CCGT* 850 3 30 990 62% 2 21 o 

CCGT- CCS* b 1390 3 30 1620 55% 4 35 o,p 

NUCLEAR* 4100 6 60 5410 38% 2.5-16 n 86 o 

BIOAD* 2750 2 20 3090 40% 3.1 113 o,p 

BIOSOL* c 2330 2 25 2620 37% 3.5 42 o,p 

Variable renewable energy sources (vRES) 

PV d 530 - 25 530 - 0 13 o,p 

ONWIND e 1190 2 25 1340 - 0 26 o,p 

OFFWIND f 2310 3 30 2700 - 0 69 o,p 

Storage technologies 

BATTERY* g 900 - 15 900 90% 0.2 27 q 

HYDROGEN* h 310 - 25 310 75% 1.2 13 q,r 

Negative emission technologies (NETs) 

BIOSOL-CCS*b,c,i - - 25 3800 25% 5.4 61 - 

DAC*j 17400 - 25 17400 - 138.3 - s 

Abbreviations: BIOAD – Biogas from anaerobic digestion, BIOSOL – Solid biomass, CCS – Carbon capture and storage, 
CCGT – Combined cycle gas turbine, DAC – Direct air (carbon) capture, FOM – Fixed operating and maintenance costs, 
OCC – Overnight capital cost, GT – Open cycle gas turbine, TCR – Total capital requirement, VOM – Variable operating 
and maintenance costs  
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 Footnotes for Table 5-3 
a Technologies indicated with a ‘*’ can be built endogenously by the model in any country, except for nuclear which can 

only be built in France due to announced nuclear phase-outs in Germany, Belgium, and a low appetite for nuclear in 
the Netherlands. Solar PV and wind capacity increases exogenously as explained in Section 5.2.1.2. 

b We assume a uniform CO2 capture rate for CCS technologies of 90% (JRC, 2014), and fixed CO2 transport and storage 
costs of 15 € t -1 CO2 (Zero Emissions Platform, 2011) which are added on top of the other generator VOM costs. 

c The total sustainable technical lignocellulosic biomass potential in the CWE region is approximately 3.9 EJ y-1 (2030), 
which excludes biomass from protected areas, and considers sustainability standards for agricultural farming and land 
management (e.g. maintaining soil organic carbon), as well as forestry management practices (Dees et al., 2017). From 
this value, we further exclude all stem wood, stumps, and post-consumer waste and assume a maximum potential solid 
biomass use in the power sector of 2.9 EJ y-1 for CWE. 

d Assuming an average of utility-scale (without tracking) and residential-scale (inclined) PV systems. 
e Assuming a medium specific capacity (0.3 kW m-2), moderate (100 m) hub height. 
f Assuming monopole foundations, moderate (30 to 60 km) distance from shore. 
g Assumes 6 hours of storage. Efficiency given as round-trip. 
h Hydrogen cost given on the basis of electrolyser electric (input) capacity, including 90 days of storage capacity. We 

assume that hydrogen can be used in both new and existing natural gas plants with negligible investment cost. The 
conversion of electricity to hydrogen by electrolysis is assumed to have 75% efficiency (Siemens AG, 2014), while the 
conversion from hydrogen back to electricity is the same as for the gas plant. The assumed OCC reductions for 
electrolysis and storage taken from (Child et al., 2019) are on the optimistic side, with costs falling by 55% and 75% 
respectively between 2015 and 2030. 

i Limited consistent data is available for Biomass-CCS (BECCS) in the literature. Instead, the OCC is set at a level which 
makes a new BECCS plant slightly cheaper than retrofitting a new BIOSOL plant with CCS, or converting a new COAL-
CCS plant to biomass. VOM costs, FOM costs and efficiency are based on the difference between COAL and COAL-CCS 
plants. While low, the resulting efficiency is comparable with other literature estimates (e.g. (Bui et al., 2017; Fajardy & 
Mac Dowell, 2018)). Higher efficiencies are possible with process improvements (e.g. flue gas heat recovery), but would 
increase costs (Bui et al., 2017). 

j Direct air capture (DAC) consumes electricity, thus the capacity is shown as negative, and the OCC given per kW 
electricity input. DAC is still in pilot phase and cost estimates are uncertain, ranging from 50 to 800 € tCO2

-1 (Fuss et 
al., 2018). The values assumed in this study (150 to 200 € tCO2

-1) are at lower end of these estimates based on Keith et 
al. (Keith et al., 2018), for a plant capturing 1 Mt CO2 y-1 (net) from the air assuming a 90% capacity factor, and a DAC 
process that requires 0.37 MWh electricity and 5.25 GJ heat per (net) tonne of CO2 sequestered. We assume this heat 
is provided by natural gas and include the gas costs in the VOM. Carbon emissions from the natural gas combustion 
are accounted for in the above capture values, which are reported per net tonne CO2 sequestered. 

k The overnight capital costs (OCC) are taken from (JRC, 2014) for conventional technologies, or from (Tsiropoulos et al., 
2018) for most low-carbon technologies. The cost values shown here are indicative for the year 2030, however the 
costs for most low-carbon technologies fall over time as explained in Appendix E. The total capital requirement (TCR) 
includes the OCC plus interest during construction (IDC), calculated based on the assumed build time (Black & Veatch, 
2012) , economic life (JRC, 2014) , and discount rate (8%). For some technologies with more uncertain costs, only the 
OCC is used. 

l Efficiency given at nominal load. Generator, ramping constraints, start-up costs, and part-load efficiencies are based 
on (Brouwer et al., 2015). 

m Approximately 10% of conventional thermal capacity are combined heat and power (CHP) plants. We assume these 
receive additional revenues of 24 € GJ-1 for their heat based on average district heating prices (Orita, 2013; Vattenfall, 
2017; Werner, 2016). Seasonal thermal demand profiles are based on (Heat Roadmap Europe, 2019). 

n The VOM of nuclear plants is assumed to range from 2.5 € MWh -1for relatively modern plants (<20 years old) based 
on (JRC, 2014), and 16 € MWh-1 for old (>20 years old) plants to account for higher costs for maintenance and life 
extensions based on (Schneider & Froggatt, 2018). 

o Source: (JRC, 2014) 
p Source: (Tsiropoulos et al., 2018) 
q Source: (Child et al., 2019) 
r Source: (Siemens AG, n.d.) 
s Source: (Keith et al., 2018) 
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5.2.2 Implement market scenarios 

Eight different market scenarios are modelled by combining four electricity market design 
scenarios with two decarbonisation scenarios. 

5.2.2.1 Market design scenarios 
Four different market designs considered: 

• EOM: a reference EOM reflecting the ‘imperfect’ EOM currently operating in most CWE 
countries. Prices are capped at 3000 € MWh-1, and essentially inelastic to demand (EPEX, 
2018a). 

• EOMplus: a reformed EOM in which two deficiencies in the current EOM are resolved by 
(i) removing spot market price caps, and (ii) making price more elastic to demand by 
allowing significant participation of voluntary load shedding. 

• EOM+CM: a market in which a capacity market (CM) operates alongside the current 
‘imperfect’ EOM. 

• EOMplus+CM: the combination of a reformed EOM together with a CM. 

We make the following assumptions for all scenarios: 

• All electricity is traded on the day-ahead market. 
• For the base year 2017, we assume the current ‘imperfect’ EOM market design remains 

unchanged, and prevent the model from making any new generation investments or 
retirements in this year so that the model can be validated with historical data15.  

• The same market design is applied in all countries with marginal pricing applying in all 
markets, and each country constituting its own bidding and price zone16.  

• We account for approximately 1.6 GW of primary control reserves for CWE, in line with the 
current 3 GW requirement for Continental Europe as a whole (EC, 2017a).   

• All generators are price-taking profit-maximisers, and base their offers on their SRMC. 
• So that we can examine system costs without the effect of subsidies, we do not consider 

existing or future support schemes for vRES (e.g. feed-in tariffs) or their impact on bidding 
behaviour (e.g. negative bids). Moreover, we assume there is no priority dispatch for vRES 
generators, which must bid into the market like other generators at their SRMC (zero).  

• A value of lost load (VoLL) of 10,600 € MWh-1 is assumed in the UCED simulations, based 
on a load-weighted average of VoLL estimates for CWE residential consumers from 
(Heather et al., 2018)17.  

In the EOMplus scenarios we assume all market price caps are removed, and the electricity 
price can rise to the VoLL if the market is unable to clear. We also make demand more elastic 
to price by including 25 GW (11% of peak CWE demand) of industrial load shedding, with 
activation prices varying from 220 € MWh-1 up to 6000 € MWh-1 based on industry-specific 
VoLL values from (Heather et al., 2018). 
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The CM is modelled by applying constraints on the minimum capacity margin in each country, 
with the capacity price taken as the shadow price of this constraint. Thus, capacity is offered 
at its marginal cost to the system. The minimum capacity margins are set to remain at 2017 
levels, which can be met by firm generation capacity, transmission, or load-shedding 
capacity18. No constraints are placed on the minimum amount of firm generation capacity per 
country which must be provided by domestic sources. Thus, we assume countries pursue 
policies promoting further integration of European electricity markets, rather than nationalistic 
policies aiming at energy independence. 

5.2.2.2 Decarbonisation scenarios 
Two different decarbonisation scenarios are considered. These are derived from global carbon 
budgets until 2100 published in the Intergovernmental Panel on Climate Change’s (IPCC) Fifth 
Assessment report (IPCC, 2014), following an approach used in a previous work (van Zuijlen et 
al., 2018) (Figure 5-4).The first is a 2C scenario, designed to be consistent with a 66% chance 
of limiting global warming to 2 ºC by the end of the century. In this scenario, CWE power 
sector emissions fall from 400 Mt CO2 in 2017 to essentially net-zero by 2040. In the second 
1.5C scenario, CWE power sector emissions are consistent with a 66% chance of limiting global 
warming to 1.5 ºC, reaching net -850 Mt CO2 in 204019. These trajectories are enforced using 
annual emission caps.  

 

Figure 5-4 | Assumed decarbonisation trajectories for energy-related emissions in the CWE 
countries consistent with (a) a 66% chance of limiting global warming to 2 ºC and (b) a 66% chance of 
limiting global warming to 1.5 ºC. The dashed orange lines show the total net energy-related carbon 
emissions. The dashed red lines indicate the net power sector emissions, which are enforced as constraints 
in the model. The dashed grey lines show the model horizon considered in this study (2040), by which 
time net power sector emissions reach net zero and -0.85 Gt CO2 in the 2 ºC and 1.5 ºC climate scenarios 
respectively.  
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5.2.3 Perform model runs 

5.2.3.1 Long-term capacity expansion 

The objective function of PLEXOS’ investment module is to minimise the net present value 
(NPV) of the total sum of investment costs, fixed operating and maintenance (FOM) costs, and 
variable generation costs. Thus, in the absence of any constraints on the capacity margin, the 
resulting portfolio will be one in which the cost of unmet demand is equal to the marginal 
cost of an additional unit of generation capacity. It is important to note that the model does 
not make investments beyond those which achieve minimum system cost, even if those 
generators may be profitable based on market prices. We solve the capacity expansion module 
for the whole 34-year horizon in a single step to avoid suboptimal investments which can 
result in myopic models (Gerbaulet et al., 2019)20. 

5.2.3.2 Short-term hourly dispatch 

Using the portfolios from the capacity expansion module, hourly UCED simulations are 
performed for the day-ahead market for the years 2020, 2030 and 2040 for each scenario. The 
UCED module ensures that start costs, fuel costs, and variable operating and maintenance 
(VOM) costs are minimised, subject to generator ramping constraints21. Assuming ideal 
competitive markets and SRMC-based bidding, the UCED simulations approximate the real-
world market clearing process. An additional hourly simulation for the year 2017 is performed 
to validate the PLEXOS model with historical data. 

5.2.3.3 Evaluate market designs 

We consider that the central objectives of electricity market design are to provide low-carbon 
electricity reliably to consumers, at the lowest possible cost. By low-carbon, we mean in a way 
that is consistent with the assumed global decarbonisation objective22. These objectives are 
interdependent and involve trade-offs. For example, in liberalised electricity markets, system 
reliability relies on the market providing sufficient signals for investment in new generation 
capacity, while excess capacity increases total costs to society. A number of quantitative 
indicators are used to evaluate the different market design scenarios (Table 5-4). As the three 
objectives described above are rather high-level, the indicators are classified under the more 
specific headings of general portfolio development, low-carbon, reliability, market operation, 
generator profitability, and total cost. 
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Table 5-4 | Main indicators used to compare scenario results 
Indicator  
group 

Indicator Description 

Portfolio 
development 

Generator builds & 
retirements  Newly built and retired generation capacity (GW)  

Total installed capacity Installed capacity (GW) 

Generation Annual generation (GWh) 

Low-carbon 

Net carbon emissions Total net carbon emissions (Mt CO2) 

Shadow carbon price Shadow price of the annual carbon constraint in the capacity 
expansion module (€ t CO2

-1) 

Reliability 
Unserved energy  Total demand unmet (GWh) 

Capacity margin Capacity reserve margin (%) 

Market 
operation 

Electricity prices  Day-ahead electricity prices per country, and the load-
weighted annual average CWE day-ahead price (€ MWh-1)a 

Capacity price  Shadow price of the capacity margin constraint (€ MW-1) 
(EOM+CM and EOMplus+CM scenarios only) 

Generator 
profitability Specific net profit 

Calculated as the total annual generator revenues (including 
spot market, reserves, capacity market and negative 
emissions), minus the variable costs (including fuel, 
emission, VOM, FOM, reserves, start-up, and 
pumping/charging costs) and annualised investment costs, 
divided by installed capacity (€ MW-1 y-1) 

Total cost Total cumulative costs 

The total sum of generation investments (including 
exogenous vRES), generation costs (fixed + variable), 
unserved energy, load shedding and capacity payments over 
the period 2018 to 2040.b 

a The load-weighted annual average CWE price is calculated from the individual country hourly prices, weighted by the 
hourly demand per country. This gives a better indication of the average price paid by loads and consumers in the CWE 
than a simple arithmetical average, which is more strongly affected by hours with very high and low prices. 

b Transmission and carbon-related costs are not included. 
 

 Results 
Sections 5.3.1 to 5.3.6 outline the key modelling results in terms of the defined indicators. In 
order to analyse the impact of some of our key assumptions, we also perform a selected 
sensitivity analysis by varying assumptions on model inputs such as fuel prices and technology 
costs, as well as the (un)availability of certain technologies given uncertainties around 
technology developments and social acceptance. 
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5.3.1 Portfolio developments 

In the period from 2018 to 2022, the investment and retirement decisions in non-vRES 
technologies for both climate cases under a given market design are quite similar (Figure 5-6) 
In the EOM scenarios, approximately 70 GW of generation capacity – mostly old coal, oil and 
natural gas plants – is retired at the earliest opportunity in 201823. Retirements are higher in 
the EOMplus scenarios as the additional load-shedding capacity offsets the need for 
generation capacity. By contrast, the presence of a CM sees much of this capacity remaining 
online in the EOM+CM and EOMplus+CM scenarios until the early 2020s, when the vast 
majority retires anyway due to age or phase-out24. Significant new GT capacity is built to 
maintain capacity margins at 2017 levels.  

From 2023 onwards, the portfolio developments for the two climate cases diverge. In the 2C 
climate case, old fossil and nuclear capacity continues to retire as it reaches the end of its 
useful life. The CM sees most of this capacity replaced by GTs until the early 2030s, by which 
time batteries have become sufficiently cost-effective to enter the portfolio. While the majority 
of emission reductions necessary to reach the 2˚C target are delivered by the exogenously 
increasing vRES capacity, emissions are brought to net zero by the year 2040 by retrofitting 
approximately 2 GW of coal capacity for BECCS in the late 2030s. In the 1.5C climate case 
however, the rate of emission reductions delivered by vRES is insufficient to meet the 
emissions constraint. As a result, the model converts coal plants to BECCS much earlier and, 
by 2030, nearly 25 GW of BECCS capacity is installed in CWE25. At this point, BECCS has 
exploited the available biomass potential and between 2028 and 2040, the model deploys 
25 GW (input electricity) of DAC to meet the -850 Mt CO2 y-1 target. Additional electricity 
demand for DAC reaches nearly 200 TWh y-1 in 2040, largely provided by generation from 
BECCS and nuclear.  

Ultimately, a CM results in approximately 100 GW more capacity in 2040 than in the EOM-only 
scenarios; mainly from new GTs, higher battery deployment, and a larger fraction of existing 
nuclear capacity which is kept online (Figure 5-6). In fact, despite the nuclear phase-outs in 
Belgium and Germany, the majority of France’s existing nuclear fleet remains online until 2040 
in all scenarios, which keeps French electricity prices lower than in the rest of CWE.  

Batteries reach a maximum deployment of 17 GW in the EOM+CM 2C scenario, which help to 
deal with daily vRES fluctuations. Total battery deployment is higher in scenarios with a CM as 
batteries can reduce curtailment while substituting GTs as providers of firm capacity. However, 
for a given market design, battery deployment is lower in the 1.5C cases as the emission 
benefits from reduced curtailment are small compared to the deep reductions needed and, 
with significant BECCS capacity in the 1.5C portfolios, there is less GT capacity to replace. No 
electrolyser capacity is built in any scenario, despite the significant cost reductions assumed. 
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Figure 5-5 | New investments (positive) and retirements (negative) in non-vRES generation capacity 
for each market design scenario. Retrofits are shown with the quantity of original plant type retiring 
type below the axis (e.g. CCGT), and the same amount of the new type (e.g. CCGT-CCS) above the axis. 
Note that DAC capacity represents additional load on the system, not generation capacity.  
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Figure 5-6 | Installed capacity and generation per technology in 2040 for each market scenario 
based on the UCED runs. The actual capacity and generation in 2017 from ENTSO-E are also given for 
comparison (ENTSO-E, 2018b). For 2017, biomass generation is aggregated as BIOAD, and gas generation 
is shown as CCGT. Additional loads on the system from HYDRO-PHS, BATTERY and DAC, as well as net 
exports from CWE are shown as negative. Net imports to CWE are shown as positive, thus a negative value 
indicates CWE is a net exporter. 
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5.3.2 Low-carbon 

Thanks to the increasing vRES capacity and carbon constraints, emissions fall as intended in 
both climate cases (Figure 5-7a). The carbon shadow price in the 2C scenarios remains far 
below the 450 scenario price trajectory until the first BECCS capacity is deployed in 2037, when 
it rises sharply to 100 € t-1 (Figure 5-7b). This suggests that if vRES capacity increases at the 
exogenous rate due to government subsidies rather than strong carbon pricing, it will exert 
significant downward pressure on the carbon price. In contrast to the 2C case, the carbon 
shadow price in the 1.5C case surpasses the 450 scenario already in 2022, reaching 90 € t-1 in 
2023 and 250 € t-1 in 2030. These dynamics can be explained by the carbon avoidance costs 
for BECCS and DAC. With an avoidance cost of around 90 € t-1, deploying BECCS is the 
cheapest way of meeting the carbon budget from 2037 onwards in the 2C scenarios, and from 
2023 in the 1.5C scenarios. However, once the allowed biomass potential in the 1.5C scenarios 
is used for BECCS (achieving -250 Mt CO2 y-1 net carbon emissions), the model must resort to 
costlier DAC. The choice of market design has no appreciable effect on the carbon shadow 
price as the marginal cost of the carbon abatement is higher than the marginal cost of capacity. 

5.3.3 Security of supply 

Due to the significant retirements in 2018, capacity margins fall sharply in the absense of a CM. 
A small amount of unserved energy is observed in the EOM-based scenarios, mostly in 
Belgium (Figure 5-8), while no unserved energy is observed in the scenarios with a CM. 
Transmission plays an important role in maintaining security of supply and reducing system 
costs in all scenarios, with transmission flows within CWE and with neighbouring countries 
rising from 160 TWh y-1 in 2017 to nearly 250 TWh y-1 in 2040 (ENTSO-E, 2018b). Thus, a 
reliable transmission network would play a pivotal role in maintaining security of supply in a 
high vRES power system26.  
 

5.3.4 Market operation 

Starting from an average CWE price of around 35 € MWh-1 in 2017, day-ahead prices rise in 
all scenarios before peaking between 2025 and 2030 in the range of 55 to 
80 € MWh-1(Figure 5-9)27. From 2030 onwards in the 2C scenarios (2025 in the 1.5C scenarios), 
prices begin to trend down and converge in the range of 45 to 55 € MWh-1. The EOMplus 
design results in the highest prices for both climate cases, while the EOM+CM design results 
in the lowest prices. These dynamics are driven by several effects. Firstly, as the carbon price 
increases over time, the SRMC of carbon-intensive mid-merit and peaking generators also 
increases which bid higher into the market to cover their costs, leading to higher market prices 
in the medium term. Secondly, increasing vRES penetration puts downward pressure on 
electricity prices due to the merit order effect, offsetting the impact of the higher carbon price. 
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Figure 5-7 | Net carbon emissions and carbon shadow price for each scenario based on the long-
term simulations. The solid black line in the shadow price figure indicates the reference IEA 450 scenario 
accounting carbon price. 
 
 

 
Figure 5-8 | Volume and hours of unserved energy based on UCED simulations for the years 2020, 
2030 and 2040 for each market design scenario. Volumes of unserved energy are shown by the vertical 
bars, while the number of hours with unserved energy are shown with horizontal lines. 
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Figure 5-9 | Development of electricity prices over time from long-term simulations. Plot (a) shows 
the load-weighted annual average day-ahead price for the whole CWE region in each scenario, while (b) 
shows the load-weighted annual average price per country for the EOM 2C scenario only. 
 

 
Figure 5-10 | Boxplots of hourly day-ahead electricity prices for the years 2020, 2030 and 2040 
based on hourly UCED simulations. The boxes indicate the 25th, 50th and 75th percentile values, while the 
whiskers indicate the 5th and 95th percentiles. The coloured circles indicate the load-weighted average 
prices. 
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Thirdly, thanks to carbon revenues from net-negative emissions, at a carbon price of 120 € t-1 

BECCS has a SRMC of approximately -20 € MWh-1. At this level, BECCS can underbid mid-merit 
and even vRES generators; exacerbating the merit order effect, leading to even lower prices in 
the 1.5C scenarios. As France maintains its nuclear dominated portfolio which is unaffected by 
the rising carbon price, and transmission levels are not enough to fully harmonise prices, 
French electricity prices are the lowest in CWE. 

Price volatility increases over time in all countries due to a higher frequency of both low and 
high prices (Figure 5-10). Mainly as a result of the increasing vRES penetration, the electricity 
price is zero for approximately 1500 hours in 2040 in the 2C scenarios. However, these low 
prices are partly offset by up to 2200 hours with prices above 100 € MWh-1 when fossil plants 
without CCS (in CWE or in neighbouring countries) become price-setting. In the 1.5C scenarios, 
the number of hours with zero price increases, while the number of high price hours is lower 
due to the price-depressing impact of BECCS, leading to lower prices overall. 

The presence of a CM also puts downward pressure on electricity prices, as higher supply leads 
to fewer hours with scarcity and higher prices (Figure 5-11). Setting the CM to maintain 
capacity margins at 2017 levels may thus be keeping overcapacity in the system28. A reformed 
EOM results in higher prices than in the EOM as load-shedding sets the market price up 
to 250 hours a year in the EOMplus 2C case, and up to 170 hours a year in the EOMplus 1.5C 
case. The presence of a CM not only reduces the frequency of high prices in the EOM+CM 
scenario, but also prevents the activation of demand-side resources in the EOMplus+CM 
scenario, leading to lower prices than in the EOM and EOMplus scenarios. This suggests that 
introducing a CM may undermine efforts to develop efficient demand-side response. Overall, 
however, the climate case has a stronger impact on prices than the market design.  

Capacity prices also display considerable volatility, varying mostly in the range of 
0 to 100 € kW-1 with peaks up to 300 € kW-1 (Figure 5-12). Total cumulative capacity payments 
between 2018 and 2040 range from 325 €bn in the EOMplus+CM 1.5C scenario up to 425 €bn 
in the EOM+CM 2C scenario. Total capacity payments are lower in the EOMplus+CM scenarios 
as capacity prices are slightly lower, and there is less capacity receiving payments. GTs and 
nuclear plants are the largest beneficiaries of a CM in all scenarios, with each receiving 
approximately one third of total payments, with the remainder going mostly to hydro, CCGT, 
coal and BECCS plants. 

  

 

 

 



Chapter 5 

 174 

 

 

 

 
Figure 5-11 | Price duration curves for (a) the EOM 2C scenario, all countries, 2020, 2030, 2040, and (b) 
Germany only, 2040 only, all market designs. The lower plots show the curves for the whole year up to a 
price of 100 € MWh-1, while the upper plots zoom in on the top 730 hours with the highest prices. 
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Figure 5-11 | Price duration curves for (a) the EOM 2C scenario, all countries, 2020, 2030, 2040, and (b) 
Germany only, 2040 only, all market designs. The lower plots show the curves for the whole year up to a 
price of 100 € MWh-1, while the upper plots zoom in on the top 730 hours with the highest prices. 
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Figure 5-12 | Capacity market prices per scenario. 
 

5.3.5 Generator profitability 

On the basis of calculated specific net profits, all conventional thermal technologies fail to 
recover their long-run marginal cost (LRMC29) in most years in the EOM and EOMplus 
scenarios (Figure 5-13)30. However, if annualised capital expenditure (CAPEX) is excluded (e.g. 
for existing plants whose investments have already been paid off), nuclear and CCGTs would 
be profitable in most years (Figure 5-14). The profitability of CCGTs and GTs improves in 
scenarios with a CM thanks to capacity payments, while the profitability of nuclear falls as the 
additional revenues from the CM are offset by lower energy market revenues. However, even 
with a CM, volatile capacity prices mean profitability in any given year is not guaranteed, and 
may not provide sufficient incentive for new investments. The profitability of baseload nuclear 
and mid-merit CCGTs increases in the medium term (2030) thanks to higher infra-marginal 
rents induced by the effect of a higher carbon price on the SRMC of peak gas generators. By 
2040 however, this effect is largely dwarfed by the downward pressure of vRES on market 
prices. 
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At an aggregated level, most vRES technologies also fail to recover their CAPEX with day-
ahead market revenues alone, apart from a short period around 2030 when the impact of the 
higher carbon price on market prices is not yet offset by the increasing penetration of vRES. 
Profitability is lower in the 1.5C than in the 2C scenarios due to the lower market prices, 
principally due to BECCS. The market design scenario has less of an impact on the profitability 
of vRES than on dispatchable technologies as the former are less dependent on scarcity prices 
and, with low firm capacities, receive only a fraction of the capacity price. Country-specific 
differences also exist. For example, vRES are less profitable in France than in the other CWE 
countries due to the lower electricity prices; while in the Netherlands, onshore and offshore 
wind are more profitable than in the other CWE countries due to higher capacity factors, and 
are able to recover their CAPEX between 2025 and 2035 in the 2C scenarios. 

Turning to the NETs, BECCS is unable to recover its LRMC until the mid-2030s, once the carbon 
price has reached around 120 € t-1. When BECCS is deployed in 2037 in the 2C scenarios 
however, it is one of the few profitable technologies as it receives not only day-ahead and CM 
revenues, but also carbon revenues. DAC, on the other hand, is not profitable in any scenario 
for the time period considered due to its high operating and capital costs, even at a carbon 
price of 120 € t-1.  

5.3.6 Total Cost 

Comparing the total costs incurred between 2017 and 2040 per cost type and technology 
shows that, for a given climate scenario, the EOM+CM design results in the highest costs, 
mostly due to capacity payments (Figure 5-15). In the absence of a CM, load shedding in the 
reformed EOM in both the 1.5C and 2C climate cases has only a marginal impact on total costs 
(less than 1%), as lower generation costs are mostly offset by the cost of load-shedding. In the 
EOMplus+CM scenarios however, load shedding reduces total costs by up to 5%, mainly by 
reducing investments in GTs. The exogenous vRES deployment also has a major cost impact, 
representing around 50% of total costs in the EOM 2C scenario, and 28% in the EOM 1.5C 
scenario. Comparing the climate cases, costs in the 1.5C scenarios range from ~2800 €bn 
(EOM 1.5C) to ~3300 €bn (EOM+CM 1.5C), more than double the costs in the 2C scenarios. 
This is due to the additional CAPEX and operating costs required for NETs and in particular, 
DAC. If DAC were not used, and deployment of NETs was limited to the 25 GW of BECCS, total 
costs in the EOM 1.5C scenario would fall to ~1800 €bn, or just 33% more than in the EOM 2C 
scenario. Thus, when biomass supply is limited, the cost of DAC will largely determine the cost-
effectiveness of relying on the power sector to offset more than 250 Mt CO2 y-1 emissions from 
other sectors.  
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Figure 5-13 | Specific net annual profit per market scenario for selected technologies based on 
long-term simulations from 2017 to 2040, accounting for all revenues, variable and fixed costs, 
including annualised CAPEX. The darker shaded grey area indicates the range of specific profitability 
across the scenarios excluding annualised CAPEX.  
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Figure 5-15 | Total accumulated costs (a) per cost type and (b) per technology for the period 2017-2040 
for each scenario. Total costs for load shedding (approx. 4 €bn), generators start-ups (7 €bn), and unserved 
energy (less than 1 €bn) are relatively small and not shown. Capacity Cost is the total cost for capacity 
payments which, while a revenue for generators, represents a cost to society. Electricity Cost includes the 
costs for battery charging, pumping energy for hydro plants, and electricity demand for DAC. Net CWE 
import cost is the net cost of imports from countries neighbouring CWE. Costs for transmission 
investments and emissions are not included. 
 

5.3.7 Sensitivity Analysis 

An overview and rationale for the runs performed is shown in Table 5-5. Most runs use only 
the capacity expansion algorithm to examine the impact on the technologies deployed in the 
portfolios, rather than performing full UCED simulations. In most sensitivity runs, the minimum 
vRES capacity still increases exogenously per year as in the base runs. However, unlike in the 
base runs, the model is free to invest in more vRES capacity in all sensitivity runs31. The 
sensitivities are run based on the EOM market design for both the 2C and 1.5C climate cases, 
except for the Tighter capacity margin sensitivity which is run for the EOM+CM design.  
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Figure 5-16 shows the final 2040 generation portfolios and total accumulated costs for each 
sensitivity run. Most sensitivity runs show only minor impacts on the portfolios developments 
and long-term system costs, though there are some notable exceptions: 

• when vRES capacity is fully optimised in the optimised vRES runs, far less vRES capacity 
is installed, and total costs fall by approximately 20% and 7% compared with the 
reference EOM 2C and 1.5C cases respectively. Lower costs are achieved by deploying 
less vRES, fewer batteries, keeping more existing nuclear capacity online, and installing 
more NGCC-CCS and BECCS capacity (1.5C only); 

• when the model is given even more freedom in the free portfolio optimisation, costs 
are reduced even further compared with the reference cases (-25% for 2C, -9% 
for 1.5C). This is achieved by keeping existing German and Belgian nuclear plants 
online, deploying less vRES, and installing more BECCS capacity (1.5C only);  

• relaxing the upper limit on vRES deployment has no effect, as no sensitivity run results 
in more vRES capacity installed in 2040 than in the base runs. This observation, and the 
first two points above suggest that electricity for DAC is more cost-effectively supplied 
by baseload generators such as BECCS and nuclear than vRES, as capital-intensive DAC 
needs high capacity factors to maximise its effectiveness; 

• increasing the supply of biomass has no impact on the 2C case as the biomass 
constraint is not binding, but reduces total costs by 25% in the 1.5C case as more BECCS 
can be deployed instead of DAC.  However, biomass demand increases to 9.5 EJ y-1 in 
2040, or three times the assumed CWE solid biomass potential; and 

• excluding BECCS from the portfolio (e.g. due to public or political opposition) leads to 
20% higher costs in the 1.5C case due to higher DAC deployment required. 

 Discussion 
5.4.1 Implications for vRES 

Our results suggest that, assuming vRES investment costs continue to fall and the carbon price 
continues to rise, the profitability of vRES should improve – at least in the medium term. 
However, subsidies may still be required to cover investment costs. When subsidies are 
necessary, they should minimise electricity market distortions, and ensure vRES are exposed 
to market price signals (Hu et al., 2018). For example, feed-in premiums may be preferable to 
feed-in tariffs as the former expose vRES to market price signals. Others argue that in the long 
term, capacity-based subsidies for vRES may be preferable to energy-based payments, as they 
cause fewer market distortions (Hu et al., 2018)32. However, irrespective of the support 
mechanism, continued subsidy-driven vRES deployment is likely to put downward pressure on 
the carbon price, undermining its ability to act as a price signal for investments in low-carbon 
technologies (including NETs), and potentially locking in a need for continued subsidisation.  
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Table 5-5 | Overview of the sensitivity runs performed 
Sensitivity run Description Motivation 

Higher fossil 
fuel prices 

Fossil fuel prices increase over take based on 450 
Scenario from the IEA’s WEO 2016 (IEA, 2016d). The gas 

price rises 50% to 8 € GJ -1 by 2040, while coal falls nearly 
50% to 1.4 € GJ -1. 

Investigate the impact of higher fuel price 
developments 

Higher demand 

Assume that electricity demand per CWE country 
increases with a year-on-year growth rate of 1.3% 

(Eurelectric, 2018), resulting in a total CWE demand of 
1576 TWh in 2040 a. 

Many scenarios assume increased demand 
from electrification is offset by efficiency 

measures, which may not materialise. Also, 
electrification of industry, heating and 

transport may be stronger than assumed. 

Higher  
battery cost 

Battery costs remain at their base 2017 level, assuming 
significant cost reductions do not take place. 

Investigate impact of less favourable 
battery cost developments. 

Higher biomass 
price 

Instead of a fixed biomass price of 8 € GJ -1, the biomass 
price increases over time reaching 12 € GJ -1 in 2040 (i.e. 

+50% vs 2017). 

Investigate the impact of increased 
competition for biomass putting upward 

pressure on prices. 

Blue  
hydrogen 

Assume hydrogen is available at a cost of 13 € GJ -1, the 
minimum required price for blue hydrogen to be 

profitable at the base natural gas price (5.9 € GJ -1) (M. 
Mulder et al., 2019) 

Determine if including blue hydrogen could 
play a role in the power system 

No  
retrofits 

Exclude the option to retrofit coal (and biomass) plants 
for BECCS, or natural gas plants with CCS 

Determine the potential cost impact of 
retrofitting existing coal, natural gas and 

biomass plants 

Lower/higher 
WACC 

A lower WACC of 4% is assumed, closer to the social 
discount rate (EC, 2014b). A higher rate of 12% is also 

assumed. 

Investigate the impact of different discount 
rates on the analysis. 

No biomass 
limit 

The constraint on CWE biomass potential of 3 EJ y-1 is 
removed. Note: the biomass price remains the same. 

Test the impact of allowing additional 
biomass supply imported from outside 

CWE or even outside Europe. 

No BECCS Assume no BECCS plants can be built. Investigate the impact of political 
opposition to BECCS. 

CCS only with 
DACC 

Assume that CCS can only be used for DAC, not with 
fossil fuels or biomass. 

Investigate the impact of political 
opposition to CCS, which is only used as a 

last resort option for DAC. 

Optimised vRES 

Instead of fixing the minimum (and maximum) annual 
deployment of vRES exogenously, the model is 

completely free to optimise vRES from the 2017 starting 
level. 

Determine the consequences of policy-
driven vRES growth on the cost-optimum 

deployment of other portfolio 
technologies. 

Full portfolio 
optimisation 

Similar to the Optimised vRES run, with the addition that 
the model is fully free to retire or invest in any 

technologies with no restrictions. This sensitivity includes 
higher (12%) and lower (4%) discount rate variants. 

Determine the unconstrained least-cost 
generation portfolio development. 

Tighter capacity 
margin 
(EOM+CM) 

Instead of maintaining capacity margins at their 2017 
levels, the CM is set to match the yearly margins from 

the EOM scenarios. 

Maintaining margins at 2017 levels could 
be maintaining overcapacity in the system. 

Transmission 
outages 
included 
(UCED only) 

Transmission lines between countries are modelled 
assuming a 10% outage rate based on reported 

availabilities (ENTSO-E, 2018d). 

Investigate the impact of transmission 
outages on the solution. 

a Based on ‘Scenario 2’ from Eurelectric’s Decarbonisation Pathways study (Eurelectric, 2018). This scenario sees 
electrification rates (share of final consumption) for transport, buildings and industry in the EU rise from 1% to 43%, 
34% to 54% and 33 to 44% between 2015 and 2050 respectively, with the resulting economy-wide electrification rate 
increasing from 22% in 2015 to 48% in 2050. The electricity demand in 2040 is 26% higher than in 2017.  
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Figure 5-16 | Installed capacity per technology in 2040 (upper plots), and total accumulated costs 
for the period 2017-2040 per technology (lower plots) for each sensitivity run. The results of the 
original EOM(+CM) 2C and EOM(+CM) 1.5C base runs are also shown for reference. Note the different 
vertical axis scales for the 2C and 1.5C cases in the total cost plots. 
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Once vRES generates up to 60% of electricity across CWE in 2040, our scenarios show that 
purely SRMC-based bidding could lead to up to 1500 hours a year with electricity prices near 
zero, with a negative impact on generator profitability. However, these sustained periods with 
zero prices may not eventuate. For example, in periods when vRES generation is forecast to 
be very high (approaching 100% of demand) and prices would approach zero, vRES could 
essentially operate as a kind of distributed monopoly, and offer their electricity at a higher 
price more reflective of their LRMC. Secondly, significant periods with very low electricity prices 
may incentivise additional demand in the long term, putting upward pressure on prices 
(Ecorys, 2017).  

5.4.2 Implications for NETs 

NETs may have an important role to play to achieve a least-cost decarbonisation pathway, but 
they will also have several effects on the electricity market. For example, BECCS (retrofits) could 
lower the cost of decarbonisation by utilising existing coal infrastructure and reducing the 
need for additional GT capacity, but may also put downward pressure on electricity prices. 
DAC also has several impacts on market operation. At a carbon price of 120 € t-1, DAC will 
operate whenever the electricity price is below approximately 135 € MWh-1, leading to 
additional baseload electricity demand33. As DAC would be unprofitable at higher electricity 
prices, it would not operate during scarcity periods, and would not increase peak demand.  

We find that BECCS could be profitable from the mid-2030s onwards, but only under the 
assumption that plants receive revenue for the negative emissions they deliver. Thus, the 
incentive for carbon capture and utilisation provided by the EU ETS – avoiding the need to 
surrender CO2 allowances – is unlikely to be sufficient to incentivise development of NETs34. 
One possible method to help close the revenue gap for NETs would be to allow them to 
generate emission allowances. This mechanism would have the advantages of being market 
based, following the ‘polluter pays’ principle, and incentivising cost reductions in NETs. 
However, such a mechanism would need good governance systems to ensure that negative 
emissions were achieved sustainably, and require the quantity of annual centrally-auctioned 
certificates to be reduced based on the negative emissions achieved by NETs to prevent 
oversupply.  

While such a mechanism could underpin the business case of BECCS, DAC would still be 
unprofitable in all scenarios – even when revenues from negative emissions are included. In 
order to increase carbon prices to the level needed to stimulate DAC by 2030 (~250 € t-1), the 
volume of emission allowances auctioned annually would need to be rapidly reduced35, or a 
carbon price floor could be implemented to top-up the ETS price (Newbery et al., 2019). By 
the time DAC is deployed, it would predominantly be used to generate carbon allowances to 
sell to non-energy sectors, as residual power sector emissions are close to zero. Our proposed 
mechanism would see some of the costs for DAC born by these sectors, but not all. Thus, if 



Chapter 5 

 184 

DAC is to be deployed at large scale, policymakers would need to decide how society should 
pay for it in the most equitable way. 

5.4.3 Caveats 

Our results should be seen in the context of the scope limitations and uncertainties, as 
discussed below. 

The investments in our study are determined by a model with perfect foresight finding least-
cost pathways under given emission constraints. However, real-world energy transitions do 
not necessarily follow the least-cost pathway due to government interventions to achieve 
other policy goals, externalities not accounted for in investor costs, myopic investors, and 
imperfect cost assumptions (Trutnevyte, 2016). Instead, it has been argued that transitions 
follow the most ‘investable’ path (Gross et al., 2010; Trutnevyte, 2016). Some try to account for 
real investor behaviour by considering ‘near-optimal’ solutions (Trutnevyte, 2016), or using 
alternative models such as agent-based (Kraan et al., 2019) or equilibrium competition models 
(de Maere D’aertrycke et al., 2018; Gurkan et al., 2013). However, our focus is to understand 
whether different market designs would create business cases for investment in generation 
facilities. In this case, we consider cost minimisation a reasonable approach given the key aims 
of liberalised markets to achieve reliable supply of electricity within environmental limits at 
minimum costs. Thus, we evaluate the market designs versus the critical part of the investor 
behaviour that they need at minimum a viable business case before they invest. Given our 
results showing hardly any technology is profitable in the long-term, our finding is that even 
if the behaviour of real investors had been included, very few investments would have been 
made in any scenario. As a consequence, governments would likely need to intervene and 
tweak markets to create an investable path towards low-carbon electricity portfolios. This can 
hardly be considered a truly liberalised market. 

This study solely addresses the direct cost of electricity generation and did not include indirect 
costs such as storage of nuclear waste, costs of negative environmental externalities, or 
decommissioning costs. We also do not consider the increasing cost (or environmental 
impacts) of biomass supply, CO2 storage, or vRES with increasing use or deployment. Such 
considerations should also be taken into account when designing energy policies. 

Other EOM and CRM designs have been proposed which we have not evaluated. For example, 
the ERCOT market in Texas has implemented a price ‘adder’, which is administratively added 
on top of the real-time electricity price during times of scarcity (Potomac Economics, 2018)36. 
Strategic reserves, capacity obligations, and reliability options are additional CRM designs 
which have been implemented in other countries, but were not evaluated in this study. 
Nevertheless, efficient coordination of the power system relies on effective short-term price 
signals which reflect the value of electricity at each moment in time, which are not delivered 
by a CRM. 
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Our study is limited to the day-ahead and capacity markets. While the requirements for FCR 
are included, we do not explicitly model frequency restoration reserves (FRR). However, even 
under the conservative assumption that FRR requirements rise linearly with vRES penetration 
(which is unlikely (Brouwer et al., 2014)), the modelled portfolios should be able to account 
for this37. Generators may also be able to garner additional revenues from ancillary services, 
intraday and balancing markets (Pollitt & Chyong, 2018). However, while balancing markets 
are growing (Tennet, 2018), their monetary value is expected to remain less than 4% of the 
day-ahead markets – at least up to a vRES penetration of around 30% (Ortner & Totschnig, 
2019). Nevertheless, in the long term, intraday and balancing markets – which better reflect 
the instantaneous value of electricity – could grow in importance as a revenue source for 
providers of flexibility and firm capacity.  

We assume the power sector must deliver all the negative emissions necessary to meet the 
2 ºC and 1.5 ºC carbon budgets, while in fact BECCS may be cheaper to apply in other sectors 
(e.g. transport) (van Vliet et al., 2011). To avoid the high costs of DAC, policymakers could 
consider exploiting other potentially lower cost NETs first, such as afforestation (Smith et al., 
2017). However, the IPCC carbon budgets consistent with 1.5 ºC warming already assume 
negative emissions from agriculture, forestry and land use of 1-11 Gt CO2 y−1 globally by 2040, 
the upper limit of which exceeds the estimated potential of 3.6 Gt CO2 y−1 38. By considering 
both a net-zero and a strongly negative emission scenario, we show the consequences of 
relying either marginally or strongly on the electricity sector to offset emissions from other 
sectors. Moreover, investing earlier in NETs in the power sector may also be a prudent 
insurance policy against climate overshoot as a result of delayed decarbonisation in other 
sectors, and spreading the cost of negative emissions over a longer period may be more 
socially equitable (Obersteiner et al., 2018).  

Despite the growth in vRES, the need to deliver negative emissions means that our 1.5C 
portfolios rely significantly on CCS technology to deploy BECCS, CCGT-CCS, and DAC. As a 
result, the amount of carbon stored annually in CWE approaches 1 Gt y-1 in 2040 in the 1.5C 
cases, with the total cumulative amount of CO2 stored reaching 8 Gt by 2040 (compared with 
only 70 Mt in the 2C cases). While significant, this is below the total estimated CWE storage 
capacity of 28 Gt, and far below total European estimates of 97 to 116 Gt (EASAC, 2013; EU 
GeoCapacity Project, 2009). Also, we assume fixed CO2 transport and storage costs of 
15 € t--1 CO2 (Zero Emissions Platform, 2011), which might not be realistic as cheaper sites are 
depleted and more costly storage sites must be used. However, even in the case that the 
cheapest offshore storage sites in CWE are depleted, estimated costs to transport CO2 from 
CWE to large storage sites in the North Sea are comparable with the value assumed in this 
study39. 

Price developments are inherently uncertain, and CWE prices will depend not only on fuel 
prices, the carbon price and portfolio developments inside CWE, but also developments in 
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other sectors and neighbouring countries. For example, our scenarios still retain some fossil 
(gas) capacity without CCS in 2040 which, due to the high carbon price, leads to several 
hundred hours with prices above 100 € MWh-1. However, if fossil capacity in CWE and in 
neighbouring countries were also equipped with CCS or converted to CO2-free energy carriers, 
these high prices may not materialise, with a further adverse effect on generator profitability.  

We assume the investment costs for PV, onshore and offshore wind fall by 60%, 14% and 34% 
respectively between 2017 and 2040, in line with the most optimistic RES deployment scenario 
from (Tsiropoulos et al., 2018). Notwithstanding these reductions, none can recover their 
annualised CAPEX in 2040. However, we only consider aggregated national capacity factors 
for vRES, and plants installed at locations with more favourable weather conditions will be 
more profitable. Generator costs are uncertain and CAPEX assumptions strongly affect their 
profitability. However, PV, onshore and offshore wind CAPEX would have to fall by a further 
50% (to ~200 € kW-1), 20% (to ~900 € kW-1), and 40% (to ~1300 € kW-1) respectively from the 
assumed 2040 values for them to be able to recover their investment costs from day-ahead 
market revenues alone. While possible, such reductions would be contingent on the most 
optimistic learning rates (Tsiropoulos et al., 2018)40.  

The increasing carbon price assumed in our study puts upward pressure on electricity market 
prices, an effect seen in other studies (Kraan et al., 2018; Tennet, 2019). This improves the 
profitability of vRES, baseload and mid-merit generators. However, market factors which put 
downward pressure on the carbon price such as subsidy-driven vRES deployment, or weaker 
economic conditions will also put downward pressure on electricity prices, reducing the 
profitability of generators and NETs. Thus, policy changes such as redesigning vRES subsidies, 
or more rapid reductions in the volume of allowances auctioned may be necessary to drive 
the carbon price to the level required for timely decarbonisation. 

 Conclusions and policy recommendations 
In this study, we evaluate least-cost pathways to decarbonise the Central Western Europe 
(CWE) power system until 2040 under the assumption of an increasing share of variable 
renewable energy sources (vRES), for four different electricity market designs: the current 
energy-only market, a reformed energy-only market, both also with the addition of a capacity 
market. Each design is modelled for one decarbonisation pathway targeting net-zero 
emissions by 2040 consistent with a 2 ºC warming limit, and another targeting -850 Mt CO2 y-1 
net-negative emissions consistent, with a 1.5 ºC warming limit. Our main findings are: 

• bioelectricity with carbon capture and storage (BECCS) is a cost-effective way of 
rapidly decarbonising the power sector, especially when aiming to limit warming to 
1.5 ºC by mid-century. However, it may also put downward pressure on electricity 
prices; 
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• assuming a maximum biomass supply of ~3 EJ y-1, the CWE power sector could offset 
up to 250 Mt CO2 y-1 from other sectors using BECCS. Offsetting more than this leads 
to significantly higher costs due to the need for direct air carbon capture (DAC), and 
policymakers should consider exploiting cheaper negative emission technologies 
(NETs) where possible to reduce the need for DAC;  

• if DAC is deployed, baseload generators such as BECCS and nuclear appear to be 
more cost-effective options for supplying electricity for DAC than vRES;  

• keeping existing nuclear capacity online should help maintain security of supply, 
reduce carbon emissions, and lower electricity prices;  

• deploying high levels of vRES (up to 70% penetration based on energy) may result in 
up to 1500 hours with an electricity price of zero by 2040, undermining the 
effectiveness of a carbon price as an investment signal for other low-carbon and 
NETs; and 

• policies relying primarily on vRES for decarbonisation could increase the cost of the 
transition by 10% to 25% (depending on the level of climate ambition) compared to 
a more diversified portfolio containing vRES, nuclear, natural gas (with carbon 
capture and storage) and BECCS plants. 

In terms of electricity market design and generator profitability, we find that: 

• none of the market designs modelled allow all technologies to recover their 
investment costs in the long term in either decarbonisation scenario; 

• while capacity markets can improve the profitability of mid-merit and peaking gas 
plants, they can also undermine the profitability of baseload and vRES generators if 
they result in oversupply and depress electricity prices. Thus, a capacity market is not 
necessarily a silver bullet for addressing capacity adequacy concerns;  

• day-ahead market revenues of existing baseload and mid-merit generators may 
improve in the medium term (2030) thanks to higher infra-marginal rents induced by 
the effect of a higher carbon price on peak generators; however, this effect may be 
dwarfed in the long term by the downward pressure of vRES on market prices; and 

• adding a mechanism in the European emissions trading scheme to remunerate NETs 
for negative emissions could help make BECCS profitable from carbon and electricity 
market revenues alone by the mid-2030s. However, DAC, if deployed at large scale, 
would likely still need government support.  

Further research is needed to quantify to what extent intraday and balancing market revenues 
could complement day-ahead revenues for flexible generators, identify policy instruments to 
support vRES without reducing the effectiveness of the carbon price, and how large-scale 
investments in NETs could be supported. 
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Footnotes to Chapter 5

1 For example, day-ahead prices in Germany and Sweden in 2015 were nearly 50% lower than in 2011 (Bublitz et al., 2017; 
Hirth, 2018). However, aside from vRES, generation overcapacity, lower fuel and carbon prices perhaps had an even 
more significant effect on prices (Bublitz et al., 2017; EC, 2016a; Hirth, 2018). 

2 VRES represented 15% of total EU28 generation in 2017 (Eurostat, 2019d). The Joint Research Centre’s EU Reference 
Scenario 2016 considers 35% for the EU28 by 2050 (EC, 2016b), while the European Commission Energy Roadmap 2050 
considers between 32%-65% (EC, 2011d). Meanwhile, ENTSO-E scenarios consider vRES shares between 31%-39% 
already in 2030, rising to 45-58% by 2040 (ENTSO-E & ENTSO-G, 2018). EU Commission scenarios consider up to 70% 
by 2050(EC, 2018a). 

3 As of 2017, twelve EU countries operated EOMs, while fifteen had implemented CRMs. A capacity market was in place 
in the UK; a capacity payment in Portugal, Spain, Ireland, Italy and Greece; a strategic reserve in Belgium, Germany, 
Poland, Sweden, Finland, Latvia, and Lithuania; a reliability obligation in France; and a capacity tender in Bulgaria. The 
remaining EU countries, Switzerland and Norway operate EOMs (ACER & CEER, 2018). For a detailed explanation of 
CRM designs, the reader is directed to significant literature on this topic e.g. (Bublitz et al., 2018; Cramton et al., 2013; 
EC, 2015, 2016c). 

4 Based on ENTSO-E’s 2018/2019 system adequacy outlook (ENTSO-E, 2018g), there is no clear correlation between 
system adequacy concerns in those countries with CRMs and those without (including Denmark, which has the highest 
vRES penetration of all EU countries).  

5 Recent data shows the German average annual spot price rose 40% between 2015 and 2018, restoring it to a similar 
level as in 2011 (ENTSO-E, 2018b). 

6 ‘Failures’ refer to deviations from the assumptions underlying an ideal theoretical market such as perfect competition 
(e.g. all firms are price-taking, no barriers to entry or exit, an inelastic demand side), or distortions which prevent EOMs 
from working effectively such as (e.g. market price caps, out-of-market interventions by transmissions system operators 
(TSOs), price-inelastic demand) price caps, which lead to the so-called “missing money” problem (Biggar & 
Hesamzadeh, 2014; Lin & Magnago, 2017). However, examining historical day-ahead market prices in France, Germany, 
the Netherlands and Belgium for the years 2015-2018 reveals no periods when the price actually reaches the cap 
(ENTSO-E, 2018b). This may be due to TSOs making out-of-market interventions before scarcity events arise, implicit 
caps set by other markets, the presence of existing CRMs, or cautious market players restraining bids for fear of being 
accused of exerting market power (EC, 2016a). 

7 PLEXOS is developed by Energy Exemplar (https://energyexemplar.com/) 
8 For neighbouring countries, a single generator per type is defined with maximum capacity based on national statistics, 

with the portfolio following the deployment in ENTSO-E’s TYNDP 2018  Best Estimate scenarios for the years 2020 and 
2025, Distributed Generation scenario for 2030 and Global Climate Agreement scenario for 2040 (ENTSO-E, 2018f). 
These scenarios do not provide any information on the split between GTs and CCGTs in natural gas capacity, nor the 
share of capacity equipped with CCS in neighbouring countries. Thus, we assume a split of 30/70 split between 
GT/CCGT capacity based on the split in CWE, and do not consider CCS in neighbouring countries.    

9 The future direction of French nuclear policy is unclear. After attempting to legislate in 2014 to limit nuclear capacity to 
63 GW and 50% of electricity supply by 2025 with the Energy Transition for Green Growth bill, this was met with 
resistance in the French Senate, and ultimately the decision was delayed until after 2017. In November 2018, a draft of 
the new policy delayed the target year for reducing the share of nuclear to 50% until 2035 with a plan to close 14 
reactors by 2035, but with the option to build new reactors still available (World Nuclear Association, 2018). Given this 
policy uncertainty, and that even planned closures occur much later than in Germany or Belgium and may still be 
subject to debate, in this study we impose no caps or forced retirements for nuclear power in France. 

10 Demand profiles for 2017 are taken from historical data (ENTSO-E, 2018b), while demand profiles for the years 2020, 
2025, 2030 and 2040 are taken from the Best Estimate 2020 and 2025, Distributed Generation 2030 and Global Climate 
Action 2040 scenarios. Demand profiles for the intervening years are interpolated on an hourly basis between the fixed 
scenario years so that the hourly demand profile also changes from 2017 to 2040. The Global Climate Action scenario 
is the most ambitious of all the TYNDP scenarios in terms of vRES growth. While exogenously specifying vRES capacity 
means the resulting portfolios are not necessarily least-cost, this is the policy direction many member states are 
pursuing. 

11 This value reflects the historical WACC of European power companies in the range of 6% to 10% (Donovan, 2015; 
Eurelectric, 2013b). At this level, the WACC is higher than the 4% financial discount rate or social discount rate of 3% 
to 5% recommended by (EC, 2014b). However, in the sensitivity analysis we find that the discount rate does not have 
a significant impact on the results when so much vRES capacity is forced in exogenously. 

12 If annual deployments are not limited, the model delays investments in new technologies until the end of the simulation 
horizon once costs have fallen, leading to very high deployment in a single year. Restricting the deployment rate 
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smooths investments over a longer period, accounting for higher costs in early years. While actual deployment rates 
are likely to follow a more exponential growth pattern, implementing such complex constraints was not possible in 
PLEXOS. 

13 Retrofitting with CCS is not considered for CHP plants as these will have less waste heat available for the capture 
solvent regeneration, and are unlikely to have sufficient full load hours to justify investment in CCS (IEA, 2016c). 

14Two different carbon prices are used in the model: the shadow price, and the accounting price. The shadow price is the 
value of the dual variable associated with the carbon emissions constraint applied in the capacity expansion algorithm 
that is required to meet the decarbonisation trajectory. It is a model output which has a value of zero when non-
binding, and non-zero value when binding. By contrast, the accounting price is the assumed economic value of carbon 
used in the profitability calculations (Section 5.3.5), specified exogenously to follow the IEA’s 450 scenario. In the 
capacity expansion algorithm, we only implement a carbon constraint, as implementing both a carbon constraint and 
exogenous price may lead to methodological inconsistencies. However, when performing ex-post calculations on 
generator costs, revenues and profitability (Section 5.3.5), we use the emission accounting price. As a result of this, the 
accounting price taken from the 450 scenario is not included in the capacity expansion objective function, and does 
not affect the development of the generation portfolio. However, in the UCED runs, we incorporate the accounting 
carbon price in the objective function, so that the exogenous price of carbon is accounted for correctly in the dispatch 
decisions. The differences between the accounting and shadow carbon price are discussed in Section 5.3.2.  

15 For simplicity, we do not include the existing CRMs operating in Germany, French or Belgium. Instead, all new market 
design scenarios are implemented from the year 2018 onwards, from which point new investments or retirements can 
be made.   

16 Previous studies (e.g. (Bhagwat et al., 2017; Bucksteeg et al., 2017; Höschle et al., 2018; Mastropietro et al., 2015; Meyer 
& Gore, 2015; Västermark et al., 2015)) show that asymmetric CRMs between neighbouring countries can lead to 
perverse outcomes. 

17 A higher VoLL of 100,000 € MWh-1 is used in the capacity expansion module as (i) CWE consumers are accustomed to 
higher reliability levels than implied by a VoLL of 10,600 € MWh-1, (ii) the vast majority of outages are due to faults in 
the distribution network which is not modelled, and (iii) the capacity expansion module uses a coarser temporal 
resolution than the UCED simulations. Further explanations are provided in Appendix F. 

18 Curtailable load is accounted for in the capacity margin but is remunerated based on the amount of energy curtailed 
and does not receive capacity revenues. Thus, we assume that the capacity costs for load shedding are small in 
comparison to the energy costs. 

19 The global budgets from 2011 to 2100 for the 2C and 1.5C scenarios are 1000 Gt CO2 and 400 Gt CO2 respectively. 
From these total global budgets, assumed budgets for non-OECD countries, cement production, and already-emitted 
carbon are subtracted based on Anderson & Broderick (Anderson & Broderick, 2017), with the remaining OECD 
budgets disaggregated to individual countries based on population. The CWE budgets assume net-zero emissions in 
the manufacturing, transport and other energy-related sectors by 2050, and that the power sector must deliver all 
negative emissions required to meet the total energy-related emission target.  

20 The capacity expansion is run with build decisions linearized so that the shadow price on the capacity margin constraint 
yields a reliable value for the capacity price. 

21 We run the UCED at hourly resolution with a time horizon of one week, plus a one-day look-ahead. In order to keep 
the solution time reasonable, we run the UCED simulations with linear relaxation of the unit commitment variables. As 
a result, minimum stable level, minimum up time and minimum down time constraints are not included. However, 
literature indicates that ramping constraints have a more significant impact on dispatch and total system costs than 
the inclusion of binary unit commitment variables (Schwele et al., 2019). Moreover, minimum up and down times which 
also characterise limitations in the flexibility of power plants are (in many cases) not hard limits, but economic ones 
(Panos & Lehtilä, 2016). As start-up costs are included in the optimisation, this avoids frequent unit start-ups and 
shutdowns, which has a similar effect as minimum up and down time constraints. 

22 As stated in Section 5.1 market design objectives are varied, and a wider definition accounting for more environmental 
criteria could be ‘clean’ or ‘sustainable’. However, in this study, we restrict our environmental criteria to consider only 
carbon emissions, and do not consider other factors such as particulate emissions or water use.  

23 Based on ENTSO-E data (ENTSO-E, 2018g), approximately 32 GW of thermal generation capacity retired from the 
European power system in the years 2017 and 2018, of which most was coal (17.4 GW), other thermal fossil (9.1 GW) 
and nuclear (3 GW) plants, while retired gas capacity (2.3 GW) was offset by new investments (2.9 GW). These values 
are lower than observed in the model results for the year 2018, however the ENTSO-E values do not include plant 
mothballing, or the fact that in reality some plants may stay online operating a loss, while the model has perfect 
foresight and will retire plants at the earliest possible opportunity if it is cost-effective to do so. 

24 Some existing plants are still online in 2017 even though they exceed their assumed nominal lifetime. This may be due 
to inaccuracies in the database, life-extending refurbishments which have been performed, or plants simply lasting 



Chapter 5 

 190 

 
longer than expected. However, to maintain consistent assumptions within the study, we assume these old plants must 
retire by 2020. 

25 The majority of BECCS capacity (17 GW) is achieved through coal retrofits, the rest is new BECCS plants. 
26 In the base runs we do not consider transmission outages. However, when a transmission outage rate of 10% is 

assumed in the sensitivity analysis (Appendix K), unserved energy up to 60 GWh is observed in Belgium in the year 
2030 in the EOM-based scenarios, while none is observed in the scenarios with a CM. Still, even in this more extreme 
case, less than 0.07% of Belgian demand, or 0.005% of CWE demand is unserved. 

27 The actual CWE load-weighted price in 2017 was 40 € MWh-1. Modelled 2017 day-ahead prices are slightly lower than 
those seen in reality. The largest discrepancies are seen in France, most likely due to significant nuclear outages in 
2017. Accounting for these outages brings modelled prices closer to reality, however they are not included in the base 
model. See Appendix I for the model validation results. 

28Determining the cost-effective volume of capacity is always a challenge with CRMs. We test the impact of maintaining 
tighter capacity margins in the sensitivity analysis (Appendix K). 

29 LRMC is equal to the variable costs plus fixed costs, including annualised CAPEX 
30 Profitability per technology is calculated by aggregating costs and revenues for all plants across the whole of CWE.  
31 The exogenous vRES deployment limits the ability of the model to fully optimise costs in the base runs. There is no 

minimum vRES deployment enforced in the Optimised vRES and Full portfolio optimisation sensitivity runs. Upper 
limits on total vRES deployment potential per technology in CWE are taken as 1300 GW and 540 GW for onshore and 
offshore wind respectively from (Dalla Longa et al., 2018), and 1000 GW for PV from (Zappa & van den Broek, 2018). 

32 References (Finon & Roques, 2013) and (Iychettira et al., 2017) provide a detailed overview of the different support 
instruments available for vRES. 

33 For economic operation, DAC utilisation should be maximised throughout the year, and will operate whenever its SRMC 
– comprised of VOM costs, electricity costs, and revenues from negative carbon emissions – is negative. However, in 
the UCED model runs, we force DAC to operate with a minimum capacity factor of 90% to ensure that annual emissions 
meet the target in the 1.5C scenarios, and that the additional electricity demand is accounted for. 

34 Recital (14) of the amendments to the EU ETS Directive (European Parliament, 2018b) states that “The main long-term 
incentive arising from Directive 2003/87/EC for the capture and storage of CO2 (‘CCS’), for new renewable energy 
technologies and for breakthrough innovation in low-carbon technologies and processes, including environmentally 
safe carbon capture and utilisation (‘CCU’), is the carbon price signal it creates and the fact that allowances will not 
need to be surrendered for CO2 emissions which are avoided or permanently stored.” Other elements of the EU ETS 
may also constitute further barriers to NETs and would need to be addressed. For example, “Projects involving CCU 
shall deliver a net reduction in emissions and ensure avoidance or permanent storage of CO2” 

35 Most likely this would be far more quickly than the 2.2% annual reduction that will commence from 2021 (Honegger 
& Reiner, 2018). 

36 The purpose of the adder is to try to incorporate the value of short-term operating reserves into the electricity price, 
whilst retaining an EOM design. It is based on an operating reserve demand curve originally proposed by Hogan 
(Hogan, 2013), and is a function of the loss of load probability and VoLL.  

37 The total contracted volume of FRR (aFRR+mFRR) in CWE in 2017 was almost 7 GW (900 MW in Belgium, 3000 MW in 
Germany, 1000 MW in the Netherlands, and 2000 MW in France) (Brinkel, 2018; Elia, 2019a; RTE, 2019). With a vRES 
penetration (energy basis) of 17% in 2017 and ~70% in the EOM 2C scenario in 2040, a proportional increase in FRR 
requirements would translate to a need of around 30 GW, which is less than the 85 GW of flexible generation capacity 
available in 2040. The other scenarios have even more flexible capacity provided by a CM, demand response or BECCS. 

38 In their budgets, Anderson & Broderick (Anderson & Broderick, 2017) assume that emissions from deforestation are 
matched by additional carbon sequestration through land use, land use change and forestry activities until 2100. In 
some IPCC scenarios limiting warming to 1.5 ºC, even the estimated global BECCS potential of 5 Gt CO2y-1 is exceeded 
(IPCC, 2018). 

39 The cost of transporting and storing up to 120 Mt CO2 y-1 from the Netherlands, Belgium and Germany in the Utsira 
formation – a saline aquifer located some 800 km offshore from the Dutch coastline in Norwegian waters with a storage 
capacity of 42 Gt CO2 – is estimated to be in the range of 8.5 to 16 €2007 t-1 (10 to 20 €2017 t-1, accounting for 2% annual 
inflation)(van den Broek et al., 2010). See (EASAC, 2013) for a more detailed overview of CO2 transport and storage 
costs for different distances and storage sites. 

40 The base learning rates assumed in (Tsiropoulos et al., 2018) are 20% for PV, 5% for onshore wind and 11% (2020) 
falling to 5% (2040) for offshore wind, while the optimistic learning rates are 23%, 10% and 20% (2020) falling to 10% 
(2040) respectively. 
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 Research context and aims of thesis 
After decades of delay, missed opportunities and accumulated greenhouse gas (GHG) 
emissions in the atmosphere, the actions required to address climate change are becoming 
increasingly urgent and severe. Recent analysis from the Intergovernmental Panel on Climate 
Change (IPCC) shows that in order to have a good (67%) chance of limiting global warming 
to 1.5 ºC by the end of the century as set out in the Paris Agreement, mankind should emit no 
more than 420 Gt CO2 (net) from 2018 onwards (Rogelj et al., 2018)1. If global emissions remain 
at 2018 levels of approximately 37 Gt CO2 y-1, this budget will be exceeded sometime around 
the year 2030. This sobering fact has led many local, state and federal governments to declare 
a climate emergency (Aidt, 2019). 

With total CO2 emissions of 13 Gt in 2018 (38% of total energy-related CO2 emissions), the 
electric power sector is currently the largest source of GHG emissions globally (IEA, 2019). 
Given the extent of its emissions, its ability to indirectly decarbonise other sectors, and close 
links with bioenergy with carbon capture and storage (BECCS) and direct air carbon 
capture (DAC) – two negative emission technologies (NETs) which could play a vital role in 
limiting global warming to 1.5°C – decarbonising the power sector is a key priority in the fight 
against climate change. 

The European Union (EU) has long been a global leader in taking action against climate change 
and deploying renewable energy sources (RES). In the ten years from 2008 to 2018, the 
installed wind capacity in the EU tripled from 60 to 180 GW, and solar photovoltaic (PV) 
capacity increased more than tenfold from 10 to 115 GW over the same period (EurObserv’ER, 
2018, 2019; Eurostat, 2017b; SolarPower Europe, 2019). Largely thanks to this growth in RES 
and falling generation from coal, GHG emissions from public electricity (and heat) generation 
in the EU fell by 24% between 2008 and 2017 to approximately 1 Gt y-1 (Eurostat, 2019a). 
However, this still represents 25% of total EU GHG emissions, and more must be done to 
decarbonise to the ambitious levels targeted in the Paris Agreement. Thankfully, the recent 
(November 2019) resolution of the European Parliament to declare a climate emergency shows 
Europe’s commitment to reducing emissions even further (European Parliament, 2019). 

While Europe’s electricity sector must decarbonise, it is not clear how this should be done as 
there are three broad strategies which could be followed. Firstly, studies have shown that cost-
effective low-carbon generation portfolios can be constructed from a mix of RES, nuclear, and 
fossil generation with carbon capture and storage (CCS) (Jenkins et al., 2018; Sepulveda et al., 
2018). By committing to a target of net-zero emissions by 2050 and deploying a mix of RES, 
nuclear and potentially CCS, the UK is following such as a technology-diverse approach (UK 
Government, 2019). A second strategy, currently being followed by countries such as Denmark 
and Sweden, is to aim for a power system based almost exclusively on RES (KEFM, 2018; 
Swedish Ministry of the Environment and Energy, 2019). Germany, which has set a minimum 



Chapter 6 

 196 

target of 80% RES electricity by 2050, is following a similar high-RES strategy (BMWi, 2018). A 
third strategy would be deployment of NETs to offset emissions from continued fossil fuel use 
in the electricity or in other sectors, though this strategy is not currently being followed by any 
country. Whichever strategy is implemented, the European electricity sector will likely face 
three major challenges over the coming decades, making the overarching objective of a 
modern electric power industry – to supply clean electricity reliably to consumers at the lowest 
possible cost – more difficult to achieve. 

Firstly, the growing penetration of variable renewable energy sources like solar PV and 
wind is raising concerns about the reliability of the power system. For decarbonisation 
strategies targeting high levels of RES this will be a challenge. However, given the falling costs 
of wind and PV, many technology-diverse portfolios may also rely heavily on these two 
technologies. Secondly, decarbonisation ambitions are becoming increasingly stringent over 
time, and even net-zero power sector emissions by 2050 may not be enough to meet climate 
goals. Thus, deployment of NETs may become unavoidable, and it is unclear what the impacts 
of large-scale deployment of NETs on the European electricity sector could be. Lastly, there 
are concerns whether Europe’s liberalised electricity market design will be able to incentivise 
sufficient investment in low-carbon generation capacity to meet climate goals while ensuring 
security of supply.  

In light of these challenges, the main research question driving this thesis is:  

What are the consequences of pursuing different strategies in the European power 
sector for reliability, achievement of climate objectives, and economic viability?  

In addressing this broader question, this thesis focusses in more detail on the following sub-
questions (SQ):  

1. To what extent can the mix and spatial distribution of solar PV and wind be used to 
help integrate them into the power system? 
 

2. What are the potential consequences of aiming for a 100% renewable power system? 
 

3. What are the potential consequences of relying on BECCS and DAC in the power 
sector to meet a 1.5 ºC warming target? 
 

4. What elements should be present in future market designs to address the energy 
trilemma? 

These research questions are addressed in four core chapters (see Table 1-2, reproduced 
below).  
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Table 1-2 | Correspondence between the chapters and research questions of this thesis 
Chapter Topic 

Research question 
SQ1 SQ2 SQ3 SQ4 

2 
Consequences of the mix and spatial distribution of wind 
and solar PV for residual demand 

X X   

3 
Consequences of high vRES penetration in European 
electricity sector for intraday and balancing markets 

 X  X 

4 Consequences of a 100% renewable power system X X   

5 
Consequences of aiming for a 1.5 ºC target with BECCS and 
DAC under different market designs 

  X X 

The remainder of this chapter is structured as follows. Section 6.2 gives a brief summary of 
each core chapter. Section 6.3 draws on the findings of all four core chapters to address the 
research questions outlined above. Section 6.4 discusses the finding of this thesis in the 
context of the broader energy and climate debate, and provides a reflection on the research 
scope the methods used. Section 6.5 provides some recommendations for future research, 
and Section 6.6 concludes the thesis with several key recommendations for policymakers. 

 Chapter summary 
Chapter 2 examines to what extent the mix and spatial deployment of vRES capacity across 
Europe could be used as a strategy to facilitate its integration into the power system by taking 
advantage of different weather patterns across the continent. The approach taken is to 
optimise the mix and spatial distribution of solar PV and wind (onshore and offshore) across 
Europe in such a way as to make the hourly total aggregated vRES generation profile 
throughout the year match the profile of total aggregated electricity demand as closely as 
possible. This is achieved by combining a high-resolution spatial grid (approximately 
50 km x 50 km) with data on suitable land areas for vRES deployment, together with a long-
term dataset of wind speed and solar radiation. The quantity of installed wind and solar PV in 
each grid cell is varied until the total absolute residual demand (i.e. unmet demand plus vRES 
curtailment) is minimised. This optimisation is performed for 36 years of weather data to 
examine how consistently the method distributes vRES capacity given interannual weather 
variability. The optimisation is also performed with different vRES penetration rates, electricity 
demand profiles, PV panel orientations, and allowable water depths for offshore wind to 
examine how the spatial optimisation is affected by these factors. To establish the maximum 
possible benefits of this approach, the method does not account for transmission limitations 
or losses (also known as the ‘copper-plate’ assumption), does not account for storage, nor 
costs. The approach is compared with a vRES spatial distribution based on maximising capacity 
factors. 
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Spatially optimising vRES to minimise residual demand results in a vRES penetration rate of 
82% (energy basis), with a capacity mix of approximately 75% wind and 25% solar PV.  
However, dispatchable firm capacity representing up to 75% of peak demand would still be 
required to ensure long-term system adequacy. Compared with the traditional approach of 
installing vRES in locations with the highest capacity factors, optimising vRES capacity to 
minimise residual demand reduces total absolute residual demand by 29%, and peak residual 
demand (i.e. backup capacity requirements) by merely 2.6%. Thus, even in this optimal case of 
a copper-plate Europe, optimising the spatial distribution of vRES could play only a minor role 
in reducing residual demand. The greatest benefits of spatial vRES optimisation are found 
when water depth constraints are relaxed, and offshore wind capacity can be built in very deep 
waters far from shore; this reduces total residual demand by 53% and peak residual demand 
by 16% compared with a capacity factor-based distribution. Increasing use of heat pumps 
(HPs) and electricity vehicles (EVs) also effects the optimum distribution of vRES, assuming no 
demand-side flexibility in HP use and EV charging. For example, installing PV capacity at the 
eastern and western extremes of Europe could lead to more generation in the morning and 
evening, which may be beneficial for meeting future demand from EVs, while PV in northern 
Europe could extend the window of PV generation in summer by taking advantage of longer 
days. However, it is unlikely that such approaches would be cost-effective. 

Chapter 3 explores how higher vRES forecast errors brought about by rising vRES penetration 
in Europe could affect intraday and balancing market volumes, and to what extent these errors 
could be resolved by trading between vRES generators in the case of no cross-border trading, 
and a copper-plate Europe. This is done by developing a new method for creating synthetic 
day-ahead forecasts for electricity demand and vRES generation with error distributions which 
are consistent with historical forecasts. The method is demonstrated by applying it in 
simulations of a future European power system in which the penetration of vRES rises from 
15% in 2017 to 50% in 2040. The proposed method incorporates a generalised autoregressive 
conditional heteroscedasticity (AR-GARCH) model to account for the daily volatility observed 
in historical forecast errors, and a dependence on real-time generation (or load) level to 
account for hourly volatility. Intraday forecasts are based on persistence. Other factors which 
contribute to intraday trading and imbalance volumes such as forced outages, strategic 
deviations and schedule leaps are not considered. 

Based on the simulation results, it is found that potential intraday market volumes increase by 
60 TWh y-1 (+160%) between 2017 and 2040 as a result of additional day-ahead forecast errors. 
Intraday trading both within and between countries could allow between 40% (without cross-
border trading) and 75% (copper plate) of day-ahead forecast errors to be resolved by vRES, 
reducing the need for dispatchable energy. In the absence of intraday trading, these errors 
would need to be resolved by transmission system operators (TSOs) on balancing markets, 
highlighting the role liquid intraday markets can play in supporting the integration of vRES in 
Europe. Regarding balancing markets, we find that full implementation of imbalance netting 
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and a common Europe-wide reserve could reduce balancing energy and capacity 
requirements for vRES integration by 19% and 32% respectively in 2040 compared with 
country-specific reserves and no imbalance netting. 

Chapter 4 aims to test whether a 100% renewable power system could be feasible in Europe 
by 2050. Several scenarios for a fully renewable European power system are evaluated based 
on their reliability, cost, and whether the requisite deployment of RES could take place by 
2050. This analysis is based on power system simulations performed at hourly resolution using 
the PLEXOS power market modelling framework. Flexibility limitations of dispatchable plants, 
cross-border transmission and operating reserves are modelled explicitly. All major forms of 
RES are included such as solar PV, onshore and offshore wind, bioelectricity, geothermal, 
concentrating solar power (CSP), and hydro power. In most scenarios, the deployment of 
geothermal and CSP is taken exogenously based on scenarios from the literature. Seasonal 
storage (e.g. with hydrogen) is not included. The model incorporates the high spatial- and 
temporal-resolution weather data developed in Chapter 2 directly in the optimisation, so that 
land and sea availability for vRES is accounted for explicitly, vRES generation profiles are 
consistent with their spatial deployment, and the cost of vRES deployment depends on the 
weather resource and proximity to load at each location. From a long-term weather dataset 
(1979 to 2015), the year 2010 is chosen for the model runs, as this is the most challenging year 
observed in the dataset. The geographic scope of the study is the EU28 countries, Norway and 
Switzerland. RES deployment (including biomass) is limited to resources from only these 
countries, including their territorial waters up to 50 m deep. Electricity demand is assumed to 
increase by 1300 TWh (40%) between 2015 and 2050 due to additional demand for HPs and 
EVs, based on literature estimates. Six scenarios for a 100% RES European power system are 
modelled to explore the impact of uncertainties in future demand and technology 
development, and one further scenario in which other non-RES low-carbon technologies are 
included, so that the costs of a 100% RES system can be compared with a more technology-
diverse portfolio. 

The results from Chapter 4 suggest that a 100% RES European power system could operate 
with the same level of reliability as the current power system, even when relying only on 
domestic European RES in the most challenging weather year. However, realising such a 
system by 2050 would be contingent on many developments. For example, generation 
capacity would need to expand to at least 1.8 TW, compared with ~1 TW installed in 2015. 
This increase (80%) is much higher than the 40% increase in demand, and requirements 
increase even further if portfolios must rely on higher shares of vRES, if total demand grows 
more strongly 40% (e.g. to produce hydrogen via electrolysis), or if peak demand increases 
significantly. Cross-border transmission capacity would need to increase by around 140 GW 
from the 60 GW installed today, as would the utilisation of bioenergy for power generation, 
reaching at least 8.5 EJ y-1 (compared with 1.9 EJ y-1 in 2015). While the annual wind and PV 
deployment levels required to realise a 100% RES system by 2050 have been achieved 
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historically, deployment of dispatchable RES sources such as bioenergy and CSP would need 
to be scaled up significantly from current levels. In terms of costs, a 100% RES power system 
in 2050 would be approximately 30% more expensive than a more technology-diverse system 
which includes nuclear power and CCS (or conversely, a technology-diverse system would be 
22% cheaper than a 100% RES system), even when wind and PV are placed in the optimal 
locations. Moreover, the costs of 100% RES systems increase relatively more with higher 
demand as the best RES sites become exploited and less favourable locations must be used. 

Chapter 5 explores the interactions between different decarbonisation trajectories and market 
designs on the power system by using the PLEXOS modelling framework to study the 
evolution of the Central Western Europe (CWE) power system between 2017 and 2040. Two 
decarbonisation scenarios are considered for 2040: one targets net-zero emissions consistent 
with a 2 ºC warming limit, while the other targets -850 Mt CO₂ y¯¹ net-negative emissions, 
consistent with the more ambitious 1.5 ºC warming limit set out in the Paris Agreement. These 
two decarbonisation scenarios are modelled for four archetypal electricity market design 
scenarios: (i) the current energy-only market (EOM) with price caps and (largely) price-
insensitive demand side, (ii) a reformed EOM with price caps removed and price-responsive 
demand, (iii) the current EOM with the addition of a capacity market, and (iv) the reformed 
EOM with the addition of a capacity market. These scenarios are used to determine how 
electricity generation portfolios should develop over time to supply electricity reliably to 
consumers at the lowest cost (given the exogenous vRES increase), to what extent these least-
cost portfolios can be supported by market revenues, and how the deployment of negative 
emission technologies could affect the electricity market. In all scenarios, it is assumed that 
the installed capacity of vRES in CWE increases over time from 133 GW in 2017 to 500 GW in 
2040, and the CO2 price increases from 17 € t-1 in 2017 to 120 € t-1 by 2040. 

In terms of portfolio developments, the results show that BECCS is a cost-effective way of 
rapidly decarbonising the power sector and, assuming a maximum biomass supply of 3 EJ y-1, 
the CWE power sector could offset up to 250 Mt CO2 y-1 from other sectors using BECCS. 
Offsetting more than this increases costs significantly due to the need for DAC. No new nuclear 
capacity is built in any scenario; however, keeping existing nuclear capacity can be a cost-
effective way of maintaining security of supply, reducing carbon emissions, and keeping 
electricity prices low for consumers. While this study assumes policy-driven large-scale vRES 
deployment, sensitivity analysis shows that a strategy relying primarily on vRES could increase 
the cost of decarbonisation by 10% to 25% (depending on the warming target) compared to 
a more diversified portfolio containing vRES, nuclear, natural gas (with CCS) and BECCS plants. 

In terms of market developments, market revenues for existing baseload and mid-merit 
generators may improve in the medium term (~2030). This is due to higher infra-marginal 
rents induced by the effect of a higher carbon price on peaking fossil generators, resulting in 
average day-ahead prices in the range of 50 to 80 € MWh-1 in 2030 (depending on the 
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scenario), compared with 35 € MWh-1 in 2017. However, this effect is offset in the long term 
by the downward pressure exerted by vRES and BECCS on market prices, which fall to between 
42 and 55 € MWh-1 by 2040. The downward pressure from vRES is due to the merit order 
effect, while the downward pressure from BECCS stems from the assumption that NETs are 
remunerated for their negative emissions at the CO2 price, which allows BECCS to offer 
electricity at low (or even negative) prices. As a result, the combined impact of high vRES 
deployment (up to 70% penetration based on energy in CWE) and BECCS deployment may 
lead to up to 1500 hours with a day-ahead electricity price of zero by 2040, undermining the 
effectiveness of a carbon price as an investment signal for other low-carbon and NETs. 
Ultimately, most generation technologies fail to recover their investment costs in the long 
term in any modelled market design scenario. While capacity markets can improve the 
profitability of mid-merit and peaking gas plants, they can also undermine the profitability of 
baseload and vRES generators if they result in generation oversupply and depress electricity 
prices. Furthermore, volatile capacity prices may not guarantee the stable long-term 
investment environment called for by investors. Adding a mechanism in the EU Emissions 
Trading Scheme (ETS) to remunerate NETs for negative emissions could help make BECCS 
profitable from carbon and electricity market revenues by the mid-2030s. However, even with 
such a mechanism, the high cost of DAC means it would likely still need government support 
to see large-scale deployment.   
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 Main findings and conclusions 
The key findings regarding the main research questions of this thesis are discussed in the 
following sections. 

6.3.1 To what extent can the mix and geographic distribution of solar 
PV and wind be used to help integrate them into the power 
system? 

Optimising the spatial distribution of vRES is unlikely to be an effective strategy for 
reducing backup capacity requirements. Chapter 2 shows that even in the optimistic case 
of a copper-plate Europe, optimising the distribution of vRES to minimise residual demand 
could reduce peak residual demand by only 2% compared with a distribution based on the 
highest capacity factors. Investors are unlikely to accept the economic penalty of exploiting 
sites with fewer operating hours for a marginal benefit to the system, and it would not be cost-
effective for governments to support them in doing so. Instead, other strategies for dealing 
with peak demand hours, such as demand-side response, are likely to be more cost-effective. 

The mix of vRES technologies has a significant impact on how easy they are to integrate, 
with a higher share of wind being more favourable. Considering only the match with load 
and excluding costs, storage, and transmission limitations, the optimum deployment of vRES 
in Europe would be an energy penetration of 82% net (89% gross, including curtailment), with 
a capacity mix of approximately 25% solar PV and 75% wind. Of the total wind capacity, 65% 
is offshore. Based on the results presented in Chapter 2, these shares lead to the lowest total 
(positive and negative) residual demand across the year with 8% of vRES generation curtailed, 
and 18% of demand unmet. The optimum share of wind is higher as wind has a more stable 
generation pattern than solar PV, allowing it to supply an average of 250 GW baseload power 
throughout the year (see Figure 2-10). With these shares, total wind generation would be 
almost sufficient to cover demand in winter months (provided enough daily and weekly 
storage was available), while some unserved demand would remain during summer.  

However, the optimal mix and spatial distribution of vRES depend more strongly on the 
investment costs of vRES and transmission lines. The optimisation algorithm used in 
Chapter 2 to minimise residual demand results in a vRES penetration of 82% (net), with a 
portfolio dominated by offshore wind due to its favourable generation profile. However, this 
algorithm considers only the match between aggregated load and generation, excluding the 
costs of vRES, transmission, and the residual generation portfolio. When these factors are 
included in Chapter 3, the optimal mix and distribution of vRES changes markedly. With a fully 
optimised portfolio (i.e. the Free RES scenario), the optimal penetration of vRES is found to be 
approximately 50%, with a capacity mix of one-third wind to two-thirds solar PV. The main 
reason for this is the high cost of offshore wind, making an offshore wind-dominated portfolio 
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less attractive, despite its more favourable generation profile. Including the costs of vRES and 
transmission in Chapter 3 also results in vRES deployment shifting to sites with higher capacity 
factors and sites located closer to load centres, giving a more even distribution of vRES 
capacity across Europe. This shows that the investment costs of vRES and transmission lines 
outweigh any potential benefits of spatial optimisation.  

For supplying bulk energy generation, wind benefits more from geographic diversity 
than solar PV. As shown in Chapter 2, the reason for this is that at an hourly time scale, the 
correlation between wind generation at different sites falls with increasing distance much 
quicker than for solar PV (see Figure 2-19). For example, at a distance of 50 km, the median 
correlation coefficient between time series of hourly generation from wind and PV are both 
above 0.9. At 500 km however, the correlation falls to 0.3 for wind, but remains at 0.9 for solar 
PV.   

6.3.2 What are the potential consequences of aiming for a 100% 
renewable power system?  

The findings from Chapter 4 suggest that a European power system based on 100% RES 
could be realised by 2050 and operate with the same level of reliability as today’s power 
system, even in a very challenging weather year for solar PV and wind generation. 
However, this strategy would be contingent on many developments over the coming years: 

➢ Generation capacity would need to increase considerably, potentially to at least 
1.8 TW compared with the 1 TW installed in 2015. This represents an increase of 
80%, compared with an assumed electricity demand increase between 2015 and 2050 
of 40% (1300 TWh) due to HPs and EVs. Generation capacity requirements increase 
even further if portfolios must rely on higher shares of vRES, if total demand grows 
even more strongly than the assumed base level of 40% (e.g. to produce hydrogen 
via electrolysis), or if peak demand increases significantly. 
 

➢ Cross-border transmission capacity would need to increase, potentially by a 
further 140 GW compared with the 60 GW installed in 2015. Transmission 
requirements will be higher for 100% RES portfolios relying on significant CSP 
capacity deployed in southern Europe, for higher demand levels, and for peakier 
demand profiles. With more cross-border transmission, European countries would 
become more reliant on their neighbours for their security of supply, and on the 
reliability of the transmission network. 
 

➢ Deployment of firm, dispatchable renewable capacity of at least 18 GW y-1 to 
supply electricity during periods of low-vRES generation and meet peak demand 
reliably. In a 100% RES system, this must come from CSP, bioenergy (solid biomass 
and biogas), geothermal, hydro, or storage. Given current deployment rates for these 
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technologies are below 1 GW y-1, this presents a major hurdle to realising a 100% 
RES power system by 2050. 
 

➢ Total wind and solar deployment would need to average 7.5 GW y-1 and 
15 GW y-1 respectively every year until 2050. Such deployment levels have been 
achieved in the EU before in individual years, but not sustained.  
 

➢ Large-scale mobilisation of Europe’s bioenergy resources would be required in 
the range of 8.5 to 13 EJ y-1 compared with 1.9 EJ y-1 used in 2015. Bioenergy would 
be used to supply baseload generation during winter, and night-time demand in 
summer, while biogas would be needed to meet demand during peak periods. 
Deploying 8.5 EJ y-1 would mean utilising around 85% of the ~10 EJ y-1 of suitable 
biomass potential for energy (based on literature estimates).  
 

A 100% RES power system may be more expensive than a more technology-diverse 
system including other low-carbon (but non-RES) technologies such as nuclear power 
or CCS. This is shown in Chapter 4, where a scenario in which nuclear and CCS technologies 
are allowed leads to total annualised costs in 2050 that are 22% lower than the least-cost 100% 
RES scenario. These lower costs are achieved due to deployment of nuclear and natural gas 
capacity as well as BECCS, which offsets the CO2 emissions from natural gas. Transmission 
investments are also significantly lower than in the 100% RES scenarios. The benefits of a more 
diverse generation portfolio are also shown in the sensitivity analysis from Chapter 5 where 
compared with the base runs, which include an exogenous 3-fold increase in vRES capacity, 
the runs with optimised vRES capacity result in far less vRES deployment, and 7% to 20% lower 
system costs (depending on the climate target). Lower costs are achieved by deploying less 
offshore wind and PV capacity, keeping more existing nuclear capacity online, and installing 
some natural gas with CCS and BECCS capacity.  

Demand-side measures would play a major role in improving the feasibility of a 100% 
RES power system. Assuming complete electrification of passenger vehicles and significant 
uptake of electric heating by 2050, literature sources estimate that HPs and EVs could increase 
electricity demand in Europe (currently 3100 TWh y-1) by up to 1300 TWh y-1. Chapter 4 shows 
that if this additional demand is inflexible, peak demand could increase significantly, increasing 
the amount of generation capacity (particularly peaking biogas) required. Thus, EVs and HPs 
should be deployed with technologies allowing demand flexibility (e.g. smart charging, energy 
management systems) to minimise the impact on peak demand. 

The cost of a 100% RES power system increases relatively more with higher demand. In 
Chapter 4, a 36% increase in demand for a 100% RES system leads to a 50% increase in total 
costs. This is mainly due to depletion of the most favourable locations for vRES, the need to 
exploit costlier biomass resources, and higher generation capacity required to meet peak 
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demand. As a result, the cost of a 100% RES decarbonisation strategy is more sensitive to 
demand levels than a more diverse strategy which includes non-RES technologies.  

Reserve (balancing) capacity and energy requirements will likely be higher for a 100% 
RES power system. The results from Chapter 3 show that increasing vRES penetration from 
15% to 50% could increase balancing energy requirements across Europe by ~130% and 
capacity requirements by ~100%, depending on the extent of imbalance netting and reserve 
sharing. Moreover, Chapter 4 shows that in a 100% RES European power system, balancing 
requirements would vary considerably throughout the day, with especially high reserves 
required during periods when vRES supply approaches 100% of demand.  

RES have an important role in strategies to deliver net-zero power sector emissions, but 
even a 100% RES portfolio may need the flexibility provided by NETs to meet a 1.5 ºC 
warming target. All the 100% RES scenarios modelled in Chapter 4 would achieve net-zero 
(direct) GHG emissions from the European power sector by 20502. However, as shown by the 
most recent IPCC scenarios (see Figure 1-1), negative emissions may already be necessary in 
the 2030s to be consistent with a 1.5 ºC warming target. Most of the 100% RES portfolios 
modelled in Chapter 4 contain significant bioelectricity capacity which could be retrofitted 
with CCS to deliver negative emissions at relatively low cost. However, 100% RES portfolios 
relying on very high vRES penetrations (with storage) would not have this flexibility and would 
need to deploy additional BECCS and/or DAC capacity at higher cost. 

6.3.3 What are the potential consequences of relying on BECCS and 
DAC in the power sector to meet a 1.5 ºC warming target? 

Even with large-scale vRES uptake, early BECCS deployment may be a cost-effective 
strategy for meeting a 1.5 ºC target. Chapter 5 shows that the least-cost pathways 
consistent with a 2 ºC warming limit by 2040 lead to a small amount (2 GW) of BECCS 
deployment in CWE in the late 2030s. However, in the 1.5 ºC scenarios, BECCS is deployed 
already in the early 2020s by converting existing coal plants to use biomass and retrofitting 
them with CCS. By 2040, approximately 25 GW of BECCS is installed in CWE, delivering -250 
Mt CO2 y-1 negative emissions. If BECCS is not deployed, the sensitivity analysis performed in 
Chapter 5 shows that the total cost of meeting the 1.5 ºC target could increase by 20% 
compared to the case where BECCS is deployed due to the need for more costly DAC. Similarly, 
allowing for higher BECCS deployment than in the base case could reduce the costs of meeting 
a 1.5 ºC target by reducing the deployment of DAC.  

Large-scale deployment of BECCS will be contingent on significant sustainable biomass 
supply chains to deliver real climate benefits. As shown in Chapter 5, CWE could deliver 
250 Mt CO2 y-1 negative emissions in the year 2040 by using ~3 EJ y-1 of biomass. Scaling this 
value up based on the total estimated suitable European bioenergy potential of ~10 EJ y-1 
(excluding log wood, sugar, starch and oil crops, which are set aside for residential heating 
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and biofuels, see Chapter 4) suggests that up to 800 Mt CO2 y-1 negative emissions could be 
achieved by 2040 across Europe from BECCS. However, these negative emissions should only 
be realised if the biomass can be sourced sustainably, without causing deleterious effects to 
soil quality and biodiversity, and without incurring a carbon debt so long that the use of 
biomass becomes futile (or even detrimental) on timescales relevant for climate policy (see 
section 6.4.1 for further discussion on biomass).  

Deployment of BECCS could lead to more baseload electricity production, reducing the 
need for nuclear and vRES, and may also put downward pressure on electricity prices. 
BECCS is most cost-effective when operated with high capacity factors as this leads to more 
negative emissions. As a result, Chapter 5 shows that BECCS also leads to baseload electricity 
production in CWE of up to 15 TWh y-1 (1% of electricity demand) by 2040 in the 2 ºC scenarios, 
and ~190 TWh y-1 (15% of electricity demand) in the 1.5 ºC scenarios. This baseload production 
displaces some nuclear generation in cost-optimal portfolios. Moreover, assuming that NETs 
are remunerated for their negative emissions, and that the carbon price is high enough, 
baseload generation from BECCS could lead to vRES curtailment. This phenomenon is similar 
to what already occurs with combined heat and power (CHP) plants which, due to their heat 
revenues or ‘must-run’ status, can offer their electricity at a very low price and are preferentially 
dispatched over other sources. For the same reason, large-scale BECCS deployment may put 
downward pressure on electricity prices. 

Baseload electricity demand would increase significantly due to DAC. The supply of 
biomass may be insufficient to achieve all the negative emissions required for a 1.5 ºC scenario 
with BECCS. In this case, Chapter 5 suggests that up to 25 GW (input electricity) of DAC may 
be required in CWE by 2040, requiring some 200 TWh y-1 of additional electricity. Due to DAC’s 
high capital cost, cost-effective operation means it should run as much as possible. Thus, the 
additional demand imposed on the system would be for baseload electricity which, as shown 
by the optimised portfolios in Chapter 5, may be more cost-effectively supplied by baseload 
technologies such as BECCS or existing nuclear capacity. 

Mechanisms are needed to remunerate NETs for the negative emissions they sequester. 
The analysis performed in Chapter 5 assumes that NETs are paid for the negative emissions 
they generate. This could be achieved by, for example, a direct government subsidy to NETs 
similar to a feed-in-tariff or – as proposed in Chapter 5 – a mechanism could be added to the 
EU ETS allowing NETs to generate emission allowances. NET plants could sell these allowances 
to emitters, and the volume of centrally offered allowances reduced accordingly to prevent an 
oversupply. Chapter 5 suggests that if the CO2 price reaches levels around 120 € t-1 by 2040, 
BECCS could become profitable from these carbon and electricity revenues alone without 
further government subsidies. However, even at these prices, DAC would not be profitable 
based on assumed cost estimates (~13000 € kW-1 (input) for DAC in 2040 vs. ~3800 € kW-1 
for BECCS) and additional government support would be required.  
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6.3.4 What elements should be present in future market designs to 
address the energy trilemma? 

Liquid intraday markets with cross-border trading will help integrate vRES, reduce the 
need for dispatchable energy, and reduce balancing requirements for TSOs. European 
intraday markets are currently growing, and simulations performed in Chapter 3 suggest that 
this growth will continue with increasing vRES penetration. Assuming vRES penetration in 
Europe increases from 15% to 50% between 2017 and 2040, and forecast accuracy remains 
the same as the best available forecasts today, intraday trading volumes could increase by 
some 60 TWh y-1 (~160%) by 2040 as a result of the additional day-ahead forecast errors. 
However, depending on the amount of cross-border transmission capacity available, between 
40% (without cross-border trading) and 75% (copper-plate Europe) of day-ahead forecast 
errors could be resolved by trading between vRES, reducing the need for dispatchable energy. 
In the absence of liquid intraday markets, these errors would need to be resolved by TSOs on 
balancing markets, adding to costs for consumers. 

Imbalance netting and coordinated procurement of reserves will reduce the need and 
costs for balancing. Simulations performed in Chapter 3 suggest that up until a vRES 
penetration of ~25%, balancing requirements may remain relatively stable at current levels, as 
the imbalances caused by load forecast errors are larger than the imbalances caused by vRES. 
However, increasing vRES penetration beyond this level leads to increasing requirements for 
balancing energy and capacity and once vRES penetration reaches ~50% (around 2040 in the 
simulated scenario), imbalances could increase by ~130% and balancing capacity 
requirements by ~110% compared with 2017, in the case of no imbalance netting and a 
separate reserve per country. However, implementing imbalance netting and a common 
reserve across Europe could reduce these balancing energy and capacity requirements by 19% 
and 32% respectively. 

Reformed EOMs without price caps and with price-responsive demand will help deliver 
system reliability, lower system costs, and efficient electricity pricing. Chapters 4 that 5 
show that demand-side flexibility in the form of load shifting and shedding can be a cost-
effective way of maintaining a reliable power system by reducing the need for peak generation 
capacity and avoiding the need for carbon-intensive peak generation from natural gas. For 
example, in Chapter 5, load shedding reduces total system costs by ~1% (in the case of EOM) 
to 5% (with CRM) mainly by reducing investments in gas turbines, and almost eliminates 
unserved energy in the EOM case. Moreover, the removal of price caps and fostering a price-
responsive demand side will allow electricity markets to better reflect the value of electricity 
at each moment in time and reward market parties accordingly3. For example, in Chapter 5, 
demand-side bids in reformed EOMs become price setting up to 250 hours per year, leading 
to higher prices and generator revenues in these hours. However, a price-responsive demand 



Chapter 6 

 208 

side will be contingent on developments with both large consumers (e.g. industry), as well as 
retailers (see section 6.4.1 for further discussion).  

Capacity remuneration mechanisms (CRMs) may not guarantee enough investment in 
firm capacity to guarantee security of supply. Chapter 5 shows that even in the presence 
of a capacity market, not all firm generators are able to recover their long-run marginal costs. 
Even vRES generators fail to recover their investment costs in most cases. While capacity 
markets deliver additional revenues to mid-merit and peaking plants, leading to profitability 
in certain years, long-term profitability is not guaranteed. Moreover, they can undermine the 
profitability of baseload and vRES generators if they result in oversupply and depress 
electricity prices.  Moreover, the volatile capacity prices seen with an average of 70 € MW-1, 
(but a range of 0 € MW-1 to 250 € MW-1) would not provide the stable revenues needed for 
investors to guarantee investment and security of supply. 

6.3.5 What are the consequences of pursuing different strategies in 
the European power sector for reliability, achievement of 
climate objectives, and economic viability? 

Based on the findings of this thesis and the detailed answers to the sub-questions provided 
in sections 6.3.1 to 6.3.4, the main research question is answered succinctly as follows: 

A strategy aiming for a technology-diverse generation portfolio would: 

• be just as reliable as the current power system, 
• deliver net-zero or even net-negative CO2 emissions (depending on NET 

deployment), 
• cost less than a 100% RES or heavily NET-dominated strategy, 
• require development of CCS for deployment with natural gas and biomass,  
• benefit from keeping existing coal plants online so they can be converted to 

biomass and retrofit for CCS, 
• benefit from keeping existing nuclear capacity online and potentially building new 

capacity, and 
• require market reforms to remunerate NETs for the negative emissions they 

sequester (if NETs are deployed). 

A strategy aiming for a power system based on 100% RES would: 

• be just as reliable as the current power system, providing enough firm capacity is 
available, 

• deliver net-zero GHG emissions, 
• suffer from climate lock-in if net-negative power sector emissions are required 

which, in the absence of CCS, could not be achieved with 100% RES, 
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• be costlier than a more diverse portfolio containing other low-carbon technologies 
(e.g. nuclear, CCS, NETs), 

• require large-scale transmission investments across Europe, 
• entail significant dependence on biomass, in the absence of cost-effective seasonal 

storage, and 
• require significant land and sea area for vRES deployment.  

A strategy relying on large-scale deployment of NETs in the power sector would: 

• deliver significant negative carbon emissions, capable of offsetting emissions in 
other sectors or countries, 

• lead to very high costs, depending on the eventual cost of DAC and the capacity 
deployed, 

• require development of CCS for deployment with BECCS and DAC, 
• entail significant exploitation of biomass for BECCS, 
• require market reforms to remunerate NETs for the negative emissions they 

sequester, and 
• require significant storage of CO2. 

All three strategies would: 

• benefit from market reforms to eliminate market price caps (including implicit ones) 
and develop more price-responsive demand, 

• benefit from liquid intraday markets to support the integration of vRES, reduce 
balancing requirements and total costs, 

• benefit from European market integration so that generation capacity can be 
shared between countries, reducing balancing requirements and total costs, and 

• need public acceptance for the various technologies employed and market reforms 
implemented. 

Considering the consequences of all three decarbonisation strategies, following a more 
technology-diverse strategy would appear to offer the best chance of supplying electricity 
to European consumers at the lowest possible cost, in a way that is consistent with the climate 
ambitions as set out in the Paris Agreement. 
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 Discussion 
This section discusses the findings and implications of this thesis in the context of broader 
debates on energy and climate policy (section 6.4.1), provides a reflection on some of the most 
important scope limitations (section 6.4.2), and gives an overview of the main methodological 
contributions and their potential applications (section 6.4.3). 

6.4.1 Wider implications  

This thesis has raised several issues which, while not addressed directly, are worth further 
discussion as they have implications for the wider debate on energy and climate policy. 

VoLL and reliability: the political cost of lost load. Currently, TSOs are tasked with ensuring 
security of supply according to a certain reliability standard, defined using metrics such as loss 
of load expectation (LoLE), with a typical value being in the range of 3-8 hours per year 
(ENTSO-E, 2018c). The value of these metrics is often based on a uniform value of lost load 
(VoLL) for all consumers, which is used in system planning. However, as shown by historical 
data on outages experienced in Europe and ENTSO-E’s system adequacy analysis (CEER, 2018; 
ENTSO-E, 2018c), the majority of European consumers currently enjoy much higher reliability 
levels than the reported reliability standards4. This suggests that TSOs treat reliability 
standards more as upper limits (in the case of LoLE) than targets. One reason for this may be 
that the real VoLL used by TSOs includes an implicit mark-up: the political cost of lost load, 
which is factored in to avoid the public backlash that would be felt in the event of serious 
supply interruptions. However, this additional reliability requirement may result in surplus 
generation and reserve capacity, the costs of which – in the case of a CRM – get passed down 
to consumers in the form of grid tariffs. As shown in Chapters 3 and 5, the increasing 
penetration of vRES is likely to increase the amount of capacity reserves required. This will 
make maintaining an over-reliable system more costly in the future for TSOs and ultimately, 
consumers. Thus, to make the energy transition as cost-effective as possible, reforms are 
needed to allow markets to determine the cost-optimal level of power system reliability.  

To this end, a key reform would be encouraging a more price-responsive demand side. For 
large consumers, this would mean placing price-volume bids for load on electric power 
exchanges, in preference to forming bilateral contracts for emergency load shedding with 
TSOs which take place outside the market. For smaller commercial consumers and households, 
large-scale deployment of smart meters could enable price-responsive demand in different 
ways, based on new contract types offered by electricity retailers. For example, customers that 
are willing to expose themselves to market prices could opt for contracts in which they pay for 
electricity based on real-time market prices, giving them the flexibility to consume more 
during periods with low prices and avoid periods with high prices. Customers who do not want 
the hassle or risk of dynamic pricing could choose for a fixed tariff, while nominating an 
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electricity price at which they would be willing to have their supply interrupted (Biggar & 
Hesamzadeh, 2014, p. 131). Retail companies could then aggregate these price preferences, 
effectively customer differentiated VoLL values, into their market bids5. Concerns about 
equitable access to electricity could be addressed by establishing appropriate safeguards for 
low-income households6. By reforming demand-side measures, the political cost of lost load 
should fall as consumers would determine how much they value reliability, not politicians. With 
smart meter penetration expected to reach 80% across the EU by 2020, these reforms could 
foreseeably be made over the next few years (EC, 2014a).   

The need for sustainable bioenergy. In Chapter 4, bioenergy is used in a net-zero emission 
100% RES power system (in the absence of cost-effective hydrogen, limited CSP and 
geothermal capacity) to provide firm and dispatchable capacity to balance fluctuations in vRES 
output, and baseload generation in winter. In Chapter 5, bioenergy again plays a major role in 
achieving a more ambitious net-negative emission target by enabling BECCS. However, 
bioenergy should only be exploited for energy purposes if the carbon payback period is short 
enough to have a meaningful climate impact7, the use of biomass is consistent with broader 
sustainability concerns, and does not lead to deleterious effects on e.g. soil quality, 
biodiversity, or water stress (Creutzig et al., 2015). Many of these impacts are restricted to 
certain locales, thus, both the positive and negative impacts of bioenergy are very case specific 
(Fajardy & Mac Dowell, 2017; Jonker et al., 2014).  Due to the above concerns, some groups 
oppose the use of biomass for BECCS (e.g. (EASAC, 2018; Fern, 2018; Norton et al., 2019)). 
However, scenarios from the IPCC show that the total use of bioenergy can be as high or even 
higher when BECCS is excluded compared to when it is included, due to its potential for 
replacing fossil fuels across sectors (Allen et al., 2018). Thus, to allay sustainability concerns, 
the sustainability of BECCS (and bioenergy in general) can be improved by maximising the 
conversion efficiency to electricity, limiting the impacts of direct and indirect land-use change, 
preferencing certain biomass types (e.g. residues, high-yield, low-moisture crops) over others, 
employing low-carbon electricity and organic fertilisers in the biomass production, minimising 
the transport of biomass, prioritising sea over road transport, and employing alternative 
biomass upgrading processes such as natural drying or torrefaction (Creutzig et al., 2015; 
Fajardy & Mac Dowell, 2017; Jonker et al., 2014).  

While the use of bioenergy could be avoided in a net-zero emission 100% RES system with 
large-scale seasonal storage using hydrogen, this is likely to be costly (see section 6.4.2). In 
scenarios requiring net-negative emissions from the power sector, avoiding bioenergy may be 
even costlier as the only alternative is DAC (as shown in Chapter 5). Although there are a 
variety of other potentially cheaper NETs which could be deployed outside the power sector 
(see section 1.1), these also have their drawbacks. For example, compared with afforestation, 
the underground may be a safer place to store carbon long-term, as forests are vulnerable to 
wildfires, the risk of which increases as the climate warms (Settele et al., 2014). Furthermore, 
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negative emissions would need to be measurable and verifiable to be used in global carbon 
accounting procedures, which may be easier with centralised point sinks such as BECCS and 
DAC than with decentralised options like biochar production.  

The role of CCS in reaching 1.5°C. One could argue that the cost reductions achieved in RES 
technologies over recent years mean that CCS is no longer needed in the power sector, and 
that CCS deployment should be restricted to other sectors such as industry, where fewer cost-
effective low-carbon technologies are available. With respect to the use of CCS with fossil fuels 
in the European countries considered in this thesis, the least-cost generation portfolios 
resulting from Chapters 4 and 5 would seem to partly support this argument. For example, 
under base case cost assumptions, no coal plants with CCS are present in the least-cost 
portfolios in either Chapter 4 and Chapter 5. This is partly due to costs, but also because the 
expected CO2 capture rate from CCS plants (~90%) means that the residual CO2 emissions 
from coal plants, even when equipped with CCS, are still too high when aiming for deep 
decarbonisation. This finding is supported by others (Budinis et al., 2018). Meanwhile, some 
natural gas plants with CCS, which have lower residual emissions than coal CCS plants, are 
installed in Chapter 5 to provide flexible low-carbon capacity. It has been shown that cost-
effective deployment of CCS with natural gas is more sensitive to the CO2 capture rate than 
with coal (ibid.), and technology developments allowing for higher CO2 capture rates, such as 
the Allam cycle (up to 98%), mean that natural gas with CCS could still have a role to play in 
the electricity sector (Mitchell et al., 2019). However, even if the policy decision is made not to 
deploy CCS with fossil fuels for electricity production, relying on the power sector to meet a 
1.5 ºC target would necessitate deployment of CCS, as this technology underpins both BECCS 
and DAC8.  

The need for NETs in Europe. Some have criticised NETs as a way for governments to reduce 
the political and economic challenges of taking climate action today, while making us reliant 
on technological advances and large-scale NET deployment in the future (Anderson & Peters, 
2016). Arguments given against NETs are that (i) deep decarbonisation can be achieved in the 
near term without NETs by energy efficiency improvements, shifts towards low carbon 
behaviours, and deployment of RES, (ii) relying on NETs is risky as they have not been deployed 
at large scale, (iii) by applying discounting, integrated assessment models (IAMs) assume that 
the future costs of NETs are lower than the cost of decarbonising now, while deploying NETs 
in future decades will shift the financial burden of climate mitigation to future generations, 
and (iv) with respect to BECCS, questions remain about its potential impacts on land use, 
biodiversity, competing demands for biomass from other sectors, and real carbon 
neutrality/negativity (Anderson & Peters, 2016). However, rather than arguing against NETs, 
many of the concerns above strengthen the argument for more rapid deployment of NETs. 
For example, more rapid deployment of NETs will help demonstrate their technical feasibility 
and reduce uncertainty in their large-scale deployment, leading to faster cost reductions, 
spread the cost of negative emissions more equitably across generations, hedge against the 



6

Summary, conclusions and discussion  

 213 

risks of delayed decarbonisation in other sectors/countries, and increase the chances of 
limiting warming to 1.5 ºC (Detz & van der Zwaan, 2019). In any case, relying less on (or even 
avoiding) NETs means emission reductions will need to be achieved sooner and more steeply, 
potentially at the upper limit of the mitigation ranges considered by the IPCC (see Figure 1-1) 
(van Vuuren et al., 2017). While some IAMs show that cost-optimal net-zero emissions (and 
hence negative emissions) may be achieved earlier in regions like India or China before the 
EU, or in regions with a large biomass and/or high CCS potential, it is questionable whether 
these countries will take the lead in deploying NETs given their current emission trajectories 
and track record of slow action (EC, 2018a; van Soest et al., 2018). In contrast, the EU has been 
a global leader in combatting climate change for decades and may need to assume this role 
once again in the deployment of NETs. 

Public acceptance for a cost-effective energy transition. All decarbonisation strategies 
discussed in this thesis include elements which may face public opposition. For example, solar 
and wind require significantly more area than conventional thermal power plants to generate 
the same amount of electricity and in the Base 100% RES scenario in Chapter 4, the assumed 
land area available for onshore wind and ground-based PV in many countries (e.g. Germany, 
France, the Netherlands, Denmark, UK) is almost completely exploited9. Chapter 4 also shows 
that a 100% RES power system would be contingent on significant transmission investment 
across Europe. As a consequence, the well-known “not in my backyard” (NIMBY) phenomenon 
could result in public opposition to the large-scale vRES deployment and transmission 
investments required for a 100% RES scenario (Komendantova & Battaglini, 2016). Some also 
oppose the use of biomass for power generation, as previously discussed. Aside from RES, 
investments in nuclear or CCS plants as part of a more technology-diverse strategy may also 
face public opposition in some countries (Lipponen et al., 2017). Public opposition can be 
addressed with engineering solutions, but this will increase the cost of the energy transition. 
For example, opposition to onshore wind can be addressed by deploying more offshore wind 
instead; however, the average levelized cost of electricity (LCOE) for offshore wind in Europe 
is currently twice as high as for onshore wind (120 € MWh-1 vs. 65 € MWh-1 (IRENA, 2018)) 
and, in terms of capital costs, is projected to remain so for the foreseeable future (Tsiropoulos 
et al., 2018). Storing CO2 offshore instead of onshore could also reduce opposition to CCS, but 
this is twice as costly (Zero Emissions Platform, 2011). Opposition to new overhead 
transmission lines can be avoided by installing cables underground, but this can increase the 
cost by up to tenfold (Parsons Brinckerhoff, 2012), which will ultimately be passed on to 
consumers via grid fees.  

Until now, the level of power system reliability has been considered a (quasi-)public good as 
individual consumers could not choose their level of reliability, grid operators could not 
disconnect individual households, and investments in generation capacity increase reliability 
for all consumers (EC, 2016a; Müsgens et al., 2014). However, smart meter technology and 
price-responsive demand could make this principle worth revisiting, even though it may be 
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met with some public resistance. For these reasons, a broader public debate is necessary to 
encourage public participation in the energy transition, inform the public about the trade-offs 
of using different technologies and following different decarbonisation strategies, gain a 
political mandate for making the necessary market reforms, and agreement on how the 
benefits, costs and risks of limiting climate change to 1.5°C can be fairly distributed.  

The evolution of European electricity market design. Market design is a gargantuan topic 
encompassing (but not limited to) the design of futures, day-ahead, intraday and balancing 
markets, capacity markets, the allocation and pricing of cross-border transmission capacity, 
congestion management, and bidding zone design. Each is a complex topic on its own and 
this thesis does not consider them all. Thus, it is not within the scope of this thesis to conclude 
which market design is the best. Nevertheless, the findings from Chapters 3 and 5 do allow 
some conclusions to be drawn on certain elements of market design (see section 6.3.4), namely 
that (i) reforming EOMs to remove price caps and encourage price-responsive demand can 
deliver benefits for system reliability and cost, (ii) liquid intraday markets will help integrate 
vRES and reduce balancing costs, (iii) imbalance netting and coordinated procurement of 
reserves will reduce the need and costs of balancing, and (iv) CRMs do not necessarily 
guarantee generator revenues and security of supply. These findings are discussed in more 
detail below. 

Regarding point (i), this is in agreement with basic market principles that short-term prices 
should be at the point where the marginal utility of consumption and marginal cost of 
production intersect as this maximises overall welfare and optimal allocation of resources 
(Bublitz et al., 2018), price caps should be removed as they distort the market by preventing 
prices rising to levels needed for incentivising long-term investment, and price-elastic demand 
prevents suppliers exercising market power (Biggar & Hesamzadeh, 2014, p. 16,130,305). 

Regarding point (ii), the growing importance of intraday markets has been observed in a 
recent review of European intraday market design (Ehrenmann et al., 2019). The authors note 
that while the day-ahead market was originally considered as the short-term “spot” market, 
and intraday and balancing markets used mostly for adjustments, in the future the intraday 
market should be considered the new “spot” market, and the day-ahead market should be 
regarded as another forward market. Both points (ii) and (iii) are consistent with the trend 
towards European market integration that many studies show can reduce costs and increase 
security of supply (Newbery et al., 2016; Ortner & Totschnig, 2019; Ringler et al., 2017; 
Schlachtberger et al., 2017). Several projects are underway to further integrate intraday 
(e.g. XBID) and balancing markets (e.g. IGCC, PICASSO, MARI and TERRE) over the coming 
years (ENTSO-E, 2019a; Gomez et al., 2019). The benefits of market integration will increase as 
the share of vRES increases thanks to geographical diversity, but realising these benefits will 
be contingent on large-scale transmission investments, better management and pricing of 
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transmission capacity, and acceptance on the part of national governments to become more 
dependent on their neighbours for their security of supply.  

Regarding point (iv), the debate between EOMs and CRMs has been ongoing for many years, 
with no clear resolution (see Chapter 5.1). While the findings of this thesis support the case for 
reforming EOMs and go against the need for CRMs, they in no way demonstrate that EOMs 
triumph over CRMs, as Chapter 5 evaluates only one type of CRM (a capacity market), while 
there are a variety of other CRMs designs which may be less distortive, and ultimately none of 
the market designs modelled in Chapter 5 (which considers both EOMs and CRMs) enable all 
dispatchable and vRES technologies to recover their investment costs. This raises the question 
of how investments in the power system needed to reach a 1.5°C warming limit will be made.  

Despite the failure of both EOMs and CRMs to deliver economically feasible systems in 
Chapter 5, there are several reasons why it may be too early to give up on EOMs just yet, and 
why implementation of CRMs should be avoided. Firstly, there is still considerable scope for 
reforming EOMs (e.g. removing price caps, price-responsive demand), the benefits of which 
have already been discussed. Secondly, now that vRES have largely achieved cost parity with 
conventional generation sources, several reforms are likely to be implemented to address the 
distorting impact of feed-in-tariffs and expose vRES to market signals (Henriot & Glachant, 
2013; Hu et al., 2018). Thirdly, price hedging with bilateral contracts could play an important 
role in reducing investment risks for generators and serve as a long-term price floor on day-
ahead markets. For example, if energy suppliers are unable to earn profits on day-ahead 
markets due to low average prices, they may instead decide to sell more of their electricity via 
long-term contracts such as purchase power agreements (PPAs), which would be agreed at 
prices reflective of their long-run costs. If this trend continued, the supply of electricity on day-
ahead markets would fall, putting upward pressure on market prices until an equilibrium was 
found between average PPA prices and market prices. Lastly, implementation of CRMs can 
undermine the performance of existing EOMs (especially in neighbouring countries without 
CRMs) (Bucksteeg et al., 2017; Henriot & Glachant, 2013), potentially locking in a (perceived) 
structural dependence on CRMs in the long term.  

6.4.2 Scope limitations 

Due to research constraints, several relevant aspects are beyond the scope of this thesis. A 
justification and discussion of these topics is provided below. 

The use of electrolysis to produce (green) hydrogen for seasonal storage and other power-
to-gas technologies are not considered in this thesis, for several reasons. Currently, most 
hydrogen is produced from natural gas via steam methane reforming (SMR), resulting in CO2 
emissions (also called grey hydrogen). If this CO2 is captured and stored, it is known as blue 
hydrogen (M. Mulder et al., 2019). The potential role of blue hydrogen for the power sector is 
considered in the sensitivity analysis in Chapter 5 by giving natural gas plants the option of 
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using hydrogen without any additional capital investment at a cost of 13 € GJ-1, the estimated 
minimum price for blue hydrogen to be profitably produced at the assumed natural gas price 
(5.9 € GJ -1) in the Netherlands (M. Mulder et al., 2019)10. Even in this optimistic case, no blue 
hydrogen is deployed by the model in a net-zero emission 2°C warming scenario, and only a 
small amount (50 PJ y-1) is used in a more ambitious 1.5°C warming scenario from ~2030 
onwards, generating an average of 9 TWh y-1. These results suggest that blue hydrogen would 
only have a minor role in a low-carbon electricity sector, though it may feature more strongly 
in other sectors. 

Turning to green hydrogen, some argue that it has an important role to play in low-carbon 
power systems relying on large shares of vRES, as electrolysis can be used to generate 
hydrogen from surplus cheap electricity from vRES (which would otherwise be curtailed) and 
store it for later use. However, there are several economic and practical reasons to doubt this. 
The economics of green hydrogen depends on several key factors, including (i) electrolyser 
cost and efficiency, (ii) hydrogen storage cost and efficiency, (iii) the cost and efficiency of 
converting hydrogen back to electricity, (iv) low electricity prices, and (v) high operating hours 
(van Leeuwen & Mulder, 2018). 

Points (i)-(iii) above depend on future technology developments. The average investment 
costs of alkaline and proton exchange membrane (PEM) electrolysers in 2015 were 
approximately 1250 € kWel

-1 and 2100 € kWel
-1 respectively (Gambhir et al., 2017). By 2030, 

these are projected to fall to 550 € kWel
-1 and 600 € kWel

-1 with additional research and 
development and production scale-up (ibid.). However, the uncertainty in these future cost 
estimates is considerable (Saba et al., 2018). The efficiency of electrolysis is currently 61%-64%, 
and could rise to 75% by 2050 (Gorre et al., 2019). The conversion efficiency from hydrogen 
back to electricity depends on the technology, but lies between 40% and 70% (Pilavachi et al., 
2009). Thus, even in the best case (and excluding any losses during storage) the roundtrip 
losses for producing and using green hydrogen in the power sector are around 50%11. Given 
that the land (and sea) requirements and costs of a 100% RES power system increase with 
vRES deployment (see Chapter 4), supplying bulk (i.e. baseload and load-following) electricity 
using vRES and hydrogen with seasonal storage would be challenging and costly. For example, 
trying to replace the 700 TWh y-1 of solid biomass generation in the 100% RES scenarios in 
Chapter 4 with vRES and hydrogen seasonal storage would require 1400 TWh of vRES 
generation. With most of the best locations on land for onshore wind and PV in central Europe 
already exploited, additional vRES capacity would need to come from more costly offshore 
wind, or onshore wind and utility PV in northern, southern or eastern Europe, further increasing 
transmission requirements. 

Regarding points (iv) and (v), there are several reasons why many hours with low electricity 
prices (and hence economic operating hours for electrolyser) may not materialise. Firstly, 
large-scale cross-border transmission expansion will allow surplus vRES generation from one 
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country to meet demand in another, leading to price convergence12. Secondly, an increasing 
carbon price will put upward pressure on electricity prices (see Chapter 5).  Thirdly, demand is 
likely to increase in future not only from EVs and HP, but also from supply-demand economics 
and substitution of other more costly energy sources for low-cost electricity. With few hours 
with low electricity prices, electrolysers would only be able to achieve a limited number of 
operating hours, while studies show that high electrolyser utilisation is necessary to make 
green hydrogen economically feasible (van Leeuwen & Mulder, 2018)13. 

Aside from green hydrogen for seasonal storage, industries seeking to decarbonise with 
hydrogen will demand a continuous, rather than intermittent supply. This will be difficult and 
more costly to deliver with green hydrogen from vRES for the reasons already explained above, 
and blue hydrogen may be a better option (van Cappellen et al., 2018). Moreover, studies have 
shown that additional demand for hydrogen changes the optimal mix of electricity generation 
technologies, with the share of baseload capacity increasing (Green et al., 2011). 

Given the findings of this thesis that blue hydrogen has only a minor role in a least-cost 
decarbonisation pathway for the power system, and green hydrogen is expected to be even 
costlier than blue hydrogen for the foreseeable future14, it does not seem likely that green 
hydrogen will be a cost-effective option for large-scale seasonal storage in a decarbonised 
power system either in the period until 2040/2050. This finding has been supported by other 
studies e.g. (van Zuijlen et al., 2019). For these reasons, including green hydrogen is unlikely 
to change the main conclusions of this thesis. However, given uncertainties around future cost 
developments, further research is required on the potential role of cost-effective green 
hydrogen in the power sector.  

The representation of the physical electricity network is simplified throughout this thesis. 
For example, in Chapters 2 and 3, the European continent is treated as a copper plate. In 
Chapters 4 and 5, transmission between countries is treated in more detail based on net 
transfer capacities, while transmission within countries is again modelled as copper-plate. 
These simplifications mean that transmission investments are likely to have been 
underestimated, and unscheduled physical ‘loop’ flows, which reduce the cross-border 
capacity available for commercial flows, are not considered (Hagspiel et al., 2014). This could 
be addressed by using more detailed grid models (e.g. flow-based market coupling) in the 
transmission calculations (van den Bergh et al., 2016), but was beyond the scope of this thesis. 
In addition, this thesis does not consider the distribution network, where increasing vRES 
(mainly rooftop PV), EV and HP penetration will potentially have the greatest effects. For 
example, some studies show distribution grid investments may be even higher than 
transmission investments in a power system with large shares of vRES (DNV GL, 2014). 
However, significant distribution investments may ultimately be required even without vRES 
to accommodate the rollout of HPs and EVs. In any case, accounting for the simplifications 
applied to both transmission and distribution modelling in this thesis by using more detailed 
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models would have the greatest impact on strategies targeting high RES deployment, as the 
total costs for transmission and distribution grid reinforcements to supply energy and ensure 
reliability (or alternatively, the additional costs for redispatch, vRES curtailment and unserved 
energy) would increase more than in more diversified or high-NET portfolios. Thus, even using 
more detailed grid models, the key conclusions of this thesis are unlikely to change. 

Power system stability, the process of maintaining system frequency and voltages at target 
levels, is not addressed in this thesis15. However, it is known that maintaining system frequency 
at target levels may become more challenging in decarbonised power systems with large 
shares of asynchronous vRES generators which, unlike synchronous generators (e.g. steam and 
gas turbines), provide no inertia to the system to slow frequency changes after the sudden 
disconnection of a large generator, load, or transmission line (Dreidy et al., 2017; IRENA, 2017). 
Most of the 100% RES portfolios modelled in Chapter 4 contain significant bioelectricity and 
CSP capacity which (if online) could provide inertia. However, during periods of very high non-
synchronous vRES generation (e.g. a sunny windy day) and in portfolios relying on very high 
shares of vRES, a lack of inertia could threaten power system stability (IRENA, 2017). In such 
cases, TSOs may need to intervene in the market to keep synchronous generators online, or 
deploy other technologies to provide synthetic inertia including synchronous condensers, 
flywheels, HVDC interconnectors, and fast-responding batteries (Rezkalla et al., 2018). 
Maintaining bus voltages at target levels may also become more challenging with increasing 
vRES penetration, especially in locations which are poorly connected to the rest of the grid. 
However, analysis of system frequency and voltages requires detailed grid models and power 
flow calculations, which as stated previously, are beyond the scope of this thesis. In any case, 
the investments required for voltage control are reportedly small in comparison to what is 
needed for power generation (IRENA, 2017), and some modern vRES generators also have the 
ability to provide frequency and voltage support for grid operators (Brown et al., 2018). 

Lastly, the investment module of the cost-optimisation model used to make investments in 
Chapters 4 and 5 (i) assumes perfect foresight of the entire modelled horizon, and (ii) makes 
temporal simplifications (e.g. generator ramping constraints are ignored) which, while dealt 
with appropriately in the short-term unit commitment and economic dispatch (UCED) 
simulations, are not fed back to the investment module. These aspects have several potential 
consequences. Firstly, perfect foresight models follow the least-cost pathway according to 
assumed cost developments, while real-world myopic investors do not necessarily follow the 
least-cost pathway, leading to potentially higher costs. However, cost minimisation can be a 
useful tool for policymakers in deciding which policies and regulations to implement, in order 
to steer myopic investors towards desired outcomes with appropriate market signals. 
Nevertheless, future cost developments are inherently uncertain, and deviations from the 
assumed developments may lead to potentially lower or higher cost pathways in reality. 
However, exploring the impacts of myopic investment decisions was beyond the scope of this 
study, and the sensitivity analysis performed in Chapters 4 and 5 showed that the main 
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conclusions were largely unaffected by different cost assumptions in the ranges considered. 
Secondly, temporal simplifications in the investment module could mean that insufficient 
flexible generation capacity may be present in the optimised generation portfolios. This would 
lead to unserved energy in the short-term UCED results and represent either (i) an 
underestimate of the amount and cost of flexible capacity required, or (ii) an underestimate of 
the costs of lost load. This potential issue is addressed in Chapter 4 by allowing for a small 
overcapacity in the investment module. Even if this approach means slightly more capacity is 
installed than required, this capacity is likely to come from relatively low-cost capacity sources, 
(e.g. gas turbines) which ultimately contribute a relatively minor amount to total costs. 

6.4.3 Methodological contributions 

While addressing the central content-based research questions, this thesis also resulted in the 
development of several new methods and modelling tips: 

• A new algorithm to distribute solar PV and wind capacity across a spatial grid according 
to different optimisation objectives (e.g. minimum residual demand, maximum capacity 
factor), while incorporating a variety of spatial and technological constraints (Chapter 2). 
This can be used by power system modellers to generate distributions of solar PV and wind 
capacity for modelling studies. 

 
• The detailed spatial optimisation of vRES capacity was included in a power system capacity 

expansion model at the European scale for (to the author’s knowledge) the first time, 
allowing for more insights on how system costs and land/sea use increase with vRES 
penetration (Chapter 4). 

 
• A new method for synthesising day-ahead forecasts for load and vRES generation based 

on historical forecast errors (Chapter 3). This method can be used by power system 
modellers and TSOs for power system planning studies to determine potential balancing 
requirements, based on different projections of future load and vRES deployment. 

 
• Modelling power systems for many weather years at high temporal resolution with limited 

computational resources can be made easier with various techniques. For example, 
parallelising simulations of non-dependent weather years across multiple cores can reduce 
the required simulation time by up to 75% (used in Chapter 2). Using less memory-
consuming variable types (e.g. half precision 16-bit floating point numbers instead of full 
precision 64-bit) combined with appropriate numerical scaling can reduce memory use 
considerably, making intractable simulations tractable (used in Chapter 3).  

 
• Modelling DAC as a kind of pumped hydro storage in PLEXOS was found to be an effective 

method to account for its dynamics and costs in the power system (used in Chapter 5). 
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 Recommendations for further research 
This thesis has highlighted many topics requiring further research, some of which are given 
below: 

• With competition for land likely to grow in the future not just for vRES deployment 
but also for agriculture, further research is needed to determine the costs and 
climate impacts of using land for afforestation or dedicated rotating biomass 
crops for BECCS.  
 

• Further research is needed to assess the potentials, environmental trade-offs and 
reduce the costs of all NETs including afforestation, ocean carbon storage, and soil 
carbon sequestration, as relying on BECCS and DAC in the power sector to provide 
all negative emissions could be very costly. Moreover, research is needed to 
determine how society should pay for NETs in the most equitable way, and how 
negative emissions can be included in existing carbon market structures.  

• Investigate potential interactions and cost synergies between the electric power 
sector and other sectors such as heat and transport (e.g. power to heat, vehicle-to-
grid), including the provision of negative emissions. 

• Further research is needed to better quantify the cost-effective sustainable 
biomass supply potential available (including potential imports) to use in a 100% 
RES power system or systems with large-scale BECCS deployment. Developing new 
governance systems for guaranteeing the sustainable use of biomass will also help 
alleviate public concerns.  

• Better quantification of the impacts of decarbonisation strategies which exclude 
bioenergy, and the need for alternative options to supply seasonal generation such 
as hydrogen (with storage), geothermal, and natural gas with CCS. 

• Explore the impact of potentially game-changing technology breakthroughs 
such as very cheap solar PV and battery storage, cheap hydrogen, small modular 
nuclear reactors, cost-effective CCS technologies achieving 100% carbon capture, 
and low-cost DAC. 

• Quantify the requirements and costs of maintaining power system stability in 
power systems with very high shares of vRES. 

• Explore potential developments in trading behaviour and revenues between 
electricity markets at different time scales (e.g. day-ahead, intraday, balancing) 
and bilateral contracts. 
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• Faster algorithms are required for solving unit commitment and economic 

dispatch problems in power system models which, when all flexibility and integer 
constraints are included, can become very time-consuming to perform. This renders 
probabilistic analysis of power systems impractical to undertake without significant 
simplifications. Alternatively, better ways of identifying which weather conditions are 
most challenging for power system operation would reduce the need for time-
consuming simulations. 
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 Recommendations for policymakers  
• A diverse generation portfolio made up of RES as well as other low-carbon 

technologies such as nuclear, CCS and NETs is likely to be the most cost-
effective strategy for achieving a reliable, decarbonised European power sector 
in line with the climate ambitions set out in the Paris Agreement. The most cost-
effective strategy for individual countries will depend on their natural resources, 
geography, and existing portfolio of generation technologies. 
 

• Support development of NETs both in and outside the power sector to reduce 
the uncertainties and costs of their deployment, with the expectation that they may 
be needed sooner rather than later. In the power sector, BECCS could be deployed 
relatively quickly and at a lower cost than building a new BECCS plant by first 
converting existing modern coal plants to biomass, then equipping them with CCS. 
However, DAC would be very costly, and deploying other cost-effective NETs outside 
the power sector would reduce the reliance on DAC (and BECCS). 
 

• Reform current EOMs to allow markets to determine the cost-optimal level of 
power system reliability. Examples of such reforms are fostering price-responsive 
demand and allowing for high prices during times of scarcity by removing market 
price caps (including implicit ones). Refrain from implementing CRMs until their 
necessity has been demonstrated. 
 

• Continue to integrate electricity markets across Europe. Increasing transmission 
capacity and coupling national markets will reduce costs to consumers, enhance 
reliability, facilitate the integration of vRES and accelerate decarbonisation. 
 

• Take measures to increase intraday market liquidity by reducing entry barriers 
and integrating markets. This will support the integration of vRES and reduce 
balancing requirements. 
 

• Introduce a mechanism in the ETS to remunerate NETs for the negative 
emissions they produce. This would contribute to but not fully underpin the 
economic operation of NETs, and further support will likely be necessary. 
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 Samenvatting en conclusies 
Na tientallen jaren vertraging, gemiste kansen en toegenomen broeikasgasconcentraties in de 
atmosfeer, zijn de vereiste acties om de klimaatverandering aan te pakken steeds urgenter en 
ernstiger. Een recente analyse van het Intergovernmental Panel on Climate Change (IPCC) laat 
zien dat om een goede (67%) kans te hebben om de opwarming van de aarde te beperken tot 
1,5 ºC zoals vastgelegd in het Parijs-akkoord,  de totale wereldwijde CO2-uitstoot vanaf 2018 
de 420 Gt CO2 (netto) niet mag overschrijden (Rogelj et al., 2018). Als de uitstoot rond de 37 
Gt CO2 y-1 blijft, zoals in 2018, zal dit budget rond het jaar 2030 worden overschreden (Aidt, 
2019).  

Met een CO2-uitstoot van 13 Gt in 2018 (38% van de totale CO2-uitstoot voor de 
energieproductie) is de elektriciteitssector momenteel wereldwijd de grootste bron van 
broeikasgasemissies (IEA, 2019). De elektriciteitssector kan een cruciale rol spelen in het 
beperken van de opwarming van de aarde tot 1,5 °C dankzij de omvang van de uitstoot, de 
mogelijkheid om andere sectoren indirect koolstofvrij te maken, en connecties met ‘bioenergy 
with carbon capture and storage’ (BECCS) en ‘direct air carbon capture’ (DAC). Dit zijn twee 
negatieve emissietechnologieën (NET's) die zo worden genoemd omdat ze leiden tot een 
netto reductie van CO2 uit de atmosfeer. Vanwege de bovenstaande redenen is het koolstofvrij 
maken van de energiesector een topprioriteit in de strijd tegen de klimaatverandering. 

De Europese Unie (EU) is sinds lange tijd een wereldleider in het nemen van maatregelen tegen 
de klimaatverandering en het inzetten van hernieuwbare energiebronnen of ‘renewable 
energy sources’ (RES). In de tien jaar van 2008 tot 2018 is het geïnstalleerd windvermogen van 
windenergie in de EU verdrievoudigd van 60 naar 180 GW. Tegelijkertijd is het 
productievermogen van zonne-energie door fotovoltaïsche zonnepanelen (PV) meer dan 
vertienvoudigd van 10 naar 115 GW (EurObserv’ER, 2018, 2019; Eurostat, 2017b; SolarPower 
Europe, 2019). Dankzij deze groei in hernieuwbare energiebronnen en de dalende opwekking 
van steenkool, daalde de broeikasgasemissies van de opwekking van elektriciteit (en warmte) 
in de EU met 24% tussen 2008 en 2017 tot ongeveer 1 Gt y-1 (Eurostat, 2019a). Dit 
vertegenwoordigt echter nog steeds 25% van de totale uitstoot van broeikasgassen in de EU 
en meer actie is nodig om de ambitieuze klimaatdoelen in het Parijs-akkoord te bereiken. 
Gelukkig toont de recente (november 2019) motie van het Europees Parlement om een 
noodsituatie in het klimaat te verklaren, de inzet van Europa om de uitstoot nog verder te 
verminderen (European Parliament, 2019). 

Hoewel het duidelijk is dat de Europese elektriciteitssector koolstofvrij moet worden, is het 
niet duidelijk hoe dit moet gebeuren, aangezien drie brede strategieën gevolgd kunnen 
worden. Ten eerste hebben studies aangetoond dat kosteneffectieve en koolstofvrije 
productieportfolio's kunnen worden opgebouwd uit een diverse mix van technologieën 
zoals hernieuwbare energie, nucleaire en fossiele productie met CO2-afvang en -opslag of 
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‘carbon capture and storage’ (CCS) (Jenkins et al., 2018; Sepulveda et al., 2018). Door zich te 
houden aan een doelstelling van netto nul emissies tegen 2050 en een combinatie van RES, 
nucleaire en potentiële CCS te gebruiken volgt het Vereinigde Koningrijk een dergelijke 
technologie-diverse aanpak (UK Government, 2019). Een tweede strategie, die momenteel 
wordt gevolgd door landen als Denemarken en Zweden, is het streven naar een 
elektriciteitssysteem dat vrijwel uitsluitend gebaseerd is op RES (KEFM, 2018; Swedish 
Ministry of the Environment and Energy, 2019). Met een doelstelling van 80% RES-elektriciteit 
(minimum) tegen 2050 vastgesteld, volgt Duitsland ook een dergelijk overwegende 
hernieuwbare strategie (BMWi, 2018). Een derde strategie is het grootschalig gebruik van 
NET’s om de uitstoot van het voortdurende gebruik van fossiele brandstoffen in de elektriciteit 
of andere sectoren te compenseren, maar momenteel geen enkel land deze strategie 
nastreeft. Ongeacht de gevolgde strategie wordt de Europese elektriciteitssector in de 
komende decennia waarschijnlijk geconfronteerd met drie grote uitdagingen. Deze 
uitdagingen maken de overkoepelende doelstelling van een moderne elektriciteitssector – het 
leveren van duurzame, betrouwbare elektriciteit tegen de goedkoopste prijs – moeilijker om 
te bereiken. 

Ten eerste roept de toenemende capaciteit van niet stuurbare hernieuwbare 
energiebronnen of 'variable renewable energy sources' (vRES) zoals zon-PV en wind zorgen 
op over de betrouwbaarheid van het elektriciteitssysteem. Voor koolstofvrije strategieën die 
gericht zijn op de grootschalige inzet van RES, zal dit een uitdaging zijn. Gezien de dalende 
kosten van wind en PV is de rol van vRES in technologiediverse portfolio’s met minimale 
maatschappelijke kosten waarschijnlijk ook groot. Daarmee zullen ook deze portfolio’s 
uitdagingen voor de betrouwbaarheid kennen. Ten tweede zien we dat de voorwaarden voor 
het koolstofvrijmaken van de elektriciteitssector in de loop van de tijd steeds strenger worden, 
en netto-nul emissies tegen 2050 misschien niet voldoende zijn om de klimaatdoelstellingen 
te halen. De inzet van NET's wordt dus misschien onvermijdelijk, en het is onduidelijk wat de 
effecten van de grootschalige inzet van NET's op de Europese elektriciteitssector kunnen 
zijn. Ten slotte zijn er zorgen of een geliberaliseerde Europese elektriciteitsmarkt voldoende 
prikkels creëert om investeringen in koolstofarme opwekkingscapaciteit te stimuleren, 
klimaatdoelstellingen te bereiken, en tegelijkertijd de leveringszekerheid te waarborgen. 

Hoofdstuk 2 onderzoekt hoeverre de ruimtelijke inzet van wind- en zon-PV vermogen in 
Europa kan gebruikt worden om de geaggregeerde elektriciteitsvraag- en vRES-
opwekkingsprofielen beter op elkaar te laten aansluiten. Daardoor kunnen wind- end zonne-
energie mogelijk beter geïntegreerd worden in het Europese elektriciteitssysteem. Een 
algoritme is ontwikkeld om de hoeveelheid en verdeling van zon-PV en wind vermogen over 
Europa te optimaliseren door het gebruik van een gedetailleerd (50 km x 50 km) ruimtelijk 
raster verbonden met data over het landgebruik en weeromstandigheden zoals windsnelheid 
en zoninstraling. Het algoritme wordt uitgevoerd met 36 klimaatjaren om rekening te houden 
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met variabele weersomstandigheden. De inzet van wind- en zon-PV vermogen is begrenst 
zodat ze alleen in geschikte gebieden kan worden geïnstalleerd. 

Hoofdstuk 3 kijkt naar de rol dat de intraday en balanceringsmarkt kunnen spelen in een zeer 
hernieuwbaar Europees elektriciteitssysteem met toenemend wind- en zon-PV vermogen. Dit 
wordt onderzocht door het ontwikkelen van een nieuwe methode voor het maken van 
gemodelleerde day-ahead voorspellingen voor elektriciteitsvraag en productie uit wind- en 
zon-PV, met foutverdelingen die consistent zijn met historische voorspellingen. Deze methode 
wordt vervolgens gedemonstreerd door simulaties uit te voeren voor het Europese 
elektriciteitssysteem waarbij de penetratie (het aandeel in de totale elektriciteitsproductie) van 
wind- end zon-PV toeneemt van 15% in 2017 tot 50% in 2040. 

Hoofdstuk 4, getiteld "Is een 100% hernieuwbaar Europees elektriciteitssysteem haalbaar 
tegen 2050?" onderzoekt deze vraag door het modeleren van verschillende scenario's voor 
een volledig hernieuwbaar Europees elektriciteitssysteem in 2050. Dit hoofdstuk test of deze 
100% RES portfolio's even betrouwbaar kunnen zijn als het huidige elektriciteitssysteem, 
berekent de totale kosten daarvan, en kijkt of de noodzakelijke inzet van RES-technologieën 
tegen het jaar 2050 haalbaar is. Deze analyse is gebaseerd op gedetailleerd marktsimulaties 
uitgevoerd met het PLEXOS marktmodel. 

Hoofdstuk 5 overweegt twee scenario's voor een toekomstig koolstofarm elektriciteitssysteem 
in Centraal-West-Europa (CWE). Het ene is gericht op netto-nul CO2-emissies van het 
elektriciteitssysteem in 2040, consistent met het beperken van de opwarming van de aarde 
tot 2 °C. Het andere is gericht op het ambitieuzere doel om de klimaatopwarming beperkt te 
houden tot 1,5 °C door het grootschalig gebruik van negatieve emissies. Aan de hand van het 
PLEXOS model worden in dit hoofdstuk drie hoofdvragen onderzocht: (i) hoe 
elektriciteitsopwekkingsportfolio's zich zouden moeten ontwikkelen om betrouwbare 
elektriciteit te leveren aan consumenten tegen de laagste kosten, (ii) hoeverre deze 
goedkoopste portfolio's ondersteund kunnen worden door marktinkomsten onder 
verschillende archetypische marktontwerpen, en (iii) hoe NET's de elektriciteitsmarkt kunnen 
beïnvloeden. 

Op basis van de inzichten in de kernhoofdstukken vat hoofdstuk 6 de belangrijkste 
bevindingen van dit proefschrift samen, bespreekt deze bevindingen in de context van het 
bredere energie- en klimaatdebat, en biedt enkele belangrijke aanbevelingen voor 
beleidsmakers en voor verder onderzoek. 

In het licht van deze uitdagingen is de kernonderzoeksvraag in dit proefschrift: 

Wat zijn de gevolgen van verschillende strategieën in het Europees elektriciteitssysteem 
voor leveringszekerheid, het behalen van klimaatdoelstellingen, en economische 
levensvatbaarheid? 
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Bij het behandelen van deze bredere vraag richt dit proefschrift zich meer in detail op de 
volgende deelvragen: 

1. In hoeverre kunnen de mix en ruimtelijke verdeling van zon-PV en wind vermogen 
gebruikt worden om ze te integreren in het elektriciteitssysteem? 

2. Wat zijn de mogelijke gevolgen van het streven naar een 100% hernieuwbaar 
elektriciteitssysteem? 

3. Wat zijn de mogelijke gevolgen van het vertrouwen op BECCS en DAC in het 
elektriciteitssysteem om de klimaatopwarming beperkt te houden tot van 1,5 °C? 

4. Welke elementen moeten aanwezig zijn in toekomstige marktontwerpen om het 
energietrilemma (een betrouwbaar, betaalbaar, en koolstofarm elektriciteitssysteem) 
aan te pakken? 

Deze onderzoeksvragen zijn behandeld in vier hoofdstukken (zie tabel 1-2).  

Tabel 1-2 | Correspondentie tussen de hoofdstukken en onderzoeksvragen van dit proefschrift 

Hoofdstuk Onderwerp 
Deelvragen 

SQ1 SQ2 SQ3 SQ4 

2 
Gevolgen van de mix en ruimtelijke verdeling van wind- 
en zon-PV energie voor de resterende vraag 

X X   

3 
Gevolgen van hoge vRES-penetratie in het Europese 
elektriciteitssysteem voor de intraday- en 
balanceringsmarkten 

 X  X 

4 
Gevolgen van een 100% hernieuwbaar 
elektriciteitssysteem 

X X   

5 
Gevolgen van de klimaatopwarming beperkt te houden 
tot 1,5 °C met BECCS en DAC onder verschillende 
marktontwerpen 

  X X 

 

De belangrijkste bevindingen en conclusies van dit proefschrift zijn hieronder per deelvraag 
gepresenteerd. 

SQ1: In hoeverre kunnen de mix en ruimtelijke verdeling van zon-PV en 
wind vermogen gebruikt worden om ze te integreren in het 
elektriciteitssysteem? 

• Het optimaliseren van de ruimtelijke distributie van vRES is waarschijnlijk geen 
effectieve strategie voor het verminderen van de benodigde back-up 
vermogen. Hoofdstuk 2 laat zien dat, zelfs in het optimistische geval van 
ongelimiteerde transmissie binnen Europa, het optimaliseren van de distributie 
van vRES om de resterende vraag te minimaliseren de piek van de resterende vraag 
met slechts 2% vermindert, in vergelijking met een verdeling op basis van de hoogste 
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capaciteitsfactoren.  Andere strategieën voor het omgaan met piekvraaguren zoals 
vraagrespons zijn waarschijnlijk kosteneffectiever. 

• De mix van vRES- technologieën heeft een grote invloed op hoe eenvoudig ze 
kunnen worden geïntegreerd, waarbij een groter aandeel wind gunstiger 
is. Alleen rekening houdend met de belasting, en exclusief kosten, opslag en 
transmissiebeperkingen, zou de optimale inzet van vRES in Europa een 
energiepenetratie zijn van 82% netto (89% bruto), met een capaciteitsmix van ongeveer 
25% zonne-energie PV en 75% wind. Van het totale windvermogen is 65% offshore. Op 
basis van de resultaten uit hoofdstuk 2, leiden deze aandelen tot de laagste jaarlijkse 
totale (positieve en negatieve) restvraag met 8% van de wind- en zonopwekking 
ingekort en 18% van de vraag onvervuld. 

• De optimale mix en ruimtelijke verdeling van vRES hangen echter sterker af van 
de investeringskosten van vRES en het transmissienet. Het optimalisatiealgoritme 
dat in hoofdstuk 2 wordt gebruikt om de resterende vraag te minimaliseren, resulteert 
in een vRES-penetratie van 82% (netto), met een portfolio gedomineerd door offshore 
wind vanwege zijn gunstiger opwekprofiel. Dit algoritme houdt echter alleen rekening 
met de match tussen geaggregeerde belasting en generatie, exclusief de kosten 
van vRES, transportcapaciteit en het portfolio voor resterende opwek. Wanneer deze 
factoren in hoofdstuk 3 opgenomen zijn, daalt de optimale vRESpenetratie tot 
ongeveer 50%, met een capaciteitsmix van een derde wind tot twee derde zon-PV. Het 
opnemen van de kosten van vRES en transportcapaciteit in hoofdstuk 3 resulteert ook 
in een verschuiving van vRES-implementatie naar locaties met hogere 
capaciteitsfactoren, en naar locaties die dichter bij vraagcentra liggen, waardoor een 
gelijkmatigere verdeling van vRES- capaciteit over Europa wordt verkregen.   

SQ2: Wat zijn de mogelijke gevolgen van het streven naar een 100% 
hernieuwbaar elektriciteitssysteem? 

• De bevindingen uit hoofdstuk 4 laten zien dat een Europees elektriciteitssysteem 
op basis van 100% RES tegen 2050 kan worden gerealiseerd met hetzelfde 
betrouwbaarheidsniveau als het huidig systeem. Maar, bij afwezigheid van 
grootschalige seizoensopslag (bijv. met waterstof), word deze strategie in de komende 
jaren van veel ontwikkelingen afhankelijk: 

 
➢ De totale opwekkingscapaciteit zou aanzienlijk moeten toenemen, mogelijk 

tot ten minste 1,8 TW in vergelijking met de 1 TW geïnstalleerd in 2015. Dit 
vertegenwoordigt een toename van 80%, vergeleken met een veronderstelde 
toename van de elektriciteitsvraag tussen 2015 en 2050 met 40% (1300 TWh) 
vanwege warmtepompen (heat pumps, HP's) en elektrische auto's (electric vehicles, 
EV's).  
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➢ De landgrensoverschrijdende transportcapaciteit moet toenemen, mogelijk 

met 140 GW tegen 2050 in vergelijking met de huidige (2015) capaciteit van 60 
GW. Met meer grensoverschrijdende transportcapaciteit worden Europese landen 
afhankelijker op hun buurlanden voor de leveringszekerheid. 

 
➢ De jaarlijkse groei van wind- en zon-PV capaciteit moet respectievelijk tot 

7,5 GW y-1 en 15 GW y-1 bedragen tegen 2050. Tegelijkertijd moet de groei 
van stuurbare duurzame opwekkingscapaciteit ten minste 18 GW y-1 zijn tot 
2050 om elektriciteit te leveren tijdens perioden van lage vRES-opwekking en 
piekvraag momenten. In een 100% hernieuwbaar systeem moet dit afkomstig zijn 
van concentrated solar power (CSP), bio-energie (vaste biomassa en biogas), 
geothermie, waterkracht of opslag. Gezien de huidige implementatiesnelheden 
voor deze technologieën lager dan enkele GW y-1 zijn, vormt dit een belangrijke 
hindernis voor het realiseren van een 100% hernieuwbaar elektriciteitssysteem 
tegen 2050.        

 
➢ Grootschalige mobilisatie van Europa's bio-energiebronnen van 8,5 tot 

13 EJ y-1 in vergelijking met een 2015 gebruikt tot 1,9 EJ y -1.  
 

• Een 100% hernieuwbaar elektriciteitssysteem zal duurder zijn dan een meer 
technologiedivers systeem inclusief andere koolstofarme (maar niet 
hernieuwbare) technologieën zoals kernenergie of CCS. Dit wordt aangetoond in 
hoofdstuk 4 waar een scenario waarin nucleaire en CCS-technologieën zijn toegestaan, 
leidt tot totale jaarlijkse kosten in 2050 die 22% lager zijn dan het goedkoopst 100% 
hernieuwbaar scenario. Bovendien nemen de kosten van een 100% hernieuwbaar 
elektriciteitssysteem relatief meer toe met een hogere vraag door de uitputting van de 
meest gunstige inzetlocaties voor zond en wind, en de noodzaak om duurdere 
biomassabronnen te gebruiken. 

• De vraagrespons zal een belangrijke rol hebben om de haalbaarheid van een 
100% hernieuwbaar elektriciteitssysteem te faciliteren. Een flexibele vraag zal 
belangrijk zijn om het toenemende aantal van HP's en EV's in 2050 te integreren en de 
benodigde stuurbare productiecapaciteit zo laag mogelijk te houden.  

• Hernieuwbaar energiebronnen kunnen en doel van netto-nul emissies in de 
energiesector leveren, maar zelfs een 100% hernieuwbaar systeem kan NET's 
nodig hebben om de klimaatopwarming beperkt te houden tot 1,5 °C. Alle de 
100% hernieuwbare gemodelleerde portfolio's in hoofdstuk 4 kunnen netto-nul CO2-
emissies bereiken tegen 2050. Echter volgens de meest recente IPCC-scenario’s 
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(zie figuur 1-1) kunnen negatieve emissies al nodig zijn tussen 2030 en 2040 om de 
klimaatopwarming beperkt te houden tot 1,5 °C.  

SQ3: Wat zijn de mogelijke gevolgen van het vertrouwen alleen op 
BECCS en DAC in het elektriciteitssysteem om de klimaatopwarming 
beperkt te houden tot van 1,5 °C? 

• Zelfs met grootschalige inzet van wind- en zonenergie, kan vroegere inzet van 
BECCS een kosteneffectieve strategie zijn om de klimaatopwarming beperkt te 
houden tot 1,5 °C. Hoofdstuk 5 laat zien dat in de goedkoopste scenario's die 
consistent zijn met een opwarmgrens van 2 ºC er vanaf 2030 sprake is van circa 2 GW 
BECCS capaciteit in CWE. In ambitieuzere 1,5 ºC scenario's wordt BECCS echter al in het 
begin van de jaren ‘20 ingezet door bestaande kolencentrales die dan biomassa 
verstoken te combineren met CCS. Tegen 2040 is ongeveer 25 GW BECCS geïnstalleerd 
in CWE die -250 Mt CO2 y-1 negatieve emissies leveren. Deze grootschalige inzet van 
BECCS is afhankelijk van significante (~3 EJ y -1) duurzame biomassa om echte 
klimaatvoordelen op te leveren. Dit betekent dat het gebruik van biomassa zo weinig 
mogelijk schadelijke effecten heeft op de bodemkwaliteit en de biodiversiteit, en 
zonder een zo lange koolstofschuld te veroorzaken dat het gebruik van biomassa 
zinloos wordt op op een tijdschaal die relevant is voor het klimaatbeleid. 

• BECCS kan tot meer basislastproductie, minder behoefte aan andere 
energiebronnen, en neerwaartse druk op de elektriciteitsprijs leiden. BECCS is het 
meest kosteneffectief wanneer het wordt gebruikt met een hoge bedrijfstijd. 
Hoofdstuk 5 laat zien dat BECCS tot 15 TWh y-1 (1% van de elektriciteitsvraag) in CWE 
genereert tegen 2040 in de 2 ºC scenario's, en circa 190 TWh y-1 (15% van de 
elektriciteitsvraag) in de 1,5 ºC scenario's. Deze BECCS-capaciteit verplaatst een deel 
van de opwekkingscapaciteit voor het verzekeren van de basislast (e.g. nucleaire 
vermogen) in kostenoptimale portfolio's. Als BECCS-eenheden geld krijgen voor zijn 
negatieve emissies, en de CO2-prijs hoog genoeg is, kan grootschalige inzet van BECCS 
neerwaartse druk op de elektriciteitsprijzen opvoeren en generatie van wind- en 
zonenergie ook verplaatsen. 

• Basislastvraag zou aanzienlijk toenemen als gevolg van DAC. In tegenstelling tot 
BECCS, dat elektriciteit opwekt, verbruikt DAC elektriciteit. Vanwege de hoge 
kapitaalkosten heeft DAC zoveel mogelijk draaiuren nodig om kosteneffectief te 
zijn. Dit betekent dat de extra elektriciteitsvraag die aan het systeem wordt opgelegd 
door DAC, basislastvraag is. In plaats van zonne- en windenergie, word dit basislast 
elektriciteitsvraag goedkoper geleverd door basislastproductie technologieën zoals 
BECCS of (bestaande) nucleaire capaciteit. 
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• Mechanismen zijn nodig om NET's te vergoeden voor de productie van negatieve 
emissies. De analyse in hoofdstuk 5 neemt aan dat NET's geld verdienen voor de 
geleverde negatieve emissies. Dit kan uitgevoerd worden door een directe 
overheidssubsidie aan NET's, of een nieuw mechanisme toe te voegen aan het 
Europees systeem voor emissiehandel waardoor NET's uitstootrechten kunnen 
genereren en verkopen. Zonder de ondersteuning van een dergelijk mechanisme, blijft 
de inzet van NET's onwaarschijnlijk. 

SQ4: Welke elementen moeten aanwezig zijn in toekomstige 
marktontwerpen om het energietrilemma aan te pakken? 

• Liquide intradaymarkten en grensoverschrijdende handel zorgen voor het 
integreren van vRES, het verminderen van de behoefte aan stuurbare 
opwekkingscapaciteit en het verminderen van balanceringskosten voor 
transmissienetbeheerders. De Europese intradaymarkten zijn aan het groeien. 
Simulaties uitgevoerd in hoofdstuk 3 suggereren dat deze groei zal doorgaan met een 
toenemende penetratie van zonne- en windenergie. Als de penetratie van vRES in 
Europa tussen 2017 en 2040 van 15% tot 50% toeneemt, terwijl de nauwkeurigheid van 
day-ahead voorspellingen gelijk blijft aan de huidige nauwkeurigheid, stijgen de 
handelsvolumes op intradaymarkten tegen 2040 met ongeveer 60 TWh y-1 

(~160%). Afhankelijk van de hoeveelheid beschikbare grensoverschrijdende 
transportcapaciteit kan echter tussen 40% (zonder grensoverschrijdende handel) en 
75% (ongelimiteerde transmissie binnen Europa) van de day-ahead 
voorspellingsfouten opgelost worden door handel op intradaymarkten. Zonder liquide 
handel moeten deze voorspellingsfouten opgelost worden door 
transmissienetbeheerders op balanceringsmarkten. 

• Onbalansnetting en de gemeenschappelijke inkoop van reserves kunnen de 
behoefte aan en kosten voor balancering verminderen. Simulaties uitgevoerd 
in hoofdstuk 3 suggereren dat balanceringseisen op het huidige niveau blijven, totdat 
het aandeel van zon-PV en windenergie circa 25% van totale elektriciteitsproductie 
overtreft. Een hoger aandeel van zon-PV en windenergie leidt echter tot toenemende 
balanceringseisen. Met 50% zonne- en windenergie (rond het jaar 2040 in het 
gesimuleerde scenario), kunnen onbalansvolumen toenemen met circa 130% en de 
behoefte aan balanceringscapaciteit toenemen met 110% (in vergelijking met 2017), in 
geval van geen onbalansverrekening en een afzonderlijke reserve per land. Met 
onbalansnetting en een gemeenschappelijke reserve, dalen die balanceringsenergie- 
en capaciteitseisen echter met respectievelijk 19% en 32%. 

• Aangepaste 'energy-only' markten (EOM's) met prijsgevoelige vraag en zonder 
prijslimieten helpen bij het waarborgen van leveringszekerheid, lagere 
systeemkosten en efficiënte elektriciteitsprijzen. Hoofdstukken 4 en 5 laten zien 
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dat een flexibele en prijsgevoelige vraag een belangrijke rol kan spelen in de 
ondersteuning van een kosteneffectief en betrouwbaar elektriciteitssysteem. Dit komt 
door minder behoefte aan piekproductiecapaciteit, en de mogelijkheid om vraag te 
verschuiven of af te schakelen tijdens momenten van schaarste. 

• Capaciteitsmechanismen geven mogelijk onvoldoende prikkels voor 
marktpartijen om in regelbare capaciteit te investeren. Hoofdstuk 5 laat zien dat 
zelfs in de aanwezigheid van een capaciteitsmarkt maar enkele technologieën hun 
investeringskosten op de lange termijn kunnen terugverdienen. Zelfs zon-PV-panelen 
en windturbines verdienen hun investeringskosten in de meeste gevallen niet 
terug. Terwijl capaciteitsmarkten extra inkomsten leveren aan mid-merit en 
piekeenheden (en tot winstgevendheid in bepaalde jaren leiden) is winstgevendheid 
op de lange termijn niet gegarandeerd. Bovendien leveren volatiele capaciteitsprijzen 
(gemiddelde waarde van 70 € MW-1 maar met een bereik van 0 € MW-1 tot 250 € MW-1) 
niet de stabiele inkomsten op die marktpartijen nodig hebben om te investeren. 

Op basis van de bevindingen in dit proefschrift en de gedetailleerde antwoorden op de 
deelvragen, wordt de kernonderzoeksvraag bondig beantwoord: 

Een strategie gericht op een technologiedivers opwekportfolio zou: 

• net zo betrouwbaar zijn als het huidige systeem; 
• netto-nul of zelfs netto-negatieve CO2 -emissies kunnen leveren (afhankelijk van de 

inzet van NET's); 
• minder kosten dan een 100% RES of NET-gedomineerde strategie; 
• de ontwikkeling van CCS voor inzet met aardgas en biomassa vereisen, 
• van het in bedrijf houden van bestaande kolencentrales profiteren, zodat deze met 

biomassa gestookt en naar omgezet CCS kunnen worden; 
• van het doordraaien van bestaande kerncentrales profiteren, met daarnaast de 

mogelijkheid om nieuwe nucleaire capaciteit te bouwen; en 
• markthervormingen nodig hebben om NET's te vergoeden voor negatieve emissies 

(indien NET's ingezet zouden worden). 

Een strategie gericht op een elektriciteitssysteem op basis van 100% RES zou: 

• net zo betrouwbaar zijn als het huidige systeem, mits voldoende stuurbare capaciteit 
beschikbaar is; 

• netto-nul CO2-emissies leveren; 
• last hebben van 'climate lock-in', in het geval dat netto-negatieve CO2-emissies van de 

elektriciteitssector vereist zijn (die zonder CCS niet met 100% RES elektriciteitssector 
bereikt kunnen worden); 

• duurder zijn dan een meer divers portfolio met andere koolstofarme technologieën 
(bijv. nucleair, CCS, NET's); 
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• grootschalige investeringen in het Europese transportnet vereisen; 
• aanzienlijk afhankelijk zijn van biomassa, bij afwezigheid van kosteneffectieve 

seizoensopslag; en 
• een groot land- en zeegebied vereisen voor de inzet van zon- en windcapaciteit. 

Een strategie gericht op grootschalige inzet van NET's in het elektriciteitssysteem zou: 

• veel negatieve koolstofemissies opleveren die de uitstoot van CO2 in andere sectoren 
of landen kunnen compenseren; 

• tot zeer hoge kosten leiden, afhankelijk van de hoeveelheid en kosten van ingezette 
DAC; 

• de (verdere) ontwikkeling van CCS vereisen om de inzet van BECCS en DAC mogelijk 
te maken; 

• aanzienlijk afhankelijk zijn van biomassa voor BECCS;  
• markthervormingen nodig hebben om NET's te vergoeden voor negatieve emissies; en 
• aanzienlijke opslag van CO2 vereisen. 

Alle drie de strategieën zouden: 

• van markthervormingen profiteren die marktprijsplafonds (ook impliciete) elimineren 
en een prijsgevoeligere vraag ontwikkelen; 

• van liquide intradaymarkten profiteren om de integratie van vRES te ondersteunen, 
balanceringseisen en balanceringskosten te verminderen; 

• van de Europese marktintegratie profiteren zodat productiecapaciteit tussen landen 
gedeeld kan worden, waardoor balanceringseisen en totale kosten worden verminderd; 
en 

• afhankelijk zijn van de maatschappelijke aanvaarding van de doorgevoerde 
technologieën en markthervormingen. 

 

Gezien de gevolgen van alle drie de strategieën, lijkt het erop dat een 
meer technologiediverse strategie de beste kans heeft om elektriciteit te leveren aan 
Europese consumenten tegen de laagst mogelijke kosten en op een manier die consistent is 
met de ambitieuze klimaatdoelen in het Parijs-akkoord. 
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Footnotes to Chapter 6 
1 The likelihood is actually the percentile of the transient climate response to cumulative emissions of carbon, assessed 

by the IPCC Fifth Assessment Report to fall likely between 0.8–2.5°C/1000 PgC, considering a normal probability 
distribution (Rogelj et al., 2018). 

2Aside from direct emissions, all generation technologies also result in indirect GHG emissions including supply-chain 
emissions from biomass production, or emissions from the production of PV panels. Preliminary calculations performed 
as part of Chapter 4 (see Appendix C) show that these indirect emissions could exceed 200 Mt CO2 y-1 for a 100% RES 
European power system which would also need to be offset. 

3 Prices rarely (if ever) reach the level of the price cap in Europe’s day-ahead markets. However, this may be due to implicit 
price caps present in the market. For example, if imbalance prices are too low, energy retailers will prefer to pay the 
imbalance price penalty rather than paying a higher price in the day-ahead market (EC, 2016a). Also, emergency 
interventions by TSOs in times of scarcity such as voltage reductions and emergency load shedding can suppress price 
signals (ibid.). Thus, these implicit price caps must also be removed as part of EOM reform. 

4 For example, in 2016, 9 countries (out of 28) experienced less than one hour of average total supply interruption 
(including mechanical failures in distribution and transmission networks, thus not just capacity shortfalls), 11 countries 
experienced fewer than two hours, and 7 countries experienced fewer than four hours (CEER, 2018). 

5 Thus, the term price-responsive is used to mean not only that customers adjust their demand in response to real-time 
prices, but also that demand is price-proactive. In fact, it would likely be more efficient to account for consumer price 
preferences earlier in the scheduling process (e.g. in the day-ahead market) rather than at real time in balancing 
markets, as this would give markets more time to find cheaper dispatch solutions which already account for consumer 
price preferences, rather than drawing on load resources in real-time at potentially higher cost. 

6 In most European countries, the energy cost represents less than 30% of the final electricity bill paid by retail customers. 
The majority comes from taxes and levies (40% on average, but up to 70% in Denmark) and fixed grid charges (typically 
30%) (EC, 2019a). Thus, dynamic electricity pricing may only have a small effect on final electricity bills, and 
governments could support low-income earners with tax rebates.  

7 The carbon pay-back period is the period between initial harvest and the point in time were the overall carbon balance 
equals the carbon storage before initial harvest, taking into account carbon debt and avoided emissions from fossil 
fuels (Jonker et al., 2014). 

8 CCS technology also underpins blue hydrogen. This thesis considers that neither blue nor green hydrogen are likely to 
be cost-effective technologies for the power sector (see section 6.4.2). However, if the political decision is made to 
follow a hydrogen pathway in the power sector anyway, or if blue hydrogen is developed for industry, CCS would also 
be a necessary technology to kick-start the hydrogen economy (van Cappellen et al., 2018) 

9 Just giving some Dutch examples, the capacity density of the Magnum natural gas combined cycle plant is 
approximately 9000 MW km-2, compared with ~9 MW km-2 for the Gemini offshore wind park, ~50 MW km-2 for the 
Noordoostpolder onshore wind park, and ~100 MW km-2 for the Delftzijl solar PV park. 

10 This cost is similar to other estimates from literature e.g. (van Cappellen et al., 2018) (Bruce et al., 2018).   
11 This means that for every MWh of electricity produced with vRES (or avoided curtailment) used for green hydrogen 

production and seasonal storage, only 0.5 MWh of electricity can be returned to the grid. 
12 50 GW of cross-border transmission is already expected to come online in CWE and between neighbouring countries 

by 2040. The reduction in curtailment with transmission is evident from this thesis. In Chapter 3, curtailment in Europe 
with 50% vRES penetration falls from 200 TWh y-1 without transmission to 40 TWh y-1 in a copper-plate scenario. In 
Chapter 4, there is no vRES curtailment due to large-scale transmission (as well as extensive use of biomass and CSP). 
In Chapter 5, vRES curtailment in CWE reaches only 50 TWh in 2040 (4% of demand) even with 80% vRES penetration.  

13 Electrolysis plants could also conclude PPAs with solar PV and wind generators. However, the price would have to 
account not only for the LCOE, but also for the fact that solar and wind providers would need to buy electricity from 
the market when not producing themselves.  

14 CSIRO give blue hydrogen cost estimates for Australia of 11.9 to 14.5 € GJ -1 with base case (2018) assumptions, and 
9.9 to 12.1 € GJ -1 with best case assumptions (i.e. lower CAPEX, higher operating hours, higher efficiency, economies 
of scale) (Bruce et al., 2018). For comparison, their green hydrogen cost estimates are 25.1 to 30.7 € GJ -1 (base case) 
and 13.1 to 16.3 € GJ -1 (best case) for alkaline electrolysis, and 31.9 to 39 € GJ -1 (base case) and 12 to 14.6 € GJ -1 (best 
case) for PEM electrolysis. 

15 Power system stability concerns several aspects of power system operation, typically classified as rotor angle stability, 
frequency stability, and voltage stability (Kundur, 2012). Rotor angle stability is the ability of the synchronous machines 
in the power system to remain in synchronism during normal operation and in response to a disturbance. Frequency 
stability is the ability of the power system to maintain system frequency within acceptable limits after a disturbance, 
and voltage stability is the ability of the power system to maintain voltages at acceptable levels at all buses under 
nominal conditions and in response to disturbances. 
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 Appendices to Chapter 2 
Symbols 
 
𝛽𝛽 Plane tilt angle (°) 
𝜌𝜌 Surface albedo (-) 
𝜃𝜃 Solar incidence angle (°) 
𝜙𝜙 Solar zenith angle (°) 
𝐴𝐴 Left-hand-side constraint 

coefficient matrix; Anisotropy 
index (-) 

𝐵𝐵 Right-hand-side constraint value 
matrix; 

𝑐𝑐 Installed generation capacity 
(MW) 

𝐶𝐶 Vector containing values of 𝑐𝑐 
𝐶𝐶𝐶𝐶 Capacity credit (%) 
𝑑𝑑 Electricity demand (MW, MWh 

h¯¹) 
𝐷𝐷 Wind turbine rotor diameter (m) 
𝑓𝑓 Capacity factor (-) 
𝐹𝐹 Matrix containing values of 𝑓𝑓  (-) 
𝑔𝑔 Generation (MW, MWh h¯¹) 
𝐺𝐺 Irradiance (W m⁻²) 
𝐺𝐺𝑠𝑠𝑠𝑠 Solar constant (1366.1 W m⁻²) 
𝐻𝐻 Wind turbine hub height (m) 
𝑘𝑘 Sky clearness index (-) 
𝑁𝑁 Day of the year 
𝑃𝑃𝑃𝑃 Performance ratio (-) 
𝑟𝑟 Residual demand (MW, MWh h¯¹) 
𝑅𝑅 Total residual demand (MWh) 
𝑅𝑅𝑏𝑏 Geometric beam radiation tilt 

factor (-) 
𝑇𝑇 Temperature (°C); number of 

generation technologies 
 
 
 
 
 
 
 
 
 
 

Subscripts 
 
𝑏𝑏 beam radiation component 
𝑐𝑐 country 
𝐶𝐶𝐶𝐶𝐶𝐶 Corine land cover class 
𝑑𝑑 diffuse radiation component 
𝑒𝑒 equality 
𝑔𝑔 global radiation 
ℎ horizontal plane 
𝑖𝑖 vRES generation technology 
𝑖𝑖𝑖𝑖𝑖𝑖 inequality 
𝐿𝐿𝐿𝐿 long-term 
𝑛𝑛 plane normal to the sun 
𝑜𝑜 extraterrestrial radiation 
𝑆𝑆𝑆𝑆 short-term 
𝑡𝑡 time step, tilted plane 
𝑥𝑥 grid cell 
𝑦𝑦 year 
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Abbreviations 
 
BEV Battery electric vehicle 
CCS Carbon capture and storage 
CDDA Common Database on 

Designated Areas 
CLC Corine Land Cover 
COP Coefficient of performance 
CSP Concentrating solar power 
CV Coefficient of variation 
ECF European Climate Foundation 
ECMWF European Centre for Medium-

Range Weather Forecasts 
EEA European Environment Agency 
EEZ Exclusive Economic Zone 
ERA-I European Reanalysis Interim Dataset 
EU European Union 
EV Electric vehicle 
ENTSO-E European Network of 

Transmission System Operators 
for Electricity 

 

 
 
 
FLH Full load operating hours 
HDH Heating degree hour 
HP Heat pump 
IEC International Electrotechnical 

Commission 
IPCC Intergovernmental Panel on 

Climate Change 
JRC Joint Research   Centre 
LLSQ Linear least squares 
OECD Organisation for Economic Co-

operation and Development 
PHEV Plugin hybrid electric vehicle 
PSM Power system model 
PR Performance ratio 
PV Photovoltaic 
SSRD Downward Surface Solar Radiation 
STC Standard test conditions 
RES Renewable energy source 
vRES Variable renewable energy source 
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A.1 Capacity factor profiles 
Several steps are required to transform the wind speed and solar radiation data into 
generation and capacity factor profiles. These are explained in detail in the following sections. 

Onshore & Offshore Wind 

For determining wind farm production the most relevant data provided by the ERA-I dataset 
are the 3-hourly east-west (𝑢𝑢) and north-south (𝑣𝑣) surface (10 m) wind speed components 
which are used to calculate the effective horizontal wind speed (𝑤𝑤) using Eq. (A-1). 

𝑤𝑤 = √𝑢𝑢2 + 𝑣𝑣2 
 

(A-1) 

To estimate wind farm generation profiles, wind turbine hub heights need to be assumed for 
both onshore and offshore wind. For onshore wind in Europe there is a clear trend towards 
installing taller towers for two main reasons i) wind speed increases more rapidly with height 
in high-surface roughness onshore locations than in offshore locations with smooth water 
surfaces, and ii) taller towers allow larger diameter rotors to be employed which can capture 
more energy at lower wind speeds (Fraunhofer IWES, 2016; Lacal-Arántegui & Serrano 
González, 2015). For example, the average rotor diameter of newly installed onshore wind 
turbines in Germany increased from 58 m in 2000 up to 109 m in 2016 (88%), while the mean 
hub height of new turbines increased from 71 m to 128 m (80%) over the same period 
(Fraunhofer IWES, 2016). Increases in offshore hub heights have been more modest rising from 
64 m in 2000 to 89 m (40%) in 2013, with rotor diameter increasing from 75 m to 117 m (56%) 
over the same period. Ultimately the choice of wind turbine height, blade length and generator 
type is an economic decision based on trade-offs between faster wind speeds at higher 
elevations, greater blade swept area, foundation and structural costs, however a detailed 
optimisation of all these factors is beyond the scope of this study. Instead, different hub 
heights are assumed for onshore and offshore wind. For onshore wind sites a 150 m hub 
height is assumed (17% higher than the average for turbines installed in 2015) in the 
expectation that onshore hub heights will continue to increase as investment costs decrease 
over time, shifting the optimum towards higher hub heights1. For onshore coastal sites (coastal 
meaning grid cells containing both sea and land) a lower hub height of 100 m is assumed 
given that these locations tend to have higher wind speeds and high yields can be achieved 
even with lower hub heights (Fraunhofer IWES, 2016).  For offshore wind sites a lower hub 
height of 100 m is assumed (12% higher than the 2013 average), in the expectation that 
offshore wind hub heights will not increase substantially as the economic penalties of 
increased foundation loads and tower cost will are more likely to outweigh any small energy 
gains from a much increased hub height, since the increase of wind speed with height is 
generally more pronounced in low-wind locations with high surface roughness (Lacal-
Arántegui & Serrano González, 2015).  

For both turbine types the horizontal wind speed at 10 m is extrapolated to hub height 
assuming a logarithmic vertical wind speed profile using Eq. (A-2) where 𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟 is the horizontal 
wind speed (m s⁻¹) at known reference height 𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟 (m), 𝐻𝐻 is the height to which wind speed is 
extrapolated (m) and 𝑧𝑧0 is the surface roughness length (m) (Manwell et al., 2009).  
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𝑤𝑤 =
ln (𝐻𝐻

𝑧𝑧0
)

ln (𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟
𝑧𝑧0

)
𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟 

 
(A-2) 

In this study the roughness length for all onshore locations is assumed to be a constant value 
of 0.03 m, typical for natural grasslands and agricultural pastures (Troen & Lundtang Petersen, 
1989). As onshore wind suitability is largely restricted to these land types, this is considered a 
reasonable simplification. For offshore locations a roughness length of 0.0001 m is assumed 
corresponding to open water (Silva et al., 2007; Troen & Lundtang Petersen, 1989). For each 
location the long-term mean wind speed at hub height is calculated from all available years 
of weather data and on this basis each onshore location is classified according to the IEC 61400 
guidelines as either IEC class I (≥8.5 and <10 m s⁻¹), class II (≥7.5 and <8.5 m s⁻¹), class III (≥6 
and <7.5 m s⁻¹) or class IV wind site (<6 m s⁻¹). Based on the wind class for each site, the hourly 
wind speeds are converted to wind turbine electric power output using power curves from 
three wind turbines with the same nominal output (3.3 MW) but designed for each of the three 
different wind classes (Class 1: Vestas V105-3.3MW Ia, Class II: Vestas V117-3.3MW IIa, Class 
III: Vestas V126-3.3MW IIIa. For locations with wind class 0 (higher than I), the IEC I curve is 
applied. For sites with class IV no equivalent power curve for a class IV turbine could be found 
and so the IEC III curve is applied. For offshore sites, the Vestas V164-8.0 IEC S turbine is 
applied. The multi-turbine method of Holttinen (Norgaard & Holttinen, 2004) is used to take 
into account spatial and temporal variations in wind speeds which occur across wind farms so 
that aggregated power curves better match wind farm generation profiles in reality. Using this 
approach, wind speeds at hub height for each location are first smoothed temporally using a 
moving-average based on a wind propagation time, calculated from the long-term average 
(36 year) hourly wind speed and a representative dimension based on the average ERA-I grid 
size. The single turbine power curves are subsequently convoluted using a normal distribution 
based on the long-term standard deviation in hourly wind speed for each location. After 
accounting for turbine wake losses (8%), electrical conversion (2%) and other losses (3%) in 
accordance with values taken from the literature (McKenna et al., 2014; Myhr et al., 2014; Rivas 
et al., 2009), the power output values for each site are converted to hourly capacity factors by 
dividing by the nominal turbine output. The effect of temperature and elevation on air density 
and subsequent effects on power output are not considered. The base onshore power curves 
and an example of a convoluted curve for an IEC I turbine shown in Figure A-1. 

 

Table A-1 | IEC 61400-1 Wind Classes (International Electrotechnical Commission, 2005). Given the lack 
of sub-hourly data, we make no distinction between high and low turbulence wind sites. 

Annual average wind speed at hub height (m s⁻¹) IEC Wind Class 

10 I 

8.5 II 

7.5 III 

6 IV 
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Figure A-1 | Wind turbine power curves applied. The left figure shows the raw single turbine power 
curves. The right figure shows the IEC I curve before and after convolution. 
 

Rooftop and Utility PV 

For determining PV production, the most relevant data provided by the ERA-I dataset is the 
accumulated SSRD flux forecast, which is the sum of the global (total of direct and diffuse) 
radiant energy (in J m⁻²) passing through a square-metre of a flat horizontal plane since the 
start of the forecast period. Forecasts are available every three hours from 0:00 and 12:00. Thus 
the value reported for each 3-hour time step is the accumulated radiation2. As PV production 
is based on instantaneous irradiation (in W m⁻²), to estimate hourly PV production and 
ultimately capacity factor profiles for an arbitrary inclined plane from the ERA-I accumulated 
SSRD data requires several intermediate steps:  

• The 3-hour accumulated radiation from 0:00 and 12:00 is converted to the 
accumulated irradiation from the previous time step (J m⁻²) 

• Total accumulated irradiation in each three-hour period is divided by the number of 
seconds in the period to determine the average irradiance in that period (W m⁻²) 

• As average irradiance is best represented as an instantaneous value in the middle of 
a period and not at the end, the data is resampled to 30 minutes, shifted by 1.5 hours, 
and then resampled to hourly values using linear interpolation. 

• The resulting global horizontal irradiance 𝐺𝐺𝑔𝑔,ℎ values are then split into their diffuse 
𝐺𝐺𝑑𝑑,ℎ and beam (direct) 𝐺𝐺𝑏𝑏,ℎ components using the correlation of Erbs (Erbs et al., 
1982) for the ratio of hourly diffuse radiation to the hourly global radiation (𝐺𝐺𝑑𝑑,ℎ/𝐺𝐺𝑔𝑔,ℎ) 
by first determining the extra-terrestrial horizontal irradiance in the normal 𝐺𝐺𝑜𝑜,𝑛𝑛 and 
horizontal planes 𝐺𝐺𝑜𝑜,ℎ, sky clearness index 𝑘𝑘𝑡𝑡 (the ratio of the hourly global irradiance 
to the hourly extra-terrestrial irradiance) using Eq. (A-3)-(A-6) (Erbs et al., 1982; 
Kalogirou, 2009). 

𝐺𝐺𝑜𝑜,𝑛𝑛 = 𝐺𝐺𝑠𝑠𝑠𝑠 [1 + 0.033𝑐𝑐𝑐𝑐𝑐𝑐 (360𝑁𝑁
365 )]  

(A-3) 

𝐺𝐺𝑜𝑜,ℎ = 𝐺𝐺𝑜𝑜,𝑛𝑛cos 𝜙𝜙  
(A-4) 
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𝑘𝑘 = 𝐺𝐺𝑔𝑔,ℎ/𝐺𝐺𝑜𝑜,ℎ  
(A-5) 

𝐺𝐺𝑑𝑑,ℎ
𝐺𝐺𝑔𝑔,ℎ

= 1 − 0.09𝑘𝑘                              for k ≤ 0.22 

𝐺𝐺𝑑𝑑,ℎ
𝐺𝐺𝑔𝑔,ℎ

= 0.9511 − 0.1604𝑘𝑘 + 4.388𝑘𝑘2 − 16.638𝑘𝑘3

+  12.336𝑘𝑘4         for 0.22 < k ≤ 0.8 
𝐺𝐺𝑑𝑑,ℎ
𝐺𝐺𝑔𝑔,ℎ

= 0.165                                       for k > 0.8 

 

 

(A-6) 

 
• Finally, the irradiance on the tilted surface of the PV panels is estimated using the 

tilted surface radiation model of Reindl (Reindl et al., 1990) as outlined below. 

Many correlations for estimating global irradiance on tilted panels are available, varying mainly 
in their treatment of diffuse radiation. For a detailed overview of the topic reader is referred 
to any good textbook covering solar energy science and engineering (Duffie & Beckman, 2013; 
Kalogirou, 2009). Several studies have attempted to validate and compare these radiation 
models with experimental data (Freeman et al., 2013; Mehleri et al., 2010), however there is no 
consensus on which model performs best as performance varies depending on a number of 
factors including location and the split between direct and diffuse radiation. In this study, the 
model of Reindl et al (Reindl et al., 1990) is used as it not only accounts for diffuse isotropic 
and circumsolar radiation, but also horizontal brightening3. As in most diffuse models, ground 
reflected radiation is treated as isotropic. The Reindl equation is given by Eq. (A-7), 

𝐺𝐺𝑔𝑔,𝑡𝑡 = (𝐺𝐺𝑏𝑏,ℎ + 𝐺𝐺𝑑𝑑,ℎ𝐴𝐴)𝑅𝑅𝑏𝑏 + 𝐺𝐺𝑑𝑑,ℎ(1 − 𝐴𝐴) (1 + cos 𝛽𝛽
2 ) (1 + √

𝐺𝐺𝑏𝑏,ℎ
𝐺𝐺𝑏𝑏,ℎ + 𝐺𝐺𝑑𝑑,ℎ

sin3 (𝛽𝛽
2))

+ (𝐺𝐺𝑏𝑏,ℎ + 𝐺𝐺𝑑𝑑,ℎ)𝜌𝜌 (1 − cos 𝛽𝛽
2 ) 

(A-7) 

where 𝐺𝐺𝑔𝑔,𝑡𝑡 is the global irradiance received on a tilted plane (W m⁻²), 𝐺𝐺𝑏𝑏,ℎ and 𝐺𝐺𝑑𝑑,ℎ are the 
beam and diffuse radiation components in the horizontal plane respectively (W m⁻²), 𝑅𝑅𝑏𝑏 is a 
geometric beam radiation tilt factor equal to the ratio between the cosines of the incidence 
and zenith angles (cos 𝜃𝜃/ cos 𝜙𝜙), 𝐴𝐴 is an anisotropy index defined as the ratio between beam 
and extraterrestrial radiation received on a plane normal to the sun (𝐺𝐺𝑏𝑏,𝑛𝑛/𝐺𝐺𝑜𝑜,𝑛𝑛), and 𝜌𝜌 is the 
surface albedo (reflectivity). The optimum surface azimuth and tilt angle (𝛽𝛽) for PV panels is a 
topic in itself and depends on the optimum sought. To maximise annual yield in the Northern 
hemisphere, the generally accepted view is that PV panels should be installed facing true south 
(Hartner et al., 2015). However, installing panels east or west can be beneficial as PV production 
in the morning and afternoon can be increased, coinciding with demand and reducing residual 
load (Hartner et al., 2015). The optimum tilt angle for south-facing panels is reported to range 
from 30-45° across much of Europe (Hartner et al., 2015; Huld et al., 2012; Šúri et al., 2007). A 
typical rule of thumb is that panels are installed at a tilt angle equal to the latitude of the site, 
representing the average solar altitude angle and thus maximizing the direct radiation 
component, however shadowing from location terrain and surrounding buildings can reduce 
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direct irradiance making a flatter tilt angle more favourable in mountainous, built-up and high 
latitude locations (Mehleri et al., 2010; Šúri et al., 2007). Including shadowing from buildings 
and the landscape is beyond the scope of this study, thus given these uncertainties a single 
fixed rooftop tilt angle of 35° is used for all locations with all panels mounted true south. In 
the case of utility PV however where there is greater scope for the installation of tracking 
systems, two options are considered. The first is with panels oriented due South with a fixed 
tilt of 35° the same as rooftop PV, while the second includes full two-axis solar tracking. While 
tracking systems are more expensive than fixed systems, they can achieve higher yields and 
generate more power in morning and evening periods when demand is high.  

Hourly generation profiles from rooftop and utility PV are estimated by combining technical 
data from two commercially available PV modules with the hourly tilted plain irradiance time 
series. To reflect a preference for higher efficiency PV modules on rooftops to compensate for 
space limitations a high-efficiency monocrystalline silicon module is selected for rooftop PV, 
and a lower-efficiency polycrystalline silicon module is used for utility PV (see Table A-2). 
Hourly AC output from the PV modules (𝑃𝑃𝐴𝐴𝐴𝐴,𝑡𝑡) is calculated from Eq. (A-8) where 𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆 is the 
nominal module output at standard test conditions (STC4) (W) and 𝑃𝑃𝑃𝑃 is a performance ratio 
which takes into account AC conversion and other electrical losses, dust and shading effects, 
for which a value of 0.9 is assumed in line with the literature (Dierauf et al., 2013; Fraunhofer 
ISE, 2016). The effect of cell operating temperature (𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑡𝑡) on module efficiency is included 
using the nominal operating cell temperature (𝑇𝑇𝑁𝑁𝑁𝑁𝐶𝐶𝑇𝑇) (44°C) and power temperature 
coefficients (𝛿𝛿) taken from the manufacturers data. The cell operating temperature is 
estimated using Eq. (A-9)-(A-10) where 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,,𝑡𝑡 is the PV module back temperature (°C), 𝑤𝑤𝑡𝑡 
is the wind speed at 10 m height (m s⁻¹), 𝑇𝑇𝑡𝑡 is the ambient temperature (°C), 𝑎𝑎 and 𝑏𝑏 are 
empirical convection and heat transfer coefficients, and Δ𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is a temperature drop due to 
conduction. The values of these last three parameters vary depending on the module materials 
and mounting configuration and can be found in (Dierauf et al., 2013). 

𝑃𝑃𝐴𝐴𝐴𝐴,𝑡𝑡 = 𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆 (
𝐺𝐺𝑔𝑔,𝑡𝑡
𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆

) [1 − 𝛿𝛿(𝑇𝑇𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑡𝑡)]𝑃𝑃𝑃𝑃  
(A-8) 

𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑡𝑡 = 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎𝑐𝑐𝑐𝑐,𝑡𝑡 (
𝐺𝐺𝑔𝑔,𝑡𝑡
𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆

) Δ𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 

(A-9) 

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑡𝑡 = 𝐺𝐺𝑔𝑔,𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒(𝑎𝑎+𝑏𝑏∗𝑤𝑤𝑡𝑡) + 𝑇𝑇𝑡𝑡
 

(A-10) 

As with onshore and offshore wind, the hourly generation from rooftop and utility PV are 
converted to capacity factor profiles by dividing by the nominal module output 𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆 . 
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Table A-2 | PV module technical specifications 
Parameter Rooftop PV Utility PV 

Manufacturer & model Sunpower X21-345 
(SunPower, 2014) 

TrinaSolar TSM-PD14  
(TrinaSolar, 2016) 

Technology Monocrystalline Silicon Polycrystalline Silicon 
Nominal power capacity  
at STCa, 𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆 (W) 

345 325 

Module efficiency (%) 21.5% 16.8% 
Power temp coefficient, 𝛿𝛿(% °C¯¹) -0.3% -0.41% 
Module dimensions 1.046 m x 1.559 m 

(1.63 m2) 
1.956 m x 0.992 m 

(1.94 m2) 
Nominal power density at STC (W m⁻²)b 211 167 
a Standard Test Conditions: 1000 W m⁻² irradiance, air mass coefficient 1.5, temperature 25° C 
b  Calculated from module dimensions and nominal panel capacity 
 

A.2 Maximum capacity constraints 

Table A-4 lists the CLC classes deemed suitable for each technology, before applying any other 
limitations such as protected areas or water depths. Onshore wind is assumed to be only 
suitable for selected agricultural areas and grasslands where turbines could be installed 
without having a major effect on currently land use. Offshore wind can only be installed on 
open water in seas or oceans. For ground-based utility PV, we assume that this technology is 
only suitable in relatively sparse and unforested areas, while we assume rooftop PV can only 
be built on the roofs of residential and commercial buildings located in urban areas. 

For onshore and offshore wind, the constraints on maximum capacity per technology 𝑖𝑖 per 
grid cell 𝑥𝑥 (𝑐𝑐𝑖𝑖,𝑥𝑥

𝑚𝑚𝑚𝑚𝑚𝑚) are calculated using Eq. (A-11) where 𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶,𝑖𝑖,𝑥𝑥 is the land area per suitable CLC 
class per grid cell (km2), 𝜃𝜃𝑖𝑖 is the assumed land availability (%) and 𝑝𝑝𝑖̂𝑖 is a representative wind 
farm capacity density. 

𝑐𝑐𝑖𝑖,𝑥𝑥
𝑚𝑚𝑎𝑎𝑥𝑥 = (∑ 𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶,𝑖𝑖,𝑥𝑥

𝐶𝐶𝐶𝐶𝐶𝐶
) 𝜃𝜃𝑖𝑖𝑝𝑝𝑖̂𝑖 (A-11) 

For onshore wind, we assume a land availability factor of 6% in line with (Bruninx et al., 2015; 
Deng et al., 2015), and for offshore wind we assume a uniform 20% availability irrespective of 
water depth or distance to shore. This is higher than values used for near-shore (< 10 km) sites 
but at the lower end of values used for sites further offshore (Bruninx et al., 2015; Deng et al., 
2015). However, given that many of Europe’s best wind sites are located in relatively shallow 
waters of the North and Baltic seas at sites greater than 10 km from shore (EEA, 2009), we 
believe a higher value is justified. A comparison of the land (and sea) availability factors found 
in the literature is given in Table A-3.  

The values for 𝑝𝑝𝑖̂𝑖 vary between 4.2 MW km⁻² and 6 MW km⁻² depending on the IEC wind 
regime in that grid cell, and are based on the wind turbine technical data (rotor diameter and 
nominal power) assuming a typical wind farm turbine array spacing. Many studies have 
investigated the optimisation of wind farm turbine layouts with lower turbine spacing 
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increasing installed capacity density, at the cost of increased array losses due to aerodynamic 
wake effects between turbines (Eroĝlu & Seçkiner, 2013; Rahbari et al., 2014; Turner et al., 
2014). However such a detailed treatment is not possible in this study and a simplified 
approach assuming a regular turbine spacing of 10D x 5D (where D is rotor diameter) is used, 
with the literature reporting this should result in array losses below 10% (Manwell et al., 2009). 
Following this assumption, turbine capacity densities of 6, 4.8, 4.2 and 6 MW km⁻² are 
calculated for the Vestas V105, V117, V126 onshore turbines and the V164 offshore turbine 
respectively. Comparing these values with the available literature, a 2009 NREL study of 161 
onshore wind farms reported capacities densities ranging from 1.0 to 11.2 MW km⁻² with an 
average of 3.0 ± 1.7 MW km⁻² [8]. In a study published in the same year by the EEA 
investigating Europe’s wind energy potential, capacity densities for onshore wind were given 
as 8 MW km⁻² in 2005 and were not expected to change until 2030 (EEA, 2009). The values 
calculated in this study for the three onshore turbines thus lie within an acceptable range. For 
offshore wind, the EEA reported a typical capacity density of 10 MW km⁻² in 2005, which was 
predicted to rise to 12 MW km⁻² in 2020 and 15 MW km⁻² in 2030 based on technology 
developments (EEA, 2009). Using publicly available data for 40 offshore wind farms installed 
around the world commissioned between 1991 and 2014 for which both installed capacity and 
farm area were available, 60% were found to have an installed capacity density between 6 and 
10 MW km⁻² with the mean and median offshore wind capacity density calculated as 8.3 and 
7.6 MW km⁻² respectively (Lindø Offshore Renewables Centre (LORC), n.d.). These values are 
higher than the 6 MW km⁻² calculated for the Vestas V164, however for consistency with the 
turbine data the value of 6 MW km⁻² is used. 

For the two PV technologies a slightly different formulation is used for 𝑐𝑐𝑖𝑖,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 by including two 
additional parameters as shown in Eq. (A-12). 

𝑐𝑐𝑖𝑖,𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 = (∑𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶,𝑖𝑖,𝑥𝑥𝑏𝑏𝐶𝐶𝐶𝐶𝐶𝐶
𝐶𝐶𝐶𝐶𝐶𝐶

) 𝑠̂𝑠𝑖𝑖𝜃𝜃𝑖𝑖𝑝𝑝𝑖̂𝑖 (A-12) 

The first parameter 𝑏𝑏𝐶𝐶𝐶𝐶𝐶𝐶 is the fraction of each suitable CLC class covered by buildings. This is 
used to provide a bottom-up assessment of the magnitude and geographic spread of 
rooftop PV potential in Europe by combining building footprint data with the CLC2012 
dataset. We use ArcGIS to estimate the values of 𝑏𝑏𝐶𝐶𝐶𝐶𝐶𝐶 for the UK and the Netherlands5, 
finding that buildings cover up to 27% of land area in urban areas, and less than 1% in most 
agricultural areas ( 

Table A-5). The average values per class are in line with other values reported in the literature 
(A. C. Hansen & Thorn, 2013). We make the conservative assumption that only roofs in urban 
areas can be covered by PV and only include CLC codes 111, 112 and 121 as suitable for 
rooftop PV. We assume the average fractions of CLC classes covered by buildings in  

Table A-5 apply for all countries in order to extrapolate total building footprint area in Europe. 
Note that for utility PV, the factor 𝑏𝑏𝐶𝐶𝐶𝐶𝐶𝐶 is irrelevant and set to unity. 
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Table A-3 | Comparison of land and sea availability factors for PV and wind from literature 

a Availability for rooftop PV is on the basis of roof area, not land area  
b  3% of the total area deemed suitable in an earlier study of approx. 750,000 km2 (EEA, 2009) compared with 634,000 

km2 in this study. However the authors assumed a much higher capacity density (15 MW km⁻²) for offshore wind which 
partly compensates for this. 

The second additional parameter in Eq. (A-12) is 𝑠̂𝑠𝑖𝑖 , which in the case of rooftop PV is the 
specific roof area per square metre building footprint (m2 m⁻²), or the panel to ground area 
ratio (m2 m⁻²) in the case of utility PV. This factor accounts for the fact that not all roofs are 
flat for rooftop PV, and the inter-array spacing required for ground-based utility PV systems 
to avoid shading. In the case of rooftop PV, apartment and commercial buildings typically have 
flat roofs while detached and terraced houses typically have pitched roofs. In the simple case 
of a building with a pitched gable roof and rectangular footprint, the ratio of total roof area 
to building footprint can be simply calculated as the inverse of the cosine of the pitch angle. 
For a roof with 30° pitch, this results in approximately 1.19 m2 of roof area per m2 of building 
footprint. For a 45° pitch angle this increases to 1.41 m2 m⁻². In the absence of data on the 
prevalence of different roof types we assume a constant value of 1.22 m2 m⁻² for 𝑠𝑠𝑖̂𝑖 for rooftop 
PV to be consistent with the assumed tilt angle of 35°. However, not all this roof area is 
available for PV installations due to area occupied by chimneys, ventilation systems, and non-
optimally oriented roofs and so an availability factor of 30% is assumed for rooftop PV, in line 
with other studies (Mainzer et al., 2014; Śliż-Szkliniarz, 2012).  

Technology 

Land (sea) availability factor  𝜃𝜃𝑖𝑖 (%) 

Deng et al. (Deng 
et al., 2015) 

(Low/Med/High) 

Hoogwijk et 
al. (Hoogwijk 
et al., 2004) 
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et al. 

(Mainzer et 
al., 2014) 

Ordóñez 
et al. 
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In the case of ground-based utility PV, we assume that only 1% of the total suitable land area 
is available for PV installations. The spacing between arrays of inclined panels on a flat surface 
is a trade-off between capacity density and shading between panels, with the latter depending 
on the installation azimuth angle and the solar altitude angle, which itself varies with location 
and the time of year. This study uses a simplified approach assuming that panels are mounted 
due south, and setting a minimum solar altitude angle equal to that of an intermediate latitude 
location (Berlin) on the winter solstice (December 21), which is 15°. Using trigonometry, this 
value yields a panel to ground area ratio 𝑠̂𝑠𝑖𝑖 for utility PV of 0.366 m2 m⁻². The capacity density 
for PV technologies is based on the nominal module power density at STC calculated from the 
manufacturer data (see Table A-2). 

A breakdown of the final calculated available areas and maximum installed capacities by land 
class is shown in Table A-6, and Figure A-2 shows how this maximum capacity potential is 
distributed across Europe at the grid cell level.  
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Table A-4 | Assumed suitable CLC land classes for each technology. Tick signs indicate suitability, while 
cells in grey indicate no suitability for any vRES technology. 
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Natural grasslands 321 ✓ 
   

Moors and heathland 322 ✓ 
   

Sclerophyllous vegetation 323 ✓ 
   

Transitional woodland-shrub 324 
    

Open spaces with little 
or no vegetation 

Beaches, dunes, sands 331 
    

Bare rocks 332 
    

Sparsely vegetated areas 333 ✓ 
  

✓ 
Burnt areas 334 

    

Glaciers and perpetual snow 335 
    

W
et

la
nd

s Inland wetlands 
Inland marshes 411 

    

Peat bogs 412 
    

Maritime wetlands 
Salt marshes 421 

    

Salines 422 
    

Intertidal flats 423 
    

W
at

er
 b

od
ie

s Inland waters 
Water courses 511 

    

Water bodies 512 
    

Marine waters 
Coastal lagoons 521 

    

Estuaries 522 
    

Sea and ocean 523 
 

✓ 
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Table A-5 | Fraction of CLC 2012 classes covered by buildings for the UK and Netherlands 

CLC 
code Description 

Fraction of CLC class covered 
by buildings (%)  Share of total building footprint 

area per country (%) 

UK NL Avg  UK NL 

111 Continuous urban fabric 27.4% - a 27.4%  2.9% - a 

112 Discontinuous urban fabric 12.6% 18.3% 15.4%  54.9% 47.6% 

121 Industrial or 
commercial units 14.4% 21.7% 18.0%  8.6% 13.0% 

123 Port areas 9.0% 11.9% 10.5%  0.4% 1.2% 

211 Non-irrigated arable land 0.6% 2.0% 1.3%  13.7% 12.7% 

231 Pastures 0.6% 1.2% 0.9%  13.9% 9.7% 
a The Netherlands did not contain any land designated under this class 

 

 
Figure A-2 | Maximum installable capacity per technology in GW per grid cell for the 50-m water 
depth grid for (a) onshore wind (b) offshore wind (c) rooftop PV and (d) utility PV. Note that the legend 
scale varies per technology. 
  

 

 

 

  

 

(a) (b) 

(c) (d) 
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A.3 Demand profiles 
The demand profiles are based on hourly electricity total load data available from ENTSO-E 
for 2015 for all EU28 countries as well as Norway and Switzerland (ENTSO-E, 2016a)6. These 
load values include grid losses, but exclude energy for pumped storage7. To investigate the 
impact of increased penetration of EVs and heat pumps in a future European power system 
and how these may affect the optimal geographic vRES capacity distribution, additional load 
profile variants are synthesised by adding additional demand (including grid losses) from EVs 
and HPs based on 2050 demand scenarios presented  in ECF’s Roadmap 2050 study (ECF, 
2010b). Three variants are used: i) Base with EVs, ii) Base with HPs and iii) Base with EVs and 
HPs. To assess the impact of EVs an additional demand of 800 TWh (including grid losses) is 
added to the base 2015 demand of 3111 TWh. This is split between all countries based on the 
total number of vehicles in 2013, assuming that the share of vehicles will not change 
considerably in the future. The totals for each country are converted to hourly demand values 
using EV load profiles synthesised from a model developed by the JRC (Pasaoglu et al., 2013), 
incorporating driver behaviour data in six countries (UK,DE,FR,IT,ES,PL). Five types of electrical 
vehicles are considered based on their range and energy consumption: Small battery electric 
vehicles (BEVs), medium BEVs, large BEVs, medium plug in hybrid electric vehicles (PHEV) and 
large PHEVs. Batteries are assumed to recharge in 8 hours with normal recharging and 0.5 
hours with fast recharging. The availability of recharging stations and willingness to charge is 
assumed the same as in the original study as shown in Table A-7. 

Table A-7 | EV charging and fleet assumptions, based on JRC (Pasaoglu et al., 2013). 

Parking location 

Charging station 
availability  Charging preferences 

Normal Fast  Period Willingness to charge 

Work 50% 0%  0:00 – 6:00 100% 
Open air private 50% 5%  6:00 – 8:30 100% 
Open air public 50% 5%  8:30 – 18:00 100% 
Kerbside regulated 20% 2%  18:00 – 22:00 100% 
Kerbside unregulated 20% 2%  22:00 – 0:00 100% 
Private garage 50% 5%    
Public garage 50% 5%    

Vehicle type 
EV Range (km)  Share of EV fleet (%) 

JRC c This study  JRC c This study 

Small BEV 80 100  10% 5% 
Medium BEV 160 350a  25% 50% 
Large BEV 200 500b  10% 25% 
Medium PHEV 20 50  40% 15% 
Large PHEV 40 100  15% 5% 

a Based on the range of the Tesla Model 3 
b Based on the range of the Tesla Model X P90D 
c Source: (Pasaoglu et al., 2013) 
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Some modifications to the original fleet assumptions are made to reflect developments in the 
EV market. The base load profiles are built on the assumption that recharging is not time-
constrained and occurs whenever a car is parked and a charging station is available (100% 
willingness to charge). This is a simplified ‘worst case’ approach which does not include the 
impact of smart charging which could help to smooth demand, however more detailed 
approaches are beyond the scope of this study. The countries which are missing EV charging 
profiles are assigned a charging profile from a country deemed most similar culturally or 
geographically. The normalised profiles for each country are shown in Figure A-3. The EV 
charging profiles are added to the base 2015 load data accounting for the correct day of the 
week and time zone differences. 

To assess the impact HPs an additional final demand of 500 TWh (including grid losses) is 
added. This is disaggregated to each country based on current residential energy consumption 
for space heating. As the dynamics of heat for domestic hot water are much faster than the 
hourly resolution considered in this study demand patterns for showers etc. are not included. 
The resulting totals for each country are then distributed across the year in proportion to the 
number of heating degree hours (HDH) (Bobenhausen, 1994), calculated using the following 
formula where 𝑇𝑇 is the ambient temperature (°C) and 𝑇𝑇𝑏𝑏 is the threshold temperature below 
which heating is required to maintain a comfortable environment.  

𝐻𝐻𝐻𝐻𝐻𝐻 = {   0           for 𝑇𝑇 ≥ 𝑇𝑇𝑏𝑏 
𝑇𝑇𝑏𝑏 − 𝑇𝑇      for 𝑇𝑇 < 𝑇𝑇𝑏𝑏      (A-13) 

To reflect that heating is mainly required when people are awake and buildings are occupied, 
different threshold temperatures are used throughout the day. From 6am until 10pm (local 
time), a minimum threshold temperature of 20°C is assumed for those hours when people are 
awake either at home, or at work. From 10pm until 6am (when households are asleep and 
commercial buildings are unoccupied) we assume that thermostat set temperatures are 
reduced in order to save energy, and a lower threshold temperature of 15°C is assumed. An 
urban area-weighted average of the HDH calculated for each country is used given that heat 
demand will occur mostly in urban areas. The disaggregated EV and HP demands are shown 
in addition to the base demand in Table A-8. 
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Figure A-3 | Assumed hourly EV charging profiles for each day of the week for (UK) the UK (ES) Spain 
(FR) France (DE) Germany (PL) Poland, and (IT) Italy. 
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Table A-8 | Base, EV and HP demand by country 

Country Base demand 
(TWh y⁻¹) 

Electric Vehicles 
HP demand 
(TWh y⁻¹) EV demand (TWh y⁻¹) EV Charging profile 

AT 69.6 14.7 DE 11.5 

BE 85.2 17.4 FR 14.5 

BG 38.6 9.2 PL 3.8 

CH 62.1 13.7 DE 10.6 

CY 4.4 1.5 ES 0.2 

CZ 63.5 15.0 DE 10.8 

DE 505.3 137.6 DE 102.8 

DK 33.9 7.3 DE 10.0 

EE 7.9 2.0 PL 1.5 

EL 50.8 16.2 IT 8.5 

ES 248.5 69.8 ES 19.2 

FI 82.5 9.9 UK 9.8 

FR 471.3 102.1 FR 71.4 

HR 17.2 4.6 IT 2.6 

HU 40.8 9.6 PL 9.1 

IE 26.6 6.3 UK 5.0 

IT 314.3 117.0 IT 47.4 

LT 10.9 5.7 PL 2.6 

LU 6.3 1.1 FR 0.8 

LV 7.1 2.0 PL 2.4 

MT 2.4 0.8 IT 0.0 

NL 113.3 25.1 DE 17.5 

NO 128.7 7.9 UK 9.7 

PL 150.0 61.4 PL 34.6 

PT 48.9 13.7 ES 1.4 

RO 52.3 14.9 PL 9.8 

SE 135.9 13.9 UK 10.9 

SI 13.6 3.4 IT 1.9 

SK 28.2 6.0 PL 3.5 

UK 291.0 90.1 UK 66.1 

Total 3111 800 - 500 
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A.4 Hourly changes in residual demand 
While we do not consider generator flexibility limitations in this study, the hourly changes in 
residual demand for the optimised capacity distributions can give insights into the required 
flexibility and ramping potential of the dispatchable capacity in the generation portfolio. With 
this in mind, Figure A-4 shows a frequency plot of the hourly change in residual demand for 
the Scenario 1 (minimum residual demand) and Scenario 6 (maximum capacity factor) capacity 
distributions for weather year 2015. For comparison, the hourly changes in 2015 demand from 
ENTSO-E are also shown as representative of a power system with very low vRES penetration8. 
Figure A-4 shows that the distribution of hourly changes for Scenario 1 has more spread than 
the distribution of hourly changes in demand, but significant less spread than the distribution 
for Scenario 6. The minimum/maximum observed hourly changes for Scenario 1 are 71%/81% 
higher than those for the base demand profile, while for Scenario 6 they are 298%/210% 
higher than for base demand9. Thus, Figure A-4 suggests that going from a power system with 
13% vRES penetration to 89% vRES penetration will lead to increased demands on flexible 
dispatchable capacity compared with the current power system, but not unmanageably so. 
Furthermore, the figure shows that a high vRES power system based on sites with maximum 
capacity (Scenario 6) is likely to be more unstable, and require more flexible dispatchable 
capacity, than a system in which capacity is sited to minimise residual demand (Scenario 1). 

 
Figure A-4 | Frequency plot of the hourly change in residual demand based on weather year 2015 
for Scenario 1 and Scenario 6. The hourly change in base 2015 demand from ENTSO-E is also shown for 
comparison. Hourly changes in demand are binned into 5 GW increments. The solid vertical black line 
indicates zero change. The minimum and maximum observed hourly changes for each scenario are also 
indicated. 
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Footnotes to Appendix A

1 This is a conservative estimate as some current wind turbines already exceed this value, including a 3.3 MW wind turbine 
with a hub height of 164 m approved in Q1 2016 in Germany (Fachagentur Windenergie an Land, 2016). 

2 A note on terminology. Irradiance is the rate of radiant energy falling on a surface per unit area (W m⁻²), whereas 
irradiation is the total incident radiation by a surface over a specific time interval (J m⁻²). Radiation is a more general 
term, while irradiation refers specifically to a process by which an object is exposed to radiation. Insolation is another 
term for solar irradiation or radiation from the sun.  

3 Horizon brightening is the increase in diffuse radiation near the horizon due to a larger portion of the incident radiation 
scattering as it passes through a greater air mass at the horizon 

4 Standard Test Conditions (𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆=1000 W m⁻² irradiance, air mass 1.5, 25° C) 
5 These were the only two EU countries for which publicly available building footprint data could be found (ESRI, 2016; 

Ordnance Survey, 2016). 
6 No hourly demand profile was available for Malta which was instead estimated based on that of Cyprus, scaled down 

based on 2013 total power consumption from Eurostat. 
7 According to Commission Regulation No 543/2013 
8 Based on ENTSO-E data for the EU28 + NO + CH, the gross penetration of vRES in 2015 was approximately 13% (ENTSO-

E, 2017b). 
9 These extremes could however be reduced using demand response. 
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 Appendices to Chapter 3 
Appendix B – Supplementary material to Chapter 3 

B.1 Fitted model parameters 

The fitted model parameters presented in this Appendix are based on the selected load and 
vRES generation time series of historical day-ahead forecasts and real-time values from 
ENTSO-E for the years 2017 and 2018 (ENTSO-E, 2018b). The load, solar PV, onshore wind and 
offshore wind fits are based on the data for Spain, Germany, France and Denmark respectively. 

• Table B-1 gives the fitted AR-GARCH model parameters for total daily deviation (Step 2), 
• Table B-2 gives the fitted distribution parameters for devolatilised hourly errors (Step 5), 

and 
• Table B-3 gives the means and standard deviations for the devolatilised hourly errors 

binned by generation (or load) level (Step 4). 
 

Table B-1 | Fitted AR(a)-GARCH(p,q) model coefficients for total daily deviation load, solar PV, 
onshore and offshore wind 

Parameter Load PV Onshore wind Offshore wind 
AR(𝑎𝑎)     

𝑎𝑎 1 1 1 1 
𝜇𝜇 0.1453 0.1418 0.4265 0.6552 
𝜙𝜙1 0.1417 0.1865 0.1569 0.2764 

GARCH(𝑝𝑝, 𝑞𝑞)     
𝑝𝑝 1 1 1 1 
𝑞𝑞 1 1 1 1 
𝜓𝜓 0.7334 0.6220 0.0156 5.953 
𝛼𝛼1 0.0703 0.0377 0.00355 0.0104 
𝛽𝛽1 0 a 0.5287 0.995 0.6990 

a A value of zero for 𝛽𝛽1 for load shows that, for this specific parameter, there is no significant autocorrelation in the 
daily error volatility from one day to the next Thus, in this special case, the GARCH(1,1) degenerates to an ARCH(1) 
model 

 

Table B-2 | Fitted distribution parameters for devolatilised hourly errors for load, solar PV, onshore 
and offshore wind 

Parameter Distribution Location Scale Degrees of freedom 

Load t 0 1.4 4.204 

Solar PV Laplace 0 1.6 - 

Onshore wind Laplace 0 1.7 - 

Offshore wind Laplace 0 1.2 - 
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Table B-3 | Mean and standard deviation of devolatilised hourly errors for load, solar PV, onshore 
and offshore wind for the years 2017-2018, binned based on the normalised generation or load 
level 

 Load Solar PV Onshore wind Offshore wind 

Bin range (𝑘𝑘) 𝜇𝜇𝑘𝑘 𝜎𝜎𝑘𝑘 𝜇𝜇𝑘𝑘 𝜎𝜎𝑘𝑘 𝜇𝜇𝑘𝑘 𝜎𝜎𝑘𝑘 𝜇𝜇𝑘𝑘 𝜎𝜎𝑘𝑘 

[0.0,0.05] 0.0%* 0.1%* -0.2% 1.4% -0.1% 1.0% -0.3% 0.9% 

(0.05,0.1] 0.0%* 0.1%* -0.5% 3.2% -0.3% 1.3% -0.2% 1.5% 

(0.1,0.15] 0.0%* 0.1%* -0.2% 3.8% -0.2% 1.8% -0.2% 2.0% 

(0.15,0.2] 0.0%* 0.1%* -0.2% 4.7% 0.2% 2.2% -0.4% 2.5% 

(0.2,0.25] 0.0%* 0.1%* -0.3% 5.0% 0.7% 2.9% -0.4% 3.0% 

(0.25,0.3] 0.0%* 0.1%* -0.4% 5.5% 1.6% 3.2% -0.3% 3.1% 

(0.3,0.35] 0.0%* 0.1%* -0.2% 5.9% 1.8% 3.3% -0.2% 3.4% 

(0.35,0.4] 0.0%* 0.1%* 0.2% 6.2% 2.1% 3.3% -0.1% 3.4% 

(0.4,0.45] 1.8% 0.1% 0.7% 5.8% 2.6% 3.6% -0.1% 3.3% 

(0.45,0.5] 0.7% 2.3% 1.6% 5.1% 2.1% 4.1% -0.3% 2.9% 

(0.5,0.55] 0.2% 2.0% 2.2% 4.0% 1.5% 4.4% -0.1% 3.2% 

(0.55,0.6] -0.1% 2.0% 2.1% 4.2% 1.5% 4.7% -0.1% 3.1% 

(0.6,0.65] 0.0% 2.2% 3.4% 3.9% 0.6% 4.4% 0.6% 3.1% 

(0.65,0.7] 0.0% 2.5% 0.8% 3.9% -0.5% 3.2% 1.3% 3.0% 

(0.7,0.75] 0.1% 2.7% 0.0%* 3.9%* -2.6% 2.5% 2.0% 3.2% 

(0.75,0.8] 0.2% 2.8% 0.0%* 3.9%* -2.8% 2.6% 2.1% 3.2% 

(0.8,0.85] 0.1% 3.1% 0.0%* 3.9%* 0.0%* 2.6%* 2.1% 2.8% 

(0.85,0.9] -0.2% 3.3% 0.0%* 3.9%* 0.0%* 2.6%* 3.0% 2.1% 

(0.9,0.95] -0.8% 3.4% 0.0%* 3.9%* 0.0%* 2.6%* 3.2% 1.2% 

(0.95,1.0] -1.1% 2.8% 0.0%* 3.9%* 0.0%* 2.6%* 0.0% 1.2% 

Note: Depending on the spread of the data, some bins contain fewer data points than others, which affects the reliability 
of the 𝜇𝜇𝑘𝑘 and 𝜎𝜎𝑘𝑘 values calculated for each bin. Depending on the spread of the data, some parameters may also contain 
empty bins, which could lead to errors if the method is applied to other countries in which real-time generation (or load) 
values exceed the fitted range of bins. These problems can be addressed by including more historical data when fitting 
the AR-GARCH model, or overriding the 𝜇𝜇𝑘𝑘 and 𝜎𝜎𝑘𝑘 values in less populated (or empty bins) with more representative 
values. In this study, we simply extrapolate 𝜎𝜎𝑘𝑘 values for empty bins based on the nearest populated bin, and set the 
value of the 𝜇𝜇𝑘𝑘 to zero (which is typically the average across all bins). As empty bins tend to occur at the upper and lower 
extremes of normalised generation (or load) which occur infrequently, the overall impact on the results is likely to be 
small.  
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B.2 Cross-correlation between day-ahead forecast errors in 
neighbouring countries, and between different 
parameters in the same country 

The day-ahead forecast errors for each parameter (i.e. load, onshore wind, offshore wind, PV) 
between selected neighbouring countries were checked for correlation by determining the 
Pearson correlation coefficient, 𝜌𝜌, between the normalised error time series for the years 2017 
and 2018 based on ENTSO-E data (ENTSO-E, 2018b). In addition, the forecast errors between 
parameters for the same country were also checked for cross-correlation. The results for the 
year 2018 are shown in Table B-4 to B-15 (2017 values are similar). 

Comparing the cross-correlations for the same parameter between different countries, no 
strong positive or negative correlations (i.e. 𝜌𝜌 >0.5 | 𝜌𝜌 <-0.5) were found. The strongest 
correlation identified was a negative correlation between offshore wind forecast errors in the 
UK and NL with a value 𝜌𝜌 = 0.34, which is relatively weak. Comparing the cross-correlations 
between parameters within a single country, a single moderate correlation was found 
(𝜌𝜌 = 0.58) between onshore and offshore wind forecast errors in the UK. However, this was not 
observed in the other countries. 
Table B-4 | Calculated correlation coefficients between normalised load day-ahead forecast errors 
in neighbouring countries based on ENTSO-E data from 2018 

 BE DE DK ES FR IT NL UK 

BE 1 -0.02 0.05 0.06 0.08 0.09 0.13 0.03 
DE -0.02 1 0.00 0.01 0.03 0.01 0.10 -0.08 
DK 0.05 0.00 1 -0.02 -0.02 0.02 0.05 -0.05 
ES 0.06 0.01 -0.02 1 0.02 0.07 -0.01 0.00 
FR 0.08 0.03 -0.02 0.02 1 0.15 -0.06 0.00 
IT 0.09 0.01 0.02 0.07 0.15 1 -0.01 -0.04 
NL 0.13 0.10 0.05 -0.01 -0.06 -0.01 1 -0.04 
UK 0.03 -0.08 -0.05 0.00 0.00 -0.04 -0.04 1 

 
Table B-5 | Calculated correlation coefficients between normalised solar PV day-ahead forecast 
errors in neighbouring countries based on ENTSO-E data from 2018 

 BE DE DK ES FR IT NL UK 

BE 1 0.18 0.01 0.00 0.02 0.02 -0.01 0.06 
DE 0.18 1 0.04 0.02 0.01 0.04 -0.01 -0.05 
DK 0.01 0.04 1 -0.01 0.02 -0.02 0.04 -0.02 
ES 0.00 0.02 -0.01 1 -0.03 -0.06 0.00 0.06 
FR 0.02 0.01 0.02 -0.03 1 0.26 0.03 0.22 
IT 0.02 0.04 -0.02 -0.06 0.26 1 0.01 0.04 
NL -0.01 -0.01 0.04 0.00 0.03 0.01 1 0.00 
UK 0.06 -0.05 -0.02 0.06 0.22 0.04 0.00 1 
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Table B-6 | Calculated correlation coefficients between normalised onshore wind day-ahead 
forecast errors in neighbouring countries based on ENTSO-E data from 2018 

 BE DE DK ES FR IT NL UK 
BE 1 0.16 0.03 -0.04 0.15 -0.02 0.26 0.05 
DE 0.16 1 0.09 0.02 0.09 0.02 -0.01 -0.07 
DK 0.03 0.09 1 0.04 -0.01 0.01 -0.02 0.01 
ES -0.04 0.02 0.04 1 0.00 0.01 0.06 -0.01 
FR 0.15 0.09 -0.01 0.00 1 0.03 -0.06 -0.02 
IT -0.02 0.02 0.01 0.01 0.03 1 0.00 -0.01 
NL 0.26 -0.01 -0.02 0.06 -0.06 0.00 1 0.09 
UK 0.05 -0.07 0.01 -0.01 -0.02 -0.01 0.09 1 

 
Table B-7 | Calculated correlation coefficients between normalised offshore wind day-ahead 
forecast errors in neighbouring countries based on ENTSO-E data from 2018 

 BE DE DK NL UK 
BE 1 0.09 0.02 0.04 0.03 
DE 0.09 1 0.14 0.25 -0.03 
DK 0.02 0.14 1 0.09 -0.05 
NL 0.04 0.25 0.09 1 -0.34 
UK 0.03 -0.03 -0.05 -0.34 1 

 

Table B-8 | Calculated correlation coefficients between normalised load, onshore wind, offshore 
wind and PV day-ahead forecast errors for Belgium in 2018  

 
 
Table B-9 | Calculated correlation coefficients between normalised load, onshore wind, offshore 
wind and PV day-ahead forecast errors for Germany in 2018  

 Load Onshore wind Offshore wind PV 

Load 1 -0.05 0.17 0.05 
Onshore wind -0.05 1 0.15 -0.02 
Offshore wind 0.17 0.15 1 0.03 

PV 0.05 -0.02 0.03 1 
 
Table B-10 | Calculated correlation coefficients between normalised load, onshore wind, offshore 
wind and PV day-ahead forecast errors for Denmark in 2018  

 Load Onshore wind Offshore wind PV 

Load 1 -0.08 -0.03 0.08 
Onshore wind -0.08 1 0.27 0.00 
Offshore wind -0.03 0.27 1 -0.04 

PV 0.08 0.00 -0.04 1 

 Load Onshore wind Offshore wind PV 

Load 1 -0.08 0.06 0.07 
Onshore wind -0.08 1 0.18 -0.01 
Offshore wind 0.06 0.18 1 -0.06 

PV 0.07 -0.01 -0.06 1 
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Table B-11 | Calculated correlation coefficients between normalised load, onshore wind, offshore 
wind and PV day-ahead forecast errors for the UK in 2018  

 Load Onshore wind Offshore wind PV 

Load 1 -0.15 -0.04 -0.03 
Onshore wind -0.15 1 0.58 0.00 
Offshore wind -0.04 0.58 1 0.02 

PV -0.03 0.00 0.02 1 
 
Table B-12 | Calculated correlation coefficients between normalised load, onshore wind, offshore 
wind and PV day-ahead forecast errors for Italy in 2018  

 Load Onshore wind Offshore wind PV 

Load 1 0.00 - -0.02 
Onshore wind 0.00 1 - -0.06 
Offshore wind - - - - 

PV -0.02 -0.06 - 1 
 
Table B-13 | Calculated correlation coefficients between normalised load, onshore wind, offshore 
wind and PV day-ahead forecast errors for France in 2018  

 Load Onshore wind Offshore wind PV 

Load 1 0.01 - 0.00 
Onshore wind 0.01 1 - -0.03 
Offshore wind - - - - 

PV 0.00 -0.03 - 1 

 
Table B-14 | Calculated correlation coefficients between normalised load, onshore wind, offshore 
wind and PV day-ahead forecast errors for Spain in 2018  

 Load Onshore wind Offshore wind PV 

Load 1 0.03 - 0.10 
Onshore wind 0.03 1 - 0.09 
Offshore wind - - - - 

PV 0.10 0.09 - 1 
 
 
Table B-15 | Calculated correlation coefficients between normalised load, onshore wind, offshore 
wind and PV day-ahead forecast errors for the Netherlands in 2018  

 Load Onshore wind Offshore wind PV 

Load 1 -0.02 -0.06 0.05 
Onshore wind -0.02 1 -0.19 0.01 
Offshore wind -0.06 -0.19 1 0.01 

PV 0.05 0.01 0.01 1 
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B.3 Installed vRES capacity scenarios 

Table B-16 shows the assumed deployment of vRES capacity in the simulations. Note that in 
some countries, the capacity may fall between 2030 and 2040. This is because the underlying 
assumptions differ between ENTSO-E scenarios. However, this combination of scenarios 
corresponds to the most ambitious level of vRES deployment from a Europe-wide perspective, 
despite some small discrepancies at the level of individual countries. 
Table B-16 | Assumed installed vRES capacity per technology per country. The 2017 values are taken 
from EurObserv’ER (EurObserv’ER, 2018, 2019). The 2030 and 2040 capacities are taken from the 
Distributed Generation 2030 and Global Climate Agreement 2040 scenarios from ENTSO-E’s TYNDP 2018 
respectively (ENTSO-E & ENTSO-G, 2018). 

 Solar PV  Onshore Wind  Onshore Wind  Total vRES 

Country 2017 2030 2040  2017 2030 2040  2017 2030 2040  2017 2030 2040 

AT 1.2 7.8 5.6  2.8 5.0 5.5  2.8 5.0 5.5  4.1 12.8 11.1 
BE 3.9 6.9 22.0  2.0 3.3 7.7  2.0 3.3 7.7  6.7 12.5 38.0 
BG 0.1 4.2 2.5  0.7 1.3 1.5  0.7 1.3 1.5  0.8 5.5 4.0 
CH 1.9 9.4 12.6  0.1 0.4 2.6  0.1 0.4 2.6  2.0 9.7 15.2 
CZ 2.1 7.0 5.2  0.3 1.0 1.3  0.3 1.0 1.3  2.3 7.9 6.6 
DE 42.4 94.6 141.0  50.2 58.5 81.6  50.2 58.5 81.6  98.0 167.7 256.1 
DK 0.9 5.1 7.5  4.2 5.6 7.2  4.2 5.6 7.2  6.4 13.6 22.4 
EE 0.0 0.9 1.0  0.3 1.5 1.6  0.3 1.5 1.6  0.3 2.4 2.9 
EL 2.6 7.4 16.9  2.6 4.9 7.7  2.6 4.9 7.7  5.2 12.4 27.4 
ES 4.4 47.2 77.0  22.9 31.0 47.6  22.9 31.0 47.6  27.4 78.2 128.0 
FI 0.1 2.9 6.0  2.0 2.3 7.3  2.0 2.3 7.3  2.1 5.9 14.3 
FR 8.0 41.5 60.0  13.6 36.3 49.1  13.6 36.3 49.1  21.6 84.8 129.1 
HR 0.1 2.7 0.7  0.6 1.5 2.0  0.6 1.5 2.0  0.6 4.2 2.7 
HU 0.4 6.2 4.0  0.3 1.0 2.0  0.3 1.0 2.0  0.7 7.2 6.0 
IE 0.0 3.7 2.0  3.3 5.5 6.5  3.3 5.5 6.5  3.3 9.9 10.7 
IT 19.7 46.4 58.3  9.7 15.6 17.8  9.7 15.6 17.8  29.4 62.6 87.5 
LT 0.1 1.8 7.0  0.5 0.8 1.0  0.5 0.8 1.0  0.6 2.5 8.4 
LV 0.0 0.9 0.0  0.1 0.3 0.8  0.1 0.3 0.8  0.1 1.4 1.3 
NL 2.8 14.1 46.0  3.3 6.7 7.4  3.3 6.7 7.4  7.0 32.3 76.8 
NO 0.0 3.0 3.0  0.9 3.3 10.0  0.9 3.3 10.0  0.9 6.3 13.4 
PL 0.1 24.9 42.5  4.6 9.2 32.9  4.6 9.2 32.9  4.7 36.3 82.4 
PT 0.6 6.6 17.6  5.3 5.6 10.0  5.3 5.6 10.0  5.9 12.2 30.2 
RO 1.4 11.6 6.0  3.0 4.2 8.0  3.0 4.2 8.0  4.4 15.8 14.0 
SE 0.2 5.4 6.7  6.5 10.8 17.4  6.5 10.8 17.4  7.0 16.4 25.4 
SI 0.3 1.4 1.0  0.0 0.1 0.3  0.0 0.1 0.3  0.3 1.5 1.2 
SK 0.5 3.6 1.5  0.0 0.3 0.3  0.0 0.3 0.3  0.5 3.8 1.9 
UK 2.2 36.1 39.0  8.5 17.7 19.9  8.5 17.7 19.9  16.9 75.9 87.2 
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B.4 Cross-border trade and imbalance netting 
assumptions 

In this study, transmission limitations within and between countries are not considered. 
Instead, simulations are performed for two cases: (i) no cross-border trading/imbalance 
netting, and (ii) unhindered cross-border trading/imbalance netting. The assumptions made 
in both these cases are outlined below: 

• We do not consider intraday trading due to outages of power plants or transmission 
lines; thus, the volumes in this study are driven only by vRES and load forecast errors. 

• As we only model load and vRES without other technologies in the portfolio (e.g. gas 
power plants, batteries, hydro), any load which cannot be met by vRES is assumed to 
be supplied by a ‘residual’ technology(s) in the system. 

• We assume that all offers to sell or buy power on the intraday markets can be met 
by load (retailers), vRES suppliers, or from other market players with flexible 
generation or load assets (e.g. thermal plants, hydro, batteries) which we do not 
model. Thus, the total volume traded in an intraday period for a given country is the 
maximum of the stacked buy or sell offers (in MWh). 

• We assume that all possible trades in vRES generation and load are made within 
national intraday markets first. This results in a net notional short or long 
position/imbalance for each country. 

• In the case of no cross-border trading/imbalance netting: 
o The short/long positions per country are assumed to be met by residual 

technologies in the portfolio. In the case of a short system, this would most 
likely be a generation technology, or discharge from storage. In the case of 
long system, this could represent curtailment of vRES capacity, or charging 
of storage. 

• When cross-border trading/imbalance netting is allowed: 
o The country positions/imbalances are first netted over the whole system, 

assuming no limitations on transmission capacity. 
o Any remaining imbalances are met by residual technologies as above. 

However, in this case, the amount of residual across the system is lower. 

An example of the above approach is shown in Figure B-1. The top half of the figure shows 
intraday trading positions for three hypothetical countries in a single intraday trading period, 
before any cross-border trading has taken place. In Country A, expected production from solar 
PV based on an hour-ahead forecast is 100 MW lower than what was expected and sold on 
the day-ahead market; hence, they are expecting to be short at real time. Thus, the solar PV 
owner is seeking to buy 100 MW on the intraday market to balance their position. Meanwhile, 
more recent load forecasts from electricity retailers show that load is expected to be 200 MW 
higher than forecast the day before, and they are also seeking to buy electricity on the intraday 
market. However, hour-ahead forecasts for onshore and offshore wind producers suggest they 
will generate 50 and 75 MW more than their day-ahead positions respectively and – expecting 
to be long – are trying to sell this electricity on the intraday market. Thus, as a whole, the 
intraday market in Country A is 175 MW short. Across the border in Country B, onshore wind 
and PV producers are expecting to be short on their day-ahead position, while offshore wind 
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and retailers are expecting to be long, giving an expected overall long position of 75 MW. 
Country C is also expected to be long, but by a slightly lower amount of 50 MW. 

In the case where no cross-border trading is allowed, a total of 175 MW of residual upwards 
capacity would be required for Country A, while a total of 125 MW of downwards residual 
capacity would be needed for Countries B and C.  

In the case where cross-border trading is allowed, sellers located in Country B sell 75 MW of 
capacity to Country A. This would leave Country A still short 100 MW, Country B balanced, and 
Country C long 50 MW. Thus, 50 MW of capacity located in Country C is sold on Country A. 
Finally, the last remaining 50 MW of short capacity on the market is assumed to be provided 
by the residual portfolio. In this case, no negative residual capacity is required in the system, 
and the requirement for positive residual capacity is reduce to only 50 MW. 
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 Appendices to Chapter 4 
Abbreviations 
AD Anaerobic digestion 
CCS Carbon capture and storage 
CLC Corine Land Cover 
COP Coefficient of performance 
CSP Concentrating solar power 
DNI Direct normal irradiance 
DSM Demand-side management 
ECF European Climate Foundation 
ECMWF European Centre for Medium-

Range Weather Forecasts 
EEA European Environment Agency 
EEZ Exclusive Economic Zone 
ENTSO-E European Network of 

Transmission System 
Operators for Electricity 

ERA-Interim European Reanalysis Interim 
Dataset 

ETRI Energy Technology Reference 
Indicators 

EU European Union 
EV Electric vehicle 
FOM Fixed operating and 

maintenance 
GHG Greenhouse gas 
HDH Heating degree hour 
HP Heat pump 
HVAC High voltage alternating 

current 

HVDC High-voltage direct current 
IEC International Electrotechnical 

Commission 
ILUC Indirect land use change 
IPCC Intergovernmental Panel on 

Climate Change 
JRC Joint Research Centre 
LDC Load duration curve 
LoLP Loss of Load Probability 
LT Long term 
NAO North-Atlantic oscillation 
OCGT Open-cycle gas turbine 
PHS Pumped hydro storage 
PR Performance ratio 
PV Photovoltaic 
RES Renewable energy source 
RoR Run-of-river hydro 
STC Standard test conditions 
STO Storage hydro 
TYNDP Ten-Year Network Development 

Plan 
UCED Unit commitment and economic 

dispatch 
VOM Variable operating and 

maintenance 
vRES Variable renewable energy source 
 

Appendix C – Supplementary material to Chapter 4 
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C.1 Weather year selection 
The mean annual wind speed and annual global horizontal radiation received are calculated 
for each year of ERA-Interim (Figure C-1). Each year is then given a rank from 1 to 37 (1 being 
highest) based on the magnitude of the wind speed or radiation received in that particular 
year, as a proxy for the total renewable resource which would be available. By multiplying the 
wind speed and radiation rankings together (giving wind and solar radiation equal weighting), 
we arrive at a metric indicating how ‘good’ or ‘bad’ each weather year is in terms of both 
resources. From this analysis, we identify 2010 as the ‘worst’ (most challenging) year of those 
considered (Wind ranking: 37, radiation ranking: 32), and 1990 as the best year (wind ranking 1, 
radiation ranking 5). This selection is validated by the fact that the 2010 European winter was 
strongly affected by a very negative North Atlantic Oscillation (NAO), which resulted in lower 
wind speeds and colder temperatures (Commin et al., 2017). Thus, we use weather year 2010 
as the basis for the LT plan in our study. However, we note that at this aggregated level annual 
differences are quite small, with mean annual wind speed and radiation only 4% higher than 
the long-term (1979-2016) mean in the highest year, and 4% below the mean in the lowest 
year. A more detailed analysis including hourly ramps of residual load could reveal another 
year as more challenging, however the quantity and distribution of vRES capacity is not known 
until after the capacity expansion optimisation has been performed.   

Note that we do not consider variations in rainfall as mean EU+NO hydro generation between 
1990 and 2015 was 462 TWh y-1, with a standard deviation of 38 TWh y-1. The minimum 
generation was 394 TWh in 1991, however installed capacity was 28% lower at that time 
(Eurostat, 2017c). Thus, compared with total demand, potential wind and PV generation, 
interannual hydro variability is relatively small. To check the validity of the weather year 
selection method, we perform the LT Plan optimisation for the Base scenario for weather years 
2000 to 2015. The resulting generation portfolios (Figure C-2) confirm 2010 as the most 
challenging year in this period, with 2091 GW of generation capacity installed, 139 GW (7%) 
more than in the best year for RES supply (2012). Looking at Figure C-1, performing the 
optimisation for additional weather years (pre-2000) is unlikely to change this conclusion. 

C.2 Generator modelling 
This section outlines how each of the generator technologies is modelled. For wind and PV, 
the approach used is largely the same as outlined in Appendix A for Chapter 2, with some 
modifications as outlined below. 

Wind  

Wind generation is estimated by combining wind speeds calculated from ERA-Interim 
(ECMWF, n.d.) with assumed wind farm parameters as outlined in Appendix A. However, as 
Chapter 4 considers transmission and costs (which Chapter 2 does not), some additional 
parameters are accounted for. The cost of onshore wind farms is affected by the distance from 
the notional country load centre, as explained in 4.2.2.2. For offshore wind farms, offshore 
wind farms located within 40 km from shore are typically connected by medium voltage 
alternating current (MVAC) (< 35 kV) or HVAC (130 – 150 kV), while sites more than 40 km   
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Figure C-1 | Plot of mean annual 10-m wind speed and mean global horizontal radiation received 
in the study area based on ERA-Interim for weather years 1979-2015. The coloured bands indicate 
the interannual variability as ±1σ from the long-term (1979-2016) mean wind speed (4.55 m-1) and mean 
annual radiation (1209 kWh m-2). The axes’ scales are adjusted so that the variability bands for both 
parameters overlap. 
 

 
Figure C-2 | Optimised generation portfolio for the Base scenario, optimised for all weather years 
2000 to 2015 from ERA-Interim. The total capacity installed in each year is shown above the graph, 
confirming 2010 as a particularly challenging weather year with 2091 GW required to meet demand, 139 
GW (7%) more than in the best year (2012). 
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offshore are connected by HVDC (150 kV) technology in order to reduce losses (Vázquez 
Hernández et al., 2017). However, the economic choice between HVAC and HVDC is very 
project specific and depends on the size of the wind farm, distance from shore, local grid 
strength, and water depth. In this study, we follow a simpler approach by applying linear cost 
multipliers (𝐹𝐹𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜, 𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ) taken from an earlier study (EEA, 2009) to the reference offshore 
wind investment cost (𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖) to account for the mean distance from shore (𝑊𝑊𝑖𝑖̅̅ ̅) and mean 
water depth (𝐷𝐷𝑖̅𝑖) for each location 𝑖𝑖 (Eqs. (C-1)-(C-3)). This additional transmission capacity is 
not modelled explicitly as individual lines. 
 

𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ,𝑖𝑖 = {               1                    0 < 𝑊𝑊𝑖𝑖̅̅ ̅ ≤ 15
0.0125𝑊𝑊𝑖𝑖̅̅ ̅ + 0.812      15 < 𝑊𝑊𝑖𝑖̅̅ ̅ ≤ 50 (C-1) 

𝐹𝐹𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖 = {                     1                               0 < 𝐷𝐷𝑖̅𝑖 ≤ 10
0.00285𝐷𝐷𝑖̅𝑖 + 0.972                10 < 𝐷𝐷𝑖̅𝑖

(C-2) 

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖 =   𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,𝑟𝑟𝑟𝑟𝑟𝑟 ∗ 𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ,𝑖𝑖 ∗ 𝐹𝐹𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖 (C-3) 

PV 

PV generation is estimated by combining solar radiation data from ERA-Interim (ECMWF, n.d.) 
with assumed solar PV modules as outlined in Appendix A. Given that determining optimum 
PV mounting angles is very site specific1, we take a simple approach and assume a fixed PV 
tilt angle of 35°, with all panels mounted south.  

CSP 

We model CSP generators as solar tower (central receiver) plants equipped with full-tracking 
heliostats, using molten salt as a heat transfer fluid with 8 hour-storage capacity at nominal 
load. While currently more expensive than parabolic trough plants, we choose solar tower 
technology over other CSP technologies (e.g. parabolic trough or dish collectors, linear Fresnel 
reflectors) given its strong technical advantages (e.g. lower piping losses, higher operating 
temperature, hence higher efficiency and easier storage), better cost-reduction potential, and 
high prospective market share (H. L. Zhang et al., 2013)2. The solar field for each plant is sized 
assuming a solar multiple (SM) of 2.5 based on a design direct normal irradiance (DNI) of 
800 W m-2, and nominal power block steam cycle efficiency of 40% In these calculations, we 
also take into account fixed losses for the heliostat field (51%), with respect to incident DNI), 
receiver tower (1%), piping (1%), storage (injection/withdrawal) (1%), and plant parasitic losses 
(10%) (H. L. Zhang et al., 2013). Additional storage decay losses of 2% h-1 are assumed 
(Jorgenson et al., 2013). 

DNI profiles for each location are also derived from the ERA-Interim dataset. At present, CSP 
plants require DNI levels of at least 2000 kWh m-2 y-1 to be economic (IRENA, 2012). However, 
future cost reductions will lower the minimum DNI for cost competitiveness. On this basis, we 
allocate CSP capacity to grid cells with average DNI levels of 1600 kWh m-2 y-1 or higher, 
located mainly in Spain (80%), Portugal (10%), Italy (8%), Greece (3%) and Cyprus (0.5%). The 
area required for CSP plants is accounted for assuming a typical capacity density of 25 MW 
km-2 based on plants currently in operation (IRENA, 2013; NREL, 2017). 
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Hydropower 

Of the approximately 200 GW of hydro capacity currently installed in Europe3, 31% is RoR, 48% 
is STO, and 21% is PHS (Mennel et al., 2015). RoR plants have little or no significant storage 
capacity, and power generation is driven by natural river flows. STO plants utilise the potential 
energy difference between an upper and a lower reservoir (or river) to generate electricity 
when prices are high. The upper reservoir receives natural stream flows and runoff from 
surrounding areas and, depending on the storage volume, can store water for weeks or 
months. PHS plants are similar to storage plants, but can pump water from a lower reservoir 
back into their upstream reservoir to be used again. 

Total European hydro capacity is provided by thousands of individual plants, with capacity 
ranging from several megawatts to more than 1 GW. Accurately modelling hydro generation 
is very data intensive and requires information on the type of plant, the number and capacity 
of turbine/pumping units, as well as hydrological data of the reservoir inflows, and associated 
river networks. In this study, we take a simplified approach and aggregate hydro generation 
capacity per country according to the three plant categories (RoR, STO, PHS), based on data 
from ENTSO-E and Eurostat. First, the total required capacity per country is found by 
subtracting the capacity of the detailed individual plants from the total hydro capacity per 
country reported in Eurostat (Eurostat, 2017b). This total capacity is divided into the three 
hydro plants types based on a detailed plant list from ENTSOE, in order to reflect the 
proportions of RoR, STO and PHS in each country4. Assuming a typical size for each hydro 
plant type (RoR: 70 MW, STO: 100 MW, PHS: 400 MW) based on the same ENTSOE plant list, 
and average specific storage capacity per hydro plant calculated from an in-house hydro 
database (RoR: 60 MWh MW-1, STO: 1608 MWh MW-1, PHS: 113 MWh MW-1), the number of 
lumped hydro plants to represent the total hydro capacity per country can be found. With 
these assumptions, the modelled shares of RoR, STO and PHS capacity in Europe are 26%, 
47%, and 27% respectively, within the reported range (ENTSO-E, 2017b; Mennel et al., 2015). 
In the absence of inflow data, the lumped RoR and STO plants have their annual capacity 
factors capped at historical levels for each country based on Eurostat data. For lumped PHS 
plants, we assume that these are closed-loop pure PHS with no natural inflow, and set the tail 
storage volume equal to the head storage volume.  

Flexibility constraints and part-load performance of thermal generators 

Table C-1 shows the modelled flexibility constraints and start costs for each dispatchable 
generator type. The part-load efficiencies for all thermal generators are based on normalised 
profiles of Brouwer et al. (Brouwer et al., 2015), (Figure C-3). For those generators for which 
specific curves could not be found, the curve for a similar generator is assumed, namely: (i) the 
Gas-OCGT curve is applied to Bio-OCGTs as a similar technology, (ii) the Coal-PC curve is 
applied to Bio-FBs with and without CCS under the assumption that burning biomass does 
not affect part-load performance. CSP part-load performance is much like other thermal plants 
(see (Llorente García et al., 2011)). Unfortunately, due to model functionality issues, the part-
load performance of CSP plants could not be included in PLEXOS, and instead a constant 
power block efficiency of 40% is used.  
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Figure C-3 | Assumed part-load performance of thermal generators, based on (Brouwer et al., 2015) 
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Table C-1 | Assumed generator flexibility parameters and start costs for dispatchable generators 

Generator 
type 

Min. 
stable 
level 
(%)* 

Max. 
ramp rate 
(% min-1)* 

Time since 
offline (h) 

 Start-up 
time (h) 

 Start-up cost 
(€ MW-1) *c 
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Hydro (all) - 50% - - -  - - -  - - - 

Bio-FB b 20% 6% <8 <48 >48  2 4 8  39 46 75 

Bio-OCGT b 20% 15% <8 <48 >48  ¼ ¼ ½  13 16 23 

CSP 20% 6% <2 <8 >24  ¼ ½ 2  27 39 57 

Geothermal 20% 4% <8 <48 >48  1 2 3  27 39 57 

Gas-OCGT g 20% 15% <8 <48 >48  ¼ ¼ ½  13 16 23 

NGCC 25% 9% <8 <48 >48  1 2 3  27 39 57 

NGCC-CCS a 25% 9% <8 <48 >48  1 2 3  27 39 57 

Coal-PC 20% 6% <8 <48 >48  2 4 8  39 46 75 

Coal-PC-CCS 20% 6% <8 <48 >48  2 4 8  39 46 75 

Bio-FB-CCS ab 20% 6% <8 <48 >48  2 4 8  39 46 75 

Nuclear 20% 5% <8 <48 >48  3 8 20  39 46 75 

Source d e f  g  h 

*  In terms of installed capacity 
a CCS technology is assumed not affect flexibility compared with traditional plants (AEMO, 2017) 
b  Combustion of biomass is assumed not to affect flexibility parameters compared with fossil fuels 
c  No start costs could be found for CSP or geothermal. For CSP and geothermal, costs for NGCC assumed. For Bio-FB, 

start costs assumed same as Coal-PC pulverised coal plants, as start costs for plants using solid fuels appear more 
expensive than for gaseous fuels (Lew et al., 2013).  

d  Hydro: (ACIL Allen Consulting, 2014), CSP: (Yildiz et al., 2017), Rest: (Brouwer et al., 2015)  
e CSP: (Fichter, 2012), Geothermal: (Matek, 2015), Hydro: (Black & Veatch, 2012), Rest: (Brouwer et al., 2015) (for 2030) 
f  CSP: (Yildiz et al., 2017). Rest: (Brouwer, Van den Broek, et al., 2016) (for 2030) 
g  CSP: (Yildiz et al., 2017), Geothermal: Assumed same as NGCC, Rest: (Brouwer et al., 2015) (for 2030) 
h  Geothermal, CSP: Assumed same as NGCC, Bio-FB: Assumed same as pulverised coal plant, Rest: (Brouwer et al., 2015) 

(for 2030)  
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C.3 Capacity credit of vRES generators 
Various methods for estimating the capacity credit of vRES are reported in the literature, such 
as chronological reliability models and probabilistic methods, typically incorporating values 
for the LoLP (Amelin, 2009; Ensslin et al., 2008; IEA, 2011). These methods can be 
computationally intensive and are not easily integrated into the PLEXOS capacity expansion 
algorithm. In the case of wind power, several authors have shown that at low wind penetration, 
its capacity credit is close to the average production of wind power during periods of peak 
demand, but decreases as the penetration of wind increases due to deployment in less 
favourable sites (Holttinen, 2004; Milligan & Parsons, 1999).  

In this study, we base our approach on the simplified approach of Milligan (Milligan & Parsons, 
1999) to estimate the capacity credit of vRES as the average capacity factor observed during 
peak system demand hours, based on all available weather years (1979-2015). To demonstrate, 
we calculate the capacity factor for each vRES technology for each grid cell, for the top 0.01%, 
0.1%, 1%, 5%, 10%, and 30% of the peak load hours5.  For comparative purposes we do this 
not only for the Base 2015 load profile, but also for the actual load profiles from 2012-2015, 
as well as four future demand profile scenarios from ENTSO-E’s TYNDP (Vision 1,2,3,4). The 
results are shown in Figure C-1, revealing that irrespective of the demand profile considered, 
the capacity credit of both PV technologies is essentially zero as the sun is almost never shining 
during hours of peak demand. Wind capacity credit is much more variable from site to site 
(e.g. some sites have a capacity credit above 80% while others have zero), and from year to 
year. Thus, rather than taking the average capacity factors averaged across all weather years 
from 1979 to 2015 as the capacity credit, we take the capacity factors from the year with the 
lowest average capacity factor during the peak 1% of demand hours6.  

To demonstrate, Figure C-2 shows the resulting distribution of wind capacity credit across all 
grid cells, based on the year with the lowest average capacity factor during the top 1% of 
demand hours. Onshore wind capacity credit ranges from 0% to 59% with a median of 12%, 
and offshore wind capacity credit ranges from 0% to 56%, with a median of 10%. PV receives 
a capacity credit of zero in essentially all grid cells. 
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Figure C-5 | Distribution of capacity credit for onshore and offshore wind across all grid cells, using 
the Base demand profile. The capacity credit is taken as the year with lowest average capacity factor 
calculated during the top 1% of demand hours. 
 

C.4 Demand response 
Various studies have estimated the potential of DSM in Europe, given its ability to reduce peak 
demand, reduce network congestion, and provide balancing reserves. However, there are a 
wide range of values reported in the literature. In this study, we base the 2050 DSM potential 
on the work of Gils (Gils, 2014), as potentials are provided explicitly for each country. We 
aggregate the 30 different processes from Gils’ original study into 11 groups of similar 
processes as shown in Table C-2, using the same grouping as Brouwer et al. (Brouwer, Van 
den Broek, et al., 2016). A total of 16 GW of load shedding and 82 GW of load shifting is 
included. Load shedding can be activated freely by the model if it is cost-effective to do so; 
however, load shifting availability is capped at 12.5% of the year for each process. Also, the 
potential of some shifting processes varies seasonally (e.g. no shifting potential from heating 
during summer or from air-conditioning during winter). Due to computational limitations, only 
demand shedding is included in the long-term capacity expansion algorithm. In the short-
term UCED, both demand shedding and demand shifting are included. 
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Table C-2 | Assumed DSM potentials and costs by process 

Sector Process Type Max 
shift (h) 

Technical 
Potential 

(GW) 

Utilised Potential 
FOM 

(€ kW-1 y-1) 
VOM 

(€ kWh-1) Technical 
(%) GW 

Industry 
Electrolytic 

metal 
production 

Shed ∞ 1.5 90% 1.3 1.1 1072 

Industry 
Electric arc 

steel 
production 

Shed ∞ 5.7 90% 5.1 1.1 2144 

Industry Chloralkali 
process Shed ∞ 1.5 90% 1.5 1.1 107 

Industry Cement and 
other Shed ∞ 3.6 90% 3.2 17.1 750 

Industry Pulp and paper 
production Shed ∞ 5.8 90% 5.3 14.0 107 

All Shift 1 h load 
by 2 h 

Shift 
(delay) 2 26.3 33-90% 12.3 3.2 0 

All Shift 2 h load 
by 2 h 

Shift 
(delay) 2 7.5 33-90% 4.5 3.2 0 

Tertiary & 
Residential 

Air 
conditioning 

Shift 
(advance) 2 5.1 33-90% 2.1 18.2 0 

Tertiary & 
Residential 

Space and 
water heating 

Shift 
(advance) 12 154.4 33-90% 55.3 3.2 0 

Residential 

Washing 
machines, 

dryers, 
dishwashers 

Shift (delay) 6 10.5 33% 3.5 107.2 0 

Residential Freezers & 
refrigerators Shift (delay) 2 14.1 33% 4.7 46.1 0 

Source   a a b  b,c b,c 

a Source: (Gils, 2014) 
b Source: (Bertsch et al., 2012) 
c Source: (Brouwer, Van den Broek, et al., 2016) 
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C.5 Installed capacity constraints per grid cell 
The spatial grid and capacity constraints for wind and PV are the same as the approach used 
in Chapter 2 and explained in detail in Appendix A. Some modifications were made to account 
for CSP as explained below. 

We assume that the suitable land types for CSP are the same as for utility PV. The availability 
for each Corine land class (CLC) and DNI cut-off point are adjusted until the assumed 
exogenous 200 GW of CSP capacity in the Base scenario can accommodated – with a 
preference for non-agricultural and non-vegetated land. The resulting land types used for CSP 
are 6% for non-irrigated arable land (CLC code 211), 3% of permanently irrigated land (CLC 
code 212), 5% of pastures (CLC code 231), 5% of agricultural land with significant natural 
vegetation (CLC code 243) and 50% of sparsely vegetated areas (CLC code 333). Ultimately, 
the 200 GW of CSP capacity can be accommodated with the assumed availability given and a 
DNI cut-off level of 1600 kWh m-2 y-1. Thus, the availability for CSP is not taken as a hard 
constraint (as with PV or wind) but indicates the area which would need to be deployed in 
order to accommodate 200 GW of CSP. 
 

C.6 Biomass fuel potentials and costs 
Country-specific biomass potentials and cost scenarios for 2050 are taken from a study by the 
JRC (Ruiz et al., 2015). Of the 22 biomass commodities included in the original study, we 
exclude six due to a lack of data, or on the assumption that they will be used for another 
sector. The remaining 16 biomass types are aggregated into three categories (solid woody 
biomass7, solid waste biomass, and biogas substrate) based on the form of the biomass, and 
its suitability for generating electricity with a particular technology. Three different levels of 
biomass supply are considered as shown in Table C-3, ranging from 6 EJ y-1 to 19 EJ y-1. The 
medium scenario level of 10 EJ y-1 is used for all the base model runs. The supply potential for 
each scenario per country is shown in Table C-4. 

We allow for the free trade and transport of solid woody biomass across Europe, assuming 
intra- and inter-country transport costs (Table C-5) taken from Hoefnagels et al. (Hoefnagels 
et al., 2014), which are added to the base feedstock costs (Table C-4). The costs in Table C-3 
include the costs of biomass production, harvesting, transport, and pre-treatment (e.g. 
chipping, road-side storage) up-to the conversion gate in each country. While this is sufficient 
for the solid woody and waste biomass streams, the cost of producing useful biogas from 
substrates are not included and must be added.  
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Footnotes for Table C-3 
a Sugar, starch and oil crops (potential 2.3 – 2.6 EJ y-1) are reserved for liquid biofuel production in the transport sector. 
b  No supply potential data available in the original study 
c No supply potential data available in the original study, though only relevant for countries with significant pulp and 

paper industries (e.g. FI, SE, DE). 
d Original costs in €2010 corrected to €2016 based on historical inflation rates. Includes the cost of biomass production, 

harvesting, transport, and pre-treatment up-to the conversion gate. The costs of converting the feedstock into useful 
energy (e.g. anaerobic digestion for biogas) are not included. The range given indicates the cost difference between 
the lowest-cost country and the highest-cost country for each fuel 

e  Supply scenarios are based on different levels of raw material demand, collection rates, recycling rates, and competing 
uses. For example, the Med scenario assumes 50% to 60% of primary forestry residues, secondary forestry residues, 
agricultural wastes and energy crops are used in other sectors. 

f Stemwood logwood (241 – 334 PJ y-1) assumed to be reserved for domestic heating. 
g Includes municipal solid (bio) waste, roadside verge grass, vegetable waste, shells/husks 
h Includes sewage sludge, paper and cardboard waste, dredging spoil 
i The original study was unclear regarding the costs for biodegradable waste. Waste streams can have zero or even 

negative cost, if their producer must pay for disposal. However, some wastes are traded commodities, and for these 
the price can be significant (e.g. waste paper and cardboard, approximately 120 € t1 or 8 € GJ-1 (Ruiz et al., 2015)). 
Wastes cost per country varied considerably from 0 € GJ-1 to 128 € GJ-1, which seems rather unreasonable. Thus, we 
assume a uniform cost of 6 € GJ-1 for biodegradable wastes, the same as other tertiary wastes. 

 
Before they can be used for electricity generation, biogas substrates from municipal and 
agricultural wastes must be converted to biogas using anaerobic digestion (AD). The raw 
biogas product, which typically contains 50 – 60% methane (CH4), can then be either (i) 
combusted locally at the generation site (e.g. in a gas engine or gas turbine) to produce 
electricity which is used on site or fed into the grid, or (ii) further upgraded to biomethane 
(>98% CH4), injected into the gas network, and combusted elsewhere for electricity production 
(Hahn, Krautkremer, et al., 2014). The AD process typically results in 5% energy loss due to 
internal process heating requirements (ECN, 2017), while the losses involved in biogas 
upgrading, depending on the technology, are minimal (Sun et al., 2015). Thus, assuming 95% 
efficiency for AD, we consider that 1 GJ substrate is equivalent to 0.95 GJ raw biogas, and 
0.95 GJ biomethane.  

The choice between generating electricity onsite or injecting into the gas grid is an economic 
one. Whether they produce electricity (and heat) or generate biomethane for grid injection, 
biogas plants are usually limited in size due as: i) increased transport costs for input substrates 
and AD residues which offset lower specific investment costs (AEBIOM, 2009), ii) limited 
availability of local substrate resources, iii) limited economies of scale for AD and upgrading 
plants, irrespective of the technology used (Bauer et al., 2013; Skovsgaard & Jacobsen, 2017), 
and iv) in agricultural settings biogas is often used for combined heat and power (CHP) rather 
than electricity-only production, for which there must be sufficient heat demand to warrant 
operating the CHP plant (Skovsgaard & Jacobsen, 2017). Several studies have estimated the 
cost of biogas production, upgrading and injection into the gas grid, depending on the 
technology used (e.g. (Bauer et al., 2013; Hahn, Krautkremer, et al., 2014; Hengeveld et al., 
2014; Muñoz et al., 2015)). However, the different ways these costs are reported makes a 
consistent comparison difficult. In this study, we take the values from (Hengeveld et al., 2014) 
and assume an additional cost of 10.4 € GJ-1 substrate for the conversion of substrates to 
biogas by AD, and a further 3.2 € GJ-1 to upgrade the biogas to biomethane for injection into 
the gas grid so it can be used in other countries. In order to avoid infeasible solutions, we 
model biomass supply as a soft constraint by allowing the model to draw on additional biogas 
supply, at the significantly higher cost of 100 € GJ-1. 
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Table C-4 | Biomass feedstock potentials considered for the low, medium and high availability 
scenarios in 2050. Based on (Ruiz et al., 2015). 

Country 
Solid woody 

biomass (PJ y-1) 
(Low / Med / High) 

Solid waste 
biomass (PJ y-1) 

(Low / Med / High) 

Biogas substrate 
(PJ y-1) 

(Low / Med / High) 

Total 
(PJ y-1) 

(Low / Med / High) 
AT 147 / 249 / 491 6 / 11 / 13 3 / 9 / 15 156 / 269 / 519 

BE 33 / 67 / 140 29 / 54 / 68 22 / 58 / 92 83 / 179 / 300 

BG 88 / 156 / 329 3 / 4 / 4 3 / 6 / 8 93 / 166 / 342 

CH b 52 / 106 / 221 21 / 32 / 39 3 / 7 / 10 76 / 144 / 270 

CY 1 / 1 / 4 2 / 3 / 3 3 / 5 / 6 6 / 9 / 12 

CZ 118 / 221 / 431 3 / 4 / 5 35 / 43 / 51 156 / 268 / 486 

DE 668 / 1075 / 2084 76 / 132 / 169 52 / 117 / 180 797 / 1324 / 2432 

DK 29 / 60 / 129 20 / 29 / 33 32 / 44 / 56 80 / 132 / 218 

EE 46 / 76 / 151 3 / 4 / 5 7 / 8 / 10 55 / 88 / 165 

EL 41 / 68 / 187 2 / 3 / 4 4 / 8 / 13 46 / 80 / 204 

ES 385 / 633 / 1436 23 / 38 / 47 76 / 112 / 147 484 / 783 / 1630 

FI 248 / 432 / 871 10 / 17 / 22 4 / 8 / 12 262 / 457 / 905 

FR 632 / 975 / 1894 66 / 114 / 145 56 / 258 / 461 754 / 1347 / 2500 

GB a 138 / 214 / 354 16 / 22 / 25 67 / 153 / 238 221 / 389 / 617 

HR 26 / 47 / 112 0 / 0 / 0 2 / 3 / 4 29 / 51 / 116 

HU 147 / 261 / 526 7 / 12 / 15 55 / 64 / 73 209 / 337 / 614 

IE 31 / 54 / 105 2 / 3 / 3 4 / 18 / 33 37 / 75 / 140 

IT 235 / 441 / 977 26 / 43 / 53 55 / 116 / 177 316 / 600 / 1206 

LT 60 / 106 / 201 1 / 2 / 2 15 / 17 / 19 76 / 125 / 222 

LU 3 / 6 / 12 0 / 0 / 0 0 / 2 / 3 4 / 8 / 16 

LV 77 / 145 / 300 1 / 1 / 1 6 / 9 / 11 84 / 155 / 312 

NI a 9 / 13 / 22 1 / 1 / 2 4 / 9 / 15 14 / 24 / 38 

NL 29 / 42 / 79 37 / 68 / 89 26 / 49 / 73 92 / 159 / 241 

NO b 95 / 184 / 390 20 / 33 / 42 1 / 4 / 7 116 / 222 / 439 

PL 430 / 740 / 1389 20 / 33 / 41 73 / 96 / 118 524 / 869 / 1548 

PT 80 / 144 / 317 10 / 18 / 23 13 / 25 / 36 103 / 186 / 376 

RO 388 / 663 / 1209 7 / 10 / 12 15 / 21 / 27 410 / 695 / 1248 

SE 388 / 683 / 1407 23 / 35 / 42 7 / 20 / 33 418 / 737 / 1482 

SI 39 / 72 / 151 1 / 1 / 1 1 / 2 / 2 41 / 74 / 155 

SK 50 / 95 / 191 3 / 5 / 6 9 / 12 / 16 63 / 113 / 213 

Total 4711 / 8031 / 16108 437 / 730 / 914 654 / 1302 / 1942 5803 / 10063 / 18964 
a Original data reported for UK only. Split between GB and NI in proportion to land area 
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C.7 Demand assumptions 
The Base demand profile is the same used in Chapter 2, and fully explained in Appendix A. 
Figure C-6 shows the total aggregated base demand profile for the EU28, Norway and 
Switzerland during (a) a typical winter week and (b) a typical summer week. For comparison 
the actual 2015 demand is also shown, the original TYNDP 2016 Vision 4 demand profile, and 
the Alternative Demand Profile (Vision 4 demand profile scaled up to the Base 4409 TWh y-1) 
variants included in this study. The Base profile is peakier than the Vision 4 profile, mainly due 
to the impact of EV charging. This is because the Vision 4 profile includes the effect of EV 
smart charging, which shifts some demand into the night.  

 

 
Figure C-6 | Comparison between the input demand profiles for a typical (a) winter and (b) summer 
week respectively. Demand is shown as the total for the EU28 plus Norway and Switzerland. 
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C.8 Transmission modelling 
We use a ‘centre-of-gravity’ approach to model transmission flows between countries, with 
the urban area-weighted centres of each country serving as node terminals. Taking the existing 
net transfer capacity (NTC) in 2016 from ENTSO-E (ENTSO-E, 2017b) as a starting point 
(approximately 60 GW total capacity, some soon-to-be-commissioned lines are also included) 
which are included exogenously in all scenarios (see Table C-6), the model can build new 
transmission capacity if this reduces total system costs. Note that for simplicity, the 
transmission lines in Table C-6 are modelled as bi-directional with the same NTC value in both 
flow directions (i.e. NTCCH-AT = NTCAT-CH). The cost of transmission reinforcement is estimated 
by finding the shortest path distance between two country nodes, and calculating the total 
cost as the sum of the onshore and offshore components. We assume subsea high voltage 
direct current (HVDC) cables are used for underwater lines and high voltage alternating current 
(HVAC) for land-based lines8. For vRES technologies, we assume that generation capacity is 
located at the centroid of each grid cell and calculate the shortest transmission cost-path 
distance (across either land or sea) to the nominal load centre (Figure C-7). This additional 
transmission cost (in € MW-1) is then added to the base investment cost, making capacity 
installed at more remote sites relatively more expensive. These notional ‘reinforcement lines’ 
are not modelled explicitly as part of the transmission network, and only serve to include the 
cost of bringing electricity from vRES sites to load centres. 

 

 
Figure C-7 | Example of the ‘centre of gravity’ approach used to estimate grid reinforcement costs 
for wind and PV.  
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Table C-6 | Assumed reference transmission capacity (2016), reinforcement cost and losses for each 
transmission line (ENTSO-E, 2017b) 

Line 
Reference 

NTCa 
(MW) 

Line length (km) Reinforcement 
cost 

(2016 €000 MW-1) 

Losses 
(%) Land 

(HVAC) 
Subsea 
(HVDC) Total 

CH-AT 1200 520 0 520 408 3.5% 

CZ-AT 525 235 0 235 227 1.6% 

DE-AT 4000 497 0 497 394 3.4% 

DE-BE 0 369 0 369 313 2.5% 

DE-CH 2000 443 0 443 360 3.0% 

DE-CZ 867 431 0 431 352 2.9% 

DK-DE 585 463 153 616 830 5.0% 

EL-BG 250 576 0 576 445 3.9% 

EL-CY 0 0 1138 1138 1914 5.3% 

FI-EE 888 257 92 349 612 3.4% 

FR-BE 1850 438 0 438 357 3.0% 

FR-CH 3083 405 0 405 336 2.7% 

FR-DE 1800 663 0 663 499 4.5% 

FR-ES 450 945 0 945 680 6.4% 

GB-BE 1000b 355 130 485 728 4.2% 

GB-DK 1400c 328 579 907 1340 5.5% 

GB-FR 1750 681 55 736 831 6.1% 

HU-AT 300 358 0 358 305 2.4% 

HU-HR 700 326 0 326 285 2.2% 

IE-FR 0 662 513 1175 1460 7.6% 

IE-GB 500 258 180 437 736 3.7% 

IT-AT 85 616 0 616 470 4.2% 

IT-CH 1656 556 0 556 432 3.8% 

IT-EL 417 907 170 1077 1136 8.0% 

IT-FR 943 885 0 885 641 6.0% 

LU-BE 0 167 0 167 184 1.1% 

LU-DE 1700 282 0 282 257 1.9% 

LU-FR 0 393 0 393 328 2.7% 

LV-EE 462 234 0 234 226 1.6% 

LV-LT 829 187 0 187 197 1.3% 
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NI-GB 500 533 56 590 739 5.1% 

NI-IE 1100 184 0 184 195 1.2% 

NL-BE 946 151 0 151 174 1.0% 

NL-DE 2258 336 0 336 292 2.3% 

NL-DK 700 339 271 609 915 4.5% 

NL-GB 975d 294 235 529 837 4.1% 

NO-DE 1400e 676 580 1256 1563 7.9% 

NO-DK 850 472 222 694 932 5.3% 

NO-FI 100 2208 0 2208 1484 14.9% 

NO-GB 1400f 534 693 1227 1631 7.3% 

NO-NL 665 546 540 1086 1424 6.9% 

PL-CZ 567 342 0 342 295 2.3% 

PL-DE 2086 679 0 679 510 4.6% 

PL-LT 500 497 0 497 394 3.4% 

PT-ES 2954 492 0 492 391 3.3% 

RO-BG 100 331 0 331 288 2.2% 

RO-HU 300 480 0 480 383 3.2% 

SE-DE 615 772 245 1017 1155 7.4% 

SE-DK 1403 499 0 499 395 3.4% 

SE-FI 2633 411 216 627 885 4.8% 

SE-LT 0 430 401 830 1155 5.6% 

SE-NO 2837 386 0 386 323 2.6% 

SE-PL 275 674 225 899 1065 6.6% 

SI-AT 950 181 0 181 192 1.2% 

SI-HR 800 157 0 157 178 1.1% 

SI-HU 0 367 0 367 311 2.5% 

SI-IT 181 527 0 527 413 3.6% 

SK-CZ 1200 296 0 296 266 2.0% 

SK-HU 400 154 0 154 176 1.0% 

SK-PL 458 340 0 340 294 2.3% 
a Taken from ENTSO-E (ENTSO-E, 2017b) unless otherwise stated 
b  Includes the 1 GW NEMO link (http://www.nemo-link.com/)  
c Includes the 1.4 GW Viking link (http://viking-link.com/) 
d Includes the 700 MW Cobra cable (http://www.cobracable.eu/) 
e Includes the 1.4 GW NordLink cable (https://www.tennet.eu/our-grid/international-connections/nordlink/) 
f Includes the 1.4 GW North Sea Link (http://northsealink.com/) 
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C.9 Operating reserves 
Operating reserves are required to balance out mismatches between demand and generation 
due to (i) demand forecast errors, (ii) vRES forecast errors, and (iii) unplanned generator 
outages. These reserves take the form of additional (non-dispatched) generation capacity 
which can be made available when required at short notice. The provision of these reserves 
results in additional costs; therefore, in a power system with a heavy reliance on vRES, it is 
important to ensure sufficient reserve capacity is available. 

There is no standard method used to determine the required reserve size. In this study, we 
follow the approach of Brouwer et al. (Brouwer, Van den Broek, et al., 2016) by considering 
three types of reserves: (i) spin-up: fast-responding spinning (within 5 minutes) up-regulation 
reserves, based on 1h-ahead forecast errors of wind and PV generation, available for 15 
minutes; (ii) spin-down: fast-responding spinning (within 5 minutes) down-regulation reserves, 
also based on 1h-ahead forecast errors of wind and PV generation, available for 15 minutes; 
and (iii) stand-up: slower-responding standing reserves (available within 60 minutes), based 
on day-ahead forecast errors of wind and PV generation, available for 15 minutes. In addition 
to the vRES forecast errors, we also account for demand forecast errors and unplanned 
generator outages in the spinning reserves (see Figure C-8). 

 

Figure C-8 | Reserve sizing approach 
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Figure C-9 | Probability density plots of hourly forecast errors from day-ahead predictions for (a) 
onshore wind (b) offshore wind and (c) PV in Germany for the year 2016, based on ENTSO-E data 
(ENTSO-E, 2017b). Forecast errors are expressed as a percentage of total installed capacity (Onshore wind 
41.4 GW, offshore wind 3.3 GW, PV 38.6 GW) using 50 bins. The original data at 15-min resolution is 
averaged to match the coarser hourly temporal resolution used in our study.  Errors are fit to both the 
Normal and Laplace distributions, revealing the Laplace distribution as a better fit in agreement with 
Morbee (Morbee et al., 2013). The vertical red lines indicate 95% of all forecast errors based on the fitted 
Laplace distributions. Note that for PV, we exclude hours in which either predicted or actual PV generation 
is zero.  
 
There are two main approaches to estimate vRES forecast errors: (1) determine typical errors 
for existing forecast methods, or (2) synthesise forecasts for each generation technology, and 
determine the errors. For the stand-up reserve requirement, we use the first approach and 
assume that the day-ahead vRES forecasts reported by ENTSO-E (ENTSO-E, 2017b) are 
representative of the best forecasting methods available. Calculating the day-ahead forecast 
errors for each hour of 2016 for Germany9, we fit these data to Laplace distributions following 
the approach of Morbee et al. (Morbee et al., 2013) (see Figure C-9). These graphs show that 
as a share of installed capacity, day-ahead forecast errors for onshore wind are better than for 
offshore wind. Also, we see that the Laplace fit is poorer for PV than for wind, due mainly to 
the large number of hours with very low PV generation, and hence concomitantly small 
forecast areas. Rather than determining a fixed annual reserve size from these graphs which 

(b) Offshore wind (a) Onshore Wind 

(c) PV 
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would overestimate the required reserves, we use the dynamic reserve sizing method of Lew 
et al. (Lew et al., 2013) (also used by Brouwer et al. (Brouwer, Van den Broek, et al., 2016)) to 
estimate hourly reserves by binning vRES forecast errors into tranches, according to a limited 
number of variables. For each technology, we use eight three-hour bins for the period of the 
day (12am – 3am UTC … 9pm – 12pm UTC), and eight generation bins, giving a total of 64 
tranches. Fitting the tranche errors to Laplace distributions, we calculate the forecast error in 
each tranche as a share of installed capacity (e.g. see Figure C-10 for an example). The standing 
reserves are then calculated by multiplying our vRES generation profiles by these typical day-
ahead error tranches, assuming reserves must cover 95% of day-ahead forecast errors. 

 

 
Figure C-10 | Calculated day-ahead vRES forecast errors as a function of actual generation for (a) 
onshore wind, (b) offshore wind, and (c) PV production for Germany in 2016 for the 6am – 9am time-of-
day tranche. The red and blue lines indicate the 95% confidence limits for each generation level tranche, 
assuming the errors are Laplace distributed. 
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For spinning reserves, no publicly available historical hour-ahead vRES forecasts could be 
found to estimate typical hour-ahead forecast errors. Instead, we take the second approach 
and generate our own hour-ahead persistence forecasts from the ‘actual’ generation patterns 
to estimate wind and PV forecasts errors, again following the method of Lew et al. (Lew et al., 
2013) and Brouwer et al. (Brouwer, Van den Broek, et al., 2016)10. However, as our persistence 
forecasts are likely to be less accurate than the advanced methods used by TSOs, slightly 
different variables and binning methods are used for PV and wind as explained below: 

• For solar PV (both rooftop and utility), simple hour-ahead persistence forecasts often 
lead to significant positive forecast errors in the morning as the sun rises, and 
negative forecast errors in the evening as the sun sets (Lew et al., 2013); however, 
these diurnal generation patterns can be accurately predicted without the need for 
complex weather models by using solar position calculations, assuming clear-sky 
conditions. Thus, we improve the simple persistence forecast to account for the 
predictable diurnal pattern of PV by calculating the forecast generation 𝐹𝐹 (MW) at a 
given hour 𝑡𝑡 using the equation below (Lew et al., 2013), where 𝑃𝑃 is the actual PV 
generation (MW), 𝑃𝑃𝐶𝐶𝐶𝐶 is the expected power generation under clear sky conditions 
(calculated using the same method for PV described in Appendix A but assuming a 
constant clear-sky value of 0.8 for 𝑘𝑘𝑡𝑡(Erbs et al., 1982)), and 𝑆𝑆𝑆𝑆𝑆𝑆 is the solar power 
index – the ratio between actual generation and clear-sky generation (𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑃𝑃/𝑃𝑃𝐶𝐶𝐶𝐶) 
which reflects the level of cloud cover. As future SPI is not known, we take the 
persistence of SPI (𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) = 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡 − 1)) 

𝐹𝐹(𝑡𝑡) = 𝑃𝑃(𝑡𝑡 − 1) + 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡)[𝑃𝑃𝐶𝐶𝐶𝐶(𝑡𝑡) − 𝑃𝑃𝐶𝐶𝐶𝐶(𝑡𝑡 − 1)] (C-4) 

  
We use eight three-hour bins for the period of the day (12am – 3am UTC, 3am – 6am 
UTC … 9pm – 12pm UTC), and eight (equally spaced) generation level bins for in each 
period, giving a total of 64 tranches. By assuming the forecast errors in each tranche 
also follow a Laplace distribution (as we found for day-ahead errors), we determine 
upper and lower confidence limits which cover 95% of forecast errors. For tranches 
with fewer than 10 members and therefore difficult to fit to a reliable distribution, we 
maintain the upper and lower limits of the previous tranche. 

• For onshore wind, we find that hourly persistence forecasts also lead to a diurnal bias, 
with positive forecast errors in the morning and negative forecast errors in the 
evening – most likely due to the effects of morning sea breezes and afternoon land 
breezes (see Figure C-11). While these biases could be accounted for with regression 
or improved forecast methods, this is beyond the scope of this paper and by using 
the same period-of-day and generation level bins as for PV, we account for the 
different spin-up and spin-down requirements throughout the day. For offshore 
wind, we find no diurnal bias in forecast errors, but maintain the same 64 tranches 
for time-of-day and generation level for consistency. 
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Figure C-11 | Hour-ahead forecast errors as a function of actual generation for the Base scenario 
capacity distribution for onshore (a,b) and offshore (c, d) wind, for a morning and evening period 
tranche. The actual generation and persistence forecasts are based on ERA-Interim weather year 2010. 
The spin-up and spin-down requirements are based on the upper and lower 95% confidence limits, shown 
in red and blue respectively. 
 
Assuming that for short time steps individual forecast errors are uncorrelated, the combined 
spin-up reserve  requirement is calculated as the geometric sum of the reserve requirements 
to cover wind forecast errors, PV forecast errors, load forecast errors, and a system wide N-2 
generator contingency of 3 GW  (Brouwer, Van den Broek, et al., 2016). 

C.10 Indirect greenhouse gas emissions 
Although all the 100% RES scenarios we model result in no direct GHG emissions, RES 
generation technologies can also result in indirect GHG emissions arising not from the 
generators themselves, but from upstream activities such as mining, and fuel transport. 
Performing rigorous environmental life-cycle analysis is beyond the scope of this study; 
however, we can make a rough estimate and comparison of the indirect GHG emissions of our 
100% RES scenarios, using indirect emissions factors available from the JRC given in Table C-7 
(JRC, 2014). The results are given in Figure C-12, showing that most 100% RES scenarios result 
in indirect emissions of approximately 250 Mt CO2eq y-1, a 100 Mt CO2eq y-1 (71%) increase from 
the current indirect emissions of about 150 Mt CO2eq y-1. While this is a significant relative 
increase, it should be kept in mind that the 100% RES scenarios also result in a saving of 
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1100 Mt CO2eq y-1 of direct GHG emissions compared with 1990 levels. Furthermore, this 
100 Mt CO2eq y-1 could be offset by replacing approximately 16 GW of the Bio-FB capacity with 
Bio-FB-CCS. 

Biomass is the largest source of indirect emissions due to cultivation, harvesting and transport. 
Note that while emissions from indirect land use change (ILUC) are not considered above, they 
are unlikely to be significant as almost all the biomass used by the model derives from 
agricultural and forestry industry residues and wastes, not from dedicated energy crops which 
would displace existing forests. Furthermore, forested areas are completely excluded from the 
list of suitable locations for the deployment of vRES capacity. 

 

 

Figure C-12 | Estimated indirect GHG emissions from the 2050 power system scenarios from this 
study, based on calculated generation in the worst weather year 2020. Estimated emissions from the 
power system in 2015 are also shown as a comparison. Indirect GHG emission factors are taken from (JRC, 
2014). 
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Table C-7 | Indirect GHG emission factors for electricity production (JRC, 2014) 

Technology 
Indirect greenhouse gas emissions 

(t CO2eq GWh-1 generated) 
Onshore Wind 7 

Offshore Wind 11 

Rooftop PV 32 

Utility PV 38 

CSP 35 

Geothermal 92 

Hydro (all) 6 

Biomass (all) a 146 

Gas-OCGT 100 

Gas-NGCC 65 

Gas-NGCC-CCS 77 

Nuclear 15 

Coal-PC 89 

Coal-PC-CCS 115 
a No value is available for biogas in the raw data, thus we assume the same value as for Bio-FBs. 
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Footnotes to Appendix C

1 A general rule of thumb is that panels are installed at a tilt angle equal to the latitude of the site, representing the 
average solar altitude angle and thus maximizing the direct radiation component. However, shadowing from location 
terrain and surrounding buildings can reduce direct irradiance making a flatter tilt angle more favourable in 
mountainous, built-up and high latitude locations, thus the optimum angle is not always straightforward, or achievable 
(Mehleri et al., 2010; Šúri et al., 2007). 

2 As of 2017, solar tower technologies represent two-thirds of new CSP capacity that has been announced, is under 
development, or under construction (Mehos et al., 2017). Ultimately, either technology could be used in the modelling. 

3 This value includes Turkey 
4 A detailed list of generators per country is available from (ENTSO-E, 2017b) under ‘Installed generation capacity per 

unit [14.1.B]’. The list does not include all hydro plants, but the shares of RoR, STO and PHS capacity in the list are 
assumed to reflect reality. 

5 The unmet demand in the peak hour of residual demand (demand – vRES generation) dictates the required system 
capacity and would ideally be used for this calculation. However, before performing the capacity expansion 
optimisation it is not known where and how much solar PV and wind is installed, thus we use raw demand values as a 
proxy, as higher raw demand hours are more likely to be high residual demand hours. Given this uncertainty, and the 
fact that demand shedding and shifting can also impact the peak residual demand hour, we average over several peak 
load hours. 

6 Based on the total demand aggregated across all countries. For example, if the average wind capacity factor in one grid 
cell during the top 0.1% demand hours was 12% in 2004, 15% in 2005, and 9% in 2006, the wind capacity credit for 
that cell would be taken as 9%. This is a simplification as there is no guarantee that the hours of total peak demand 
will also be the hours with peak residual demand. However, the higher absolute demand makes this more likely. This 
approach also ensures that the reliability of vRES across all years it taken into account. 

7 Included in this category are grassy and agriculture fuels which are not strictly ‘woody’ (lignocellulosic), but we use this 
term loosely as ‘wood-like’ to distinguish between fuels which are solid and relatively clean, as opposed to waste-
based solid fuels, and biogas substrates which may be in slurry or liquid form, contain significant impurities, and not 
suitable for direct combustion. 

8 This is a simplification as large countries (e.g. Germany) are also building HVDC lines to overcome internal grid 
constraints. Also, HVDC may also be chosen for long underground cables to reduce losses. However, without detailed 
data of the full transmission network infrastructure, this simplification is necessary. 

9 While forecast accuracy may vary for different countries, we take Germany as the country with the highest installed 
capacity of both wind and PV in Europe, and thus more likely to utilise the best forecasting methods available. 

10 The ‘actual’ generation patterns are formed by combining the optimised vRES capacity distribution from PLEXOS’ 
capacity expansion algorithm with the capacity factor profiles built from ERA-Interim. As the distribution of vRES 
capacity is not known until the capacity expansion problem has been solved, reserves cannot be included in the 
capacity expansion problem, but they are included in the detailed hourly UCED calculations. 
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 Appendices to Chapter 5 
Abbreviations 
AD Anaerobic digestion 
BECCS Bioelectricity with carbon 

capture and storage 
CAPEX Capital expenditure 
CCS Carbon capture and storage 
CF Capacity factor 
 
CM Capacity market 
CWE Central Western Europe 
DAC Direct air carbon capture 
ENTSO-E European Network of 

Transmission System 
Operators for Electricity 

EDF Electricity de France 
EOM Energy-only market 
ETRI Energy Technology Reference 

Indicators 
EU European Union 
FCR Frequency containment 

reserve 
FOM Fixed operating and 

maintenance 
GT Open-cycle gas turbine 
HVAC High-voltage alternating 

current 
HVDC High-voltage direct current 
 

IPCC Intergovernmental Panel on 
Climate Change 

JRC European Union Joint Research 
Centre 

LoLE Loss of load expectation 
LoLP Loss of load probability 
OCC Overnight capital cost 
OECD Organisation for Economic Co-

operation and Development 
PHS Pumped hydro storage 
PV Photovoltaic 
RES Renewable energy source 
RoR Run-of-river hydro 
SRMC Short-run marginal cost 
STO Storage hydro 
TCR Total Capital Requirement 
TSO Transmission system operator 
TYNDP Ten-Year Network Development 

Plan 
UCED Unit commitment and economic 

dispatch 
VOM Variable operating and 

maintenance 
VoLL Value of lost load 
vRES Variable renewable energy source 
WACC Weighted average cost of capital 

Appendix D – Supplementary material to Chapter 5 
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D.1 Installed vRES capacity scenarios 
The exogenous increase in variable renewable energy source (vRES) capacity from 2017 to 
2040 in the considered four countries is based on scenarios taken from ENTSO-E’s Ten Year 
Network Development Plan (TYNDP) 2018 (ENTSO-E & ENTSO-G, 2018). Starting from the 
actual installed capacity in 2017, the 2025 capacity is taken from the Best Estimate scenario, 
the 2030 capacity taken from the Distributed Generation scenario, and 2040 capacity taken 
from the Global Climate Action scenario. As shown in Figure D-1,  TYNDP18 provides a number 
of scenarios for 2030 and 2040, with different levels of vRES deployment. Only two scenario 
sets provide capacity for the years 2030 and 2040: the Distributed Generation and Sustainable 
Transition scenarios. However, the Global Climate Action scenario is more ambitious regarding 
the amount of vRES deployment by 2040, particularly regarding the offshore wind. For this 
reason, we chose to base vRES deployment by mixing the Distributed Generation scenario for 
2030 and Global Climate Action scenario for 2040 to explore a high level of vRES penetration. 
The installed capacity in intermediate years it found by linear interpolation between the 
scenario years 2017, 2025, 2030 and 2040. As a result, total installed solar photovoltaic (PV) 
capacity increases by 217 GW (~410%), onshore wind by 83 GW (~130%) and offshore wind 
by 80 GW (~1400%) between 2017 and 2040. 

D.2 Electricity demand 
Like the vRES capacity, developments in electricity demand until 2040 are based on the 
ENTSO-E’s TYNDP 2018. Starting from actual demand in 2017 of 1169 TWh, base electricity 
demand increases to 1256 TWh in 2040 based on the Global Climate Action scenario. Demand 
for the years 2020, 2025 and 2030 is taken from the Best Estimate 2020, Best Estimate 2025 
and Distributed Generation 2030 scenarios1. Demand for all intermediate years is estimated 
by linear interpolation between the fixed scenario years. Note that this underlying demand 
does not include any contribution from charging batteries, pump load for pump storage 
hydro, additional demand for direct air carbon capture (DAC), or hydrogen production. 

D.3 Transmission 
Transmission capacity within Central Western Europe (CWE) and between neighbouring 
countries increases over time based on ENTSO-E’s TYNDP2018 Global Climate Agreement 
scenario (ENTSO-E & ENTSO-G, 2018). Transmission capacities are increased in the year 2020, 
2027, and 20352. We also include transmission losses of 2% (CEER, 2017; ENTSO-E, 2017c). 
Transmission line outages are not included as forced outages are reportedly very rare, and all 
interconnectors are modelled as notional single (bi-directional) high voltage direct current 
(HVDC) lines (VVA et al., 2018), while in reality neighbouring countries are linked by several 
high voltage alternating current (HVAC) interconnectors with individual outages. 
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Figure D-1 | Installed capacities of PV, onshore wind and offshore wind in Belgium, Germany, 
France and the Netherlands for 2017, as well as several future scenarios from ENTSO-E’s TYNDP 
2018 (ENTSO-E & ENTSO-G, 2018). The assumed deployment of PV and wind in the present study is based 
on the scenarios outlined in black, with intermediate years interpolated. 
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Figure D-2 | Current (2017) and future demand scenarios from ENTSO-E’s TYNDP 2018 for Belgium, 
Germany, France and the Netherlands (ENTSO-E & ENTSO-G, 2018). The scenarios highlighted with a 
black rectangle are used to construct the demand profiles in the present study, with linear interpolation 
used for intermediate years. 
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Table D-1 | Assumed development of transmission capacity in the forward (=>) and reverse (<=) 
directions (MW) (ENTSO-E & ENTSO-G, 2018) 

 2017  2020  2027  2035 

Border => <=  => <=  => <=  => <= 

DE-AT 5000 5000  5000 5000  7500 7500  7500 7500 

BE-DE 1000 1000  1000 1000  1000 1000  2000 2000 

BE-FR 600 1850  1800 3300  2800 4300  4300 5800 

BE-GB 0 0  1000 1000  1000 1000  2000 2000 

BE-NL 950 950  2400 1400  3400 3400  4900 4900 

DE-CH 800 4000  2700 4600  3300 5600  4100 6500 

FR-CH 3150 1300  3150 1300  3700 1300  6200 3800 

DE-CZ 1500 2100  1500 2100  2000 2600  2000 2600 

DE-DK 2100 2380  2500 2765  4000 3985  4000 4000 

FR-DE 1800 2300  1800 2300  4500 4500  4800 4800 

DE-GB 0 0  0 0  1400 1400  1400 1400 

DE-PL 500 2500  500 2500  2000 3000  4500 3000 

DE-NL 4250 4250  4250 4250  5000 5000  5000 5000 

DE-NO 0 0  1400 1400  1400 1400  1400 1400 

DE-SE 615 615  615 615  1315 1300  2315 2315 

NL-DK 0 0  700 700  700 700  700 700 

FR-ES 2800 2600  2800 2600  5000 5000  9000 9000 

FR-IT 3150 1160  4400 2310  4500 2360  5500 3360 

FR-GB 2000 2000  2000 2000  6900 6900  5900 5900 

NL-GB 1000 1000  1000 1000  1000 1000  2000 2000 

NL-NO 700 700  700 700  700 700  1700 1700 

AT-CZ 700 700  900 800  1000 1200  1000 1200 

AT-CH 250 1200  1200 1200  1700 1700  1700 1700 

AT-IT 300 100  405 235  1050 850  1605 1335 

CZ-PL 600 800  600 800  600 600  600 800 

GB-NO 0 0  0 0  2800 2800  2400 2400 

DK-NO 0 0  1640 1640  1700 1640  2640 2640 

DK-SE 1700 1300  1700 1300  1700 1300  2700 2300 

DK-PL 0 0  0 0  0 0  500 500 

NO-SE 3695 3995  3695 3995  3695 3995  4195 4495 

PL-SE 600 600  600 600  600 600  1100 1100 
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D.4 Generator techno-economic and other parameters 
Costs for new generation investments  

Consistent cost data for all considered generators types is difficult to find in a single source. 
Table D-2 presents an overview of investment costs for conventional and low-carbon 
technologies from three different studies, showing the ranges and uncertainty in the data. 
Significant cost reductions are also expected for some technologies over time which should 
be taken into account. Based on a review of the literature, the sources and assumptions below 
are taken. The assumed OCC for all technologies over time is shown in Figure D-3. 

• The OCCs for conventional thermal coal and gas plants without carbon capture and 
storage (CCS) as well as nuclear are taken from the European Commission Joint Research 
Centre (JRC)’s Energy Technology Reference Indicators (ETRI) 2014 (JRC, 2014). No cost 
reductions are assumed for these mature technologies. VOM and FOM costs are also taken 
from (JRC, 2014). 

• The OCCs for vRES and low-carbon thermal technologies (e.g. coal and gas plants with 
carbon capture and storage (CCS), biogas and biomass plants) are taken from a more 
recent JRC publication by Tsiropoulos et al. for the years 2015, 2020, 2030 and 2040 
(Tsiropoulos et al., 2018). These fall over time in line with the ‘ProRES’ scenario for the vRES 
technologies and ‘Diversified’ scenario for the other technologies. The OCC for other years 
is found by interpolation. VOM and FOM costs are taken from (JRC, 2014). 

• The costs for batteries and electrolysers are taken from Child et al. (Child et al., 2019), which 
assume optimistic cost reductions of 80% and 50% respectively between 2017 and 2040. 

• The costs for DAC are based on Keith et al. (Keith et al., 2018). 
• The costs for bioenergy with CCS are derived from other assumptions, explained later. 

 
Figure D-3 | Assumed overnight capital cost (OCC) of generation, storage and negative-emission 
technologies over time. (excluding IDC). Costs for DAC are on the basis of electricity demand. 
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Retrofits 

In order to see how existing generation infrastructure could be utilised in a future low-carbon 
power system with high shares of vRES, two retrofit options are possible for both relatively 
new legacy generators (built between 1990 and 2016), and generators built by the model after 
2017: (i) retrofitting with CCS (coal, CCGT and biomass generators only), and (ii) full conversion 
to 100% biomass (coal generators only). The possible retrofit pathways are shown in Figure 
D-4. In order to simplify the modelling, a generator can only undergo one retrofit step. For 
example, a coal generator cannot first be retrofit with CCS in one year, and then undergo 
biomass conversion in another year. However, it can undergo both conversion to biomass and 
retrofit to CCS in a single retrofit. These conversions/retrofits are one-way only and cannot be 
reversed. 

Regarding CCS retrofits, the IEA notes that from an economic point of view, CCS retrofits for 
power plants are generally only profitable if the original plant has a net electrical efficiency 
higher than 40% (Rohlfs & Madlener, 2010). For this reason, we assume that only relatively 
modern coal and gas plants built after 1990 can be retrofit with CCS. Regarding conversion to 
biomass, we assume that coal plants can directly co-fire up to a maximum of 10% biomass 
fuel with no additional capital requirements. However, full conversion to biomass requires 
significant capital investment, as explained in the next section.  

 

 

 

Figure D-4 | Allowable retrofit pathways for different generator types. 
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Cost of retrofits 

The cost of retrofitting an existing gas or coal plant with CCS is assumed to be 60% the total 
capital requirement (TCR) of a newly-built plant with CCS based on (Gibbins et al., 2011). This 
investment level assumes that sufficient additional capacity is added during the retrofit that 
the total electric capacity of the plant remains the same after the retrofit, despite a fall in 
nominal efficiency. 

A survey of the literature was performed on the cost of converting an existing coal-fired power 
plant to biomass (Table D-3). Some of these data were taken from general sources, while 
others were taken for actual conversions of specific individual plants. Due to the model 
complexities introduced by allowing both co-firing of biomass and one-way conversion of 
biomass, some simplifications were necessary as explained below: 

• Coal plants (with and without CCS) can co-fire up to maximum 10% biomass fuel with 
no additional capital expenditure (CAPEX) requirements, and 

• Coal plants can undergo a one-way conversion to 100% biomass at a cost of 
700 € kW-1. Once this conversion is complete, coal can no longer be used. 
 

Table D-3 | Comparison of investment cost estimates for partial or full conversion of coal plants to 
solid biomass fuel 

Parameter 

Source 
JRC (JRC, 

2014) 
IEA-ETSAP 
(IEA-ETSAP 
& IRENA, 

2013) 

ECN (ECN, 
2016) 

Ontario Power 
Generation 

(Marshall, 2018) 

Drax (Drax, 
2018) 

Co-firing 
Investment 

cost (€ kWe-1) 

160-(420)-
960 220 30 - 350 ~530 ~390 

Type of 
conversion Co-firing Co-firing 

Co-firing 
(up to 20% 
biomass) 

Full conversion 
(100% biomass) 

Full 
conversion 

(100% 
biomass) 

Nominal plant 
capacity (MW) - - 700-1100 205 3 x 660 

Comments 
Max. share of 

biomass 
not specified 

Max. share of 
biomass 

not specified 

Based on 
calculations by 

ECN for the 
Dutch SDE+ 

subsidy rates in 
2017. 

Ontario Power 
Generation spent 
$170 million CAD 
(€110 million) to 
convert its 205 

MW Atikokan coal 
plant to biomass 

Drax spent ₤700 
million (€780 

million) to 
upgrade three 
of its 660 MW 

units and 
associated 

supply chain 
infrastructure to 

use biomass 
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In order to allow for the retrofitting of existing coal, gas and biomass plants with CCS, and the 
conversion of coal plants to biomass, some deviations from literature cost values were 
necessary to ensure internal consistency within the model, based on the following principles:  

• the TCR of a completely new gas/coal/biomass plant equipped with CCS should be 
lower than the total cost of building a new gas/coal/biomass plant and subsequently 
retrofitting it with CCS, and 

 
• the TCR of a completely new Biomass-CCS plant should be: 

o lower than the cost of building a new coal plant, retrofitting it with CCS, and 
performing a full biomass conversion (~ 4650 € kW-1 in 2030),  

o lower than the cost of building a new Coal-CCS plant and performing a full biomass 
conversion (~4030 € kW-1 in 2030), and 

o lower than cost of building a new biomass plant and retrofitting it with CCS 
(~5500 € kW-1)3. 

As the reported cost of new Biomass-CCS plants in Tsiropoulos et al. (Tsiropoulos et al., 2018) 
for the Diversified scenario (~5380 € kW-1) is higher than in the above retrofit pathway costs, 
the model could choose to add carbon negative capacity by installing new biomass or Coal-
CCS capacity and retrofitting it all in the same year, rather than installing a purpose-built 
Biomass-CCS plant which seems illogical. To avoid this, the TCR for Biomass-CCS plants is set 
at a level (~ 3800 € kW-1 in 2030) which makes the TCR of a new plant slightly lower than the 
TCR of any of the retrofit pathways. The assumed cost for new Biomass-CCS plants is thus 
somewhat lower than reported by the above literature sources, though higher than that 
assumed in some other studies4.  

vRES Capacity Factors 

Country- and technology-specific hourly capacity factors (CF) for wind and PV are taken from 
the Renewables Ninja dataset (Pfenninger & Staffell, 2016; Staffell & Pfenninger, 2016). For 
vRES generation in 2017 we use historical generation from ENTSO-E (ENTSO-E, 2018b) while 
for all subsequent years, a random weather year is selected from Renewables Ninja. The 
selected years used in the simulations are shown in Table D-4. 

Table D-4 | Weather years selected for the simulated model years 
Model year Weather Year  Model year Weather Year 

2017 -  2029 2011 
2018 2005  2030 2009 
2019 2016  2031 2002 
2020 1997  2032 2009 
2021 2010  2033 1999 
2022 2011  2034 2007 
2023 1995  2035 2016 
2024 1997  2036 1987 
2025 2011  2037 2005 
2026 1999  2038 2000 
2027 1996  2039 2013 
2028 2014  2040 2011 
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Several inconsistencies were found between the vRES generation and installed capacities (and 
resulting CFs) reported by ENTSO-E, industry bodies and national statics offices, and the CFs 
Renewables Ninja. Moreover, vRES CFs are likely to increase over time due to technology 
improvements and re-powering of old plants (JRC, 2014). As a result, some adaptations are 
made to the ENTSO-E generation data and vRES profiles from Renewables Ninja: 

• Due to some significant differences (e.g. onshore wind in Belgium), the hourly 2017 
generation values from ENTSO-E (used for 2017 only) are scaled so that the CFs match 
those calculated from EurObserver  generation and capacity data (EurObserv’ER, 2018, 
2019). 

• Assuming that 2017 was a typical weather year in terms of solar and wind generation, the 
hourly CFs from Renewables Ninja are scaled so that the average long-term CFs match 
those calculated for EurObserver in 2017.5 

• The very high offshore wind CF for France in the Renewables Ninja dataset (46%) was 
based on only 6 MW of turbine capacity, which is unlikely to be a representative value for 
the whole country once deployment levels increase. Thus, the CFs were scaled down to 
match the average of the other CWE countries (38.6%) 

• After the above corrections were performed on the raw profiles, the CFs for PV and wind 
in future years were gradually increased over time based on projected CFs from (JRC, 
2014).  

The net result of these adaptations are that (i) the CFs and installed capacities in the reference 
year 2017 align with the generation reported by EurObserver, (ii) thanks to the use of the 
(corrected) Renewables Ninja profiles the CFs are country specific, and retain some natural 
interannual variability whilst being consistent with the EurObserver data, and (iii) CFs generally 
increase over time due to technology improvements (Table D-5) . 

Firm capacity 

The firm generation is relevant for determining the amount of capacity required to meet firm 
capacity constraints in the market designs with a capacity margin. Firm capacity varies 
depending on the generator type and in some cases the country, as explained below: 

• The firm capacity of all thermal generators is set at 90%, 
• The firm capacity of hydro is set based on the ENTSO-E Winter 2017 Outlook (ENTSO-E, 

2017a) as follows:  
o For storage and run-of-river (ROR) hydro, 

▪ FR: 38% (Autumn/Summer), 74% (Winter/Spring), DE: 25% (all year) 
o For pumped storage. 

▪ BE: 100%, DE: 80%, FR: 27% (Autumn/Summer), 45% (Winter/Spring) 
• The firm capacity of vRES varies with its penetration, and is estimated by calculating the 

average capacity factor during the top 5% of hours with the highest residual load, using 
the load scenarios and Renewables Ninja vRES profiles for the years 2017 to 2041 
(Figure D-5). 

• Batteries are assumed to be fully firm6. 
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Table D-5 | Adjustments made to 2017 generation profiles from ENTSO-E and hourly capacity factor 
(CF) profiles from Renewables Ninja 
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BE 2.9 3.1 -9% 3.8 8.6% 9.3% +9% 12.3% -3.0% 

+2% 
DE 35.9 39.9 -11% 42.4 9.7% 10.7% +11% 12.4% -1.7% 

FR 8.9 8.6 3% 8.0 12.6% 12.2% -3% 14.0% -1.8% 

NL 1.9 2.1 -12% 2.7 7.8% 8.7% +12% 12.2% -3.5% 

O
ns

ho
re

 w
in

d 

BE 2.6 a 3.9 -46% 2.0 15.3% 22.4% +46% 24.5% -2.1% 

+7% 
DE 85.3 88.0 -3% 50.2 19.4% 20.0% +3% 19.4% 0.6% 

FR 22.8 24.7 -8% 13.6 19.2% 20.8% +8% 24.7% -3.9% 

NL 7.4 6.9 7% 3.3 25.3% 23.7% -7% 24.4% -0.7% 

O
ffs

ho
re

 w
in

d 

BE 2.8 2.6 4% 0.9 36.0% 34.4% -4% 31.6% 2.8% 

+6% 
DE 17.4 17.7 -1% 5.4 36.8% 37.3% +1% 33.3% 4.0% 

FR 0.0 0.0 0% 0.0 - - - 46.0% -7.4% 

NL 3.6 3.7 -2% 1.0 43% 44.1% +2% 33.1% 11.0% 

a The Belgian onshore wind data from ENTSO-E was clearly erroneous, and the data was taken from ELIA instead. 
b EurObserver values were used instead of ENTSO-E reported values as these seem to agree better with national statistics. 
c The average across all weather years available in the Renewables Ninja dataset (1980-2016 for wind, 1985-2016 for PV)  

 
Planned and forced outages 

Generators are assumed to be offline 4% of the year due to planned outages, and 6% of the 
year due to unplanned/forced outages based on (VVA et al., 2018). The mean time to repair 
for forced outages is 9 hours, based on the same source. 
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Figure D-5 | Estimated firm capacity (in %) of vRES technologies in the CWE countries, calculated 
based on the average capacity factor during the top 5% of hours per year with the highest residual 
demand, calculated using the ENTSO-E TYNDP18 demand profiles and vRES capacity factors from 
Renewables Ninja. The weather years used are the same randomly selected years used in the main study. 
 

D.5 VoLL and load shedding  

Several studies have attempted to determine the value of lost load (VoLL) for different 
consumer types in Europe. An overview is presented in a recent study by Cambridge Economic 
Policy Associates (CEPA) (Heather et al., 2018), which also made its own estimation of the VoLL 
of different consumer groups across the EU based on extensive surveys. They found that VoLL 
varies significantly between consumer groups and was highest for the residential and service 
sectors with values typically above 7000 € MWh-1 (see Figure D-6). Values for industrial 
consumers were typically lower ranging from 300 € MWh-1 up to 5000 € MWh-1, though certain 
industrial sectors (e.g. construction) also yielded high values. However, there were also 
significant differences between countries, with the domestic VoLL ranging from some 7000 € 
MWh-1 in France up to 23000 € MWh-1 in the Netherlands.7 These VoLL levels can be used to 
estimate the implied socially-acceptable level of system reliability by calculating the number 
of hours at which the cheapest provider of peak capacity (e.g. a GT) would need to run annually 
to break even. For example, in an ideal EOM, the market should result in generation capacity 

  

  

 

(a) Belgium (b) Germany 

(c) France (d) The Netherlands 
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being built up to the point where the marginal expected revenues of adding new generation 
capacity (i.e. 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 ∗ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ∗ 8760) become equal to the marginal costs of providing that 
capacity (Cramton et al., 2013). On an annualised per MW basis, this can be expressed as:  

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝐹𝐹𝐹𝐹𝐹𝐹
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  (D-1) 

where 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 is the value of lost load (€ MWh-1), 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 is the loss of load expectation (h y-1) - 
calculated as the product of the 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 (%) and number of hours in a year (8760), while 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 and 𝐹𝐹𝐹𝐹𝐹𝐹 are the short-run marginal cost (€ MWh-1), annualised investment cost 
(€ MW-1) and fixed operating and maintenance costs of additional capacity respectively 
(€ MW-1). Assuming this additional capacity is provided by GTs with cost parameters provided 
in Table 5-3, this yields LoLE values between 2.6 and 8.5 h y-1, as shown in Table D-1. These 
levels are broadly consistent with the reliability standards used in practice by several member 
states of between 3 and 8 h y-1 (ENTSO-E, 2017d). In practice however, system reliability is 
considerably better than both the reliability standards and socially-acceptable level 
determined from the CEPA VoLL estimates, with consumers in most EU countries experiencing 
outages of less than one hour per year (Eurelectric, 2013a). This implies that consumers are 
actually accustomed to enjoying a higher level of reliability, and back-calculating the 
corresponding VoLL leads to much higher values than in the CEPA study. This could suggest 
that transmission system operators (TSOs) implicitly consider a higher VoLL in practical system 
planning for fear of the social outcry and political fallout associated with large-scale outages, 
and treat LoLE standards more as limits than targets.  

For these reasons, in the PLEXOS capacity planning module, we assume a higher VoLL of 
100,000 € MWh-1 to account for the fact that (i) consumers are accustomed to higher reliability 
levels than published LoLE targets which we assume must be maintained, and (ii) the vast 
majority of outages are due to faults in the distribution network (i.e. not transmission faults or 
insufficient generation capacity) which are not accounted for in our PLEXOS modelling (VVA 
et al., 2018), and (iii) the capacity expansion module uses load duration curves to approximate 
load and generation, which can miss periods of unserved energy. We take this VoLL as a 
uniform value across all countries and consumer types as, during scarcity events, it is not clear 
which consumers would be disconnected8. 

Furthermore, incorporating consumer- and region-specific VoLL values is not possible with 
the PLEXOS model, and using a weighted average VoLL across all consumer types would not 
be accurate. Instead, we model the VoLL and price sensitivity of industrial consumers by 
assuming that these consumers would be willing and capable of reducing their demand 
through voluntary load shedding at times of scarcity. In the hourly dispatch modelling (ST 
Schedule) however, we use a load-weighted average of the actual VoLL estimates from CEPA 
(10,600 € MWh-1) to account for the costs of unserved consumer load as perceived by the 
load. 
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Figure D-6 | Electricity demand for 2016 and estimated average VoLL per sector for Belgium, 
Germany, France and the Netherlands. Demand data (bars) are taken from Eurostat (nrg_105a) 
(Eurostat, 2017c), while VoLL data are taken from CEPA (Heather et al., 2018). 
 
 

Table D-1 | Comparison between reported loss of LoLE indices and VoLL estimates from various 
sources. Calculated assuming an open cycle gas turbine provides the additional capacity, using the 
assumptions from Table 5-3. 

Country 

Reported LoLE 
standard 

(ENTSO-E, 
2017d) (h y-1) 

Based on CEPA 
VoLL study 

(Heather et al., 2018) 

 Back-calculated 
from actual lost load 

(VVA et al., 2018) 
Estimated 

VoLL a 

(€ MWh-1) 

Implied LoLE 
(h y-1) 

 Average load 
disruption 

(h y-1) b 

Implied 
experienced 

VoLL (€ MWh-1) 

BE 3 9600 7.5  No data No data 

DE - 12400 5.8  0.48 149,000 

FR 3 6900 10.5  1.45 49,500 

NL 4 22300 3.22  0.52 138,000 

Average c - 10,600 -  - - 
a Estimated based on average of all customer types (residential, commercial, industrial), from surveys 
b Due to both planned and unplanned outages in period 2010-2014 
c Load-weighted 
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The load shedding potential per sector (in MW) per country is estimated by taking the 
electricity consumption per sector from 2016 (Eurostat, 2017c), calculating the average load 
assuming continuous operation, and assuming that 50% of this can be shed.  This results in 
approximately 25 GW of interruptible load, or ~11% of total CWE peak demand9. 

With the lower VoLL values from industry accounted for with load shedding, we assume a 
higher ultimate VoLL of 10,600 € MWh-1 by weighting the country-specific VoLL for domestic 
consumers by the country-specific domestic demand.  

 

Table D-2 | Industrial load shedding assumptions. Load shedding capacity is based on consumption 
data from Eurostat (Eurostat, 2017c), while load shed prices are based on average VoLL estimates from 
CEPA (Heather et al., 2018). 

Industrial sector 
Load shed capacity (GW) 

Load shed price 

(€ MWh-1) BE DE FR NL Total 
CWE 

Basic metals 0.36 2.46 1.19 0.28 4.28 350 

Chemicals and Petrochemicals 0.78 3.06 1.10 0.74 5.68 1030 

Non-Metallic Minerals 0.16 0.70 0.46 0.07 1.40 950 

Food and Tobacco 0.33 1.06 1.17 0.39 2.94 1810 

Textile and Leather 0.06 0.13 0.09 0.02 0.30 220 

Paper, Pulp and Print 0.15 1.22 0.45 0.14 1.96 770 

Transport Equipment 0.12 1.03 0.41 0.04 1.59 5010 

Machinery 0.03 1.91 0.73 0.17 2.85 5100 

Wood and Wood Products 0.02 0.27 0.13 0.01 0.42 1290 

Construction a 0.05 - 0.39 0.05 0.49 6000 

Transport 0.09 0.67 0.62 0.11 1.49 3600 

Agriculture, Forestry, Fishing 0.10 - 0.50 0.50 1.10 1750 

Total 2.2 12.5 7.2 2.5 24.5 - 
a The reported VoLL for the construction sector varied considerably from 6000 € MWh-1 in Germany to 26000 € MWh-1 

in the Netherlands. Even though no data on construction sector electricity consumption was available for Germany, it 
is likely to exceed the other countries due to the larger economy. Thus, we use a lower VoLL for this sector more in line 
with that of Germany. 
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D.6 Reserve requirements 

We account for spinning frequency containment reserve (FCR) requirements for the CWE 
countries by assuming a maximum risk of 3000 MW which must be procured across the whole 
Continental Europe (CE) interconnected system, based on current rules. The contribution from 
each country is based on its share of total CE generation in 2016. This gives 95 MW for Belgium, 
721 MW for Germany, 128 MW for the Netherlands, and 618 MW for France. These amounts 
are kept the same from 2017 until 2040. Frequency restoration reserves (FRR) are not 
modelled. 

Table D-3 | Calculated frequency containment reserve requirements 

Country Generation in 2016 (GWh) 
 (ENTSO-E, 2018b) 

Generation share 
2016 (%) 

Minimum FCR 
requirement (MW) 

AT 68 2.5% 76 

BE 86 3.2% 95 

BG 45 1.7% 50 

CH 64 2.4% 71 

CZ 83 3.1% 93 

DE 649 24.0% 721 

DK 31 1.1% 34 

EL 51 1.9% 57 

ES 275 10.2% 305 

FR 556 20.6% 618 

HR 13 0.5% 14 

HU 32 1.2% 35 

IT 290 10.7% 322 

LT 4 0.2% 5 

LU 2 0.1% 2 

NL 115 4.3% 128 

PL 167 6.2% 185 

PT 60 2.2% 67 

RO 65 2.4% 72 

SI 17 0.6% 18 

SK 27 1.0% 30 

Total CE 2,700 100% 3000 
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D.7 Carbon budgets and decarbonisation trajectories 
Carbon budgets and decarbonisation trajectories for the CWE countries from 2017 onwards 
are determined as below, following the approach used in an earlier work (van Zuijlen et al., 
2018).  

• Remaining global total allowable carbon budgets from 2011 to 2100 for three climate 
scenarios are taken from the IPCC’s 5th Assessment 2014 Synthesis report (IPCC, 
2014): 

o 400 Gt CO2 for a 66% chance of limiting global warming to 1.5 ºC i.e. the 
only scenario consistent with the Paris Agreement 

o 850 Gt CO2 for a 33% chance of limiting global warming to 1.5 ºC, and 
o 1000 Gt CO2 for a 66% chance of limiting global warming to 2 ºC 

 
• From these values, assumed budgets for non-OECD countries, cement production, 

and already-emitted carbon are subtracted based on a study by Anderson & 
Broderick (Anderson & Broderick, 2017)10: 

o a total energy-related11 emission budget for non-OECD countries of 
560 Gt CO2, which assumes non-OECD emissions peak between 2020 and 
2025, before falling by 95% (compared with 2015) by 2065. 

o a budget of 100 Gt CO2 for the cement industry, which assumes 98% 
decarbonisation of cement production after 2060, and 

o a further 260 Gt CO2 already emitted between 2011 and 2017 (Anderson & 
Broderick, 2017). 
 

• The remaining total carbon budget for the energy-related sectors in the OECD 
countries is then allocated to the CWE countries based on population12. 

After performing these calculations, we find that the energy-related sectors in the CWE 
countries must sequester net emissions of between -71 Gt CO2 to 11 Gt CO2Gt CO2 by the end 
of the century depending on the level of warming to be avoided, as shown in Table D-6. 
Assuming that the transformation of the energy-related sectors is completed by 2050, one can 
derive corresponding decarbonisation pathways for each climate scenario as shown in 
Figure D-7. Given that total energy-related carbon emissions in the CWE countries for 2016 
was 1.3 Gt CO2 (see Table D-7), this shows that achieving the ambitions of the Paris Agreement 
(or even remaining below 2 ºC) without the use of negative emission technologies or some 
other method of large-scale atmospheric carbon dioxide removal (e.g. afforestation) is 
practically unavoidable. While it might be considered optimistic to assume that the 
transformation occurs by 2050, delaying this beyond 2050 will mean that in order to meet the 
same carbon budget, more negative emissions will be required later in the century, increasing 
the risk of temperature overshoot.  
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Table D-6 | Calculation of estimated carbon budget (total Gt CO2) for the period 2017-2100 for the 
CWE countries based on (Anderson & Broderick, 2017). 

 
Climate mitigation scenario 

66% chance 
<1.5 ºC 

33% chance 
< 1.5 ºC 

66% chance 
< 2 ºC 

Remaining global budget for 2011-2100 a 400 850 1000 

- non-OECD energy-related emissions for 2011-2100 b 560 560 560 

- emissions from cement and deforestation of 2011-2100 b  100 100 100 

- Emissions already emitted between 2011-2016 b 260 260 260 

= OECD energy-related carbon budget for 2017-2100   -520 -70 80 

x CWE population as % of OECD population (%) 13.7% 13.7% 13.7% 

= CWE energy-related carbon budget for 2017-2100 c -71 -10 11 
a Based on IPCC 2014 Synthesis Report (IPCC, 2014). A more recent update suggests these values haven’t changed 

significantly (Rogelj et al., 2018) 
b Estimated by Anderson & Broderick (Anderson & Broderick, 2017) 
c Downscaled from total OECD to CWE countries based on population in 2014  
 

 

 
 
Figure D-7 | Assumed decarbonisation trajectories for the energy-related industries in the CWE 
countries under various climate scenarios 
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As shown in Table D-7, approximately 31% of energy-related emissions in CWE result from the 
production of electricity and heat. In order to derive a specific carbon budget for the public 
electricity and heat production sector13, it is necessary to make some assumptions about how 
quickly total energy-related emissions falls, and how the other sub-sectors will decarbonise 
through till 2100. We assume that: 

• as the technology options for generating negative emissions in other sub-sectors 
(e.g. transport, manufacturing) are limited, we assume that all negative emissions 
must be achieved in the electricity and heat production sector, 

• for consistency with the assumed decarbonisation profile of total energy-related 
emissions, we assume that the other energy-related subsectors (i.e. non-electricity 
and heat) are fully decarbonised by the year 2050 with emissions falling linearly from 
2017 to 2050, then remaining at zero thereafter, 

• the required emissions from electricity and heat production are set at the level 
necessary to match the total energy-related carbon budgets in Figure D-7, 
accounting for the emissions in the other sectors. 

The resulting sub-sectoral decarbonisation trajectories are shown in Figure D-8 for the three 
different climate scenarios, and the total budgets for electricity and heat production are shown 
in Table D-8. In order to be consistent with the Paris Agreement (i.e. 66% chance of keeping 
warming below 1.5 ºC), the CWE power sector must generate total negative emissions of 
approximately -87 Gt CO2 over the period 2017-2100. This is lower (i.e. more negative) than 
the total energy-related budget of -71 Gt CO2 as the power sector must compensate for the 
positive emissions in the other energy-related subsectors until they reach net-zero emissions 
in 2050. In this climate scenario, net power sector emissions turn net-negative by 2025, 
ultimately reaching -1.4 Gt CO2 y-1 in 2050. Even in the less ambitious case of a 66% chance of 
remaining below 2 ºC warming, power sector emissions turn net negative by 2041, and reach 
-0.2 Gt CO2 y-1. 

Table D-7 | Energy-related carbon emissions for the CWE countries in 2016 by sub-sector  
(Source: Eurostat/EEA [env_air_gge]) 

Sector/Subsector 
Total  

emissions 
(Mt CO2) 

Energy 1,312 
   Fuel combustion - sectoral approach 1,306 
         Fuel combustion in energy industries 458 
               Fuel combustion in public electricity and heat production 402 
               Fuel combustion in petroleum refining 41 
               Fuel combustion in manufacture of solid fuels and other energy industries 15 
         Fuel combustion in manufacturing industries and construction 213 
         Fuel combustion in transport 352 
         Other fuel combustion sectors 280 
         Other fuel combustion sectors n.e.c. 1 
   Fuels - fugitive emissions 7 
   Transport and storage of CO2 0 
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Table D-8 | Calculated carbon budget for public electricity and heat production in the CWE 
countries, as well as net emissions in 2030, 2040 and 2050 for various climate scenarios 

 
Climate mitigation scenario 

(% chance of remaining below) 

66% <1.5 ºC 33%  < 1.5 ºC 66%< 2 ºC 

Total CWE public electricity and heat budget  
for 2017-2100 (Gt CO2) 
 

-87 -25 -5 

Net emissions from public heat and electricity (Gt CO2)    
2030 -0.31 0.06 0.18 

2040 -0.85 -0.21 0.00 

2050 -1.40 -0.48 -0.17 

 
 

 
Figure D-8 | Sub-sectoral decarbonisation trajectories for energy-related industry emissions in the 
CWE countries consistent with (a) 66% chance of limiting global warming to 1.5 ºC, (b) 33% chance of 
limiting global warming to 1.5 ºC and (c) 66% chance of limiting global warming to 2 ºC. 
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Assuming complete decarbonisation of the non-power or heat-related energy sectors is clearly 
very ambitious, but if net-zero emissions from these sub-sectors is not achieved, or is delayed 
past 2050, this will increase the need for negative emissions later in the century. Assuming 
that the power sector must deliver all negative emissions may also not be very realistic, as 
other means of removing carbon dioxide from the atmosphere may be cheaper14. However, 
by including a 2C scenario (66% chance to remain below 2 ºC) and a 1.5C scenario (66% chance 
of limiting global warming to 2 ºC) in this study, we consider both lower and upper limits of 
what could be expected from the power sector in terms of negative emissions in the future. 

D.8 Model validation 

To validate the model used for this study, PLEXOS’ ST Schedule module was run for the EOM 
scenario for the year 2017 and the resulting hourly prices compared with historical day-ahead 
price data from ENTSO-E (ENTSO-E, 2018b). Historical hourly prices are used for the 
neighbouring countries, as well as historical vRES and hydro generation, but the model must 
perform the UCED and generate the prices for the CWE countries. The results are given on the 
following pages with Figure D-9 showing box-and-whisker plots of the hourly day-ahead 
electricity price per country, Figure D-10 showing the monthly average electricity price, and 
Figure D-11 showing hourly price duration curves. Based on the results, we note that: 

• The model gives hourly prices for most of the year (i.e. between the 25th and 75th 
percentiles) which accord reasonably well with historical data for Belgium, Germany and 
the Netherlands. The biggest discrepancy is seen in France, where model prices are 
significantly lower than average. 
 

• The model is less good at reproducing low and high price extremes; typically 
underestimating high prices, and overestimating low prices. Also, the model results show 
no hours with negative prices, while in reality there were approximately 100 hours in which 
prices were negative in Germany. 

 
• Monthly prices from the model generally follow the seasonal patterns from historical data, 

i.e. higher prices in winter and lower prices in summer. However, the model prices are 
typically higher than the actual prices in summer, and lower in winter. 

 
There are several possible reasons for these discrepancies: 
 
• Unlike the more liberalised German, Belgian and Dutch markets, France’s electricity market 

is highly concentrated, and all of France’s nuclear plants – which supply 75% of electricity 
demand – are owned and operated by Electricity de France (EDF), the vertically integrated 
state-owned utility (Deloitte, 2015; World Nuclear Association, 2018). With EDF having a 
market share of roughly 80%, the French power system could be seen as a regulated 
monopoly (Deloitte, 2015). In order to increase competition in the retail market, in 2010 
the French government passed a law (the 'Regulated Access to Incumbent Nuclear 
Electricity', or ARENH) forcing EDF to make 25% of its nuclear electricity available to 
alternative suppliers on the market at a price set by the energy regulator (CRE) of 
42 € MWh-1 nominally based on the cost of production (Deloitte, 2015), which acts as a 
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floor price for nuclear power in France. However, this price is considerably higher than the 
estimated SRMC of nuclear power of 11 € MWh-1 based on the costs found in the literature 
and used in this study15. This regulated price must therefore also ensure that the state-
owned nuclear plants can recover investment, upgrade and life-extension costs: a 
possibility not open to players operating in a truly liberalised market. Given that market 
reforms are likely to increase competition in the future, the increasing penetration of vRES 
which could underbid nuclear, and our assumption of modelling ideal competitive markets, 
we do not take into account this floor price for French nuclear power. However, in order 
to bring the cost of nuclear generation somewhat closer to historical values, and account 
for the fact that older nuclear plants will have higher maintenance costs and will need new 
investments to prolong their lives, we increase the VOM of existing old nuclear plants 
(those built before 1990) by 13.6 € MWh-1 based on our estimated nuclear SRMC and costs 
reported in (EDF, 2018; Schneider & Froggatt, 2018). 

 
• We do not include actual historical generator or transmission line outages. Discussions 

with experts highlighted that recent outages in French nuclear plants have been significant. 
 
• Power plants are aggregated per category in our model, which results in a bid-supply curve 

with much coarser resolution than in reality. 
 
• We assume fixed prices for gas and coal, while in reality these can vary throughout the 

year in response to the heating season (e.g. higher in winter, lower in summer)16. 
 
• We do not account for feed-in tariff support schemes which give an incentive for wind and 

PV generators to bid into the market at negative prices (hence the reason for not seeing 
negative prices in Germany), reducing prices overall. 

 
• If a thermal generator would expect to shut down but need to turn on again several hours 

later, we do not include the option for them to bid at a negative price to remain online, if 
this option would be overall cheaper than incurring the resulting start-up costs. 

 
• In reality hydro plants reservoir levels have a significant impact on the opportunity cost of 

hydro generation, and hence on the bids made by hydro plants (Pikk & Viiding, 2013; Riesz 
& Milligan, 2015). For example, low levels increase the opportunity cost of using water for 
power production leading to higher bids, while high levels reduce the opportunity cost 
and result in lower bids. However, implementing such detailed bidding strategies was 
beyond the scope of this study. Instead, hydro plants bid based on the shadow price of 
the water in the reservoir, which is only calculated monthly. 

 
To try to reduce the difference between the actual and modelled prices, the 2017 validation 
run was performed again but including the historical French nuclear outages reported by EDF 
(EDF, 2019). Including these outages results in modelled French prices more in line with 
historical values (Figure I-4). However, as these outages may be particularly high due to life 
extensions and post-Fukushima safety related modification, we do not include these outages 
in the main model runs, and assume the same 90% availability as for all other generation 
technologies. 
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Figure D-9 | Box-and-whisker plot of the actual hourly day-ahead electricity price in 2017 for the 
CWE countries from ENTSO-E (black), and the prices calculated by the PLEXOS model (red). The 
boxes indicate the 25th (lower line), 50th/median (middle line), and 75th (upper line) percentile values. The 
lower and upper whiskers are drawn at the 5th and 95th percentile respectively. Outliers are not shown for 
clarity, but they can be seen in the price duration curves (Figure D-11). 
 

 
Figure D-10 | Comparison between the average monthly electricity price per region in 2017 based 
on historical data (black) and that calculated from the PLEXOS model (red) 
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Figure D-11 | Day-ahead market price duration curves for the CWE countries based on historical 
data and model results for the year 2017 for the (a) whole year, (b) most expensive 100 hours and (c) 
least expensive 100 hours 
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Figure D-12 | Comparison between the average monthly electricity price in France in 2017 based 
on historical data (black) and that calculated from the PLEXOS model (red), when historical nuclear 
plant outages are included. 
 

D.9 Additional results 
Addition model results are provided in the following tables and figures. 

  

Figure D-13 | Transmission flows between countries from (a) the 2017 model validation run, and 
(b) the EOM 2C scenario in the year 2040 in TWh. Note the different scales as, while the two plots are 
the same size for convenience, total transmission flows are twice as high in 2040 as in 2017. 
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Figure D-14 | Capacity margins from 2017 to 2040 per country for each market design scenario. The 
solid lines show the margin at the time of the notional peak country load, while the shaded bands show 
the lower and upper limits of the capacity margin assuming no contribution from transmission and 
maximum contribution respectively. Transmission capacity with neighbouring non-CWE countries is also 
included. As PLEXOS reports the capacity margin at the time of the country peak load, accounting for 
simultaneous imports and exports, it may happen that at the time of peak load, a country may export 
more than it imports if this leads to a cheaper overall system dispatch, resulting in a negative margin. 
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Table D-9 | Total installed capacity for the CWE countries per scenario (GW) 

 
 

 

   EOM 2C EOMplus 2C EOM+CM 2C EOMplus+CM 2C 
  2017 2020 2030 2040 2020 2030 2040 2020 2030 2040 2020 2030 2040 

OIL 19.3 1.0 0.0 0.0 0.0 0.0 0.0 9.0 0.0 0.0 9.0 0.0 0.0 

COAL 47.6 37.8 11.7 0.0 37.4 11.7 0.0 47.6 11.7 0.0 47.6 11.7 0.0 
COAL-CCS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
CCGT 27.4 20.9 17.1 8.9 20.8 17.3 9.1 20.9 17.1 12.3 20.9 17.1 12.3 
CCGT-CCS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
GT 14.2 2.8 35.3 33.5 2.8 14.5 15.3 52.2 101.5 118.3 26.2 74.7 91.1 

NUCLEAR 80.5 69.4 50.2 30.9 57.0 46.0 33.7 80.5 60.3 49.0 79.2 59.9 49.8 
CHP 23.9 17.5 12.6 1.9 17.5 12.6 1.9 19.9 13.2 1.9 19.9 13.2 1.9 

HYDRO 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 
HYDRO-PHS 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 
BIOAD 9.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
BIOSOL 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
ONWIND 69.0 77.2 104.8 145.7 77.2 104.8 145.7 77.2 104.8 145.7 77.2 104.8 145.7 

OFFWIND 7.3 13.3 35.5 85.2 13.3 35.5 85.2 13.3 35.5 85.2 13.3 35.5 85.2 
PV 57.0 69.8 157.0 269.0 69.8 157.0 269.0 69.8 157.0 269.0 69.8 157.0 269.0 
BATTERY 0.0 0.0 0.0 13.0 0.0 0.0 13.0 0.0 0.0 16.9 0.0 0.0 16.1 
BIOSOL-CCS 0.0 0.0 0.0 1.9 0.0 0.0 1.9 0.0 0.0 1.7 0.0 0.0 1.7 
DAC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Total (ex. DAC) 394 348 462 628 334 438 613 429 539 738 401 512 711 

      

   EOM 1.5C EOMplus 1.5C EOM+CM 1.5C EOMplus+CM 1.5C 
  2017 2020 2030 2040 2020 2030 2040 2020 2030 2040 2020 2030 2040 

OIL 19.3 0.0 0.0 0.0 0.0 0.0 0.0 9.0 0.0 0.0 9.0 0.0 0.0 
COAL 47.6 32.9 0.0 0.0 25.2 0.0 0.0 47.6 0.0 0.0 46.4 0.0 0.0 

COAL-CCS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
CCGT 27.4 20.9 21.5 13.6 20.9 13.7 8.9 21.1 22.4 17.6 21.1 22.2 17.4 
CCGT-CCS 0.0 0.0 2.0 2.0 0.0 0.3 0.3 0.0 0.8 0.8 0.0 0.9 0.9 
GT 14.2 2.8 8.6 5.9 2.6 2.6 0.0 51.9 79.5 90.1 26.0 56.1 62.6 
NUCLEAR 80.5 71.5 54.6 41.2 68.8 51.9 43.2 80.5 63.6 52.3 80.5 61.3 52.3 

CHP 23.9 17.4 12.5 1.0 17.4 7.2 1.0 19.9 13.2 1.9 19.9 13.2 1.9 
HYDRO 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 
HYDRO-PHS 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 
BIOAD 9.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
BIOSOL 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

ONWIND 69.0 77.2 104.8 145.7 77.2 104.8 145.7 77.2 104.8 145.7 77.2 104.8 145.7 
OFFWIND 7.3 13.3 35.5 85.2 13.3 35.5 85.2 13.3 35.5 85.2 13.3 35.5 85.2 

PV 57.0 69.8 157.0 269.0 69.8 157.0 269.0 69.8 157.0 269.0 69.8 157.0 269.0 
BATTERY 0.0 0.0 0.0 8.8 0.0 0.0 4.0 0.0 0.0 13.5 0.0 0.0 13.8 
BIOSOL-CCS 0.0 0.0 24.4 24.4 0.0 24.4 24.4 0.0 24.4 24.4 0.0 24.4 24.4 
DAC 0.0 0.0 2.2 24.7 0.0 2.2 24.7 0.0 2.2 24.6 0.0 2.2 24.6 

Total (ex. DAC) 394 344 459 635 333 436 620 429 539 739 401 514 711 
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Figure D-15 | Number of hours per scenario with electricity price of zero based on hourly 
simulations of the years 2020, 2030 and 2040 for each market design scenario 

 

 
Figure D-16 | Demand curtailed based on hourly simulations for the years 2020, 2030 and 2040 for 
each market design scenario  
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Figure D-17  | Residual load duration curves for the (a) EOM 2C scenario and (b) EOM 1.5C scenario.   

(a) 

(b) 
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Figure D-18 | vRES curtailment in the years 2020, 2030, and 2040 per technology for each market 
design scenario. 

 
Figure D-19 | Capacity factors per technology for the years 2020, 2030 and 2040 for each scenario.  
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Figure D-20 | Carbon emissions over time per technology in the (a) EOM 2C and (b) EOM 1.5C 
scenarios.  

 
Figure D-21 | Total sequestered carbon emissions in the EOM 2C and EOM 1.5C scenarios. Total 
carbon storage capacity is estimated at around 28 Gt for CWE (EU GeoCapacity Project, 2009). 

0

200

400

-1000

-800

-600

-400

-200

0

0

1

2

3

4

5

6

7

8

9

20
17

20
18

20
19

20
20

20
21

20
22

20
23

20
24

20
25

20
26

20
27

20
28

20
29

20
30

20
31

20
32

20
33

20
34

20
35

20
36

20
37

20
38

20
39

20
40

To
ta

l s
eq

ue
st

er
ed

 c
ar

bo
n 

(G
t)

EOM 2C

EOM 1.5C

A
nn

ua
l c

ar
bo

n 
em

is
si

on
s 

(M
t C

O
2 y

-1
) 

(a) EOM 2C (b) EOM 1.5C 



A

Appendices to Chapter 5 

 363 

D.10 Sensitivity analysis results 
The following paragraphs give more details on the results of the sensitivity analysis. 

In the higher fossil fuel prices sensitivity less new natural gas capacity is built, and the model 
keeps existing nuclear capacity online for longer in both the 2C and 1.5C cases. With higher 
gas and coal costs, total system costs also increase, though the effect is partly mitigated by 
the switch to nuclear. 
 
With higher demand, the model satisfies the additional demand in the 2C case by keeping 
20 GW more nuclear capacity online, installing more new natural gas capacity, and nearly 
double the amount of BECCS as in the base run. The results are similar for the 1.5C case except 
that CCGT-CCS plants are built instead of CCGTs, and double the amount of battery capacity. 
No significant additional DAC capacity is required. 
 
With higher battery costs, batteries no longer appear in the 2040 portfolio in either climate 
case. Instead, the model builds more peaking GT capacity, which leads to slightly more BECCS 
capacity to offset the higher natural gas emissions. 
 
In the 2C case, a higher biomass price results in a slight shift towards more nuclear and gas 
(with CCS) capacity, with only a minimal impact on total cost. Even with a higher biomass price, 
the combination of nuclear, natural gas and BECCS remains the most cost-effective way of 
achieving zero-emissions, and no DAC is built17. In the 1.5C case, BECCS is still cheaper than 
DAC at delivering negative emissions. With such deep decarbonisation required, BECCS 
capacity is still fully exploited, and the higher biomass price simply translates into higher 
cumulative costs.   
 
Assuming a higher or lower discount rate (WACC) makes almost no impact on the 2040 
portfolios in either the 2C or 1.5C cases. However, as expected, total costs are slightly higher 
in the higher WACC sensitivity and slightly lower in the lower WACC sensitivity. 
 
When no biomass limit is enforced, there is no impact on the 2C case as the biomass constraint 
is not binding. However, in the 1.5C case, removing the limit biomass allows much greater 
deployment of BECCS (80 GW), which also avoids the need to install costlier DAC. With more 
baseload generation from BECCS and no additional electricity demand required for DAC, 
nuclear is completely phased out of the portfolio by 2039. Thanks largely to the avoidance of 
DAC, total costs are 25% lower than in the base 1.5C case. However, biomass use reaches 9.5 
EJ in 2040, or three times the notional CWE solid biomass potential assumed in the base runs. 
 
When no BECCS is allowed, the model can still achieve nearly net-zero emissions in the 2C 
case by keeping some additional nuclear capacity online, and building some additional CCGT-
CCS and battery capacity. In the 1.5C case, the model again keeps more nuclear online, but 
also significantly expands CCGT-CCS capacity (27 GW) and even installs some solid biomass 
capacity without CCS (9 GW). However, in order to reach the deep carbon target without 
BECCS, the model has no choice but to invest in an additional 10 GW of DAC capacity 
compared with the base EOM 1.5C case, leading to 20% higher costs. 



Appendices 

 364 

 
When CCS is only allowed with DAC, there are only minor portfolio changes in the 2C case as 
the near-zero target can be achieved by keeping more nuclear capacity online. However, in 
the 1.5C case, an additional 60 GW of onshore wind is built compared with the base runs, more 
(unabated) CCGT plants, more batteries, and more nuclear capacity remains online. However, 
as in the no BECCS sensitivity, the model is forced to invest in an additional 10 GW of DAC to 
meet the climate target, significantly increasing total costs. 
 
In the Blue hydrogen sensitivity no blue hydrogen is used in the 2C case, but in the 1.5C case 
a relatively small amount (50 PJ y-1) is used from 2029 onwards in gas plants, generating an 
average of 9 TWh y-1. This use of hydrogen results in marginally lower system costs compared 
to the base 1.5C case by reducing investments in NGCC-CCS plants. 
 
Fully optimising vRES capacity (from the 2017 starting levels) results in much less vRES installed 
by 2040 than in the exogenous deployment. In the 2C case, no additional offshore wind or PV 
capacity is built after 2017, though onshore wind deployment reaches 130 GW in 2040 - almost 
the level assumed in the base scenarios (145 GW). In place of vRES, more nuclear capacity is 
kept online, more CCGT and CCGT-CCS capacity is built, while the higher residual emissions 
are offset with more BECCS. With significantly less vRES capacity in the portfolio, no batteries 
are installed. As a result of these differences, total costs are nearly 20% lower when vRES 
capacity is optimised than in the base EOM 2C scenario. In the 1.5C case, the same amount of 
onshore wind expansion occurs as in the 2C optimised vRES sensitivity, together with an 
additional 50 GW of PV deployment, though the installed capacity in 2040 (107 GW) is still 
lower than in the reference case (270 GW). The missing generation from vRES is replaced by 
more nuclear capacity (fewer retirements), and significantly higher deployment of CCGT-CCS. 
However, due to the demanding climate target and dominance of NETs in the portfolio, total 
costs in the optimised vRES sensitivity are only 7% lower than the reference 1.5C case. 
 
When the portfolio is freely optimised (from the 2017 starting levels), even less vRES capacity 
is installed in the 2C case than in the optimised vRES sensitivity. Instead, a significant amount 
of existing coal (20 GW) and nuclear capacity (66 GW) is kept online until 2040, while some 
coal and gas capacity is converted to BECCS and CCGT-CCS to meet the emission target. In 
this case, costs are 24% lower than in the base 2C run. If a lower discount rate of 4% is assumed, 
then instead of CCGT-CCS and BECCS, a significant amount (24 GW) of new nuclear capacity 
is built18. A higher discount rate leads to more coal and BECCS capacity. In the 1.5C case, a 
lower discount rate doesn’t result in nuclear being built, and the discount rate only makes 
minor changes to the portfolios and total costs due to the dominating effect of the NETs. 
 
Compared with the EOM+CM reference case, the tighter capacity margin sensitivity results in 
far less GT capacity being built, and earlier retirements of existing nuclear capacity. Thanks to 
the lower capacity requirement and lower capacity prices (Figure D-22), total costs in the 
tighter capacity margin sensitivities fall by 24% in the 2C case, and 16% in the 1.5C case 
compared with EOM+CM reference case, but even these lower values are still higher than the 
EOM-only scenarios. For example, total costs in the EOM+CM 2C scenario with tighter capacity 
margin are 7% higher than in the EOM 2C scenario. 
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When transmission line outages are included in the UCED runs (Figure D-23), unserved energy 
increases in the EOM-based market designs compared to the core results with up to 60 GWh 
unserved in 2030 in the EOMplus 2C scenario. The most problematic region is Belgium as, after 
the nuclear phase out in 2025, the model doesn’t replace the lost nuclear capacity with new 
domestic generation capacity, and instead relies on transmission capacity to maintain 
reliability. However, the coarser temporal resolution (monthly) used in the capacity expansion 
algorithm and exclusion of inter-temporal constraints (e.g. ramping rates, minimum up-down 
time) can mean that when the UCED simulations are performed at hourly resolution including 
these constraints, unserved energy can result. It is important to note that transmission lines 
are modelled as single bi-directional HVDC lines in this study and, when forced offline for 
maintenance, represent a significant capacity loss. However, in reality, neighbouring countries 
with land borders are typically connected by several HVAC lines. Thus, when one fails, the 
others should still be able to operate. Despite the increase in unserved energy compared with 
transmission outages compared with the base runs, even in 2030, unserved energy represents 
only 0.005% of total CWE annual demand.   
  



Appendices 

 366 

 

 

 
Figure D-22 | Capacity market prices in the EOM+CM 2C scenario with the tighter capacity margin 
sensitivity. 

 
Figure D-23 | Unserved energy based on hourly simulations of the years 2020, 2030 and 2040 for 
each market design scenario when a transmission outage rate of 10% is assumed. The stacked bars 
show the volume (GWh) of unserved energy, while the horizontal bars indicate the number of hours in 
which unserved energy is observed.  



A

Appendices to Chapter 5 

 367 

Footnotes to Appendix D 

1 These scenarios were chosen to be consistent with the selected scenarios for vRES capacity deployment. 
2 The data supporting the TYNDP2018 only reports transmission capacity for these years 2020, 2027 and 2040. However, 

we bring forward the Global Climate Scenario capacities from 2040 to 2035 so that their impact is spread over more 
years. 

3 Assuming the cost of retrofitting a biomass plant with CCS is also ~60% the cost of a new Coal-CCS plant. 
4 For example, Daggash et al. (Daggash et al., 2019) assumed the cost of a Biomass-CCS plant to be equivalent to that of 

a Coal-CCS plant retrofitted for biomass conversion, arriving at a figure of 2721 ₤ kW-1 (~3000 € kW-1), however this 
does not appear to include interest during construction. 

5 Renewables Ninja only contains CFs up until the year 2016, thus a direct comparison of 2017 CFs could not be made. 
We scale the Renewables Ninja factors to match the EurObserver ones (and not the other way around) as these match 
better with historical data from other sources. For example, the average lifetime CF of offshore wind farms is 39% in 
Germany, 38% in the UK, 42% in Denmark, and 37% in Belgium (Energy Numbers, 2016). 

6 Battery firm capacity depends on the size of the storage, and the manner in which it is deployed during shortage. Based 
on calculations performed for the UK capacity market an energy storage technology with 6 hours storage has a firm 
capacity exceeding 90% (National Grid, 2017). Thus, this limitation has limited impact. 

7 VoLL is difficult to estimate and values in the literature vary. For example, (VVA et al., 2018) report higher VoLL values 
for industrial and commercial consumers (20,000 to 30,000 € MWh-1) than for households (5,000 to 10,000 € MWh-1). 

8 Even taking into account these quantitative VoLL differences would raise serious equity and social questions. For 
example, if a higher VoLL was used for Dutch consumers than for French consumers, the model would choose to cut 
supply to French consumers before Dutch ones. 

9 This is a rather conservative estimate as interruptible load in US power systems is reported already 11% (Hirth & 
Ueckerdt, 2014). 

10 Anderson & Broderick assume that emissions from deforestation are matched by carbon sequestration through Land 
Use, Land Use Change and Forestry (LULUCF) activities across the century, and thus not included. 

11 ‘Energy-related’ sectors include fuel combustion for electricity and/or heat production by large utilities, industry, 
commerce and households, fuel combustion in the transport sector, as well as fugitive fuel emissions. See Table D-7 
for further details. 

12 Other methods are also possible such as grandfathering (based on historical emissions) and gross domestic product. 
13 Given that statistics are only reported for public electricity production combined, we cannot easily separate out the 

emissions attributed to electricity and heat individually. By lumping heat and electricity together, we essentially assume 
that all district heat is produced via combined heat and power. 

14 For example, the production of renewable hydrogen or Fisher-Tropsch liquid fuels from gasified biomass results in a 
nearly pure stream of CO2 which may be a cheaper way of deploying BECCS than in the power sector (van Vliet et al., 
2011). 

15 This estimate largely agrees with (Lévêque, 2013) which report an estimated French nuclear SRMC of 6 € MWh-1 in 
2013. 

16 See https://ycharts.com/indicators/europe_natural_gas_price  
17 By 2040, DAC is cost competitive with BECCS at a biomass price of 12.5 € GJ-1 
18 Note, this is the only scenario in the whole study in which new nuclear capacity is built, showing that the higher capital 

cost and long construction time of nuclear inhibit new builds at the base 8% discount rate.  
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 Description of the PLEXOS 
modelling framework 
Indices and sets 
𝑔𝑔 ∈ 𝒢𝒢 Generating units, running from 1 to 𝒢𝒢, the total set of generation unit types  
𝑘𝑘 Run up/down interval 
𝑖𝑖 Dummy variable (e.g. to sum across each year 𝑖𝑖 preceding year 𝑦𝑦 
𝑡𝑡 ∈ 𝒯𝒯 Dispatch intervals, running from 1 to 𝒯𝒯, depending on phase and settings 

(e.g. 1 to 168, for an hourly ST Schedule simulation of one week) 
𝑦𝑦 ∈ 𝒴𝒴 Years, running from 1 to 𝒴𝒴, the set of years in the (LT) planning horizon  
 
Nomenclature 
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑔𝑔 Overnight capital cost of generating unit 𝑔𝑔 (€ MW-1) 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑦𝑦 Capacity shortage in 𝑦𝑦 (MW-1) 
𝐷𝐷𝐷𝐷𝑦𝑦 Discounting factor applied in year 𝑦𝑦 
𝐹𝐹𝑂𝑂𝑂𝑂𝑖𝑖 Fixed operating and maintenance costs of generating unit 𝑔𝑔 (€ MW-1) 
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑔𝑔,𝑦𝑦 Number of generating units g built in year 𝑦𝑦 
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑔𝑔,𝑡𝑡 Load of generating unit 𝑔𝑔 in dispatch interval 𝑡𝑡 (MWh) 
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑔𝑔,𝑡𝑡 Binary variable indicating if generating unit 𝑔𝑔 is online during interval 𝑡𝑡 
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑔𝑔,𝑡𝑡 Binary variable indicating if generating unit 𝑔𝑔 starts in interval 𝑡𝑡 
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑔𝑔,𝑡𝑡 Binary variable indicating if generating unit 𝑔𝑔 stops in interval 𝑡𝑡 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡 Load in dispatch interval 𝑡𝑡 (MW) 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑔𝑔 Maximum power of generating unit 𝑔𝑔 (MW) 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑔𝑔,𝑦𝑦 Maximum number of generating unit 𝑔𝑔 units built in year 𝑦𝑦 
𝑀𝑀𝑀𝑀𝑀𝑀𝑔𝑔 Minimum down time of generating unit 𝑔𝑔 (h) 
𝑀𝑀𝑀𝑀𝑀𝑀𝑔𝑔 Minimum stable level of generating unit 𝑔𝑔 (MW) 
𝑀𝑀𝑀𝑀𝑀𝑀𝑔𝑔 Minimum up time of generating unit 𝑔𝑔 (h) 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑔𝑔,𝑡𝑡 No-load cost of generating unit 𝑔𝑔 in interval 𝑡𝑡 (€ h-1) 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑦𝑦 Peak electricity demand in 𝑦𝑦 (MW) 
𝑅𝑅𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑦𝑦 Capacity reserve margin in 𝑦𝑦 (MW) 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑔𝑔 Maximum ramp-down rate for generator 𝑔𝑔 (MW min-1) 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑔𝑔 Maximum ramp-up rate for generator 𝑔𝑔 (MW min-1) 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑔𝑔 Short-run marginal cost of generating unit 𝑔𝑔 (€ MWh-1) 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑔𝑔,𝑡𝑡 Start-up cost of generating unit 𝑔𝑔 in interval 𝑡𝑡 (€) 
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑔𝑔 Number of generating unit 𝑔𝑔 units installed at start of simulation 
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑔𝑔,𝑦𝑦 Number of generating unit 𝑔𝑔 units built in year 𝑦𝑦 
𝑈𝑈𝑈𝑈𝑈𝑈𝑡𝑡 Unserved energy in dispatch interval 𝑡𝑡 (MW) 
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 Value of lost load (€ MWh-1) 
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PLEXOS is a power market modelling framework developed by Energy Exemplar 
(www.energyexemplar.com) based on mixed-integer linear programming (MILP). PLEXOS is 
not a single model, but rather a flexible modelling framework that enables the analyst to 
model the power system with varying level of detail, depending on their needs and data 
availability. Using the framework, models are built by adding power system objects (e.g. nodes, 
regions, transmission lines, generators, fuels, emissions, storages, reserves) and linking them 
together via so-called memberships. Model input data is assigned to the various objects as 
properties (e.g. Minimum up/down times for generators, load for a node, losses for a 
transmission line), which can be enabled or disabled as desired. When the model is run, the 
user can choose to output the mathematical problem in full, allowing for full transparency and 
inspection of the underlying equations. PLEXOS does not solve the resulting mathematical 
problem itself, but instead allows the user to specify one of several open-source (e.g. GLPK, 
SCIP) or commercial solvers (e.g. Gurobi, CPLEX, MOSEK). 
 
PLEXOS is built around several simulation algorithms or phases which allow it perform capacity 
expansion and unit commitment and economic dispatch (UCED), while taking into account 
constraints which can apply over short (e.g. hourly) or long-term (e.g. multi-annual) horizons. 
The results are passed down from one simulation phase to the next (Figure E-1), as explained 
below. 
 

• The Long-term Plan (LT Plan) phase is a capacity expansion/investment module 
with a time horizon of at least one year, but which can extend up to several decades. 
The LT Plan is run first for the whole simulation horizon to find the optimum 
build/retire decisions in generation and transmission infrastructure assuming perfect 
foresight. However, if a multi-year simulation horizon is too complex to solve, the LT 
Plan can be performed in several steps to reduce the size of the mathematical 
problem, in which case the model foresight reduces to the length of the simulated 
step size. The level of temporal detail is typically simplified in the LT Plan by 
approximating (hourly) load with load duration curves (LDC), or sampling techniques.  

 
• After the LT Plan, the Projected Assessment of System Adequacy (PASA) phase 

can be run which has two main functions: (1) to compute system adequacy statistics 
such as loss of load probability (LoLP) using a convolution approach, and (2) to create 
discrete planned and forced maintenance (outage) events for the subsequent more 
detailed simulation phases. It does this by solving a quadratic programming problem 
to equalise capacity reserves across the full year. 
 

• The Medium-Term Schedule (MT Schedule) phase is also run after the LT Plan. Its 
purpose is to manage constraints and commercial considerations that need to be 
addressed over time scales longer than a day or week. Examples are optimum hydro 
dam storage levels throughout the year, as well as annual fuel or emission 
constraints. The MT Schedule addresses these issues by decomposing long-term (e.g. 
yearly, monthly) constraints into short-term ones so that can be accounted for 
correctly at shorter time scales. 
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• The Short-term Schedule (ST Schedule) phase is a UCED algorithm which solves 
the UCED problem with full chronological detail, and can be run with a temporal 
resolution of one hour down to 5 minutes. The ST Schedule UCED simulation assumes 
that generators bid at their short-run marginal cost, under the assumption of 
perfectly competitive markets. In this case, the UCED approximates the result of a 
real-world market clearing process. This phase takes into account the inter-temporal 
flexibility constraints of generators which are not accounted for in the other phases. 
The ST Schedule can be run using either full integer programming, or with integer 
constraints relaxed. 

 

 
Figure E-1 | Schematic overview of the PLEXOS market model showing how results are passed 
between the different simulation phases.  
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The most important equations describing the PLEXOS mathematical formulation, similar to 
those employed in other power system models, are outlined below. These are taken directly 
from the PLEXOS documentation (Energy Exemplar, 2015) and published literature  (Brinkerink 
et al., 2018; Deane et al., 2014). Note that this list of equations is only illustrative and not 
exhaustive, as the exact equations used will depend on the components modelled.  

LT Plan formulation 

The objective function of the LT Plan (excluding generator retirements and transmission 
investments) is to minimise the net present value of the total sum of investment costs, fixed 
operating and maintenance (FOM) costs, and variable generation costs across the whole 
power system, subject to various constraints on energy and unit builds (Energy Exemplar, 
2015). 

MINIMISE: 

                                  ∑ ∑ 𝐷𝐷𝐷𝐷𝑦𝑦(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑔𝑔,𝑦𝑦 × 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑔𝑔)
𝑔𝑔𝑦𝑦

+ ∑ 𝐷𝐷𝐷𝐷𝑦𝑦
𝑦𝑦

[𝐹𝐹𝐹𝐹𝐹𝐹𝑔𝑔 × 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑔𝑔

× (𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑔𝑔 + ∑ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑔𝑔,𝑖𝑖
𝑖𝑖≤𝑦𝑦

)]

+ ∑ 𝐷𝐷𝐷𝐷𝑡𝑡∈𝑦𝑦 × 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡
𝑡𝑡

× [𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 × 𝑈𝑈𝑈𝑈𝑈𝑈𝑡𝑡 + ∑(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑔𝑔 × 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑔𝑔,𝑡𝑡)
𝑔𝑔

] 

(E-1) 

 

Subject to: Energy balance constraint 

The total amount of generation in each dispatch period must be equal to the load less the 
unserved energy (Energy Exemplar, 2015). 

∑ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑔𝑔,𝑡𝑡
𝑔𝑔

= 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡 − 𝑈𝑈𝑈𝑈𝑈𝑈𝑡𝑡      ∀ 𝑡𝑡 (E-2) 

Subject to: Feasible energy dispatch 

The total generation from a certain generator type must be less than the total capacity of all 
installed units of that generator type (Energy Exemplar, 2015). 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑔𝑔,𝑡𝑡 ≤ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑔𝑔 (𝑈𝑈𝑈𝑈𝑖𝑖𝑡𝑡𝑡𝑡𝑔𝑔 + ∑ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑔𝑔,𝑖𝑖
𝑖𝑖≤𝑦𝑦

)  (E-3) 

 



Appendices 

 

372 

Subject to: Feasible unit builds 

There may be constraints to the number of units of a certain generator type built each year 
(Energy Exemplar, 2015). 

∑ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑔𝑔,𝑖𝑖
𝑖𝑖≤𝑦𝑦

≤  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑔𝑔,𝑦𝑦 (E-4) 

 

Subject to: Capacity margins 

In its most basic form, the LT Plan will optimise investment decisions to meet the natural trade-
off between unserved energy (priced at the VoLL) and investments. In this respect, it will make 
investments up to the point where the electricity price – the shadow price (dual variable) on 
the energy balance constraints – should compensate the last generator built for its investment 
and operating costs. However, it is also possible to implement a constraint on the capacity 
margin i.e. the margin of surplus generation capacity above the peak load (Energy Exemplar, 
2015). 

∑ 𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔(𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑔𝑔 + ∑ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑔𝑔,𝑖𝑖
𝑖𝑖≤𝑦𝑦

)
𝑔𝑔

+ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑦𝑦

≥ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑦𝑦 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑦𝑦            ∀ 𝑦𝑦 
(E-5) 

 

The preceding equations are only illustrative for a single region, and do not account for all 
factors such as outages, reserves, multiple regions, or cross-border transmission. 

ST Schedule formulation 

The objective function of the ST Schedule is to minimise the total generation costs in a 
modelled period, as well as the costs of unmet load, subject to various operational constraints 
(Brinkerink et al., 2018).  

MINIMISE: 

∑ ∑(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑔𝑔,𝑡𝑡
𝑡𝑡∈𝒯𝒯

× 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑔𝑔,𝑡𝑡−1 + 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑔𝑔,𝑡𝑡 × 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑔𝑔,𝑡𝑡 + 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑔𝑔 × 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑔𝑔,𝑡𝑡 +  𝑈𝑈𝑈𝑈𝑈𝑈𝑡𝑡 × 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉) 
(E-6) 

Subject to: Generator start and stop definitions 

The operating state (online/offline) of a generation unit during a dispatch interval can only 
change if a stop or start has occurred (Deane et al., 2014). 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑔𝑔,𝑡𝑡 − 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑔𝑔,𝑡𝑡−1−𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑔𝑔,𝑡𝑡+𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑔𝑔,𝑡𝑡 = 0 ∀ 𝑔𝑔, ∀ 𝑡𝑡 (E-7) 
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Subject to: Energy balance constraint 

The ST Schedule is also subject to an energy balance constraint in each dispatch interval, the 
same as Eq. (E-2). 

Subject to: Minimum stable level and ramping limits 

Generators typically cannot operate below a minimum stable operating level (MSL), and are 
limited in how fast they can ramp up and down in production from one interval to another: 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑔𝑔,𝑡𝑡 − 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑔𝑔,𝑡𝑡−1 ≤ (60𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑔𝑔 + 𝑀𝑀𝑀𝑀𝑀𝑀𝑔𝑔)𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑔𝑔,𝑡𝑡 − (𝑀𝑀𝑀𝑀𝑀𝑀𝑔𝑔)𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑔𝑔,𝑡𝑡−1 
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑔𝑔,𝑡𝑡−1 − 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑔𝑔,𝑡𝑡 ≤ (60𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑔𝑔 + 𝑀𝑀𝑀𝑀𝑀𝑀𝑔𝑔)𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑔𝑔,𝑡𝑡−1 − (𝑀𝑀𝑀𝑀𝑀𝑀𝑔𝑔)𝐺𝐺𝐺𝐺𝑛𝑛𝑂𝑂𝑂𝑂𝑔𝑔,𝑡𝑡 

(E-8) 
(E-9) 

Subject to: Generator minimum up and down times 

If a generator unit has a minimum up time (MUT) defined, it must be online if started in any 
dispatch interval looking back over the MUT (Deane et al., 2014). 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑔𝑔,𝑡𝑡 − ∑ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑔𝑔,𝑘𝑘

𝑡𝑡

𝑘𝑘=𝑡𝑡−𝑀𝑀𝑀𝑀𝑀𝑀𝑔𝑔+1
≥ 0                     ∀ 𝑔𝑔, ∀ 𝑡𝑡 (E-10) 

If a generator unit has a minimum down time (MDT) defined, it must be offline if shutdown in 
any dispatch interval looking back over the MDT (Deane et al., 2014). 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑔𝑔,𝑡𝑡 − ∑ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑔𝑔,𝑘𝑘

𝑡𝑡

𝑘𝑘=𝑡𝑡−𝑀𝑀𝑀𝑀𝑀𝑀𝑔𝑔+1
≤ 1                         ∀ 𝑔𝑔, ∀ 𝑡𝑡 (E-11) 
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