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Abstract

The aim of this short note is to give a simple explanation for the remarkable periodicity
of Magicicada species, which appear as adults only every 13 or 17 years, depending on
the region. We show that a combination of two types of density dependence may drive,
for large classes of initial conditions, all but 1 year class to extinction. Competition for
food leads to negative density dependence in the form of a uniform (i.e., affecting all
age classes in the same way) reduction of the survival probability. Satiation of predators
leads to positive density dependence within the reproducing age class. The analysis
focuses on the full life cycle map derived by iteration of a semelparous Leslie matrix.

Keywords Age-structured population models - Nonlinear dynamics - Nonlinear
Leslie matrix models - Single year class dynamics - Semelparous insects

Mathematics Subject Classification 37N25 - 92B25

Dedicated to Hans Othmer, a winner who shares rather than deprives

The first part of the title is inspired by the ABBA song, but the inspiration was catalyzed by M. Deijfen, R.
van der Hofstad, The winner takes it all, Annals of Applied Prob. 2016 26(4):2419-2453.

B Robert Planqué
r.planque @vu.nl

Odo Diekmann

o.diekmann@uu.nl

Department of Mathematics, Utrecht University, Budapestlaan 6, 3584 CD Utrecht,
The Netherlands

Department of Mathematics, Vrije Universiteit Amsterdam, De Boelelaan 1081,
1081 HV Amsterdam, The Netherlands

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00285-019-01362-3&domain=pdf
http://orcid.org/0000-0002-0489-5425

284 0. Diekmann, R. Planqué

1 Periodical insects: a conundrum

According to Bulmer (1977), “An insect population is said to be periodical if the life
cycle has a fixed length of k years (k > 1) and if the adults do not appear every year
but only every kth year.” He then provides several examples, one by quoting Lloyd
and Dybas (1966)

Periodical cicadas, Magicicada spp., have the longest life cycles known for
insects. In any one population, all but a tiny fraction are the same age. The
nymphs suck juices from the roots of deciduous forest trees in eastern United
States. Mature nymphs finally emerge from the ground, become adults, mate,
lay their eggs, and die within the same few weeks of every seventeenth (or, in
the South, every thirteenth) year. Not one species does this, but three. There are
three separate and distinct species that occur together over most of the range
of periodical cicadas and, wherever the species coexist, they are invariably syn-
chronized. In different regions, different “broods” of periodical cicadas may be
out of synchrony by several years, but the species (in a given region) never are.
Finally, the same three species—the same as nearly as anyone can tell by looking
at them or listening to the songs of their males—exist both as 17 and as 13-year
periodical cicadas! [Pp. 133—134; Note that the three species are now considered
to be seven species, each with their own period of either 13 or 17 years (Marshall
2008)]

In the wake of Bulmer’s pioneering paper a rich literature on discrete time models
for semelparous organisms developed, see (Behncke 2000; Webb 2001; Diekmann
et al. 2005; Cushing 2009; Cushing and Henson 2012; Kon 2012, 2017; Cush-
ing 2015; Wikan 2017) and the references given there. The population splits into
year classes according to the year of birth (equivalently: the year of reproduction)
counted modulo k. As a year class is reproductively isolated from the other year
classes, it forms a population by itself. Accordingly, competition may lead to exclu-
sion.

Despite this rich literature, the spatio-temporal pattern displayed by periodical
cicada population dynamics is, we think, still an enigma. The interest of one of the
authors in the subject was rekindled while refereeing an early version of (Machta et al.
2019). The model introduced and studied in that paper is characterized by

— uniform (i.e., age-class unspecific) negative density dependence during develop-
ment;
— positive density dependence for reproduction.

The first of these captures competition for food, the second satiation of predators to
eat adults in a given year (Williams et al. 1993).

The paper (Machtaetal. 2019) considers the limitk — oo and employs a continuous
time description of the competition for resources (whence the word “hybrid” in the
title). The main result establishes the instability of any steady state with more than
1 year class present.

Here we focus on the “full life cycle” map, i.e., the k-times iterated Leslie matrix,
cf. (Davydova et al. 2003, 2005). The full life cycle map is represented by a diagonal

@ Springer



The winner takes it all: how semelparous insects can... 285

matrix. If competition is uniform, in the sense that in any year any of the survival
probabilities is the product of a fixed age-class specific factor and a year-specific
factor that is the same for all age-classes, the diagonal elements all have the same
overall survival factor. In other words, negative density dependence results over a full
life cycle for all year classes in exactly the same multiplication factor. Each diagonal
element has an additional reproduction factor. Positive density dependence causes
this factor to be highest for the year class that had, in the year that it reproduced, the
highest density. In this way, a numerical advantage is reinforced and asymptotically
there remains, “generically”, only 1 year class: all the others go extinct. See Fig. 1 for
an example.

Note that this holds independently of the resulting single year class (SYC) dynam-
ics in the sense that the winners may exhibit ultimately steady state, periodic or even
chaotic dynamics. Also note that it depends on the initial condition which one of
the k year classes will win the competition. Domains of attraction (or, dominance)
are separated by sets of special initial conditions for which several year classes
coexist forever (e.g., steady coexistence states and their stable manifolds). In prin-
ciple these separatrices may have an intricate structure [e.g., see (Hofbauer et al.
2004)].

Our main result provides an explicit condition that guarantees that the year class
having highest age at the census time will win. Please note that there are k year
classes and that each is as ‘strong’ as any other one. The intrinsic symmetry is broken
when we try to predict which year class is going to dominate on the basis of the
abundances at a particular time, simply since the various year classes are at that
time in a different phase of their life cycle. The main result yields, by iteration, an
implicit partial characterization of the domain in the state space such that the year
class that has age j, with 1 < j < k, will win. The implicit character makes these less
informative, yet we should keep in mind that the condition described in our main result
is supplemented by k — 1 implicit conditions for victory of the other year classes. This
raises the fundamental question: is the union of the domains of domination/attraction
of the k year classes everywhere dense? In Fig. 2 we provide numerical evidence that
the answer is ‘yes’ for at least some parameter values. In the “Appendix” we show
that there are parameter values for which the answer is ‘no’.

The upshot is that the combination of uniform negative density dependence and
concentrated (in one point of the life cycle) positive density dependence, as assumed
in (Machta et al. 2019), leads, as a rule, to exclusion of all but at most 1 year class.
This does not prove, of course, that this is the mechanism underlying the observed
phenomenon of SYC dynamics in Magicicada. But in the spirit of Occam’s Razor,
this probably currently offers the simplest, and hence most plausible, potential expla-
nation.

Anyhow, as far as we are aware, we provide below the first analytical demonstration
of 1 year class driving all other year classes to extinction without severe restrictions
on the initial conditions and without any condition on the resulting SYC dynamics,
except for boundedness.
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2 Model formulation

Let k be an integer bigger than one. Let N(z) be the k-vector such that N; () is
the sub-population density of individuals that at the census moment in year ¢ have
age j. In view of linear algebra we take j = 1,2, ..., k, even though biologically
j =0,1,...,k — 1 would perhaps make more sense if, as we assume, the census
moment is in the early autumn, so after reproduction took place. We assume that

N +1)=LMh(N@)N(@). (1
where
00--- 0
h; 0 0 0
00 hit 0

is a “semelparous” Leslie matrix (here the adjective “semelparous” indicates that in
the first row only the last element is non-zero, reflecting that individuals reproduce at
age k and then die). The dependence of the matrix elements /; on N captures density
dependence. We assume that

hi(N) =o0in(N) fori=1,...,k—1, 3)
hi(N) = o (N)B(ox (N) Ni). 4
where
o €(0,1], i=1,...,k, 5)
7 RE — (0, 1], (6)
B : [0, 00) — [0, 00) is continuous, strictly increasing and bounded. (7

Here the o; are survival probabilities under “standard” conditions and the (uniform,
i.e., i-independent) factor m (V) reflects the reduction of the survival probabil-
ity as a result of crowding and competition for food. The last age group too
needs to survive the winter before they can emerge as adults, so the popula-
tion density of emerging adults equals o7 (V) Ni. The function S is a composite
model ingredient. It describes the number of offspring at the census moment per
emerging adult. The monotonicity of B reflects that the per adult capita risk of
falling victim to predation decreases with adult population density. This is the
effect of predators becoming satiated (or even over-satiated) when prey density
is very high, and that the time interval between emergence and death of the
adults is too short for a numerical increase in the number of predators (mainly
birds).
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3 The main results

So far we did not specify any property of 7 that justifies the description “negative”
density dependence. But now we require that population densities remain bounded
and implicitly this is an assumption concerning the function 7.

Hypothesis 1 (dissipativity (Hale 1988)) There exists R > 0 such that
k
By :=={NeR\: Y N <R) ®)
i=l1

is forward invariant and attracts all orbits.

By “attracts all orbits” we mean that for every Ny € Rﬁ there exists m = m(Np)
such that the solution of (1) with initial condition N(0) = Ny satisfies N(t) € B;
for t > m(Np). We adopt Hypothesis 1 for the rest of the paper. In Sect. 4 below we
provide easily verifiable conditions on 7 and j that guarantee that Hypothesis 1 is
satisfied.

At the end of Sect. 1 we already observed that (due to symmetry, see (Diekmann
and van Gils 2003; Davydova et al. 2005) for a bit more detail) any year class is a
candidate for becoming the sole inhabiter of the world. It turns out to be relatively
easy to describe a set of initial conditions such that the year class that has age k at the
initial time will outcompete all the other year classes.

The underlying idea is the following. During a full life cycle, a year class has
highest density at the first census after birth and lowest density at the last census before
reproduction, simply since inbetween the density is reduced by mortality. Likewise,
for a steady state with all year classes present, abundance decreases with age. (Possibly
the same holds for any solution of period k with several year classes present, but we
do not know.) The age classes at a particular census, on the other hand, reflect the
relative abundances of the year classes, albeit in a manner that does not allow general
straightforward meaningful comparison. However, if the highest age class has highest
abundance, this clearly shows that the corresponding year class is dominant and on
the way to becoming the winner. As shown in the following theorem, this test can
be refined by correcting for the predictable mortality (as captured by the o’s) before
reaching the highest age.

Theorem 1 The set
Q2 :=(NeR: Ny >0; -0k (Nifori=1,....k -1} 9)

is forward invariant under the full life cycle map, and if N(0) € $2; and for given
ie{l,...,k—1}, N;(0) > 0, then

N; (mk)
N (mk)

is a strictly decreasing function of m. This function has limit zero for m — 00 in case
lim sup,,,_, o, Nk(mk) > 0.
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Fig. 1 Example dynamics for the map (1)—(2), with parameters 0y = o0 = o3 = 1, 1(N) =

e 041 +N2+N3) gpg B(N3) = 17.5N3/(1+ N3). Left: full dynamics of all cohorts; middle: the dynamics
of the full life cycle map, for all cohorts, shown from the year at which the orbit enters §23; right: dynamics
generated by the full life cycle map, with £23 in black, with red points of the orbit outside §23 and blue
those inside. We observe convergence to a single year class fixed point inside £23 that lies on the N3-axis.
Note that the choice 01 = 0o = 03 = 1 is no restriction, as we can scale the variables N; with these
parameters, as indicated in Sect. 4. Do note, however, that stronger mortality increases the size of £2; (color
figure online)

The set §23 is depicted in Fig. 1. Note that all year classes go extinct if Ny (mk) — 0
form — oo. Hypothesis 1 rules out the possibility that both N; (mk) and Ny (mk) grow
beyond any bound for m — oo while their ratio goes to zero. So we conclude that for
initial conditions belonging to £2; only the k-th year class can possibly persist.

Proof In order to avoid overburdening the reader with notational detail, we focus on
the proof of the case k = 3. The proof for general k& does not require new arguments.
From (1) it follows that

N@3) = L(h(N(2)))L(h(N(1)))L(h(N(0)))N(0). (10)

The product of the three Leslie matrices is a diagonal matrix. We claim that the three
elements of the diagonal of this matrix have a factor

01 := 010203 (N(0)r (N (1)) (N (2)) an

in common and are in fact of the form B(-)6; with the argument of 8 being 61 N1 (0) for
the first element, 6, N»(0) with 6, := 02037 (N (0))r (N (1)) for the second element,
and 63 N3(0) with 63 := o377 (N (0)) for the third element.

To verify the claim, we elaborate (10) from right to left, using 1 to denote 7 (N (0)),
15 to denote (N (1)) and 3 to denote w (N (2)). All factors in the products in the
vectors below follow the order of events over time.
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N B(o3m1N3)o3m N3 B(o3ma02m1 N2)o3maoam Na
N | — o1m1 Ny — o1m2B (03w N3)o3m N3
N3 o1 No om0 Ny

B(o3msoamaoimi Ni)o3msormao 1 Ny
— o1m3B(03m202m N2)o3maoam No . (12)
oxm3o1m (031 N3)o3m N3

Noting that 6y = 01020372713, inspection reveals that the claim is correct. It follows
that

Ni3) _ BOIN1(0)) N1(0)
N3(3)  B(63N3(0) N3(0)

(13)
Now for N(0) € §23, 0102 N1(0) < N3(0), so that

B1NI(0) = 03 (N () (0201 7 (N (D)7 (N (2) ) N1 (0)

< o3 (N(0))o201N1(0)
< o3 (N(0))N3(0),
= 03N3(0),

and we conclude that, since g is strictly increasing,
B(O1N1(0)) < B(03N3(0)).
Hence, when N{(0) > 0,

Ni1(3)  N1(0) 1
< < .
N3(3) N3 (0) o102

Essentially the same argumentation yields that, when N(0) € £23 and N2(0) > O,
then

M@ MO 1

< —.
N3(3)  N3(0) o

It follows that £23 is forward invariant under the full life cycle map and that fori = 1, 2
the sequences

N;(3m)
N3(3m)

are decreasing in m, strictly when positive. It remains to be shown that either their
limit is zero or all year classes go extinct.
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Assume that N1(3m)/N3(3m) — « for m — oo. Extending the definitions of 6;
to

01(m) ;= o103t (N(Bm))m(N(Bm + 1))7(NBm + 2)),
03(m) := o3 (N (3m)),

then by iteration (13) leads to

Ni@Bm+ 1) _ BO1m)N1(3m)) N1Gm)
N3@3(m +1))  BB:(m)N3(3m)) N3(3m)’

(14)

Passing to the limit m — oo in (14), it follows that if ¢ > 0 then necessarily, since
18 continuous,

B(O1(m)aN3(3m))
B(03(m)N3(3m))

for m — oo. This is very well possible if N3(3m) — 0 for m — oo (and in that case,
since §23 is forward invariant, also N1(3m) and N, (3m) converge to zero for m — oo,
so all year classes go extinct). But if lim sup,,,_, ., N3(3m) > 0, this is not possible,
since o < 1, 01(m) < 63(m) because o100 < 1, 7(N(GBm + 1)) n(N(Bm +2)) < 1,
and B is strictly increasing. O

Theorem 1 does neither restrict nor predict the resulting SYC dynamics. But does
it allow for a large class of initial conditions? The answer, of course, heavily depends
on what one means by “large”. Certainly the set is open. Moreover, if a given initial
condition does not belong to §2;, one can apply (1) once and check whether N (1)
belongs to 2 (if it does, the year class that had label k£ — 1 in year O is the winner).
By applying (1) repeatedly one can thus check for any of the year classes whether or
not Theorem 1 guarantees that they will win the competition. The example of a steady
state with all year classes present clearly shows that this procedure may fail to point
out a winner, for the simple reason that there might not be a winner. The next question
then is: how exceptional is it that several year classes persist?

It is tempting to conjecture that a fixed point of the full life cycle map, with more
than 1 year class having positive density, is necessarily unstable, as was found to be the
case for the model considered by Machta et al. (2019). However, in the “Appendix”
we show that such a fixed point can in fact be stable if the negative density dependence
incorporated in 7 is stronger than the positive density dependence incorporated in S,
in the sense that an increase of the oldest age group Ny can lead to a decrease of
7 (N) N and thus to a decrease of the youngest age group in the next year. So without
further restrictions on the class of models, it is not guaranteed that generically there
will be a single winner. The restriction that for all non-negative Ny, ..., Ny_; the
map Ny — m(N)Ny is increasing seems both meaningful and promising. See the
“Appendix” for an example.

As illustrated in Fig. 2, numerical tests indicate that the occurrence of a single
winner is in fact rather common. In the same figure we also evaluate the performance
of the following
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Fig.2 The long-term dynamics as determined numerically, illustrating that for almost all initial conditions,
a single year class emerges as the “winner”. Top row: the winning cohort number, as a function of initial
values (N1(0), N2(0), N3(0)), shown in slices in the Nj-direction (left) and in the N3-direction (right).
Bottom row: the cohort number that is predicted to win using the Prediction Tool in the text. This tool
is good, but not perfect, in predicting which cohort will eventually rule the world. Model ingredients are
B(x) = max{0, 10(1 — 0.1/x)}, and 7(N) = e 0 7TWN1+N2+N3) and o) =0y =03 = |

Prediction Tool For an arbitrary initial condition N(0), find the index j that

maximizes the diagonal elements in the full life cycle map,
 — aremax Vi (k)
SN O

ie.,

The prediction is that the year class having age j in year 0 will drive all other year

classes to extinction.
It appears that the tool works well, but is not infallible.

We now present a theorem in which we incorporate more restrictions, but also
describe more precisely the ultimate dynamics. The full life cycle map acts on R,
Any subspace characterised by kK — 1 components being zero is forward invariant. The
restriction to such a forward invariant subspace corresponds to a map from R to R
that we shall call a SYC full life cycle map. The k maps are different but equivalent,
see (Davydova 2004, Chapter V; Davydova et al. 2003, Section 7). To stay in line
with Theorem 1 we work primarily with the map correspondingto Ny = N> = --- =

Ni_1 =0.

Theorem 2 [fa single year class fixed point or periodic orbit of the SYC full life cycle
map is linearly stable with respect to that map, so with respect to within year class
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292 0. Diekmann, R. Planqué

perturbations, it is automatically also linearly stable with respect to perturbations
that involve small introductions of other year classes.

Proof We again give a proof for the case k = 3. The proof for general k uses no new
arguments.

The full life cycle map given by (12) is represented by a diagonal 3 x 3 matrix M
acting on a 3 vector,

018(01N1) 0 0
M = 0 018(02N7) 0 ,
0 0 01B8(03N3)

where, as before,

01 = 010203 T3,
0, = 0203773,
03 = o3my.

(Of course, all the 7; are functions of N1,N,, and N3.) We first consider a SYC fixed
point and choose the phase such that only the third component of the fixed point vector
is positive. Then necessarily M3 3 = 61 8(63N3) = 1 when evaluated in the fixed point.
N3 is itself a fixed point of the SYC map

N3 — 618(03N3)N3,

and is, by assumption, stable as such.

The linearisation of the full life cycle map in the fixed point is represented by a
matrix as well, of course, L, say. Since the first two components of the fixed point
are zero, L1 = L13 = La3 = L1 = 0, making L a lower-diagonal matrix, with
eigenvalues equal to the diagonal elements. Direct computation shows that L must be
of the form

6180) O 0
L=| 0 B0 0
L3y L3n L33

Since B is increasing, 0 < 61 8(0) < 618(63N3) = M3 3 = 1.

The diagonal element in the third and last row is complicated, but is equal to the
linearisation of the SYC full life cycle map in the fixed point. Hence, since we have
assumed that fixed point to be linearly stable, |L3 3| < 1. So all eigenvalues of L are
less than one in absolute value and the fixed point of the three dimensional full life
cycle map is linearly stable.

For an orbit of period p, we consider the p times iterated full life cycle map. The
structure is exactly the same as before, the only difference is that diagonal elements
have p factors 61 8. The Jacobi matrix is again lower-diagonal, and of the form
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O1(p—1---01(0)B"(0) 0 0
K= 0 Oi(p—1---01(0)p"©0) 0
K31 K32 K333

By the same arguments as before, 01 (p — 1) ---61(0)P(0) < 1, and |K33| < 1 by
the assumption that the p-periodic orbit is linearly stable. So exactly as before we
reach the conclusion that all eigenvalues are less than one in absolute value. O

4 Model ingredients

To obtain more insight which choices of model ingredients r and 8 ensure persistence
of populations and induce dissipative dynamics as defined in Hypothesis 1, we scale
the variables in the following way. Let

1d 1d
N7 = o1 N;®Y, N3° =o0102N5",
and define functions "% and 7" according to

B (x) = 0102038 (010203x),
n,new(NneW) — n,old(Nold).

In terms of these new variables, and dropping the superscripts for convenience, the
map is seen to be simplified to

00 B((N()N3(1))
Nt+1)=na(N@)|10 0 N(@). (15)
01 0

Let us now choose the following form for 7:
w(N) = p(E), with E :=c{ Ny + c3N2 + c3N3. (16)

So 7 (N) is determined by first computing a weighted population size E and next
applying a scalar map p that assigns to E a component of the survival probability, i.e.,
a number between zero and one. Assume ¢3 > 0, and define

1
Enew C_Eold — Crllele + CrzlewN2 + N3,
3

and
pnew(EneW) — pold(Eold).

Let us now consider the SYC dynamics. To facilitate the description of that case, we
introduce
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Fig.3 Example graphs of the 150 i i i i i " ]
SYC full life cycle map (17) for /

different choices of model

ingredients. The blue line shows /
the diagonal; for both full life
cycle map graphs, 7(E) = ¢~ E;
the orange curve uses

B(x) = max{0,7(1 —0.1/x)},
the green curve

B(x) = 30x2/(1 + x2). Further L

parameters chosen in (17) are 00! P’

¢y =cp =0.1,¢3 = 1. Note : : : : : : : :
that both maps show an Allee 00 02 04 06 08 10 12 14
effect (color figure online) population size

=y
o

full life cycle map
o
(2]

fx) = B(px)x)p(x)x.
Dropping again the “new” superscripts, the SYC dynamics are given by

N3 = f(N3)
= p(c1f(N3)) f(N3)
= p(cap(c1 f(N3)) f(N3))plcr f(N3)) f(N3).

To ensure boundedness of the population consisting of just 1 year class, the graph of
the SYC full life cycle map,

N3 = p(cap(er f(N3)) f(N3))p(c1 f(N3)) f(N3) a7

should be below the 45° line for large values of N3. Our model ingredients 8 and p
must be chosen accordingly. Figure 3 gives an impression of the form of the graph of
the SYC full life cycle map, for different choices of the model ingredients.

The derivative at the trivial fixed point N3 = 0 corresponds to multiplication by

BO)(p(0))°.

If this quantity exceeds 1, the population cannot go extinct, whereas there is an Allee
effect when this quantity is less than one and yet part of the graph lies above the 45°
line (see the green and orange curves in Fig. 3 for examples).

Some possible choices for p and § include

(E) 1 (E)y=¢F
= s =e .
p 1+ °

ﬁ(X)=ﬂ0<l—£) .
X/ 4

This choice for § is strictly increasing only where it takes strictly positive values
and equals zero in a neighbourhood of x = 0, so there is certainly an Allee effect.
It corresponds to the total population size of adults being reduced at a constant rate
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during a fixed time window. Alternatively, we can solve, with P, the predator density,
as a parameter,

dx X

dt — 1+¢x

for a fixed period of time. This leads to an implicitly defined function §. For bifurcation
diagrams of Single Year Class Maps, see Chapter V of (Davydova 2004).
Concerning dissipativity (Hypothesis 1), let for N e Ri

IN|:= Ni+ N>+ N3.
Then (15) implies that
IN( + D] < 7 (N(t)) max{1, B(c0)}|N (1)]. (18)
If for some choice of R > 0 and € > 0 the inequality
T(N)f(o0) <1 —¢€

holds for all |[N| > R, then the set
{N e R} : |N| < max{B(c0), I}R}

is forward invariant and attracts all orbits. Indeed, any orbit starting outside the set
{N € Ri : |N] < R} has to enter this set and once inside this set we can use (18)
and the fact that w(N) < 1 to conclude that, if 8(c0) > 1, it may again leave the ball
with radius R but not the ball with radius B(oco)R.

5 Discussion

The discrete time population dynamics of semelparous species with one reproduction
opportunity per year, is described by a special kind of Leslie matrices, viz. those for
which in the first (= reproduction) row only the last element is non-zero. This reflects
that an individual born in a certain year reproduces, if at all, exactly k years later,
where k is the length of the life cycle. So the population splits into k reproductively
isolated year classes. Mathematically this shows up in the fact that the k times iterated
matrix is diagonal, so fully reducible.

Although they are reproductively isolated, the year classes do interact by competi-
tion for resources. When resource availability is constant in time, each year class does
as well or bad as any other year class. But when resource availability fluctuates in
time, the phase of the life cycle relative to resource peaks and troughs can be decisive
for success or failure. Thus one year class can drive other year classes to extinction
by inducing, for instance, periodic environmental conditions. The work of Davydova
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and co-workers (Davydova 2004; Davydova et al. 2003, 2005; Diekmann et al. 2005)
focused on this phenomenon.

The present paper is inspired by Machta et al. (2019) and analyses a model such
that, over a full life cycle, competition for food is neutral with respect to the year class
distinction. But the model includes a second form of density dependence: it assumes
that, due to predator satiation effects, per capita reproduction success of adults is larger
when the cohort of adults is larger. So individuals belonging to a large cohort get much
offspring while the negative impact of cohort size on survival probabilities is affecting
individuals of all other year classes equally strongly, when measured over a full life
cycle. Thus the ‘strongest’ year class becomes even stronger and eventually drives
all other year classes to extinction and SYC (single year class) dynamics (Mjglhus
et al. 2005; Davydova et al. 2003) gets established. The idea that a combination of
predator satiation and intraspecific competition among larvae gives rise to single year
class dynamics goes at least back to Hoppensteadt and Keller (1976) and Bulmer
(1977), and has been demonstrated in many of the models in the literature by way of
numerical experiments. The assumption of uniform competition introduced in Machta
et al. (2019) allows, as we have shown above, to actually prove that SYC dynamics
results for large classes of initial conditions. In our opinion, the precise nature of the
relationship between mechanisms and phenomena is better revealed by a proof than
by simulations.

To explain, in the context of the model, that several species coexist in synchrony
would probably require the assumption that both the functions 7 and the functions g
for the various species are proportional. So this is still rather puzzling.

We now briefly consider some of the ecological evidence supporting the two chief
modelling ingredients.

The long larval stages associated with periodical insects likely result from devel-
opment constrained by certain abiotic factors such as low temperature, poor food
availability, and large adult body size (Danks 1992; Hellovaara et al. 1994). Magi-
cicada larvae feed underground on xylem found in plant roots. Xylem is a transport
liquid in plants and is poor in nutrients. The competition for this shared food resource
thus likely affects all cohorts feeding on them. Cicada nymphs have been shown to be
uniformly spatially distributed, suggesting that cohorts do indeed compete for xylem
(Williams and Simon 1995).

Predator satiation is well-documented for periodical cicadas (Williams and Simon
1995, and many references therein). The first cicadas to emerge still face a high pre-
dation pressure, with as much as 40% eaten within the first days. As numbers increase
dramatically in the days following the start of the event, with up to 3,5 million adult
cicadas per hectare, per capita predation pressure drops practically to zero (Williams
etal. 1993). The predators, mainly birds such as cuckoos, woodpeckers, jays and other
larger birds, do not increase much in number during the year of the outbreak, but sev-
eral show increased population sizes in the 1-3 years to follow (Koenig and Liebhold
2005). It has also been shown that for several of these species, predator population
sizes are in fact lower right before an outbreak event, thus decreasing predation pres-
sure and allowing the insects to benefit even more from their numerical dominance
(Koenig and Liebhold 2013).

@ Springer



The winner takes it all: how semelparous insects can... 297

In this paper we have focussed purely on the problem of elimination of year classes
and how a single cohort arises from a starting situation with multiple cohorts. In our
modelling framework we have not allowed for so-called stragglers, insects that have
a longer developmental time and thus emerge in the year after an outbreak. This has
been investigated recently using predominantly numerical simulations by Blackwood
et al. (2018).

The enigma of periodical insect species is not confined to Magicicada, but is found
also in several other insect orders, notably among Xestia moths, and in some well-
known beetle species such as Melonontha cockchafer beetles (Hellovaara et al. 1994).
Life spans may vary between species, and even between populations of the same
species. Magicicada are exceptional, however, in their life spans, which are either 13
or 17 years, and are among the longest of all insect life spans.

There are several intriguing open theoretical questions regarding periodical insects.
The adult insects, having developed under ground over a period of 13 or 17 years, all
emerge from their burrows within an extremely short time span, usually between 7 and
10 days (Williams and Simon 1995, and references therein). Just how they synchronise
so precisely remains unclear (Williams and Simon 1995), although temperature cues
have been suggested.

In some outbreak years, as much as half of all individuals fail to develop into
adults, and eclose the next year (White and Lloyd 1979). This has been associated
with extremely poor nutrition conditions. Differences in the developmental rate of
individual larvae are apparently common, with late-developing nymphs ‘catching up’
before emerging as adults with the rest. To incorporate such phenomena would require
developing a physiologically structured population model, with developmental rate
directly influenced by food availability and competition (de Roos and Persson 2013).
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Appendix

For the class of models considered in (Machta et al. 2019), it is shown in that paper
that a steady state, with more than 1 year class present, is necessarily unstable. The
aim of this “Appendix” is to show, by way of an example, that for the class of models
considered here itis, in contrast, possible to have a stable steady state with multiple year

@ Springer


http://creativecommons.org/licenses/by/4.0/

298 0. Diekmann, R. Planqué

classes. In order that simple computations suffice to reach this conclusion, we choose

k=2,
0] =0 = 1, (19)
7(N) = e M,
B(x) = Box.
So we focus our attention on
Ni(t + 1) = oe 22O (N, (1))?, 0)
Nao(t 4+ 1) = e DN ().
If (N, 1\_/2) is a steady state, we should have
Ny = Npe™? (1)
and
N> = Boe M2 ()2, (22)

The trivial steady state (0, 0) is locally stable but, due to positive density dependence
incorporated in 8, this does not exclude that nontrivial steady states exist. The equation

1 = BoNpe 3V (23)
has for
Bo > 3e 24)

two positive solutions, one with ]\72 < % and one with Nz > % Each of these yields,
when combined with (21), a nontrivial steady state. The corresponding linearized
system is given by

X1t + 1) = 2eM(1 = Nyxa (),

} ) (25)
Xt +1) =e My (t) — Naxa ().

The Jacobi matrix

0 2eM(1—Ny)
e~ M2 —]\_/2
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has trace T = —N, and determinant D = 2(N, — 1). Since 7 < 0, the stability
conditions are D < 1 and T + D + 1 > 0 and amount to

_ 3 —
N2<§, Ny > 1.

So if we think in terms of bifurcations that happen when the parameter f is increased,
the scenario is as follows:

a) at Bp = 3e a saddle-node bifurcation of nontrivual steady states happens, but both
steady states are unstable

b) the larger, with respect to both components, of the two steady states undergoes a
period-doubling bifurcation at By = ¢3; for ¢3 < By < %e9/ 2 this steady state is
stable.

c) at By = %69/ 2 this steady state loses stability in a Neimark-Sacker bifurcation.

For completeness, let us have a brief look at SYC dynamics. If N1(#) = 0 we obtain
Na(t +2) = poe 2O (WN2(0))%, (26)

with stable trivial steady state and two nontrivial steady states for By > 2e arising by
saddle-node bifurcation at By = 2e with value N, = % The linearized recursion is

x2(t +2) = 2(1 — No)xa(t) (27)

so we see that the larger of the two is stable for

23
2e<ﬂ0<§e,

losing its stability by period doubling at the upper boundary of this window.

It appears that the bifurcation diagrams of the “all year class” steady state and of
the “single year class” steady state are in no way related to each other.

It is easy to repeat the bifurcation analysis with 7 in (19) replaced by

1

w(N) = T

It turns out that in this case the “two year class” steady state is unstable for all parameter
values.

In Fig. 4 we visualize the outcome of numerical experiments with £ = 3 and model
ingredients such that 2 year classes can coexist in a stable fixed point of the full life
cycle map. By symmetry there are three such fixed points. It appears that the domains
of attraction of these three fixed points are rather small. As a rule, there is an ultimate
winner.
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mixed mixed

Fig.4 The long-term dynamics of the full life cycle map, with model ingredients set to the k = 3 analogue
of (19). The figures show the winning cohort (1, 2 or 3), or whether a mixed steady state was reached, as a
function of initial values (N1(0), N2(0), N3(0)). They are shown in slices in the Ny-direction (left) and in
the N3-direction (right). Mixed steady states appear on the boundaries of the basins of attraction for each
year class, and involve the year classes on either side of these boundaries. Note that SYC dynamics still
predominates
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