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ABSTRACT Here, we report the draft genome sequences of three isolates of the
wood-decaying white-rot basidiomycete fungus Dichomitus squalens. The genomes
of these monokaryons were sequenced to provide more information on the intras-
pecies genomic diversity of this fungus and were compared to the previously se-
quenced genome of D. squalens LYAD-421 SS1.

Dichomitus squalens is a wood-decaying white-rot fungus commonly found in
Europe, Asia, and North America (1). It is mainly found on softwoods (2, 3) and has

an extensive repertoire of lignocellulose-degrading enzymes (4–6). Two of the genome-
sequenced monokaryons, CBS463.89 and CBS464.89, are derived from the well-studied
Polish dikaryon FBCC312 (CBS432.34) (4, 6–11), while OM18370.1 is derived from the
Finnish dikaryon OM18370 (CBS139088).

Strains were maintained on 2% (wt/vol) malt extract (ME) and 1.5% (wt/vol) agar
plates, from which four plugs (ø 5 mm) were used to inoculate stationary 50-ml 2%
(wt/vol) ME liquid cultures, which were incubated at 28°C for 5 days. Genomic DNA was
extracted from homogenized mycelium with extraction buffer (2% N-cetyl-N,N,N-
trimethylammonium bromide [CTAB], 100 mM Tris-HCl, 1.4 M NaCl, 20 mM EDTA,
and 0.2% �-mercaptoethanol) and purified with chloroform-isoamyl alcohol (24:1)
(12). For RNA extraction, the isolates were precultured on glycerol for 7 days (28°C)
and transferred to solid-state cultures containing 2 g (dry weight) of Norway spruce
wood sticks (2 cm by 0.2 cm by 0.2 cm) on top of 1% (wt/vol) water agar at 28°C
for 2 and 4 weeks (4). RNA extracts were layered over a 2-ml CsCl solution (5.7 M
CsCl [Serva, Germany], 25 mM sodium citrate [pH 7.0], 0.5% N-lauroylsarcosine
[Sigma, USA], and 0.1 M �-mercaptoethanol [Sigma]) in 13.2-ml polyallomer ultracen-
trifuge tubes (Beckman Coulter, Brea, CA, USA) and centrifuged at 33,000 rpm for 21 h
at 4°C in an Optima L-90 K ultracentrifuge, using the SW-41 Ti swinging bucket rotor
(Beckman Coulter). After centrifugation, the supernatant was removed, the tube was
inverted, and all but the bottom 1 cm was sheared off. The RNA in the clear pellet was
rinsed with 100 �l of diethyl pyrocarbonate (DEPC)-treated water and then dissolved in
50 �l of DEPC-treated water and stored at �80°C (13). The genomes were sequenced
using the Illumina platform and pairs of standard fragments (300 bp) and 4-kbp long
mate pair (LMP) libraries. Fragment libraries were produced from 100 ng genomic DNA
(gDNA) sheared to 300 bp using the Covaris LE220 instrument and size selected using
solid-phase reversible immobilization (SPRI) beads (Beckman Coulter). The fragments
were treated with end repair, A-tailing, and ligation of Illumina-compatible adapters
(IDT, Inc.) using the Illumina library creation kit (Kapa Biosystems). For LMP, 5 �g of DNA
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was sheared using the g-TUBE (Covaris), and the gel size was selected for 4 kb. The
sheared DNA was treated with end repair, ligated with biotinylated LoxP adapters, and
circularized by a Cre excision reaction (New England BioLabs [NEB]). The products were
randomly sheared, treated as indicated for the fragment library, and enriched using
eight PCR cycles for the final library.

For the transcriptomes, which were used for genome annotations, stranded cDNA
libraries were generated using the Illumina TruSeq stranded RNA low-throughput (LT)
kit. mRNA was purified using magnetic beads containing poly(T) oligonucleotides,
fragmented and reverse transcribed using random hexamers and SSII (Invitrogen),
followed by second-strand synthesis, and then treated with end repair, A-tailing,
adapter ligation, and eight PCR cycles.

The prepared libraries were quantified using the Kapa Biosystems next-generation
sequencing library quantitative PCR (qPCR) kit and run on a Roche LightCycler 480
real-time PCR instrument. The quantified libraries were then multiplexed with other
libraries, and the pool of libraries was then prepared for sequencing on the Illumina
HiSeq sequencing platform utilizing a TruSeq paired-end cluster kit, v.4, and the
Illumina cBot instrument to generate a clustered flow cell for sequencing. Sequencing
of the flow cell was performed on an Illumina HiSeq 2500 sequencer using HiSeq
TruSeq sequencing by synthesis (SBS) kits, v.4, following a 2 � 150-bp (2 � 100-bp for
LMP) indexed run recipe (14).

Illumina FASTQ files were quality control (QC) filtered for artifact/process contami-
nation. DNA reads were assembled with AllPaths-LG v.R49403 (15). For CBS463.89
lacking LMP, the initial assemblies of fragment data with Velvet v.1.2.07 (16) were used
to create in silico long mate pair libraries with insert sizes of 3,000 � 300 bp. RNA reads
were assembled using Rnnotator v.3.4.0 (17). All three genomes were annotated using
the JGI annotation pipeline v.1.9, which combines several ab initio, homology-based,
and transcriptome-based gene predictors, as well as tools and databases for functional
annotation (18, 19).

All four genomes are highly similar in genome size and characteristics (Table 1). The
improvement in sequencing methodology is reflected in the lower contig and gap
numbers of the three new genomes compared with those of the older genome
(LYAD-421 SS1). These data are highly useful to evaluate intraspecies genome variation
in D. squalens.

Data availability. Genome assemblies and annotations are available via MycoCosm
(http://jgi.doe.gov/fungi [18]). The data are deposited at DDBJ/EMBL/GenBank under

TABLE 1 Genome characteristics of the three D. squalens genomes in this study compared with the previously sequenced genome of
LYAD-421 SS1a

Characteristic

Data for strain:

CBS463.89 CBS464.89 OM18370.1 LYAD-421 SS1

Genome assembly size (Mbp) 36.87 39.60 39.32 42.75
Read coverage depth (�) 145 118.7 100.8 50.63
No. of reads sequenced (millions) 42.6 32.7 38.3 7.7
No. of contigs 1,373 1,147 1,126 2,852
No. of scaffolds 1,259 467 439 542
Scaffold N50 value (Mbp) 134 44 39 16
Scaffold L50 (Mbp) 0.08 0.22 0.27 0.64
No. of gaps 114 680 687 1,155
% scaffold length in gaps 0.2 2.5 2.6 7.7
Gene length (avg/median) (bp) 1,691/1,437 1,678/1,425 1,694/1,449 1,890/1,562
Transcript length (avg/median) (bp) 1,370/1,140 1,358/1,128 1,365/1,150 1,484/1,213
Exon length (avg/median) (bp) 259/158 259/158 256/157 254/152
Intron length (avg/median) (bp) 76/61 77/60 78/61 86/61
Protein length (avg/median) (aab) 387/314 382/311 388/319 419/345
No. of exons per gene (avg/median) 5.3/4 5.25/4 5.34/4 5.84/4
No. of gene models 14,946 15,295 14,950 12,290
G�C content (%) 55.7 55.6 55.6 55.6
a From reference 5.
b aa, amino acids.
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BioProject/GenBank accession numbers PRJNA334679/SELY00000000, PRJNA334680/
SELZ00000000, and PRJNA334681/SELX00000000.
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