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Abstract. This article contributes to the study of Engel structures and their classification. The

main result introduces the notion of a loose family of Engel structures and shows that two such
families are Engel homotopic if and only if they are formally homotopic. This implies a complete

h–principle when auxiliary data is fixed. As a corollary, we show that Lorentz and orientable Cartan

prolongations are classified up to homotopy by their formal data.

1. Introduction

Let M be a smooth n-dimensional manifold. By definition, an m-dimensional smooth distribution
E Ă TM is a smooth section of the Grassmannian bundle GrmpTMq ÝÑ M . Distributions are
a core geometric structure in the modern perspective of differential geometry and control theory
[2, 13, 22, 24], which in particular subsumes the smooth dynamics of non-vanishing vector fields, the
theory of foliations, and contact geometry. The integrability of geometric structures, including the
existence of complex structures, and the symmetries (and solvability) of differential equations are part
of the theory of distributions [3, 4, 13].

É. Cartan addressed in [3] the existence of a local normal form for a generic distribution, i.e. the lack
of local invariants when the distribution is given by an open condition. The main result [3, 21, 23] is
that a generic distribution E Ă TM has a unique local normal form if and only if it belongs to one of
the following families: smooth line fields, contact structures (even or odd), or Engel structures. The
study of the first two geometries, smooth dynamics and contact topology, have been topics of major
interest and activity in the last four decades.

Engel structures, maximally non-integrable 2-distributions in 4-manifolds, have proven themselves
more elusive: in [11, Intrigue F], Y. Eliashberg and E. Mishachev identified the classification of Engel
structures as an outstanding problem in the theory of h-principles. The first modern breakthrough in
Engel geometry was the existence theorem proven by T. Vogel [32, Theorem 6.1]. In the last two years,
the study of Engel structures has further seen significant developments [6, 7, 8, 15, 19, 26, 27, 28,
34, 35, 36], exhibiting unique properties of Engel structures and connections with smooth dynamics
and contact and symplectic geometry. In particular, the authors proved the parametric existence
h-principle for Engel structures in [7], and the first two authors developed the complete h-principle
for non-singular Engel knots in [6].

The present article continues this work by providing a classification h-principle for a class of Engel
structures called loose (see Section 3.1 for a definition). Our result should be compared (see the
Appendix) to the work in [28], which defines and classifies another class of Engel structures, called
overtwisted. The later is closer in behaviour to the class of overtwisted contact structures, which were
shown to satisfy a complete h-principle in [1].

Let us now state the main theorems of this article in precise terms.

1.1. Main Results. Let M be a closed smooth 4-manifold, E pMq the space of Engel structures on
M , and E fpMq its formal counterpart [7, 14, 28] (see Subsection 2.1 for a definition). It was proven
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in [7] that the scanning map given by the inclusion

E pMq ÝÑ E fpMq

induces a surjection in homotopy groups.

The aim of the present work is to show that every homotopy class in πkpE fpMqq can be represented
by a k–dimensional sphere in E pMq which is unique up to Engel homotopy, i.e. there is a subgroup
L kpMq Ă πkpE pMqq isomorphic to πkpE fpMqq that can be characterised in a geometric fashion. This
is the content of our two main results:

Theorem 1. Let M be a smooth 4-manifold, K a compact CW–complex, and N a positive integer.
Then, any family D : K ÝÑ E fpMq is formally homotopic to an N–loose family.

We strengthen the existence h-principle in Theorem 1 to the following uniqueness h-principle:

Theorem 2. Let M be a smooth 4-manifold and K a compact CW–complex. There exists a positive
integer N0, depending only on dimpKq, such that: Any two N–loose families D0,D1 : K ÝÑ E pMq,
N ě N0, are Engel homotopic if they are formally homotopic.

In addition, the resulting Engel homotopy pDtqtPr0,1s can be realised as a pN ´N0q–loose K ˆ r0, 1s–
family of Engel structures.

Theorem 1 provides existence and Theorem 2 shows uniqueness. The notion of looseness for a family of
Engel structures will be introduced in Definition 19, Section 3. Roughly, it is a quantitative property
which measures the rotation of the Engel plane field D with respect to a line field Y Ă D, captured
by a positive integer N . In particular, if a family of Engel structures D : K ÝÑ E fpMq is N2–loose,
then it is N1–loose for any N1 ď N2. By definition, the line field Y is called the certificate and a
family that is N–loose with N ě N0, with N0 as in the statement of Theorem 2, is said to be simply
loose.

Let E fpM,Y q be the space of formal Engel structures containing some fixed Y Ă D transverse to the
formal kernel W. If Y has no periodic orbits, Theorem 1 can be strengthened to yield families that
are N -loose for all N . Such a family is said to be 8–loose. We denote by L pM,Y q the subspace of
Engel structures having Y as their certificate of 8–looseness. Using Theorems 1 and 2 we can deduce
the following complete h–principle:

Theorem 3. Let M be a closed smooth 4-manifold and Y a line field without periodic orbits. Then,
the forgetful inclusion L pM,Y q ÝÑ E fpM,Y q is a weak homotopy equivalence.

In Section 4 we compare these statements with other recent developments regarding flexibility in
Engel topology. In Subsection 4.1 we define the notion of Cartan/Lorentz prolongation and we prove:

Corollary 4. Any family of Lorentz or orientable Cartan prolongations is loose, up to Engel homo-
topy. In particular, such families are classified, up to Engel homotopy, by their formal data.

Which subsumes one of the main results in [27]. In Subsection 4.2, we prove that the Engel structures
produced in [7] are homotopic to loose ones, and that that those constructed using Engel open books
in [8] are loose.

The article is organised as follows: Section 2 is dedicated to convexity in Engel topology, including
all the basic theory needed for our results. Section 3 defines and explores Engel looseness. The
proof of Theorems 1, 2, and 3 is structured in two parts: existence of loose families (Subsection 3.3)
and uniqueness (Subsection 3.4). Section 4 contains applications, including the proof of Corollary
4. Section 5 provides a detailed discussion comparing flexibility phenomena for Engel structures and
contact structures. Particularly, we discuss the relation between the present article and the work in
[28].
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2. Engel structures and convexity

In this section we state the basic facts and techniques used in the study of Engel structures. We
focus on the interaction between Engel structures and families of convex curves in the 2–sphere. This
relationship will allow us to prove Theorems 1, 2, and 3.

We use the notation OppAq to denote an arbitrarily small neighbourhood of the subset A.

2.1. Engel structures. The central objects of study are the following geometric structures:

Definition 5. An Engel structure is a maximally non–integrable 2–plane field D Ă TM . That is,
E “ rD,Ds is an everywhere non–integrable 3–distribution, i.e. TM “ rE , Es.

The distribution E is said to be an even-contact structure. It contains a line field W uniquely
defined by the equation rW, Es Ă E. The line field W is said to be the kernel of E.

It follows from its definition that the line field W is contained in the Engel structure D. In consequence,
an Engel structure D induces a complete flag W Ă D Ă E on the 4-manifold M [7]. In addition, the
Lie bracket induces two canonical bundle isomorphisms:

detpDq – E{D,(1)

detpE{Wq – TM{E .(2)

Decoupling the differential relation that determines Engel structures leads us to define their formal
counterpart as follows: a formal Engel structure is a complete flag W Ă D Ă E Ă TM endowed
with bundle isomorphisms as in Equations (1) and (2). In this case, there is no differential relationship
between the different distributions that constitute the flag. We will often refer to W as the formal
kernel of the formal even-contact structure E .

Let E pMq be the space of Engel structures endowed with the C0-topology, and E fpMq the space of
formal Engel structure endowed with the C2-topology. The present work focuses on the homotopy
theoretic nature of the inclusion

s : E pMq ÝÑ E fpMq.

This forgetful inclusion is continuous with the chosen topologies. This map is classically called the
scanning map [7, 14] and it is the main focus in the study of h-principles [11].

2.2. Engel flowboxes and convexity. Let us explain a useful method to construct Engel structures
locally. For reference, a 2-plane in a smooth 3-manifold is maximally non-integrable, i.e. a contact
structure, if and only if the contact planes strictly rotate with respect to a foliation by Legendrian
lines [12]. In the same vein, the Engel condition can be geometrically described in terms of a flowbox
for a line field contained in the Engel structure, as follows.

Fix coordinates pp, tq in the product D3 ˆ r0, 1s and consider the bundle isomorphism

dpp,tqπ : Tpp,tqpD3 ˆ ttuq ÝÑ TpD3,

where π : D3 ˆ r0, 1s ÝÑ D3 is the projection onto the first factor. Any given fibrewise identification
of the projectivized bundle PpTD3q with RP2 obtained by fixing a framing of TD3 can be lifted to an
identification

dpp,tqπ : PTpp,tqpD3 ˆ ttuq ÝÑ RP2.
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We focus on the 2–distributions D of the form xBt, Xptqy, with Xptq a vector field tangent to the slice
D3 ˆ ttu. The vector field X can be regarded as a D3–family of curves

Xp : r0, 1s ÝÑ RP2,

Xpptq “ dpp,tqπprXpp, tqsq,

where r´s denotes the associated line. The characterization of the Engel condition for D then reads:

Proposition 6 ([7]). The module E “ rD,Ds is a 3-distribution on Oppp, tq if and only if the curve
Xp is immersed at time t.

The 2-plane field D is an Engel structure on a neighbourhood of the point pp, tq if and only if, addi-
tionally, at least one of the following two conditions holds:

A. The curve Xpptq has no inflection point at time t,
B. The 2–distribution xXpq, tq, X 1pq, tqy is a contact structure in Opppq ˆ ttu.

If D is Engel, its kernel W is spanned by Bt at the point pp, tq if and only if the curve Xp has an
inflection point at time t. l

By definition, t is an inflection point for the curve Xpptq if Xp has a tangency at t of order at least
2 with the great circle xXpptq, X

1
pptqy. We will focus on assumption (A), i.e. the curves Xp will be

everywhere convex (or concave); in particular, Bt will be transverse to the kernel.

Remark 7. The techniques developed in [7] are based on the interaction between conditions (A) and
(B). For completeness, we prove in Subsection 4.2 that the families constructed in [7] are loose. �

2.3. Convex curves and little wiggles. Proposition 6 connects the study of Engel structures with
the theory of convex curves in RP2. The classical results in this direction [16, 29] are stated for convex
curves into the 2-sphere S2, but they easily translate to the RP2 setting. Let us explain this in detail.

Fix a 1-manifold I. Let IpIq be the space of immersions of I into RP2, endowed with the C1–topology.
Consider the space IfpIq of formal immersions of I into RP2, endowed with the C0–topology, and the
subspace LpIq Ă IpIq of locally convex curves, endowed with the C2–topology. The inclusion of LpIq
into IpIq is continuous and the formal counterpart of LpIq is homotopy equivalent to IfpIq [11, 14].

The following notion will be important to us:

Definition 8. A curve g P IpIq has a wiggle in the interval ra, bs Ĺ I if gpaq “ gpbq, and, after
identifying endpoints, g|ra,bs is a smooth closed convex embedded curve.

The curve g has n wiggles if there are n intervals tIi Ĺ Iuni“1, each of them a wiggle of g. We require
the interiors of these intervals to be pairwise disjoint, but we allow their endpoints to agree. When
this happens, we say that the wiggles are concatenated.

Remark 9. Suppose n wiggles tIiu
n
i“1 are concatenated. Then, one may be able to choose some other

interval I 1 Ă I different from them, contained in their union, which is also a wiggle. Due to the
embeddedness of a wiggle, we deduce that I 1 is either one of the Ii or it intersects exactly two of the
original intervals. �

We depict wiggles in several figures. For clarity, we often do so up to a small homotopy through
convex curves.

2.3.1. Adding wiggles to curves. Let K be a compact manifold, n P N a positive integer, and fix maps
f : K ÝÑ IpIq and t : K ÝÑ I. From this data, we construct a new map

f rn#ts : K ÝÑ IpIq
as follows: For each k P K, we cut the curve fpkq at the point fpkqptpkqq and we add n small convex
loops, smoothing the result. This defines the map f rn#ts, which has (as least) n concatenated wiggles.
We can and do assume that the two maps f and f rn#ts agree as parametrised curves outside of an
arbitrarily small neighbourhood of the inserted loops. The insertion of wiggles can be done over
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different points as long as we have functions t0, . . . , tm : K ÝÑ I with disjoint images; we then write
f rn0#t0,...,nm#tms for the resulting family.

Work of J.A. Little [16] implies that the space of wiggles passing through a point with a given direction
is contractible. Therefore, our cutting process is unique up to a convex homotopy of the added wiggle.

Remark 10. Wiggles which are concatenated may have different images (unlike in the construction
just provided). However, invoking again the contractibility result due to Little, we deduce that we
can make the images be the same by a homotopy through convex curves. �

2.3.2. Achieving convexity. The purpose of adding wiggles is that they provide convexity. The first
ingredient we need is that any immersed curve f P IpIq is homotopic to a curve with sufficiently many
wiggles:

Lemma 11 ([16, 29]). Let f : K ÝÑ IpIq be a K–family of immersed curves and t0 P I. Then, the
families f rn0#t0s and f rn0`2#t0s are homotopic through immersions. The homotopy can be assumed
to have support in a small neighborhood pt0 ´ ε, t0 ` εq of the cutting point t0. l

The homotopy of immersed curves described in Lemma 11 is shown in Figure 1.

Figure 1. Homotopy of immersed curves where two wiggles are introduced. In the
last step, we take the concave wiggle and we push it around RP2 so that it appears
as a convex wiggle.

The key result in [16], explained in detail in [29, Section 6], states that if f is already convex and one
extra loop is introduced, additional wiggles may be added using a homotopy through convex curves:

Lemma 12 ([16, 29]). Let f : K ÝÑ LpIq be a K–family of convex curves and t0 P I. Then,
the families f rn0#t0s and f rn0`2#t0s are homotopic through convex curves as soon as n0 ą 0. The
homotopy can be assumed to have support in a small neighborhood pt0 ´ ε, t0 ` εq of t0 containing the
existing wiggle. l

This homotopy of convex curves from Lemma 12 is shown in Figure 2; we refer to it as Little’s
homotopy.

The last remark we need is: Given any curve f P IpIq and any sufficiently dense collection of points
t0, . . . , tm : K ÝÑ I, the curve f r1#t0,...,1#tms will be homotopic to a convex curve. Furthermore, the
C1-size of the homotopy needed to achieve convexity will be inversely proportional to the number of
wiggles introduced. This is the content of the following Proposition, which is the crucial geometric
ingredient behind Theorem 3.

Proposition 13. Let K be a compact manifold, A Ă K a closed submanifold, and 0 ă a ă 1{2 a
positive real constant. Suppose that f : K ÝÑ Ipr0, 1sq is a family of immersions such that fpAq Ă
Lpr0, 1sq and there exists F : K ÝÑ Lpr0, as Y r1´ a, 1sq such that fpkqptq “ F r1#aspkqptq.

Then, there exists a family f : K ˆ r0,8q ÝÑ Ipr0, 1sq such that:

- For s large enough fpk, sq is everywhere convex,
- fpk, sqptq “ fpkqptq if s “ 0, k P A, or t P r0, a{2s Y r1´ a, 1s,
- The number of wiggles of fpk, sq in ra, 1 ´ as goes to infinity as s ÝÑ 8 if k R OppAq. The

maximum distance between two consecutive wiggles in this segment is Op1{sq and the radius
of each wiggle is Op1{sq.
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Figure 2. Little’s homotopy for convex curves in S2. The closed curves correspond
to great circles. The first figure shows a convex curve with a little wiggle. By
pushing the wiggle down, it can be taken to the second figure. It is convex because
it is comprised of three segments that are slight push-offs of equators whose corners
have been rounded to preserve convexity. The same is true for the third and fourth
figures. In the last two images we push towards the opposite hemisphere, yielding a
curve with three wiggles. As shown, this process is relative, in the domain, to the
complement of a small neighbourhood of the wiggle.

Figure 3. We use Little’s homotopy to create several wiggles from a given one.
These wiggles are then distributed along the curve to achieve convexity everywhere.

Figure 3 depicts the content of Proposition 13. The density of wiggles goes to infinity as s does, as
we will see in the proof, while their size has order Op1{sq.

Proof of Proposition 13. We construct fpk, sq in each interval s “ pn, n ` 1q by induction on n P N.
For s P rn, n`1s and k in the complement of an arbitrarily small neighborhood OppAq of A, we obtain
the following properties:

- fpk, nq “ fpkqr1#a,1#pa` 1
2n p1´2aqq,...,1#pa` 2n´1

2n p1´2aqq,1#p1´aqs.

- fpk, n` 1q “ fpkqr1#a,1#pa` 1
2n`2 p1´2aqq,...,1#pa` 2n`1

2n`2 p1´2aqq,1#p1´aqs.
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- There are 2n paths sliding the last 2n wiggles of fpk, nq to the last 2n wiggles of fpk, n` 1q.

We change the insertion points from t “ a` j
2n p1´2aq to t “ a` j`2

2n`2 p1´2aq, j “ 1, . . . , 2n,
by linear interpolation.

- The radius of those 2n wiggles is exactly 1{s.
- In OppAq, fpk, sq remains convex. Moreover, fpk, sq “ fpk, 0q for k P A.

Indeed, this is simple to build: the only geometrically non–trivial part corresponds to the family
in the interval t P pa, a ` 2

2n p1 ´ 2aqq. In the parameter interval s P pn, n ` 1{2q we use Little’s
homotopy to produce three wiggles out of the existing wiggle at time t “ a, always ensuring that
they have radius 1{n. For s P pn` 1{2, n` 1q, we linearly move the insertion points to place them at
times a, a ` 1

2n`2 p1 ´ 2aq and a ` 2
2n`2 p1 ´ 2aq for s “ n ` 1. Since convexity is preserved during

Little’s homotopy, we can assume that the insertion of the additional wiggles is done relative to A by
cutting–off Little’s homotopy for k P OppAqzA.

To conclude the argument we need to distribute the convexity of the wiggles to make fpk, sq everywhere
convex for s large enough. For that, use only half of the wiggles to create convexity, i.e. the ones
placed in even positions with respect to the order provided by the insertion time. As explained before,
this makes the new family convex for s large. Moreover, the odd wiggles are unaffected by this process.
Therefore, the number of wiggles is Opsq and they are uniformly distributed. �

2.4. The development map. Let us now introduce the notion of development map, which is used in
order to define loose Engel structures. Geometrically, the development map allows us to intrinsically
describe the turning of an Engel structure D with respect to a line field Y contained inside it.
Note that this time we are not resorting to the use of charts/flowboxes, as in Subsection 2.2. The
development map is well-known in the particular case where the line field is the kernel, and under
this assumption it was first studied by R. Montgomery [21].

Since the development map encodes how the 2-plane D moves along Y in terms of the linear holonomy
of Y , it is natural to define it using the language of groupoids. The monodromy groupoid [20] is defined
as follows:

Definition 14. Let pM,Y q be a foliated manifold. The monodromy groupoid MonpM,Y q is the set
of triples pp, q, αq where p and q belong to the same leaf of Y and α is a homotopy class of leafwise
paths connecting p with q.

The monodromy groupoid is endowed with the following operations:

- Source and target maps s, t : MonpM,Y q ÝÑM defined by spp, q, αq “ p, tpp, q, αq “ q.
- A partially defined multiplication map MonpM,Y q ˆM MonpM,Y q ÝÑM

pp, q, αq ˆ pq, q1, α1q ÞÝÑ pp, q1, α.α1q.

Here . denotes concatenation of homotopy classes of paths.
- Unit map M ÝÑ MonpM,Y q that takes p to pp, p, rpsq, the class of the constant path at p,
- Inverse map MonpM,Y q ÝÑ MonpM,Y q that takes pp, q, αq to pq, p, α´1q,
- A partially defined action ‚ : MonpM,Y q ˆM M ÝÑM on M defined as pp, q, αq ‚ p “ q.

By construction, the orbit of a point p PM under the action is exactly the leaf L of Y in which it is
contained. The following result [20] states that MonpM,Y q can be endowed with a smooth structure:

Lemma 15. MonpM,Y q is a Lie groupoid i.e. it is a smooth manifold, possibly non–Hausdorff and
non-second-countable, with smooth structure maps. Its dimension is dimpY q ` dimpMq. l

The linear holonomy of pp, q, αq in MonpM,Y q is the identification of the normal fiber pTM{Y qp with
pTM{Y qq provided by parallel transport along α using Y . Globally, this translates into the action
MýMMonpM,Y q lifting to an action PpTM{Y qýMMonpM,Y q on the projective normal bundle,
which is projective linear between fibres.

Let us focus on the Engel structure D. In this case M is 4–dimensional and Y Ă D is a line field.
Over each point p PM the Engel structure determines a point PpD{Y qp Ă PpTM{Y qp. This line can
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be transported using the action PpTM{Y qýMMonpM,Y q described previously:

γY pDqp : s´1ppq ÝÑ PpTM{Y qp, γY pDqppp, q, αq “ pq, p, α´1q ‚ PpD{Y qq.
Note that the domain s´1ppq of the curve γY pDqp is diffeomorphic to R.

Definition 16. The smooth map γY pDq : MonpM,Y q ÝÑ PpTM{Y q obtained by glueing the collec-
tion of all maps γY pDqp is called the development map of D along Y .

In Subsection 2.2 we explained how the 2-plane field D can be described as a family of curves in RP2.
The development map provides an intrinsic description of the same phenomenon. By construction,
the map γY pDq is equivariant for the action PpTM{Y qýMMonpM,Y q:

γY pDqpp, q, αq “ pp1, p, α1q ‚ γY pDqppp1, p, α1q.pp, q, αqq.
That is, the curve γY pDqp Ă PpTM{Y qp is obtained from the curve γY pDqp1 Ă PpTM{Y qp1 using
the linear holonomy identification between the two spaces. The first condition (A) in Proposition 6
implies the following:

Lemma 17. The module rD,Ds is a 3-distribution if and only if each curve γY pDqp is an immersion.
Furthermore, if the curves γY pDqp have no inflection points, D is an Engel structure. l

In Definition 8 we defined a wiggle as an immersion of the interval into RP2 which closes up to a
smooth, convex, embedded curve. As such, wiggles are defined in terms of self-intersections and
tangencies, implying that being a wiggle is well-defined up to projective transformations of RP2. This
allows us to speak of intervals of γY pDqp being wiggles in an intrinsic manner, without referring to
any particular identification of PpTM{Y qp with RP2. This fact will be important for our arguments.

Remark 18. Definition 16 recovers the notion introduced by Montgomery in [21]. Indeed, if D is
Engel and Y is the kernel W, its linearized holonomy preserves the planes pE{Wqp. In consequence,
the monodromy groupoid MonpM,Y q acts on the projectivized bundle PpE{Wq. Since D Ă E , the
development map takes values in PpE{Wq and therefore the Engel condition (B) in Proposition 6
implies that each curve γWpDqp is an immersion. �

3. h-principle for loose Engel families

In the theory of h-principles [11, 14] there is particular value in finding the correct subclass of structures
adhering to an h-principle [1, 6, 9]. In the present paper, the h-principle is a consequence of the
flexibility provided by a global dynamical property called looseness. This notion is given in Definition
19, Subsection 3.1.

Then we prove the existence Theorem 1 (Subsection 3.3) and the uniqueness Theorem 2 (Subsection
3.4). Bringing the two of them together allows us to deduce Theorem 3 (Subsection 3.5).

3.1. Loose Engel Structures. Lemma 12 implies that adding enough loops to an immersed curve
in RP2 makes it convex (after a suitable modification in-between the cutting points). In line with
other h-principles [1, 14], once the curve is convex and a loop is added, arbitrarily many new loops
can be introduced while preserving convexity. These two phenomena have direct implications in the
world of Engel structures.

First, given a 2-plane distribution in a smooth 4-manifold M , we can make it Engel by adding
sufficiently many wiggles to its development map, proceeding carefully over a covering of M . Secondly,
if convexity has been achieved and there are enough wiggles available, we can add arbitrarily many
more while keeping the development map convex. These are the two main ingredients to prove a
relative h–principle for this particular class of Engel structures.

The precise definition of this subclass can be detailed as follows. Let M be a smooth 4-manifold, K a
compact CW–complex, and N a positive integer. Consider a continuous family of Engel structures D :
K ÝÑ E pMq and line fields pY pkqqkPK with Y pkq Ă Dpkq. Let γY pkqpDpkqq denote the corresponding
development maps.
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Definition 19. A family of Engel structures D is N–loose with certificate Y if:

- the development curves γY pkqpDpkqqp are convex and
- for each k P K and p P M , there is a segment γ Ă γY pkqpDpkqqp containing N wiggles that

projects to an embedded curve tpγq under the target map.

The family D is said to be 8–loose if this holds for every positive N .

The convexity condition for the development map implies that the line field Y pkq is always transverse
to the kernel of the Engel structure Dpkq. The embedding condition for the segment γ implies that
8–looseness can only hold for line fields Y pkq with no closed orbits; see Proposition 28.

Remark 20. In [29], N. Saldanha describes the homotopy type of the space of convex curves in S2.
He shows that convex curves behave flexibly as soon as a loop is introduced. He called such families
of curves loose. We have decided to name our flexible families of Engel structures accordingly. The
geometric intuition we have is that the flexibility of loose Engel structures is a manifestation of the
flexibility displayed by convex curves. �

Remark 21. In [29, Lemma 4.1] it is proven that certain bounds on the total curvature imply that a
convex curve has a wiggle (up to homotopy through convex curves). In Definition 19 we introduce
looseness using wiggles, but one could define it instead by requiring that the development map has
sufficiently large total curvature. This would in fact yield a larger class of Engel structures that would,
nonetheless, be weakly homotopy equivalent to the one presented here. �

3.2. Convex shells. In our proof of Theorem 1 we first upgrade M. Gromov’s Engel h-principle for
open manifolds [14] to a quantitative statement. This is the content of Proposition 24. This effectively
reduces the proof to a extension problem for Engel germs in BD4 to the interior of D4. Following the
geometric setup explained in Subsection 2.2, we introduce the following

Definition 22. A convex shell is a 2–distribution D “ xBt, Xy in D3 ˆ r0, 1s such that the curves
Xp are immersed for all p and convex at time t whenever pp, tq P OppBpD3 ˆ r0, 1sqq.

In particular, D is everywhere non–integrable and defines a germ of Engel structure along the bound-
ary. A convex shell is said to be solid if D is everywhere Engel.

The quantitative version reads as follows. Let N be a positive integer. A convex shell is N–convex
if there exist:

- a constant ε P p0, 1q,
- functions pti : D3 ÝÑ p0, εqqi“1,...,n with 0 ă t1ppq ă ¨ ¨ ¨ ă tnppq ă ε, and

- a D3-family of convex curves pfp : r0, εs ÝÑ RP2qpPD3 such that Xp “ f
r1#t1ppq,...,1#tN ppqs
p .

The definition of parametric families of N–convex shells is given by the natural extension to higher-
dimensional families of curves.

3.3. Existence of loose Engel families. In this subsection we solve the parametric extension
problem for convex shells. We will prove the following version of Theorem 1:

Proposition 23. Let M be a smooth 4-manifold, K a compact CW–complex, and N a positive integer.
Then, any family D0 : K ÝÑ E fpMq is formally homotopic to an N–loose family D1.

Fix a family of line fields Y “ pY pkqqkPK with Y pkq Ă D0pkq transverse to the kernel W0pkq. Then,
D1 can be assumed to have Y as its certificate of N -looseness. Additionally, the constant N can be
taken to be 8 if the Y pkq have no closed orbits.

Proposition 23 is proven in two stages, following the structure in h–principles of reducing to a standard
model and then extending the boundary germ to the interior. The first step is achieved in the following
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Proposition 24. Let M be a smooth 4-manifold, K a compact CW–complex, and N a positive
integer. Consider a family of formal Engel structures D0 : K ÝÑ E fpMq and line fields Y pkq Ă D0pkq
transverse to the formal kernel W0pkq.

Then, there exists a collection of disjoint balls tBiuiPI ĂM ˆK and a homotopy

Ds : K ÝÑ E fpMq, s P r0, 1s,

such that Y pkq Ă Dspkq is transverse to the formal kernel Wspkq, and

- for each i P I, D1|Bi
is a DdimpKq–family of N–convex shells with respect to Y ,

- D1pkq is Engel in p PM if pp, kq P pM ˆKqz
Ť

iPI Bi.

We will prove Proposition 24 by using the following auxiliary Lemma:

Lemma 25. Let M be a smooth 4-manifold, K a compact CW–complex. Consider a family of formal
Engel structures D0 : K ÝÑ E fpMq and line fields Y pkq Ă D0pkq transverse to the formal kernel
W0pkq.

Then, there is a homotopy
Ds : K ÝÑ E fpMq, s P r0, 1s

such that Y pkq Ă Dspkq is transverse to the formal kernel Wspkq and the formal even–contact structure
E1pkq is given by rD1pkq,D1pkqs.

Proof. Let us assume first that K is a compact manifold. Consider a triangulation T of M ˆ K.
Regard the family of line fields Y as a line field in M ˆK. Then assume that the triangulation T
is in general position [30, 31] with respect to Y and the foliation by fibres of M ˆ K ÝÑ K. In
particular, all lower dimensional simplices are transverse to the line field Y .

Now, to each simplex σ of T we associate a Y –flowbox Upσq such that

- the set of all such flowboxes is a covering of M ˆK,
- two flowboxes only intersect each other if one of the simplices is contained the other,
- if σ is top dimensional, Upσq is obtained from σ by a C0–small shrinking,
- if σ is not top dimensional, any Y –interval in Upσq is either fully contained or completely

disjoint from the flowboxes corresponding to subsimplices.

These Y –flowboxes are constructed in [7, Proposition 29]. In short, Upσq is obtained by shrinking σ
and then thickening in the directions complementary to σ.

The 2-distribution D0 can be modified over each Upσq inductively in the dimension of σ, relatively to
previous steps. Let us denote by E0 the K-family of 3–distributions which is part of the formal data.
Note that, over each flowbox, the Engel family D0 can be regarded as a D3ˆDdimpKq–family of formal
immersions of the interval into the projective plane. Indeed, the 2–distribution D0 provides a family
of curves into RP2 and the 3–distribution E0 provides a great circle at each point of the curves. The
isomorphism detpD0q ” E0{D0 encoded in the formal data – Equation (1) – provides an orientation1

of each great circle. Then, the relative nature of the Smale-Hirsch theorem [11, 14] implies that we
can modify the curves so that they become immersions, relative to previous flowboxes. In terms of
the formal Engel structure this means that D0 is formally homotopic to a family of non–integrable
plane fields that bracket-generate a 3–distribution homotopic to E0.

This proves the claim. For K an arbitrary CW-complex, we proceed cell by cell as just explained,
using again the fact that the Smale-Hirsch theorem is relative both in parameter and domain. �

Proof of Proposition 24. We use the setup explained in the proof of Lemma 25: We may assume that
K is a compact manifold. We fix a triangulation T of M ˆK in general position with respect to Y

1The isomorphism detpD0q ” E0{D0 tells us that E0 is canonically oriented globally. In each flowbox we make a

choice of orientation for Y , which automatically orients E0{Y . Its projectivisation is the great circle under consideration,
which inherits an orientation.
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and the fibres of M ˆK ÝÑ K. This allows us to cover M ˆK by Y –flowboxes. By the Lemma, we
can assume that rD0,D0s is the 3–distribution E0 given by the formal data.

Now we modify the 2-distribution D0 over each flowbox Upσq, inductively in the dimension of σ for
dimpσq ă dimpM ˆKq. We regard the restriction D0|Upσq to each flowbox as a D3 ˆ DdimpKq–family

of immersions Xp,k of the interval I into RP2. The isomorphism detpE0{W0q ” TM{E0 provided by
the formal data – Equation (2) – provides a local orientation2 of RP2; we want the curves Xp,k to be
convex with respect to this orientation.

In line with Proposition 13, we first use Lemma 12 to add arbitrarily many wiggles to each Xp,k

close to the endpoints BI and then we distribute them evenly in the interior IzOppBIq. This is done
parametrically in the band t1´ ε ď |p|, |k| ď 1u, with ε ą 0 arbitrarily small. Hence, we can assume
that Xp,k is convex and has arbitrarily many wiggles away from its endpoints if t|p|, |k| ď 1 ´ εu.
Note that the behaviour of Xp,k will be quite complicated close to BI.

This process is relative to the boundary of the flowbox and it can also be made relative to previous
flowboxes: By assumption, the development map of the 2-distribution D0 along a Y –curve Xp,k

contained in a previous flowbox is already convex. Since the development map is intrinsically defined,
we have a precise control of how many wiggles such a Xp,k has. In particular, it can be assumed to
be arbitrarily large by evenly introducing sufficiently many wiggles in the previous steps. Proposition
13 can be applied relative to the set of these curves.

The argument can now be repeated until we reach the top dimensional cells. The collection of balls
tBiuiPI in the statement of Proposition 24 is taken to be the collection of flowboxes Upσq Ă σ with σ
top dimensional. Since we have added arbitrarily many wiggles along the codimension-1 skeleton, the
formal Engel structure is a genuine Engel structure in the boundary of each ball Bi, for all i P I. In
addition, each ball Bi is a DdimpKq–family of N–convex shells as required for the statement. Finally,
observe that Y has remained fixed during this formal homotopy, which concludes the proof. �

Proposition 24 solves the reduction process for Proposition 23. Let us now address the extension
problem.

Consider the DdimpKq–families of shells tBiuiPI produced by Proposition 24. Observe that the restric-
tion of the 2-distribution D1|Bi can be regarded as a D3ˆDdimpkq–family of curves Xp,k satisfying the

hypothesis of Proposition 13. Here D3ˆDdimpkq plays the role of K and A is its boundary. From this
we deduce that there is a deformation, relative to the boundary of the model, that makes all curves
convex. This implies that there is an Engel family D2 that is formally homotopic to D1. Additionally,
D2|Bi is a pN ´ 1q–convex shell, since we only needed to use one of the wiggles during the homotopy.
This argument proves the following

Proposition 26. Let K be a compact CW-complex. Any family pD3 ˆ r0, 1s,DkqkPK of N–convex
shells is homotopic to a family of solid pN ´ 1q–convex shells. This is relative to the boundary of the
shells, and relative to the parameter region in which they are already solid. l

Proof of Proposition 23 and Theorem 1. Consider the shells Bi constructed in Proposition 24. Since
these are obtained by shrinking a top-dimensional simplex of the triangulation T of M ˆ K, every
orbit of Y must intersect some ball Bi in the collection. An application of Proposition 26 turns each
Bi into a solid pN ´ 1q–convex shell, and therefore D2 is pN ´ 1q–loose. This proves Theorem 1.

Assume now that Y has no closed orbits. Then every orbit accumulates somewhere and therefore
intersects one of the Bi infinitely many times. Since wiggles are intrinsically defined using the de-
velopment map, we deduce that each orbit of Y has infinitely many of them and therefore D1 is
8–loose. �

2The isomorphism detpE0{W0q ” TM{E0 provides a canonical orientation for the bundle TM{W0. In the flowbox

we choose an auxiliary orientation for Y . Since Y is contained in D0 and transverse to W0, we obtain an orientation
of TM{D0. This yields the local orientation of RP2.
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This concludes the existence h-principle for the class of8-loose Engel structures, as stated in Theorem
3. In particular, we have an existence h-principle refining our previous result [7], which we will now
further improve to a uniqueness h-principle.

3.4. Uniqueness of loose Engel families. In this subsection we show that the N -loose Engel
families constructed in Theorem 1 are unique up to homotopy if N is large enough. This is precisely the
content of Theorem 2; its quantitative nature is in line with other quantitative phenomena appearing
in higher-dimensional contact flexibility [1, 5]. We have included a discussion on this in Section 4.

Theorem 2 will be proven by first showing that any loose family can be homotoped to resemble a
family produced by Theorem 1. This is the content of the following

Proposition 27. Let M be a smooth 4-manifold and K a compact CW–complex. There exists a
positive integer N0, depending only on the dimension of K, such that for any:

- N–loose family D0 : K ÝÑ E pMq, N ě N0, with certificate Y ,
- triangulation T of M ˆK in general position with respect to Y and M ˆK Ñ K,
- covering tUpσquσPT as in Proposition 24,
- non-negative integer N1,

there is a homotopy Ds : K ÝÑ E pMq satisfying

- Y pkq Ă Dspkq is transverse to the kernel Wspkq,
- Ds is pN ´N0q–loose for all s, with Y as its certificate of looseness,
- for any any top–dimensional simplex σ P T , D1|Upσq is a family of solid N1–convex shells.

We will say that a family of Engel structures is simply loose if it is N0–loose. During the proof we
will provide a bound for the constant N0.

Proof. Since the Engel structure D0 is N–loose, at any point pp, kq PMˆK we can find an embedded
interval γ ĂMˆtku tangent to Y , containing pp, kq, and whose development map has N wiggles. By
thickening such intervals, we find a covering tUiu of M ˆK by solid N–convex shells. It is sufficient
for us to show that there is an Engel homotopy pDsqsPr0,1s through pN ´N0q–loose Engel structures
such that the development map of D1 has arbitrarily many uniformly distributed wiggles. This can
be achieved by modifying the development map inductively over each element Ui of the covering, as
follows.

Start with the first shell U0, where D0 is considered as a family of convex intervals pXp,kqpp,kqPD3ˆDdimpkq ,
and fix ε ą 0 arbitrarily small. Since we have N wiggles, we can apply Proposition 13 to one of them
to produce arbitrarily many more wiggles in the region t|p|, |k| ď 1´εu. These wiggles can be assumed
to be uniformly distributed in the domain. Note that in doing this, the wiggle we chose in the region
t1´ ε ď |p|u Y t1´ ε ď |k|u disappears as Little’s homotopy is performed. In particular, U0 is only a
pN ´ 1q–convex shell for the new Engel structure.

Consider now U1 and suppose that it intersects U0. From the perspective of U1, the homotopy in U0

could have destroyed two wiggles. Indeed, the wiggle we used for the homotopy in U0 may intersect at
most two wiggles in U1 (see Remark 9). However, if we assume that N ą 2, there is at least one wiggle
remaining and we can repeat the argument above. This allows us to arbitrarily increase the number
of wiggles in the interior of U1. It is natural to proceed by repeating this process inductively over the
covering index i. In order to do that, denote the projection to the orbit space by π : Ui ÝÑ Ui “ Ui{Y ,
where each Ui is diffeomorphic to D3 ˆ DdimpKq.

The main geometric ingredient in the proof is showing that the covering tUiu can be chosen such that:

I. Only pN0 ´ 1q of the wiggles of a given shell Ui get destroyed by previous homotopies.
II. There exists a continuous section Ui ÝÑ Ui that provides a marked wiggle in each flowline.
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For that, fix a cover tViu using the process described in the first paragraph, and write

πi : Vi ÝÑ Vi “ Vi{Y
for the canonical projection. The intersection πipBVi1

Ş

Viq defines a codimension–1 submanifold
Si1 Ă Vi, and by a small perturbation of the flowboxes tVi1u, we can assume that the submanifolds
tSi1ui1‰i of Vi intersect transversely. In particular, a point in Vi may only lie in C “ dimpKq ` 4
different manifolds Si1 . In the previous steps (i1 ă i) of the induction, Little’s homotopy destroyed
two wiggles in each region OppBVi1q. Hence, by setting N0 ě 2C` 1 it follows that each Y |Vi

flowline
contains still one wiggle, so Condition (I) holds.

In order to show that the wiggles can be chosen in a continuous way (Condition (II)), we construct a

finer covering tU ji u of M ˆK. This is done inductively on i as follows: First set U0
0 “ V0 and fix some

continuous choice of wiggle V0 ÝÑ V0. Suppose that we have already subdivided all Vi1 with i1 ă i,
yielding some partial covering tU ji1ui1ăi with corresponding choices of wiggles tπi1pU ji1q ÝÑ U ji1u. Now

choose a very fine triangulation Ti of Vi and fix small contractible open neighborhoods tU ji u of each

simplex in Ti. Then tU ji “ π´1
i pU

j
i qu is a covering of Vi by flowboxes and we claim that this is enough

to conclude.

Indeed, using transversality as above we can assume that each point in πipU ji q Ă Vi meets at most C

of the manifolds tπipBU j
1

i1 XU ji qui1ăi. Additionally, there is a constant D, depending only on dimpKq,

bounding from above the number of simplices of Ti intersecting a given simplex. Therefore, U ji
intersects at most D of the flowboxes tU j

1

i uj1‰j . Condition (I) then holds by setting N0 ě 2C`2D`1.

Additionally, if Ti is fine enough, each element U ji is a neighbourhood of a point so it is possible to
make a continuous choice of wiggle. �

We will need one more ingredient before we prove Theorem 2:

Proposition 28 ([25]). Denote by XpMq the space of line fields on a manifold M . Denote by
Xn.o.pMq Ă XpMq the subset of line fields without periodic orbits. The inclusion Xn.o.pMq Ă XpMq
induces a weak homotopy equivalence provided that dimpMq ě 3.

This result relies on the existence of parametric versions of the plugs of Wilson and Kuperberg. In
particular, it states that the choice of a line field without periodic orbits in the statement of Theorem
3 is not a restriction from a homotopical point of view.

Proof of Theorem 2. Let Yi Ă Di be the certificate of N–looseness of Di, and fix

D̃ : K ˆ r0, 1s ÝÑ E fpMq

a family of formal Engel structures connecting D0 and D1. Write W̃ for the formal kernel of D̃. Fix a
family of line fields Y Ă D̃ connecting Y0 and Y1 and transverse to W̃. Construct a triangulation T
of M ˆK ˆ r0, 1s in general position with Y , in general position with M ˆK ˆ r0, 1s ÝÑ K ˆ r0, 1s,
and restricting to triangulations Ti on M ˆK ˆ tiu also in general position [7, 30].

Then apply Proposition 27 to achieve that for any top dimensional simplex σ P Ti, the restriction
Di|Upσq is a family of solid N1–convex shells. This allows us to apply the reduction in Proposition 24
relative to the ends M ˆK ˆ t0, 1u. Then Proposition 26 can be used to achieve the Engel condition
in the interior of the top cells. Following the proof of Theorem 1, we have deformed the 2-distribution
D̃ to a family of Engel structures D : KˆI ÝÑ E pMq. By construction, the 2-distribution D restricts
to Di in M ˆ K ˆ tiu as desired. Finally, if Y0 and Y1 have no periodic orbits, the same can be
assumed about Y after an application of Proposition 28. Therefore, if the Engel structure Di are
8–loose, the same holds for the homotopy D. �

3.5. Proof of Theorem 3. Consider a family D : pDk, BDkq ÝÑ pE fpM,Y q,L pM,Y qq. Theorem
1 implies that Dp0q can be homotoped to be 8–loose. Then we can regard D as a formal homotopy
between the family D|BDk and the constant family Dp0q. Applying Theorem 2 shows that D can be
homotoped to have image in L pM,Y q, as desired. l

This concludes the h-principle for loose Engel structures.
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4. Applications

In this section we prove Corollary 4 on Engel prolongations, and discuss two additional families
of examples of loose Engel structures. It follows from Theorem 2 that these families satisfy the
h-principle, and thus exhibit completely flexible behaviour.

4.1. Prolongations. É. Cartan introduced in [4] the notion of prolongation for contact structures
and Lorentzian metrics, which we exploited in recent work [7] to manipulate Engel structures locally.
Let us review these two constructions and prove Corollary 4.

Let V be a smooth oriented 3-manifold and ξ an oriented 2–plane distribution. By definition, the asso-
ciated oriented formal Cartan prolongation pMpξq,Dpξqq is the sphere bundle Mpξq :“ Spξq π

ÝÑ V
endowed with the tautological distribution

(3) Dpξqpp, lq “ π˚rls.

The distribution is Engel if and only if ξ is a contact distribution. Indeed, this is Condition (B) in
Proposition 6. In this case, the Engel structure pMpξq,Dpξqq is called the Cartan prolongation of
the contact structure ξ.

Suppose instead that the 3-manifold manifold V is endowed with a Lorentzian metric g. The kernel
Cg of the Lorentzian metric, known as the light cone, defines a sphere bundle Mpgq :“ PpCgq

π
ÝÑ V

endowed with a tautological distribution Dpgq defined again by Equation (3). This distribution is
always an Engel structure, since it satisfies Condition (A) in Proposition 6. By definition, the Engel
structure pMpgq,Dpgqq is the Lorentz prolongation of g.

A particular case which is of interest for us is as follows: Consider an orientable and coorientable
plane field ξ. Endow it with a metric gξ and pick a complementary vector field ν. Then, the pair
pgξ, νq defines a family of Lorentz metrics pgrqrPR` by declaring the vector field ν to be orthogonal
to ξ and of norm ´r. As r goes to infinity, the light cone Cgr converges to the plane field ξ. We
can apply the prolongation construction parametrically in r. This allows us to think of the structures
pMpgrq,Dpgrqq as convex push-offs [27] of the formal Cartan prolongation pMpξq,Dpξqq.

Conversely, given any Lorentz structure g and any space-like plane field ξ, there exists a unique line
complement such that g is a push-off of a metric in ξ by the recipe above.

Corollary 4 states that these Engel structures are all loose. The key ingredient is the observation that
the light-cone intersects the unit sphere in a convex curve which is embedded (i.e. a wiggle):

Proof of Corollary 4. Let K be a compact parameter space, D a K–family of Lorentz prolongations,
and ξ a K–family of plane fields in V such that Dpkq is a convex push-off of Dpξpkqq given by a family
of functions rpkq (and a corresponding family of metrics in the plane fields ξpkq). By performing an
Engel homotopy, given by increasing the real numbers rpkq, we can assume that dπpDpkqq is arbitrarily
close to νpkq, where νpkq : V ÝÑ TV , k P K, is a vector field transverse to ξpkq.

Now consider a family of line fields Yspkq Ă Dpkq, s P r0, 1s, spanned by vector fields Yspkq, with
Y0pkq contained in the fibre direction and all others transverse to it. Over any 3–disc in V (lifted to
the fibre bundle by taking a section), the vector fields Yspkq provide a family of return maps φk,s,
with φk,0 the identity.

We claim that, for any fixed N P N, the iterates of the return maps

φ
pjq
k,s, j “ 1, . . . , N,

have no fixed points if s ‰ 0 is close enough to 0. Indeed, since we have pushed the prolongations

to be very convex, φ
pjq
k,s becomes a map that approximates an arbitrarily short time flow of νpkq. By

compactness of V , the map cannot have fixed points. Now the claim follows by taking N larger than
the universal constant N0 corresponding to a family of dimension dimpKq: the resulting family of
Engel structures is N–loose. This proves the claim in the Lorentz case. Suppose now that D is family
of orientable Cartan prolongations, then D is homotopic to a family of Lorentz prolongations by a
convex push–off, which proves the statement as desired. �
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A striking consequence of Corollary 4 is the following: Given two non-isotopic contact structures
homotopic as plane fields, their Cartan prolongations are Engel homotopic. In particular, any non–
formal contact invariant becomes formal by taking Cartan prolongations.

Remark 29. In the literature, see for instance [27], a more general notion of Cartan prolongation is
considered: Assume, imposing the obvious condition on the Euler class, that there is a sphere bundle
E that m : 1 covers Spξq. We can then define Engel structures on E by pulling-back Dpξq; similarly,
we can construct m : 1 coverings of Lorentzian prolongations. The general statement is then: Given
D : K Ñ E pMq and π : M̂ Ñ M a m : 1 cover, we can construct a family π˚D : K Ñ E pMq by
pull-back. If D is N–loose, then π˚D is mN–loose. �

4.2. Other loose families in the literature. In this subsection we show that the families of Engel
structures constructed in [7] and [8] are loose. This is shown for the former class in the following

Proposition 30. Let M be a closed 4-manifold and let K be a compact manifold. Any family of Engel
structures D : K ÝÑ E pMq constructed using the h-principle in [7] is loose up to Engel homotopy.

Proof. The construction in [7] produces a family D : K ÝÑ E pMq of Engel structures with corre-
sponding line fields Y : K ÝÑ XpMq, Y pkq Ă Dpkq, such that the associated development maps
γY pkqpDpkqq satisfy:

- The curves γY pkqpDpkqp are immersed and weakly convex,
- There is a finite number of disjoint 3–weakly convex shells Ui that together cover the orbit

space pM ˆKq{Y .

A curve in RP2 is said to be weakly convex if its curvature is greater or equal than zero. Weakly
convex wiggles and N -weakly convex shells are defined in the natural manner. The balls Ui are of
the form introduced in Proposition 24: they are flowboxes obtained by shrinking the top cells of a
triangulation of M ˆK in general position with respect to Y .

It follows from Proposition 6 that Y pkqp “Wpkqp if and only if the development map has an inflection
point at p. This implies that the tangencies, defined by Y pkq “ Wpkq, are all degenerate and there
is a C8–perturbation Y 1 Ă D of Y that is everywhere transverse to W. The development map of
D along Y 1 is everywhere convex. We can then perturb the collection tUiu to a collection of Y 1–
flowboxes tU 1iu covering the orbit space pM ˆKq{Y 1 such that U 1i is a 3–convex shell. By applying
Proposition 13 we can deform the Engel structure on each U 1i so that it becomes a solid N–convex
shell, with N arbitrarily large. This produces a new family D1 : K ÝÑ E pMq. Since each orbit of Y 1

intersects at least one Ui, we obtain that the family is loose with Y 1 its certificate of looseness. �

Remark 31. The following is a technical observation. The Engel structures constructed in [7] depend
on a real parameter E ą 0 that needs to be chosen large enough. There is also an increasing
function N : R` ÝÑ Z`, such that limEÝÑ8NpEq “ 8. Now, the families of Engel structures
D : K ÝÑ E pMq constructed using the h-principle in [7] satisfy that the open balls U 1i are NpEq-
convex shells. Hence, for E large enough, the original family is already loose, without having to
deform it. �

The recent article [8] constructs Engel structures adapted to open books, in line with the contact
Giroux correspondence. Away from the binding, which is a disjoint union of tori, the structures can
be understood as Cartan prolongations of a contact manifold with trivial Euler class. The following
statement is proven in [8]:

Proposition 32. The Engel structures constructed in [8] are loose.

Proof. The construction in [8] depends on a constant k P Z` which measures the number of turns
performed by the Engel structure in terms of a legendrian framing on the page. We denote by Dk the
Engel structure that turns k times. In order to extend it to the binding we need a canonical model on
it that requires k to be odd. Little’s homotopy implies that Dk and Dk`2 are homotopic. For k large
enough the structure is loose, since the number k precisely accounts for the turning of Dk in terms of
the development map. �
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5. Appendix: flexibility in Engel and contact topology

In this appendix we discuss the interaction between Engel structures [6, 7], contact structures [9, 12],
and the h-principle [11, 14]. Its goal is to study the manifestations and subtleties of the h-principle
as seen from the recent new perspectives [1, 7, 28, 33]. Let us start with contact structures as the
prism through which we are used to looking at the h-principle.

5.1. Contact flexibility. Even though contact structures do not abide by the h–principle [12], there
is a subset of overtwisted contact structures whose behaviour is flexible, i.e. their classification up
to homotopy is governed by the underlying formal data. This display of flexibility is precise at the
π0-level, but for higher homotopy groups the picture is more subtle, as we explain.

Let N be a closed orientable p2n` 1q-manifold, C fpN,∆q the space of almost contact structures with
overtwisted disc ∆ [14] and C OTpN,∆q the subspace of contact structures also overtwisted with disc
∆. The main result in [1, 9] is that the forgetful inclusion

C OTpN,∆q ÝÑ C fpN,∆q

is a weak homotopy equivalence. This is where the first subtlety arises: the overtwisted disk ∆ has
been fixed. Recently, it has been shown that the space of overtwisted contact structures does not
have, necessarily, the homotopy type of the space of formal contact structures [33]. This failure of
flexibility is precisely related to the homotopy type of the space of overtwisted discs in a fixed contact
structure.

The articles [1, 9] actually prove a stronger result, in which the overtwisted disc is allowed to vary:
Let ξ0, ξ1 : K ÝÑ C pNq be two K–families of contact structures, with K a compact CW–complex.
Let ∆0,∆1 be corresponding K–families of overtwisted discs and assume that there is a homotopy of
pairs pξt,∆tq with ξt : K ÝÑ C fpNq having ∆t as overtwisted discs. Then, the families ξ0 and ξ1 are
homotopic through contact structures relative to ∆t. Conversely, if ξt : K ÝÑ C pNq is a homotopy
between ξ0 and ξ1, and ξ0 admits a family of overtwisted discs ∆0, we deduce from Gray stability
that ξt lifts to a homotopy of pairs pξt,∆tq.

That is, the K-family ξ0 presents a flexible behaviour if a choice of ∆0 exists. This leads us to
introduce the following definition, formalizing an ubiquitous idea in the theory of h-principles [11]:

Definition 33. Let ξ0 be a K-family of contact structures. A continuous choice of ∆0 is said to be
a certificate of overtwistedness for the overtwisted family ξ0.

5.1.1. Overtwisted classes. The h–principle in contact geometry does not hold without the mediation
of a certificate, and the central obstruction is its homotopy type. At the most basic level, the family ξ0
might not even admit a continuous choice of certificate ∆0, even if all the structures are individually
overtwisted. This is known to happen [33]: there exists a formally contractible loop of overtwisted
contact structures in S3 that admits no certificate and therefore is not contractible geometrically.

Two overtwisted families of contact structures may be formally homotopic but have certificates in
different homotopy classes. However, there is a stable range in which this obstruction vanishes and
an algebraic form of the h–principle holds: Recall the forgetful inclusion i : C pNq ÝÑ C fpNq, and
fix an overtwisted basepoint ξ P C pNq Ă C fpNq. We consider the homotopy groups πkpC pNqq and
πkpC fpNqq based at ξ. A class α P πkpC pNqq is said to be overtwisted if it can be represented by an
overtwisted family.

Proposition 34. Let N be a closed p2n` 1q-manifold. Consider the subgroup OTkpNq Ă πkpC pNqq
consisting of overtwisted classes, for 0 ď k ď 2n.

Then, the inclusion πkpiq : OTkpNq ÝÑ πkpC fpNqq is a group isomorphism.

Proof. Let ξ : Sk ÝÑ C pNq be an overtwisted family of contact structures with certificate ∆. Since
k ă 2n ` 1, after an isotopy we may assume that there is a point p P N which is not contained
in any of the overtwisted discs ∆paq, a P Sk. This allows us to use the h–principle to introduce
an overtwisted disc at p, for all ξpaq. Even if they are all based at the same point, the family of
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overtwisted discs might be non-trivial, but this non-triviality is carried by the formal type of the
family ξ encoded by the value of the distribution ξpaq at the point p. Any formal homotopy between
overtwisted families having overtwisted discs centered at a fixed point lifts to a homotopy of pairs,
concluding the proof. �

We say that a class not belonging to the overtwisted subgroup OTkpNq is a tight class. T. Vogel’s
loop of overtwisted contact structures [33] is the first instance of a 1–dimensional tight family of
individually overtwisted contact structures.

5.1.2. Tight classes. One can also observe that the tight classes have a natural group structure. First,
we claim that TightkpNq “ πkpC pNqq{OTkpNq is a group, k ą 0. For this to hold, we must show
that OTkpNq is a normal subgroup. If 2 ď k ď 2n, this is true since the groups are abelian. For
k “ 1, we have the following sequence of inclusions:

OT1pNq Ñ π1pC pNqq
π1piq
Ñ π1pC

fpNqq » OT1pNq.

And therefore Tight1pNq is the kernel of the map π1piq. Then, we may interpret the quotient
TightkpNq as a subgroup of πkpC pNqq: it corresponds precisely to the homotopy classes of con-
tact spheres that are homotopically trivial as almost contact spheres. Left multiplication with the
overtwisted representative identifies the fibers over any other formal class, and therefore all the fibers
of the map πkpiq are conjugated subgroups.

This stands in sharp contrast with the case k “ 0: The projection map π0pC pS3qq Ñ OT0pS3q has one
element in each fiber except for the fibre containing the standard contact structure, which contains
two [9, 10].

5.2. Engel flexibility. We can now look at the same concepts from the lens of Engel topology.

5.2.1. Local and global. Engel looseness differs from contact overtwistedness in that the definition of
certificate we have given is not local. The contact overtwisted disc is a particular model in a ball (or
a particular contact germ over a 2n–disc). In contrast, Engel looseness must be checked globally on
the manifold M using the line field Y .

In [28] a local Engel overtwisted disc is defined. It allows to prove flexibility in a manner that is
analogous to the contact case. The main result there reads: let E OTpM,∆q be the space of Engel
structures on M having ∆ as a (local) overtwisted disc. Let E fpM,∆q be the corresponding formal
space. Then, the inclusion E OTpM,∆q Ñ E fpM,∆q is a weak homotopy equivalence. Statements
where the overtwisted disc is allowed to move parametrically also hold and overtwisted homotopy
subgroups can be defined as well.

This leads to a surprising situation. On the one hand, Engel flexibility holds once a particular local
model is found in the manifold; this is a consequence of the fact that the overtwisted disc appears to
be the necessary ingredient to solve the Engel extension problem for any germ on BD4. On the other
hand, families that seemingly do not possess this local model might still behave flexibly if they “turn
sufficiently with respect to some line field”, i.e. they are loose.

We then observe that looseness cannot yield an h–principle relative in the domain, as overtwisted-
ness does. The reason behind this is that the reduction process (achieving enough convexity in the
codimension–1 skeleton, Proposition 24) cannot be completed when the Engel structure is already
fixed in some part of the domain (possibly having very little convexity). In particular, the extension
problem of a germ in BD4 to the interior cannot be solved in full generality using looseness.

Using the relative nature of the h–principle, one can show that an overtwisted Engel structure contains
all possible local models up to Engel homotopy. From this one can deduce that any two definitions
of local overtwistedness are equivalent. However, since looseness is a global property, it cannot be
compared to overtwistedness. In particular, looseness has no known analogue in contact topology.
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5.2.2. Loose classes. Recall the forgetful inclusion E pMq ÝÑ E fpMq and fix a loose basepoint D P

E pMq. We may look at the groups πkpE pMqq and πkpE fpMqq based at D. A class α P πkpE pMqq
is loose if it can be represented by a loose family. Note that conjugating by a loose loop takes loose
classes to loose classes.

In the h-principle for loose Engel structures, the homotopy type of the certificate is encoded in the
formal type (since the certificate is always transverse to the kernel of the Engel structure). From
this, we deduce the h–principle in its algebraic form for all homotopy groups (and not just in some
stable range). This is yet another significant difference between loose Engel structures and overtwisted
contact structures; see Proposition 34.

Corollary 35. Given a closed 4-manifold M , let L kpMq Ă πkpE pMqq be the subgroup of loose
classes. Then L kpMq ÝÑ πkpE fpMqq is a group isomorphism. l

Similarly, in [28] it is shown that overtwisted Engel families yield subgroups OTkpMq Ă πkpE pMqq
in the range 0 ď k ď 3 (where the basepoint is instead taken to be overtwisted). We may then speak
of tight classes: those that may not be represented by neither loose nor overtwisted families. We do
not know whether tight classes actually exist or whether loose and overtwisted classes might actually
coincide in some cases (after conjugating).
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