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Sleep’s role in memory consolidation is widely accepted.

However, the role of the different sleep states and

accompanying neurophysiological activity is still actively

debated. Most theories of sleep-related memory consolidation

are based on studies in a few mammalian species. Recent

evidence from research in birds, which exhibit sleep states that

are in most respects similar to those found in mammals (despite

being distantly related) suggests that the way some types of

memories are consolidated during sleep might be different in

taxa other than mammals. This review will discuss how the

recent sleep-related neurophysiological findings in birds inform

our understanding of memory consolidation during sleep.
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Introduction
‘Why do we need to sleep’, is a question that is often

asked, but has yet to be fully answered. Indeed, from an

evolutionary perspective, sleep is a fascinating behavioral

state, as it is a time when organisms are not fulfilling

important activities like feeding or mating. Moreover, it is

a state that renders an organism vulnerable to predation

due to decreased awareness [1]. Hence, sleep undoubt-

edly serves an important function that cannot be omitted,

but what this function or possible functions might be is

still actively debated [1–4,5�,6,7]. That sleep is, among
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other functions, important for the consolidation of differ-

ent types of memories, such as contextual (i.e. emotional,

social, spatial, or temporal circumstances related to a

certain event) and declarative (i.e. explicit memory for

episodes and facts) memories is widely accepted

(reviewed in Refs. [8–13]). However, how different sleep

states and associated brain rhythms might play a role in

memory consolidation is still a topic of active investiga-

tion. In this review we will discuss the evolution of sleep

in relation to memory from an avian perspective.

Mammalian sleep
To date, the majority of sleep research has been con-

ducted in mammals, which display two distinct types of

sleep, rapid eye-movement (REM) and non-REM

(NREM) sleep. Each of these sleep states are linked to

specific brain activity patterns, with NREM sleep being

characterized by a slow (<1 Hz) alternation in neuronal

membrane potentials between hyperpolarized down-

states with neuronal quiescence and depolarized upstates

with action potentials giving rise to slow-waves in local

field potential (LFP) and electroencephalogram (EEG)

recordings, and REM sleep showing an activated pattern

similar to that of wakefulness. Many theories of sleep’s

role in cognition, such as memory consolidation, are based

on what is known about mammalian sleep states and

related brain rhythms [5�,8–10,12,14–18]. Various brain

activity patterns occurring during NREM and REM sleep

are proposed to play a role in processing information

acquired during wakefulness.

During mammalian NREM sleep, the ‘transfer’ of infor-

mation from the hippocampus to the neocortex (and per-

hapsviceversa[reviewedinRef. [12])hasbeensuggestedto

rely on the direct hippocampus-medial prefrontal cortex

(PFC) connection [19] and bidirectional [20] communica-

tion through interacting neuronal rhythms (i.e. cortical

slow-waves occurring in conjunction with hippocampal

sharp-wave ripples (SWRs) and thalamocortical spindles)

between these regions (e.g. Refs. [5�,9,18]). The coordina-

tionofall threeoftheserhythmsisthoughttoberequiredfor

the neuronal reactivation and transfer of memories (e.g.

Refs. [12,18]). Specifically, their fine-tuned phase-locking

is suggested to strengthen the cortical representation of the

memory during NREM sleep (e.g. Refs. [12,18]).

Mammalian REM sleep is also proposed to facilitate the

formation and consolidation of certain types of memory
www.sciencedirect.com
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[8]. The hippocampal theta rhythm occurring during

mammalian REM sleep is, for instance, thought to be

involved in the consolidation of emotional (reviewed in

Refs. [21]), spatial (e.g. Refs. [22]) and contextual mem-

ories (reviewed in Refs. [15,23�]). Notably, Boyce et al.
[23�] showed that disrupting the hippocampal theta

rhythm during REM sleep without altering the time

spent in REM sleep in mice impaired fear-conditioned

contextual memory. This demonstrates that the rhythm

per se, and not just the sleep state, plays a role in memory

consolidation during sleep. In addition, another study in

mice suggests that REM sleep may also function in

facilitating motor learning and memory consolidation

by selectively pruning and strengthening new synapses

through calcium spike-dependent mechanisms [24].

Recently, it was furthermore shown that activation of

melanin concentrating hormone–producing neurons

(MCH neurons) during REM sleep impairs hippocam-

pus-dependent memories [25]. Together these results

show a role for REM sleep in both memory consolidation

and forgetting.

Interestingly, although REM sleep is traditionally char-

acterized by EEG activation, intra-cortical recordings of

mice recently revealed that slow-waves can also occur in

layer 4 of the primary sensory cortices during REM sleep

and thus possibly gate sensory input to the neocortex

during this sleep state [26]. Slow-waves during REM

sleep were subsequently found, albeit in different brain

regions, in humans [27]. Whether slow-waves occurring

during REM sleep serve a role in memory or function to

gate sensory input, as proposed by Funk et al., is thus far

unknown.

Taken together, the variety of brain rhythms occurring

during both NREM and REM sleep serve important roles

in memory consolidation. It is, however, less clear

whether all of these brain rhythms occur and are linked

to the same functions in other animals with similar sleep

states and cognitive abilities.

Avian brain and cognition
Historically, birds have been considered to have lesser

cognitive abilities than mammals. However, there are an

increasing number of studies demonstrating that the

cognitive capabilities of some bird species, such as

parrots and corvids, actually exceed those found in

mammals (reviewed in Refs. [28,29�]). Manufacturing

and using tools, problem solving, and vocal learning are

just some examples of avian cognition (reviewed in

Refs. [30]). Furthermore, some birds, like mammals,

exhibit ‘episodic-like’ memory, which enables them to

recall what happened where and when (reviewed in

Ref. [31]). For example, food hoarding birds can

remember what food they hid where and when (e.g.

Refs. [32,33]).
www.sciencedirect.com 
Despite similarities in cognitive abilities, there are clear

differences in brain organization between mammals and

birds. Compared to primate brains of the same or larger

size, the brains of some birds show higher neuronal

density in the pallium; for instance, the pallium of a

macaw weighs 14.38 g and contains 1.917 � 106 neurons,

whereas the pallium (cortex) of a macaque weighs 69.83 g

and contains only 1.710 � 106 neurons [34]. Moreover,

the cytoarchitecture of the avian pallium shows pro-

nounced differences compared to the mammalian neo-

cortex [35]. Rather than being organized in the six-lay-

ered manner of the mammalian neocortex, homologous

neurons in the avian brain are organized in large nuclei

composed of small, densely packed stellate neurons [34]

interconnected via axonal projections [35,36]. Even when

such nuclei are layered one on top of the other, as in the

hyperpallium, these ‘pseudo-layers’ lack pyramidal cells

with long apical dendrites spanning the layers, as found in

the neocortex. Despite these differences, in many

respects the connections between nuclei are similar to

those between mammalian cortical regions. One notable

exception, particularly relevant to sleep’s role in memory

consolidation, however, involves the avian hippocampus

and the nidopallium caudolaterale (NCL) — the func-

tional analogue of the mammalian PFC, which is involved

in higher-order multimodal processing and executive

functions, such as decision-making (reviewed in Refs.

[29�,37]). Unlike mammals which have a direct hippo-

campus-medial PFC connection [19], the avian hippo-

campus and NCL are not directly interconnected

(reviewed in Refs. [15,38]). The available neuroanatomi-

cal and neurophysiological information thus suggests that

there may be a fundamental difference between how

hippocampal-dependent information is processed in birds

and mammals (reviewed in Refs. [31]).

Avian sleep
Various studies show that, despite being distantly related

to mammals and showing clear differences in neuroanat-

omy [34–36,38–43], birds exhibit sleep states that are in

most respects similar to those found in mammals

(reviewed in Refs. [15]). In addition, sleep in birds has

been implicated in two types of developmental learning,

namely filial imprinting in chicken chicks [44–46] and

song learning in zebra finches [47–50]. In addition, sleep

plays a role in processing auditory memories in adult

starlings [51,52�]. As none of these memories are known

to involve the hippocampus, thus far nothing is known

about sleep’s possible role in processing hippocampal

memories in birds (reviewed in Refs. [15]). Moreover,

as of yet, it remains unknown how sleep-related brain

rhythms in birds play a role in memory consolidation.

Avian NREM sleep-related brain activity
Previous research has shown that in birds, brain regions

that are composed of pallial neurons homologous to

neocortical (pallial) neurons (reviewed in Refs. [36,53])
Current Opinion in Behavioral Sciences 2020, 33:78–85



80 Cognition and perception - *Sleep and cognition*
display high-amplitude slow-waves during NREM sleep

similar to those found during mammalian NREM sleep

[54–56,57�]. Similar to mammals, avian NREM sleep

EEG slow-wave activity (SWA, 0.5–4.5 Hz spectral power

density) is homeostatically regulated in a local, use-

dependent manner [56,58]. Until now, however, it is

not known where these slow-waves are generated. In

addition, until recently it was unclear if, as in mammals

[59–61], slow-waves propagate through the avian brain.

Furthermore, the existence of thalamocortical spindles

was uncertain and little was known about sleep-related

activity in the avian hippocampus (e.g. hippocampal
Figure 1
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SWRs), and its possible relationship to activity in other

pallial regions.

We recently showed that, as in mammals, traveling slow-

waves can be found in the avian hyperpallium during

natural NREM sleep [57�] (Figure 1). Slow-waves with

similar propagation patterns also occur during isoflurane

anesthesia in the hyperpallium, as well as other pallial

regions [62,63]. Consequently, isoflurane seems to acti-

vate at least some of the same neural circuits that give rise

to slow-waves during NREM sleep [64,65]. Interestingly,

we have recently shown that slow-waves recorded in the
-400 μV 400 μV
LFP
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hippocampus during isoflurane anesthesia likely do not

originate from neural activity in this region, but are

electrically volume conducted from the underlying nido-

pallium [83]. Thus, volume conduction may explain

previous reports of slow-waves in EEG/LFP recordings

of the avian hippocampus during NREM sleep.

Although recordings of naturally sleeping birds are

needed, this suggests that, unlike mammals, slow-waves

do not appear to be present in the avian hippocampus

[83]. This difference is especially interesting as traveling

slow-waves are proposed to play a role in the processing

of hippocampal memories during sleep in mammals

[16,66]. Moreover, in naturally sleeping birds, the appar-

ent absence of the two other rhythms — thalamocortical

spindle [57�] and hippocampal SWRs (reviewed in Ref.

[15]) — implicated in hippocampal memory transfer in

mammals, questions whether hippocampal memory con-

solidation takes place during avian sleep in the same way

as in mammals. Although it is possible that these

rhythms were missed in the few intra-cortical recordings

of sleeping birds, their apparent absence might be

related to limited connectivity between the avian hip-

pocampus and pallial cortex-like regions. Indeed, the

results from our lab’s latest research [83], where hippo-

campal SWRs and slow-waves were not detected under

isoflurane anesthesia and activity simultaneously

recorded in the hippocampus and nidopallium was

uncorrelated, suggests that the hippocampus and nido-

pallium do not work as a coordinated system during

sleep. These results thus seem to suggest that the

manner in which the avian hippocampus processes infor-

mation may be fundamentally different from that of

mammals during NREM sleep. This would fit with

the fact that, even though the avian hippocampus is

involved in storing certain types of information (e.g.

spatial memories) however, there is so far no evidence

for hippocampal memories being transferred to other

brain regions for long-term storage (reviewed in Ref.

[15]). Nonetheless, as suggested for the robust nucleus

of the arcopallium in the songbird song network [67],

hippocampal-dependent memory processing could be

possible within the hippocampus during NREM sleep

via, for instance, the reactivation or ‘replay’ of neuronal

sequences activated during waking memory encoding

without those memories being ‘transferred’ out of the

hippocampus (reviewed in Ref. [15]).

Avian REM sleep-related brain activity
As in mammals, avian REM sleep is characterized by an

activated (i.e. high-frequency, low-amplitude) EEG

and LFP pattern associated with increased unit activity

in the hyperpallium (i.e. the avian homologue of the

mammalian primary visual cortex) relative to preceding

NREM sleep [57�]. Furthermore, avian REM sleep

episodes alternate with NREM sleep episodes through-

out sleep, usually becoming more frequent towards the

end of the major sleep period [55,68]. Similar to altricial
www.sciencedirect.com 
mammals, the amount of time spent in REM sleep is the

highest in young altricial birds before gradually declin-

ing to adult levels [69]. Our recent work in pigeons

showed that slow-wave activity throughout the hyper-

pallium is low during REM sleep, with the greatest

decrease taking place in the thalamo-recipient region of

the hyperpallium, the region which shows the greatest

SWA during NREM sleep [57�]. This is particularly

interesting in the light of recent observations made

during REM sleep in mice wherein slow-waves per-

sisted in the thalamo-recipient layers of primary sensory

cortices, including the primary visual cortex [26], and

during REM sleep in humans where two subtypes of

slow-waves where found in different parts of the neo-

cortex [27]. It is, however, unknown whether these

opposing findings in pigeons and mice/humans are

representative of all birds and mammals, respectively.

Nonetheless, the results from pigeons indicate that the

occurrence of slow-waves in primary sensory input

layers is not a universal phenomenon in animals with

REM sleep.

Additionally, REM sleep recordings in pigeons revealed

localized gamma activity specific to the thalamo-recipient

region of the hyperpallium during REM sleep [57�]. REM

sleep-related gamma activity has previously been shown

in rodents [70] and humans [71,72], and has been sug-

gested to play a role in memory retrieval (reviewed in Ref.

[73]). Additional research, however, is needed to deter-

mine the exact region generating gamma in birds and its

functional relationship to gamma reported during REM

sleep in rodents and humans.

Another mammalian REM sleep-related rhythm, the

hippocampal theta rhythm, which is implicated in the

processing of emotional (reviewed in Ref. [21]), spatial

(e.g. Ref. [22]) and contextual (reviewed in Ref. [15,23�])
memories, has so far not been observed in the few studies

that examined hippocampal activity during avian sleep

(reviewed in Ref. [15]). Future recordings of the avian

hippocampus during REM sleep will be needed to

unravel potential differences between mammalian and

avian brain rhythms, like theta, and their potential role(s)

in the memory function of REM sleep.

A birds’ brain view on sleep-related memory
consolidation and cognition
There are numerous examples of birds showing similar

cognitive abilities to those found in mammals. The cur-

rent avian neurophysiological sleep data presented in this

review, however, seem to suggest that memories, like the

earlier discussed episodic-like memories, in birds might

be processed differently during sleep compared to those

in mammals. The apparent absence of thalamocortical

spindles and hippocampal SWRs, both implicated in

mammalian sleep-related hippocampal memory consoli-

dation, during NREM sleep in birds combined with the
Current Opinion in Behavioral Sciences 2020, 33:78–85
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Schematic overview of the current knowledge about the similarities and differences between mammalian and avian NREM and REM sleep-related

brain activity linked to memory consolidation. During mammalian NREM sleep, information transfer between the hippocampus (Hp) and neocortex

is thought to involve the interplay of cortical slow-waves, thalamocortical spindles and hippocampal sharp-wave ripples (SWRs) mediated by a

direct connection from the Hp to the prefrontal cortex (PFC; black arrow). Birds, on the other hand, so far seem to lack both spindles and SWRs

during NREM sleep. Combined with the lack of connections between the hippocampal formation (HF) and the NCL (nidopallium caudolaterale; that

is, the functional analogue of the mammalian PFC) (dotted arrow), and the absence of evidence of information transferring out of the

hippocampus, this suggests that mammals and birds process hippocampal memories in a different way during sleep. In addition, REM sleep-

related theta or slow-waves have not been found in birds. *Though REM sleep-related slow-waves have been shown in parts of the neocortex in

mice (Funk et al. [26]) and humans (Bernardi et al. [27]) during REM sleep, many regions show an activated pattern similar to wakefulness. Rat and

pigeon illustrations by Damond Kyllo.
lack of connections between the hippocampus and the

NCL (i.e. the functional analogue of the mammalian PFC

(reviewed in Refs. [29�,37])), and the absence of evidence

of information transfer out of the hippocampus, all point

to a variance in how mammals and birds process memories

during sleep (Figure 2).

Nonetheless, slow-waves might be involved in strength-

ening memories locally within pallial circuits [74,75],

either via reactivation during fast activity occurring dur-

ing the upstates of the slow oscillations [76] or via slow-

wave induced synaptic downscaling which is thought to

increase memory through increasing the signal-to-noise

ratio in local circuits [17]. The potential for a local role for

slow-waves in processing memories is supported by the

fact that SWA is regulated in a local use-dependent

manner in the mammalian neocortex [77] and avian

hyperpallium [56,78]. Memory consolidation at the
Current Opinion in Behavioral Sciences 2020, 33:78–85 
systems level in birds could, nonetheless, take place

between non-hippocampal/pallial regions like the hyper-

pallium, mesopallium and nidopallium [11,45]. Further

research is needed to examine if and how (traveling) slow-

waves and/or other rhythms play a role in this potential

process in birds. In addition, more work is needed to

determine if thalamocortical spindles and hippocampal

SWRs during NREM sleep, and theta during REM sleep

might have been missed in previous studies. Further-

more, the recent interest in sleep-related brain activity in

other taxa of the evolutionary tree, like reptiles [79–81]

and fish [82], has the potential to further inform our

understanding of how sleep evolved and its potential role

in memory.
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Herculano-Houzel S, N�emec P: Birds have primate-like numbers
of neurons in the forebrain. Proc Natl Acad Sci U S A 2016,
113:7255-7260.

35. Medina L, Reiner A: Do birds possess homologues of
mammalian primary visual, somatosensory and motor
cortices? Trends Neurosci 2000, 23:1-12.

36. Briscoe SD, Ragsdale CW: Homology, neocortex, and the
evolution of developmental mechanisms. Science 2018,
362:190-193.

37. Nieder A: Inside the corvid brain—probing the physiology of
cognition in crows. Curr Opin Behav Sci 2017, 16:8-14.

38. Shanahan M, Bingman V, Shimizu T, Wild M, Güntürkün O: Large-
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