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H I G H L I G H T S  

� High resolution hourly LUR models at different temporal aggregations. 
� Spatiotemporal variations and interactions are modelled for NO, NO2, and O3. 
� Temporal variations of variable importance for air pollutant contributions. 
� Hourly and seasonally varying explained variations of each predictor. 
� Validation against an independent data set for NO2. 

A B S T R A C T   

Land use regression (LUR) modeling has been applied to study the spatiotemporal patterns of air pollution, which when combined with human space-time activity, is 
important in understanding the health effects of air pollution. However, most of these studies focus either on the temporal or the spatial domain and do not consider 
the variability in both space and time. A temporally aggregated model does not reflect the temporal variability caused by traffic and atmospheric conditions and leads 
to inaccurate estimation of personal exposure. Besides, most studies focus on a single air pollutant (e.g., O3, NO2, or NO). These pollutants have a strong interaction 
due to photochemical processes. For studying relations between spatial and temporal patterns in these pollutants it is preferable to use a uniform data source and 
modelling approach which makes comparison of pollution surfaces between pollutants more reliable as they are produced with the same methodology. We developed 
temporal land use regression models of O3, NO2 and NO to study the co-variability of these pollutants and the relations with typical weather conditions over the year. 
We use hourly concentrations from the measurement network of the Dutch National Institute for Public Health and the Environment and aggregate them by hour, for 
weekday/weekend and month, and fit a regression model for each hour of the day. 70 candidate predictors that are known to have a strong relationship with 
combustion-related emissions are evaluated in the LUR modelling process. For all pollutants, the optimal LUR was identified with 4 predictors and the temporal 
variability was determined by the explained variance of each temporal model. Our temporal models for O3, NO2, and NO strongly reflect the photochemical processes 
in space and time. O3 shows a high background value throughout the day and only dips in the (close) vicinity of roads. The diminishing rate is affected by traffic 
intensity. The NO2 LUR is validated against NO2 measurements from the Traffic-Related Air pollution and Children’s respiratory HEalth and Allergies (TRACHEA) 
study, resulting in an R2 of 0.61.   

1. Introduction 

Air pollution such as Nitrogen Oxides (NO2 and NOx)(Beelen et al., 
2008) is associated with adverse effects on human health (Eeftens et al., 
2012; Hoek et al., 2013). To study this relation, it is often required to 
quantify long-term personal exposures for a large number of people 

(Fischer et al., 2015; Cohen et al., 2009). This can be done by combining 
personal location information over time with spatiotemporal air pollu-
tion concentrations. To assess people’s air pollution exposures along 
their daily path, spatially and temporally fine-grained air pollution data 
for a large spatial coverage (e.g., a country) are needed. Studies 
assessing air pollution exposure considering space-time paths of 
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individuals and spatiotemporal variation in air pollution have indicated 
considerable differences in calculated exposures compared to exposure 
assessments at the residential location (Park and Kwan, 2017; Gurram 
et al., 2015; Baxter et al., 2013). 

The physical and statistical approaches have been developed to 
model spatiotemporal air pollution. The physical models attempt to 
describe atmospheric concentrations in a controlled volume as a func-
tion of local emission, horizontal and vertical mixing and chemistry. 
Coupled atmosphere – air quality models (EPA, 2019; de Hoogh et al., 
2014) typically have a spatial resolution larger than 100 m and a tem-
poral resolution of minutes. This approach has clear physical meanings. 
The level of accuracy mainly depends on how well the processes are 
described and the quality of the identification of the associated param-
eters. The main limitation of this approach is that the most up-to-date 
traffic exhaust list is needed and a higher than 100 m resolution prod-
uct requires more sophisticated process descriptions, resulting in models 
becoming intractable and slow, the latter being a problem when large 
areas are considered. The statistical approach relates observed concen-
trations to environmental predictors of air pollution including road 
infrastructure, traffic loads, population, climate, topography, industry, 
land cover. Geostatistical and Land Use Regression (LUR, Hoek et al., 
2008; Briggs et al., 2000) modelling, are the most commonly used sta-
tistical approaches. Detailed air quality maps could be obtained if the 
variables associated with the emitting source and clearance are available 
at high resolution. They are low in computation cost compared to the 
physical approaches and allow applications over larger areas. A disad-
vantage of statistical models is their lack of physical explanations as the 
physical process of emission dispersion is not simulated (von Klot, 
2011). The major assumption of LUR models is that traffic-related air 
pollution decreases with distance to the source, usually roads. Air 
quality monitoring stations are preferably distributed at different dis-
tances from the roads. 

As air pollution varies considerably over time (e.g., between sea-
sons), an annual estimation of air pollution, as has been done in most of 
the LUR studies (Eeftens et al., 2012), is unable to provide sufficient 
information to assess exposure when the space-time activities are 
considered. A relatively small number of studies developed models 
considering temporal variability of air pollutant concentration. Boniardi 
et al. (2019) and Cordioli et al. (2017) studying seasonal LUR models of 
Black carbon, PMx, and common gaseous pollutants found considerable 
differences between warm and cold seasons. Rahman et al. (2017) fit a 
LUR model to the residuals of a periodic model of the day of the year and 
the day of the week to predict daily average NOx concentrations. Dons 
et al. (2013) created a LUR model representing the diurnal cycle (hourly 
resolution) for Black Carbon. They developed different LUR models for 
each hour of the day, which has important implications in exposure 
studies. 

The aim of this study is to develop a LUR-based approach to describe 
the spatiotemporal patterns of O3, NO2, and NO and their interactions in 
the Netherlands. We focus on what we refer to as air pollution “climate” 
– averaged air pollution over multiple years. The following key ques-
tions will be answered: 1) What is the diurnal cycle in the LUR model 
parameters and modelled air pollution climate at different levels of 
temporal aggregation? 2) How do vehicle emission, weather, and 
photochemical processes jointly affect air pollution? We used air 
pollution observed at 44 stations of the Dutch Air Quality Monitoring 
Network to identify LUR models describing air pollution climate for each 
pollutant. These stations were distributed over urban, rural, industrial 
areas, and positioned at various distances away from roads and thus 
capture spatial variation in air pollution across multiple environments 
and spatial scales. 

2. Methods 

2.1. Measurement data 

We used hourly NO, NO2, and O3 measurement data from the Dutch 
Air Quality Monitoring Network, maintained by the National Institute 
for Public Health and the Environment (Rijksinstituut voor Volksge-
zondheid en Milieu, Landelijk Meetnet Luchtkwaliteit. Acronym: RIVM- 
LML) (National Institute for Public Health and the Environment, 2017). 
There are four types of measurement locations: urban, rural, traffic and 
industry. The geographical distribution of the different types of the 
stations is shown in supplement Fig. 1. NO and NO2 were measured with 
the chemiluminescence method, using the Teledyne API M200E monitor 
(expanded uncertainty 8.3%). O3 was measured with the UV absorption 
technique, using the Thermo Electron Instruments 49 W device 
(expanded uncertainty 7.0%). 

We averaged for each hour, month, and weekend/weekday over 
RIVM-LML data from a period of five years, from 01 July 2006 to 01 July 
2011. We chose five years because a longer period would result in a 
considerably smaller number of observational locations, as the number 
of measurements from the sensor network is not consistent over time. In 
addition, using this period of time provides an almost exact overlap with 
the time period of independent measurements from the TRACHEA study 
of Eeftens et al. (2011), which are used to validate our results. 

The RIVM-LML started measuring air pollution variables in the 
1980s. Around 50 measurement locations were active during the 
selected five year period. Stations with less than 20% data were left out 
of the analysis. Our analysis was executed using data from 44 stations. A 
map of the stations that are used in our study is given in Figure (sup-
plement Fig. 2). The distribution of missing observations in these sta-
tions over time is shown in Figure (supplement Fig. 3). The monthly 
values of the NO2, NO, and O3 are shown in Figure (supplement Fig. 4). 

2.2. Potential predictors 

The potential predictors that are used in the LUR modelling process 
are based on environmental attributes such as traffic, land use, and 
population density (Table 1). These correspond to those defined by the 
ESCAPE project (Eeftens et al., 2012; Beelen et al., 2013). Data on traffic 
infrastructure was derived from the TeleAtlas MultiNet dataset for the 
year 2008. Traffic intensities for passenger and heavy traffic were pro-
vided by the Netherlands Environmental Assessment Agency (PBL, 
2018). All of the predictors except population were derived from vector 
data (Schmitz et al., 2019). Land use data was derived from the CORINE 
dataset (Copernicus, 2018). Population data was from the INTARESE 
project dataset (INTARESE, 2018), which consists of 100 m resolution 
grids and these grids were resampled to 5 m resolution (Schmitz et al., 
2019). 

All source datasets were projected using a local projection of the 
Netherlands, the “Amersfoort/RD New” projection. The datasets were 
converted to raster datasets covering the entire land surface of the 
Netherlands at 5 m resolution. To account for large-scale effects and 
known spatial dispersion patterns of traffic-related pollutants (see, e.g., 
Hoek et al. (2008)), most of the variables were aggregated over buffers 
with radius of 25 m, 50 m, 100 m, 300 m, 500 m, 1000 m, and 5000 m 
for each air pollution monitoring location. We selected these distances as 
previous LUR modelling studies (in particular (Eeftens et al., 2012; 
Beelen et al., 2013)) of combustion related air pollutants for the 
Netherlands have shown these distances to be relevant in modelling. In 
addition, a distance to road predictor was created by calculating the 
distance from each cell-centre coordinate to the closest road segment. In 
total, 70 candidate predictor variables were calculated. Spatial data 
processing was done with PCRaster Python (Karssenberg et al., 2010) 
and the GDAL/OGR library (GDAL Development Team, 2018). Schmitz 
et al. (2019) gives technical details of the calculation of the predictor 
variables. 
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3. Regression model 

3.1. Framework 

The relationship between pollutant concentration and a set of pre-
dictors can be described statistically with a multiple linear regression: 

y¼ β1x1 þ β2x2 þ…þ βnxn þ c (1) 

In Equation (1), y is the pollutant concentration (μg/m3) and xi, i ¼
1;2; ::;n, are the n predictors. For each temporal model, the same set of 
predictors are used: 

yt ¼ β1;tx1 þ β2;tx2 þ…þ βn;txn þ c (2) 

In Equation (2), yt is the five year average air pollution at a particular 
time t, which is the time of the day (h), in a particular month, at a 
weekday or weekend. Thus, 24 (hours) � 12 (months) � 2 (weekdays/ 
weekends) ¼ 576 regression equations are built. 

Our air pollutant climates are built in two steps. First, we select 
predictor variables from the set of candidate predictors. Secondly, each 
temporal model is fitted using the selected predictors. 

3.2. Predictor selection 

To select candidate predictors, we fit the coefficients to the average 
measured air pollution per station over the given five-year time period 
(Equation (1)). As we have more potential predictors than observations, 
we used a shrinkage based method (James et al., 2013), elastic net (Zou 

Fig. 1. Left: Study area, the Netherlands, the square indicates the area around the city of Utrecht used to illustrate the results. Right: transect crossing the city of 
Utrecht with four example locations. The Rose patches indicate urban area; dark green, forest; light green, arable land; blue, open water. The red lines indicate 
highways and purple lines other roads. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 2. The four predictors that are selected by the variable selection process for the NO2 LUR model, displayed for the Utrecht area. A: Heavy traffic load within 50 
m buffer. B: Major road length within 1000 m buffer. C: Major road length within 25 m buffer. D: Major road length within 5000 m buffer. 
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Fig. 3. Coefficients for the LUR models of NO2 (top), NO (centre) and O3 (bottom). Left, weekdays; right, weekend days. Each line represents a month and connects 
coefficient values calculated for each hour. The x-axis represents time of the day (hours). 
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and Hastie, 2005), to reduce the number of predictors. Elastic net can be 
seen as a combination of the lasso and ridge methods; it, therefore, 
maintains the features of both methods and fits the model more flexibly. 
We set the elastic net mixing parameter to 0.5, indicating selecting a 
penalty between lasso and ridge. The response type is set to the 
Gaussian, and the elastic net sequence of the model is fit by coordinate 
descent (Friedman et al., 2010a), as is implemented in (Friedman et al., 
2010b). The response is standardized (i.e. have unit variance) before 
computing the sequence. 

Applying the elastic net alone leads to 20, 17 and 11 predictors for 

NO2, NO and O3, respectively. This large number of predictors may still 
conceal the relative importance of predictors, cause overfitting, and 
result in low model interpretability. It is possible to set the elastic net to 
select fewer variables at a sacrifice of prediction accuracy, but the 
shrinkage is only based on the prediction accuracy and not all possible 
models from a specific set of predictor candidates are evaluated. 
Therefore, we used the Best Subset Selection (BSS, James et al., 2013) to 
further reduce the number of predictors by evaluating all possible 
models with elastic net selected variables. The criterion used to select 
variables is based on the R2, BIC (Bayesian Information Criterion), and 
Mallows’s Cp. 

For implementation, we used the elastic net from the R glmnet 
package (Friedman et al., 2010b), and the BSS from the R leaps package 
(Lumley and Lumley, 2013). 

3.3. Fitting temporal models 

After the candidate predictors are selected, regression models are 
fitted to the observations separately for each hour of the day, for each 
month, and for weekdays or weekend days. We use the predictors 
identified using the 5-year average air pollution in the temporal models. 
With this approach, it comes with the advantage that the time series of 
regression coefficients can be directly interpreted as temporal variation 
in mechanisms of air pollution explained by the selected predictors. For 
instance, one would expect higher coefficient values for traffic-related 
predictors during rush hours. 

The station measurements were temporally aggregated into hourly 
averages representing weekdays and weekends of each month of the 5 
years. Before fitting the coefficients, the measurement data (43800 
measurements per location) are averaged within each of the 576 groups 
created by crossing the temporal variables. We used the adjusted R2 as 
the indicator of the goodness-of-fit of the final temporal LUR models. 

To study the contribution of each of the predictors in explaining the 

Fig. 4. Time series of explained variance in each of the predictors, separating between weekdays (wkday) and weekend (wkend), and the unexplained variables for 
NO2, the time series are aggregated to jan (Jan.–Mar.), apr (Apr.–June), jul (July–Sep.), and okt (Okt. - Dec.). hvy_traf_ld_50: heavy traffic loads in 50 m buffer, 
mjr_rd_len_25: major road lengths in 25 m buffer, rd_len_1000: road lengths in 1000 m buffer, rd_len_5000 road lengths in 5000 m buffer. 

Table 1 
Candidate predictor variables. The value of each predictor is calculated within 7 
different buffer sizes.  

Candidate predictor Name Unit Source data 

Total length of major roads Major Road 
Length 

m Eeftens et al. 
(2012) 

Total length of all roads Road Length m Eeftens et al. 
(2012) 

Area of residential land Residential M2 Copernicus 
(2018) 

Surface area of semi-natural 
and forested areas 

Natural m2 Eeftens et al. 
(2012) 

Area of industry Industry m2 Copernicus 
(2018) 

Port area Port m2 Copernicus 
(2018) 

Total heavy-duty traffic load of 
roads 

Heavy Traffic 
Load 

veh. 
day� 1 m 

PBL (2018) 

Total traffic load of roads Traffic Load veh. 
day� 1 m 

PBL (2018) 

Total traffic load of major 
roads 

Traffic Major 
Load 

veh. 
day� 1 m 

PBL (2018) 

Number of inhabitants Pop n INTARESE 
(2018)  

M. Lu et al.                                                                                                                                                                                                                                       



Atmospheric Environment 223 (2020) 117238

6

total variation in the dataset, we calculated the relative variable 
importance of the predictors following the lmg method (Lideman et al., 
1980), which decomposes the R square using the ANOVA test. The lmg 
method is implemented in the R (R Core Team, 2017) package relaimpo 
(Gr€omping et al., 2006). This was done for each regression (576 
models). 

3.4. Validation 

The RMSE (Root Mean Squared Error) of the Leave-one-out Cross- 
Validation (LOOCV) and the R-squared are used to evaluate the hourly 
models of NO2, NO, and O3 (μg/m3). 

In addition, we used an external validation dataset, the TRACHEA 
measurements (Traffic-related Air pollution and Children’s respiratory 
HEalth and Allergies) to further validate the NO2 models. In TRACHEA, 
average concentrations of NO2 were measured for four week-long pe-
riods in four different seasons of 2007 (Eeftens et al., 2011). We pre-
dicted NO2 over the study period using our temporal LUR models at each 
location of the TRACHEA stations and averaged the predictions to 
enable comparison with TRACHEA. For this comparison, the TRACHEA 
measurements were averaged over the four measurement periods 
described in Eeftens et al. (2011). 

4. Results 

4.1. Predictor selection 

Four predictors were selected using the BSS for all the pollutants. The 
optimal number of variables of the BSS variable selection criterion is 
shown in Table 2. For NO, all the BSS variable selection criteria indicate 
4 variables is optimal. For NO2, there is a small increase in explained 
variation (Adjusted R2) using 9 variables comparing to using 4 variables; 
however, the BIC and Mallow’s Cp increased considerably from using 3 
variables to 9 variables. For O3, the BIC and Mallow’s Cp are the lowest 
with 3 parameters and increased slightly with an additional variable. 
Also the adjusted R2 shows considerable improvement with 4 parame-
ters. The value of the criteria corresponding to the optimal model of the 
different number of predictors is shown in supplement Fig. 5. 

As shown in Table 3, the LUR models of NO2 and NO both include 
road length within the 1000 m buffer, major road length within the 25 m 
buffer and heavy traffic load within the 50 m buffer. NO2 uses entirely 
road and traffic-related predictors. NO is also related to the industry. O3 
is related to a different set of traffic-related predictors, mainly the traffic 
load, but the port as well. 

We use the area around the city of Utrecht (population ca. 345,000) 
to illustrate the results (Fig. 1). The predictors in the NO2 model for the 
Utrecht area are given in Fig. 2. The NO2 model includes predictors with 
small and larger buffer sizes. A variable with a large buffer size repre-
sents a smooth surface and thus larger scale variation (e.g., road length 
within 5000 m buffer), whereas variables with a small buffer size more 
closely represent the road patterns. 

4.2. Temporal models 

Fig. 3 shows the coefficients of the LUR models for NO, NO2, and O3 
fitted by using the set of predictor variables selected in the previous step 
(Table 3). In our LUR models, air pollution is expressed as a linear 

combination of these predictors (Equation (2)). The coefficients, p- 
values, and the adjusted R-Squared for each model are provided at htt 
ps://github.com/pcraster/gghdc-spatio-temporal-lur-nl/. For all pol-
lutants and most predictors, relatively smooth diurnal patterns in the 
predictors can be observed, and the pattern appears consistently over 
months. This may suggest relatively small random errors in the identi-
fication of the values for the coefficients. Exceptions are, for instance, 
the coefficients related to the variables port within the 5000 m buffer 
and traffic major load within the 300 m buffer, which contain incon-
sistent variation between hours which seems random, that is, due to the 
uncertainty in the fitting of the coefficients. The coefficients for NO 
show different diurnal variation but with a comparable smooth trend 
over the day. 

Although the values of the coefficients give an indication of the 
importance of each of the predictors, care should be taken by comparing 
them as the units of predictors are different and absolute values may not 
always be indicative for the variation explained by the predictor. 
Instead, the relative importance values (Figs. 4–6) can be interpreted as 
the proportion of the total variation in the data set explained by each 
predictor. A high importance value implies that the spatial pattern of 
that predictor variable is a large component of the total spatial variation 
in air pollution. For NO2, the order of magnitude of the importance 
values of each of the predictors is the same (their values are around 
0.25), which indicates that the patterns represented by each of the 
predictors (Fig. 2) are all clearly present in the spatial pattern of the NO2 
air pollution. Differences in the importance values occur between sea-
sons, but they do not show an obvious trend. An obvious diurnal pattern 
occurs, however, in the importance values of the NO2 regressions. 
During weekdays, a sharp increase in the importance value of short- 
range buffers occurs between 4 a.m. and 7 a.m., with a similar in-
crease of the long-range buffers occurring slightly later. This could 
indicate that in the morning and close to roads (short-range buffers), air 
pollution rises first and disperses gradually, resulting in high importance 
values for the long-range buffers as well, but slightly later in the 
morning. During weekends, the rapid increase of the importance values 
early in the morning is replaced by a gradual increase over the day. Both 
in weekdays and weekend, the importance values of the short-range 
buffers tend to decrease in the evening while those of the long-range 
buffers increase, indicating that peaks close to roads disappear and 
large scale patterns become prevalent. While during the day the unex-
plained variance (1 - R2) is relatively low (below 0.2), it increases 
considerably during the night, indicating that the occurring spatial 
patterns are not represented by the predictor variables used. The 
magnitude and temporal patterns of the regression coefficients and 
importance values of NO are comparable to those of NO2 with the main 
difference that an Industry predictor is included. 

Just like NO2 and NO, the spatial variation in O3 is represented by 
short and long-range road buffers, but the temporal pattern is different. 
The road related buffers show a sinusoidal shape diurnal pattern in 
importance values with the highest values just after the noon time. The 
port 5000 m predictor is more constant over the day. Between seasons, 
the importance values are similar, but in spring and summer, impor-
tance values of the 25 m buffer for the traffic major road are consider-
ably higher compared to the autumn and winter values. At night, the 
largest part of the variation remains unexplained by the predictors, but 
note that total spatial variation during the night is considerably lower as 
well (supplement page S3–S14). 

4.3. Predicted air pollutant concentration 

Considerable variation in air pollution concentration occurs for all 
pollutants considered (Figs. 7–9), with spatial and temporal variation 
components that are comparable in magnitude. The NO2 concentrations 
show a pronounced spatial variation, with concentrations that are 
approximately two times higher in urban areas compared to rural areas, 
and an increase in concentration values towards roads up to about twice 

Table 2 
Optimal number of predictors of different selection criterion in Best Subset 
Selection.   

NO NO2 O3 

Adj R2 4 9 4 
BIC 4 3 2 
Mallows Cp 4 4 2  
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the concentration away from the roads. NO2 concentrations are gener-
ally lowest during the night, with during weekdays a relatively steep rise 
in concentration at 7 a.m. resulting in a peak at around 8 a.m. A second, 
lower peak occurs at 6 p.m. Fig. 11 shows that the temporal variability of 
our estimations is in general higher close to roads. On weekend days, 
concentrations are lower and gradually increase over the day. There is 
also a seasonal variation component in NO2 with concentrations that in 
winter time up to two times those during summer (Figs. 8 and 9). NO 
follows a pattern similar to that of NO2, however with a more pro-
nounced diurnal and seasonal pattern. Both in space and in time, O3 
concentrations tend to show a pattern(Fig. 10) that is the opposite of 
NO2 or NO, with a marked reduction (up to three times lower) in con-
centration values close to roads (Figs. 7 and 10). The difference in O3 
between weekend and weekdays as well as the variation over the day is 
relatively small, although a distinct diurnal pattern in O3 is apparent in 

summer, where afternoon values rise everywhere except in city centres 
near roads. A strong seasonal trend occurs (Fig. 9)), with an increase in 
spring up to May, when concentrations are approximately three times of 
those during the winter. 

Fig. 12 shows the relationships between predicted NO2, NO, the ratio 
between NO and NO2 (NO/NO2), and O3 and their distributions in the 
N–S transect across Utrecht in January (Fig. 7). The NO/NO2 should be 
theoretically directly related to the volume O3, but from the scatterplot 
and the correlation the relationship with O3 is similar in NO, NO2 and 
NO/NO2, with the NO the most correlated with the O3. O3 and NOx are 
negatively correlated, and the NO and NO2 are highly positively 
correlated. 

4.4. Validation 

The RMSE (Root Mean Squared Error) of the leave-one-out cross 
validation (LOOCV) is used to evaluate the hourly models of NO2, NO, 
and O3 (μg/m3). The RMSE that represent different seasons and hours, 
namely the January, April, June, October at respectively 05:00 a.m., 
09:00 a.m., 14:00 p.m., 18:00 p.m., for NO2, NO, and O3 (μg/m3) are 
shown in supplement Table 1. 

The scatter plot between our prediction and the TRACHEA mea-
surement is shown in (Fig. 13). Our model underestimates at high NO2 
concentration and overestimates at low NO2 concentration. A linear 
regression fit between our model predictions and the TRACHEA mea-
surements results in an R2 of 0.61. 

5. Discussion 

We developed hourly LUR models at different levels of temporal 
aggregation for NO2, NO and O3. Our LUR models allow us to identify 
how these air pollutants vary spatiotemporally and how the relations 
with the predictors change over time, which can possibly be explained 

Fig. 5. Time series of explained variance in each of the predictors, separating between weekdays (wkday) and weekend (wkend), and the unexplained variables for 
NO, the time series are aggregated to jan (Jan.–Mar.), apr (Apr.–June), jul (July–Sep.), and okt (Okt. - Dec.). hvy_traf_ld_50: heavy traffic loads in 50 m buffer, 
ind_5000: industrial area in 5000 m buffer, mjr_rd_len_25: major road lengths in 25 m buffer, rd_len_1000: road lengths in 1000 m buffer. 

Table 3 
Selected LUR model predictors and coefficients of linear regression models 
fitting the 5-year averages of NO2, NO, and O3 respectively to the selected 
predictors.  

Predictor buffer (m) NO2 NO O3 

Road Length 1000 1:09� 10� 4  1:79� 10� 4   

Road Length 5000 6:50� 10� 6    

Major Road Length 25 7:66� 10� 2  6:96� 10� 2   

Traffic Load 300   1:44� 10� 7  

Heavy Traffic Load 50 1:47� 10� 5  1:59� 10� 5   

Traffic Major Load 25   7:23� 10� 6  

Traffic Major Load 300   4:04� 10� 8  

Industry 5000  2:31� 10� 7   

Port 5000   1:21� 10� 6   
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by mechanisms that steer spatiotemporal variations in air pollution. We 
found that both spatial variation and diurnal variation in air pollution 
concentration varies between seasons, and between weekdays and 
weekends. NO2 and NO show a comparable spatiotemporal pattern, 
while O3, in general, follows a pattern that is the opposite of these two 
pollutants. In this section, we discuss the spatial and temporal patterns 
that are modelled, the strengths and limitations of our modelling pro-
cess, and directions for future research. 

5.1. Spatial and temporal patterns 

The spatial and temporal patterns observed here can be explained by 
patterns in combustion emissions, climate, and photochemical re-
actions. Spatiotemporal patterns in combustion emission seem to cause a 
large proportion of the variation in air pollution in our study area. 
Diurnal variation in air pollution is clearly related to the traffic intensity, 
in particular for NO2 and NO. During weekdays, air pollution concen-
trations peak during hours that coincide with rush hours in the morning 
and late afternoon. These peaks in air pollution concentration are less 
pronounced or absent during weekends, which is explained by the more 
uniform distribution of traffic over the day during weekdays. Spatial 
patterns in air pollution are strongly related to the road network as well, 
which has been shown in many other LUR studies. From our descriptive 
approach, it is hard to disentangle the effect of atmospheric processes 
from other mechanisms causing spatio-temporal variation in air pollu-
tion. It is obvious however that photochemical reactions are important 
determinants of air pollution levels, in particular for O3. The chemical 
coupling of the pollutants considered here generally causes O3 levels to 
decrease when NO/NO2 ratios increase. Also, at higher air temperatures 
O3 concentrations tend to be high as well. The former mechanism causes 
O3 concentrations to decrease towards roads, while the latter mecha-
nism results in a seasonal variation in O3 with highest concentrations 
during spring and summer. Similar patterns have been described and 

observed by Han et al. (2011); Hagenbj€ork et al. (2017). 
The spatial pattern in air pollution changes over time, as shown by 

the considerable temporal variation in the values of the regression co-
efficients and importance values. For instance, at night, spatial patterns 
in air pollution tend to be more smooth, while during the day, patterns 
show smaller scale variation more closely related to the road pattern. 
This implies that it is important to incorporate changes in the spatial 
pattern of air pollution over time in statistical models of air pollution. 
Approaches that rely on a constant spatial pattern (e.g., Cordioli et al. 
(2017)) may oversimplify the spatial and temporal structure of the 
variation in air pollutants. 

5.2. Strengths and limitations of our method 

The main strengths of our modelling approach are the inclusion of 
temporal variability in LUR modelling, the evaluation of the changes in 
the predictor variable contributions over time, and the relative 
simplicity of the modelling approach which eases interpretation and, 
due to the short run time of our models, allows ad-hoc calculation of 
human exposures integrated over the activity domain of individual 
persons. The relative simplicity of the modelling is however also a 
limitation as our approach does not integrate spatial and temporal 
correlations, neither does it incorporate photochemical reactions be-
tween pollutants. Another limitation is the lack of air pollution stations 
very close to roads (25 m or closer) which made it challenging to model 
air pollution in areas close to roads. Finally, the model performance at 
nighttime was relatively low compared to the daytime. Below we discuss 
these strengths and limitations in more detail and provide suggestions 
for future research. 

5.2.1. Temporal variability 
Our study has important implications for long-term exposure 

assessment. Thus far, long-term exposure has mainly been assessed using 

Fig. 6. Time series of explained variance in each of the predictors, separating between weekdays (wkday) and weekend (wkend), and the unexplained variables for 
O3, the time series are aggregated to jan (Jan.–Mar.), apr (Apr.–June), jul (July–Sep.), and okt (Okt. - Dec.). port_5000: port area in 5000 m buffer, traf_ld_300: traffic 
loads in 300 m buffer, traf_mjr_ld_25: traffic loads on major roads in 25 m buffer, traf_mjr_ld_300: traffic loads on major roads in 300 m buffer. 
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one temporally aggregated air pollution weighted by population den-
sity. Our study shows that temporal variability in air pollution can be 
considerable. The spatiotemporal predictions of air pollution presented 
here enable more sophisticated exposure assessment taking human 
space-time activity into account, as shown for example in Lu et al. 
(2019). 

5.2.2. Variable influence over time 
Our statistical setup using a single set of predictor variables for all 

time steps allowed us to analyse the temporal variation in variable in-
fluence. The variable influence is calculated to study the impact of a 
predictor on the concentration of a pollutant instead of the model co-
efficients because the model coefficients are fit to predictors of different 

Fig. 7. Modelled NO2 concentrations for each hour of the day, on a North-South transect across the province of Utrecht (Fig. 1), intersecting the country side (0–17 
km along x-axis) and the city (17–42 km along x-axis), for January. The spatial pattern for January is comparable to that of other months. For a clearer visualization, 
every third hour is printed, and the pollutant concentration of the Y-axis is clipped at 75 (μg/m3, the original maximum value is 130 μg/m3). The dashed lines 
indicate the locations (also given in Fig. 1) for which time series are plotted in Fig. 8, RR: rural near road, RB: rural background, UR: urban near road, UB: 
urban background. 
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scales and lack physical meaning. Future studies may need to use a 
different set of predictors for day and night and include atmospheric 
variables (Bertazzon et al., 2015) and temporally varying predictor 
variables (Son et al., 2018). Station measurements from nearby coun-
tries (e.g., Germany) and mobile sensor measurements may be used to 
better identify a more flexible model. With sufficient data, buffer sizes 
could be selected (Grant et al., 2015) using a data-driven approach and 
could reflect the variation of vehicle emission over time. 

5.2.3. Nighttime model performance 
Our models show less satisfactory performance during nighttime, 

with lower values of explained variation compared to daytime, although 
cross-validation results did not show a considerable increase in errors 

during nighttime. A similar problem with LUR modelling of night time 
concentrations was encountered in the study by van Donkelaar et al. 
(2015). A possible cause may be that nighttime variation in space is less 
pronounced compared to day time spatial variation and thus harder to 
explain in a statistical model. It might also be that the predictors used in 
our study do not represent spatial patterns in air pollution occurring 
during the night. Emissions, being lower at night time, become a less 
important determinant of air pollution patterns during the night and 
other spatial patterns, related to dispersion, may become more impor-
tant. Future studies may need to evaluate other predictor variables, 
including possibly those that relate to spatial patterns in photochemical 
reactions (e.g., temperature) or atmospheric variables (e.g., roughness, 
distance to the coast). 

Fig. 8. Time series for the three air pollutants at four locations along a N–S transect as illustrated in 7, on weekdays, in January and June, and for weekdays and 
weekend. January and June are used as they represent the extremes in the yearly cycle of the air pollution climate. 
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5.2.4. Interactions between pollutants 
Our LUR models fit a separate linear regression model for each air 

pollutant and each time step. Future studies aiming at improved pre-
diction may need to consider including more interactions in the models. 
One possibly promising approach would be to define a single statistical 
model for the three air pollutants considered. This most likely requires 
incorporation of mechanistic rules describing the chemical reactions 
between the different pollutants. The modelling would become more 
process-oriented, which is advantageous for process understanding, but 
it is not guaranteed it would lead to predictions with a higher accuracy. 
The identification of the parameters of such a model may need inverse 
modelling techniques, which makes the fitting of the parameters a 
considerably larger challenge. 

5.2.5. Spatial and temporal correlations 
Another direction of improvement of spatiotemporal LUR models 

would be the inclusion of terms describing the spatiotemporal correla-
tions in air pollution, in addition to the components describing the re-
lations with predictor variables. To investigate the relevance of 
incorporating spatiotemporal correlations, we computed space-time 
variograms (supplement Fig. 7) of two months in different seasons to 
quantify spatiotemporal correlations. We found that the spatial conti-
nuity is not captured by the ground sensor measurements. Future studies 
incorporating spatial correlations to improve predictions may need to 

assume a variogram describing spatial correlations in air pollution, 
possibly taken from existing studies in the Netherlands, or include more 
air pollution ground sensors (mobile or static) for better spatial sam-
pling. The space-time variogram (supplement Fig. 7) indicates temporal 
correlations in long-term hourly aggregations, in particular for week-
days. Thus, including, for instance, a lag one correlation may increase 
model prediction accuracy in future studies. The temporal correlations 
were not used in our study as we focus on identifying and evaluating the 
differences between the spatial prediction of each temporal 
aggregation/time-step (e.g., differences between each hour of the day, 
differences between weekday vs. weekend). Integrating the temporal 
correlations between observations for the spatial prediction makes the 
coefficients of land use predictors between models at different time- 
steps less comparable as each model becomes dependent on models 
describing air pollution at a preceding time-step. For example, if an AR 
(1) (first order auto-regressive) model is used, model prediction at 5:00 
a.m. becomes dependent on model prediction at 4:00 a.m., and similarly 
the prediction at 6:00 a.m. will depend on the 5:00 a.m. prediction. 
Thus, comparing contributions of land use predictors between time steps 
becomes more difficult as they will become related. 

5.2.6. Variable selection 
Even though we select variables statistically, the predictor selection 

process cannot be seen as completely data-driven. The Lasso is 

Fig. 9. Maps of predicted NO2 concentrations on weekdays for Utrecht city and surrounding area, during rush hour and outside rush hour. The distances in map are 
15.4 km horizontally and 12.9 km vertically. 

Fig. 10. Maps of predicted O3 concentrations on weekdays for Utrecht city and surrounding area, during rush hour and outside rush hour. The distances in map are 
15.4 km horizontally and 12.9 km vertically. 
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stochastic, meaning it could select other (most likely highly correlated) 
variables. In addition, the Lasso selected variables are further reduced 
not by increasing the penalty term to reduce model variance but by 
applying the BBS to the second stage. This has the benefit of considering 
bias, variance, information criterion, and R2 in making the decision. 

5.2.7. Ground monitoring stations 
It is important to note that the variable selection process is partly a 

function of the number of samples and the sampling scheme, and the 
exclusion of the small buffer variables may be due to the relatively low 
number of ground monitors. In our study, the ground monitors are 
located at least 25 m away from the roads, which makes it impossible to 
identify coefficients for buffers with a radius smaller than 25 m. This is a 
limitation for modelling the near-road variability of the highly traffic- 
related and localised air pollutants NO2 and NO. Future studies aiming 
at more accurate spatiotemporal prediction of traffic related pollution 

Fig. 11. Standard deviation of temporal predictions of NO2 that represent 
different seasons and hours, namely January, April, June, October at respec-
tively 05:00 a.m., 09:00 a.m., 14:00 p.m., 18:00 p.m. The row and column 
averages are shown at the top and right sides, respectively. The same standard 
deviation map for the whole Netherlands is shown in the supplement Fig. 8. 

Fig. 12. Co-variability of predicted NO2, NO, NO/NO2 (ratio between NO and NO2), and O3. The diagonal plots shows the histogram. All values are from the N–S 
transect (Fig. 1) across Utrecht, in January, for weekdays. The x-axis is shown on top of the first row of the figure. 

Fig. 13. Comparison of the average of our temporal model predicted NO2 
values and TRACHEA measurements. Blue line: fitted linear regression line, R2: 
0.61. Black line: 1 to 1 line. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.) 
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need to involve air pollution measurements close to roads. 

6. Conclusion 

We developed high resolution hourly LUR models at different tem-
poral aggregations to study the spatiotemporal variations and in-
teractions of NO, NO2, and O3. The amount of spatiotemporal variation 
in air pollution implies they need to be considered in personal exposure 
calculation. The temporal models that are developed with the same 
predictors selected using an annual model explain less variation of the 
pollutants at nighttime. The amount of variation each predictor could 
explain varies hourly and differ between seasons. These assessments of 
model fitting are important for understanding the contribution of air 
pollutant sources and for applying these models to exposure assessment 
and epidemiology studies. We found NO and NO2 having similar pat-
terns and the peaks close to urban roads during rush hours varies in 
different seasons. The O3 shows a contrasting pattern to NO and NO2. 
The spatiotemporal patterns can be explained by traffic, weather, and 
photochemical processes, e.g., the midweek peaks in NO2 strongly 
overlap with rush hour patterns and the differences between summer 
and winter times. 
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