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Introduction
Palaeobotanical proxies based on cuticle properties are increas-
ingly implemented to reconstruct environmental and climatic 
changes by quantifying leaf morphological adaptations in 
response to environmental changes. The variety of proxies avail-
able to date enable atmospheric CO2 reconstructions (McElwain 
and Steinthorsdottir, 2017; Royer, 2001; Wagner-Cremer et al., 
2004), estimates of transpiration changes (Bodin et al., 2013; De 
Boer et al., 2011; Franks and Beerling, 2009; Lammertsma et al., 
2011), drought stress signals (Wagner-Cremer et al., 2007) and 
volcanic SO2 pollution (Steinthorsdottir et al., 2018). Microphe-
nological studies have further demonstrated that the growing sea-
son thermal conditions also result in distinct imprints in the leaf 
epidermal cell morphology (Wagner-Cremer et al., 2010).

Microphenological proxies for growing season dynamics 
through time are of interest, as ongoing global warming causes a 
significant lengthening of the growing season in large parts of the 
Northern Hemisphere, altering the spring phenology of woody 
plants (Flynn and Wolkovich, 2018; Polgar and Primack, 2011; 
Zohner and Renner, 2014). The physiological response of plants 
in return has the potential to alter the physical and biological 
properties of large vegetated land areas influencing local and 
regional climatic conditions through albedo and transpiration 
feedback (Bonan, 2008; Lian et al., 2018; Piao et al., 2017).

In this context, growing season climate reconstructions provide 
a powerful tool for determining seasonality dynamics during natu-
ral climate change on various spatiotemporal scales (Finsinger 

et al., 2013; Wagner-Cremer and Lotter, 2011). The leaf cuticle 
analysis-based proxy, quantifying the growing season thermal 
properties, relies on the maturation stage of leaf epidermal cells 
reached under the cumulative growing degree days (GDD) during 
the annual growth period (Wagner-Cremer et al., 2010). The leaf 
epidermal cell expansion follows an ontogenetic succession, in 
which cell size and cell wall sinuosity increase during the leaf 
maturation period (Kürschner et al., 1996; Wagner-Cremer et al., 
2007, 2010). The maturation stage of the epidermal cells is 
expressed as the undulation index (UI), which quantifies the 
degree of cell wall sinuosity over cell area (CA) (Kürschner et al., 
1996). This proxy was originally introduced to identify light inten-
sity-related leaf morphotypes in closed canopy species such as oak 
(Kürschner et al., 1996). In open canopy trees and shrubs such as 
Betula, however, the undulation occurring in epidermal cells is 
strongly related to the duration and temperature available to plants 
during the growth period (Wagner-Cremer et al., 2010).
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A distinct correlation between the UI of the (sub-)arctic dwarf 
birch Betula nana and GDD5 (the growing season cumulative sum 
of degree Celsius above 5°C) was first established through continu-
ous leaf monitoring ongoing since 1996 at the Subarctic Research 
Station site in Kevo, northern Finland (Wagner-Cremer et al., 
2010). The robustness of the available UI inference model as GDD5 
proxy was subsequently tested by comparison of UI values from 
fossil B. nana leaf cuticles preserved in Scandinavian peat deposits 
with historical GDD5 records (Finsinger et al., 2013; Wagner-Cre-
mer et al., 2010). A first application to Late Glacial B. nana cuticles 
has further shown the applicability to Quaternary periods of rapid 
climate change (Wagner-Cremer and Lotter, 2011).

Although the potential value of the UI as a GDD5 proxy to 
support spatiotemporal analysis of seasonality changes has been 
demonstrated, the proxy is currently tested only for the (sub-)arc-
tic dwarf birch. In order to apply this proxy on a broader spatial 
and temporal scale, additional modern species with more southern 
geographical ranges are needed to overcome the limits of the 
GDD5 inference model for B. nana with its relatively narrow tem-
perature range.

Moreover, potential sources of reconstruction uncertainties 
have to be evaluated. A point of discussion is thereby the influence 
of photoperiod (PP) on leaf phenology under changing tempera-
tures (Flynn and Wolkovich, 2018; Körner and Basler, 2010; 
Zohner et al., 2016). This study focuses on the Scandinavian moun-
tain birch (Betula pubescens spp. czerepanovii (N. I. Orlova) 
Hämet-Ahti), which groups the introgressive hybrids between the 
downy birch (B. pubescens Ehrh.) and the dwarf birch (B. nana L.) 
(Vaarama and Valanne, 1973; Wagner-Cremer et al., 2000). The 
mountain birch contributes large proportions to the Fennoscandian 
broadleaved forests and occurs over the climatic gradient from 
cold-temperate to subarctic conditions. Over this geographic range, 
the cold-adapted dwarf birch is successively replaced by the ther-
mophilous mountain birch, therewith providing an opportunity to 
extend GDD5 and PP ranges to more warmer climates in lower lati-
tudes. Cuticle analysis of the different birch species and hybrids has 
already revealed distinct and specific morphological characteristics 
of mountain birch and dwarf birch, which allows to distinguish 
mountain birch from dwarf birch in fossil leaf samples (Wagner-
Cremer et al., 2000). In this study, we therefore aim to expand and 
validate the UI proxy for growing season thermal properties by 
quantifying the sensitivity of mountain birch to the GDD5 range 
occurring over a 10° latitudinal gradient in Scandinavia.

Materials and methods
Leaf sampling
The leaf sampling campaign was carried out in 2016 at the end of 
the growing season (24–30 September), when trees showed 

autumn colours indicating leaf senescence. We sampled 20 ran-
domly selected mountain birch leaves per site at 28 locations in 
Finland and northern Norway (Figure 2), with a spacing of 
approximately 100 km between sites.

Microscopic analysis
From 26 locations, three to five leaves were analysed. Sections of 
0.5 × 0.5 cm2 from individual leaves were bleached in sodium 
hypochlorite (<5%) at room temperature for 12‒24 h. The lower 
cuticle was subsequently removed and stained with safranin. Per-
manent microscopic slides were made using glycerine jelly. Five 
digital photographs of each cuticle were taken using a Leica 
Quantimet 500 C/500+ microscope and AnalySIS image analysis 
software (AnalySIS auto 5.1) at 1000× magnification. Analysis 
of epidermal and stomatal cell properties was performed using 
ImageJ 1.52a. Two representative cuticle images with low and 
high UI are shown in Figure 1.

To estimate the mean epidermal CA (µm2) and epidermal cell 
circumference (CC; (µm), 30 random pavement cells per sample 
were analysed, avoiding cells over venation and leaf margins. 
From CA and CC, the UI (dimensionless) of the epidermal cell 
wall was calculated following Kürschner (1997) as

UI dimensionless[ ]
/

=
⋅
CC

CA2π π

Meteorological data
To compare the cuticle analysis results with meteorological data, 
the measured daily average temperature and precipitation data of 
the weather station nearest to each individual sampling site was 
extracted from the KNMI Explorer database (Van Oldenborgh 
et al., 2009).

GDD5 was calculated from daily temperatures recorded 
throughout the growing season. GDD covers the growing poten-
tial for vegetation in a given year and is expressed by the cumula-
tive sum of degrees Celsius above a determined base temperature 
(McMaster and Wilhelm, 1997; Weijers et al., 2013) as
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where Ti is the daily mean temperature for day i and X is the 
selected threshold temperature in degrees Celsius. For Ti, the 
daily mean temperature from each station was used. For the lati-
tudinal range covered in this study, 5°C is the commonly used 
threshold temperature for plant growth and was taken as threshold 
temperature X, resulting in GDD5 (Carter, 1998). The sum of 
GDD5 was calculated from 1 January 2016 to 30 September 2016. 

Figure 1. Representative images of mountain birch cuticles grown under (a) 776 GDD5 and (b) 1493 GDD5, showing stomata bearing alveole 
areas and epidermal cells with low and high cell wall undulation, respectively. Scale bar is 50 µm.
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May through September (MJJAS) temperature and precipitation 
data were used to calculate average spring and summer condi-
tions. Average winter temperature and precipitation were calcu-
lated from November, December 2015 as well as January, 
February and March 2016 (NDJFM). We note that the long sum-
mer and winter definitions were necessary to cover the growing 
season of the southernmost sample locations. Average precipita-
tion and the total precipitation sum were calculated as 1 October 
2015 until 30 September 2016, representing the total amount of 
precipitation since shedding of the leaves in the previous season 
to senescence of the current leaf sample set. PP was defined as the 
cumulative sunlight hours at the latitude of each sample location 
between March and September.

Spatial analysis
To visualize spatial variability in GDD5 and UI, inverse distance-
weighted interpolation (Shepard, 1964) was performed using the 
‘idw()’ function in the gstat package (Gräler et al., 2016) in R 
version 3.5.2 (R Core Team, 2019). A maximum search radius of 
100 km was set based on the sampling distance, and the inverse 
distance-weighting power was set to 2. This resulted in a root-
mean-square deviation of 0.02 for UI and 95.09 for GDD5 (as 
determined from leave-one-out cross-validation). For manage-
ment and visualization of spatial data in R, the rgdal (Bivand 
et al., 2018), raster (Hijmans, 2018) and sp (Bivand et al., 2013; 
Pebesma and Bivand, 2005) packages were used. Country base-
maps were retrieved from the ggplot2 package (Wickham, 2016).

GDD5 inference model
Linear least-square regression was used to relate measured UI val-
ues to known GDD5 across all sampling localities. For the predic-
tion of past GDD5 fossil from UI obtained from fossil leaf material 
(UIfossil) values, it is necessary to inverse the original least-squares 
regression function [UI] = a[GDD5] + b. The inverse of the fit 
results in [GDD5 fossil] = [UIfossil](1/a) − (b/a) and minimizes the 
error towards the original modern y-variable (UI), with x-variable 
(GDD5) as fixed measurement. A Monte Carlo simulation (1000 
times repetition) based on the mean UI values for each locality was 
used to test the reliability of the inference model, each time with a 
random division of the dataset in two halves, a reference and a test 
part, generating averages and uncertainty ranges in the slope  
(a) and intercept (b) for the inference model function.

Independent test data
To additionally test the predictive capacity of the inference 
model, GDD5 values were inferred from an independent dataset 
of UI values measured on mountain birch leaves collected in 
1997 at several Finnish sites between 62°N and 70°N (Table 1), 
including samples published in Wagner-Cremer et al. (2000). 
The leaf material was sampled and analysed, applying the same 
protocol as for the samples collected in 2016. For the five Finn-
ish localities, instrumental GDD5 data for 1997 (Van Oldenborgh 
et al., 2009) are available, with which the inferred GDD5 values 
are compared.

Results
An inverse distance-weighted interpolation of the data has been 
used to visualize the spatial distribution of GDD5 and UI values, 
respectively (Figure 2). The GDD5 data from the meteorological 
observations range from 1493 GDD5 to 578 GDD5 over the latitu-
dinal gradient from 60.7°N to 69.9°N (Figure 2a and b). UI values 
range from 1.12 to 1.27 over the same latitudinal gradient (Figure 
2c and d). GDD5 and UI thereby show strong linear negative rela-
tions to latitude R2 = 0.88 and R2 = 0.69, respectively.

The UI of the 2016 latitudinal transect has been tested against 
latitude, winter temperature, winter precipitation, summer tem-
perature, summer precipitation, GDD5 and PP of the growing sea-
son (Table 2).

GDD5 inference model
We developed our GDD5 inference model based on site-averaged 
UI values obtained from the 2016 transect together with meteoro-
logical observations of GDD5 along this transect (Figure 3a). 
Using inverse regression, we obtained the linear function [GDD5] 
= 7744.8[UI] −8086.8 (R2 = 0.77, p < 0.001). The 95% confi-
dence intervals of the slope and intercept of the GDD5 inference 
model are 6178.4 to 1017.1, and −1089.8 to −6244.2, 
respectively.

To test the predictive skills and accuracy of the inference 
model, independent UI data from a transect with a similar latitu-
dinal range (62.4°N–69.9°N) collected in 1997 with known GDD5 
at growth locality have been run through the inference model 
(Figure 3b). There is some minor offset in slope and intercept 
between the hypothetical control line (y = x) and the linear model 
(y = 1.1219 × −207.7) fitted through the predicted values and 
their corresponding observed values predicting the value of the 
inference model is high (R2 = 0.86, p = 0.02).

Discussion
UI sensitivity to GDD5

Local GDD5 values explain 77% of the UI variability in a highly 
significant linear relation over the range from 578 to 1493 GDD5 
and thus corroborate the proposed concept that growing season 
thermal properties produce a strong, detectable imprint in the leaf 
morphology in open canopy species (Wagner-Cremer et al., 
2010). The data thereby show that this adjustment in epidermal 
cell morphology not only occurs in the subarctic dwarf birch B. 
nana, but is also present in mountain birch. The mountain birch is 
closely related to the dwarf birch and originates from hybridiza-
tion between B. nana and B. pubescens (Vaarama and Valanne, 
1973; Wagner-Cremer et al., 2000) under current climatic condi-
tions in the northern high latitudes. Fossil hybrid forms are diffi-
cult to recognize, but are likely to have occurred under past 
climate changes, too (Wagner-Cremer et al., 2000). Testing of 
cuticle characteristics in B. nana, B. pubescens and various moun-
tain birch hybrids grown in the treeline arboretum at Kevo subarc-
tic research station (Utjoki, Finland) has shown, however, that 
mountain birch varieties can be treated as a single group, since no 
significant differences in UI or other cuticle characteristics have 
been found (Wagner-Cremer et al., 2000). The separation between 
mountain birch and B. nana in fossil, fragmented material is rela-
tively easy through either leaf margin analysis or, if marginal 
parts are not available, via determination of the stomatal length, 
which is significantly lower in B. nana than in the mountain birch 
group (Wagner-Cremer et al., 2000).

The validity of the mountain birch inference model is sup-
ported by an independent sample set collected in 1997 from local-
ities with instrumental GDD5 data. The response rate of the UI in 
mountain birch to GDD5 is, moreover, highly comparable to the 
relation determined for B. nana, with UI changes of approxi-
mately 0.02–0.03 (UI) per 100°C GDD5 based on the currently 
available GDD5 ranges of the individual inference models.

Effects of PP and precipitation
Our results also revealed a significant negative correlation 
between PP and UI. PP is a globally unidirectional parameter 
associated to latitude, which determines the amount of daylight 
available during the growth period of the plants, and which can 
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be especially critical at the start of the season. The mountain 
birch is a typical pioneer species that occurs in the early vegeta-
tion succession. Phenological observations of pioneer species 
such as birch, hazel or poplar show that onset of leaf growth is 
insensitive to PP in spring and that budburst and leaf growth are 
thus predominantly regulated by temperature (Körner and Basler, 

2010; Polgar and Primack, 2011). Earlier studies on the effects of 
PP on B. pubescens show that in experimental set-ups, increased 
PP under set temperature leads to increasing leaf size and num-
bers (Habjørg, 1971). This photoperiodic response, however, is 
suppressed when plants are exposed to low temperatures overrul-
ing the positive effect of prolonged daylight availability (Hab-
jørg, 1971). These findings support our hypothesis that the UI in 
mountain birch is not directly linked to daylight length, but that 
the determined correlation rather reflects a false signal resulting 
from the co-occurring, but unrelated latitudinal changes in GDD5 
and PP.

A strong latitudinal precipitation gradient occurs over Scandi-
navia, where southern and eastern Finland receive nearly twice 
as much precipitation as the northern region of Lapland. Our data 
show high correlation values for the UI and winter precipitation, 
but no correlation of UI with summer precipitation. Winter pre-
cipitation of the studied year clearly follows the general latitudi-
nal precipitation gradient as is evident from the high negative 

Table 1. Test samples of mountain birch leaves collected in 1997.

Locality Latitude °N UI GDD5 1997

Mekrijärvi, Finland 62.4 1.24 ± 0.02 1498
Oulu, Finland 65.0 1.18 ± 0.03 1195
Peera, Finland 69.0 1.17 ± 0.02 760
Kevo 2, Finland 69.5 1.17 ± 0.02 765
Kevo 1, Finland 69.9 1.15 ± 0.02 745

UI: undulation index; GDD: growing degree days.

Figure 2. (a) Meteorological station locations (n = 28) and their measured GDD5 values, with inverse distance-weighted interpolation 
gradient. (b) Linear relation between latitude and GDD5. (c) Sample locations and the measured mountain birch UI values (n = 26) with inverse 
distance-weighted interpolation gradient. (d) Linear relation between latitude and UI with error bars indicating the naturally occurring variance 
in UI.
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correlation between these two variables. The winter precipitation 
is predominantly received as snow and, thus, does not directly 
affect the leaf growth after snowmelt. The lack of correlation 
with the summer precipitation, on the contrary, corroborates ear-
lier findings from a single-site study from Kevo, Lapland, where 
continuous time series analysis over the period from 1975 to 
2008 did not reveal any significant imprint of May–September 
precipitation in the UI of B. nana (Wagner-Cremer et al., 2010). 
Nonetheless, water deficit has the potential to reduce epidermal 
cell expansion (Wagner-Cremer et al., 2010) and throughout 
individual growing seasons may well have a growth-restricting 
effect, an aspect that needs careful consideration and additional 
testing.

Our results support the GDD5 inference model for mountain 
birch as a valuable addition to the proxy so far restricted to B. 
nana. By adding mountain birch, the temperature range over 
which the proxy can be applied is expanded and now covers grow-
ing season temperature regimes characteristic of boreal forest 
biomes rather than (sub-)arctic conditions only. Spring season 
reconstructions based on cuticle analysis thus become possible 
also for sites and localities where the fossil leaf assemblages either 
include climatic warming phases with vegetation successions or 

for leaf bearing sequences in geographical regions outside the 
climatic prerequisites of the (sub-)arctic dwarf birch.
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