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Abstract
Life science experiments that employ automated technologies, such as high-content screens, frequently pro-
duce large datasets that require substantial amounts of preprocessing before analysis can be carried out. Stand-
ardization of this preprocessing becomes impossible as the dataset size increases if there are manual steps
involved. Virtually no standards for preprocessing currently exist and few user-friendly tools are available that
allow the cleaning of data files in a simple and transparent manner while also allowing for reproducibility.
We demonstrate in a publicly available R package, PurifyR, how preprocessing steps can be streamlined and au-
tomated. PurifyR supports multithreading and the standardization of large-matrix preprocessing. These steps
provide transparent and reproducible preprocessing for matrix-oriented datasets. The PurifyR package is open
source and can be downloaded from github.
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Introduction
Machine-generated datasets, such as those from high-
content screens (HCSs), are increasingly unavoidable
in life science and bioinformatic experiments1,2 and,
given their size and complexity, are challenging to
both maintain and process without automated prepro-
cessing tool kits.3 Big data analysis using machine-
generated (sensor, image, and robotics) datasets involves
ever-increasing time to clean, maintain, and summa-
rize.4 Time spent cleaning datasets continues to in-
crease, consuming valuable time that could be better
used for interpretation in later analyses.3 Looking for-
ward, manual approaches to big data analysis are
unsustainable given how big data and the number of
separate tools continue to increase in size and com-
plexity.5 Currently, thousands of variables and millions
of observations are generated for every high-content
screening experiment, requiring big data analysis ap-
proaches.6 Continuous improvements to sensor soft-

ware and broad advancements in hardware provide
increased opportunities to capture big data in nearly
every experiment,7 hinting that big datasets will be-
come more common and orders of magnitude larger
in the near future.8 For example, data collected during
high-content experiments capture consistently higher
resolutions, dimensions (3D),9 and detail as the tech-
nology continues to develop.10 Big data analyses require
automation beyond that of pipelines and profiling
tools.11

Cell screening experiments, such as Luminex bead
technology,12 are assisted by robots for automating re-
petitive and tedious cell screening experimental tasks
that generate large amounts of information at the cell
or even subcellular object level. Although groundbreak-
ing, these experimental methods can have unintended
consequences for researchers.13 Up to 80% of the analysis
time of large experimental datasets can be consumed14

by repetitive and nonvalue adding tasks15 such as
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removing undesirable experiment-specific artifacts,
identifying context-specific outliers, excluding sys-
tematic machine-based errors from results, interpret-
ing manufacturer-specific machine codes, correcting
missing data, and repairing inconsistent classification
methods. Increases in the complexity and the amount
of data create ever-increasing work for experimenters to
aggregate experimental results and conclusions. Each
observation and every value must be screened to vali-
date methodological standards, to be useful for later
statistical analyses, and ultimately publication.16 Often,
researchers could benefit from the ability to identify
these types of data problems early in experimentation
to validate the research procedures that are being fol-
lowed and to ensure that data quality is sufficient for
significant testing and publication.17 These types of
problems go undetected for the duration of experimen-
tation or during the piloting stage, which could easily
have been addressed and avoided if detected earlier.
Ideally, experimenters could check these statistics re-
peatedly during the research process to identify issues
and correct them before the experiment is complete
and it is too late to address any collection issues. For
instance, datasets must be clean for analysis and pre-
pared before the use of any later machine learning
methods.18 Time-consuming cleansing processes re-
quire focus, which can become a distraction from the
original purpose of the experiment. When these steps
are not documented, the results can be nearly impossi-
ble to reproduce and can lead to experimental results
that cannot be reused or compared with subsequent
projects and findings.19

Many packages currently exist for preprocessing
datasets20 to meet the assumptions of statistical testing
methods and machine learning models. However, few
methods exist that can comprehensively automate the
majority of preprocessing steps in both documentation
and reproducibility in a manner sufficient to meet the
necessary fundamental assumptions conceivable for
most statistical methods such as outlier handling, miss-
ing data imputation, and feature selection.21

Researchers are therefore required to repeat these te-
dious and standardizable preprocessing steps manu-
ally in every case, which include modeling of datasets,
building data pipelines, and testing the code. There is
a need for robust and automated preprocessing frame-
works for detecting inconsistencies in data and repair-
ing or removing and reporting them in a transparent
and autonomous manner. Furthermore, these repeti-
tive steps can be difficult to log and can be impossible

to replicate by future researchers. The exact steps fol-
lowed can easily be forgotten or repeated in different
sequences for various reasons, making the cleaning
operations impossible to repeat during later research.
Often, these issues create irreproducible datasets, which
leave later researchers confused and unable to verify
values or update the results with recent findings.

There is a need to automate the preprocessing of
research datasets.

Previously published packages have demonstrated
the ability to reduce the time necessary to automate
preprocessing and produce generally usable datasets
for analysis22 while ensuring that assumptions for var-
ious machine learning and statistical methods are met
without user intervention or extensive programming
expertise.23 When experimental data are processed
using an automated and documented approach, results
can be consistently reproduced in large workflows and
used to validate datasets during experimentation to
prevent using bad data (records and features) and to
compare results with later studies.24 Preprocessing
pipelines themselves can also be published and reused
for later research and improve over time.25 Further-
more, automation of data preprocessing could result
in a substantial reduction of the necessary effort re-
quired to make use of big datasets, creating a need to
automate the preprocessing of big data.26

PurifyR Package Components
In this study, we present PurifyR, an R package for big
data preprocessing, specifically for preparing high-
dimensional datasets in a dynamic, repeatable, and
autonomous manner to avoid reinventing the wheel.
Experimental data sources such as automated cell
screening data are primarily machine-generated data-
sets with thousands of columns and millions of records.
Often, tens or hundreds of these matrices are generated
during the course of experiments, requiring an almost
impossible amount of work if aggregated and processed
manually using spreadsheet software, such as MS Excel,
or statistical software such as SPSS.27 The PurifyR
package facilitates three preprocessing steps; ScanR,
ScrubR, and SmashR (Fig. 1). Writing preprocessing
scripts are tedious, time-consuming, and error-prone.14

Reused scripts mainly contain hard-coded column
names and references to values, lists, and file names.
These scripts cannot be reused in follow-up experi-
ments and require manual rewriting for subsequent
analysis, resulting in inadvertent errors or mistransla-
tions and leading to irreproducible results.
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ScanR
ScanR generates common meta-data28 for each column
such as uniqueness and percentage missingness, vari-
ance, outliers, and distribution type. The meta-data
generated in this step have been built specifically to
determine which columns are considered useful and
in a healthy state based on well-defined and analysis-
specific assumptions of data quality.29 Users are able
to review the meta-data of the original dataset, if de-
sired, before producing a cleaned dataset.

ScanR requires a data source for input and is a data
frame or data table. This data table is sampled based on

the sampling percentage to ensure enough records for
summary statistics, but not an excessive number if
the data table is very large. Each variable in the in-
put dataset is summarized for simple statistics such
as mean, median, and mode (Supplementary Data S1).
This is completed in parallel, according to the number
of processors available on the computer.

Variable names are cleaned of spaces and special
characters and assigned a unique ID to ensure that
duplicate values are not confused and can be used in
later steps. Variable meta-data are generated and pro-
vide the ability to compare each column with others

FIG. 1. The workflow of PurifyR. (A) Makes sure all variables have unique column names without special
characters that can be handled in R. (B) Carries out a data scan, including missing data, distributions, and data
types. (C) Allows for removal of outliers and handling transformation, scaling, and missing data. (D) Allows
for aggregation of data based on a defined unit of analysis.
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by providing a simple list of example values found in
each column as well as its highest correlated column
and the maximum Pearson correlation coefficient.
Variables are tested against rules to identify which
contain unique information and certain types of
data (categorical and continuous, etc.). Each variable
receives a test against other similar variables to en-
sure that a sufficient amount of unique information
exists to warrant inclusion in later machine learning
applications.

Finally, a Mahalanobis distance and covariance ma-
trix is calculated using the resulting healthy variables. If
these fail to be calculated, highly correlated variables
are iteratively removed one by one until a final list of
healthy predictors allows for the calculation of a non-
singular matrix. The list provides information about
why certain features are excluded, for example, because
of high covariation. A final list of healthy predictors is
created and assigned to the most clean and unique var-
iables. This list of healthy variables can be passed onto
the next step, ScrubR.

ScrubR
The ScrubR step applies rules to each variable and then
analyzes each included variable row-wise. It automati-
cally produces appropriate and method-specific trans-
formations, standardization, and imputes outliers and
missing values given the results of the meta-data gener-
ated above. These configurations have default values
and can be configured to meet the specific require-
ments and assumptions of later analysis methods
(Supplementary Data S2).30 Examples of subsequent
analyses are principle component analysis (PCA), lin-
ear regression, and neural networks.11 Output datasets
of the ScanR function can be used without further ma-
nipulation for later analysis, feature engineering, and
prediction steps.

The ScrubR function requires a dataset and the list of
healthy predictors calculated in the ScanR function.
It will output a cleaned version of the original data.
The user can select from a few options, including the
row-wise missing percent allowed in the final data-
set, the threshold standard deviation allowed for
outliers, the proper transformation method for vari-
ables, the intended scaling method for variables, and
the desired imputation method for addressing miss-
ing data.

The function begins by removing records that exceed
the missingness threshold, that is, the percentage of
columns per record containing missing data. It then se-

lects any outlying points that based on the settings de-
fine an outlying data point. Variables that have failed
the skewness tests during the ScanR function will re-
ceive a recommended transformation to adjust skew-
ness toward normality. Each variable is then scaled
and replaced with a z-value or other desired scaling cal-
culation. Missing values are finally case-wise deleted
or imputed using a standardized approach or using a
package for imputation, such as MICE31 for random
value replacement, multivariate imputation by regres-
sion, or random forest (Fig. 2).

SmashR
The SmashR function calculates estimators represent-
ing the unit of analysis. It requires a clean dataset,
such as the dataset output by the previous step, ScrubR,
as well as a list of healthy predictors, calculated by
ScanR or provided manually. This can be used to easily
represent the original identity of the data (Fig. 3). The
unit of analysis input can be provided by one or more
variables in the data, usually a categorical variable. The
SmashR function aggregates and groups the originally
observed data by the analysis variable. Any missing
or N/A values within the unit of analysis are excluded
from the analysis. For every value of the unit of analysis
variable, a list of summary statistics is generated for
every variable in the dataset, such as mean, median,
maximum, and minimum values. These summarized
data are extremely useful for analyzing the original
dataset and creating visualizations given that the
summary calculations have been preprepared and
are quickly available to slice and compare the data-
set. This step is useful for interpretation, comparison,
and exploration of the data at a high level.

FIG. 2. Visual representation of the PurifyR
input and output that checks for columns that
contain missing data, that is, column A, or
checks missing data on the records, for example,
case-wise deletion, that is, Record No. 3.
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Results
Rule-based preprocessing frameworks, such as PurifyR,
as well as additional scripts can be assembled together
to standardize and automate a great deal of work
normally left for bioinformaticians, which is also very
error-prone and time-consuming to understand. Once
automated, bioinformaticians are able to focus on
more substantial work such as interpreting the seman-
tics of the data, improving used methods, and inter-
preting the outcome. A suitable preprocessing layer
can be reused and datasets reprocessed repeatedly in
a consistent manner. Bioinformaticians can create a
data preprocessing pipeline to first begin exploring
data without a great deal of exploratory effort initially
in removing data, which can be described and com-
pleted by a rule-based standardized tool. PurifyR
focuses on providing this standardized and reproduc-
ible context for preprocessing workflows.

The PurifyR package can be installed from GitHub,
see Supplementary Data S6, or a live Shiny implemen-
tation can be seen at https://purifyr.stratominer.com/
Shiny Users can call three specific functions to auto-
mate preprocessing steps. Predefined configuration
values are prepared to ensure that datasets meet the

assumptions of the following machine learning meth-
ods for use by other packages, PCA, regression, and
others. Input data are an existing R data frame or da-
ta.table object from a file or other source. The package
can be used to profile data and perform column health
checks to recommend only useful features for the use
of downstream analysis steps, for example, machine
learning. Second, the package scrubs the healthy col-
umns, from the previous step, and performs row-
specific processing to ensure only high-quality records
are included and missing or out-of range values are
repaired. Finally, data are transformed and scaled to
meet the requirements of matrix-based methods, such
as PCA. Finally, the package performs postanalysis
profiling to display per-column statistics, such as
intravariable variance and correlation metrics, useful
for evaluation before performing additional machine
learning steps.

We tested this on five public datasets (Table 1 and
Supplementary Data S4) and three HCS datasets (Sup-
plementary Data S3).32 The dataset with over 400K
records and >200 features completes in *0.5 min, gen-
erated on an AWS EC2 R5 instance with 4 cores and 32
GB RAM. PurifyR operates completely with the da-
ta.table package for optimized computation and mini-
mized space required in memory and is using the
package, parallel, for multicore usage. The data.table
approach requires significant additional development
effort, but demonstrates huge performance improve-
ments, as shown in Figure 4.

FIG. 3. This figure visually represents the
function of SmashR. The lowercases represent the
unit of observation, which is input for calculation
of the summary statistics representing the unit of
analysis, the capital letters in this figure. Let the
lowercase letters be measured cases and
the capital letters a set of estimators, for
example, a minimum, Q1, median, Q3, and
maximum estimator for input for visualization,
interpretation, and understanding the data.

Table 1. This Table Represents the Results of ScanR
for the Following Datasets; Mtcars, Iris, Diamonds
(ggplot2 Package), Baseball (plyr Package),
and Flights (nycflights13 Package)

Dataset Rows Columns
Calculation

time, sec

Mtcars 32 11 0.285
Iris 150 5 0.292
Diamonds *53K 10 0.144
Baseball *21K 22 0.339
Flights *336K 19 0.522
HCS dataset I *400K 49 2.647
HCS dataset II *3.5mln 233 21.174
HCS dataset III *251K 1787 771.472

In addition, three HCS datasets were used, one of them available
through the Supplementary Data. The column Dataset describes the
dataset, the column Rows describes the number of rows of the dataset,
and the column Columns describes the number of columns in the data-
set. The column Calculation Time describes the amount of time required
to process the dataset with ScanR in PurifyR. Results are generated using
an AWS R5 xlarge EC2 instance (4 cores and 32 GB RAM).

HCS, high-content screen.
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It finally enables the calculation of statistics per unit
of analysis provided by the function SmashR. This
allows to calculate and visualize a mean and standard
error or minimum, Q1, median, Q3, and maximum
to visualize a boxplot or error bar for each unit of anal-
ysis in the dataset.

Discussion
The PurifyR package demonstrates the ability to reli-
ably carry out on-demand preprocessing of large data-
sets without creation of multiple copies thanks to the
package data.table. This allows researchers to confi-
dently produce statistics and analyze imperfect datasets
directly by running data through PurifyR. Researchers
can build data processing pipelines during research and
during quantification. PurifyR will clean datasets and
highlight records and columns with missing data or
outliers, which are not able to be used in downstream
statistics and reports. A few public datasets from very
small to moderate size such as Mtcars, Iris, Baseball,
and Flights plus three large datasets were subjected to

ScanR for feature selection. Supplementary Data S4
provides the code and processing outcome of processing
the datasets using PurifyR. Table 1 reports the size and
speed of processing them using the PurifyR package.

Complex datasets can require substantial time to
compare results from previous experiments and repre-
sent potential roadblocks for further experimentation
due to the excessive amount of time required for aggre-
gating simple statistics on large and disparate datasets.
Ideally, experimenters could check these statistics re-
peatedly during the research process to identify issues
and correct them before the experiment is complete
or it becomes too late to address any collection issues.

Large datasets ideally require a rule-based approach to
review the large number of automatically generated re-
cords and columns. Without automation, the results are
difficult to reproduce and frequently prone to reporting
errors. Additionally, manual curation of these types of
datasets often requires a great deal of time for cleansing
and to standardize the values,14 for example, to standard-
ize data to common ranges in preparation for later statis-
tical processing and machine learning steps. Missing data
and outlier handling often prove to be complicated and
subject to interpretation. This can consume up to 80%
of the total time for analysis and reporting of results.15

The PurifyR package aims to automate a great part of
this time by applying feature synthesis and engineering
methods to automate data preparation steps. The Puri-
fyR package automates common preprocessing steps to
ensure that high-quality features are used and each row
is prepared to meet the assumptions of later machine
learning processing steps. Not only does the package re-
duce the manual effort required and time to process data
but it will also improve transparency and reproducibility
of the final results.

Ultimately, a framework for automating data prepro-
cessing steps would remove the need for repetitive efforts
and complex code for each analysis. Unfortunately, there
is no golden standard, but there are a few statistical rules
of thumb and recommendations in specific domains and
methods.33,34 It would simplify analysis and comparison
with previous research and ensure a simple explanation
that can be seen by all researchers. Moreover, it would
help reproducibility move a step forward.35,36 Many re-
searchers do not need or desire to be involved in the in-
tricate details of cleaning data and would prefer a more
autonomous approach, where best practice standards
are applied without a great deal of intervention. Ideally,
researchers could quickly compute and reanalyze data-
sets without manual cleaning effort between iterations.

FIG. 4. This Figure demonstrates the speed of a
standard procedure, calculating a column-wise
mean, on the same public dataset Baseball.
The calculation is carried out by the packages
data.table, dplyr, and Rbase, respectively
(see x-axis). The y-axis represents the time in
nanoseconds. The calculation is measured a 100
times using the package microbenchmark where
the bars visualize the mean and standard error
of the measurements. The performance of
data.table shows a 20-time speedup compared
with Rbase and a 3.5-time speedup compared
with dplyr. See Supplementary Data S5 for
implementation.
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