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A B S T R A C T

Due to the limitation in the availability of airborne imagery data that are high in both spatial and temporal
resolution, land surface temperature (LST) dense in both space and time can only be obtained through down-
scaling of frequently acquired LST with coarse resolution. Many conventional downscaling techniques are only
feasible in an ideal situation, where land surface factors as LST predictors are continuously available for
downscaling the LST. These techniques are also applied only at large scales ignoring sub-regional variations.
Based upon unmixing based approaches, this study presents an LST downscaling workflow, where only the
coarse resolution of 1 km LST image at the prediction time is required. The conceptual backbone of the study is
assuming that the LST patterns are governed by thermal behaviors of a fixed set of temperature sensitive land
surface components. In operation, the study focuses on central Netherlands covering an area of 90 × 90 km. The
MODIS and Landsat imagery acquired simultaneously are used as a coarse-fine resolution pair to derive
downscaling mechanism which is then applied to coarse imagery at a time with missing fine resolution imagery.
First, an optimal number of thermal components are extracted at fine resolution through the application of the
non-negative matrix factorization (NMF). These components are assumed to possess unique temperature change
patterns caused by combined effects of land cover change, radiance change, or both. Given the LST change and
thermal components at coarse resolution, the LST change load of each component can then be obtained at the
coarse resolution by solving a system of linear equations encoding thermal component-LST relationship. Such
LST change load of thermal components is further unmixed to fine resolution and linearly weighted by the
component distribution at fine resolution to obtain the fine resolution LST change. During the process, the coarse
LST data is used directly without any resampling practice as shown in previous studies. Thus the technique is less
time consuming even with a large downscaling factor of 30. The downscaled fine resolution LST represents an R-
squared of over 0.7 outperforming classic downscaling techniques. The downscaled LST differentiates tem-
perature over major land types and captures both seasonal and diurnal LST dynamics.

1. Introduction

Land surface temperature (LST) is considered as a major descriptor
of the thermal environment, which is continuously modified by changes
of land use and land cover (LULC), and climate (Cai et al., 2018; Kalnay
and Cai, 2003; Koc et al., 2018; Voogt and Oke, 2003; Weng et al.,
2019). Our understanding of the ecological implications of thermal
environments can be improved by exploring the LST in terms of its
spatial and temporal patterns as well as the mechanisms behind these
patterns (Anderson et al., 2008; Chen et al., 2006; Fu and Weng, 2016;
Gallo et al., 1993; Gallo et al., 1995; Guo et al., 2015; Quattrochi and
Luvall, 1999; Sandholt et al., 2002; Schwarz et al., 2012). Such spatial
and temporal patterns can be highly dynamic as the LST is sensitive to

land surface factors that are changing daily, seasonally, or yearly.
Nevertheless, attempts have been made to utilize the LST to monitor
LULC change and thermal conditions around, for instance, urban areas
which are highly relevant to human settlement environment (Amiri
et al., 2009).
LST information with high resolution in both space and time is fa-

vorable in several LST investigations, which revolves around three
major themes (Li et al., 2013): (1) the patterns of the LST and the po-
tential factors influencing the patterns (Rajasekar and Weng, 2009;
Sobrino et al., 2012; Wu et al., 2014; Zhou et al., 2014), (2) the energy
balance and fluxes at the land surface (Kuang et al., 2015; Kustas et al.,
2016), and (3) the association between the LST and air temperature
(Azevedo et al., 2016; Mira et al., 2017; Oyler et al., 2016). For
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instance, fine resolution information enables detection of localized LST
patterns such as the surface urban heat island (SUHI) (Shen et al.,
2016a), or within-city LST variations (Mirzaei and Society, 2015; Pu
et al., 2006). The influence of LULC types on LST is preferable at a high
spatial resolution around 15 m (Connors et al., 2013). Recently,
neighborhood health conditions are found to be partly explained by
micro-scale LST patterns (Jenerette et al., 2016). Unfortunately, due to
the resolution trade-off caused by the design of satellite sensors (Shen
et al., 2016b), fine spatial resolution information is compromised by
low temporal resolution (Kalma et al., 2008), which restricts con-
tinuous investigation of the abovementioned relationships. Many stu-
dies regarding surface energy balance (Li et al., 2008), evapo-
transpiration (Zhang et al., 2016), and LST-air temperature interaction
(Stoll and Brazel, 1992; Voogt and Oke, 2003) are also restricted and
only deployed at either low spatial or temporal resolution, leading to
insufficient observation and contradictory conclusions (Coutts et al.,
2016; Schwarz et al., 2012).
Thus, there is a need for LST information at a fine resolution in both

space and time. Such information can be obtained through a down-
scaling scheme named spatiotemporal fusion. Different from super-re-
solution techniques in the image analysis community working on
downscaling rules only within one pair of coarse-fine input image,
spatiotemporal fusion attempts to explore the temporal change me-
chanism from multitemporal coarse resolution images and derive fine
resolution change information to be added back to the input fine re-
solution at base time to obtain fine resolution predictions (Gao et al.,
2006). Conventional spatiotemporal fusion techniques can be classified
as (1) frequency transformation-based, (2) reconstruction-based, and
(3) learning based (Chen et al., 2015; Tan et al., 2018), where re-
construction-based techniques can again boil down into sub-classes
techniques of (a) weight-based, (b) regression-based and (c) unmixing-
based sub-classes (Gevaert and García-Haro, 2015; Ma et al., 2018).
Although originally developed for downscaling image reflectance ac-
quired at the shortwave bands (Chen et al., 2015; Quan et al., 2018),
when applied to downscaling thermal image radiance, the reconstruc-
tion-based techniques are considered as the primary choice (Huang
et al., 2013; Weng et al., 2014), whereas the transformation-based and
learning-based techniques are mainly applied to downscaling images at
the shortwave bands. The regression-based technique explicitly requires
land surface factors as predictors to capture the LST-land surface re-
lationship and assumes that the relationship at coarse resolution can be
applied to fine resolution land surface factors to obtain corresponding
LST (Bechtel et al., 2012). In this sense, predictor datasets should be
ideally available at each of the prediction time points to apply pre-
dictor-LST relationship to produce fine resolution LST at prediction
time points, rendering a significant data demand and its limitation.
Despite of improvements for the weight-based technique (Gao et al.,
2006; Quan et al., 2018; Weng et al., 2014), the assumption of temporal
change at each pixel location as weighted sum of spectrally similar
neighboring pixels highlights the limitation in its application to places
with heterogeneous LULC types. Recent attempts begin to rely on land
surface change information such as vegetation change to recover the
change residuals (Quan et al., 2018), some studies became in the form
of combining weight-based and regression based concepts to improve
downscaling results under the scheme of Geographically Weighted
Regression (GWR) (Duan and Li, 2016; Peng et al., 2019). However,
these studies largely relied on pixel level similarity to construct the
weights. In the situation of downscaling LST, the varying moisture and
vegetation with heterogeneous LULC types at the subpixel level would
change radiance distinctively to spectrally similar pixels.
Instead of only focusing on spectral similarity at pixel level, the

unmixing-based technique displays its strength by moving into subpixel
level and attributing spectral change load to each of the subpixel pri-
mary land surface components named endmembers (Ma et al., 2018;
Zhu et al., 2018). Utilizing the endmembers guarantees a solid me-
chanism to split subpixel temporal change information and avoid

within-pixel-heterogeneity. Besides, the unmixing-based technique re-
quires no extra land surface information as predictors at prediction time
points and enhances its feasibility. However, one limitation of existing
unmixing-based technique is that the adopted subpixel endmembers of
substrate (mostly soil), vegetation and dark built surfaces (SVD) are
only sufficient to encode pixel level reflectance as opposed to radiance.
Another limitation lies in the assumption of this SVD unmixing-based
technique that the temporal pixel level reflectance change is only due to
reflectance change of the subpixel endmembers holding the endmember
abundance unchanged. This assumption restricts the technique to the
downscaling of images temporally adjacent to base time point with
negligible endmember abundance change. The adopted SVD end-
members along with their assumed fixed abundance can easily be vio-
lated in downscaling images with large temporal gap and radiance
variation in thermal images. The thermally sensitive components such
as vegetation and moisture can change in both radiance and abundance
in a short period of time. Built upon the concept of SVD unmixing-based
technique, this study considers the combined change of radiance and
abundance of land surface endmembers in downscaling of thermal
images to obtain temporally dense LST data with fine spatial resolution.
The study is presented in a comparison manner using the classic weight-
based along with the existing SVD unmixing-based technique as
benchmarks. The major aims of this study can be summarized as to (1)
improving the unmixing-based downscaling technique in the applica-
tion to thermal data, (2) testing the performance of the proposed sub-
pixel level characterization of thermal patterns through comparison to
existing techniques, and (3) envisioning the applicability of the pro-
posed technique in city scale study area and over different LULC types.
The benchmark and proposed techniques are presented first in metho-
dology, followed by performance comparison in results. The perfor-
mance of the proposed technique is further presented by examining the
LST patterns over different LULC types, which directs the way of ap-
plying the proposed technique in environment and microclimate stu-
dies. The study closes by discussing the proposed technique in the
context of current technical and methodological limitations in thermal
downscaling.

2. Methodology

The key assumptions of this study could be summarized at two le-
vels: (1) the generalized scenario where both of subpixel endmember
radiance and abundance, as opposed to only the radiance, are changing,
and (2) the combined change of subpixel endmember radiance and
abundance follows unique pattern with given composition of LULC,
leading to the assumption of subpixel thermal components possessing
discriminative thermal behaviors. Thus, the first step is to extract
thermal components. The extraction is followed by splitting the coarse
resolution LST change to fine resolution according to the distribution of
thermal components at fine resolution. The performance of the pro-
posed technique is to be compared with benchmark conventional
techniques. This study is based in the central Netherlands with diverse
LULC types so that performances of the techniques can be examined
across different land types.

2.1. Study area and data

The study area in the Netherlands spans the province of Utrecht,
Gelderland and North Brabant involving various LULC types forming a
90 × 90 km region (Fig. 1(a)). Major cities such as Utrecht, Nijmegen
and Eindhoven are included. Besides cities, forests and few bare lands,
the agricultural activities in the Kromme Rijn area and along the Lek
river would test the applicability of the proposed technique across di-
verse land types. Fig. 1(b) shows that the sample fine resolution LST
product of the study area distributed with a pixel size of 30 m captured
by the Landsat-8 TIRS. In the figure, the temperature variations within
urban, across urban and rural, and between bareland and vegetated

J. Wang, et al. ISPRS Journal of Photogrammetry and Remote Sensing 161 (2020) 76–89

77



area are already visible.
The proposed thermal component (TC) unmixing-based down-

scaling technique is applied by using coarse-fine image pairs consisting
of the MODerate-resolution Imaging Spectroradiometer (MODIS) LST/E
Daily 1 km Grid products and the Landsat-8 Level-1 Thermal Infrared
Sensor (TIRS) products distributed at the resolution of 30 m. Although
the TIRS data is of 100 m original resolution, the data has been re-
sampled through cubic convolution to match the other bands dis-
tributed at 30 m (Cho et al., 2018). In order to avoid introducing further
uncertainty in aggregating the data back to 100 m as cubic convolution
is irreversible, we attempted to provide convenience for users directly
work on data of 30 m resolution and stay with the distributed resolu-
tion. The Landsat-8 thermal imagery with a fine spatial resolution of
30 m is only acquired every 16 days at around 10:32 local time
(Jiménez-Muñoz et al., 2014), where the LST can be derived by ap-
plying the classic mono-window algorithm to band 10 due to its smaller
calibration uncertainty compared to band 11 (Barsi et al., 2014; Wang
et al., 2015). In contrast, the frequently acquired MODIS/Terra
(MOD11A1) and MODIS/Aqua (MYD11A1) V6 datasets at 1 km re-
solution provide LST measurements 4 times per day (Wan, 2014).
Specifically, the MOD11A1 contains LST at 10:30 and 22:30 local time
(24-hour clock), while the MYD11A1 is acquired at 01:30 and 13:30
local time. Furthermore, both radiance and temperature based valida-
tions of the MODIS V6 thermal products indicated a promising accuracy
(RMSE less than 1.3 K) in most cases (Duan et al., 2019; Duan et al.,
2018). This temporal frequency is attractive to be downscaled for ex-
amining diurnal and daily LST variation at fine spatial resolution.
During experiment, a pair of coarse-fine LST imagery of the

MOD11A1 and Landsat-8 TIRS with least cloud contamination at the
base time in the morning of July 26, 2018 (Fig. 2(a) and (b)) has been
used as the input image pair for downscaling the remaining MODIS LST
data over a summer period in 2018 containing heatwaves (Beniston
et al., 2004; Chase et al., 2006; Rebetez et al., 2009). In this way, the

downscaling technique is expected to show not only fine resolution
spatial variation but also temporal anomaly of the LST during the
heatwaves. Although there can be a few minutes gap between the ac-
quisition time of the input pair of Landsat-8 and MOD11A1 imagery
(Table 1), the LST change over few minutes is considered to be negli-
gible. With the Landsat distributed resolutions of 30 m and MODIS data
with resolution of 1 km, this study has been working on a downscaling
task with a factor of> 30.
The proposed TC unmixing-based technique required information

about subpixel thermal components similar as the subpixel endmember
information demanded by the SVD unmixing-based technique. Yet the
thermal components were unknown contrasted with the already avail-
able SVD endmembers reflectance. To extract temporally stable in-
formation regarding the thermal components, multi-temporal bands
including those at the base time have been involved (Table 1). All the
techniques involved for comparison in this study required no extra in-
formation other than the coarse LST at the prediction time point, setting
the comparison consistent.
To validate the downscaling results, two prediction time points

spanning over approximately one year were identified on May 7th,
2018 and May 26th, 2017, where Landsat fine resolution LST was
available for verifying predicted fine resolution LST during both night
and day (Fig. 2(c)). The used data is shown in Table 1. Atmospheric
correction was applied to the data before the following processes. The
atmospheric profile parameters adopted were obtained from the NASA
Atmospheric Correction Parameter Calculator (https://atmcorr.gsfc.
nasa.gov/).

2.2. From the classic weight-based to unmixing-based technique

As the downscaling techniques have been implemented at both re-
flectance/radiance and LST level (Weng et al., 2014), the following
content sticks to the convention of using radiance or reflectance, and

Fig. 1. (a) The LULC map in the study area and (b) sample land surface temperature (LST) snapshot acquired at 10:32 on July 26th, 2018.
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starts with a brief recap presenting the transition from weight-based to
unmixing-based technique.
The weight-based downscaling technique focuses on the land sur-

face reflectance R. The downscaling starts with resampling the coarse
input image to the fine resolution at the base time point tb (Gao et al.,
2006). With the same pixel size, the temporal change of coarse re-
solution information Rc from tb to prediction time point tp at each pixel
location is added to the base time input fine resolution reflectance Rf at
the corresponding pixel location so that the fine resolution at tp is ob-
tained. Since the resampled coarse reflectance can be quite different
from the fine resolution information at each of the fine pixel locations,
the predicted reflectance Rf of any target fine resolution pixel located at
(i j, ) on an image is a Wkl weighted prediction at several similar pixel
locations k l( , ) in the neighborhood window w of the target prediction.
The prediction is given by (Gao et al., 2006):

= × +R i j t W R i j t R i j t R i j t[ , , ] ( [ , , ] [ , , ] [ , , ])f p
k

w

l

w

kl f k l b c k l p c k l b

(1)

However, the assumption of consistent change of reflectance among
similar pixels is only valid when LULC within the pixels is homo-
geneous. The SVD unmixing-based technique addresses this by

considering LULC heterogeneity at subpixel level (Ma et al., 2018). The
LULC heterogeneity is encoded by using substrate (mostly soil), vege-
tation and dark built surfaces as fundamental subpixel endmembers
contributing to pixel level reflectance. Thus the fine resolution re-
flectance Rf is further split into a linear combination of land surface
endmember reflectance E weighted by endmember abundance A plus
the residual if m endmembers are assumed:

= × +R i j t A i j m t E m t i j t[ , , ] [ , , , ] [ , ] [ , , ]f b m f b f b b (2)

If the abundance A and residual remain stable from tb to tp, the is
cancelled in calculating the change of reflectance Rf . And the fine
resolution prediction in Eq. (1) is determined solely by change of re-
flectance and becomes:

= + = + ×R i j t R i j t R R i j t A i j m E m[ , , ] [ , , ] [ , , ] [ , , ] [ ]f p f b f f b m f f

(3)

The major different between Eqs. (3) and (1) is the subpixel level
information is considered to take care of heterogeneity. With known
information of SVD endmember reflectance (Small, 2003; Small, 2004),
the SVD unmixing-based technique follows a three-step workflow to (1)
use spectral unmixing to obtain endmember abundance A through Eq.

Fig. 2. Setup of data and methods: (a) MOD11A1 and (b) the Landsat-8 images at base time of July 26th, 2018 used as the input coarse-fine resolution image pair for
downscaling MODIS LST data. (c) Data and downscaling techniques involved in the study.

Table 1
Data involved in this study.

Date MODIS overpass time MODIS bands Landsat overpass time Landsat bands Purpose

26-Jul.-2018 22:36 MOD11A1 band 1 10:32 LC08 band 4, 5, 10 Thermal component extraction
21-Apr.-2018 22:36 MOD11A1 band 1 10:33 LC08 band 4, 5, 10 Thermal component extraction
26-Jul.-2018 10:30 MOD11A1 LST 10:32 LC08 LST Coarse and fine input pair
07-May-2018 10:30 MOD11A1 LST 10:32 LC08 LST Prediction and validation pair
26-May-2017 22:36 MOD11A1 LST 21:07 LC08 LST Prediction and validation pair
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(2), (2) use spatial unmixing to obtain fine resolution endmember re-
flectance change E from temporal change reflectance change at coarse
resolution, and (3) use linear mixture to combine endmember re-
flectance change weighted by the endmember abundance to obtain fine
pixel level reflectance change, which, as shown in Eq. (3), can be added
to the base time reflectance to make prediction (Ma et al., 2018).

2.3. Introducing thermal components for unmixing-based technique

This study detected a major defects of existing SVD endmembers
along with their fixed abundance in characterizing thermal regulations.
At each pixel on a thermal image, the reflectance becomes radiance Rad,
and the assumption of SVD endmembers with unchanged abundance is
insufficient to capture the Rad change mechanism. Other endmembers
governing the land surface energy balance such as surface moisture can
modify evaporation and evapotranspiration with either a change in the
endmember abundance or radiation. Thus, the change of abundance A
needs also to be introduced to Eq. (3) as an unknown term. Instead of
tracking down the change sources of Rad in terms of endmember A and
E , an alternative is to assume the existence of a fixed number m of
subpixel level thermal components that possess unique and combined
change patterns of both A and E without explicitly differentiating be-
tween the two. Intuitively, any continuous patch of relatively uniform
LULC type, such as any forest species, high rise residential, low rise
residential or crop species can potentially be considered as a fraction of
subpixel thermal components, within which distinctive combined
change pattern of endmember radiance and abundance is uniform.
Then the change of Rad similar to the change of reflectance R in Eq.
(3) can be expressed as thermal components radiance change weighted
by their fractions F :

= × = ×Rad i j F i j m g A E m F i j m Q m[ , ] [ , , ] ( , , ) [ , , ] [ ]
m m

(4)

where the abundance change A and radiance change E are treated in
combination within a black box denoted as function g and further as

Q. Although the exact change amount of the abundance and end-
member radiance is unknown, they, in combination should produce a
finite number of specific change patterns as LULC types are finite. In
this way, the unknown terms are integrated and reduced one in the
form of Eq. (3), which solves can be solved given the coarse temporal
change of radiance Rad. The above assumption of thermal component
(TC) forms the technical backbone of the proposed TC unmixing-based
downscaling technique. The details of implementation are shown as
below.

2.4. Implementing the TC unmixing-based technique

As the proposed TC unmixing-based technique denies the applica-
tion of existing spectral library encoding endmember reflectance of
SVD, the first step similar to spectral unmixing mentioned in Section 2.2
is to obtain information of the TCs equivalent to endmember abundance
in SVD unmixing-based technique. While the SVD depends on spectral
library to query endmember reflectance, no prior knowledge of the TC
spectral is available for obtaining the fraction of the TC.
Without already available spectral library of the TC, external in-

formation could be obtained through multiple bands given the TC
fraction was assumed to be temporally stable according to Eq. (4).
Extracting stable components from multiple bands directs to the ap-
plication of the non-negative matrix factorization (NMF). The NMF
treats target features such as images as a linear combination of a fixed
number of base components and weights, where both components and
weights are non-negative (Lee and Seung, 2001). Such non-negative
property is preferable for obtaining meaningful information from re-
mote sensing based observations.
In operation, multiple thermally sensitive bands were included as

auxiliary data (Fig. 2(c)). Each band was assumed to be a combined
response of thermally sensitive components, which are the TCs. Since
fractions of the TCs were assumed to be temporally stable, multiple
bands across time would force the NMF to seek TCs that could be
combined to produce multi-temporal bands. Thus thermally meaningful
bands such as near and thermal infrared bands across time were con-
sidered to include sufficient information about moisture and vegetation
(Fensholt and Sandholt, 2003; Tucker, 1980). Involved bands were the
Landsat-8 band 4, 5, 10 on both July 26 and April 21, 2018. Besides, the
cubic convolution resampled MODIS night images from the two days
were also used to encode daily thermal dynamics (Table 1). All of the 8
bands are of size = ×n 3000 3000 pixels and were stacked as the input
to the NMF encoding seasonal and diurnal thermal dynamics. The input
is now a radiance matrix Rad with = ×n 3000 3000 rows and =m 8
columns, which is decomposed through the NMF as:

=× × ×Rad F P·n m n r r m (5)

where r is the number of the TCs can be determined by the NMF itself
by examining the explained variance and residuals. In this sense, the
NMF is capable to determine the non-negative TCs and their number at
the same time. Although, mathematically, the NMF is simple as a pro-
duct of two matrices, the interpretation can be flexible in applications.
In image analysis (Lee and Seung, 1999), F can be treated as r base
images with the same size n of the input images, while P encode m
columns of the weights for combining the base images for each of them
input images. In spectral analysis (Miao and Qi, 2007), F can be the
fraction map of r primary components, and P encodes the response of
the components at each of the m input bands.
Given any r , a positive solution of both F and P can be obtained by

minimizing the unexplained or residual variance expressed as:

Rad F P F Pmin · { 0, 0}
F P, (6)

The solution can be derived through several iterative algorithms,
among which the multiplicative update rule is the most popular ap-
proach (Lee and Seung, 2001).
Holding the temporally stable F at fine resolution, Eq. (4) at fine

resolution becomes:

= ×

= ×

Rad i j F i j m g A E m

F i j m Q m

[ , ] [ , , ] ( , , )

[ , , ] [ ]

f m f f f

m f f (7)

where Qf needs to be provided to obtain Radf . Although Qf is not
available at fine resolution, its coarse resolution counterpart can be
obtained as the coarse resolution Fc can be obtained through simple
pixel aggregation by averaging (Ma et al., 2018), while the coarse re-
solution temporal change of radiance Radc can obtained through:

=Rad i j Rad i j t Rad i j t[ , ] [ , , ] [ , , ]c c p c b (8)

Now the spatial unmixing can be applied at coarse resolution to
obtain Qc through:

= ×Rad i j F i j m Q m[ , ] [ , , ] [ ]c m c c (9)

During calculation, similar to the original SVD unmixing-based ex-
periment (Ma et al., 2018), pixels in the 3 × 3 neighborhood of the
target pixel are included to form a system of linear equations so thatm
unknow Qc can be solved.
To derive the fine resolution Qf , the sensor difference should be

considered as the observation time, atmospheric correction and radia-
tion anisotropy between the acquisition of the coarse–fine imagery
would cause systematic discrepancy (Steven et al., 2003). A handy
approach is to use a linear model to capture the coarse-fine resolution
sensor relationship (Shen et al., 2013), where fine resolution data is
linearly correlated to coarse resolution data through coefficient and
bias :
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= +Q Qc f (10)

Then, the temporal difference Qc derived from Eq. (10) is:

=Q Qc f (11)

where is cancelled. The obtained Qf at the central coarse pixel
can be assigned to corresponding fine resolution pixels within the ex-
tent of this coarse pixel (Gevaert and García-Haro, 2015; Ma et al.,
2018), and the linear mixture can be applied to obtain the fine re-
solution temporal radiance change through:

= ×Rad i j F i j m Q m[ , ] [ , , ] [ ]f m f f (12)

where the Radf can be added back to the base time radiance to make
the final prediction as:

= +Rad i j t Rad i j t Rad i j[ , , ] [ , , ] [ , ]f p f b f (13)

If the downscaling technique is implemented at the radiance level as
opposed to the LST level, the radiance can be transformed into LST by
applying Planck’s law (Weng et al., 2014). The entire process can be
summarized as a workflow shown in Fig. 3.

3. Results

3.1. Thermal components

Iterative application of Eq. (6) shows that the temporal dynamics of
radiance encoded in the 8-band input data can be fully interpreted by
using 8 or more TCs. In contrast, using only 1 TC only explains less than
40% of the information leaving over 60% of the information un-
explained (Fig. 4). However, the TCs as primary components would be
meaningful if the number of the TCs is less than that of the input bands.
Two criteria are used to determine the optimal number of TCs: (1) the
number should be less than the NMF features in the original 8-band
dataset, which is 8, and (2) each TC should explain a considerable
amount of information in the original dataset. The criteria lead to
choosing 4 TCs. Adding more TCs only brings less than 5% residual
variance decrease and the approximation residual levels off.
The TC fraction maps F produced by applying Eq. (6) are visualized

in Fig. 5. Each pixel of the study area is split into subpixel fractions of 4
TCs possessing unique LST change patterns. Along with the spatial
configuration of the TCs, the spectral response curves of the TCs are
also provided in Fig. 6 to physically justify the thermal characteristics
of the TCs.
Among all of the 4 TCs, the patterns of TC1 and TC2 are both vi-

sually prominent and spectrally stable. TC1 possesses a typical spectral
pattern of vegetated land surface with the highest thermal response at
band 10 of Landsat-8 TIRS in both April and July, as well as its strong
response at near infrared wavelength at band 5 with a drop at around
the visible red wavelength at band 4 (Fig. 6) (Estoque and Murayama,
2015). The spectral pattern is quite stable with a slight increase of
thermal response from spring to summer, yet with a decrease of vege-
tation cover according to the change of its responses in band 4 and 5
during the same time span. Such “vegetated” thermal pattern can be
spatially examined in Fig. 5. TC1 is mainly located around suburban
area, where the fraction of this component appears to be high especially
in seasonal irrigated farmland with seasonal vegetation and moisture
change as shown by the zoom-in scene. Nevertheless, there are also
distributions of TC1 in forest area, which highlights the fact that the
property of TCs is associated with LULC. Here, similar LULC may share
similar thermal patterns which are captured by TC1, however, forest

Fig. 3. Workflow of the TC unmixing-based downscaling technique.

Fig. 4. Increasing number of thermal components along with decreasing re-
sidual variance by applying the NMF.
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and crop land are not exactly identical in thermal behavior and thus
differentiated by the fractions of TC1.
The spectral response of TC2 shows a high thermal response at band

10 of Landsat-8 TIRS in both April and July, yet the responses at both
visible red wavelength and infrared level off (Fig. 6). At the same time,
the nighttime thermal response also stays higher than those of TC3 and
TC4. The above patterns imply a low vegetated area with large specific
heat capacity, which means the component absorbs radiation and mains
temperature till night (Estoque and Murayama, 2015). In conjunction
with the spatial distribution of TC2, it is not surprise to recognize most
of this component are found around cities, as well as rivers without
vegetation. Such pattern can be further justified as a combined spectral
pattern of built areas and waterbodies that remain warm and poorly
vegetated. Although TC2 is also found in some bare land and in-land
water bodies, the spatial and spectral patterns of TC2 again confirm the

shared thermal patterns captured by the extracted TC.
TC3 represents a spectral response of vegetated area in April with

high response around near infrared wavelength at band 5 of Landsat-8
data. In contrast, during summer time in July, the component displays a
spectral pattern of low vegetated area with low thermal response. The
distinctive patterns in two season indicate sharp and unreasonable
moisture and vegetation changes. The spatial pattern in Fig. 5(c) pro-
vides a complement to the spectral patterns by locating TC3 mainly
along riverbanks, typically floodplains in the context of the Nether-
lands, where sharp vegetation and moisture change are reasonable. TC4
represents typical spectral response of waterbodies in April, and vege-
tated areas in July. The spatial distribution in Fig. 5(d) indicates that
TC4 mainly falls into farmland scattered among areas with TC1. One
possible interpretation is that TC4 can be farmland yet may not be
seasonally irrigated since it is getting dryer with, though, large increase

Fig. 5. Fraction maps of the 4 TCs in (a), (b), (c) and (d) with distinguishable spatial distribution patterns.

Fig. 6. Spectral response of TCs at the bands of the input data.
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of vegetation cover and only a minimal increase in the thermal band.
Now, the NMF has extracted 4 types of TCs reasonably distributed in

certain LULC with distinctive thermal patterns. More detailed values of
the spectral responses of the TCs are provided in Table 2.

3.2. Visualizing daytime prediction

The predictive capacity of the TC unmixing-based downscaling
technique on daytime LST is compared with classic weight-based and
SVD unmixing-based techniques (Fig. 7). Note the pixels on the base
time fine resolution image located at those with missing values on the
coarse resolution image at prediction time are not masked out for visual
convenience, thus the downscaled Radf obtained from Eq. (13) with
missing values are filled with base time fine resolution pixels. For sta-
tistical analysis and validation, these pixels located at places with
missing values are excluded. Visually, all the three technique more or

less overestimate the high temperature pixels and underestimate the
low temperature pixels in the study area, which bring larger variance to
the predictions compared to the validation data (Fig. 7(b)). Compared
to the TC unmixing-based technique, the overestimations caused by the
weight-based and SVD unmixing-based techniques are especially pro-
minent around built-up areas and among the potentially dry farmland
by referring back to Fig. 1(a). Specifically, the overestimation of
weight-based technique in high temperature areas around cities appears
to be similar to the performance of the TC unmixing-based technique.
However, the overestimation caused by the weight-based technique
pertains not only to high temperature area, but also to areas around the
average temperature of the study area. This can be observed by com-
paring Fig. 7(b) and (c), and scrutinizing how pixels in blue to the south
and east to the city of Utrecht are predicted to be in pink. The over-
estimation is exaggerated by the SVD unmixing-based technique. The
cities and residential clusters are especially overestimated, while large
parts of the farmland to the southeast of the study area are predicted to
be over 40 °C. One possible interpretation is that the adopted SVD
endmembers are not capable to capture the pixel level thermal patterns
and improperly split the temperature change into pixels dominated by
any one of the endmembers.

3.3. Statistics of daytime prediction

Due to the visually distinguishable performances among all the
three techniques as well as the over and underestimation across the
study area within each of the techniques, the statistical analysis is de-
ployed to divide the performances of all the techniques over the entire
study area into performances over major LULC types.
Over the entire study area, the performances of all three techniques

shown in Fig. 8 are consistent with the visual patterns observed in
Fig. 7. The variances in the predictions caused by over and under-
estimation are instantly visible through the spread of the scatterplots,
where SVD unmixing-based brings the largest over and underestimation
to the prediction due to improper split of thermal change by the SVD
endmembers. The proposed TC unmixing-based technique produces the
least amount of variance in the prediction, while the performance of the
weight-based technique stands between the other two techniques.
Specifically, the weight-based technique performs similarly to the
proposed TC unmixing-based technique especially around places with
higher temperature such as built-up areas. The shapes at the high
temperature tails of the scatterplots in Fig. 8(a) and (c) are almost
identical. However, as indicated in Fig. 7, the performance of the
weight-based technique over places around the average temperature of
the study area is getting poorer than the proposed technique. The SVD
unmixing performs even poorer than the other two techniques with
large variances in not only high temperature places, but also places
with average temperature of the study area.
The color-coded scatterplots bring further information about the

performances of the techniques over certain LULC types. Here, the
major LULC types including residential, transportation, agricultural and
forest areas are considered. The built-up areas are mainly clustered at
the high temperature tails of the scatterplots, yet with exception of the
pixels such as urban green areas classified as built-up areas and fall into
the low temperature tails of the scatterplots. The largest proportion of
pixels in the study area are agricultural with different types of crops,
thus the temperature of these pixels varies from low to high. Forest and
transportation areas are with small temperature variations and clus-
tered at the lower and higher tails of the scatterplots, respectively. Due
to the large number pixels classified as agricultural land, these pixels
dominate the patterns of the scatterplots and thus impose major influ-
ence on the evaluation of the techniques.
The statistics of predictive capacities of all three techniques over the

entire study area are summarized in Table 3. Corresponding to the
observations in Fig. 7, all the techniques tend to overestimate the mean
temperature of the study area. The weight-based and SVD unmixing-

Table 2
TC radiance response at each of the 8 input bands.

Date 21-Apr.-2018 26-Jul.-2018 21-Apr.-
2018

26-Jul.-
2018

Band LC08
band
10

LC08
band
4

LC08
band
5

LC08
band
10

LC08
band
4

LC08
band
5

MOD11A1
band 1

MOD11A1
band 1

TC1 6.40 0.98 5.70 7.79 1.47 3.81 4.24 4.09
TC2 5.40 1.64 0.00 6.15 1.76 0.00 2.78 2.81
TC3 2.56 2.16 8.64 4.01 4.24 3.81 0.00 0.38
TC4 3.80 1.81 0.04 3.14 0.74 6.23 1.71 1.72

Fig. 7. Spatial pattern of daytime predictions using weight-based, SVD un-
mixing-based, and TC unmixing-based techniques. The coarse resolution LST on
May 7th, 2018, for predicting the fine resolution LST is shown in the (a), while
the validation LST is in (b). The downscaled LSTs using weight-based, SVD
unmixing-based and TC unmixing-based techniques are shown in (c), (d) and
(e), respectively.
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based bring more than 2 °C of overestimation, whereas the TC un-
mixing-based technique reduces such overestimation to 1.27 °C. TC
unmixing-based further reduces overestimation of high temperature
and also underestimation of low temperature compared to the other
two techniques. This is already visible in the large variance of predicted
LST produced by the other two techniques as shown in Fig. 8. The
combined result of reduced predicted LST variance along with lower
overestimated mean in the TC unmixing-based prediction produces a R2

of 0.71 and intercept of 2.39 °C, which supersedes the performances of
other downscaling techniques (Table 3).
When looking into the LULC level within the study area, the per-

formances of the techniques can be evaluated across LULC types within
each technique, across techniques within each LULC type, as well as
across techniques and LULC types in combination.
Within the techniques, the performances of all the techniques across

different LULC types share a similar pattern, where the predictions over
agricultural area are better than those over the other LULC types in
terms of the R2 (Table 4). The TC unmixing-based technique results in
the highest R2 of 0.73 in downscaling LST over agriculture land. The
poorest performances of all the techniques are found over either re-
sidential or transportation area. The original SVD unmixing-based
technique generates the lowest R2 of 0.28 and 0.29 over transportation
and residential area. However, by referring back to the scatterplots in
Fig. 8, the interpretation of the performances across different LULC
needs to be conservative. The poor performances of all the techniques
over residential and transportation areas may due to not only the high
heterogeneity of built environment, but also the limited amount of data.
On the one hand, as all downscaling techniques impose assumptions of
similar thermal behavior among spatially adjacent pixels, the hetero-
geneity of the LULC indeed is affecting the accuracy of the predictions.
On the other hand, the small data size in terms of the number of pixels
over residential and transportation areas eliminates the evaluation of
model performance and makes the R2 subject to extreme values. As the
large data size over agricultural area dominates the pattern of the
scatterplots, the performances of the techniques over agricultural area
is very much similar to those over the entire study area. This can be
observed by comparing R2 in Table 3 and 4.
Within each LULC type, the proposed TC unmixing-based technique

produces significantly better predictions than those of the other two
techniques in terms of higher R2 and lower RMSE. Over LULC types
with less data and larger heterogeneity, the advantage of applying the
TC unmixing-based technique increases (see Table 4).
When comparing the R2 across all techniques and LULC types, it

seems that the difference between the R2 produced over residential area
and the one over agricultural area is larger in the weight-based pre-
diction than the other predictions. As mentioned above, the difference
may be due to land surface heterogeneity and data size. However, the
smaller difference found in the unmixing-based techniques may be
partially attributed to the nature of the subpixel level treatment of the
thermal patterns, which strictly split temperature change to target land
surface endmembers or components, and is robust to LULC hetero-
geneity. Even the performance of the SVD unmixing-based technique is
the poorest, the performance seems quite stable and the R2 does not
change abruptly across different LULC types.

3.4. Nighttime prediction

Diurnal LST analysis and surface thermal balance studies require
LST information during both day and night. Although downscaling the
nighttime LST is rarely found, it is necessary to take this opportunity to
examine the potential of available downscaling techniques. However, it
is hardly possible to verfify nighttime downscaling results with limited
nighttime Landsat imagery data. With only one nighttime image on
May 26th, 2017 even within a span of two years yet contaminated by
clouds, comparison among the techniques could also suffer from con-
siderable amount of LULC change apart from the cloud contamination.
A minor visual analysis is provided in Fig. 9, where limited variation

could be observed in the nighttime coarse-fine input images (Fig. 9(a)
and (b)). Such limited variation could be due to the cloud contamina-
tion as none of the techniques has found a proper way to split the
temperature change information into fine resolution. Thus the predic-
tions stays very much similar to the input fine resolution data and in-
distinguishable (Fig. 9(d), (e) and (f)). Again, similar to the situation in
Fig. 7, the based time fine resolution pixels located at places with coarse
resolution missing values are not masked for visual convenience but
excluded for statistical analysis. The statistical distributions of the

Fig. 8. Scatterplots of predictions produced by all the three techniques against validation data. The vertical axis represents predictions produced by (a) weight-based,
(b) SVD unmixing-based and (c) TC unmixing based techniques, while the validation data is represented by horizontal axis.

Table 3
Daytime prediction statistics.

mean(°C) min(°C) max(°C) R-squared p-value Slope Intercept(°C) RMSE(°C)

Validation 28.39 14.18 54.57 \ \ \ \ \
Weight-based prediction 30.91 11.04 56.55 0.51 0.01 0.76 7.91 3.91
SVD unmixing-based prediction 30.92 7.11 62.12 0.33 0.01 0.81 4.9 4.72
TC unmixing-based prediction 29.66 12.22 61.54 0.71 0.008 0.91 2.39 2.51
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predictions further confirm that there is hardly any advantage in any of
the techniques in the situation of poor quality input information. This
section can also be treated as a test of the robustness of existing tech-
niques against low quality data. More detailed information of nighttime
downscaling results are summarized in Table 5.

3.5. Outreach of proposed technique through sample application

The downscaled LST forms a dense record of surface temperature
dynamics and anomalies such as heatwaves and surface urban heat is-
land (SUHI). In a zoomed-in area of Utrecht (Fig. 10(a)), the automatic
weather station (AWS) air temperature measurement acquired at sub-
urban Utrecht in De Bilt is used as background temperature. During the
hottest month from July 11 to August 10 in 2018, the air temperature
measured at the four time points of MODIS image acquirement rea-
sonably reflect diurnal temperature change with daily high temperature
at roughly 2 pm. The two heatwaves in 2018 are also observable with

the first one starting on July 15 and lasting 13 days, and the second one
starting on July 29th lasting 10 days. In general, both high and low
resolution LSTs are higher than the background air temperature. Some
exception is also shown due to precipitation forcing LST lower than the
air temperature. Specifically, the LST within urban area recorded on a
coarse pixel in MODIS image can be roughly 10 °C higher than back-
ground air temperature (Fig. 10(b)). Within this coarse urban pixel, the
average LST of built environment (orange area) recorded by fine re-
solution pixel can be 7 °C higher than LST recorded in a coarse pixel in
urban area. At the same time, the LST over non-built surface (vegetation
and waterbody in green area) can be 4 °C cooler than the LST in cor-
responding coarse pixel. Such deviation of fine resolution LST from its
corresponding coarse resolution LST highlights the capacity of our
downscaling technique in splitting coarse LST information over mul-
tiple land surface types.
The SUHI is also obtained by choosing a reference rural coarse pixel,

within which the fine resolution suburban LST is calculated as the
average of vegetation pixels (Fig. 10(a)). The coarse resolution SUHI is
obtained as the LST difference between the two reference coarse pixels,
while the fine resolution SUHI is the difference between the average
LST of the built environment and vegetation area within the coarse
pixels. On average, the coarse resolution SUHI is larger than the fine
resolution one as fine resolution image captures more variations in the
LST. And this variation is successfully achieved by our downscaling
technique. Due to the cloud contamination and many missing data
points the SUHI time series, it is so far hard to conclude if the SUHIs
obtained at the two resolutions is significantly different. Based on visual

Table 4
Predictive accuracy based upon sample land types.

Residential Transportation Agricultural Forestry

R-squared RMSE(°C) R-squred RMSE(°C) R-squred RMSE(°C) R-squred RMSE(°C)

Weight-based prediction 0.42 3.57 0.48 4.05 0.54 4.12 0.49 3.72
SVD unmixing-based prediction 0.29 4.91 0.28 4.67 0.33 4.61 0.29 4.62
TC unmixing-based prediction 0.64 2.56 0.69 2.51 0.73 2.48 0.69 2.36

Fig. 9. Nighttime prediction using weight-based, SVD unmixing-based, and TC unmixing-based techniques. The coarse-fine imagery pair at prediction time point on
May 26th, 2017 for prediction and validation are shown in (a) and (b). Distributions of predicted LSTs using all the techniques are plotted in (c). Predictions of
weight-based, SVD unmixing-based and TC unmixing-based techniques are visualized in (d), (e) and (f).

Table 5
Nighttime prediction statistics.

mean(°C) min(°C) max(°C)

Validation 17.26 −1.59 23.79
Weight-based prediction 19.88 −2.36 37.61
SVD unmixing-based prediction 19.79 −5.56 41.57
TC unmixing-based prediction 19.18 −6.68 42.92
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Fig. 10. Urban-rural temperature dynamics during summer 2018 containing heatwaves captured by MODIS, downscaled imagery and the AWS air temperature
measurement acquired at suburban Utrecht in De Bilt is used as background temperature. (a) Sample locations for showing temperature difference within coarse-fine
resolution LST in urban and rural areas. The two white boxes correspond to coarse pixels in urban and rural areas, respectively. (b) The coarse and fine LST and air
temperature variation. The Landsat LST urban warm and cool pixels are averaged residential/transportation LST and water/vegetation LST within the coarse pixel
defined by the white box in urban area. The MODIS urban is the coarse resolution LST at the white box in urban area. The air temperature measured at the AWS is
used as background benchmark. (c) UHI and SUHI estimated from the measurements by subtracting rural temperature measurements from their urban counterparts.
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interpretation, the fine resolution SUHI reasonably reflects the temporal
trend of SUHI recorded in the coarse pixels once reference pixels in
urban and suburban areas are consistent at both coarse and fine re-
solution.

4. Discussions

Given the fact the unmixing-based downscaling techniques relies on
auxiliary data and endmember information, improper selection of
endmember by using thermally unsensitive land surface factors could
easily devalue the use of extra data. This can be observed in the per-
formance of the SVD unmixing-based technique, which is worse than
the weight-based technique without using extra information other than
the LST data. The proposed TC unmixing-based technique fulfill the
purpose of characterizing both radiance and abundance change of land
surface endmember in downscaling thermal images. The 20% im-
provements in the R2 renders the importance of using thermally
meaningful components in splitting the LST change at the subpixel
level. This improvement is reliable enough to assist the analysis in local
scale environmental and microclimate studies.
Thus the feasibility and accuracy of spatiotemporal fusion down-

scaling is largely determined by the availability of properly selected
land surface information to guide the splitting of coarse LST change
information to fine resolution. Depending on the amount of predictor
information required, spatiotemporal fusion downscaling techniques
can be treated as predictor-intense techniques, predictor-free techni-
ques or partial-predictor-dependent techniques. Regression-based
downscaling referred in the introduction is a typical technique de-
pending on LST sensitive land surface factors at both reference and
prediction time points, which is less feasible to implement as land
surface factors are not always available at each prediction time point. In
contrast, the application of the weight-based technique to LST down-
scaling only stays within the LST datasets requiring no land surface
predictors and makes bold assumption that LST pixels at both coarse
and fine resolution may change similarly. Thus its application is re-
stricted by heterogeneous land surfaces. The unmixing-based technique
can be considered as partially depending on land surface factors as no
further information about land surface is needed at prediction time.
Then the question reduces to choosing proper land surface factors to
guide the splitting of coarse LST into fine resolution. The results in-
dicate that an improper choice or extraction of land surface factors
leads to poor performance of downscaling as original land surface
endmembers of soil, vegetation and dark surface are used. It is apparent
that the reliability of downscaling is jointly determined by the choice of
techniques along the predictor-intense and predictor-free spectrum, and
choice of land surface factors (here LST sensitive), which in turn, is
determined by data availability.
Besides technique selection and land surface factor extraction, al-

most all of the spatiotemporal fusion downscaling techniques are in-
trinsically restricted by the fact that LULC changes over time. Although
our thermal component unmixing-based technique attempts to en-
compass both the radiance and thermal component fraction changes,
the assumption only sticks to regular diurnal or seasonal changes. LST
change caused by irregular LULC modifications would eliminate the
reliability of downscaling. Thus there is always an assumption of fixed
pattern either for land surface compositions or their change. Due to the
frequent situation of limited data, regression-based techniques are not
covered by this study and thus left out of discussion.
One last issue worth addressing is the necessity of the downscaling

thermal imagery data to high resolution. Although high resolution in-
formation is intuitively preferable for detailed geographic pattern
analysis, it also brings the issue of undesirable variations and noises.
Thus the downscaling should always bring the research purpose in the
consideration to avoid chasing high resolution aimlessly.

5. Conclusions

In summary, by hypothesizing the existence of thermal components
(TCs) encompassing both radiance and abundance changes, this study
developed a TC unmixing-based spatiotemporal fusion technique for
LST downscaling with a factor of 30. With this large factor of down-
scaling, the TC unmixing-based technique, compared to predictor-free
weight-based and predictor-intense regression-based techniques, only
requires an intermediate amount of LST sensitive land surface compo-
nents, which are named as thermal components (TC) to guide the
splitting of coarse LST into fine LST. The advantage of using TCs as
opposed to the conventional SVD endmembers is that both endmember
radiance and fraction changes are included in unmixing the LST change.
It can even be flexible to encode either diurnal or seasonal change
patterns depending on the way of extracting the TCs by using the NMF.
The downscaled results supersede the classic weight-based and original
SVD unmixing-based results, while the proposed technique does not
require land surface predictors at each prediction time point for com-
ponent extraction. Even though the TC unmixing-based technique
performs poorer around built environment than it does over agri-
cultural and forest areas, such short-fall also applies to the other
benchmark techniques. At least, the downscaling results achieved a
prediction accuracy over 60% over residential and transportation areas,
which is still acceptable considering the large downscaling scale.
However, it is still difficult to summarize the reason of the poor per-
formance over built environment as the data size and LULC hetero-
geneity over the built environment may both influence the performance
of the techniques over different LULC types. In practice, the proposed
TC unmixing-based technique could capture spatial and temporal LST
variations and anomaly, rendering its potential application in en-
vironment and climate studies at small scales. However, the TC un-
mixing-based technique still suffers from problems of over and under-
estimating the high and low temperature in the study area as other
technique does. It is still so far difficult to assess its reliability of
downscaling nighttime LST due to limited data. One of the major
concern in the application of the proposed technique is the extraction of
the TCs during a reasonable time window. Since the TCs seems to be
highly related to the LULC composition and configuration, the extracted
TCs by using input data across a large time span through the NMF may
hard to be interpreted and falsely encode LST patterns. The prediction
of LST across nearly a year at nighttime should also be considered with
large uncertainty. In this study, the time span of the input data for TC
extraction is around 3 months, where significant LULC change is neg-
ligible.
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