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Abstract

An alternative Skolemization method, which removes strong quantifiers
from formulas, is presented that is sound and complete with respect to
intermediate predicate logics of finite width. For logics without constant
domains the method makes use of an existence predicate, while for logics
with constant domains no additional predicate is necessary. In both cases
an analogue of Hebrand’s theorem is obtained as well. It is shown that
for constant domain logics of finite width these results imply that inter-
polation holds for the logic once it holds for its propositional fragment.
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1 Introduction

It is a remarkable fact that the Skolemization method, so succesfull in classical
logic, does not apply to several well-known intermediate logics, including intu-
itionistic predicate logic IQC, in that it fails to be sound and complete for these
logics. This failure is not a consequence of the lack of prenex normal forms
outside the realm of classical logic, as one can extend the Skolemization method
to infix formulas in a natural way. But even for this extended method there
exist formulas, such as ∀x¬¬ϕ(x) → ¬¬∀xϕ(x), that are underivable in many
intermediate logics while their Skolemization, in this case ∀x¬¬ϕ(x)→ ¬¬ϕ(c),
is. For some intermediate logics, however, there exist alternative methods to
remove strong quantifiers from formulas. In (Baaz and Iemhoff, 2006b), for ex-
ample, it is shown that using the existence predicate, a Skolemization method
can be defined for existential quantifiers in intuitionistic logic. This result is
in (Baaz and Iemhoff, 2008) extended to universal quantifiers, an extension not
fully satisfying because it requires the presence of certain predicates less natural
than the existence predicate.

∗Support by the Netherlands Organisation for Scientific Research under grant 639.032.918
is gratefully acknowledged

1



In this paper we develop a Skolemization method for intermediate logics of finite
width, with and without constant domains. For logics with constant domains
this method, parallel skolemization, produces for any formula ϕ a formula ϕps

without strong quantifiers such that the following holds.

`L ϕ ⇔ `L ϕps.

In case the logic does not have constant domains we use an approach similar to
the one in (Baaz and Iemhoff, 2006b), by considering IQCE (IQC with an exis-
tence predicate) instead of IQC. A sound and complete Skolemization method,
called epskolemization, for logics in IQCE of finite width is defined that implies
a Skolemization method for intermediate logics as well.

Skolemization is often considered in combination with Herbrand’s theorem, as it
is this combination that provides important applications in logic and computer
science. Here we provide, for the logics with (e)pskolemization, Herbrand the-
orems that are the usual extension to infix formulas of the standard Hebrand
theorem. Finally, an application of the developed methods to interpolation
is presented. It is shown that for all intermediate logics of finite width with
constant domains that can be axiomatized by universal formulas, if their propo-
sitional fragment has interpolation, then so does the predicate logic. From this
it follows that the logics CD + GSc and CD + Sm have interpolation.

Skolemization and Herbrand theorems have been studied for other nonclassical
theories and logics as well. For references to these topics in the setting of
substructural logics, see (Baaz and Metcalfe, 2008, 2009; Cintula and Metcalfe,
2013). Other related work on Skolemization concerns the complexity of the
method and the construction of deskolemization methods, see (Baaz and Leitsch,
1994; Baaz etal, 2012) for details.

This paper is structured as follows. Section 2 contains the preliminaries, in
particular the definition of Kripke models for predicate logic. Section 4 intro-
duces a semantical property that is one of the two main ingredients in the proof,
in Section 5, that the skolemization method defined in Section 3 is sound and
complete. The other ingredient is model extensions, which are introduced in
Section 5. Section 6 is about Herbrand’s theorem and Section 7 contains the
application to interpolation discussed above. In Section 8 the methods devel-
oped in the previous sections are extended to logics without constant domains.
Section 9 contains the conclusion.

2 Preliminaries

The theories we consider are theories in intuitionistic predicate logic IQC or, in
Section 8, in its extension IQCE. The former are called intermediate theories. We
mostly use intermediate logics rather than theories as examples (the difference
being that the latter do not have to be closed under substitution), but as all
our results apply to theories as well logics, we present them in the most general
form throughout the paper.

Except in the last section, our language L consists of the usual connectives,
variables, constants, quantifiers, and predicate and function symbols, infinitely
many of every arity. Terms are defined as usual. An occurrence of a quantifier
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in a formula is strong if it is a positive occurrence of a universal or a negative
occurrence of an existential quantifier. It is weak otherwise.

Universal formulas are formulas in prenex normal form that only contain uni-
versal quantifiers. A theory is universal when it is axiomatizable over IQC by
universal formulas. Many well-known intermediate predicate logics are uni-
versal, such as the predicate versions of the propositional logics LC and KC,
axiomatized by (ϕ→ ψ) ∨ (ψ → ϕ) and ¬ϕ ∨ ¬¬ϕ, respectively.

2.1 Kripke models

Kripke models are defined as usual, except that we require them to have constant
domains and their frames to be trees. Following (Troelstra and van Dalen,
1988) we always assume that the elements of the domain of a (Kripke) model
are constants in L. In this way one does not have to use valuations but can
define truth |= in classical models and forcing 
 in Kripke models inductively
on sentences in L.

A Kripke model K is a tuple (W,4, D, I), where (W,4) is a rooted tree, D is a
nonempty set (the domain) and I is a collection {Ik | k ∈W} of interpretations
such that for all k ∈ W , (D, Ik) is a classical model, such that the following
persistency requirements are satisfied. For all terms t, all n-ary predicates P
and all d̄ = d1, . . . , dn ∈ D:

k 4 l ⇒ Ik(t) = Il(t)
(D, Ik) |= P (d̄) and k 4 l ⇒ (D, Il) |= P (d̄).

(up)

Forcing is defined as usual, where the forcing of atomic formulas is defined by

k 
 P (d̄) ≡def (D, Ik) |= P (d̄).

It is clear that because of (up) the upwards persistency requirement for Kripke
models is satisfied.

A class of models has width ≤ n if no model in the class contains an anti-chain
of size larger than n. It is of width n if it is of width ≤ n but not of width
≤ (n − 1). A model is of width n if the class consisting of that model is. A
theory L has width n if it is complete with respect to a class of models of width
n. A theory is a constant domain width n theory if the theory is complete with
respect to a class of models of width n with constant domains. A theory has
finite width or the finite width property (fwp) if it has width n for some n ∈ N.
A theory has the constant domain finite width property (cdfwp) when for some
n ∈ N it is a constant domain width n theory. The smallest such n is denoted
by wL. If L has fwp but not cdfwp then wL is the smallest n for which it has
width n.

3 Skolemization

A Skolemization method (·)s, by which we mean a map on formulas such that the
image does not contain strong quantifiers, is sound when ` ϕ implies ` ϕs and
complete when the opposite holds. All Skolemization methods that we consider
are sound. The standard Skolemization method replaces occurrences Qxψ(x, ȳ)
of quantifiers by ψ(f(ȳ), ȳ) for a fresh f , in case Q = ∀ and the occurrence is
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strong or Q = ∃ and the occurrence is weak, where ȳ are the variables of the
weak quantifiers in the scope of which Qxψ occurs. The standard Skolemization
method is not complete for intuitionistic logic, as ∀x¬¬ϕ(x)→ ¬¬∀xϕ(x) is not
derivable in the logic, whereas its Skolemized version, ∀x¬¬ϕ(x)→ ¬¬ϕ(c), is.

For theories L of finite width we define the following parallel skolemization
method (pskolemization for short) that removes strong quantifiers from formulas
in the following way. The last part of this section discusses the intuition behind
this variant of Skolemization. Given a formula ϕ and a subformula Qxψ(x, ȳ),
where ȳ are the variables of the weak quantifiers in the scope of which Qxψ
occurs, we define

ps(Qxψ(x, ȳ))ϕ ≡def


∨wL

i=1 ψ(fi(ȳ), ȳ) if Q = ∃∧wL

i=1 ψ(fi(ȳ), ȳ) if Q = ∀.

We write ϕ � ϕ′ if ϕ′ is the result of replacing the leftmost strong quantifier
occurrence Qxψ in ϕ by ps(Qxψ(x, ȳ))ϕ, where the fi are assumed to not occur
in ϕ. It is clear that, up to the renaming of function symbols, for every ϕ there
are unique ϕ = ϕ1, . . . , ϕn = ϕ′ such that ϕi � ϕi+1 and ϕ′ does not contain
strong quantifiers. This ϕ′ is the pskolemization of ϕ and is denoted by ϕps.

We use the convention that in strong quantifier occurrences Qxψ(x, ȳ) the ȳ
always denote the variables of the weak quantifiers in the scope of which Qxψ
occurs.

A theory has pskolemization if for all formulas ϕ:

` ϕ ⇔ ` ϕps.

It is instructive to compare pskolemization to standard Skolemization by consid-
ering the simple example ∃x∀yϕ(x, y) where ϕ is quantifier-free. The Skolemiza-
tion of this formula is ∃xϕ(x, fx) while the pskolemization for a logic of width
n is ∃x

∧n
i=1 ϕ(x, fix). The idea is that every branch of a Kripke model of the

logic has its own skolem function. For the standard method, a simple proof of
the completeness of Skolemization for such formulas is semantical: a counter
model to ∃x∀yϕ(x, y) produces a counter model to ∃xϕ(x, fx) by interpreting
fx as the y such that ϕ(x, y) does not hold in the original model. In the case of
pskolemization, a Kripke counter model to ∃x∀yϕ(x, y) with branches b1, . . . , bn
produces a counter model to ∃x

∧n
i=1 ϕ(x, fix) by interpreting fi as the y such

that ϕ(x, y) does not hold along bi. Here we use that the models we consider
in the setting of pskolemization have constant domains. The next two sections
contain the technical details behind this informal argument.

4 Quantifier witnesses

In the previous section a simple semantical proof of the completeness of Skolem-
ization was described. An analogue of this method for Kripke models will be
used to prove the completeness of pskolemization in the next section, where it
is first shown that for any Kripke model K, a model K ′ is defined such that for
every strong quantifier occurrence Qxψ(x, ȳ) in ϕ:

K, k 
 Qxψ(x, ā) if and only if K ′, k 
 ps(Qxψ(x, ā))ϕ.

4



For this to work, the existence, inK, of certain nodes and elements of the domain
has to be garanteed. These are the quantifier witnesses defined as follows.

Given a formula Qxψ(x, ȳ), a Kripke model K with constant domains, root
rK and at least one element dK in its domain D, has quantifier witnesses for
Qxψ(x, ȳ) if the following holds:

• if Q = ∃, then for any ā ⊆ D and any branch b along which ∃xψ(x, ā) is
forced, there exists a lowest node k = nd(b,∃xψ(x, ā)) for which there is a
d = wt(b,∃xψ(x, ā)) ∈ D such that k 
 ψ(d, ā); and if ∃xψ(x, ā) is nowhere
forced along b, we put nd(b,∃xψ(x, ā)) = rK and wt(b,∃xψ(x, ā)) = dK ;

• if Q = ∀, then for any ā ⊆ D and any branch b along which ∀xψ(x, ā) is not
forced, there exists a highest node k = nd(b,∀xψ(x, ā)) for which there is a
d = wt(b,∀xψ(x, ā)) ∈ D such that k 6
 ψ(d, ā); and if ∀xψ(x, ā) is forced
everywhere along b, we put nd(b,∀xψ(x, ā)) = rK and wt(b,∀xψ(x, ā)) =
dK ;

• the witnesses are chosen such that if nd(b,Qxψ(x, ā)) lies on another
branch c, then nd(c,Qxψ(x, ā)) = nd(b,Qxψ(x, ā)) and wt(c,Qxψ(x, ā)) =
wt(b,Qxψ(x, ā)).

K has quantifier witnesses if it has quantifier witnesses for every quantified
formula Qxψ(x, ȳ).

Lemma 4.1 Any finite Kripke model with constant domains has quantifier
witnesses.

Proof Suppose the finite Kripke model is of width n and let b1, . . . , bn be its
branches, rK its root and dK an element in the domain. Consider a formula
∃xψ(x, ȳ) and elements ā of the domain. Abbreviate ∃xψ(x, ā) by ϕ. We define
witnesses for this formula along the branches one-by-one. So consider bi and
suppose that for j < i, the witnesses have already been defined. If ϕ is forced
nowhere along bi, then put nd(bi, ϕ) = rK and wt(bi, ϕ) = dK . These witnesses
clearly have the required properties.

If ϕ is forced along bi, we distinguish two cases. First consider the case that the
lowest node along b where ϕ is forced is of the form nd(bj , ϕ), for some j < i.
Then put nd(bi, ϕ) = nd(bj , ϕ) and wt(bi, ϕ) = wt(bj , ϕ). In the remaining case,
choose the lowest node where ϕ holds along b. Such a node k exists because
the model is well-founded. Choose an element d ∈ D such that k 
 ψ(d, ā) and
put nd(bi, ϕ) = k and nd(bj , ϕ) = d. It is not hard to see that these satisfy the
quantifier witness requirements.

The proof for universal formulas is similar, using that the model is conversely
well-founded. 2

5 Completeness

In this section we prove the completeness of pskolemization. As mentioned
above, we give a semantical proof of this fact, which main ingredient is the
following construction to extend Kripke models for a certain language to models
for a richer language.
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5.1 Model extensions

Consider a theory L of width n in language L. Given a model K = (W,4, D, I)
of width n for L that has quantifier witnesses for Qxψ(x, ȳ), we show how to
extend it to a model K ′ = (W,4, D, I ′) for L′ = L ∪ {f1, . . . , fn}, where the
fi are the skolem functions occurring in ps(Qxψ(x, ȳ))ϕ. Let b1, . . . , bn be the
branches of K. For every k, I ′k equals Ik on terms in L ∪D, and for ā ∈ D:

I ′k(fi)(ā) = wt(bi, Qxψ(x, ā)).

Remark 5.2 We leave it to the reader to verify that forcing in K is equal to
forcing in K ′ for all formulas that do not contain the function symbols f1, . . . , fn.

Lemma 5.3 For every strong quantifier occurrence Qxψ(x, ȳ) in ϕ:

K, k 
 Qxψ(x, ā) if and only if K ′, k 
 ps(Qxψ(x, ā))ϕ. (1)

Proof First observe that the definition of quantifier witnesses implies that for
every branch bi through k, writing χ for Qxψ(x, ā):

K, k 
 χ if and only if K ′, k 
 ψ(wt(bi, χ), ā). (2)

To prove (3) we treat the existential and universal quantifier separately.

∃: The direction from left to right follows from (2). For the opposite direction,
suppose K ′, k 
 ψ(fj(ā), ā) for some j, that is, K ′, k 
 ψ(wt(bj , χ), ā). By
Remark 5.2, K, k 
 χ follows.

∀: If K, k 6
 χ, then K, k 6
 ψ(wt(bi, χ), ā) for all branches bi through k. Hence
K ′, k 6
 ψ(fi(ā), ā). Thus K ′, k 6
 ps(χ)ϕ. For the other direction, suppose
K ′, k 6
 ψ(fj(ā), ā) for some j. This implies that K, k 6
 ∀xψ(x, ā), that is,
K, k 6
 χ. 2

Lemma 5.4 If ϕ� ϕ′, then for every model K with quantifier witnesses:

K, k 
 ϕ if and only if K ′, k 
 ϕ′. (3)

Proof With formula induction, using Lemma 5.3. 2

Theorem 5.5 Every theory that is sound and complete with respect to a class
of Kripke models of width n with quantifier witnesses and constant domains,
has pskolemization, that is, for all formulas ϕ:

` ϕ ⇔ ` ϕps.

Proof The direction from left to right is easy. The other direction follows by
contraposition from repeated application of Lemma 5.4. 2

Corollary 5.6 Every intermediate theory with cdfwp has pskolemization.

A logic is a constant domain tabular logic if for some finite frame it consists of
all formulas that hold in all models with constant domain on that frame.

Corollary 5.7 Every constant domain tabular logic has pskolemization.
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6 Herbrand’s theorem

Herbrand’s theorem states that for every quantifier free formula ϕ(x̄):

`CQC ∃x̄ϕ(x̄) ⇔ `CQC

n∨
i=1

ϕ(s̄i) for some sequences of terms s̄1, . . . , s̄n.

In combination with the Skolemization method it provides a powerful tool in the
study of classical logic. As for Skolemization, there exists a natural extension
of the theorem that applies to infix formulas without strong quantifiers. This is
the variant we will use, which is defined as follows.

Given a formula ϕ, a formula ϕ′ is a Herbrand expansion of ϕ if it is the result of
replacing, from inside out, every positive occurrence of a formula ∃xψ(x) by a
disjunction

∨m
i=1 ψ(si) for some terms s1, . . . , sm, and every negative occurrence

of a formula ∀xψ(x) by a conjunction
∧n

i=1 ψ(ti) for some terms t1, . . . , tn. The
dual Herbrand expansion of ϕ is defined similarly, by switiching “∃xψ(x)” and
“∀xψ(x)”. For example,

∧m
i=1 P (ti)→

∨n
j=1Q(sj) is an Herbrand expansion of

∀xP (x)→ ∃zQ(x) and dual Herbrand expansion of ∃xP (x)→ ∀zQ(x).

Observe that in an Hebrand expansion all the weak quantifiers of a formula are
removed. Thus the Hebrand expansion of a formula without strong quantifiers
does not contain any quantifiers. It is not hard to see that any Herbrand ex-
pansion of a formula implies the formula, while the formula implies all its dual
Herbrand expansions. In universal theories the following holds as well.

Lemma 6.1 In any universal intermediate theory L, for any formula ϕ without
strong quantifiers: if ϕ is provable in L, then so is at least one Hebrand expansion
of ϕ.

Proof Suppose that ϕ is derivable in L. Then for some finite conjunction ψ
of axioms from L, ψ → ϕ is derivable in IPC. ψ → ϕ does not contain strong
quantifiers. This implies that some Hebrand expansion ψ′ → ϕ′ of ψ → ϕ
is derivable in IPC, where ϕ′ is an Herbrand expansion of ϕ and ψ′ is a dual
Herbrand expansion of ψ (folklore, but for a proof see (Baaz and Iemhoff, 2008)).
Thus `IPC ψ → ψ′. Hence `L ϕ′, which is what we had to show. 2

For theories with cdfmp the results above provide a correspondence between
derivability in a predicate theory and its propositional fragment, just like the
usual Herbrand theorem does.

Theorem 6.2 In every universal intermediate theory with cdfwp, for all for-
mulas ϕ:

ϕ is provable ⇔ at least one Hebrand expansion of ϕps is provable.

7 Interpolation

Recall that a logic L has interpolation if whenever `L ϕ → ψ, there exists a
formula ι in the common language of ϕ and ψ such that ϕ → ι and ι → ψ
hold in L. In the case of propositional logic, the common language consists of
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the atoms that occur in both ϕ and ψ and all connectives, and in the case of
predicate logic in consists all predicates, functions and constants that occur in
both ϕ and ψ and all variables, connectives and quantifiers.

Theorem 7.1 For any universal intermediate logic with pskolemization, if the
propositional fragment has interpolation, then so does the full logic.

Proof Assume ` ϕ→ ψ. This implies ` (ϕ→ ψ)ps since the logic has pskolem-
ization. Let ϕs, ψs be such that (ϕs → ψs) = (ϕ → ψ)ps. Some Herbrand
expansion ϕh → ψh of ϕs → ψs is derivable by Lemma 6.1 and the proof of the
lemma shows that we can assume that ϕh is a dual Herbrand expansion of ϕs

and that ψh is an Herbrand expansion of ψs.

As the propositional fragment has interpolation, there is a formula ι in the
common language of ϕh and ψh such that ϕh → ι and ι → ψh hold in L.
Therefore ϕs → ι and ι→ ψs hold in L as well.

From the definition of Skolemization it follows that every skolem function can
occur either in ϕs or in ψs but not in both. Next we construct a finite sequence
of formulas ι = ι1, . . . , ιn such that ιn contains no skolem symbols and ϕs → ιi
and ιi → ψs holds for all i. Given ιi, consider the leftmost term of the form
f(t̄) in it, where f is a skolem function. Let xi+1 be a variable not occurring in
ιi and define

ιi+1 ≡def

{
∃xi+1ιi[xi+1/f(t̄)] if f occurs in ϕs

∀xi+1ιi[xi+1/f(t̄)] if f occurs in ψs.

Clearly, ϕs → ιi and ιi → ψs hold. If n is equal to the number of skolem
functions in ϕs and ψs together, then ιn cannot contain any skolem functions.
Therefore (ϕ → ι)ps = (ϕs → ι) and (ι → ψ)ps = (ι → ψs). Thus ϕ → ιn and
ιn → ψ are derivable in L by Theorem 5.5. Hence ιn is the desired interpolant
for ϕ→ ψ. 2

Corollary 7.2 Every universal intermediate logic with cdfwp and a proposi-
tional fragment that has interpolation, has interpolation.

Maxsimova (1977) showed that there are exactly seven propositional intermedi-
ate logics with interpolation:

axiom
IPC Intuitionistic propositional logic
KC Jankov Logic (De Morgan Logic) ¬ϕ ∨ ¬¬ϕ
LC Gödel-Dummett Logic (ϕ→ ψ) ∨ (ψ → ϕ)
BD2 ϕ ∨ (ϕ→ ψ ∨ ¬ψ)
GSc BD2 + (ϕ→ ψ) ∨ (ψ → ϕ) ∨ (ϕ↔ ¬ψ)
Sm BD2 + KC
CPC Classical propositional logic

The logic of constant domains CD is the intermediate predicate logic axiomatized
over IQC by the scheme

D ∀x(ϕ(x) ∨ ψ)→ (∀xϕ(x) ∨ ψ),
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where x does not occur free in ψ. CD characerizes the class of Kripke models
with constant domains. Given a propositional logic L, let CD + L denote the
smallest intermediate predicate logic containing CD and all formulas in L as
axiom schemes.

Shimura (1993) has proven that for any tabular propositional intermediate logic
L, the logic CD + L is strongly Kripke complete and has cdfwp as the canonical
model with constant domains is shown to have a finite frame (Lemma 3.5). A
logic is tabular when it is the logic of a single finite Kripke frame. The logics
GSc and Sm are both tabular, with respective frames:

• •

•

•

•
Since CD + GSc and CD + Sm are clearly universal, Corollary 7.2 implies the
following.

Corollary 7.3 The predicate intermediate logics CD+GSc and CD+ Sm have
interpolation.

8 The existence predicate

The restriction, in the results above, to constant domains is a severe one since
many interesting intermediate theories do not have constant domains. In this
section we extend the results of the previous sections to such theories. The main
tool is the increase in expressive power of the language of intuitionistic logic
through the addition of an existence predicate. In this way many logics that are
not constant domain logics in the original sense, become sound and complete
with respect to a certain class of models with constant domains. Therefore the
Skolemiztion method developed above can be applied to such logics as well.

We consider an extension, IQCE, of IQC, the language of which is L extended by
a unary predicate, E, the existence predicate. This logic, introduced by Scott
(1979), allows one to distinguish between existing and not (yet) existing terms.
There are several variants of the logic depending on the possible requirements
put on the quantifiers. In the version we use the quantifiers range over existing
objects only. This means, for example, that one is allowed to infer ∃xϕ(x) only
if a term t such that both Et and ϕ(t) hold exists. In (Baaz and Iemhoff, 2006a),
Gentzen calculi for IQCE are provided that are variants of the Gentzen calculus
G3i in (Troelstra and Schwichtenberg, 1996). The only difference lies in the
quantifier rules, which in the case of IQCE are (assuming that y does not occur
free in Γ and ψ):

Γ ⇒ E(t) Γ ⇒ ϕ(t)

Γ ⇒ ∃xϕ(x)

Γ, E(y), ϕ(y) ⇒ ψ

Γ,∃xϕ(x) ⇒ ψ

Γ, ∀xϕ(x), ϕ(t) ⇒ ψ Γ,∀xϕ(x) ⇒ E(t)

Γ,∀xϕ(x) ⇒ ψ

Γ, E(y) ⇒ ϕ(y)

Γ ⇒ ∀xϕ(x)

For theories T over IQC and sentences ϕ not containing the existence predicate,
it holds that

T `IQC ϕ ⇔ Te `IQCE ϕ, (4)
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where Te is the theory over IQCE corresponding to T. Roughly, Te is a version
of T in which all terms are assumed to exist. For details, see (Iemhoff, 2010).
Skolemization methods and Herbrand theorems for theories over IQCE are via
(4) inherited by theories over IQC. In the remainder of this section we provide
such methods.

A semantics for IQCE is given by Kripke existence models, which are regular
Kripke models with constant domains in which the existence predicate is inter-
preted as a unary predicate, nonempty at the root, and forcing is defined as
usual, except for the quantifiers, in which case it is defined as

K, k 
 ∃xϕ(x) ≡def K, k 
 Ed ∧ ϕ(d) for some d ∈ D
K, k 
 ∀xϕ(x) ≡def K, k 
 Ed→ ϕ(d) for all d ∈ D.

IQCE is sound and strongly complete with respect to this semantics (Baaz and
Iemhoff, 2006b). In particular, ϕ is derivable in IQCE if and only if ϕ holds in
all Kripke existence models.

8.1 Skolemization

In Baaz and Iemhoff (2006b, 2009) we showed that for IQCE there exists a sound
and complete skolemization method (·)e for existential quantifiers. Here we can
combine this method with the method of pskolemization as follows. Given a
formula ϕ and a subformula Qxψ(x, ȳ), where ȳ are the variables of the weak
quantifiers in the scope of which Qxψ occurs, we define (writing Et for E(t)):

eps(Qxψ(x, ȳ))ϕ ≡def


∨wL

i=1Efi(ȳ) ∧ ψ(fi(ȳ), ȳ) if Q = ∃∧wL

i=1Efi(ȳ)→ ψ(fi(ȳ), ȳ) if Q = ∀.

As previously, we write ϕ� ϕ′ if ϕ′ is the result of replacing the leftmost strong
quantifier occurrence Qxψ in ϕ by eps(Qxψ(x, ȳ))ϕ, where the fi are assumed
to not occur in ϕ. It is clear that, up to the renaming of function symbols, for
every ϕ there are unique ϕ = ϕ1, . . . , ϕn = ϕ′ such that ϕi � ϕi+1 and ϕ′

does not contain strong quantifiers. This ϕ′ is the epskolemization ϕeps (“e” for
existence) of ϕ.

A theory has epskolemization if for all formulas ϕ:

` ϕ ⇔ ` ϕeps.

8.2 Quantifier witnesses

The notion of quantifier witnesses is adapted to Kripke existence models as
follows. Given a formula Qxψ(x, ȳ), a Kripke existence model with root rK and
at least one element dK in its domain D, has quantifier witnesses for Qxψ(x, ȳ)
if the following holds:

• if Q = ∃, then for any ā ⊆ D and any branch b along which ∃xψ(x, ā)
is forced, there exists a lowest node k = nd(b,∃xψ(x, ā)) for which there
is a d = wt(b,∃xψ(x, ā)) ∈ D such that k 
 Ed ∧ ψ(d, ā); and if Eā or
∃xψ(x, ā) is nowhere forced along b, we put nd(b,∃xψ(x, ā)) = rK and
wt(b,∃xψ(x, ā)) = dK ;
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• if Q = ∀, then for any ā ⊆ D and any branch b along which ∀xψ(x, ā)
is not forced, there exists a highest node k = nd(b,∀xψ(x, ā)) for which
there is a d = wt(b,∀xψ(x, ā)) ∈ D such that k 
 Ed and k 6
 ψ(d, ā); and
if ∀xψ(x, ā) is forced everywhere along b, we put nd(b,∀xψ(x, ā)) = rK
and wt(b,∀xψ(x, ā)) = dK ;

• the witnesses are chosen such that if nd(b,Qxψ(x, ā)) lies on another
branch c, then nd(c,Qxψ(x, ā)) = nd(b,Qxψ(x, ā)) and wt(c,Qxψ(x, ā)) =
wt(b,Qxψ(x, ā)).

K has quantifier witnesses if it has quantifier witnesses for every quantifier
Qxψ(x, ȳ).

It is not difficult to see that the analogues of Lemmas 5.3 and 5.4 hold. Us-
ing these analogues we can prove the following variants of Theorem 5.5 and
Corollary 5.6.

Theorem 8.3 Every theory in IQCE that is sound and complete with respect
to a class of Kripke existence models of finite width with quantifier witnesses,
has epskolemization, that is, for all formulas ϕ:

` ϕ ⇔ ` ϕeps.

Corollary 8.4 Every theory in IQCE with fwp has epskolemization.

8.5 Herbrand’s theorem

The notion of Hebrand expansion also has to be adapted in the presence of an
existence predicate. In extensions of IQCE, given a formula ϕ, a formula ϕ′ is
a Herbrand expansion of ϕ if it is the result of replacing every positive occur-
rence of a formula ∃xψ(x) by a disjunction

∨m
i=1(Esi ∧ ψ(si)) for some terms

s1, . . . , sm, and every negative occurrence of a formula ∀xψ(x) by a conjunction∧n
i=1(Eti → ψ(ti)) for some terms t1, . . . , tn. The dual Herbrand expansion of

ϕ is defined similarly, by switiching the expressions “∃xψ(x)” and “∀xψ(x)”.

In (Baaz and Iemhoff, 2008; Iemhoff, 2010) it is shown that in IQCE, derivabil-
ity of ϕ implies derivability of at least one Herbrand expansion of ϕ. As in
Lemma 6.1 this can be used to show the following.

Lemma 8.6 In any universal theory L in IQCE: if ϕ is provable in L, then so
is at least one Hebrand expansion of ϕ.

Theorem 8.7 In every universal theory in IQCE with fwp, for all formulas ϕ:

ϕ is provable ⇔ at least one Hebrand expansion of ϕeps is provable.

Using that for every universal theory T in IQC with fwp the theory Te in IQCE
is also universal and has fwp (this can be concluded from the construction of
Te as given in (Iemhoff, 2010)) we obtain the following.

Corollary 8.8 In any universal theory T in IQC with fwp, for all sentences ϕ
not containing the existence predicate:

T `IQC ϕ ⇔ Te `IQCE ϕ ⇔
at least one Hebrand expansion of ϕeps is provable in Te.
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9 Conclusion

It has been shown that for certain intermediate logics and intermediate theories
alternative skolemization methods and Herbrand theorems can be developed
that, like the standard method, provide a connection between derivability in a
theory and its propositional fragment. Crucial for this to hold is that the theory
is complete with respect to a class of models that have quantifier witnesses, a
technical notion that is satisfied, for example, by logics of finite width. First the
theories have been treated for which the models in the class in addition have
constant domains. For these theories the alternative Skolemization method is
but a simple variant of the standard method in which per strong quantifier
instead of one skolem term finitely many skolem terms are used. In case the
theory does not have constant domains, the extension IQCE of IQC is used to
obtain a similar method. Here the existence predicate of IQCE is applied in
the same way as in (Baaz and Iemhoff, 2006b), where it was used to obtain a
skolemization method for existential quantifiers in IQC. In the constant domain
as well as the not constant domain case a corresponding Herbrand theorem can
be obtained easily.

For constant domain finite width logics a consequence of the above is that
whenever the propositional fragment of the logic has interpolation, so does the
full logic. Whether we can obtain a similar result for logics that do not have
constant domains we do not know.

In general, the obtained results show that useful alternatives to Skolemization
can be obtained for nonclassical theories by allowing quantified subformulas to
be replaced by more complex formulas than in the standard method. Whether
these methods can be of use in the study of nonclassical theories, the future will
tell.
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