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Abstract
China’s High-Speed Railways (HSR) network is the biggest in the world, transporting large num-
bers of passengers by high-speed trains through urban networks. Little is known about the analy-
tical meaning of the use of two types of flow data, namely, time schedule (transportation mode
flow) and passenger flow data, to characterise the configuration of urban networks regarding the
potential spatial effects of HSR networks on urban networks. In this article, we compare HSR
passenger flow data with time schedule data from 2013 in China within the same analytical frame-
work. The findings show great differences in the strength of cities and links generated using the
two different types of flow data. These differences can be explained largely by the socio-
economic attributes of the cities involved, such as tertiary employment, GDP per capita, the cit-
ies’ topological properties (closeness centrality) in HSR networks and institutional factors (hub
status), especially for the difference in link strength. The strength of first-tier cities in China with

Corresponding author:

Haoran Yang, Department of Human Geography and Planning, Faculty of Geosciences, Utrecht University, Heidelberglaan

2, Utrecht, 3584CS, The Netherlands.

Email: H.Yang2@uu.nl; heli2662@126.com

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.dox.org/10.1177/0042098018761498
journals.sagepub.com/home/usj
http://crossmark.crossref.org/dialog/?doi=10.1177%2F0042098018761498&domain=pdf&date_stamp=2018-04-30


high socio-economic performance and the HSR links connecting core cites and major cities within
respective regions tends to be underestimated when using time schedule flows compared with
passenger flows. When analysing the spatial structure of HSR and urban networks by means of
flows, it is important for urban geographers and transportation planners to consider the meaning
of the different types of data with the analytical results.

Keywords
China, High-Speed Railways (HSR), passenger flow, time schedule, transport, urban networks,
urbanisation and developing countries

Received July 2016; accepted January 2018

Introduction

Over the past several decades, urban geogra-
phers have used the network concept to under-
stand the structure and organisation of urban
systems, particularly by investigating the exter-
nal functional relationships among city nodes.
The functional relationships of urban systems
are related to socio-economic processes, such
as financial transactions, and functional con-
nectivity, for instance commuting within or
among cities (Green, 2007). To understand the
functional relationships among city nodes and
the spatial structures of urban networks, scien-
tific research has focused on one of two differ-
ent approaches: the node approach or the flow
approach (Limtanakool et al., 2007a; Taylor,
2009). In the node approach, the functional
attributes of cities are taken into account to

identify the functional interactions and connec-
tivity of city nodes (Derudder et al., 2003;
Taylor, 2004). However, the node attribute
approach has been criticised because it only
partially explains the external functional rela-
tionships among cities (Neal, 2010; Taylor,
2009). As a result, many academics have turned
their attention towards the flow approach,
which focuses on people, goods, information
and capital flow among those nodes (Meijers,
2005).

The flow approach has been applied
largely to research the structure of urban
networks by means of traffic flows
(Derudder et al., 2010). Traffic flows are
derived from two types of data sets: data
that characterise the supply side of transpor-
tation based on the time schedules of public
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transportation companies, and data that
refer to the demand side of actual passenger
flows. Due to reasons of commercial privacy
and confidentiality, not all urban researchers
can acquire actual passenger flow data from
operational transportation companies or
authorities. As an alternative, they must
resort to open data sources such as time
schedule data derived from publicly avail-
able time schedules (Liu et al., 2015). As a
result, many studies of the spatial structures
of transportation and urban networks use
time schedule data (Feng et al., 2014; Luo,
2010; Wang et al., 2011, 2014), but only a
few studies use passenger flow data, for
example in airline networks (Derudder and
Witlox, 2009; Van Nuffel et al., 2010).
Regarding the application of the two types
of data in characterising the configurations
of urban networks, it remains unclear
whether time schedule data are a good proxy
for passenger flow data regarding spatial
impacts of transportation networks.

Currently, to the best of our knowledge,
no scientific study has compared the two
types of data within the same transportation
network and, more importantly, within the
same analytical framework. In this article,
we focus on China’s High-Speed Railways
(HSR) network to answer the question,
‘What are the impacts of using different
types of flow data of HSR networks when
analysing the characteristics of urban sys-
tems in China?’ The answer for that is
important since the time schedule and pas-
senger flow data produce different outcomes
in the positions of cities and city links, espe-
cially regarding potential concentration and
dispersal effects of HSR networks on urban
networks. To answer this question, we used
the theoretical framework developed by
Limtanakool et al. (2007a) to analyse trans-
portation flow data in the networks, and
applied a stepwise regression analysis to
identify the most determinant attributes of
urban systems to explain the differences

between the two types of flow data. In the
end, by means of scatterplot analysis, we
empirically characterised the typical situa-
tions of cities and city links in which train
schedule data do not serve as relatively good
proxies for passenger flow data.

The next section first details the theoreti-
cal background and conceptual framework
of our study. Then we introduce two types of
HSR flow data sets and the relevant data
comparison method. The subsequent sections
present the empirical results of two types of
HSR flow data sets, the regression results for
the determinant attributes of urban systems
and the scatterplot analysis results of the typ-
ical characteristics of those attributes to
explain the differences between the two types
of flow data. The article concludes with a dis-
cussion and overview of our main findings.

Understanding the external
functional relationships of urban
networks using different flow
approaches

Background

Urban networks in general comprise nodes
(cities), linkages between the nodes (trans-
portation infrastructure) and interaction
flows (e.g. people, goods, information and
capital) through the linkages, where vertical
specialisation and horizontal cooperation
can complement each other (Meijers, 2005).
Two approaches to analysing urban net-
works can be applied: the node approach
and the flow approach. Currently, in acade-
mia, the flow approach is preferred over the
node approach to characterise the configura-
tion of urban networks because the flow
approach can reflect the dynamic and inter-
acting relationships of city nodes in the
urban system.

The flow approach is divided into
transportation mode and passenger flow
approaches. The transportation mode approach

Yang et al. 1269



uses the frequency of transportation mode
travelling between a pair of city nodes. The
frequency of transportation modes is usually
obtained from accessible open data sources
such as the time schedules of the booking
websites of public transportation operating
companies or travel agencies (Burghouwt
et al., 2003). As a result, this approach has
already been intensively applied to medium-
and long-haul public transit transportation
modes such as airlines and railways to identify
the structure of urban networks at least
beyond the regional scale. For example, a
considerable amount of research has exam-
ined the readily available transportation sche-
dules in the airline mode at the interregional
scale in Europe (Burghouwt et al., 2003), in
the US (Brueckner, 2003) and in China
(Wang et al., 2014), as well as the railway
mode at the regional scale in Europe (Hall
and Pain, 2006).

Unlike the transportation mode approach,
the passenger flow approach uses the actual
number of passengers carried by transporta-
tion modes between a pair of cities. The advan-
tage of this approach could be that it more
clearly reflects the actual demand of urban
nodes for travelling (Neal, 2010). However,
compared with airlines, the application of the
passenger flow approach in other public trans-
portation modes is rare in the characterisation
of urban networks. This is due to the confiden-
tiality of operational passenger flow data, espe-
cially in the strictly controlled railway sector in
China (Liu et al., 2015).

From the end of 2003 when the first HSR
train between Shenyang and Qinhuangdao
began to operate, until the end of 2014,
Chinese HSR networks have become the
largest HSR network in the world, with
more than 11,000 km, accounting for more
than 50% of the world total (Diao et al.,
2017). Initiated by Hall and Pain (2006) and
due to the fast development of HSR net-
works in China, according to the time sched-
ule data set, studies on Chinese railway

infrastructure follow the social network
analysis on functional polycentricity devel-
oped by Green (2007), uncovering the poly-
centricity of the functional urban regions
connected by HSR at the regional scale. Luo
(2010) used high-speed time schedule data to
measure the polycentricity of the Yangzi
River Delta (YRD) region and mentioned
the increasing integration of cities within the
YRD region. Based on the frequency of
intercity trains, including those with a speed
of less than 200 km/hour, Feng et al. (2014)
used the same approach as Luo (2010) to
measure the polycentricity of the Pearl River
Delta (PRD) region, discovering that the
PRD is more polycentric than the YRD
region. However, transportation mode flows
derived from the time schedules of transpor-
tation companies can only capture the num-
ber of trains arriving at and departing from
a city, without knowing the real number of
passengers using the trains (Neal, 2010).
Thus, compared with HSR passenger flow
data, the application of time schedule data
shows limitations, since time schedule data
do not include information on the capacity
(passenger loading and unloading volumes)
or the number of carriages and seats of
trains. Furthermore, it should be kept in
mind that even the application of actual
HSR passenger flows can only reflect a cer-
tain type of configuration of urban systems
connected by HSR networks since other
transportation passenger flows, such as con-
ventional railways and highways, could also
facilitate functional interactions between cit-
ies (Liu and Kesteloot, 2015).

Analytical framework

Different analytical methods exist to charac-
terise the urban network by means of trans-
portation networks. The method of complex
network is widely used to explore the topolo-
gical properties of transportation networks
(e.g. degree centrality, betweenness centrality
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and closeness centrality) by means of trans-
portation mode flows. Good examples are
analyses of the Chinese airlines network
(Wang et al., 2011, 2014), and the maritime
network (Ducruet, 2013). Also, the reversed
gravitation model has been used widely to
estimate nodal attractions in cities from pas-
senger flow volumes, for example the appli-
cation of air passenger flows in the city
nodes in China (Xiao et al., 2013). Although
both methods are very useful, the method of
complex network uses only the topological
properties of cities in transportation net-
works as proxies for their importance in
urban networks and neglects the importance
of city pairs, while the reversed gravitation
model does not measure the structure of a
whole urban network. To understand the
differences between the two types of HSR
flow data in characterising the whole pattern
of the urban network, a flow approach based
on Limtanakool et al. (2007a) is used by situ-
ating HSR networks between the ideal-
typical extremes of concentration and

dispersal, and by focusing on the strength
and the structure of urban networks.
Regarding spatial effects of HSR networks,
urban networks can thus be placed on a con-
tinuum ranging from a fully concentrated
(monocentric) system in which time sched-
ule/passenger flows are concentrated in one
(or a few) dominant node(s), to a fully dis-
persed (polycentric) system in which there
are no truly dominant nodes because time
schedule/passenger flows are dispersed
across urban areas (Figure 1). The strength
of nodes and links is relevant to the posi-
tion of a city or a link in the urban system.
The structure defines the urban network,
ranging from a fully monocentric to a fully
polycentric structure. Neither passenger
nor time schedule data include information
on the origins or destinations of trips. In
this article, two indices are used to measure
the strength (the Dominance Index DITi

and the Relative Strength Index RSLij), and
two are used to measure the structure
(Entropy Indices ODIc; and ODIl). These

Figure 1. Conceptual model for HSR flows and urban networks.
Source: Adapted from Limtanakool et al. (2007a).
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measures are defined at two levels: the indi-
vidual node/link level and the network
level.

DITi and RSLij are measures of the
strength at the individual city/link level. At
the individual city level, non-directional
dominance DITi calculates the ratio between
the sum of the interactions associated with
city I and the average extent of the interac-
tions associated with other cities in the net-
work. RSLij is measured at the link level
between a pair of cities and calculates the
proportion of traffic interaction on a single
link between a pair of cities relative to the
total traffic interaction in the network:

DITi =
Ti

(
PJ

j= 1 Tj=J)
ð1Þ

RSLij =
tijPI

i= 1

PJ
j= 1 tij

ð2Þ

where Ti is the total number of passengers/
trains associated with city I, and i6¼j. Cities
with DITi values above 1 are considered
dominant because they are more important
than the average of the other cities in the
network; tij is the total number of passen-
gers/trains travelling between cities i and j,
and i6¼j. RSLij is the value for all links in the
network sum to unity, where individual val-
ues range from 0 to 1. A value of 1 indicates
the highest strength of a link.

ODIc and ODIl are measured for the
structure at the network level. ODIc (equa-
tion 3) is the measure that calculates the
extent to which the total interaction is dis-
tributed evenly across all cities in the net-
work. ODIl (equation 4) is the overall
distribution index based on links, and it
measures the extent to which the total inter-
action is distributed evenly across all links
(city pairs) in the network.

ODIc = �
XI

i= 1

(Zi) ln (Zi)

ln I � 1ð Þ ð3Þ

ODIl = �
XL

l = 1

(Zl) ln (Zl)

ln Lð Þ ð4Þ

Zi is the share of passengers associated with
city i within the total number of passengers/
trains, and I is the number of cities in the
network. ODIc ranges from 0 to 1. A value
of 0 measures the highest hierarchical differ-
ential. Zl is the share of passengers/trains
travelling on link l among the total number
of passengers/trains, and L is the potential
number of links in the network. ODIl ranges
from 0 to 1. A value of 0 measures the high-
est hierarchical differential.

Data description and data comparison
method

The Transportation Bureau of the China
Railway Corporation collected the passenger
flow data which are used in this study, includ-
ing the incoming and outgoing numbers of D
trains (average operational speed around 200
km/hour) and G trains (average operational
speed around 300 km/hour) for O/D passen-
gers travelling between pairs of cities. This
data set covers the 106 existing HSR cities in
China up to the end of 2013 (over 436 million
passengers). Some cities, such as Tianjin and
Jinan, have more than one HSR station, and
the passenger numbers for multiple HSR sta-
tions have been merged for one city. Because
seven cities with HSR stations were connected
during 2013, we omitted those seven cities to
have a complete overview of national HSR
flows for the stations existing throughout
2013. In addition, some passengers transit in
hub cities, such as Beijing and Guangzhou, to
take another HSR train to their destination.
In our data set, these journeys with a transfer
are counted as two individual trips. Therefore,
we acknowledge that, to some extent, passenger
flow data may slightly misrepresent the actual
number of passengers travelling from their ori-
gins to hub cities (or to non-hub cities).
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Regarding the time schedule data, we
used the Jipin time schedule for extracting
only the daily frequency of HSR trains in
2013.1 We collected the O/D train flows
from the 12 months of 2013 for the same 99
cities as the acquired passenger flow O/D
data set. The data sets include the number of
all D+G trains from one city to the other
in a matrix table. We then calculated the
average daily HSR frequency from the time
schedule data sets, including two types of
HSR trains (G trains and D trains).

In total, we had 99 HSR cities and 1240
HSR connections for both types of data sets
at the national scale. Both values were calcu-
lated for time schedule data as well as for
passenger flow data to identify the differ-
ences in the rank of cities and links using
two types of data sets.

Observed differences between the types of
data will be explained by the attributes of
city nodes and links. Three types of indices
from the attributes of urban systems were
chosen as potential determinants of the
observed differences (Table 1). First, indica-
tors for the socio-economic performance of
cities have been chosen: GDP per capita,
urban population and employment in the
tertiary sector (Limtanakool et al., 2007b;
Taylor, 2009). These indicators represent a
measure of the potential travel demand of a
given city. Due to the high correlation
between tertiary employment and urban
population, we have chosen tertiary employ-
ment given that HSR travel is orientated
mainly towards tertiary industry in a city,
such as the finance and estate sectors
(Cheng et al., 2015). Second, the topological
properties of transport networks are impor-
tant (Reggiani and Nijkamp, 2007). These
topological properties of transportation net-
works, i.e. degree centrality (DC), closeness
centrality (CC) and betweenness centrality
(BC), could reflect the direct connectivity,
accessibility and transitivity of city nodes in
the transportation networks, respectively

(Wang et al., 2011). Because HSR travel is
not a direct point-to-point connection com-
pared to airline travel (Givoni and
Dobruszkes, 2013), and there is a high corre-
lation between CC and DC (Lin, 2012), we
have chosen CC as an indicator. Cities with
a high level of closeness centrality are able
to attract or generate more operational
transportation services (Lin, 2012); high
betweenness centrality in the transportation
network allows a city node to broker more
flows and serve as a crucial hub (Borgatti
et al., 2009). Third, institutional factors have
been identified as potential indicators of
activities that are likely to generate transpor-
tation flows. We assume that the railway
hub status of a city given by the central gov-
ernment could play an important role in the
provision of HSR trains (Jin et al., 2010).
This indicator is different from BC, since it
reflects the hub status of cities from a plan-
ning perspective in the whole railway system
rather than from an operational perspective
in the HSR network. In addition, the higher
the position of a city in the administrative
hierarchy, the more likely it is that people,
especially civil servants living in that city,
would travel to other cities via transporta-
tion networks (Dobruszkes et al., 2011). To
reflect the attributes of city links, we used
the summed attributes of city nodes as indi-
cators for a link. The variable of summed
BC was not used for the difference in link
strength because of its high correlation
with tertiary employment (r = 0.84). A
classical, linear multiple regression model
was drawn up using the ‘stepwise’ method
to determine significant variables that are
useful to include in the model to explain
the differences between the two types of
data in city strength and link strength.
Scatterplot analysis was applied to charac-
terise the cities and links for which time
schedule data are not robust (unacceptable
over- or underestimation) proxies for pas-
senger flow data.
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The scatterplot (Figure 2) can be divided
into six parts: the upper left and right parts,
the middle left and right parts and the lower
left and right parts. The Y-axis represents
the dependent variable, the difference in city
strength or link strength. The X-axis repre-
sents the relevant significant independent
node/link attributes from the regression
model. Based on the three sigma rule of sta-
tistics (Pukelsheim, 1994), we define the
mean value plus and minus one standard
deviation for the Y-axis as the lower and
upper limit values to delimit the values of
time schedule data, which represent passen-
ger data (the middle parts) reasonably well.
In this study, if the differences between the
two types of data (passenger flow and time
schedule data) in city strength and link
strength are above one standard deviation,
then the difference between the two types of
data sets is considered too large. This means
that in this situation, the use of time sched-
ule data will lead to unacceptable over- or
underestimation of city/link strength of devi-
ant cities/links in the upper or lower parts.
The remaining normal cities located in the
middle parts mean that time schedule data
represent passenger flow data for identifying
city and link strength. Furthermore, to dif-
ferentiate the typical characteristics of devi-
ant cities from those of normal cities, we
define the mean value plus one standard
deviation for the X-axis as the threshold
value for the node/link attributes to identify
how the overestimation or underestimation
cases are related to the attributes of nodes
or links of urban systems.

Empirical results for the two
types of HSR data sets on the
strength and structure of urban
networks

First, we compared the two types of data sets
at the national scale to see how HSRT
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networks determine the configuration of
urban networks, whether with concentration
or dispersal effects. The top 10 dominant cit-
ies with a value of DITi larger than 1, and
the accumulated value of the top 10 links,
were noted (see Table 2). Derived from this
analysis, Table 3 directly lists the ranking
change of the cities.

With regard to the city strength DITi,
Shanghai, Beijing and Guangzhou are the
top three dominant cities using passenger
flow data, whereas Nanjing replaces Beijing
in second place using time schedule data.
There are obvious ranking changes from the
passenger flow data to the time schedule
data in Table 2. For example, Guangzhou
and Shenzhen rank third and sixth in the
passenger flow data but drop to ninth and
30th, respectively, in the time schedule data.
Nanjing and Suzhou rank fourth and eighth
in the passenger flow data but rise to second
and fourth, respectively, in the time schedule

data. This reflects the large differences in
ranking the importance of cities in HSR net-
works when using the two different types of
data. Compared with the national network
of passenger flow data, with 28 dominant
cities (DITi city strength larger than 1), that
of the time schedule data has 35 dominant
cities. Furthermore, there are smaller differ-
ences between the values of DITi in the
dominant cities in the national HSR net-
work of the time schedule data. With regard
to link strength, the accumulated value of
the top 10 links in the national network of
the time schedule data (109.14) is much
smaller than that of the passenger flow data
(238.86), indicating that the national net-
work derived from the time schedule data
appears to be less hierarchical than the one
derived from passenger flow data.

Table 4 shows the structure values for
passenger and time schedule data. With
regard to the city structure ODIc, the city

Figure 2. Scatterplot part.
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networks of both data sets show a less hier-
archical configuration, whereas the city net-
work level of the passenger flow data is
more hierarchical than that of the time
schedule data. Regarding the link structure
ODIl, the link networks of both data sets
show a hierarchical configuration, whereas
the link network level of passenger flows is
more hierarchical than that of the time
schedule data as well.

In summary, large differences were found
between the two types of HSR flow data at
the national scale when determining the hier-
archical positions of cities and links. The
time schedule data represent a picture of less
hierarchical urban networks in that there are
fewer dominant cities and smaller accumu-
lated values of top 10 link strength com-
pared with the passenger flow data. That
also means that even though the operational
companies arrange an average number of
HSR trains between cities to pursue disper-
sal effects of HSR networks on national
urban networks, the HSR networks would
still contribute to more concentration effects
regarding actual travel demand. This is in
accordance with the structure values of
national urban networks, which confirm
that the structure values of two types of data
at the city network level present a poly-
centric network, whereas those of the time
schedule data are less hierarchical than those
of the passenger flow data. In light of this,
in the next section we delve further into the
relationships between the differences of the
two types of data in characterising urban
networks and the attributes of city nodes
and links.

Results of the multiple regression

When using the difference in city strength as a
dependent variable, three variables contribute
significantly in predicting variations of the dif-
ference in city strength between the two types
of data. These are GDP per capita, especiallyT
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tertiary employment, and CC (Table 5), with
tertiary employment as the most important
determinant. The other variables chosen are
less useful in accounting for differences in city
strength for our set of cities.

By comparison, the regression model that
describes the difference in link strength
yields the same socio-economic and typolo-
gical variables as above (summed tertiary
employment, summed GDP per capita,
summed CC), but with one different institu-
tional variable (summed hub status), and
summed tertiary employment being the most
important determinant. Although these four
variables account for less than 14% of the
variation in the difference in link strength,
our major focus here is to only select the

most relevant socio-economic, typological
and institutional attributes of city pairs for
the next scatterplot analysis instead of fully
explaining the differences in link strength.
To make sure the results of our selected vari-
ables are consistent, we have also tried
another variable selection method to
improve the explanation power of the model
– the least absolute shrinkage and selection
operator (LASSO) model – to test all of the
predictors. The LASSO model is more effi-
cient for removing DC with high correla-
tions to CC from the final selected model
than doing it by ourselves in the section of
comparison methods. However, the final
explanation power of the LASSO model
(13.6%) in link strength is almost the same

Table 3. Rank of cities using passenger flow and time schedule data.

City Passenger flows Time schedule flows Change in rank

Rank DITi

city strength
Rank DITi

city strength

Shanghai 1 9.91 1 5.81 0
Beijing 2 9.24 3 4.52 –1
Guangzhou 3 5.84 9 2.69 –6
Nanjing 4 5.04 2 5.10 2
Wuhan 5 4.30 6 2.42 –1
Shenzhen 6 3.79 30 1.17 –24
Hangzhou 7 3.55 10 2.42 –3
Suzhou 8 3.30 4 3.54 4
Changsha 9 2.46 12 2.29 –3
Shenyang 10 2.45 17 1.57 –7
Wuxi 11 2.42 5 3.42 6
Jinan 12 2.33 8 2.84 4
Zhengzhou 13 2.23 13 2.23 0
Fuzhou 14 1.98 18 1.54 –4
Xiamen 15 1.88 27 1.19 –12

Table 4. Structure values for the two types of data sets.

Structure values Passenger flows Time schedule flows

ODIc 0.84 0.90
ODIl 0.42 0.49
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as the stepwise model and the importance
order of final selected variables is the same
as the stepwise model. It might be that the
capacity (passenger loading and unloading
volumes) and the number of carriages of
trains that are not covered by the time
schedule data are more important in explain-
ing variations in link strength differences
between the two types of data. However,
data on these variables are not accessible.

Results of the scatterplot analysis

We used scatterplots to observe and inter-
pret the interaction between determinant
attributes and the differences of the values
of city and link strength to clarify the typical
characteristics of cities and links to which
the time schedule data could unacceptably
underestimate or overestimate the passenger
flow data. Based on the regression analyses
(Table 5), we have chosen the determinant-
independent variables, i.e. tertiary employ-
ment, GDP per capita and CC at the city
level, and summed tertiary employment, CC,
GDP per capita and hub status at the link
level.

City level

In the scatterplots of Figure 3, the Y-axis
represents the dependent variable (the differ-
ence between two types of data in city
strength) and the X-axis represents the rele-
vant independent variables. The critical
range for the Y-axis (–1.06, 0.77) is defined
as the values between the mean value of the
difference in city strength plus and minus
one standard deviation, and the threshold
values for the X-axis (tertiary employment
of 1.41 million persons, GDP per capita of
124.450 and CC of 0.6) are defined as the
mean value of each factor plus one standard
deviation. In the middle parts of the scatter-
plots are cities for which time schedule data
are reasonably good representations ofT
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passenger data. Compared with the use of
passenger flow data, for ‘deviant cities’ in the
lower or upper parts of the scatterplots with
values of difference in city strength outside
this range, the use of time schedule data leads
to an unacceptable under- or overestimation
of actual city strength. In total, there are six
and seven deviant cities in the lower and
upper parts, respectively; the rest of the 86
normal cities are in the middle parts.2 Given
that tertiary employment and GDP per capita
exert negative impacts, and CC a positive
impact on the difference in city strength, we
visualised the deviant cities beyond the thresh-
old values of tertiary employment and GDP
per capita, and under the threshold value of
CC in the lower shaded parts, and the deviant
links under the threshold values of tertiary
employment and GDP per capita, and beyond
the threshold value of CC in the upper shaded
parts of Figure 3.

By taking into consideration the most
determinant socio-economic indicators (ter-
tiary employment and GDP per capita), only
four out of six deviant cities are beyond both
threshold values (i.e. Beijing (1), Shanghai
(22), Guangzhou (51) and Shenzhen (52)) in
the lower shaded parts of the relevant scat-
terplots. This reflects that the city strength
of cities with the characteristic of high socio-
economic performance tends to be unaccep-
tably underestimated by time schedule data.
As the widely acknowledged top four ranked
cities in the Chinese urban system, these
first-tier class cities in China with much
larger tertiary employment are able to gener-
ate higher travel demand than other cities
with lower tertiary employment (Cheng
et al., 2015). Besides, passengers living in cit-
ies with a much larger GDP per capita are
more likely to be able to afford the monetary
travel cost, considering the expensive prices

Figure 3. Scatterplot analysis on the difference in city strength.
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of HSR tickets (Liu and Kesteloot, 2015).
Consequently, it can be expected that the
capacity of trains to and from these cities,
which is not reflected in the time schedule, is
much higher than for other cities, thus lead-
ing to a considerable underestimation of
their city strength.

By comparison, the cities under the
threshold values of tertiary employment and
GDP per capita include not only six out of a
total of seven deviant cities in the lower
parts, i.e. Dezhou (4), Xuzhou (12),
Zhenjiang (18), Changzhou (19), Yueyang
(45) and Shaoguan (50), but also 81 of a
total of 86 normal cities in the middle parts,
with time schedule data representing passen-
ger flow data. The high percentages of both
deviant cities (86%) and normal cities (94%)
with low socio-economic performance indi-
cate that a city with the characteristic of low
socio-economic performance will not neces-
sarily be a deviant city whose city strength
tends to be unacceptably overestimated by
time schedule data. The reason could be that
although cities with relatively low socio-
economic performance are less likely to gen-
erate large travel demand, there is still a high
chance that the supply of HSR services to/
from those cities is also rather low because
of their low socio-economic performance.
Thus, it is necessary to take into account the
attribute of CC to differentiate the typical
characteristics of deviant cities from those of
normal cities, although the contribution of
CC is limited. By further taking into account
the cities beyond the threshold value of CC,
we find that the cities in all three scatterplots
(Figure 3) are the only deviant cities –
Zhengzhou (18), Changzhou (19) and
Yueyang (45) – in the upper shaded parts of
the scatterplots, whose accessibility levels
are much higher than other cities in the
HSR network. This indicates that time
schedule data tend to overestimate the
importance of cities with relatively low val-
ues of tertiary employment and GDP per

capita only when their accessibility levels are
much better in the transportation network.
These cities with much better accessibility in
HSR networks have a higher frequency of
HSR trains compared with other cities (Jiao
et al., 2017), which is not supported by their
rather low levels of travel demand.

In sum, on the one hand, when cities’ ter-
tiary employment and GDP per capita are
much higher than their threshold values,
their city strength tends to be largely under-
estimated by time schedule data. On the
other hand, when the accessibility of cities
with relatively low socio-economic perfor-
mance is much higher than the threshold
value of the transportation network, their
city strength tends to be severely overesti-
mated by time schedule data.

Link level

In the scatterplots of Figure 4, the critical
range (–0.21, 0.21) for the Y-axis is defined
as the values between the mean value of the
difference in link strength plus and minus
one standard deviation; the threshold values
for the X-axis (summed tertiary employment
of 282 million persons, summed GDP per
capita of 232.892 RMB, summed CC of 1.2
and summed hub status of 1) are defined as
the mean value of each factor plus one stan-
dard deviation. Deviant links within the
range 0.21–0.83 in the upper parts represent
links for which time schedule data consider-
ably overestimate the link strength of the
passenger flow data, while deviant links
within the range 4.55–0.21 in the lower parts
reflect that time schedule data greatly under-
estimate the link strength by passenger flow
data. In total, there are 15 and 41 deviant
links in the upper and lower parts, respec-
tively; the rest of the 1184 normal links are
in the middle parts. Considering that
summed tertiary employment, GDP per
capita and hub status exert negative impacts
and summed CC a positive impact on the
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difference in link strength, we visualised the
deviant links beyond the threshold values of
the summed tertiary employment, summed
GDP per capita and summed hub status,
and under the threshold value of summed
CC in the lower shaded parts, and the ones
under the threshold values of summed ter-
tiary employment, summed GDP per capita
and summed hub status, and beyond the
threshold value of summed CC in the upper
shaded parts of Figure 4.

By only taking into account the most
determinant socio-economic indicators
(summed tertiary employment and summed
GDP per capita), the links beyond the
threshold values include not only 11 out of a
total 41 deviant links in the lower parts of
the scatterplots (i.e. Guangzhou–Shenzhen
(32), Wuhan–Guangzhou (26), Shanghai–
Hangzhou (23), Shanghai–Wuhan (22),
Suzhou–Shanghai (21), Wuxi–Shanghai (20),

Nanjing–Shanghai (18), Beijing–Shenyang
(11), Beijing–Wuhan (10), Beijing–Shanghai
(5), Beijing–Nanjing (4), Beijing–Qingdao (2)
and Beijing–Jinan (1)), but also 24 out of a
total of 1184 normal links in the middle
parts. Regarding a much higher percentage
of links with high socio-economic perfor-
mance to be a deviant city (30%) in the
lower shaded parts than a normal city (2%)
in the middle parts, links with the character-
istic of high socio-economic performance
tend to be largely overestimated by time
schedule data. Obviously those deviant links
are links in China whose city ends serve as
socio-economic cores, and major cities in
specific regions; for instance, Beijing and
Shanghai are socio-economic cores, in the
Bohai Rim and YRD regions, and
Guangzhou and Shenzhen are the cores in
the PRD region, having strong functional
interactions with each other and other

Figure 4. Scatterplot analysis on the difference in link strength.
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major cities such as Shenyang, Hangzhou
and Nanjing. Therefore, to satisfy the above
average demand of passengers travelling
between those city nodes, with regards to
the maximum capacity of operating trains
in the railway systems, operation companies
provide relevant routes between city nodes
with longer trains that offer more seats,
which are not reflected in the time schedule
data. If we further consider the attributes
‘summed CC’ and ‘summed hub status’, the
links in all four scatterplots in Figure 4 con-
cern only deviant links, i.e. Guangzhou–
Shenzhen (32) and Wuhan–Guangzhou
(26), in the lower shaded parts. For these
links, besides the intense functional interac-
tions between the linked socio-economic
cores, these cores also serve as railway hubs
in China, meaning that next to original pas-
sengers travelling for functional activities in
those cores, as hubs they can also generate
additional passengers in between for their
next transit trips by conventional railways
(Jin et al., 2010). However, due to a low
level of accessibility of the links in the HSR
network, operational companies only pro-
vide the relevant routes with a fewer than
average supply of HSR trains with more
carriages and seats to satisfy the additional
travel demand for transit trips, which will
lead further to an unacceptable underesti-
mation of the link strength by time schedule
data.

By comparison, the links under the
threshold values of summed tertiary employ-
ment and summed GDP per capita are not
only 10 out of a total of 15 deviant links in
the upper parts of the scatterplots, i.e.
Putian–Quanzhou (56), Changsha–Shaoguan
(55), Wuhan–Shaoguan (54), Wuhan–
Chenzhou (53), Shijiazhuang–Zhengzhou
(52), Zhenjiang–Changzhou (47), Jinan–
Nanjing (45), Jinan–Xuzhou (44) and
Cangzhou–Jinan (43), but also 975 out of a
total of 1184 normal links in the middle
parts. Regarding the high percentages of

both deviant cities (67%) and normal cities
(82%) with low socio-economic performance,
this also indicates that the city link with the
characteristic of low socio-economic perfor-
mance will definitely not be a deviant link to
which time schedule data largely overesti-
mate passenger data. Therefore, it is neces-
sary to take into account other determinant
attributes to characterise the deviant links.
By further considering summed hub status
and summed CC, there is only one deviant
link in the upper shaded parts of all four scat-
terplots of Figure 4, Zhenjiang–Changzhou
(47), with quite a high level of accessibility
and linked city ends being non-railway hubs.
As opposed to Wuhan–Guangzhou (26) and
Guangzhou–Shenzhen (32) in the lower
shaded parts of all four scatterplots, as two
non-railway hubs, Zhengjiang and
Changzhou with low socio-economic perfor-
mance would be less likely to generate pas-
sengers travelling in between for functional
activities and following transit trips.
Meanwhile, both linked city ends with a high
level of accessibility in the HSR network
are able to receive a larger than average sup-
ply of HSR services in between. As a conse-
quence, the situation of a high frequency of
HSR trains with low capacity running
through the relevant routes will give rise to
an excessive overestimation of the link
strength by time schedule data.

In sum, the link strength of city links with
city ends of high socio-economic perfor-
mance in respective regions has a high
chance of being underestimated by time
schedule data. Furthermore, for links with
city ends serving as railway hubs and having
relatively low accessibility in the transporta-
tion network, the link strength between these
city ends is even more underestimated by
time schedule data. In contrast, the link
strength between cities with relatively low
socio-economic performance, which serve as
non-railway hubs, and which are highly
accessible in the transportation network, is
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severely overestimated by time schedule
data.

Conclusion and discussion

Large differences exist between passenger and
time schedule data for measuring the config-
uration of urban networks connected by HSR
networks, due to the intrinsic nature of the
two types of data representing market
demand and supply. To the best of our
knowledge, this article is the first study to
apply the same original indices of a model
proposed by Limtanakool et al. (2007a) (the
strength of cities and links and the structure
of city and link networks) to compare two
types of HSR flow data in the characterisa-
tion of urban networks regarding spatial con-
centration and dispersal effects of HSR
networks. Then, according to the most deter-
minant attributes of urban systems for
explaining the differences between the two
types of flow data, we identified the typical
characteristics of urban systems in which time
schedule data is not a good proxy for passen-
ger flow data by means of scatterplot analysis.

This research indicates small differences
for the empirical analysis on the structure of
city and link networks in China but signifi-
cant differences between passenger data and
time schedule data on ranking the city nodes
and links. Both the structures of the city net-
works and of the link networks show the
same configurations (less hierarchical at the
city network level and hierarchical at the
link network level); however, those of pas-
senger flows are all more hierarchical than
those of time schedule flows. This further
reflects that even though the Chinese gov-
ernment aims to balance the development of
regions by supplying a high frequency of
HSR trains between cities (Jiao et al., 2017),
the relevant configuration of urban networks
still tends to present a more hierarchical
structure regarding actual HSR travel

demand. In other words, HSR networks
would in fact contribute more concentration
effects reflected from the demand side than
dispersal effects expected from the supply
side on national urban networks. The most
determinant indicators for explaining the
differences in city and link strength are
socio-economic factors (tertiary employment
and GDP per capita), followed by the cities’
topological properties in HSR networks
(closeness centrality) and institutional fac-
tors (hub status). The strength values of city
nodes and links with low socio-economic
performance are not necessarily related to an
unacceptable overestimation by time sched-
ule data. The reason could be related to their
low socio-economic performance with a low
travel demand; operational companies corre-
spondingly provide them with a small supply
of HSR services. However, if these city
nodes and links are highly accessible in HSR
networks, their strength values tend to be
largely overestimated by time schedule data,
especially when linked city nodes are not
hubs in the conventional railway network.
The reason could be that Chinese HSR net-
works, which were inaugurated in 2003 and
are expected to be completed in 2020, aim to
improve the accessibility of Chinese cities in
the railway network, especially cities with
low socio-economic performance, to realise
the integration of different regions, even
those with rather low passenger flows
between these cities in the first few years. As
a result, based on time schedule data, the
importance of these city nodes is overesti-
mated in the HSR and national urban net-
works, and the concentration effects of HSR
networks on those cities would not be what
is expected by the government (Wu et al.,
2014). On the other hand, cities with a city
strength unacceptably underestimated by
time schedule data are major first-tier cities
in China with high tertiary employment
and GDP per capita. City links with a link
strength unacceptably underestimated by
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time schedule data normally connect socio-
economic core cities and other major cities
within their respective regions at different
spatial scales. This might be a result of a
larger than average capacity in trains run-
ning to and from these major tier cities com-
pared with lower-tier cities, to satisfy the
demands of passenger travel. That also
means that HSR networks would actually
exert concentration effects on those cities,
rather than the dispersal effects expected by
the government, with the aim of integration
of those cities with other lower-tier cities. In
addition, if these major tier cities are not
highly accessible in the HSR network but
still serve as railway hubs, it will further lead
to an excessive underestimation of the link
strength between those city nodes, as a result
of an even lower supply of HSR services,
with more carriages and seats to satisfy a
larger travel demand, including original pas-
sengers for functional activities in/between
these cities and additional passengers for
their next transit trips. Unfortunately, these
data were not available to us.

In light of the case study of HSR net-
works in China, a comparative analysis was
developed on Chinese urban networks
between passenger and time schedule data.
With regard to the high accessibility of time
schedule data, we cannot deny the usefulness
of the application of time schedule data in
characterising urban networks. However,
urban geographers and transportation plan-
ners should bear in mind that the large differ-
ences found in the city and link strengths
based on the two types of HSR flow data are
strongly related to the socio-economic status
of city nodes connected by HSR, especially for
major city nodes with large passenger demand.
When analysing the spatial structure of HSR
and urban networks by means of the flow
approach, it is necessary for experts to con-
sider not only the frequency of transportation
modes but also, more importantly, the capac-
ity of each carriage in the absence of actual

passenger flow data. This is especially true for
cities and regions with large tertiary employ-
ment, and GDP per capita such that of as
Beijing and Shanghai, and the links between
them may be largely underestimated by the
time schedule data. Furthermore, the findings
on the differences in the empirical results of
the two types of HSR flow data generate inter-
esting future research questions concerning
whether they are applicable to other urban
networks (e.g. those of France and Germany)
that have built up complete HSR networks, or
to other high-speed transportation mode net-
works (e.g. airlines) or even to other dimen-
sions of networks such as symmetry.
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Notes

1. Jipin is a software used to check the official
time schedule (www.12306.cn). However,
detailed information on the capacity and
number of train carriages is not accessible

from the time schedule.
2. The exact values of the variables of the devi-

ant and normal cities/links are available upon
request from the authors.
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