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Chapter 11 

Introduction 

 

 
To understand our nature, history, and psychology, we must get inside the 

heads of our hunter-gatherer ancestors. For nearly the entire history of our 
species, Sapiens lived as foragers. The past 200 years, during which ever increas-
ing numbers of Sapiens have obtained their daily bread as urban laborers and 
office workers, and the preceding 10,000 years, during which most Sapiens lived 
as farmers and herders, are the blink of an eye compared t0 the tens of thousands 
of years during which our ancestors hunted and gathered.  

Yuval Noah Harari, 2011, p.45. 

Foragers mastered not only the surrounding world of animals, plants and 
objects, but also the internal world of their own bodies and senses. They listened 
to the slighest movement in the grass to learn whether a snake might be lurking 
there. They carefully observed the foliage of trees in order to discover fruits, 
beehives and birds’ nests. They moved with a minimum of effort and noise, and 
knew how to sit, walk and run in the most agile and efficient manner. Varied and 
constant use of their bodies made them as fit as marathon runners. They had 
physical dexterity that people today are unable to achieve even after years of 
pracising yoga or t’ai chi.’ 

Yuval Noah Harari, 2011, p.55-56. 

1.1 Introduction 

Collective lifestyle, as enabled by technology and culture, largely defines how we live and from 
what we suffer. Without doubt, the modern lifestyle is a bliss for most people. Compared with 
our ancestors who hunted and gathered in tribes, we are no longer constantly worried about 

                                                   
 
1 This chapter is partly based on Zhang, C., van Wissen, A., Lakens, D., Vanschoren, J., De Ruyter, B., & 
IJsselsteijn, W. A. (2016). Anticipating habit formation: a psychological computing approach to behavior 
change support. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiq-
uitous Computing: Adjunct (pp. 1247-1254). ACM. 
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getting fatally injured or harmed, or having to starve at the end of a long, industrious, but 
unfortunate day. Instead, a typical day for many of us is filled with sitting in between walls 
and concrete that isolate us from any foreseeable danger. Food, often with high-calorie, can 
be delivered to our fingers at any time. The comfort of modern life, however, comes at some 
costs. For on thing, perhaps with the exception of our fingers, we exercise our bodies so little 
that physical exercise becomes a luxury hobby. Moreover, eating has moved far beyond a sur-
vival necessity to a kind of entertainment, and our lust for fat and sugar is exploited by the 
food industry. Finally, the high pace of modern society and a worsened connectedness to na-
ture and kinship contribute to stress, anxiety, and loneliness, which undermine physical 
health as well. The modern lifestyle is one entangled with chronic diseases and health prob-
lems. 

According to a report by the World Health Organization (WHO) and the Lancet, chronic dis-
eases account for up to 71% of mortality worldwide (Bennett et al., 2018), and they put enor-
mous burdens on both the affected population and the healthcare system. Research in the 
last few decades has identified unhealthy lifestyle behaviors as a major risk factor for chronic 
diseases, including unhealthy diet, physical inactivity, smoking, and alcohol intake as the “big 
four” (Bauer, Briss, Goodman, & Bowman, 2014; Ezzati & Riboli, 2013). As much as we can-
not go back to the old days of hunting in the forests, it seems reasonable for individuals to 
make efforts to change their unhealthy lifestyle behaviors. 

Unfortunately, lifestyle behaviors are notoriously difficult to change. A change in lifestyle re-
quires making not only one healthy decision (e.g., getting a vaccine), but a substantial number 
of healthy decisions over a prolonged period of time. Without external supports, even moti-
vated individuals find themselves vulnerable to everyday temptations, self-control failures, 
and bad habits. Ever since the identification of the behavioral risk factors, intervention pro-
grams have been designed, tested, and implemented to promote behavior change. Tradition-
ally, interventions target people with diagnosed chronic conditions or at-risk populations, 
and they are usually centralized and delivered through face-to-face communications. More 
recently, interests in lifestyle interventions as a solution to everyone’s health problems have 
really been intensified, thanks to the developments of digital technologies. Digital lifestyle 
interventions, delivered through computers, websites, and smartphones, are believed by 
many to be an effective solution for promoting healthy lifestyles at a large scale (e.g., Heron 
& Smyth, 2010; IJsselsteijn, de Kort, Midden, Eggen, & van den Hoven, 2006; Kaplan & Stone, 
2013; Klasnja & Pratt, 2012). Reasons for this optimism about the technology include digital 
systems’ ubiquity in people’s daily lives, their tremendous ability to collect behavioral data, 
and the rapid advances in machine intelligence. All these reasons point to a future of person-
alized and “just-in-time” interventions by smart and mobile applications (see Intille, Kukla, 
Farzanfar, & Bakr, 2003; Jaimes, Calderon, & Lopez, 2015; Nahum-Shani, Hekler, & Spruijt-
Metz, 2015).  
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So, how far are we in reaching this future? On the positive side, the research and development 
of digital lifestyle interventions are still booming. In some sense, digital technology has trans-
formed behavior change from a small sub-field of applied psychology to a multidisciplinary 
field that attracts psychologists, computer scientists, industrial designers, and ethical experts 
(e.g., see the growing popularity of behavior change research in Figure 1.1). Besides scientific 
research, the consumer market has already witnessed an abundance of digital lifestyle inter-
ventions in many different forms, exemplified primarily by self-tracking wearables (e.g., Fit-
bit) and mobile health apps (e.g., Google fit), but also by more sophisticated lifestyle coaching 
apps. For example, the app Habitica uses gamification strategies to support the development 
and change of health-related habits (Diefenbach & Müssig, 2019). 

 

Figure 1.1 Popularity of key words in Google Scholar search results (values represent ratios 
of numbers of search results to the total number of publications in each period2). 

However, when it comes to long-term user engagement and the actual effectiveness of digital 
lifestyle interventions, the picture is much less encouraging. According to a marketing anal-
ysis report (Ledger & McCaffrey, 2014), although one in ten U.S. citizens own a self-tracking 
device, around 0ne-third lost interests in the products after just 6 months, and over half of 
them eventually abandoned the devices. This suggests that many users do not perceive the 
benefits from the devices as promised, such as data-driven self-discovery (see Kersten-van 
Dijk, Westerink, Beute, & IJsselsteijn, 2017) or increased motivation for change. The lack of 
effectiveness has been repeatedly reported in the literature. For example, a paper published 
in the Journal of the American Medical Association concluded that the self-tracking devices 
had negative rather than positive effects on motivating physical activities based on a clinical 

                                                   
 
2 The search was restricted to journals containing the following key words: psychology, psychological, be-
havior, behavioral, medicine, medical, neuroscience, health, personality, and statistics. 
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trial (Jakicic et al., 2016). Based on a review of systematic reviews, Marcolino and colleagues 
(2018) also concluded that evidence was still limited regarding the efficacy of mobile health 
interventions, due to the low quality of reviews and a lack of long-term studies. A typical con-
clusion can be found in many more papers – short-term positive effects have been reported, 
but it remains unclear whether the same effects are also to be expected in the long-term, and 
whether these effects are generalizable to daily situations outside of research trials (Free et 
al., 2013; Hermsen, Frost, Renes, & Kerkhof, 2016; Kohl, Crutzen, & de Vries, 2013; Mateo, 
Granado-Font, Ferré-Grau, & Montaña-Carreras, 2015; Nour, Chen, & Allman-Farinelli, 
2016). 

A central argument in this thesis is that the effectiveness of digital lifestyle interventions de-
pends critically on the progress of psychology and behavioral sciences and their translation 
to applications. One can consider digital lifestyle interventions as a form of behavioral tech-
nologies to contrast it with the more traditional physical technologies, such as automobiles 
or computers. For the latter, although human factors certainly play a role, physics and engi-
neering sciences are at the core of their functioning. In contrast, the development information 
technologies alone cannot realize the promises of digital interventions, unless they are ac-
companied by knowledge about human behavior. In this thesis, a novel approach, called psy-
chological computing, is motivated and explored, with an aim of maximizing the positive 
mutual influences between psychological theories and digital lifestyle interventions

1.2 The gap between psychological theories and digital lifestyle interven-
tions 

The close relationship between psychological theories and digital lifestyle interventions has 
been recognized by many researchers, and there have been repeated advocates for applying 
behavior change theories to improve the design of digital intervention systems (Kaplan & 
Stones, 2013; Michie & West, 2013; Patel, Asch, & Volpp, 2015; Riley et al., 2011; Saranummi 
et al., 2013). Ideally, theories and interventions should benefit each other. Good theories, 
when applied properly, are expected to increase the effectiveness of interventions. More spe-
cifically, theories may help to identify behavioral determinants as intervention targets, to 
translate general behavior change techniques to fine-tuned features in applications, and even 
to predict intervention outcomes. On the other hand, the vast amount of behavioral data col-
lected by digital systems in people’s daily lives would potentially contribute to the evaluation 
of existing behavior change theories (Dunton & Atienza, 2009; Saranummi et al., 2013). Com-
pared with data from more traditional laboratory experiments, digital systems can provide 
behavioral data with larger and more diverse samples, greater ecological validity, and higher 
temporal resolution. 
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Despite these expectations, the synergy between theory development and intervention prac-
tice is far from ideal (for a review, see Prestwich, Webb, & Conner, 2015). The role of behavior 
change theories in digital interventions is not as prominent as one would hope. Several sur-
veys indicate that the application rate of theories in digital intervention trials and commercial 
health apps ranges between 20% and 50% (Al-Durra, Torio, & Cafazzo, 2015; Conroy, Yang, 
Maher, 2014; Prestwich et al., 2015; Riley et al., 2011). When theories are applied, only 3 to 5 
classical theories dominate in applied settings (Davis, Campbell, Hildon, Hobbs, & Michie, 
2015; Webb, Joseph, Yardley, & Michie, 2010). State-of-the-art theoretical models from a 
broader psychology literature are rarely used by intervention designers. Moreover, the as-
sumed benefits of applying theories have been questioned by an empirical study where no 
difference in effectiveness was found between theory-informed or theory-free interventions 
(Prestwich et al., 2014). Finally, as for theory development, data collected by digital systems 
are usually used for evaluating the effectiveness of specific interventions, but are rarely used 
to examine predictions derived from theoretical models.  

One factor contributing to this “theory-intervention gap” is the lack of theory integration in 
behavior change research (see Gainforth, West, & Michie, 2015), especially those that are tai-
lored to digital lifestyle interventions. Even for a phenomenon as complex as behavior change, 
the large number of individual theories pertaining to behavior change – 83 according to a 
systematic review (Davis et al., 2015) – clearly suggests that theory development in the field 
is still in the early stages. The number can also be overwhelming for intervention designers 
who want to have a grasp of the literature, but are not specialized in behavioral science. Per-
haps the difficulty to orient in the literature can explain why only a small number of classical 
theories are popular in applied research (Davis et al., 2015). Many basic theoretical ideas in 
psychology, despite being highly relevant, are underrepresented in behavior change research, 
such as decision-making, reinforcement learning, self-control, and habit and goal-directed 
learning. 

The lack of impact of theories on interventions also raises the question whether the level of 
knowledge about lifestyle behavior change is too limited to be useful. Two specific reasons 
have been proposed by Riley and colleagues (2011) to argue why traditional behavior change 
theories are inadequate in the digital age. First, there is a mismatch between traditional the-
ories and digital interventions, in terms of at what temporal scale behaviors are represented. 
For example, while a healthy-eating app may intervene in its users’ dietary choices on a daily 
basis, the classic Transtheoretical Model (Prochaska & DiClemente, 1982) only describes 
stages of behavior change in terms of months. If a theory represents behavior at a coarse 
temporal scale, processes at finer scales are overlooked and time-intensive digital interven-
tions cannot be informed. Second, most traditional theories are static rather than dynamic. 
In other words, they provide “snapshot” explanations about what factors determine behavior, 
but neglect the dynamic interactions between these factors and behavior. For instance, in the 
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widely applied Theory of Planned Behavior (Ajzen, 1991), no temporal dynamics of the be-
havioral determinants in the model are specified, nor are any mechanisms to account for the 
reciprocal influences of behavior on its determinants.

1.3 The advantages of computational models over traditional theories 

Theory development in psychology can go through four different phases, as to describe, ex-
plain, predict, and control behavior. The problem of lifestyle behavior change would have 
been solved if theory development is already in the control phase, but most current theories 
are still in the phases of increasing explanatory power and predictive precision. In the past 
decades, formalizing theories as computational models have contributed greatly to advance 
psychological theories in various domains, such as speech perception (McClelland & Ru-
melhart, 1981), memory (Ratcliff, 1978), and higher-level cognition (Anderson, 1996). How-
ever, more applied fields, such as behavior change, are still dominated by descriptive statis-
tical models and verbal explanatory theories. 

Some traditional behavior change theories are descriptive, in the sense that they represent 
correlations or potentially causal relationships between variables, but not psychological pro-
cesses or cognitive mechanisms underlying a phenomenon. For example, the Theory of 
Planned Behavior essentially states that the variance in actual behavior is partially related to 
the variance in three behavioral determinants (attitude, social norm, and perceived behavior 
control), but it does not offer a process model of how these determinants actually interact to 
generate behavior. Ajzen (1991) said himself that the Theory of Planned Behavior was devel-
oped mainly for behavior prediction rather than explanation. Note that the term prediction 
used by Ajzen, and as often by some social psychologists, means no more than correlation. 
Precise predictions are usually not possible given the moderate correlations between the var-
iables.

Other traditional theories aspire to explain behavior verbally, such as Social Cognitive Theory 
(Bandura, 1989), the control theory of self-regulation (Carver & Scheier, 1982), and theories 
of habit formation in social psychology (e.g., Wood & Neal, 2007). However, they are high-
level theories that lack clear operationalizations. For example, the process of habit formation 
has been described as the build-up of a mental link between a behavior and a context (e.g., 
Neal, Wood, & Quinn, 2006; Rothman et al., 2015; Wood & Neal, 2007), but this verbal de-
scription leaves out many necessary details: Does the rate of habit growth change over time? 
Or what happens to the mental association if the target behavior is not performed? Answering 
these questions would force one to formalize the theory into a formal model. 

The advantages of computational models over verbal theories have been discussed exten-
sively elsewhere (Farrell & Lewandowsky, 2010; Hintzman, 1991; Marewski & Olsson, 2009; 
Smaldino, 2017), but we highlight some key points here. First, computational models require 
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one to precisely define the core mechanism as well as peripheral assumptions in a theoretical 
system. Compared with verbal theories, which are often based on ambiguous language, com-
putational models can sharpen the theorizations of individual researchers and facilitate more 
accurate communication among researchers (Farrell & Lewandowsky, 2010). Second, while 
predictions by verbal theories are mostly directional (e.g., positive or negative correlations, 
or directional differences between groups), predictions by computational models can be pre-
cise and comprehensive, e.g., in the form of point estimates of differences, or distinct quan-
titative patterns under different conditions. These predictions make the underlying theories 
more falsifiable, and the comparisons between theories more compelling than what would be 
possible with null-hypothesis significance testing (Marewski & Olsson, 2009). Third, through 
simulations, computational models free theorists from their limited human reasoning capac-
ities to understand previously unknown implications of their theories (Smaldino, 2017). This 
is especially true when one deals with complex systems, such as lifestyle behaviors that are 
influenced by many internal and external factors. 

There is an additional reason why computational models are especially useful for digital life-
style interventions. Because these models are essentially computer programs or mathemati-
cal equations, they can be easily implemented in digital systems. If an implemented model is 
valid, a digital system is equipped not only with sensing power, but also the ability to reason 
about the behaviors of its users. There is indeed a growing interest in building computational 
models of behavior change in order to improve the application of psychological theories to 
digital interventions (e.g., Hekler et al., 2016; Nilsen & Pavel, 2013; Riley et al., 2011; Spruijt-
Metz et al., 2015). Two examples are discussed in detail for illustrative purposes.  

Example 1: Computerized Behavior Intervention model 

One notable example is the Computerized Behavior Intervention (COMBI) model (Klein, 
Mogles, & van Wissen, 2011; see Figure 1.2), which has been implemented in real digital in-
tervention systems (Kamphorst, Klein, & van Wissen, 2014). Based on the transtheoretical 
model of behavior change (Prochaska & DiClemente, 1982), the COMBI model formally rep-
resents a behavior change process as going through five stages – precontemplation, contem-
plation, preparation, action, and maintenance. It then defines the behavioral determinants 
that would move users from one stage to the next. Thus, a digital system equipped with the 
COMBI model has an internal representation of a user’s progress and the factors that influ-
ence the stage transitions. Through a search algorithm, the system can reason about the “bot-
tlenecks” that hold back an individual user and select intervention techniques that target  the 
restraining determinants (Klein, Mogles, & van Wissen, 2014).  
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Figure 1.2 A visual representation of the COMBI model (adapted from Figure 1 in Klein et 
al., 2014). 

Example 2: A control system model of Social Cognitive Theory 

Another interesting example is a formalization of Social Cognitive Theory (SCT, Bandura, 
1989) using a control engineering approach (Riley et al., 2015). Although Social Cognitive 
Theory encompasses a set of explanatory mechanisms of behavior change verbally (e.g., social 
learning, and self-efficacy), the evaluations and applications of the theory are largely at the 
phase of describing the inter-individual statistical relationships between variables in the the-
ory. By using a fluid metaphor, variables in the theory are modeled as “inventories” or “res-
ervoirs” with their levels fluctuate over time, depending on inflows from other variables and 
outflows to other variables (see Figure 1.3). This dynamic-system representation allows the 
modeling of the relationships between state variables as a set of differential equations. Thus, 
intra-individual dynamics of behavior, self-efficacy, outcome expectancy, among other de-
terminants, and their reciprocal influences can be simulated precisely. According to Riley and 
colleagues (2015), their dynamic version of Social Cognitive Theory can potentially be used 
to facilitate intensive and adaptive interventions.  
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Figure 1.3 A control system model of Social Cognitive Theory (adapted from Figure 2 in 
Riley et al., 2015).

1.4 A psychological computing approach to digital lifestyle interventions 

Motivated by the promise of using computational models to bridge the gap between psycho-
logical theories and digital lifestyle interventions, a psychological computing1 approach to 
digital lifestyle interventions is proposed as a general framework of this thesis. At the core of 
the approach is a theory-based computational model of human behavior implemented in a 
digital system. The model assists the system to understand, predict, and change its users’ 
behaviors. 

Figure 1.4 illustrates how the computational model relates to other system components in a 
digital system that follows the psychological computing approach (see Zhang et al., 2016). 
The system consists of an input component for gathering necessary data, a processing com-

                                                   
 
1 The choice of the term “psychological computing” can be better understood by comparing it to affective 
computing (Picard, 2000). While in affective computing research, the ultimate goal is to build machines 
that understand human emotions, in the psychological computing approach the goal is for machines to 
understand users’ internal cognitive states, such as goals, habits, and beliefs. Understanding emotions 
could also be relevant if it helps a system to change lifestyle behaviors, and thus we chose to use “psycho-
logical” rather than the more narrowed word “cognitive”. The term also emphasizes the use of psychologi-
cal theories, in addition to data, to infer users’ internal states.  
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ponent for turning data into useful information based on the underlying model, and an actu-
ation component to choose an intervention based on the information. On the user side, we 
adopt a cognitive view of behavior that any stimulus from the environment (including the 
system’s intervention) can exert influence on the user’s behavior through the mediation of a 
cognitive system. The input component monitors users’ actual behaviors, senses environ-
mental variables, and also collects information about users’ cognitive states through self-re-
ports (e.g., experience sampling in Chapter 6) or other indirect measures (e.g., mouse-track-
ing in Chapter 5). The actuation component selects appropriate intervention techniques to 
influence users’ behaviors through the intended influences on their cognitive systems. Most 
importantly, the processing component uses a computational model to update cognitive 
states, predict behaviors, anticipate future change process, and to guide intervention selec-
tions (e.g., Chapter 3 & 4). As with the previous two examples, the computational model in 
this system is based on psychological theories. 

 

Figure 1.4 A model of a future digital system based on the psychological computing ap-
proach. 

Moving towards the psychological computing approach requires an iterative process of theory 
development, model building, and using and evaluating the models in the real-world through 
digital lifestyle intervention systems (see Figure 1.5). A first step is to search for an overarch-
ing theoretical framework that integrates relevant psychological theories and to connect the 
framework to common behavior change techniques used in digital systems. From there, com-
putational models can be developed and implemented in digital systems to guide intervention 
practice. In the other direction, data collected by the digital systems in real-world behavior 
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change processes can facilitate the improvements of the models. Thus, the psychological com-
puting approach is only motivated to enhance intervention effectiveness, but also to maxim-
ize the use of time-intensive digital data to improve psychological theories.  

 

 

Figure 1.5 An iterative process of moving towards the psychological computing approach. 

The psychological computing approach can be regarded as sitting in between a pure theory-
driven approach and a pure data-driven approach to digital interventions. In traditional the-
ory-based interventions (see the top half in Figure 1.5), behavior change techniques are de-
rived from verbal theories in psychology and behavioral sciences, and are then implemented 
in digital systems often as fixed functions for all users. Although empirical studies are often 
conducted to evaluate the effectiveness of the implemented techniques, the loose connection 
between the often vague theories and the techniques and makes it difficult to evaluate or fal-
sify the underlying theories. In contrast, a pure data-driven approach, as often preferred by 
computer scientists, disregards psychological theories and uses machine learning models to 
predict behavior and to adapt interventions to different contexts (for example, see Chapter 3 
in op den Akker, 2014). This approach is similar to the processes described in the bottom-
half of Figure 1.5, except that the models in the data-driven approach are not derived from 
psychological theories. In the ideal world where psychological theories are perfect or human 
data are limitless, either approach alone could work well. However, in the reality where the-
ories are still in developments and cognitive data are difficult to get, connecting the two 
worlds using theory-based computational models can be an efficient approach that borrows 
the strengths from both the theory-driven and the data-driven world. The psychological com-
puting approach envisioned is especially applicable to domains where theories can make up 
for the lack of data for certain behavioral or cognitive processes (see Chapter 4 as an example). 



Chapter 1 - Introduction 

 

12 
 

1.5 The scope and overview of the thesis 

The current thesis takes a few first steps to bridge the gap between psychological theories and 
digital lifestyle interventions, and to move towards the psychological computing approach. 
For this goal, a variety of methodologies are used, including theory review and integration, 
computational modeling, field intervention studies, and also explorations of novel data col-
lection methods that potentially benefit both science and applications. Four main objectives 
are: 

• To propose a general theoretical framework of lifestyle behavior change that integrates 
existing psychological theories, which can be mapped to digital intervention tech-
niques 

• To develop a computational model of some key processes in framework, and to test if 
the model can be validated based on empirical findings 

• To apply and evaluate (part of) the computational model in a real-world lifestyle inter-
vention problem, which serves as a use case of the psychological computing approach 

• To explore methods of measuring cognitive states involved in making daily lifestyle 
decisions that can potentially be used in digital intervention systems 

The work to fulfill the objectives is reported in a series of 6 chapters: 

Chapter 2 briefly reviews relevant theories in the psychology literature, and then integrates 
the diverse theoretical ideas into a unified framework of lifestyle behavior change, called the 
adaptive decision-making framework. Common digital intervention techniques are mapped 
to the behavioral and cognitive processes in the framework. The chapter also identifies habit 
formation and self-control as the two key constructs to be examined in later chapters.  

Chapter 3 reports a sequential sampling approach of modeling the decision-making and 
learning processes as described in the adaptive decision framework, focusing on how habits 
and goals are integrated in determining such decisions. The model is validated through sim-
ulation studies to reproduce classic empirical findings, and future extension of the model to 
daily contexts is discussed. 

Chapter 4 evaluates the habit formation part of the computational model in Chapter 3 in two 
real-world digital intervention studies of dental behavior change. Data collected were used to 
understand the reciprocal relationship between habit, attitude, and behavior, and to test 
whether habit strength computed by the computational model could improve behavior pre-
diction. 

Chapter 5 & 6 explores two methods of measuring relevant aspects of the self-control in daily 
lifestyle decisions. Chapter 5 evaluates whether the mouse-tracking technique can be used to 
measure the cognitive processes that underlie dietary self-control and whether the technique 
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can be transferred from traditional laboratory settings to touchscreen interfaces that usually 
come with digital systems. Chapter 6 instead examines the variations of self-control capacity 
in people’s daily lives using an experience sampling method. Data from two field studies con-
tribute to the understanding of how self-control capacity varies inter- and intra-individually 
and how the variations are related to changes in people’s affective states. The results may 
inform the timing of interventions in future applications.  

Finally in Chapter 7, the psychological computing approach is motivated again by considering 
the challenges of health behavior change in a larger context, connecting it to both an evolu-
tionary and a  historical perspective. Contributions of the thesis, future research directions, 
and ethical issues are discussed in relation to the psychological computing approach.  
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Chapter 24 
An Adaptive Decision-Making Framework of Life-
style Behavior Change 

 

 
“There is nothing so practical as a good theory.”  

Kurt Lewin, 1951. 

 

2.1 Introduction 

In Chapter 1, we have made the case for the importance of basic psychological theories in 
developing digital lifestyle interventions, and highlighted the causes for the “theory-interven-
tion gap”. It seems that the problem is not the lack of theories; in fact, intervention developers 
and digital system designers have an abundance of theories they can choose from, for exam-
ple, from the 83 theories identified by behavior change experts in the book ABC of Behaviour 
Change Theories (Michie, West, Campbell, Brown, & Gainforth, 2014). The problem is that 
there are too many theories, and a lack of systematic integration. For practitioners without a 
formal training in psychology, the large number itself might cause difficulties to orientate in 
the literature and to select theories for particular intervention problems at hand. Without 
texts that clarify the connections and differences among the individual theories, confusions 
can arise when more than one theory attempts to explain the same behavioral process but 
with different terminologies. Such problematic situations are not uncommon since different 
theories may explain behavior at different levels of analysis (see Crutzen & Peters, 2018), fo-
cus on either statistical description or mechanistic explanation, and even take distinct philo-
sophical views on human behavior. To overcome these barriers, perhaps there is nothing so 
practical as a good theory integration.  

                                                   
 
4 This chapter is partly based on Zhang, C., Lakens, D., & IJsselsteijn, W. A. (2019). Theory Integration 
for Lifestyle Behavior Change in the Digital Age: An Adaptive Decision-making Framework. 
https://doi.org/10.31234/osf.io/fsw8t. 



Chapter 2 - An Adaptive Decision-Making Framework of Lifestyle Behavior Change 

 

16 
 

This is not to say that theory integration has not been done before in the domain of behavior 
change. In fact, several notable examples can be found, including the i-Change model (de 
Vries, 2017), PRIME theory (West, 2006), Temporal Self-Regulation Theory (Hall & Fong, 
2007), and the COMBI model (Klein, Mogles, & van Wissen, 20111). However, except for the 
COMBI model, the previous integrations has focused specifically on lifestyle behaviors and 
on digital interventions. In addition, it can be argued that none of the integrations has suffi-
ciently addressed the two limitations of traditional behavior change theories highlighted in 
Chapter 1 – the temporal mismatch and the lack of dynamics (see also Riley et al., 2011).  

These two limitations are closely related not only to the characteristics of time-intensive dig-
ital data (see Dunton & Atienza, 2009; Riley et al., 2011), but also to the characteristics of 
lifestyle behaviors themselves. Lifestyle behaviors, such as eating, exercising, or toothbrush-
ing, are performed very frequently, usually at least on a daily basis, and on each occasion they 
are essentially fast daily decisions. This type of decisions (e.g., making one dinner choice) 
may be relatively inconsequential, but they can form larger behavioral “episodes” (e.g., fol-
lowing a diet), which may affect one’s health significantly. This characteristic of hierarchical 
organization sets lifestyle behaviors apart from single-time health behaviors or decisions, 
such as cancer screening or vaccination. The problem of temporal mismatch is rooted in the 
fact that most traditional behavior change theories were developed mainly to explain single-
time decisions. Moreover, unlike single-time decisions, as daily lifestyle decisions are re-
peated, learning and adaptation through past experience are made possible and they form a 
big part of the puzzle of lifestyle behavior change and intervention. This requires the inclusion 
of temporal dynamics into behavior change theories. Overall, the two limitations raised by 
Riley and colleagues (2011) also reflect the fact that previous theories or theory integrations 
have not been focused on lifestyle behaviors. 

Here we propose a new integrative theoretical framework, called adaptive decision-making, 
to explicitly account for lifestyle behavior change, addressing directly the two limitations of 
traditional theories. In doing so, the new framework represents lifestyle behaviors at two tem-
poral levels: a lower level (action level) that matches the daily individual decisions and the 
time-intensive interventions realized by digital systems, and a higher level (reflection level) 
that matches the episodes of repeated decisions (see Figure 2.1). In addition, both decision-
making processes (how behaviors are determined or decisions are made) and learning pro-
cesses (how earlier behaviors or decisions influence later ones through cognitive determi-
nants) at each level will be included in the framework. More broadly, the framework is in-
tended to bridge the above-mentioned theory-intervention gap. 

In the rest of the chapter, we first review important theoretical ideas relevant to lifestyle be-
havior change from a broad psychology literature. To facilitate theory integration, the indi-
vidual theories are compared in terms of their temporal scales and their emphasis on either 
learning or decision-making. Next, the adaptive decision-making framework is introduced by 
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integrating the relevant but disparate theoretical ideas into a two-level representation of life-
style behavior change presented above (Figure 2.1). Afterwards, we relate the framework to 
intervention practice by mapping common behavior change techniques used in digital sys-
tems onto the behavioral processes in the framework. The chapter is concluded with a general 
discussion on the added value of the framework to behavior change theorists and digital in-
tervention designers.

 

Figure 2.1 A two-level representation of lifestyle behavior (change). 

2.2 Review of individual theories relating to lifestyle behavior change 

There are two distinct and complementary traditions of explaining human behavior – a learn-
ing tradition and a decision-making tradition (see Michie, West, & Spring, 2013). The learn-
ing tradition, as its name suggests, focuses on the time-course of learning a behavior – in 
particular, the interdependence among behavioral occasions in a sequence rather than the 
exact determinants of each occasion. In contrast, researchers in the decision-making tradi-
tion care more about what factors determine a behavior on specific occasions, and what in-
formation is processed at such moments, but much less on how repeated decisions are related. 
As an example, to understand and change someone’s obsession with fast food, learning re-
searchers would study how the rewarding experience of eating fast food (e.g., taste and energy) 
leads to stronger tendencies to repeat the behavior in the future, and how this reinforcement 
loop can be broken. To tackle the same problem, decision-making researchers would instead 
search for the determinants of either a particular decision of choosing fast food (e.g., hunger, 
time-pressure, etc.) or the general tendency of having this lifestyle (e.g., innate preference for 
fat, social environments, etc.). 

As both learning and decision-making aspects are crucial for developing a dynamic frame-
work, the review below is organized based on the theories’ roots in either tradition. After the 
review, a brief discussion is provided on the temporal scales implied in the theories – whether 
they focus primarily on explaining individual daily decisions (action level) or episodic behav-
ioral processes (reflection level).  
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2.2.1 Theories in the learning tradition 

Reinforcement learning theory 

Reinforcement learning, or learning by outcomes, is a fundamental form of learning discov-
ered in the early age of modern psychology (for a review, see Postman, 1947) and is still in-
fluential in today’s behavioral and brain sciences (Yin & Knowlton, 2006). The success of 
reinforcement learning theory is also reflected in the development of reinforcement learning 
algorithms in the field of artificial intelligence to solve practical problems, where the devel-
opment was greatly inspired by the theory in psychology (Sutton & Barto, 1998). Humans, 
animals, and also artificial agents are theorized to adapt their behaviors through their inter-
actions with the changing environments in order to achieve their goals (e.g., finding food, 
avoiding predators, or to schedule digital interventions). Basically, if a behavior results in 
goodness to an organism, the frequency of performing the same behavior increases; con-
versely, if a bad outcome follows, the behavior will be performed less often in the future. This 
was summarized by Thorndike (1932) as the law of effect.  

Reinforcement theory becomes more complex when one also considers the law of exercise 
(Thorndike, 1932). The above-mentioned response-outcome (R-O) learning, or goal-directed 
learning, is accompanied by stimulus-response (S-R) learning, also known as a process of 
habit formation (see Yin & Knowlton, 2006). The distinction between goal-directed learning 
and habit learning has been demonstrated in instrumental learning experiments where ani-
mals or humans are trained to acquire reward-generating responses (e.g., press a lever to 
receive food): when a response is overly trained, it persists to be triggered by the correspond-
ing stimulus even when the reward becomes goal-irrelevant (e.g., when a rodent is satiated) 
(e.g., Adams, 1982; Dickinson, 1985; Yin, Knowlton, & Balleine, 2004). The recent resurgence 
of interest in habit formation in social and health psychology also follows the theory to define 
habits as mental associations between behaviors and environmental cues (Wood & Neal, 
2007; Wood & Rünger, 2016). When a behavior becomes strongly habitual, goal-related de-
terminants of behavior, such as attitude and intention, cease to influence behavior (Gardner, 
2015).  

Control theory of self-regulation 

The classical reinforcement learning theory focuses on the role of external immediate rewards 
in controlling behavior, but neglects the role of distal behavioral outcomes that may be cog-
nitively represented. Following criticisms on this bias (e.g., Kanfer & Karoly, 1972), the con-
trol theory of self-regulation assumes that people can mentally represent distal outcomes of 
goals, and the regulation of behavior is generally towards reducing the discrepancies between 
the goals and their current status (Carver & Scheier, 1982; Powers, 1973). When a behavior 
leads to a reduced discrepancy, the reduction itself becomes a reinforcer to motivate the be-
havior, just like external rewards. This discrepancy-reduction mechanism is analogous to 
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feedback control systems in engineering, where discrepancy between perceived status and a 
reference value is constantly monitored to maintain homeostasis.  

Control theory also represents goals and self-regulation hierarchically. Carver and Scheier 
(1982) proposed a 9-level hierarchical control system in which a behavior output from a 
higher level serves as the goal reference to the next level below. For lifestyle behaviors, it is 
sufficient to consider three levels5 – long-term goals (e.g., improving health), short-term 
goals (e.g., walking ten-thousand steps a day), and actions (e.g., taking a specific walk). Tak-
ing actions lead to fulfillment of short-term goals, which in turn bring one closer to the ad-
herence to long-term objectives. Self-regulation operates most frequently at the action level 
(i.e., making daily decisions), but people’s attention can be shifted to higher or lower levels. 
Downward shifting happens when lower-level motor-control, which is normally highly auto-
mated, becomes temporarily impeded during action executions (e.g., when learning a new 
motor skill or when a dysfunctional action needs to be inhibited; see Norman & Shallice, 
1986). Upward shifting can be understood as self-reflective moments when a person recon-
siders the attainability of a higher-level goal, which is more difficult to predict (but see Psarra, 
2016).  

Social Cognitive Theory  

Social Cognitive Theory proposed by Albert Bandura is one of the most cited and applied 
theories in behavior change research (Davis et al., 2015; Webb et al., 2010). The theory en-
compasses three key concepts – social learning (Bandura, 1971), self-efficacy (Bandura, 
1982), and proactive control (Bandura, 1989). First, based on extensive research on chil-
dren’s learning behaviors (e.g., Bandura & McDonald, 1963), Social Learning Theory posits 
that behaviors or attitudes are not only acquired through direct reinforcement, but also by 
observing the behaviors and their corresponding consequences to others (Bandura, 1971). For 
many health-related behaviors, the long-term health consequences are often learned by ob-
serving other people’s behavioral outcomes. Second, based on organizational decision-mak-
ing research (e.g., Bandura & Wood, 1989), it was found that the subjective belief in one’s 
ability to perform a behavior was closely related to actual performance. Relating to the control 
theory above, this self-efficacy belief can be understood as a cognitive mechanism that simu-
lates a series of future actions (e.g., dinner choices every day) in an extended episode of goal-
pursuit (e.g., adherence to a diet). If the mentally simulated actions fail to bring sufficient 
progress, a person may decide to abandon the goal-pursuit altogether. Third, Bandura was 
among the earliest scholars to discuss proactive control – a discrepancy-production process, 
in which a person sets higher goals to further motivate behavior (Bandura, 1989). It thus 
complements the discrepancy-reduction mechanism at the core of control theory. Relatedly, 

                                                   
 
5 These levels were termed system concepts, principles, and programs in Carver and Scheier (1982).  
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the idea that goals are susceptible to changes also allows the possibility to adjust an unattain-
able goal downwards to reduce its discrepancy to the current status. Altogether, the three 
concepts contribute to extend reinforcement learning and control theory by incorporating 
flexibility to complex human behaviors.  

2.2.2 Theories in the decision-making tradition 

Classical expected utility model 

Across behavioral sciences (e.g., psychology and economics), many mathematical models 
have been developed to describe how people make choices given a fixed set of alternatives 
(options, e.g., fries and salad) and attributes (e.g., healthiness and tastiness). A fundamental 
theoretical idea behind many models is the expected utility theory, which assumes that people 
integrate multiple attributes – the choice alternatives’ values to satisfy various personal goals 
– into a unidimensional construct called subjective or expected utility, and then choose the 
alternative with the highest utility (Oppenheimer & Kelso, 2015). Formally, expected utility 

is computed as 𝐸𝐸𝐸𝐸 = ∑ ∑ 𝐸𝐸(𝑥𝑥𝑗𝑗𝑗𝑗) × 𝑃𝑃(𝑥𝑥𝑗𝑗𝑗𝑗
𝑁𝑁𝑗𝑗
𝑗𝑗=1

𝐽𝐽
𝑗𝑗=1 ), where 𝐸𝐸(𝑥𝑥𝑗𝑗𝑗𝑗) is the subjective value function 

for the nth possible value of attribute j, and 𝑃𝑃(𝑥𝑥𝑗𝑗𝑗𝑗) is the probablistic belief that attribute j 

would take that value (Savage, 1954; von Neumann & Morgenstern, 1947). The equation im-
plies that the expected utility of one choice alternative increases when choosing the alterna-
tive is likely to produce certain outcomes (large 𝑃𝑃(𝑥𝑥𝑗𝑗𝑗𝑗)) and when the outcomes are highly 

valuable (large 𝐸𝐸(𝑥𝑥𝑗𝑗𝑗𝑗)). For example, whether people choose salad over fries depends on both 

their beliefs about its benefits for health their valuations on good health. The theory does not 
imply that people always consciously follow the equation to compute utilities, but rather re-
flects key neural mechanisms that underline decision-making (see Busemeyer & Townsend, 
1993). In reality, conscious and deliberative computations are more common for single-time 
important decisions (e.g., comparing different health insurance policies), but rarely for fast 
daily lifestyle decisions.  

Sequential sampling models 

Empirical data from choice experiments have repeatedly shown that people are less rationale 
than the classical choice models following the expected utility theory would suggest (for a 
review, see Bhatia, 2013). People are prone to be influenced or biased by information that is 
seemingly irrelevant, for example, the addition of an inferior choice option (e.g., Tversky, 
1972) or framing of losses versus gains (Tversky & Kahneman, 1981). To account for the 
anomalies, a sequential sampling approach has been developed to model the cognitive pro-
cess of decision-making dynamically, such as the multialternative decision field theory (Roe, 
Busemeyer, & Townsend, 2001) and the associative accumulation model (Bhatia, 2013). The 
new models share the idea that preferences for different choice alternatives are accumulated 
over time (e.g., a few seconds) and a choice is finally committed when its preference signal 
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exceeds a decision threshold the earliest. At each timestep, the preference signals of choice 
alternatives fluctuate according to a round of utility comparison based on one (e.g., Bhatia, 
2013) or multiple attributes (as in drift diffusion models, e.g., Ratcliff & Rouder, 2001). The 
stochastic property of sequential sampling models enable them to explain the sensitivity of 
choices to subtle changes in choice sets and to predict decision time (Busemeyer & Townsend, 
1993). Finally, sequential sampling models suggest a mechanism for habitual choices – re-
peatedly choosing an alternative may shift its starting position of preference accumulation 
towards a decision threshold at the baseline (Roe et al., 2001).  

Reasoned action approach 

Influenced by the expected utility theory (Fishbein & Ajzen, 1975) but with a strong focus on 
application, the reasoned action approach (see Noar & Head, 2014) has produced some of the 
most applied theories in behavior change research, such as the Theory of Planned Behavior 
(Ajzen, 1991; Ajzen & Madden, 1986) and the Health Belief Model (Janz & Becker, 1984). For 
a decision-making perspective, this approach categorizes attributes in possible choice situa-
tions into a smaller set of behavioral determinants that are generalizable tot a wide range of 
behaviors and are measurable by self-report. For example, in the Theory of Planned Behavior, 
regardless of the specific alternatives and attributes considered, factors affecting choices are 
categorized into three determinants, namely attitude, social norm, and perceived behavioral 
control (Ajzen & Madden, 1986). When a specific behavior is considered (e.g., dinner choice), 
attitude towards a choice alternative is further determined by many attributes (see Ajzen, 
1991), such as taste, nutrition, and price, while social norm is influenced by the perceived 
social consequences of choosing an alternative (e.g., presenting oneself to be environmental 
friendly). Perceived behavioral control, similar to self-efficacy, measures one’s confidence in 
maintaining certain choices in the future. Ajzen (1991) explicitly considered his model as a 
model for behavioral prediction, rather than for explaining what processes underline overt 
behaviors or decisions or how such processes can be intervened.  

It is also worth noting that the reasoned action approach makes a strong assumption on the 
intentionality of behavior (see Karoly, 1993). For example, behavioral intention is a prereq-
uisite to actual behavior in the Theory of Planned Behavior (Ajzen & Madden, 1986). Thus, 
this approach considers behaviors as “planned” or “intended”, and as results from careful 
deliberations on the pros and cons of certain behaviors. Such a theoretical position suggests 
that the reasoned action approach was developed to mainly deal with single-time decisions 
or the planning of behavioral episodes, rather than the “small” daily decisions. 

Dual-processing models 

A recurrent idea in psychology is that humans possess two distinct modes or systems for pro-
cessing information and making decisions. Despite that different dual-system models use dif-
ferent terminologies (for a review, see Evans, 2008), it is widely accepted that one system is 
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fast, impulsive, and largely automatic, and the other system is slow, reflective, and deliberate 
(Kahneman, 2003).  

The Reflective-Impulsive Model (RIM, Strack & Deutsch, 2004) is a representative of this 
approach, and it has been explicitly applied to health-related behaviors (Hofmann, Friese, & 
Strack, 2009; Hofmann, Friese, & Wiers, 2008). The reflective system hosts various higher 
order mental operations that rely on controlled processes and symbolic representations, in-
cluding deliberate judgments, planning for goal pursuit, and the inhibition of prepotent re-
sponses. In contrast, the impulsive system operates fast on associative clusters in long-term 
memory that group stimuli, affective states and behavioral responses together. At the mo-
ment of a specific decision, whether self-control succeeds or not depends on the relative abil-
ity of the processes in the two systems to activate the corresponding behavioral schemas. Sev-
eral boundary conditions have been proposed to moderate the relative strength of the two 
systems (Hofmann, Friese, & Wiers, 2008). For example, a person is believed to behave more 
impulsively, when the behavior is highly habitual, when their cognitive load is high, and when 
their mood is positive. 

2.2.3 Temporal scales used in the above theories 

Figure 2.2 summarizes learning and decision-making theories based on their temporal scales, 
or their levels of behavior representation. A similar distinction was made by Karoly (1993), 
where theories at the action level are called online theory while theories at the reflection level 
are called offline theories.  

 

Figure 2.2 Categorization of reviewed theories based on their theoretical traditions and tem-
poral scales (theories apply to both temporal scales are underlined). 
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In the learning tradition, the reinforcement learning theory clearly represents behavior at the 
action-level, since the outcome of each specific action/decision is modeled to have concrete 
impacts on the frequency of repeating the same action in the future. Reinforcement learning 
experiments also involve repeated trials within a relatively short period of time (e.g., a few 
hours). The control theory of self-regulation, due to its hierarchical structure, covers both 
behavioral processes at the reflection level and the action level. Social Cognitive Theory and 
particular its processes of self-efficacy and proactive control apply mainly to behaviors at the 
reflection level. Although the two processes may have counterparts at a lower level as in the 
control theory, Bandura’s focus was clearly on voluntary and deliberative human behaviors 
(Bandura, 1989).  

In the decision-making tradition, mathematical models as part of the expected utility theory 
and the sequential sampling approach can be equally applied to decisions at both temporal 
scales, as long as decisions with clearly defined choice sets are considered. As discussed above, 
theories in the reasoned action approach deal mainly with decisions at the reflection level 
because of its assumption on intentionality. In contrast, as dual-process models are intended 
to account for “small” daily decisions, for which both reflective and impulsive processes play 
a role. 

2.3 Theory integration: an adaptive decision-making framework 

To reiterate, our goal of theory integration is to develop a unified framework that includes 
and connects all relevant decision-making and learning processes at both the action-level and 
reflection-level of lifestyle behavior change. Most processes in the framework came directly 
from the theories reviewed, but efforts were made to unify terminologies from different the-
ories to form a coherent system, and to tailor the theoretical system to lifestyle behaviors. 
Taking dietary behavior as a primary example, the framework should explain not only how 
daily meal choices are made and how each decision outcome influences future choices, but 
also how a goal of adhering to a specific diet is made and how such goals are evaluated. The 
following sections introduce the adaptive decision-making framework in four parts: action-
level decision-making, action-level learning, reflection-level decision-making, and reflection-
level adaptation. 

2.3.1 Action-level decision-making: daily meal choices 

Daily lifestyle decisions, such as daily meal choices, can be modeled as a two-step process – 
first option generation and then option evaluation (see Figure 2.3). Thus, the framework 
assumes that when choosing a meal, different meal options have to be generated or recalled 
by a decision-maker first, before evaluations of a few options can be made to inform a final 
choice (Kamphorst & Kalis, 2015; Tobias, 2009). The notion of option generation has not 
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been examined in any of the decision-making theories reviewed, probably because those the-
ories are based on laboratory choice experiments, where options are simply provided by the 
experimenters. For lifestyle behaviors in daily environments, how choice alternatives are gen-
erated is an important question. 

 

Figure 2.3 A two-step model of daily lifestyle decision-making. 

In general, behavioral options can be generated through three different means. First, if an 
option is habitual, it will be activated when the associated cues are encountered, such as lo-
cation and time (e.g., lunch at the office) or a complex combination of contextual cues (e.g., a 
busy Wednesday evening). This follows directly from the construct of habit in reinforcement 
learning theory. Second, options may be remembered at the right moments because people 
intentionally try to maintain them in their prospective memory (i.e., not to forget to do some-
thing in the future, McDaniel & Einstein, 2000; Tobias, 2009). This usually happens when 
there is a salient goal guiding daily decisions, such as a goal of adhering to a low-carb diet. 
People may also intentionally associate important options with external cues, so that encoun-
tering the cues is likely to trigger the options (see Gollwitzer, 1999). Third, options can be 
trigged by direct external suggestions at the decision moments, for example, a coaching mes-
sage from a mobile health app to recommend health foods (Kamphorst & Kalis, 2015). 
Through these means, behavioral options that are sufficiently activated (e.g., by passing an 
activation threshold) would be later evaluated. 

Option evaluation can be modeled as a process of comparing several options and then choos-
ing the one with the highest goal-satisfying value. The exact computation of utilities can fol-
low either classical expected utility models or the more dynamic sequential sampling models, 
but for the framework it is sufficient to identify three main cognitive determinants of the 
evaluation process. First, when multiple personal goals are relevant for a daily decision, these 
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goals can be regarded as more or less importance by a decision-maker, thus entailing higher 
or lower goal values. For example, between the goals of keeping health and enjoying delicious 
food, a person who regards the former goal as more valuable would be more likely to choose 
food options for meals that satisfy the health goal.  

Second, for each personal goal, a behavioral option has its perceived attribute value relating 
to that goal, which determines the total utility of the option. These attribute values are sub-
jective beliefs held by people about the causal relationships or contingencies between choos-
ing certain behavioral options and the realizations of personal goals. While goal values are 
relatively stable within-person, attribute values are more context-dependent and are prone 
to changes through learning and experience. For example, the perceived tastiness of a partic-
ular meal option may depend on a person’s momentary appetite and it may change over time 
through repeated tasting of the food.  

There is a particular challenge for healthy decisions, such as healthy food choices, because 
usually two distinct types of attributes are considered – an immediate hedonic aspect such as 
tastiness, and a long-term consideration of health consequences. This challenge is essentially 
a problem of self-control from a decision-making perspective (see Berkman, Hutcherson, Liv-
ingston, & Inzlicht, 2017). According to the idea of temporal discounting in decision-making 
theories (Frederick, Loewenstein, & O'donoghue, 2002; Green & Myerson, 2004), because 
any rewards from potential health improvements are delayed in time when compared with 
the immediate hedonic aspects, the value of the attribute healthiness is discounted before it 
is integrated in option evaluation (Chapman, 1996; Story, Vlaev, Seymour, Darzi, & Dolan, 
2014). Another reason why health aspects are often weighted less than hedonic aspects in 
actual decisions is that the former are more abstract concepts, so they might be more difficult 
or take longer to be processed (Maier, Raja Beharelle, Polanía, Ruff, Hare, 2018; Sullivan & 
Huettel, 2018; Sullivan, Hutcherson, Harris, & Rangel, 2015). Finally, from a dual-processing 
perspective (e.g., Hofmann, Friese, & Wiers, 2008), dietary self-control may sometimes suc-
ceed because people can voluntarily exert top-down cognitive control on the option evalua-
tion process, especially if a momentary preference for a meal option conflicts strongly with a 
diet goal. It has been shown experimentally that cognitive control may either modulate the 
valuation process to be more in favor of healthiness rather than tastiness (Hare, Camerer, & 
Rangel, 2009), or filter people’s attention away from hedonic attributes in the early stage of 
option evaluation (Harris, Hare, & Rangel., 2013). Of course, top-down control depends on 
many contextual variables to be effective, such as motivation (Inzlicht & Schmeichel, 2012), 
mental fatigue (van der Linden, Frese, & Meijman, 2003), stress level (Chajut & Algom, 2003), 
and daily affective states (Zhang, Smolders, Lakens, & IJsselsteijn, 2018). 

Third, habit values or habit strengths, which represent the history of choosing certain behav-
ioral options, may influence the evaluation of options. As discussed in the theory review, 
learning experiments have shown convincingly that even when two options are provided to 
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decision-makers, habitual options have more chances to be chosen than non-habitual options 
(e.g., Dickinson, 1985; Yin & Knowlton, 2006). In sequential sampling models, the influence 
of habits on the dynamic process of option evaluation can be understood as positively biasing 
the baseline preferences for the habitual options (Roe et al., 2001). As an intuitive example, 
if someone often chose fast food in the past, fast food is by default more favorable than other 
options when no additional deliberations are made.  

2.3.2 Action-level learning: developments of eating habits 

Action-level learning processes can be added to the framework by integrating the ideas of 
goal-directed learning and habit learning from the reinforcement learning theory to the two-
step decision-making model proposed above (see Figure 2.4). First, feedback from decision 
outcomes to perceived attribute values represents goal-directed learning. For example, when 
a new canteen is built at a workplace, employees may have initial but very uncertain beliefs 
about the tastes and calories of different lunch options, but after a few weeks of trying it out, 
they gradually form more certain and accurate perceptions about the qualities of the food. 
Computationally, the updates of perceived attribute values can be done through model-based 
and model-free reinforcement learning algorithms (e.g., temporal difference learning, Sutton 
& Barto, 1998), or Bayesian belief update (Russo, van Roy, Kazerouni, Osband, & Wen, 2018). 
For health-related attributes, because concrete decision outcomes are infrequent, it is less 
clear how direct learning from experience works, if it’s possible after all (but see Gershman & 
Daw, 2017). People’s beliefs about the health consequences of different food are more sus-
ceptible to social learning and education. 

Second, there is direct feedback from decisions themselves to habit values, as in a process of 
habit formation or habit learning. Although daily lunch decisions in a new canteen are driven 
primarily by goal-related attribute values, through repeated decisions, mental associations 
between frequently chosen food options and the environment cues (e.g., the physical setting 
of the canteen, lunch time) are gradually strengthened. These associations, as habit values, 
then influence future decisions through both the option generation and option evaluation 
processes discussed above. The exact mechanism of habit learning is beyond the scope of this 
chapter, but it has been modeled using algoritms inspired by Hebbian learning (Hebb, 1949) 
in the literature (e.g., Klein, Mogles, Treur, & van Wissen, 2011; Miller, Shenhav, & Ludvig, 
2019; Psarra, 2016; Tobias, 2009).  

Besides the two main learning processes, there is also a direct link from decisions to the acti-
vation values of options, which has been discussed much less in the learning literature. When 
a decision is made and the corresponding behavior is executed, the behavior execution in-
creases the activation level of the behavioral option in memory, even though such an increase 
has been shown empirically to be very small (Tobias, 2009). As discussed in the section about 
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option generation, the dynamics of activation values are primarily memory processes and are 
mostly affected by physical and social stimuli in the environment.  

 

Figure 2.4 Action-level learning processes added to the decision-making model. 

2.3.3 Reflection-level decision-making: dietary goal-setting 

The action-level decision-making and learning processes cover a substantial part of what peo-
ple do in their daily lives. However, the framework as it is now gives the impression that life-
style behaviors are mindless, and without much thinking or purpose. In fact, people do peri-
odically have moments when they reflect on their health status, contemplate about possible 
improvements, and make action plans. According to the control theory (Carver & Scheier, 
1982), what connects people’s abstract long-term goals (i.e., what they want or strive towards 
in their lives) and daily “small” decisions are the more concrete short-term goals they set. 
Short-term goal-setting can be understood also as a process of decision-making, albeit at the 
reflection level rather than the action level. The decisions made are commitments to goals 
that guide future daily decisions, rather than overt behaviors that trigger motor programs.  

Thus, the two-step model of daily lifestyle decisions generally applies to the setting of short-
term goals. In selecting a dietary plan, for example, people first search for diet candidates 
that serve their long-term goals in their memory as well as external sources (e.g., dietary 
books or mobile e-coaching systems). A few candidates are then evaluated based on relevant 
attributes, such as taste, ease of preparation, and expenses. At the reflection-level, often these 
attributes can indeed be categorized into a few determinants, such as attitude, social norm, 
and perceived behavior control (Ajzen, 1991). There are also a few more distinct features for 
the decision-making process concerning short-term goals. First, because goal-settings occurs 
at a much lower frequency than daily decisions, habits are less likely to be formed and to 
influence the decision-making process. More specifically, the search for goal candidates tends 
to be more thorough, and the longer evaluation time also reduces any habitual bias. Second, 
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because goal-setting aims for an extensive period of time, and possibly requires a more ab-
stract mental construal (see Trope & Liberman, 2010), it is largely detached from direct sen-
sory information and visceral attributes, such as effort and tastiness. Thus, the self-control 
problem is less prevalent for goal-setting than for for daily lifestyle decisions. Third, self-ef-
ficacy  plays an important role for goal-setting. People may carefully consider the feasibilities 
of different diet goals by mentally simulating a series of daily dietary choices in the future.  

Motivating functions of short-term goals 

When short-term goals are generated, they can influence daily lifestyle decisions through 
both option generation and option evaluation (see Figure 2.5). First, setting up a short-term 
goal can increase the activation values of desirable behavioral options through a process 
termed planning. Planning can be done through two mechanisms discussed earlier: an ef-
fortful prospective memory process (e.g., rehearsing eating salads; see McDaniel & Einstein, 
2000), or an implementation intention process, i.e., mentally associating a behavioral option 
with certain environmental cues (e.g., eating an apple as snack when watching TV; see 
Gollwitzer, 1999). Second, compared with long-term goals (e.g., to improve health), short-
term goals are more concrete, so complying with these goals brings immediate satisfaction 
(Locke & Latham, 2002). The goal-compliance satisfaction functions as an additional attrib-
ute that compete with other hedonic attributes (e.g., tastiness) during the option evaluation 
process.  

 

Figure 2.5 A full representation of the adaptive decision framework (reflection-level pro-
cesses and interactions between the two levels added to the previous decision-making model).  
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2.3.4 Reflection-level adaptation: self-monitoring and re-evaluation of dietary goals 

Short-term goals have to be re-evaluated in reflection moments periodically, in order to 
change the goals that are no longer adaptive (e.g., too difficult, too easy, or irrelevant). Such 
reflection-level adaptation processes are well-described by the control theory (Carver & 
Scheier, 1982) and the Social Cognitive Theory (Bandura, 1989). A goal re-evaluation first 
requires inputs from the action-level processes through self-monitoring. Through repeated 
daily dietary choices, not only are dietary habits formed, but also actual choices and their 
outcomes are stored in episodic memory and later retrieved and integrated into a mental rep-
resentation of overall performance over a past time period (see Figure 2.5). Next, discrepancy 
between a goal reference (e.g., a dietary plan) and a performance representation is computed 
and used to inform the reflection level adaptation. Depending on the size of the discrepancy 
and other personal and contextual factors, a few outcomes are possible. First, a people may 
further employ the motivating functions of dietary goals to promote healthy daily food 
choices, in order to reduce goal-performance discrepancies. However, when a discrepancy is 
deemed to be too large, people may instead lower the goal standard (e.g., be less strict on 
calorie intake) or abandon the goal altogether (e.g., give up a diet). Finally, when performance 
matches or even exceeds a current goal standard, they may proactively adjust the goal stand-
ard upwards to further improve health (see Bandura, 1989).

2.4 Mapping digital intervention techniques to the framework 

We refer to digital intervention techniques as behavior change techniques that target lifestyle 
behaviors and are implemented in digital systems (e.g., web, mobile, or wearable systems). 
Behavior change techniques, in turn, are generally defined as the active ingredients of inter-
ventions that can influence behaviors in desirable ways (Abraham & Michie, 2008; Michie, 
Richardson et al., 2013). In this section, in order to demonstrate the relevance of our frame-
work to digital lifestyle interventions, we map common digital intervention techniques to the 
adaptive decision-making framework. Specifically, these techniques are categorized and in-
terpreted according to the behavioral processes and cognitive variables in the framework be-
ing targeted. Strengths and limitations of some techniques are discussed based on the impli-
cations of the framework. 

2.4.1 Digital intervention techniques targeting action-level decision-making 

Because digital systems are prevalent in people’s daily lives, they are well-positioned to influ-
ence people’s daily lifestyle decisions in the decision moments. The ability to target action-
level decisions is indeed considered by many as a promising direction for digital lifestyle in-
terventions, as reflected in research on ecological momentary interventions (Heron & Smyth, 
2010) and just-in-time adaptive interventions (JITAI; Hekler et al., 2016; Intille et al., 2003; 
Jaimes et al., 2015; Nahum-Shani et al., 2015; Riley et al., 2015). According to our framework, 
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there are many different ways that digital intervention systems can influence online decision-
making processes, depending on whether the techniques target option generation or option 
evaluation, and which cognitive variables are targeted (e.g., activation, attribute, or goal 
value). Four main categories can be distinguished. 

Option-based techniques 

Option-based techniques make certain desirable behavioral options salient, but leave the op-
tion evaluation process completely to the users themselves. When a desirable behavior is ob-
vious but may not be constantly salient to users, digital systems can simply prompt users to 
actively make decisions to engage in a desirable behavior, for example, to take exercise breaks 
when overly sedentary behaviors are detected by the system (Pina, Ramirez, & Griswold, 2012; 
Thomas & Bond, 2015). In some other cases, it might be possible to provide users with new 
options that are better than the ones known by the users (Kamphorst & Kalis, 2014). Finding 
such “attractive” options relies on a system’s sensor network and smart algorithms, which 
potentially make it more knowledgeable than its users in a given behavioral domain and/or 
context. For example, to promote physical activities, Guo (2016) developed a system which 
recommends new commuting routes to users “in-situ”, based on automatic detection of users’ 
habitual existing routes and Google map data. 

Attribute-based techniques 

Attribute-based techniques aim at changing users’ beliefs about the attribute values of op-
tions by providing health-related knowledge or facts. They are referred to as providing infor-
mation about behavior-health link or providing information about consequences, in the tax-
onomy of behavior change techniques (Abraham & Michie, 2008). Given the common as-
sumption that humans are rational decision-makers, providing information about attribute 
values has been considered as a logical approach to behavior change in traditional health ed-
ucation campaigns. However, our framework implies that attribute value is only one of many 
factors that influence option evaluation and providing information alone may not always 
change people’s beliefs about attribute values. Nonetheless, information about attribute val-
ues can be provided to justify the recommendations of behavioral options whenever appro-
priate in digital systems (e.g., calorie information for different meal choices).  

Goal-based techniques 

Because goal values modulate attribute values in option evaluation, activating health-related 
goals in the decision moments provides yet another type of intervention techniques. When 
implemented in digital systems, this technique links the suggestions of concrete behavioral 
options with the reminder of the associated short-term or long-term goals. For example, 
when a mobile application prompts a user to take a lunch walk, the user’s goal of walking 
10,000 steps a day (and the achieved steps) can be presented along with the option of taking 
a lunch walk. 
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Structure-based techniques  

Structure-based techniques differ from the previous types because they do not change the 
availability of options nor do they alter the existing payoffs (i.e., attribute values). Because 
they are less susceptible to user reactance and require less processing efforts from users than 
other techniques, structure-based techniques have attracted strong research interests (e.g., 
Adams, Costa, Jung, & Choudhury, 2015; Schneider, Weinmann, & vom Brocke, 2018), usu-
ally under the header of nudging or choice architecture (Johnson et al., 2012; Thaler & Sun-
stein, 2008). As examples, default and context effects (e.g., compromise effect) are two widely 
used structure-based techniques. Lee and colleagues (Lee, Kiesler, & Forlizzi, 2011) adopted 
the default technique to promote healthy snacking in an online environment by making 
healthier options the default choices. Zhang and colleagues built on the compromise effect to 
promote physical exercise at work: Intensive exercise options were added in an app called 
BeActive! to make the moderate exercise options to be perceived as compromise options and 
thus as more attractive (Zhang, Starczewski, Lakens, & IJsselsteijn, 2018). 

In general, digital interventions for daily lifestyle decisions face a challenge that people are 
often triggered by cues in the environments to make these decisions spontaneously, rather 
than through the mediation of digital systems. In other application domains, such as e-com-
merce, people are accustomed to shopping online, so e-commerce systems do not need to 
worry about missing intervention opportunities. To intervene lifestyle decisions at the critical 
moments, interfaces between the information in the digital systems and people’s spontane-
ous behaviors in the physical world might need to be created. Current approaches include 
predicting users’ spontaneous decision-making moments using sensor network (e.g., predict-
ing “about-to-east” moments, Rahman, Czerwinski, Gilad-Bachrach, & Johns, 2016), and in-
itiating decisions when interventions are predicted by the system to be most valuable (e.g., 
predicting stressful moments, Jaimes, Llofriu, & Raij, 2014). This challenge will continue to 
stimulate new intelligent digital solutions and at the same time debates on the associated 
ethical implications (e.g., Zuboff, 2019). 

2.4.2 Digital intervention techniques targeting action-level learning 

Digital intervention techniques targeting action-level learning processes operate in between 
rather than at decision moments. The goal is to support either goal-directed learning (e.g., to 
change perceived behavior-health links) or the formation of healthy habits. If these tech-
niques are effective, the cognitive variables that influence decision-making will be in a health-
promoting state, so that users are expected to maintain the learned healthy behaviors without 
being continuously intervened by digital systems at a daily basis. 

A main challenge for lifestyle behavior change is learning the causal relationships between 
one’s behaviors and health consequences, as these consequences are usually delayed. As dis-
cussed, researchers have speculated on the role of episodic memory in tracking internal and 
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external events to support this type of learning (Gershman & Daw, 2017). In this regard, the 
self-tracking function of many digital systems can support learning by externalizing user’ 
memory systems (Kersten-van Dijk et al., 2017). Behavioral and contextual data can be ob-
jectively recorded and can be reviewed later by users when consequential health events take 
place. Because self-tracking studies mostly focus on the effectiveness of the technology as a 
whole, evidence regarding its specific role in supporting goal-directed learning is lacking 
(Kersten-van Dijk et al., 2017). Some interview data indicated that users of self-tracking sys-
tems believed that they acquired knowledge about behavior-health links through the self-
tracking technology (e.g., Choe, Lee, Lee, Pratt, & Kientz, 2014; Li, Dey, & Forlizzi, 2011). 

Instead of directly supporting the learning of health consequences, a different and popular 
approach is to provide extra rewards that may reinforce the desirable behaviors. In such gam-
ification systems, most common extra rewards are virtual rewards, such as badges, trophies, 
or complements (Cugelman, 2013; Deterding, Dixon, Khaled, & Nacke, 2011; Nacke & De-
terding, 2017). These virtual rewards are expected to steer users to healthy behavioral options 
by competing with the inherent hedonic values of many unhealthy behaviors.  

Despite its popularity, the effectiveness of virtual rewards in lifestyle behavior change is ques-
tionable, as empirical studies found no positive effects in several health domains, such as 
physical activity (Zuckerman & Gal-Oz, 2014) and sexual protection behavior (DeSmet, She-
gog, van Ryckeghem, Crombez, & de Bourdeaudhuij, 2015), while users in a study perceived 
such virtual rewards implemented in an exercise-promoting application as “not motivating” 
or even “unnecessary” (Munson & Consolvo, 2012). Our framework implies that the problem 
with virtual rewards is not in the learning of the contingencies – given sufficient learning, 
users would know what behaviors are rewarded – but in the corresponding goal values of 
these rewards: the goal values of virtual rewards are often low, when compared with other 
hedonic attributes, such as tastiness and reduced effort. Future research on gamification 
should focus on making the virtual rewards more goal-relevant, for example, by embedding 
them as a game mechanic that users care about (Berkovsky, Coombe, Freyne, Bhandari, & 
Baghaei, 2010), or by making the rewards socially meaningful (Shahrestani et al., 2017).  

Another technique in this category is habit formation support, usually by reminding users 
about a new and desirable behavioral option. This is especially valuable at the beginning of 
habit formation when new options are not always remembered by users themselves. Unlike 
the technique of suggesting options at decision moments (see last section), reminders that 
support habit formation are sent offline and according to time-based schedule (e.g., once 
every morning). They do not persuade users to act immediately, but to increase the activation 
values of certain options so they are more likely to be generated when decision moments ar-
rive. Reminders have been widely used and have been shown to be effective in domains where 
forgetting is the main obstacle for behavior change (e.g., Armstrong et al., 2009; Thakkar et 
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al., 2016). More research is warranted to understand its value in changing more complex life-
style behaviors, when activation value is one of many influential cognitive variables.  

2.4.3 Digital intervention techniques targeting reflection-level decision-making 

Setting up a short-term goal, as a reflection-level decision-making process, is often the start-
ing point of behavior change, either by people themselves or supported by digital systems. 
Without external interventions, goal-setting is only triggered under special conditions, for 
example, when someone has learned new health-related knowledge (e.g., become aware of 
the risk of smoking) or has experienced a sudden change of their health status (e.g., being 
diagnosed with diabetes). Thus, a straightforward intervention technique is to proactively 
prompt users to set up new goals to improve their lifestyles. In many digital systems, follow-
ing a goal-setting prompt, a user can choose a goal and then record it in the system, which 
allows the system to remind the user of the goal when needed. 

As goal-setting is a decision-making process, most techniques discussed in the section of tar-
geting action-level decision-making also apply to goal-setting, including option, attribute, 
and structure-based techniques. As a particularly promising direction, digital systems may 
utilize their data-gathering power and artificial intelligence to recommend novel and attrac-
tive options for short-term goals (Kamphorst & Kalis, 2015). To address the subtlety and com-
plexity of goal-setting in the health domain, the systems need to personalize options based 
on users’ abilities (e.g., Radha, Willemsen, Boerhof, & IJsselsteijn, 2016) and also on their 
unique life experiences (see Rutjes, Willemsen, & IJsselsteijn, 2019). In the future, the diffi-
cult task of setting up challenging, motivating, yet realistic goals may indeed be transferred 
from people to intelligent intervention systems.  

After the step of goal-setting, digital systems can go further to support the planning phase 
that connects short-term goals to daily decisions in the future. A simple technique is to 
prompt users to make concrete plans in the system, for example, by adding activities to a 
calendar. Data provided by the users allow digital systems to check adherence and send re-
minders when necessary. In addition to this time-based planning technique, digital systems 
may also encourage users to use the event-based planning technique of implementation in-
tention discussed earlier (Gollwitzer, 1999). Implementation intention has been shown to be 
effective in the health domain (e.g., Adriaanse, Vinkers, de Ridder, Hox, & de Wit, 2011; 
Luszczynska, Sobczyk, & Abraham, 2007), and it has also been implemented in digital inter-
ventions where no human instructions are required (e.g., Pinder, Vermeulen, Wicaksono, 
Beale, & Hendley, 2016; Stawarz, 2017). A recent system even uses sensor data to automati-
cally generate “if-then” rules that were adapted to the living contexts of individual users 
(Dogangün, Schwarz, Kloppenborg, & Le, 2017). 
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2.4.4 Digital intervention techniques targeting reflection-level adaptation 

In this category, providing behavior feedback to users to support self-monitoring is the most 
used behavior change in digital systems (Conroy et al., 2014; Lehto & Oinas-Kukkonen, 2011; 
Mercer, Li, Giangregorio, Burns, & Grindrod, 2016; Payne, Lister, West, & Bernhardt, 2015; 
Zhao, Freeman, & Li., 2016). Technically, with the development of increasingly powerful sen-
sors, digital systems are able to track lifestyle behaviors and related variables more accurately 
and in greater details than people’s own memories. Moreover, these systems can transform 
the rich raw data into numerical or visual information (e.g., weekly summary of step count) 
to facilitate better comparison with the short-term goal references (e.g., Kersten-van Dijk et 
al., 2017). 

Although self-monitoring as a general behavior change technique has been identified as ef-
fective (Michie, Abraham, Whittington, McAteer, & Gupta, 2009), the evaluation of this tech-
nique in digital systems have yield mixed results (e.g., Hermsen et al., 2016; Zhao et al., 2016) 
and is impeded by the lack of high-quality studies and a lack of focus on self-monitoring per 
se (Kersten van Dijk et al., 2017). At least it is evident that the abundance of self-tracking 
devices has not solved the problem of lifestyle behavior change. From an evolutionary per-
spective, since people’s natural self-monitoring function has existed long time before the 
emergence of digital systems and quantitative data, it is not guaranteed that the technology-
enhanced information can lead to better functioning. A recent study indicates that some self-
tracking users may have an exaggerated focus on numeric feedback as the replacement of 
bodily experience as feedback, potentially leading to negative consequences such as rumina-
tion (van Dijk, Westerink, Beute, & IJsselsteijn, 2015). The bottom line is that even if tech-
nology-enhanced self-monitoring is beneficial to some extent, our framework implies that it 
is only one step in reflection-level adaptation. Future research should investigate how digital 
systems can also support the reflective processes that immediately follow self-monitoring, 
including the comparison between goal references and monitored performance, and the ad-
justments of goals and behaviors. 

2.5 General discussion 

Understanding and changing lifestyle behaviors in the digital age require a theoretical per-
spective that combines decision-making and learning, and a representation of behavior at the 
level of both daily decisions and episodic reflections. These two requirements have guided 
our review of individual theories and their integration, and the outcome is temporally fine-
grained, dynamic, and process-oriented theoretical framework of lifestyle behavior change. 
Through a mapping exercise, we also linked common digital intervention techniques to the 
behavioral processes and cognitive constructs in the framework.  
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2.5.1 Theoretical contributions and comparisons with previous integration works 

A primary objective of developing the adaptive decision-making framework was to address 
the mismatch between theory and digital intervention in terms of their temporal granularity 
(Riley et al., 2011). This was done by considering lifestyle behaviors at two different time 
scales – one that represents the individual daily decisions or actions, and another that groups 
the repeated daily decisions into a larger episode and incorporates self-regulatory processes 
(e.g., goal-setting, self-monitoring). This two-level representation contrasts our framework 
with previous integration attempts that were based on the stage model of change (Prochaska 
& Di-Clemente, 1982), such as the COMBI model (Klein, Mogles, & van Wissen, 2014) and 
the i-Change Model (de Vries, 2017). While the COMBI and i-Change Model postulate a more 
general process of behavior change (e.g., through contemplation, preparation, action, and 
maintenance), our framework zooms in to explain how repeated daily actions, with the help 
of reflection-level regulatory processes, lead to maintenance. Thus, our framework comple-
ments earlier work and contributes uniquely to the research on digital interventions, for 
which time-intensive intervention is a main strength.  

There are earlier frameworks that are more similar to the adaptive decision-making frame-
work when it comes to behavior representation. Both PRIME theory (West, 2006) and Tem-
poral Self-Regulation Theory (Hall & Fong, 2007) model behavior change as a continuous 
process rather than a series of discrete stages. However, our framework is the first to explicitly 
distinguish the two distinct levels of lifestyle behaviors and the different time scales involved. 
Although a two-level representation is arguably a simplification, it helps to elaborate the be-
havioral and cognitive processes at the two different levels, and more importantly, allows re-
searchers to include interactions between the levels – for example, the top-down motivating 
impacts of short-term goals on daily decisions, and the bottom-up process of self-monitoring 
to facilitate re-evaluation of goals.  

A second limitation in the current literature we addressed is the lack of dynamic processes in 
traditional behavior change theories (Riley et al., 2011). By integrating theories from both the 
learning and the decision-making tradition, the resulted adaptive decision-making frame-
work depicts a dynamic bidirectional relationship between behaviors and cognitive con-
structs that influence the behaviors. Our framework thus complements previous frameworks 
that focused exclusively on learning processes, such as the framework of evolutionary learn-
ing processes (Crutzen & Peters, 2018) and Action Change Theory (Vlaev & Dolan, 2015). 
More broadly, we believe that the need to capture the complexities of lifestyle behaviors for 
designing better digital interventions provides a strong and timely motivation to integrate 
decision-making and learning theories in basic psychological research (see Hastie, 2001). In 
this respect, the adaptive decision-making framework not only adds value to theoretical 
thinking in behavior change, but also to psychology in general. 
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Furthermore, our work may stimulate some reconsideration of the popular dual-processing 
models, in which health behaviors are assumed to be drive by two distinct forces, one reflec-
tive and one impulsive (Hofmann, Friese, & Wiers, 2008). In our view, such dichotomous 
categorization of diverse processes and constructs might be too coarse for a full understand-
ing of the dynamic lifestyle behavior change process. The adaptive decision-making frame-
work instead suggests several dualities. First, there is a contrast of long-term health benefits 
versus immediate hedonic rewards in option evaluation, where effortful cognitive control is 
required to battle one’s impulses. Second, the goal-directed evaluation based on attributes 
(both long-term and short-term) competes with the influences from habits. This has been 
discussed extensively in the learning literature as the dual action control by goals and habits 
(e.g., Dolan & Dyan, 2013). Third, the faster processes at the action level can certainly be 
contrasted with the more thorough processes at the reflection level, but one should also real-
ize that they operate on very different time scales.  

Finally, our framework focuses strongly on behavioral processes and cognitive mechanisms. 
Connections between theoretical constructs in the framework are meant to represent causal 
mechanisms rather than statistical relationships as in the COMBI model or the i-Change 
Model. These processes or mechanisms are described at a level of specificity that they can be 
transformed to computational models by introducing additional assumptions and formal al-
gorithms. For example, key cognitive variables are defined for option evaluation, but the exact 
computational process of these variables is left open to different assumptions (e.g., Roe et al., 
2001; Usher & McClelland, 2001). Similarly, although the framework acknowledges the joint 
influence of habit and goal-directed control, the exact arbitration between the two is sub-
jected to different computational accounts (e.g., Daw, Niv, Dayan, 2005; Keramati, Dezfouli, 
& Piray et al., 2011; Miller et al., 2019). The process-oriented nature of our framework makes 
it an ideal scaffold to develop new dynamic computational models envisioned by many re-
searchers (e.g., Hekler et al., 2016; Nilsen & Pavel, 2013; Riley et al., 2011; Spruijt-Metz et al., 
2015). 

2.5.2 Added value to the synergy between theory and digital intervention 

The adaptive decision-making framework was developed with the aim to bridge the gap be-
tween behavior change theories and digital intervention applications. As a modest first step, 
the framework provides a good summary of theoretical ideas in psychology to applied behav-
ior change research and it can be used as a reference if practitioners want to read more about 
specific theories and computational models. The wide coverage of our framework may help 
to broaden the theoretical knowledge of applied researchers, encouraging them to experiment 
with more cutting-edge theoretical propositions rather than restricting themselves to a few 
classical theories. 
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Moreover, the framework’s emphasis on behavioral processes and their corresponding digital 
intervention techniques should contribute to the identification, implementation, and evalua-
tion of intervention techniques. First, the framework makes a clearer distinction between 
people’s behavioral processes and the techniques that may influence the processes, when 
compared with some existing taxonomies. For example, habit formation has been considered 
as a behavior change technique (Abraham & Michie, 2008), but it is essentially a behavioral 
process that also operates without interventions and is driven by multiple lower-level pro-
cesses. It is more informative and actionable for system designers, if they are told to look at 
the specific processes underlying habit formation and how they can be changed, rather than 
to simply implement a technique called habit formation. Second, by mapping digital inter-
vention techniques to behavioral processes in our framework, it should become clear that 
often a technically well-defined function can target multiple distinct behavior processes. For 
example, self-tracking may increase users’ knowledge about behavior-health links, but may 
also support self-monitoring (Kersten-Van Dijk et al., 2017). We argue that evaluation re-
search (e.g., review and meta-analysis) should focus more on the effects of intervention tech-
niques have on individual processes rather than the effectiveness of broadly defined catego-
ries of technologies (e.g., “feedback system”, Hermsen et al., 2016), in order to gain a better 
understanding of how and why certain intervention techniques work. Third, when combining 
multiple intervention techniques to a single digital system, our framework can inform design-
ers about whether the techniques target complimentary processes/constructs or the same 
process/construct. In the latter case, the combination of techniques as a package may not 
necessarily be more effective than its components, and more careful analysis is needed. For 
example, as implementation intention and “just-in-time” reminder both increase the activa-
tion values of desirable options, it is questionable whether combining them would yield better 
results (cf. Pinder et al., 2016).  

The adaptive decision-making framework may also have a positive impact of digital applica-
tions on basic science. With a clear mapping between digital intervention techniques and the 
basic processes/constructs in the framework, theorists would be more aware of the digital 
systems that happen to target the processes/constructs of their interests. Such systems can 
then be utilized to collect time-intensive and ecologically valid behavioral data to test basic 
theories or computational models. 

2.5.3 Limitation of the framework 

Several limitations of the adaptive decision-making framework can be noted. First, the frame-
work is restricted to the explanation and modeling of individual lifestyle behaviors, so social 
processes and interactions between individuals are not considered. Second, as the framework 
focuses on the universal behavioral and cognitive processes across people and across behav-
ior domains, it does not uncover the goal values and attribute values for a specific behavior 
domain and a specific individual. Third, although the framework includes the most important 
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processes and constructs from a theoretical perspective, it does not address which processes 
are easier to be changed by digital systems. For example, higher-level goal values (e.g., seizing 
the moment or caring for the future) may be very influential on people’s behaviors, but they 
are relatively difficult to change given one’s social and developmental circumstances (see Hall 
& Fong, 2007). 

2.5.4 Conclusion 

Despite the limitations, we developed the framework in the hope that the adaptive decision-
making framework will benefit behavior change theorists, digital system designers, and most 
importantly, facilitate a better communication between the two communities. A stronger syn-
ergy will help to bring the future where digital systems become ubiquitous tools to support 
healthy living. In the meantime, a wider adoption of more effective digital interventions will 
offer ample opportunities for building and testing new theories of human behavior.  

For the remaining chapters in this thesis, the adaptive decision-making framework has also 
highlighted to particular challenges for changing lifestyle behaviors – the challenge of break-
ing bad habits and forming good habits through repeated daily decisions, and the challenge 
of enabling sufficient self-control in everyday environments full of temptations. Chapter 3 
and 3 directly develop and evaluate a computational of habit formation based on the frame-
work. Chapter 5 and 6 address the topic of self-control.  
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Chapter 36 

A Sequential Sampling Model of the Integration 
of Habits and Goals 

 

 
“Echo, Stop!”  

Me shouting at my Amazon Echo Dot (March 28th, 2019). 

 

3.1 Introduction 

It was an early morning before I went to High-Tech Campus Eindhoven to give a talk about 
the content of this very chapter at the annual PhD DeVo event of Philips Research. For me as 
an evening person, it was quite rare that I was already having breakfast in my living room at 
around 7:15. Suddenly, music started playing from my bedroom – it was Michael Jackson’s 
Billie Jean, the third in a series of alarms set in my smart speaker, an Amazon Echo dot, to 
wake me up every day. “Echo, stop!”, I immediately shouted, but very soon I realized some-
thing was quite off. Why would I stop my favorite music from playing, since I was already 
eating my breakfast and the music could certainly cheer me up? At the same time, I somehow 
felt that muting it was the most appropriate response.  

This personal experience has become my favorite example of how habits and goals can be in 
conflict. There are many everyday situations where people repeat behaviors that worked for 
them in past but compromise their current best interests. At a road junction, a driver may 
quickly turn to the route that they usually take for years, even though they are aware of the 
ongoing constructions on that road. In a supermarket, a consumer may pick up a familiar 
product at a familiar location without much thoughts about whether the product is needed 
on that day. In this chapter, we show through simulation studies that this phenomenon can 
be explained as an integration of habits and goals in a dynamic decision-making process.  

                                                   
 
6 This chapter is based on Zhang, C., van Wissen, A., Dotsch, R., Lakens, D., & IJsselsteijn, W. A. (submit-
ted). A sequential sampling approach to the integration of habits and goals.  
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3.1.1 The devaluation paradigm and the arbitration models 

The habit-goal conflict has been most convincingly demonstrated in instrumental learning 
experiments using the so-called devaluation paradigm (e.g., Adams, 1982; Dickinson, 1985; 
Tricomi, Balleine, & O’Doherty, 2009). In such experiments, human or animal subjects are 
trained to acquire certain behavioral responses (e.g., pressing a lever or a key) in order to 
obtain rewards that satisfy their goals (e.g., food or virtual money). A robust finding is that 
when the subjects are overtrained, their behaviors in extinction tests (i.e., where the behav-
iors are no longer rewarded) become insensitive to whether the corresponding goals are in-
hibited or not (e.g., by poisoning the food or devaluing the virtual money). This devaluation 
effect has been established as the empirical basis for the well-accepted theoretical proposition 
that two distinct learning systems – a habit system and a goal system – jointly control the 
selection of behaviors (Dolan & Dayan, 2013; Thorndike, 1932; Yin & Knowlton, 2006).  

The exact mechanism of how habits and goals interact to control behavior has recently been 
modeled as an arbitration process based on the properties of the two learning systems (e.g., 
Daw et al., 2005; Keramati et al., 2011; Miller et al., 2019). In their seminal work, Daw et al. 
(2015) proposed an uncertainty-based arbitration process. Following reinforcement learning 
theory (Sutton & Barto, 1998), habit and goal-directed learning are mapped to model-free 
and model-based reinforcement learning respectively. As model-based reinforcement learn-
ing is faster but computationally more complex, the goal system is the more reliable than the 
habit system at the early stage of instrumental training, but it eventually ends up with slightly 
higher uncertainty at the asymptotes, due an additional computational noise (Daw et al., 
2005). Since a model-free algorithm does not respond immediately to environmental changes, 
when the habit system takes control after extensive training, the behavior becomes in-sensi-
tive to goal devaluation. Lee, Shimojo, and O’Doherty (2014) provided some initial evidence 
that human brain may employ such an arbitration mechanism. 

Keramati et al. (2011) devised a different arbitrator that looks not only at uncertainty (or what 
they called value of information), but also the cost of computation. The goal-directed system 
is assumed to be always more informative, but switching to it to get more information comes 
with the cost that the additional time used for model-based computation may have been used 
otherwise for receiving reward. Thus, as the habit system gradually reduces uncertainty 
through extensive training, it wins the arbitration as the advantage of switching to the goal-
directed system is sup-pressed by its cost. Following a value-free view of habit, Miller et al. 
(2019) suggested an arbitration based on the variance of action values or habit strengths 
learned in the two systems. The logic is that if one system is more effective at distinguishing 
different response options, it should be preferred or weighted more. Critically, extensive 
training increases the variance in the habit system, but decreases the variance in the goal 
system. Both models can reproduce the classical devaluation effect (Adams, 1982; Dickinson, 
1985), but also findings in other paradigms, including reversal learning (Pessiglione et al., 
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2005), learning with concurrent schedule (Kosaki & Dickinson, 2010), and learning with dif-
ferent reinforcer scheduling (e.g., Dickinson, Nicholas, & Adams, 1983). 

All arbitration models can be summarized in a single conceptual scheme (Figure 3.1a). In two 
distinct systems, action values of different behavioral responses are learned, representing 
how these responses compare to each other on some relevant dimensions. Because action 
values learned in the two systems may disagree with each other, an arbitration process is 
needed to decide which system controls behavior, based on the relative strength of the two 
systems. After arbitration, the behavioral response with the highest action value learned in 
the dominated system is selected. Because the habit system lags behind the goal system in 
reaching its maximum performance but is ultimately more efficient, so the control of behavior 
switches from the goal-directed system to the habit system in the later stage of learning (Fig-
ure 3.1b). 

 

Figure 3.1 (a) A common scheme for arbitration models; (b) Predicted by arbitration models, 
control of response selection switches from the goal-directed system to the habit system after 
a certain amount of training. 

3.1.2 Motivation for a sequential sampling approach 

Although arbitration models can qualitatively reproduce some important empirical findings 
in the instrumental learning literature (Daw et al., 2005; Keramati et al., 2011; Miller et al., 
2019), their general approach can be questioned on several grounds. First, while the two sep-
arate learning systems and their neurological substrates are well-established (Yin & Knowl-
ton, 2006), the existence of an additional arbitrator remains a critical assumption, awaiting 
more neurophysiological evidence (but see Lee, Shimojo, & O’Doherty, 2014). Moreover, after 
arbitration, the response selection process is the same for either of the learning systems, re-
gardless of which one is in control. This contradicts with the seemingly qualitative differences 
in how habits and goals influence behaviors – habitual responses are often conceptualized as 
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impulses triggered by environmental cues (see Wood & Neal, 2007), which are sometimes 
overruled by goals. Finally, the arbitration models are not well-equipped to account for an 
important aspect of learning – the temporal change of decision time. The Daw et al. (2005) 
and Miller et al. (2019)’s models predict identical decision times for responses controlled by 
habits and goals, while Keramati et al. (2011)’s model produces unrealistic sudden switches 
between very fast (habitual) and very slow (goal-directed) responses. 

The above issues are all related to the fact that response selection is oversimplified in those 
models grounded in learning theories. Taking decision-making as an alternative theoretical 
perspective may help to solve these issues. Specifically, we might consider response selection 
in instrumental learning as value-based decision-making, and it is plausible that computa-
tional models of decision-making also apply to habit-goal conflicts. Sequential sampling 
models have been used to model choice patterns and decision times in many problems in 
psychological science (for a review, see Oppenheimer & Kelso, 2015), including memory re-
trieval (e.g., Ratcliff, 1978), perceptual decision-making (e.g., Ratcliff & Rouder, 1998), and 
value-based decision-making (e.g., Roe et al., 2001). The sequential sampling approach gen-
erally assumes that decision-makers accumulate preferences for different choice alternatives 
in multiple steps by sampling goal-related attributes of the alternatives, before the preference 
for one alternative eventually exceeds a decision threshold. If habits and goals can be mapped 
to distinct parameters in a sequential sampling model, they may be integrated dynamically 
to produce habit-goal conflicts and other habit-related phenomena, without resorting to an 
additional arbitrator. 

Two important and distinct determinants of any sequential sampling process are the starting 
position of preference accumulation (baseline preference) and the drift rate at each step of 
preference accumulation (Forstmann, Ratcliff, & Wagenmakers, 2016). In their seminal pa-
per on multialternative decision field theory, Roe et al. (2001) discussed a possible mapping 
of habits and goals to starting position and drift rate respectively, but the idea was not exam-
ined any further in value-based decision-making research. A stronger rationale for this map-
ping comes from research results in the neighboring field of perceptual decision-making, 
where a typical task requires choosing the correct movement direction of groups of dots. It 
was found that while drift rate related to stimulus ambiguity in the current trial, starting po-
sition related instead to past choices (Bode et al., 2012; Mulder, Wagenmakers, Ratcliff, 
Boekel, & Forstmann, 2012). If a similar distinction between past and current information 
applies to value-based decision-making, then habits and goal-related values may play the 
same roles as past choices and current perceptual evidence respectively. Furthermore, Akai-
shi and colleagues (Akaishi, Umeda, Nagase, & Sakai, 2014) found that the way past choices 
influence current choice in the perceptual domain is mathematically equivalent to a form of 
Hebbian learning (Hebb, 1949), which has been theorized previously to also underlie habit 
learning (Klein, Mogles, Treur, & van Wissen, 2011; Miller et al., 2019). 
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In the next sections, we formally introduce a sequential sampling model in which habits and 
goals are integrated dynamically, and show through simulations that the model can repro-
duce choice patterns and predict gradual changes of decision times in three instrumental 
learning tasks – classic devaluation paradigm, devaluation paradigm with a concurrent 
schedule, and reversal learning. The simulations studies provide a good test of the validity of 
our model, as the reproduced findings are considered as classic demonstrations of habit-goal 
conflicts and were previously addressed by the arbitration models.  

3.2 The conceptual and the computational model 

In order to model the cognitive processes in instrumental learning, we first define the struc-
ture of a typical instrumental learning task and the relevant variables involved in the task. 
We focus on an example of animal experiments where rodents learn to press a lever to obtain 
food (Figure 3.2a), but the same task definition also applies to human instrumental learning 
tasks. In a constrained environment (e.g., a feeding cage), a learning agent is assumed to have 
a fixed number of goals. For example, a rodent may strive to obtain food, water, mating op-
portunities, and also to rest. At one moment, these goals can differ in their importance to the 
agent, numerically represented by goal values. To satisfy its goals, the agent needs to engage 
in certain behaviors, and it can be assumed that given the constrained environment, only a 
limited number of behavioral responses are available. In a typical experiment, it can be sim-
plified that rodents only have two possible responses – to press a lever or to rest. For each 
goal and each behavioral response, attribute values can be specified to represent the likeli-
hood of achieving the goal by executing the behavior (e.g., pressing lever scores high on at-
tribute food, resting scores high on attribute leisure). Note that among all the goal-related 
attributes, some can be called unattainable attributes as no behavioral response in the con-
strained environment can satisfy those goals (e.g., mating is an unattainable attribute given 
the absence of other rodents in the cage).   

As in classic expected utility theory (e.g., Savage, 1954; von Neumann & Morgenstern, 1947), 
the overall value of a response depends on both its attribute values and the corresponding 
goal values. In addition, each behavioral response also has a different habit value, depending 
on its frequency of being selected in the past. Overall, the task of the learning agent is to 
search for the behavioral response that can maximize the satisfaction of its various goals 
through repeated decisions. This representation is similar to the multi-armed bandit task in 
the reinforcement learning literature, where an agent learns the pay-offs of multiple slot ma-
chines through repeated trials (Sutton & Barto, 1998; for a similar representation of instru-
mental learning, see Fontanesi, Gluth, Spektor, & Rieskamp, 2019). 

Conceptually, the learning task consists of a sequence of interconnected decision-making (re-
sponse-selection) and learning processes (Figure 3.2b). At each iteration, the current goal 
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values, attribute values, and habit values are integrated in a sequential sampling process to 
produce the current decision (e.g., press the lever) and the associated outcome (e.g., food 
delivered). Two distinct learning processes then follow. In goal-directed learning, perceived 
outcomes are used to update the agent’s beliefs about the attribute values of the behavioral 
responses (law of effect, Thorndike, 1932). With enough repetition, perceived attribute values 
should converge to the true likelihoods of satisfying different goals by executing different be-
haviors. In a separate habit learning process, the habit values of behavioral responses are 
updated based simply on whether the responses are selected at this iteration (law of exercise, 
Thorndike, 1932). Cognitively, habit values reflect the mental associations between behaviors 
and environmental cues strengthened through their repeated co-occurrences7 (Klein, Mogles, 
Treur, & van Wissen, 2011; Wood & Neal, 2007; Wood & Rünger, 2016). The updated attrib-
ute values and habit values are used for the subsequent decisions.  

 

Figure 3.2 (a) A representation of behavioral responses, goals, and goal-related attribute 
values in a typical instrumental learning experiment with rodents; (b) A representation of the 
task as a repeated alternations between decision-making and learning. 

 

 

                                                   
 
7 There is an ongoing debate on whether habit learning depends on the decisions alone (value-free, see e.g., 
Miller et al., 2019; Miller, Ludvig, Pezzulo, & Shenhav, 2018; Pauli, Cockburn, Pool, Pérez, & O’Doherty, 
2018) or also on decision outcomes (e.g., as model-free reinforcement learning, see Daw et al., 2005; 
Keramati et al., 2011). Because our main objective is to propose a new model of habit-goal integration in 
response selection, we take the value-free view of habit learning for its simplicity and its similarity to the 
updating rule of prior choice’s effect in perceptual decision-making (Akaishi et al., 2014). In theory, our 
sequential sampling approach should remain effective even if the alternative view of habit learning is taken.  



3.2 The conceptual and the computational model  

 

45 
 

3.2.1 Modeling response selection as a sequential sampling process 

For modeling response selection in the instrumental learning task, we adopted the general 
framework of the multialternative decision field theory (MDFT; Roe et al., 2001), but other 
sequential sampling models of value-based decision-making should also work in principle 
(e.g., Trueblood, Brown, & Heathcote, 2014; Usher & McClelland, 2001). Figure 3.3 provides 
a visual summary of the model, showing how the outcome and time course of a response se-
lection (between lever press and rest) are determined in a sequential sampling process as 
influenced by four variables – starting positions, sampling probabilities, drift rates at each 
time step, and a decision threshold8. 

 

Figure 3.3 A detailed representation of a sequential sampling process and its inputs. 

At the start of a sequential sampling process, starting positions represent a decision-maker’s 
baseline preference towards a set of behavioral responses. The model proposes that habitual 
responses (i.e., responses that have been chosen more frequently in the past) are by default 
more favorable than the less habitual ones, represented by higher starting positions9 (Roe et 
al., 2001). The starting positions or the preferences at t0 for all responses equal to their habit 

                                                   
 
8 For the applications in this chapter, we assume that decision-making processes are terminated by an 
internal representation of decision threshold. However, decision-making processes can also be forced to 
terminate at an arbitrary time t, and the response with the highest preference at that time is chosen.  

9 A different cognitive mechanism with the same consequence is that the decision-maker start to accumu-
late preferences for habitual responses earlier than other responses (for a similar idea, see Psarra, 2016). 
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strengths (H) scaled by a scalar parameter 𝜃𝜃: 

 𝐏𝐏(0) =  𝜃𝜃𝐇𝐇 (1) 

From their starting positions, a learning agent’s preferences for different responses drift over 
time, and at each time step, the drifts depend on which goal-related attribute is sampled and 
how each response scores on the sampled attribute. For example, if attribute food is sampled, 
the preference for the response lever-press will increase greatly because lever-press scores 
high on attribute food. A key assumption of MDFT is that at one time step, the decision-maker 
only sample one attribute (e.g., at t1 food is sampled while at t2 leisure is sampled). In the 
original MDFT, the sampling probabilities are equal for all attributes (i.e., sampling ran-
domly). Instead, our model proposes that sampling probabilities of attributes are determined 
by two variables – the goal values of the attributes and the attainability of attributes, which 
measure the importance and relevance of the attributes respectively in the current task. If, 
for example, obtaining food is more important than conserving energy for rodents, food will 
be sampled more than leisure. Also, if one attribute is more attainable in the current task 
(contained more in the responses) than another attribute (e.g., some behavioral responses 
result in food, but none results in mating), it will be more likely to be sampled. Mathemati-
cally, a softmax function is used to calculate sampling probability (𝑃𝑃𝑃𝑃𝑗𝑗), with the multiplica-

tions of goal value (𝐺𝐺𝑗𝑗) and the attainability of attributes (𝐴𝐴𝑗𝑗) as inputs and 𝜏𝜏 as a scaling pa-

rameter, 

 𝑃𝑃𝑃𝑃𝑗𝑗 =  𝑒𝑒𝜏𝜏𝐺𝐺𝑗𝑗𝐴𝐴𝑗𝑗

∑ 𝑒𝑒𝜏𝜏𝐺𝐺𝑘𝑘𝐴𝐴𝑘𝑘𝐾𝐾
𝑘𝑘=1

 (2) 

where the attainability of each attribute is the sum of all responses’ scores on that attribute 
(𝑋𝑋𝑖𝑖𝑗𝑗), 𝐴𝐴𝑗𝑗 =  ∑ 𝑋𝑋𝑖𝑖𝑗𝑗𝑁𝑁

𝑖𝑖=1 . Attribute values are often given externally in choice experiments, but in 

our learning task they are derived from learned probability distributions for each attribute. 
For the calculation of 𝐴𝐴𝑗𝑗, the model assumes that the expected mean reward values (EMRs) 

of the distributions are used. Later, attribute values sampled at each time step, the lowercase 
𝑀𝑀𝑖𝑖𝑗𝑗, are instead randomly sampled from the distributions. 

Two implications of Equation 2 are worth noting. First, the unattainable attributes will have 
very low though non-zero sampling probabilities. As there can be many unattainable attrib-
utes in a controlled instrumental learning task, the sum probability of sampling any unattain-
able attribute can be non-trivial (e.g., 5%), and it is similar to the probability of sampling 
noise, which is usually arbitrarily defined in other sequential sampling models (e.g., Roe et 
al., 2001). Second, goal values for different attributes are assumed to be stable (fixed) in short 
time frames for each decision-maker, but can be substantially changed through experimental 
procedures such as goal devaluation (e.g., Adams, 1982; Dickinson, 1985). Consequently, if a 
food is devalued, its sampling probability also decreases towards zero.  
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The rest of the model follows MDFT closely. When an attribute is selected based on sampling 
probabilities at time t, the momentary drift rates of behavioral responses (or valences as in 
Roe et al., 2011) are their attribute values on the sampled attribute, as in the matrix form10: 

 𝐕𝐕(𝑡𝑡) = 𝐌𝐌(𝑡𝑡)𝐖𝐖(𝑡𝑡)  (3) 

where 𝐕𝐕(𝑡𝑡) is an N-dimensional valence vector representing the drift rates of different behav-

ioral responses at different time steps. 𝐖𝐖(𝑡𝑡) is a J-dimensional vector of attribute weights, in 

which the sampled attribute is weighted 1 and all others are weighted 0. Lastly, 𝐌𝐌(𝑡𝑡) is an N-

by-J matrix containing all attribute values for all responses. Unlike the original MDFT, where 
𝐌𝐌(𝑡𝑡) is fixed for all t, 𝐌𝐌(𝑡𝑡) elements are randomly sampled according to the underlying prob-

ability distribution learned for each response-attribute pair at each time step.  

Next, preferences 𝐏𝐏(𝑡𝑡) at time t are determined by the preferences at the previous time step 

(𝐏𝐏(𝑡𝑡−1)) and the current drift rates 𝐕𝐕(𝑡𝑡). Between two successive time steps, there is a decay or 

leakage of each preference itself, and there are influences from the preferences of competing 
responses, often in the form of lateral inhibition. Both processes are summarized in an N-by-
N matrix S, in which elements on the main diagonal are equal to a self-decay parameter (𝑆𝑆𝑠𝑠𝑒𝑒𝑠𝑠𝑓𝑓) 

and all other elements are equal to a lateral inhibition parameter (𝑆𝑆𝑠𝑠𝑙𝑙𝑡𝑡𝑒𝑒𝑙𝑙𝑙𝑙𝑠𝑠). Thus, preferences 
are calculated in the matrix form:    

 𝐏𝐏(𝑡𝑡) = 𝐒𝐒𝐏𝐏(𝑡𝑡−1) +  𝐕𝐕(𝑡𝑡)  (4) 

When a behavioral response’s preference exceeds the decision threshold, a decision is made 
and the behavior is executed by the learning agent. Reward to be received relating to each 
attribute or goal is calculated by reward probabilities pre-defined by the learning task (e.g., 
the reinforcement schedule of a learning experiment). Before making the next decision, habit 
values and goal-related attribute value distributions are updated. 

3.2.2 Modeling habit and goal-directed learning 

We assume that habits are value-free, meaning that their updates depend only on the deci-
sions (and the associated behavioral executions) themselves but not on the consequences 
brought by the decisions. Specifically, the model for habit learning uses the same Hebbian 
learning equation as in Miller et al. (2019), but is also conceptually compatible with other 

                                                   
 
10 In the original MDFT, valence is computed as  𝐕𝐕(𝑡𝑡) = 𝐂𝐂𝐌𝐌(𝑡𝑡)𝐖𝐖(𝑡𝑡), where 𝐂𝐂 is an N-by-N contrast matrix 
with all the elements on the main diagonal equal to 1 and all other elements equal to −1 (𝑁𝑁 − 1)⁄ . In this 
way, valences measures relative advantages or disadvantages of responses, rather than absolute attribute 
values. We tested this version as well, but it would severely attenuate the impact of habit strength. This 
strong contrasting mechanism is not essential to the sequential sampling approach, and it is not used in 
other models (e.g., Bhatia, 2013; Trueblood et al., 2014; Usher & McClelland, 2004). 
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equations (Klein, Mogles, Treur, & van Wissen, 2011; Psarra, 2016; Tobias, 2009): 

 𝐇𝐇(𝑇𝑇) =  𝐇𝐇(𝑇𝑇−1) +  𝛼𝛼𝐻𝐻(𝐀𝐀𝐻𝐻 −  𝐇𝐇(𝑇𝑇−1)) (5) 

where learning rate 𝛼𝛼𝐻𝐻 controls how much habit values (𝐇𝐇) change from one time point to 
the next11, and 𝐀𝐀𝐻𝐻 is a scaling parameter which limits the upper-bound of habit values. The 
equation implies that with repeated behaviors, habit values increase fast at the beginning and 
then their growth slow down until the values reach their asymptotes. This pattern is con-
sistent with empirical data on the dynamics of self-reported habit strength (Lally, van 
Jaarsveld, Potts, & Wardle, 2010).  

Compared with habit learning, the algorithm for goal-directed learning can be very complex. 
Previous models have implemented model-based reinforcement learning algorithms (Daw et 
al., 2005; Keramati et al., 2011; Miller et al., 2019). Since we simplified our task representa-
tion to single-state repeated decision-making or multi-armed bandit problem (in contrast to 
Markov decision process), goal-directed learning may be modeled with a simple algorithm of 
Bayesian belief update – combining prior distributions (beliefs about attribute values before 
a decision) and data (i.e., rewards) to obtain posterior distributions (beliefs after a decision). 
Assuming that the reward generation processes in learning experiments are Bernoulli pro-
cesses, beta distributions can be used for priors and posteriors. Formally, the updating rule 
is expressed as: 

 �𝛼𝛼𝑖𝑖𝑗𝑗 ,𝛽𝛽𝑖𝑖𝑗𝑗� ← �
�(1 − 𝛾𝛾)𝛼𝛼𝑖𝑖𝑗𝑗 + 𝛾𝛾𝛼𝛼, (1 − 𝛾𝛾)𝛽𝛽𝑖𝑖𝑗𝑗 + 𝛾𝛾𝛽𝛽� ,                                             𝐷𝐷(𝑇𝑇) ≠ 𝑖𝑖

�(1 − 𝛾𝛾)𝛼𝛼𝑖𝑖𝑗𝑗 + 𝛾𝛾𝛼𝛼 +  𝑅𝑅𝑗𝑗(𝑇𝑇), (1 − 𝛾𝛾)𝛽𝛽𝑖𝑖𝑗𝑗 + 𝛾𝛾𝛽𝛽 + 1 − 𝑅𝑅𝑗𝑗(𝑇𝑇)� ,        𝐷𝐷(𝑇𝑇) = 𝑖𝑖
 (6) 

where the alpha and beta parameters defining the beta distribution of response i on attribute 
j are only updated by reward 𝑅𝑅𝑗𝑗(𝑇𝑇), if decision at T (𝐷𝐷(𝑇𝑇)) is to choose response i. To account 

for the nonstationary environments in typical experimental setups (e.g., reward functions can 
be suddenly changed by the experimenter), parameter 𝛾𝛾 is used to inject uncertainty in the 
distributions. In other words, belief distributions always regress to a default distribution de-

fined by 𝛼𝛼 and 𝛽𝛽 (a uniform beta distributions with both equaling 1), ensuring fast reactions 
of learning agents to changes in the environment. Note that sampling values from the beta 
distributions defined in equation 6 resembles the widely-used Thompson sampling approach 
to solve practical Bandit problems (see Russo, van Roy, Kazerouni, Osband, & Wen, 2015), 
although in our model the distributions are sampled many times (i.e., sequential sampling) 
rather than only once within each single decision. 

                                                   
 
11 The uppercase T in the equation denotes time point or decision point (e.g., trial number in experiments), 
which is different from the time step t in the sequential sampling of each decision.   
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3.3 Simulation studies 

We conducted three simulation studies to validate our model. First, the model was used to 
reproduce the classic devaluation effect (e.g., Adams, 1982; Dickinson, 1985), and sensitivity 
analyses were performed to see if the effect was robust against changes of parameter values. 
Next, we extended the model to a devaluation paradigm with two competing response options 
(Kosaki & Dickinson, 2010). Finally, following previous works (Keramati et al., 2011; Miller 
et al., 2019), the model was used to reproduce the findings in a reversal learning task (Pessig-
lione et al., 2005), focusing on how it can produce gradual changes in decision time. For all 
model parameters (i.e., excluding task-specific parameters), the same values were used for 
all three studies, as shown in Table 3.1. 

Table 3.1 Parameter values used in all three studies. 

 Parameter Explanation Value 
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𝜃𝜃 

Scaling parameter for transforming habit strengths to start-
ing positions. The exact value is arbitrary, but it should scale 
the largest habit strength possible (close to 1) to the decision 
threshold (e.g., 1). 

1 

𝜏𝜏 

Scaling parameter for the softmax function used in Equa-
tion 2. The larger the value, the more dominant the largest 
input is in calculating the outputs. The value is arbitrary, 
but depends on the scale used for goal values, e.g., [0, 1]).  

10 

𝑆𝑆𝑠𝑠𝑒𝑒𝑠𝑠𝑓𝑓 
Memory parameter that measures on the information loss (1 −
 𝑆𝑆𝑠𝑠𝑒𝑒𝑠𝑠𝑓𝑓) in preference accumulation (e.g., 0.94 used in Roe, et al., 

2001). 
0.99 

𝑆𝑆𝑠𝑠𝑙𝑙𝑡𝑡𝑒𝑒𝑙𝑙𝑙𝑙𝑠𝑠 
Lateral inhibition parameter that measures the competition 
among choice options (e.g., -0.001 and -0.025 used in Roe 
et al., 2001). 

-0.03 

𝐷𝐷𝐷𝐷 
Decision threshold for sequential sampling. The exact value 
is arbitrary, as it depends on the scales used for attribute 
values (e.g., [0, 1] in our studies).  

1 

𝑚𝑚𝑚𝑚𝑥𝑥𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 
The maximum time step allowed in a sequential sampling 
process if no option’s preference exceeds decision thresh-
old.  

100 

𝑁𝑁𝑢𝑢𝑗𝑗𝑙𝑙𝑡𝑡𝑡𝑡𝑙𝑙𝑖𝑖𝑗𝑗 Number of unattainable attributes. 10 

(To be continued) 
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 Parameter Explanation Value 
H
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𝛼𝛼𝐻𝐻 

Learning rate in the Hebbian equation for habit learning. 
The larger its value, the faster habit strengths update. Mil-
ler et al. (2019) used much smaller values (e.g., 0.001), and 
indeed many more training trials were required to reach 
full habit strengths (e.g., 6000). 

𝛼𝛼𝐻𝐻 

 A𝐻𝐻 Scaling parameter determining the upper bound of habit 
strength (usually 1, Miller et al., 2019). 

1 

G
oa

l-
di

re
ct

ed
 le
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ng
 

𝛾𝛾 

Uncertainty parameter that determines the rate of uncer-
tainty injected in the Bayesian belief updates. The larger its 
value, the faster a learner discounts “old” information, or 
“forgets” faster (e.g., 0.01 used in Russo et al., 2015). 

0.1 

𝛼𝛼 
Alpha parameter of the convergence distribution in the ab-
sence of observations (uniform beta distribution was used, 
see Russo et al., 2015). 

1 

𝛽𝛽 Beta parameter of the convergence distribution in the ab-
sence of observations.   

1 

 

3.3.1 Study 1: Classic devaluation effect 

The classic devaluation effect shows that learning agents become insensitive to goal devalua-
tion after extensive training, but remain sensitive after moderate training. The effect has been 
repeatedly replicated for both animals and humans (e.g., Adams, 1982; Dickinson, 1985; Kill-
cross & Coutureau, 2003; Liljeholm, Dunne, & O'Doherty, 2015; Tricomi et al., 2009; Yin et 
al., 2004; Yin, Knowlton, & Balleine, 2005), and is considered a seminal finding for differen-
tiating habits from goal-directed behaviors. In a typical animal devaluation experiment, ro-
dents learn to press a lever to obtain food pallets through either moderate or extensive pairing 
of the response and the food. After training, half of the rodents are subjected to a devaluation 
procedure, where the food becomes undesirable because of either a satiation procedure or  
food-aversive conditioning (indicated as the “devalued” or “paired” group). The other half 
undertakes a similar procedure but with a different food not used in training (indicated as 
the “non-devalued” or “control” group). Finally, in the extinction test, no food pallets are de-
livered no matter how frequently the rodents press the lever. The devaluation effect manifests 
as an interaction effect. After moderate training, rodents in the devalued group press the lever 
less often than their peers in the control group. For rodents that receive extensive training, 
their lever-pressing responses seem to become insensitive to goal devaluation – both the de-
valued and the control group press the lever with equal frequency.   
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In the simulated experiment, learning agents were trained to press the lever for either 40 or 
240 trials (as in Keramati et al., 2011), in which they were assumed to have a higher goal value 
for obtaining food (𝐺𝐺𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 0.8) than for having some rest (𝐺𝐺𝑠𝑠𝑒𝑒𝑖𝑖𝑠𝑠𝑢𝑢𝑙𝑙𝑒𝑒 = 0.4). Pressing the lever 

would lead to food 60% of the time12, but never any leisure. Relaxing (no lever-pressing), on 
the other hand, always led to leisure but no food. Besides food and leisure, the agents were 
assumed to have 10 other important goals (𝐺𝐺𝑢𝑢𝑗𝑗𝑙𝑙𝑡𝑡𝑡𝑡𝑙𝑙𝑖𝑖𝑗𝑗 = 0.8), but these goals were unattainable 
by either of the two responses. Devaluation was implemented as the diminishing of 𝐺𝐺𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 to 

0 for half of the agents. In the 100 extinction trials, the probability of obtaining food by lever-
pressing was reduced from 0.6 to 0. Five-hundred simulations of homogenous agents were 
run.  

Figure 3.4 Simulated behavioral results for a classic devaluation experiment. (a) Change of 
choice probability over time; (b) Aggregated lever-pressing rates in the first 20 trials after 
devaluation relative to the level at the end of training.  

Figure 3.4 shows simulated choice probabilities over time and aggregated response rates. Our 
model produced a main effect of training (higher lever-pressing rates after extensive training), 
a main effect of devaluation (lower lever-pressing rates when 𝐺𝐺𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is devalued), and most 

importantly a clear training duration by devaluation interaction effect. As can be seen in 
Figure 3.4a, the lever-pressing rates in the two groups decreased almost in parallel after ex-
tensive training, while after moderate training the lever-pressing rate of the devalued group 
declined sharply as compared to the non-devalued group.  

Our model also predicted that decision times decreased gradually over the course of training, 
but increased abruptly after devaluation, before eventually decreasing again (see Figure 3.5a). 

                                                   
 
12 The exact reward probability for food was not decisive for reproducing the devaluation effect, as long as 
it was high enough so that the full acquisition of the lever-pressing response was achieved.  

a b 
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Note that an increase of decision times after devaluation was observed in all conditions, re-
gardless of whether strong habits were formed or not (cf. Keramati et al., 2011). This is a novel 
prediction of the model that can be tested in future research. 

The effect-generating mechanisms of the model are illuminated in the temporal changes of 
the underlying cognitive variables in the model, especially their values at the transition from 
training to extinction (point of devaluation for the devalued group) (see Figure 3.5b - 3.5f). 
First, as expected, the habit values for the two groups after extensive training were very close 
to 1, while the habit values for the two groups after moderate training were just below 0.75 
(Figure 3.5b). Second, there was a sudden change in sampling probabilities for the devalued 
group – these agents stopped to sample attribute food because of the goal devaluation, but 
instead started to sample the unattainable attributes most of the time (Figure 3.5c, left). In 
contrast, agents in the control group continued to sample food frequently before they gradu-
ally unlearned the association between lever-pressing and food in the extinction phase (Fig-
ure 3.5c, right). Thus, when looking at the expected mean reward values (EMR) for attribute 
food and the unattainable attributes (Figure 3.5d & 3.5f), it was clear that the response lever-
pressing was at disadvantage in the devalued group compared to the control group. The lever-
pressing rate of the devalued group dropped significantly faster (Figure 3.4a, left), unless the 
high habit values for the agents after extensive training functioned as a counteracting mech-
anism.  
 
 
 
 
 
 
 
 
 
 
 
 



3.3 Simulation studies 

 

53 
 

Figure 3.5 Temporal changes of decision time and underlying cognitive variables in the sim-
ulated devaluation experiment. (a) Decision time; (b) Habit value; (c) Sampling probability 
of attributes; (d) EMR of attribute food’s distributions; (e) EMR of attribute leisure’s distri-
butions; (f) EMR of unattainable attributes’ distributions. 

Sensitivity analyses showed that the model was reasonably robust in reproducing the deval-
uation effect against changes in parameter values (Figure 3.6). First, as expected, lever-press-
ing rates in the devalued and control group only became comparable when the training was 
more than approximately 170 trials (Figure 3.6a). This result basically reaffirmed the deval-
uation effect that insensitivity to goal devaluation only happens when the response is over-
trained. Second, a very high value for the memory parameter (𝑆𝑆𝑠𝑠𝑒𝑒𝑠𝑠𝑓𝑓) was needed to reproduce 

the devaluation effect (Figure 3.6b), consistent with the small memory leakages implemented 
in sequential sampling models in the literature (e.g., Roe et al., 2001). Third, variation of the 
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lateral inhibition parameter (𝑆𝑆𝑠𝑠𝑙𝑙𝑡𝑡𝑒𝑒𝑙𝑙𝑙𝑙𝑠𝑠) in the range of -0.3 and 0 did not change simulation 
results to any extent (Figure 3.6c), and the relative low values used were consistent with the 
literature (e.g., -0.001 and -0.025 used in Roe et al., 2001). Since theoretically lateral inhibi-
tion has an effect of reinforcing the responses with default high preferences (due to strong 
habits), a very large 𝑆𝑆𝑠𝑠𝑙𝑙𝑡𝑡𝑒𝑒𝑙𝑙𝑙𝑙𝑠𝑠 would result in an unrealistic pattern of no decay of lever-pressing 
rate in the extinction phase.  

Fourth, the curves for habit learning rate confirmed that some habit formation was needed 
to reproduce the devaluation effect, but if habits were made to form too fast (e.g., 𝛼𝛼𝐻𝐻 > 0.15), 
responses would become insensitive to goal devaluation even after moderate training (Figure 
3.6d). Fifth, results of the gamma parameter suggested that a small uncertainty injection was 
needed to reproduce the devaluation effect (Figure 3.6e), as the parameter positively related 
to the value distributions of the unattainable attributes that were mostly sampled for the de-
valuated groups. If there was little uncertainty (e.g., 𝛾𝛾 < 0.03), the resultant low value distri-
butions would lead to drift rates that were too small to push the baseline preference of lever-
pressing to the decision threshold even after extensive training. In contrast, if a lot of uncer-
tainty was injected (e.g., 𝛾𝛾 < 0.2), very large drift rates would be sampled from the value dis-
tributions of unattainable attributes and they would push baseline preferences of lever-press-
ing after both moderate and extensive training to the decision threshold. Finally, the number 
of unattainable attributes did not seem to have any substantial impact on the generation of 
the devaluation effect (Figure 3.6f). 
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Figure 3.6 Sensitivity of the devaluation effect to different parameter values. (a) Training 
duration; (b) Leakage parameter (𝑆𝑆𝑠𝑠𝑒𝑒𝑠𝑠𝑓𝑓); (c) Lateral inhibition parameter (𝑆𝑆𝑠𝑠𝑙𝑙𝑡𝑡𝑒𝑒𝑙𝑙𝑙𝑙𝑠𝑠); (d) Habit 

learning rate (𝛼𝛼𝐻𝐻); (e) Uncertainty parameter in Bayesian belief updating (𝛾𝛾); (f) Number of 
unattainable attributes (𝑁𝑁𝑢𝑢𝑗𝑗𝑙𝑙𝑡𝑡𝑡𝑡𝑖𝑖𝑗𝑗). The dashed squares indicate the effect-producing ranges. 

3.3.2 Study 2: Devaluation paradigm with a concurrent schedule 

We extended our simulation to devaluation experiments with a concurrent schedule. In 
Kosaki and Dickinson (2010), instead of training one response-outcome pair, rodents were 
trained to learn two instrumental responses with two types of food concurrently. With this 
schedule, even if extensive training was used, rodents remained sensitive as to which food 
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was devalued. Thus, we simulated 500 homogeneous agents only in extensive training to see 
if the model would produce a clear difference between responses to the devalued and non-
devalued food. Other setups were similar to the previous scenario, except that two food at-
tributes (with goal values 𝐺𝐺𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝐴𝐴 =  𝐺𝐺𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝐵𝐵 = 0.8) and two lever-pressing responses were 

used. Each food was again reinforced to the correct response 60% of the time.  

Figure 3.7 Simulated results for devaluation paradigm with concurrent schedule. (a) Change 
of choice probability over time; (b) Aggregated response rates (relative to the end of training) 
after devaluation (first 20 trials used); (c) Habit value; (d) Decision time.

As in Figure 3.7a and 3.7b, results were consistent with the empirical finding: at the point of 
devaluation, choice probability decreased sharply for the devalued response (lever-press A), 
while it increased for the non-devalued one (lever-press B). Unlike the classic devaluation 
experiments, even after extensive training, habit strengths for both responses were only mod-
erate (around 0.5, see Figure 3.7c) because of the competition, so the shift in starting posi-
tions could not compensate for the disadvantages of the devalued response in terms of sam-
pled attribute values. The model also predicted decision time to decrease gradually during 
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training, and to increase greatly in the extinction phase, eventually becoming slower than the 
decision time at the start of training. 

3.3.3 Study 3: Reversal learning 

Reversal learning refers to learning tasks where payoffs of behavioral responses are occasion-
ally reversed during the task. For example, in Pessiglione et al. (2005), following two stimuli 
with equal appearance probability, human participants learned in three phases to either press 
a button (go response) or withdraw from pressing a button (no-go (NG) response) in order to 
earn as many points as they could. In the training phase, the go-response earns points for one 
stimulus, while the NG-response earns points for the other. In the reversal phase, the reward-
generating stimulus-response mapping was reversed. In the final extinction phase13, the NG-
response earns points for both stimuli. The basic finding was that people needed time to grad-
ually learn the changes in the underlying reward probabilities and decision time fluctuated in 
time: responses became faster when a reward-structure was learned and slower when the 
structure was reversed. 

We used the same task structure as in Pessiglione et al. (2005). Learning agents were as-
sumed to primarily focus on accumulating points (𝐺𝐺𝑝𝑝𝑓𝑓𝑖𝑖𝑗𝑗𝑡𝑡 = 0.8) and to a lesser degree to con-

serve energy (or to obtain leisure, 𝐺𝐺𝑠𝑠𝑒𝑒𝑖𝑖𝑠𝑠𝑢𝑢𝑙𝑙𝑒𝑒 = 0.1). Probabilities of obtaining points were either 
0 or 1 for the responses depending on the phases (training, reversal, or extinction), while 
probabilities of obtaining leisure were all set to 1, since the button-pressing responses do not 
consume much energy for humans (so attribute leisure should have negligible influence on 
decision). The numbers of trials in the three phases were set to 150, 200, and 150 (as in 
Keramati et al., 2011). Five-hundred simulations with homogenous agents were run to obtain 
the results. 

Result of choice probability in Figure 3.8a confirmed that the simulated agents could learn 
to adapt to changes in reward structure, and indeed the changes of response patterns were 
gradual rather than immediate. Thus, our model produced similar results as with previous 
models (Keramati et al., 2011; Miller et al., 2019). It should be noted that the habit system 
or a non-zero 𝛼𝛼𝐻𝐻 is not essential for producing the basic pattern. Even without habit for-
mation (𝛼𝛼𝐻𝐻 = 0), the changes in response pattern cannot be completely abrupt, as it takes 
time to update beliefs about reward probabilities (see Figure 3.8b). However, it was clear 
that with habit, the changes were much slower (in over 100 trials instead of only 30 trials).  

Unlike Keramati et al. (2011), our model predicted gradual rather than sudden changes of 
decision time (measured as the sampling steps taken to make decisions, see Figure 3.8c). Also 

                                                   
 
13 To avoid confusion, it is important to note that extinction phase in Pessiglione et al. (2005) does not 
mean “no reward” as in other animal learning experiments, but only implies that the active go-response 
(button-pressing) is unlearned.  
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consistent with the empirical results (Pessiglione et al., 2005), decision time after the extinc-
tion phase increased about 1/2 less than after the extinction phase, because in the extinction 
phase reversal only applied to one stimuli.  

Figure 3.8 Simulation results of reversal learning. (a) Choice probabilities with 𝛼𝛼𝐻𝐻 = 0.04; 
(b) Choice probability with 𝛼𝛼𝐻𝐻 = 0; (c) Decision time with 𝛼𝛼𝐻𝐻 = 0.04.

3.4 General discussion 

In this chapter, we have built a sequential sampling model to explain why strong habits pre-
vent people from making decisions that satisfy their current goals. Simulation results have 
shown that our model can reproduce empirical results from three instrumental learning par-
adigms: classic devaluation, devaluation with a concurrent schedule, and reversal learning. 
This was achieved by a rather straightforward implementation of the multialternative deci-
sion field theory, with only two additional theoretical assumptions: (1) Starting positions of 
preference accumulation are determined by the habit values of behavioral responses; (2) At-
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tribute sampling probabilities are based on the importance and task-relevance of the corre-
sponding goals. The sensitivity analysis and the fact that the same parameters were used in 
all three studies speak to the strength of our central theoretical propositions. 

3.4.1 Theoretical contributions  

Contrasting previous models (Daw et al., 2005; Keramati et al., 2011; Miller et al., 2019), our 
work raises the possibility that instead of competing with each through a centralized arbitra-
tion, habits and goals may be integrated dynamically to produce behavioral responses. Some-
times, habits and goals are congruent and they jointly push responses in the same direction 
(e.g., during the learning phase of a devaluation experiment). In other cases, habit-goal con-
flicts emerge from the same process, when the goal-related attribute values become incon-
gruent with the habit values obtained from prior behavior repetitions, for example, after goal 
devaluation or reward structure reversal. It remains entirely possible that habit strengths and 
goal-related attribute values are learned in distinct neural systems (Yin & Knowlton, 2006), 
but at the decision moments both value signals are integrated into a single decision-making 
circuit. This hypothesis should be evaluated in future neurophysiological research, preferably 
by incorporating existing insights about the neural underpinning of learning (e.g., Dolan & 
Dayan, 2013; O’Doherty, Cockburn, & Pauli, 2016; Yin & Knowlton, 2006) and of decision-
making  (e.g., Kable & Glimcher, 2009; Rangel, Camerer, & Montague, 2008; Shadlen & Sho-
hamy, 2016; Summerfield & Tsetsos, 2012). 

Our model shared two theoretical stances with Miller et al. (2019). First, both models sepa-
rate goals values from goal-related attribute values, even though goal values as static decision 
weights in their model rather than the dynamic precursors of attribute sampling probabilities 
as in ours. This separation implies a double disassociation that devaluation only depletes goal 
values, while extinction test only affects goal-related attribute values. In contrast, other mod-
els implement both devaluation and extinction as changes to reward probabilities or directly 
to state-action values (Daw et al., 2005; Keramati et al., 2011). We believe that a separation 
is theoretically favorable, as it has been made in other theoretical frameworks (e.g., as out-
come value and outcome contingency in learning theories, and as decision weight and at-
tribute value in decision-making models), and there is evidence that they have distinct neural 
substrates (Kable & Glimcher, 2009; Rangel et al., 2008). Second, our work adds to Miller et 
al. (2019) that for explaining classic findings in instrumental learning, a value-free view of 
habit (Miller et al., 2018; Pauli et al., 2018) is at least as effective as the previous value-based 
view of habit (Dolan & Dayan, 2013). Our work cannot directly evaluate the verisimilitudes 
of the two views, but the assumption of mapping habit values to starting positions in sequen-
tial sampling models is more consistent with Hebbian learning algorithms (value-free) than 
with model-free reinforcement learning algorithms (value-based) of habit learning (see Akai-
shi et al., 2014).  
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Our model also has implications for the role of uncertainty and speed-accuracy trade-offs in 
instrumental learning. Some conceptualizations of uncertainty and speed-accuracy trade-offs 
have been made in earlier models (Daw et al., 2005; Keramati et al., 2011), but uncertainty 
was computed as a higher-order mathematical property, such as variance of distributions. 
Rather, uncertainty is realized in our model as the sampling of values from distributions and 
as the stochastic process of preference accumulation. In addition, speed-accuracy trade-offs 
are naturally incorporated in any sequential sampling model (e.g., Ratcliff & Rouder, 1998), 
as more accumulation steps reduce uncertainty but lead to longer decision times. 

Furthermore, the idea of sampling values from distributions for decision-making coincides 
with the Thompson sampling approach of solving repeated decision problems (Bandit prob-
lems), which usually achieves optimal balance between exploration and exploitation (Russo 
et al., 2015). Thompson sampling can be seen as a special case of sequential sampling with 
only one step. In this sense, sequential sampling with more than one step would favor exploi-
tation more than exploration, depending also on the decision threshold. By shifting starting 
positions closer to threshold, strong habits further enhance exploitation. In contrast, unat-
tainable attributes in our model provide a mechanism against over-exploitation, since the 
under-explored responses tend to have higher mean expected values for those attributes (see 
Figure 3.5f). In the events of sudden environmental changes (e.g., devaluation of primary 
goals), this mechanism counteracts habits to promote exploration. Future research should 
examine the role of habits in the exploration-exploitation dilemma and in reverse the role of 
the dilemma in instrumental learning. 

3.4.2 A note on a critical pattern in the devaluation effect 

A strong notion of insensitivity to devaluation would require a completely equal response 
rates between the devalued and non-devalued groups after extensive training. This critical 
pattern has indeed often be found in the literature (e.g., Adams, 1982; Dickinson et al., 1983; 
Killcross & Coutureau, 2003; Yin et al., 2004). As discussed earlier, the central mechanism 
of habits shifting starting positions should always produce a strong interaction effect, but not 
necessarily the exactly same response rates for the two groups of extensive training (see Fig-
ure 3.3b). The difference between the response rates of the two groups depend on the tem-
poral dynamics of the expected mean rewards of all attributes, which may be altered by 
changes of various parameter values. For example, Figure 3.5e shows that larger uncertainty 
parameter γ may produce smaller differences between the two groups.  

It should be noted that the critical pattern is potentially also a challenge for previous compu-
tational models (Daw et al., 2005; Keramati et al., 2011; Miller et al., 2019). Actually, none of 
the three models mentioned here addressed this problem directly, because they mainly com-
pared response rates before and after devaluation, but not the relative response rates in the 
devalued and control groups after devaluation as usually reported in the empirical studies. 
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Whether or not these models can produce the critical pattern is beyond the scope of this chap-
ter. 

3.4.3 Model predictions and future work  

Besides recreating key empirical results, the simulation studies produced full temporal dy-
namics of behaviors and underlying cognitive variables. As not all variables are observable 
and many specific local patterns may be subjected to parameter values, we only discussed 
several obvious model predictions. First, as an important strength of the sequential sampling 
approach, our model predicts gradual changes of decision time throughout the course of 
learning, rather than abrupt changes (see Keramati et al., 2011). The basic property of gradual 
change can be evaluated in trial-based instrumental learning experiments, from which deci-
sion times for all trials are plotted. Second, a recurrent pattern of decision time was that after 
devaluation it increased greatly regardless of whether extensive training lead to strong habits. 
This is because although strong habits and high starting positions can make decision fast, 
losing the positive drifts from sampling food (because of either devaluation or extinction) 
results in longer decisions.  In contrast, Keramati et al. (2011)’s model predicts no such in-
crease immediately after devaluation because habit system is assumed control actions com-
pletely. Thus, examining change of decision time following devaluation can provide a strong 
inference (see Platt, 1964) for comparing the two models. Third, for the study with concurrent 
schedule, the model predicts a brief increase in choice probability of the non-devalued re-
sponse (see Figure 3.6a). This is consistent with Keramati et al. (2015)’s model and with the 
decision-making phenomenon that decrease of choice share in one option usually lead to in-
crease of shares in all other options. Future studies are needed to further test this prediction.  

Our model should be extended to other empirical scenarios in the future. One important ex-
ample is the influence of reinforcement scheduling on the basic devaluation effect. It is well-
known that variable-interval schedule promotes habit formation and thus insensitivity to de-
valuation than variable-ratio schedule (e.g., DeRusso et al., 2010; Dickinson, 1985; Dickinson 
et al., 1983), and this effect has been simulated by Miller et al. (2019). Adapting the sequential 
sampling approach to this scenario would require a continuous-time transformation of our 
mod-el. Another interesting effect but in the domain of choice reaction time is the Hick’s law 
(Hick, 1952) simulated by Keramati and colleagues with their model (2011). Because Hick’s 
law has been accounted by a different sequential sampling model (Usher, Olami, & McClel-
land, 2002), our model should in principle explain it as well. Finally, as discussed by Keramati 
et al. (2011), novel scenarios using concurrent schedule might provide strong tests for differ-
ent models, for example, two responses with one identical outcome, and two responses with 
two outcomes that sufficiently differ in their values. Our model would predict sensitivity to 
devaluation in the former scenario, but insensitivity in the latter scenario. 
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3.4.4 Conclusion 

Our modeling work provide a preliminary demonstration of the sequential sampling ap-
proach’s ability to explain the integration of habits and goals. It sheds new lights on the old 
problem of habit-goal conflicts and encourages a more uniform approach to learning theories 
and decision-making theories. The answer to the question of why people chose habitual but 
inferior options may indeed be explained by the dynamic interactions between the two forces. 
More broadly, our work extends an emerging research line of applying sequential sampling 
models to human reinforcement learning (Fontanesi et al., 2019; Frank et al., 2015; Pedersen, 
Frank, & Biele, 2017), and encourages a more unified approach to learning and decision-mak-
ing theories in psychological science.  

In terms of the adaptive decision-making framework, our sequential sampling model can be 
considered as a model of the action-level processes. Because sequential sampling models are 
extensively used for modeling human value-based decision-making, our approach helps to 
connect basic instrumental learning research to human habits in real-life context (see Marien, 
Custers, & Aarts, 2019). Of course, to extend the model’s scope to people’s daily lifestyle de-
cisions, at least the process of option generation needs to be added. The next chapter explores 
this possibility in detail and also tests the habit formation part of the model in a real-world 
intervention application.  
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Chapter 4 
Modeling Habit Development in Dental Behavior 
in the Real-World 

 

 

4.1 Introduction 

Research on habits, both empirical and computational, has traditionally focused on instru-
mental learning tasks in controlled laboratory settings (see Chapter 3). This line of research 
has generated robust findings on how animals and humans behave in those environments, 
and advanced the knowledge about how habit plays a role in people’s pursuits of goals (e.g., 
Dickinson, 1985; Yin & Knowlton, 2006; Dolan & Dayan, 2013). However, for the purpose of 
understanding lifestyle behavior change and informing digital interventions, the knowledge 
learned from laboratory studies has to be generalized to habit developments in people’s daily 
environments. For two reasons, it is unlikely that knowledge learned in controlled environ-
ments can be directly applied to the real-world. 

First, the temporal span of habit formation in the lab is relatively short: trials are typically 
separated by just a few seconds and the whole learning tasks take a few hours or at most 
several days. In contrast, most lifestyle behaviors are repeated daily, and strong habits may 
take weeks or even months to form. The much longer gaps between actions imply that differ-
ent processes may underlie learning in the two very different environments.  

Second, whereas behavioral options are provided in laboratory experiments, in daily lives, 
people need to recall good options from their memories or to look for new options from ex-
ternal sources. As in the adaptive decision-making framework (Chapter 2), strong habits may 
facilitate the option generation process. As habits are cue-behavior associations, encounter-
ing certain environmental cues may trigger the associated behavioral options (Tobias, 2009; 
Wood & Neal, 2007). Since this cognitive mechanism is not used in laboratory tasks, it has to 
be understood by studying habit formation in the real-world.  

In order to bring habit research closer to real-world problems and applications, in this chap-
ter we investigate how people form a new dental habit in their daily lives. We chose to study 
dental behavior because of its relative simple cue-behavior associations (e.g., always per-
formed before going to sleep) and its regularity (e.g., twice a day). Before turning to our own 
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investigation, we review existing behavioral and computational literature on habit formation 
in the real-world to motivate our research questions.

4.1.1 Literature review 

Measuring habits in the real world 

To study habits in the real-world, the construct of habit needs to be measured. This implies 
an assumption that habits are real entities at a cognitive or a neurological level and their 
strength can be represented by numbers. In the instrumental learning literature, habit 
strength has never been measured independently, but is inferred from the behavioral pattern 
that behavioral responses become insensitive to goal devaluation after extensive training (see 
Chapter 3). Ever since the discovery of the classic devaluation effect (Dickinson, 1985), it is 
believed by learning theorists and social psychologists alike that at a cognitive level, habits 
are mental associations between environmental cues and behaviors, and the associations can 
vary in their strengths (Gardner, 2015; Wood & Neal, 2007). With this assumption, several 
different approaches have been used by social and applied psychologists to measure habit 
strength (for a review, see Gardner, 2015). 

The earliest method is to measure habit strength based solely on self-reported behavior fre-
quency. This approach follows directly from the notion that habit formation requires behav-
ior repetition, as in Thorndike’s law of exercise (Thorndike, 1932; also see Hull, 1943). In the 
70s and 80s, when habit was largely neglected in behavioral theories, this method helped to 
bring some attention to the construct of habit by showing that past behavior frequency pre-
dicted future behavior in addition to attitude and behavioral intention (e.g., Bagozzi, 1981; 
Landis, Triandis, & Adamopoulos, 1978; Triandis, 1977). However, using past behavior as a 
proxy for habit strength has been criticized by many theorists (e.g., Beck & Ajzen, 1991; Mittal, 
1988; Ajzen, 2002), because such a measure conceptually confounds the habit construct with 
the behavior it is supposed to explain. A slightly improved method recognizes the fact that 
habit formation requires not just any behavior repetition, but repetition under a stable envi-
ronment. Specifically, the method includes an additional question about context stability (e.g., 
“when you do X, how often is cue Y present?”), and multiply the score of context stability and 
behavior frequency to form a measure of habit strength (e.g., Ji & Wood, 2007; Ouellette & 
Wood, 1998). 

A more defining characteristic of habits omitted in the behavior-based measures is the feeling 
of automaticity or uncontrollability when a behavior becomes habitual. This characteristic is 
also implied in the most corroborated finding in the habit literature – the devaluation effect 
that habitual behaviors do not respond immediately to goal changes (Dickinson, 1985). More 
recent approaches of measuring habits were all developed to address the automaticity char-
acter. Verplanken and colleagues constructed a measure based on fast responses to behavior-
triggering scenarios (Aarts, Verplanken, & van Knippenberg, 1997; Verplanken, Aarts, & van 
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Knippenberg, 1994, 1997). For example, to measure habit strengths of using different travel 
modes, participants would be asked to respond to a series of typical travel scenarios (e.g., 
going to the beach with some friends) by reporting the first mode coming to their minds given 
a set of options (e.g., cycling, driving, walking, etc.) (Verplanken et al., 1994). The concept of 
automaticity is captured under the assumption that habitual options are recalled more easily 
and are thus considered first (see Psarra, 2016). A major drawback of this approach is that 
the administration of the measure requires a structured interview setting, which is usually 
not feasible in field studies. 

Self-report measures that focus the automaticity character of habits have also been developed 
and used extensively. In several earlier studies, single-item measures of automaticity were 
added alongside behavior frequency items – for example, “when I got into my car, I was not 
even aware that I put on my seatbelt” (Mittal, 1988), and the extent to which participants 
felt they were using certain transportation modes by “force of habit” (Aarts & Dijksterhuis, 
2000). A more comprehensive and structured scale, called the Self-Report Habit Index 
(SRHI), was developed by Verplanken & Orbell (2003), which consists of 12 items that tap 
onto the automaticity, behavior frequency, and self-identity aspect of habits. The automatic-
ity sub-scale of the SRHI uses 4 items that describe the feeling of automaticity with different 
expressions (e.g., “Behavior X is something I do without thinking”, “Behavior X is something 
I start doing before I realize I'm doing it”), and requires participants to rate the applicability 
of the descriptions when they perform a target behavior. Some researchers have suggested to 
use the sub-scale of automaticity only (i.e., “Self-Report Behavioral Automaticity Index”, or 
SRBAI), as it provides a more parsimonious measure without sacrificing the convergent and 
predictive validity of the full SRHI (Gardner, 2012; Gardner, Abraham, Lally, & de Bruijn, 
2012).  

Using the self-report measures, scientists are starting to know a fair bit about the dynamics 
of habits in people’s daily lives. For example, by monitoring how people developed self-se-
lected new habits for 12 weeks (e.g., drinking water during lunch, going to bed early), it was 
shown that habit changes followed asymptotic curves (i.e., they grew fast in the beginning 
and then the growth decelerated) and on average 66 days were required to reach the asymp-
totes (Lally et al., 2010). Another finding from the same study was that habits decayed only 
slightly if the target behaviors were omitted for one day. Similar asymptotic curves for habit 
strengths have been found in a habit-formation intervention study on dietary behavior 
change, based on self-assessments at 6 time points in about 3 months (Gardner, Sheals, 
Wardle, & McGowan, 2014). Finally, by tracking workers’ habit strengths for different travel 
modes before and after an office relocation, it was shown that the growth of new habits and 
the decay of old ones occurred in parallel, and even when the old modes were rarely used, 
weak habit strengths usually remained (Walker et al., 2015). 
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The effects of habit strength and attitude on behavior 

A particular interest in social and applied psychology is the influence of habit strength on 
behavior, in addition to the more goal-related constructs such as attitude and behavioral in-
tention. The original interest in habit in social psychology came from a discontent with the 
over-emphasis on rational or goal-related constructs in behavioral theories (e.g., the Theory 
of Planned Behavior) and the recurrent finding that past behavior predicted future behavior 
on top of the goal-related constructs (Bagozzi, 1981; Landis et al., 1978; Triandis, 1977). Tri-
andis (1977) was the first to formally propose that the probability of performing a behavior is 
partially a weighted function of habit and behavioral intention, and the weights for the two 
distinct determinants are supposed to inhibit each other, thus implying a negative habit by 
intention interaction effect. Such a proposal is certainly consistent with findings from the 
instrumental learning literature on the interplay between habit and goal-directed control 
(Dickinson, 1985; Yin & Knowlton, 2006), and with the more general theorizing of dual-sys-
tem accounts of behaviors in psychology (e.g., Kahneman, 2003; Strack & Deutsch, 2004).  

However, the early findings based on behavior frequency cannot provide strong support for 
a distinct role of habit, because statistically any variance in behavior not explained by attitude 
and intention may be autocorrelated in time. Thus, by measuring automaticity using the sce-
nario-based method mentioned above, Verplanken et al. (1994) provided the first clear evi-
dence in the context of travel mode choice that: (1) Habit strength accounts for variance in 
behavior in addition to attitude; (2) When habit is strong, the positive effect of attitude on 
behavior is attenuated (i.e., a negative moderation effect). Since the invention of SRHI and 
SRBAI, many more studies in various behavioral domains have demonstrated the independ-
ent influence of habit strength on behavior and a negative interaction effect between habit 
and intention/attitude (e.g., fruit consumption, de Bruijn et al., 2007; physical activity, van 
Bree et al., 2015; sun protection use, Allom, Mullan, & Sebastian, 2013; for a review, see Gard-
ner, 2015).   

Despite the relatively robust demonstration of the effect (for some negative results, see Mur-
tagh et al., 2012; Norman, 2011; Gardner et al., 2012), there are two limitations in the previ-
ous research. First, in almost all previous studies, behavior frequency as the main dependent 
variable was self-reported (with only one exception in 23 studies reviewed by Gardner, 2015). 
Besides the commonly recognized limitations of self-report measures, such as memory biases 
and social desirability, if both behavior and behavioral determinants are self-reported, com-
mon-method bias may inflate the true correlations between these variables (see Podsakoff, 
MacKenzie, Lee, & Podsakoff, 2003). In fact, the only study that used an objective measure 
of behavior (walking habits) did not find the significant interaction effect (Murtagh et al., 
2012). For these reasons, measuring behavior objectively would consolidate the earlier find-
ings, and provide a more accurate estimation of effect sizes. Second, most studies employed 
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either a cross-sectional or prospective design, where both behavior and behavioral determi-
nants were measured only once (for one exception reviewed in Gardner, 2015, see Conroy, 
Maher, Elavsky, Hyde, & Doerksen, 2013). These designs cannot be used to distinguish be-
tween-person and within-person effects. This implies that the findings reviewed above do not 
necessarily answer questions about within-person processes (see Borsboom, Mellenbergh, & 
van Heerden, 2003; Molenaar, 2004), for example, whether someone would perform a be-
havior more often when a stronger habit is formed. Answering this type of questions requires 
time-intensive longitudinal designs (see Dunton & Atienza, 2009), such as daily diary or ex-
perience sampling method.  

The effects of behavior repetition on habit formation 

The relationship between habit and behavior is not unidirectional but reciprocal. As reviewed 
in Chapter 2, the change of habit strength depends on the repetition of behavior. However, 
only until recently, empirical data have been collected to test this relationship in daily envi-
ronments (de Bruijn, Gardner, van Osch, & Sniehotta, 2014; Fleig et al., 2003; Gardner & 
Lally, 2013; Verplanken & Melkevik, 2008; Wiedemann, Gardner, Knoll, & Burkert, 2013). 
Among these studies, the study on exercising habit (Verplanken & Melkevik, 2008) had the 
best study design in our opinion, because a prospective design was used in which habit 
strengths were measured at two time points (T1 and T2) and exercising behavior in-between 
the two points (a 1-month gap) was self-reported. By controlling for baseline habit strength 
at T1, the correlation between behavior frequency during the month and the habit strength 
afterwards (T2) offered an estimate of the effect of behavior repetition on the change of habit 
strength. In contrast, other studies suffered from one or more methodological issues, with 
either a lack of control for baseline habit strength (de Bruijn et al., 2014; Gardner & Lally, 
2013; Wiedemann et al., 2013), or a mismatch between the temporal spans of the behavior 
measures and the timing of habit measures (de Bruijn et al., 2014; Fleig et al., 2003; 
Wiedemann et al., 2013). 

There are other limitations to all the previous studies. As with the research on the influence 
of habit on behavior, the above studies only used self-reported behavior as the predictor, and 
their prospective design did not allow for a separate estimate of within-person effects of be-
havior on habit strength over time. In addition, none of those studies were done in the context 
of habit formation or in behavior change intervention trials, so new data are required to test 
if trained behavior repetitions would indeed lead to strong habits. 

Computational modeling of habit formation and option generation 

Although Thorndike’s law of exercise was proposed nearly a century ago (Thorndike, 1932), 
it was not until recently when researchers started to describe the dynamics of habit formation 
computationally. In Chapter 3, we have used the model of habit learning by Miller et al. (2019) 
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in our sequential sampling approach to habit-goal integration. Here, we provide a more de-
tailed review of a few recent computational models of habit formation (Klein, Mogles, Treur, 
& van Wissen, 2011; Miller et al., 2019; Psarra, 2016; Tobias, 2009). All models are inspired 
by the theoretical principle of Hebbian learning (Hebb, 1949), which states that neurons fire 
at the same time tend to form stronger connections among themselves. For habit formation, 
this principle implies a theory at the cognitive level: when nodes representing a behavior and 
an environmental cue are often activated simultaneously, a stronger link is formed between 
the two nodes. Figure 4.1 shows the exact mathematical equations used in these models, and 
their simulation results in a simple scenario of habit development. To show how habit 
strength increases and decays in these models, the scenario assumes that a new behavior is 
consistently performed in the first 60 time steps before it is abandoned completely. Using 
reasonable parameter values for each of these models, the general temporal patterns share 
great similarities and are also consistent with the empirically observed asymptotic curves in 
self-reported habit formation (Lally et al., 2010).  

 

Figure 4.1 Temporal dynamics of habit strength in different computational models (𝐻𝐻𝑆𝑆 = 
habit strength; 𝐵𝐵𝑚𝑚ℎ = behavior; 𝐻𝐻𝐷𝐷𝑃𝑃 = habit decay parameter; 𝐻𝐻𝐺𝐺𝑃𝑃 = habit gain parameter; 
𝐴𝐴 = scaling parameter in Miller et al., 2019). 
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There are also some important differences among the simulation results, especially in terms 
of at what value habit strengths reach an asymptote and at what rate they decay. The equation 
by Klein, Mogles, Treur, & van Wissen (2011) and Miller et al. (2019) are very similar, except 
that the former uses separate parameters for the rates of habit gain and decay, while the latter 
uses a single parameter for both rates. Because of this difference, habit strength in Miller et 
al. (2019) is bounded between 0 and 1, but it does not allow the empirically observed differ-
ence between the growth and decay rates (Lally et al., 2010). The model by Tobias (2009) is 
also bounded between 0 and 1, but habit strength under its formulization won’t decay even if 
behavior is not performed, which contradicts with theories, observations, and common sense 
about habits. Finally, Psarra (2016)’s model uses a logarithmical transformation between pre-
vious and current habit strengths, so the value range depends on the parameters. Also, sepa-
rate equations are used for cases where a behavior is performed or omitted, and thus the 
parameter for decay rate is not consistently applied to the two cases. 

As discussed in Chapter 2, the process of option generation is influenced not only by habit 
values, but also by the activation values of options themselves. Conceptually, as with any 
memory process, activation values of behavioral options fluctuate in time due to many factors 
(e.g., memory rehearsal, external reminders), while habit is a cue-dependent mechanism to 
increase activation values. In his work on modeling recycling behavior in a field setting, To-
bias (2009) modeled activation value or what he called memory accessibility computation-
ally14. Figure 4.2 shows a typical trace of the memory accessibility of a behavior option ac-
cording to Tobias’s model – it decays at a fixed rate of 0.8 but is occasionally enhanced 
slightly by executing the behavior and greatly by receiving a reminder for the behavior. Ac-
cording to the model, for a behavioral option to be generated at a decision moment, its acces-
sibility has to be higher than a threshold value, which decreases when the habit strength for 
the option is strong. This is mathematically equivalent with summing an option’s accessibility 
value and habit strength value to obtain a total activation value, and then compare the total 
activation value to a constant threshold. Overall, the option generation model complements 
with our sequential sampling model of option evaluation in Chapter 3, and together they form 
a more complete model of daily lifestyle decisions.  

                                                   
 
14 Though not to be discussed in detail, Psarra (2016) proposed a construct called awareness of options, in 
addition to the construct of habit strength. This is similar to what we define as activation value here. How-
ever, awareness was defined by Psarra as cue-dependent, which make it less distinguishable from habit 
strength.  
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Figure 4.2 A typical trace of memory accessibility according to Tobias (2009)’s model.

4.1.2 The current investigation 

In the current investigation, we aim to build on previous research to model the habit for-
mation process in two field intervention studies of dental behavior change, focusing on both 
behavior explanation and prediction. For the explanation part, the studies were designed to 
address the limitations identified in the literature review by employing a multiple-week lon-
gitudinal design and an objective measure of toothbrushing behavior using sensors. More 
specifically, we intend to answer the following questions about the reciprocal relationships 
between habit strength, attitude, and dental behavior: 

1. How do attitude and habit strength jointly influence toothbrushing behavior, both in-
ter-individually and intra-individually? 

2. Does strong habits attenuate the positive effect of attitude on toothbrushing behavior? 
(the habit-attitude interaction effect) 

3. How do attitude and habit strength change over time? And are these temporal changes 
influenced by behavior repetition itself?  

For behavior prediction, we are interested in whether the computational models of habit for-
mation and option generation can improve the prediction of toothbrushing behavior. This 
can be seen as an application of the psychological computing approach outlined in Chapter 1. 
Not only useful by itself, improved prediction can also serve as a validation for the computed 
cognitive states, which may be used to inform interventions delivered by digital systems.  

Because the two studies are similar in design, we discuss them together in the next section. 
Then we report in two separate sections about the behavioral results for answering the ex-
planatory questions, and then the method and results of applying the theory-based computa-
tional models for behavior prediction.
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4.2 Data collection 

4.2.1 Participants 

Study 1 

Forty healthy university students or young workers were recruited through a local participant 
database and personal network. The main inclusion criterion was that they used to only brush 
their teeth once a day (or at least rarely brushing twice), and the criterion was checked by 
personal communication with the participants. The sampling consisted of 26 males and 14 
females, and the average age was 24.48 (SD = 3.13, median = 24). Eight participants were 
randomly selected and awarded 25 euros. The study was reviewed and approved by the ethical 
review board of our department. 

Study 2 

Study 2 was conducted in collaboration with Philips Research. Seventy-nine adults were re-
cruited through a recruitment agency contracted by Philips. A lenient main criterion was used 
that the participants used to brush only once a day, or they usually brushed less than two 
minutes for each session. Other criteria include that they were between 18 and 60 years old, 
understood Dutch, and were manual toothbrush users. The eventual sample consisted of 41 
females and 37 males (1 chose “other”), with ages between 20 and 63 years old (mean = 39.63, 
median = 38, SD = 10.97). Most participants were healthy, except that one suffered from 
cystic fibrosis and one from narcolepsy. Participants were paid 80 euros by the recruitment 
agency. Compared with the highly-educated sample in Study 1, participants in Study 2 pos-
sessed more varied education levels, including high school (15%), secondary vocational edu-
cation (middelbaar beroepsonderwijs or MBO in Dutch) (37.5%), Bachelor (28.75%), Master 
(15%), and Doctoral degree (1.25%). The study was reviewed and approved by the Internal 
Committee on Biomedical Experiments (ICBE) at Philips Research. 

4.2.2 Design & procedure 

Study 1 

Participants were enrolled in a 4-week intervention program during which they were per-
suaded to change their oral health routine from brushing teeth once a day to brushing twice 
a day. The main behavioral variable was whether they complied with the new target brushing 
behavior (i.e., brushing also in the morning or in the evening) on each day during the study 
period. Figure 4.3 shows the events that occurred during the study. At the beginning, a face-
to-face meeting was hold between the experimenter and each participant, where the study 
information and intervention goal were explained, the sensor used for behavior monitoring 
was attached to the participant’s toothbrush, and a consent form was signed. After partici-
pants returned home, their toothbrushing behaviors were monitored by the sensors for 3 
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weeks, and at the end of the third week they returned the sensor to the experimenter. Re-
minders for the target brushing behaviors were sent daily in the first week using a self-pro-
grammed mobile app, every other day in the second week, and were dismissed in the third 
and fourth week. At five time points in between the weeks (t1 – t5), short surveys were sent 
using the same app to ask questions about attitude and habit strength. In case that partici-
pants missed a survey in the mobile app, the same survey was sent to them through e-mails. 

 

Figure 4.3 Timing of events in Study 1. 

Study 2 

Because a lenient criterion on participants’ existing toothbrushing habits was used, the pri-
mary intervention target focused not only on daily frequency (i.e., twice a day), but also on 
the duration of brushing. The goal of the intervention was thus to develop an optimal oral 
health routine of two brushing sessions that last for at least 2 minutes (or at least a 4-minute 
brushing daily). Despite this difference, the main behavior variable used in data analyses was 
still whether participants complied with brushing twice a day or not. Besides a consideration 
of consistency, there were two other reasons why the behavior measure was based on occur-
rence rather than duration. First, habits, at least in the sense of the theories discussed this 
this thesis, were about decisions, or in other words the initiations of behaviors, rather than 
the execution characteristics, such as duration. It was not clear from the existing theories how 
habits as cue-behavior associations would affect the duration of a behavior, in addition to 
automatically triggering its initiation. Second, the sensors (accelerometers) used in the stud-
ies were accurate enough for detecting brushing episodes but not for estimating the durations 
of episodes. 

The study procedure generally broke down to three phases: a baseline calibration period, a 
laboratory intervention session, and a follow-up monitoring period (Figure 4.4). At the be-
ginning, participants came to the lab in groups of 10-15 for an introduction session, in which 
general study information and procedure were explained, but not the specific intervention 
(so they only knew it was about oral health). Also in the meeting, participants were offered 
new manual toothbrushes with sensors attached, and were asked to sign a consent form and 
to complete the first survey. After the baseline period of about 5-10 days, they were invited 
back to the lab for the intervention session individually. They were shown presentations 
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about oral healthcare, and were exposed to the intervention target of brushing twice a day for 
at least 4 minutes. During the lab session, physiological data from the participants were rec-
orded for purposes not related to this thesis. The second and third survey with mostly iden-
tical questions was completed by the participants before and after the lab session. After the 
lab session, participants returned home and were monitored for a follow-up period that led 
to a total of approximately 3 weeks. Two additional surveys were sent by e-mails in the middle 
and at the end of the follow-up period. 

 

Figure 4.4 Timing of events in Study 2. 

 

Figure 4.5 Number of days in each study period for each participant (each row). 

Figure 4.5 shows the eventual number of days in each period of the study, separated by time 
when participants completed the 5 surveys (two surveys at t2, the day of the lab session). It 
was clear that the number of days in each period varied moderately, which was mainly due to 
logistic reasons imposed by the individual lab sessions. Overall, the design of Study 2 was not 
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as optimal as in Study 1, due to its embedment in a larger project at Philips research, but it 
provided a larger and more diverse sample. 

4.2.3 Intervention techniques 

Although this Chapter does not focus on evaluating intervention techniques, different com-
binations of behavior change techniques were used in the two studies. Therefore, it is worth 
describing these techniques in some detail, in order to better interpret and compare the re-
sults later on. 

Study 1 

During the short face-to-face meeting, a combination of health education and implementa-
tion intention was used. First, participants were shown an educational booklet and read 
through the reasons why they should switch to brushing teeth twice a day (e.g., “to prevent 
gum disease”, “to maintain a fresh breath”, and “to reduce chances of getting a heart attack 
or stroke”). Next, participants were told the benefits of implementation intentions for form-
ing new habits, and were asked to complete the sentence “when ___, I will go and brush my 
teeth” at the back of the booklet with environmental cues they chose for themselves, such as 
“when I get off my bed in the morning” or “before I go to sleep”. They were also asked to 
imagine the written scenario in their minds for 2 minutes, and then to recite the sentence 
aloud.  

The reminders sent during the first two weeks were of two kinds, depending on a random 
assignment of conditions to the participants. Some received general reminders that were sent 
in the middle of the day, which simply asked them to remember performing the target brush-
ing behavior at appropriate time. Others received just-in-time interventions either at their 
indicated wake-up time or 30 minutes before their personal sleep time, which suggested them 
to brush teeth right away (for functional differences between the two types of reminders, see 
Chapter 2).  

Study 2 

In the calibration week, participants were not told to change their dental behaviors. During 
the lab session, they were invited to a professional oral healthcare laboratory at Philips Re-
search for the following procedures. First, they were asked to perform a plague-disclosing test 
and reflected on the results (the disclosed dental plague with colors), in order to increase their 
awareness of their dental health status and the self-relevance of the study. Next, they were 
randomly assigned to a gain-framed or a loss-framed persuasion condition (see Tversky & 
Kahneman 1981), and were shown 14 informational slides about optimal oral healthcare rou-
tine, with motivational messages focusing on either the positive effects of a good oral 
healthcare routine (e.g., clean and strong teeth) or the negative consequences of a bad routine 
(e.g., cavities and tooth decay). While processing the persuasive information in the slides, 
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their physiological responses, including ECG, skin conductance, and blood pressure, were 
measured. The comparison between the two persuasion conditions and analyses of the phys-
iological data were only of interests to the related larger research project at Philips. No other 
intervention techniques (e.g., reminders) were used. 

4.2.4 Measurements15 

Toothbrushing behavior 

Participants’ toothbrushing behavior was measured by the Axivity AX3 sensors attached to 
the lower-end of their toothbrush grips (see Figure 4.6). The Axivity AX3 sensor is a 3-axis 
accelerometer developed by Newcastle University specifically for scientific research in human 
movements (e.g., Doherty et al., 2017). Constrained by the memory space of the device, sam-
pling frequency was set at 50 Hz to ensure the storage of data for three weeks. The sensitivity 
range for accelerations was set at ±8g. The sensor was water-proof, and a fully-charged sensor 
could work for 3 weeks without additional charges. Participants in both studies also self-re-
ported on how many days of the previous week they brushed their teeth in the morning/even-
ing (Study 1) or brushed teeth twice a day for at least 2 minutes each time (Study 2). 

 

Figure 4.6 An example of a sensor attached to a toothbrush. 

Habit strength 

Habit strength was self-reported using the 4-item SRBAI with 7-point response scales. It as-
sessed behavioral automaticity by prompting participants to rate their agreements with de-
scriptions of performing a target behavior (e.g., “Behavior X is something…”), including “I 
do automatically”, “I do without having to consciously remember”, “I do without thinking”, 
and “I start doing before I realize I am doing it”. The target behavior in Study 1 was “brushing 
teeth in the morning” or “brushing teeth in the evening”, depending on which behavior was 

                                                   
 
15 Measures that were administrated but are not of interests to the current chapter include demographics 
(both studies), trait self-control (both studies), behavioral activation system and behavioral inhibition sys-
tem scales (Carver & White, 1994; Study 2), and behavioral intention (Study 2). 
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not performed by each participant before the study. In Study 2, because of the lenient inclu-
sion criterion, the behavior was more generally phrased as “brushing teeth twice a day and 
in total at least 4 minutes”. Internal reliabilities of the SRBAI were very high in both Study 1 
(Cronbach’s 𝛼𝛼 = 0.95) and Study 2 (Cronbach’s 𝛼𝛼 = 0.94). These items was translated into 
Dutch in Study 2. 

Attitude 

Attitude was measured using 7-point semantic differential scales that were typically used in 
studies that followed the Theory of Planned Behavior (e.g., Verplanken et al., 1994). Four 
items were used in Study 1 (bad – good, useless – useful, harmful – beneficial, unpleasant – 
pleasant), while in Study 2 three more items were added (foolish – wise, unhealthy – healthy, 
difficult – easy). We also made a common distinction between instrumental attitude and af-
fective attitude (e.g., see Tobias, 2009), because inter-item correlations and factor analysis 
clearly suggested two separate factors. Instrumental attitude focused on how a behavior sat-
isfied instrumental goals, such as health benefits in the context of dental behaviors, while 
affective attitude taps more onto the emotional aspects of the experience relating to the be-
havior (e.g., comfort of brushing, effort spent on brushing). Affective attitude score was based 
on a single item in Study 1 (unpleasant – pleasant) and the average score of two items in Study 
2 (unpleasant – pleasant, difficult – easy). Internal reliabilities (Cronbach’s α) for instrumen-
tal attitude were 0.94 and 0.93 for the two studies, while affective attitude also had a satisfy-
ing internal reliability of 0.71 in Study 2. The attitude items were translated into Dutch in 
Study 2. 

4.2.5 Pre-processing 

Pre-processing was performed to transform the raw 3-axis accelerometer data to behavioral 
data at the day-level (i.e., brushing twice or not on a specific day). The same procedure was 
used in both studies, which included the following steps: converting 3-axis signals to signal 
vector magnitudes (SVM), extracting brushing episodes, and classifying episodes to match 
day-level data. 

Converting 3-axis signal to SVM 

The first step was to compute SVM based on the raw three-axis accelerometer data, according 
to the equation below: 

𝑆𝑆𝐸𝐸𝑀𝑀 =  
1
𝑛𝑛

 ���𝑥𝑥𝑖𝑖2 + 𝑦𝑦𝑖𝑖2 +  𝑧𝑧𝑖𝑖2 − 1�
𝑗𝑗

𝑖𝑖=1

 

SVM provided a summarized movement magnitude measure by combining the acceleration 

information from the x, y, and z axis, and down-sampling the 50 Hz raw data to magnitude 

measured at 1 Hz (n = 50 in the equation above). Figure 4.7a shows one participant’s data 
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after SVM-transformation, where each data point (dot) represents the average movement 

magnitude in each 1-second time window. This processing was done using a built-in SVM 

algorithm Open Movement v1.0.030, the default software for the Axivity AX3 sensor. 

Extracting brushing episodes 

From Figure 4.7a, it was clear that brushing episodes could even be visually identified (the 
spikes) when the data were clean, but not when there was noise caused by other movements. 
Given this problem, a threshold-based algorithm was first used to scan the data sequentially 
to efficiently extract all potential brushing episodes, and then a manual check was performed 
to exclude “invalid” episodes. The algorithm included the following steps: 

1. While scanning the data, it detected the onset of a brushing episode when a data point 
exceeded a sample-level threshold on SVM. Because there were inter-individual dif-
ferences in average movement magnitude (i.e., some people moved more intensively 
when brushing teeth), the sample-level threshold was personalized to be 3 times the 
mean SVM of the whole data set of each participant. 

2. For detecting the end of an episode, the algorithm ignored small gaps that were less 
than 30 seconds. When a data point below the sample-level threshold was detected, 
the next 30 data points were checked. If any of the 30 data points exceeded the thresh-
old, the integration of the current episode continued. Otherwise the integration was 
concluded and the search for the next episode started. 

3. When a brushing episode was identified, certain features about the episode could be 
computed, including start time, duration, mean SVM, standard deviation of SVM, and 
even spectral information. Only start time, duration, and mean SVM were used for 
filtering and classifying the episodes in the current research. 

4. After identifying all the episodes, two criteria were used to filter out some “invalid” 
episodes. First, only episodes with durations between 30 and 1000 seconds were in-
cluded. Second, a participant-level threshold was used to exclude episodes with very 
weak movements, i.e., mean episode SVM less than 15 times the average SVM of all 
data points. 
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Figure 4.7 (a) Sensor data in signal vector magnitude; (b) Sensor data classified after apply-
ing the thresholding algorithm (solid and dashed horizontal lines represent the levels of sam-
ple-level and episode-level thresholds respectively). 

After running the algorithm (see Figure 4.7b for the classified data at this step), a man-
ual check was performed to remove false positives that might occur for several reasons: 
(1) long-duration movements other than toothbrushing, due to either known events 
(e.g., when participants brought the sensors back to the lab) or unknown events (e.g., 
vibrations due to a running washing machine); (2) short-duration episodes around 
true brushing episodes (with gaps larger than 30 seconds), probably reflecting prepa-
ration and cleaning behaviors; (3) some rare episodes at typical brushing time, but 
with very different characteristics from typical brushing episodes not captured by the 
thresholds used in the algorithm. The manual check removed 587 out of 1965 episodes 
identified from 40 participants (29.9%) in Study 1, and 1485 out of 4145 episodes 

a 

b 
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(35.8%) in Study 2. Although there was no way to formally access identification accu-
racy without self-reports, we were confident that the procedure was quite accurate in 
terms of measuring the daily occurrence of brushing behavior, and the procedure was 
unbiased because the same criteria were used for all participants before any statistical 
analyses. Of course, as noted earlier, estimation of brushing duration was more prob-
lematic so it was not used in statistical analyses.   

Classifying episodes to create day-level data 

The remaining episodes were then classified into 6 categories based on the starting time of 
the episodes: morning (5:00 – 12:00), morning-afternoon (12:00 – 15:00), afternoon (15:00 
– 19:00), afternoon-evening (19:00 – 21:00), evening (21:00 – 24:00), and overnight (0:00 
– 5:00). The final episode-level data may contain more than one episode for each time cate-
gory on each date. At the data level, two variables – morning brushing and evening brushing 
– were created, and their values (0 or 1) were determined by searching in the relevant cate-
gories on the same date to see if any episode existed. For morning brushing, category morn-
ing was searched first, and if no episode was found, category morning-afternoon was 
searched. For evening brushing, categories evening and overnight were searched first, and if 
no episode was found, category afternoon-evening was searched. When there were known or 
unknown events that caused noise in the data in a certain period, the values for the two brush-
ing variables were coded as missing data. Eventually, at the day level, a dichotomous indicator 
(0 or 1) for the target brushing behavior and for brushing twice were used as the behavior 
measures in Study 1 and Study 2 respectively. Weekly (Study 1) or period-based (Study 2) 
behavior frequency and behavior rate (frequency divided by the number of days) were then 
computed to obtain the behavioral variables used in the statistical analyses.

4.3 Behavioral results 

4.3.1 Results of Study 1 

Data quality check 

Response rate for the weekly surveys was 75% on average (see Figure 4.8a for the histogram). 
We also checked on how many days each participant had brushing data missing due to move-
ment noise or technical faults, and the average proportion of days missing was 9%, but most 
participants had complete data (see Figure 4.8b). Based on the limited self-reported behavior 
data16, self-reported and sensor-measured behavior rates correlated strongly but not per-
fectly (r(56) = 0.88, Figure 4.8c), suggesting relatively good validities of both measures. 

                                                   
 
16 Only in 56 records both self-reported and sensor-based behavior rate were available, due to an admin-
istration error that the self-report item was not included in the web version of the surveys sent to the par-
ticipants who missed the surveys in the mobile app. 
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Based on the quality-check, 4 participants were excluded for further analyses: 2 of them did 
not respond to any weekly surveys, 1 had missing data for the whole 1st and 3rd week, and 1 
had sensor data with severe movement noise. 

 

Figure 4.8 Data quality check for Study 1: (a) Histogram of survey response rate; (b) Histo-
gram of proportion of days with missing sensor data; (c) Correlation between self-reported 
and sensor-measured behavior rate. 

Description and modeling of changes 

Before examining the aggregated change patterns over all participants, some insight into the 
data could be gained by plotting the change pattern of each participant. Figure 4.9 provides 
two examples of such plots for two individual participants, showing a change of behavior at 
both day and week level, and changes of attitude and habit strength at week level. Note that 
participant 38, who had very positive and stable attitude, performed the target brushing be-
havior consistently in the early period and self-reported habit strength increased from 1 to 3. 
In contrast, participant 39, who had more neutral attitude, behaved more randomly and no 
clear habit was formed. 

a c b 
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Figure 4.9 Examples of results for two individual participants in Study 1. (In each panel: 
top-left: change of target brushing behavior at day level (0 or 1); top-right: change of behavior 
rate at week level; middle: changes of instrumental and affective attitude at week level; bot-
tom: change of self-reported habit strength at week level). 

In order to analyze the aggregated change pattern of behavior rate, objective measures were 
used for the first three weeks, while self-report measure were used for the fourth week, in 
which the sensors were removed according to the study design. Besides descripting the 
change patterns with line plots and histograms, for each variable, we also modeled a latent 
growth curve underlying its change by using a multi-level regression with time predictors 
(Raudenbush & Bryk, 2002), the 1st and 2nd order polynomials of week index or measure-
ment index. Since adding quadratic terms did not improve model fit over the linear models 
for any of the variables, we report below only the linear change pattern for each variable.

As in Figure 4.10, the temporal trend of behavior rate indicated that participants complied 
less with the new toothbrushing behavior over the weeks. The multilevel modeling suggested 
that the variance in behavior rate was mostly between-person (ICC = 0.755), and it confirmed 
the decreasing trend with a significant and negative effect of the time predictor (B = -0.04, 
95% CI = [-0.07, -0.01], p = .004).  
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Figure 4.10 Histogram of behavior rate and its change over the weeks in Study 1 (errorbars 
represent one standard error). 

Participants reported to hold generally positive instrumental attitude about brushing teeth 
for a second time (always above 5 on average), and there was a large individual difference 
between the participants in terms of their instrumental attitude (ICC = 0.732). This instru-
mental attitude also became slightly more positive over the weeks (Figure 4.11), and was con-
firmed by a significant and positive effect of time in the multilevel model (B = 0.15, 95% CI = 
[0.07, 0.22], p < .001). In contrast, people’s affective attitude about brushing twice a day was 
more neutral on average (around 4; Figure 4.12), and the individual difference in affective 
attitude was much smaller (ICC = 0.483). Affective attitude did not change significantly over 
time (B = 0.11, 95% CI = [-0.02, 0.24], p = .10).  

 

Figure 4.11 Histogram of instrumental attitude and its change over the weeks in Study 1 
(errorbars represent one standard error). 
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Figure 4.12 Histogram of affective attitude and its change over the weeks in Study 1 (er-
rorbars represent one standard error). 

Finally, self-reported habit strength increased clearly over the weeks (from 2 to 3 on average), 
and the change was the strongest among the modeled variables (B = 0.23, 95% CI = [0.13, 
0.34], p < .001; also ICC = 0.607). The model only quantified a linear growth of habit strength, 
but from visual inspection there was a tendency of faster growth in the early compared to the 
later period (Figure 4.13). This resembled previous results of modeling habit growth in the 
real world (Gardner et al., 2014; Lally et al., 2010).  

 

Figure 4.13 Histogram of self-reported habit strength and its change over the weeks in Study 
1 (errorbars represent one standard error). 

Effects of attitude and habit strength on behavior 

The repeated-measured design allowed us to disaggregate of between-person and within-per-
son effects (see Curran & Bauer. 2011). First, for each variable of interest, a multilevel null 
model was built to obtain its between-person component – the estimates of person means. 
Compared with a strategy of computing person means without modeling, the multilevel ap-
proach assumed that person means were drawn from a normal distribution, and it weighted 
participants with more observations more heavily than participants with fewer observations 
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to reduce variance due to small samples. Second, each variable’s within-person component 
was extracted by subtracting the estimated person means from the raw data. Third, using the 
disaggregated components, between-person and within-person correlations between pairs of 
variables were computed to understand the individual effects of habit and attitude on behav-
ior. Finally, the potential interaction effects of habit and attitude on behavior, both between-
person and within-person, were estimated in multiple regression models. 

Table 4.1 shows the between-person and within-person correlations for pairs of variables. At 
the between-person level (coefficients below the diagonal), all three behavior determinants – 
instrumental attitude, affective attitude, and habit strength correlated substantially with both 
behavior rates, while the correlations with the self-reported behavior rate were slightly higher 
than the ones with the objective behavior rate. However, these effects were completely inter-
individual, because intra-individually, no correlations were found between the behavioral de-
terminants and the behavior rates (coefficients above the diagonal). As for the relationships 
among the determinants, the two attitudinal variables correlated strongly as expected, while 
habit strength correlated more strongly with the affective dimension than with the instru-
mental dimension, both inter-individually and intra-individually. 

Table 4.1 Between-person and within-person correlations between pairs of variables in 

Study 1. 

 1 2 3 4 5 

1. Behavior rate 

(sensor-based) 
1 0.52*** 0.13 0.05 -0.08 

2. Behavior rate 

(self-reported) 
0.64*** 1 -0.19 -0.12 0.14 

3. Instrumental attitude 0.51*** 0.57*** 1 0.33*** 0.38*** 

4. Affective attitude 0.46*** 0.61*** 0.64*** 1 0.44*** 

5. Habit strength 0.55*** 0.74*** 0.52*** 0.63*** 1 

Note: Between-person and within-person correlations are shown below and above the diagonal. Sig-

nificance indicators were adjusted for multiple test (p < .05*, p < .01**, p < .001***). 

When interaction effects were examined in multiple regression models (see Table 4.2 & 4.3), 
there was no indication of the moderating role of habit strength on the positive effects of 
either instrumental or affective attitude on behavior. Due to the small sample size in Study 1 
(between-person N = 36), it is possible that the analyses were not powerful enough to detect 
the interaction effect. For the same reason, although all behavioral determinants correlated 
strongly with behavior individually at the between-person level, most coefficients estimated 
from the multiple regression models were not statistically significant. 
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Table 4.2 Regression models of attitude, habit strength, and their interaction on objective 

behavior rate (Study 1). 

 Between-person Within-person 

 B 95% CI B 95% CI 

Instrumental attitude (IA) 0.11+ [-0.00, 0.22] 0.03 [-0.03, 0.09] 

Affective attitude (AA) -0.01 [-0.12, 0.10] 0.01 [-0.03, 0.04] 

Habit strength (HS) 0.07 [-0.02, 0.16] -0.03 [-0.07, 0.01] 

IA By HS 0.07 [-0.03, 0.16] -0.02 [-0.08, 0.04] 

AA By HS -0.06 [-0.15, 0.04] 0.02 [-0.03, 0.06] 

Adjusted R2 0.320  -0.016  

Note: Significance levels were indicated as p < .10+, p < .05*, p < .01**, p < .001***. 

Table 4.3 Regression models of attitude, habit strength, and their interaction on self-re-
ported behavior rate (Study 1). 

 Between-person Within-person 

 B 95% CI B 95% CI 

Instrumental attitude (IA) 0.12+ [-0.00, 0.23] -0.05+ [-0.10, 0.002] 

Affective attitude (AA) 0.00 [-0.12, 0.12] -0.01 [-0.04, 0.02] 

Habit strength (HS) 0.15** [0.05, 0.25] 0.04+ [-0.002, 0.07] 

IA By HS 0.08+ [-0.01, 0.18] 0.01 [-0.07, 0.08] 

AA By HS -0.10+ [-0.20, 0.00] 0.04+ [-0.01, 0.09] 

Adjusted R2 0.589  0.069  

Note: Significance levels were indicated as p < .10+, p < .05*, p < .01**, p < .001***. 

Effects of behavior on the changes in attitude and habit strength 

The reciprocal effects of behavior on the changes in attitude and habit strength were exam-
ined by regressing the difference scores17 of the dependent variables between two successive 

                                                   
 
17 It has been highly debated in the literature on the appropriate method for analyzing change (see e.g., 
Lord’s paradox, Lord, 1967. For randomized experiments, it is clear that covariate methods (ANCOVA or 
regression with baseline as covariate) are preferred to the use of difference or change scores (e.g., Maris, 
1998; van Breukelen, 2006). However, for experiments with existing samples or correlational studies, 
there is some consensus that the difference-score method is less biased and less susceptible to spurious 
correlations than covariate methods (e.g., Allison, 1990; Glymour, Weuve, Berkman, Kawachi, & Robins, 
2005; Maris, 1998). A simple simulation with the habit formation model discussed in this Chapter showed 
that when there was no effect on change, covariate methods erroneously produced significant correlations 
while difference-score method did not.  
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measurement points to either objective or self-reported weekly behavior rate. Because the 
variances in the different scores were completely within-person, simple linear regressions 
were used instead of multilevel models. Results indicated no dependence of attitude change 
on behavior rate in the preceding week – neither for the instrumental (objective: B = 0.45, 
95% CI = [-0.16, 1.06], p = .15; subjective: B = 0.29, 95% CI = [-0.14, 0.73], p = .19) nor the 
affective dimension (objective: B = 0.39, 95% CI = [-0.66, 1.44], p = .46; subjective: B = 0.86, 
95% CI = [-0.08, 1.79], p = .08), but a positive relationship was found between the change in 
habit strength and sensor-based behavior rate (B = 1.40, 95% CI = [0.60, 2.20], p < .001, 
adjusted R2 = 0.14) and marginally on self-reported behavior rate (B = 0.65, 95% CI = [-0.03, 
1.32], p = .06, adjusted R2 = 0.03). Thus, participants who performed the new brushing be-
haviors more often in a week seemed to show more habit growth afterwards.  

4.3.2 Results of Study 2 

Study 2 had a very high survey response rate of 98%, and most participants did not miss any 
of the 5 surveys (see Figure 4.14a). As with Study 1, the proportion of days with missing sensor 
data averaged across participants was 9%. Two participants did not register any sensor data 
due to technical faults, so only self-reported behavior rate was used for them. The self-report 
and objective measures of behavior rate also correlated strongly (r(213) = 0.65; see Figure 
4.14c), although this correlation was substantially lower than the 0.88 in Study 1. There were 
several differences that might account for the lower correlation. First, the self-report measure 
concerned not only with the occurrence of brushing twice, but also with the duration that was 
supposed to be longer than 2 minutes for each brushing session. Participants might have had 
more difficulty reporting the number of occurrences with a specific duration than simply re-
porting the number of occurrences. If participants did take duration into account, then some 
data points in the top-left corner of Figure 4.14c could be explained by the fact that although 
they brushed twice (high objective behavior rate), they self-reported very low rates because 
many brushing sessions were less than 2 minutes. Second, as mentioned in the method sec-
tion, the objective measure was per period, which differed in length (i.e., between 4 and 10 
days), while the subjective measure always referred to the previous week. This temporal mis-
match between the two methods could have caused the lower correlation. Third, the older 
and less-educated sample of participants might had more trouble with self-reporting. For ex-
ample, for participant 27, although sensor data clearly suggested this person always brushed 
at most once a day, the self-reported behavior rates for the 4 surveys were 6, 0, 7, 0, showing 
very unlikely fluctuations in behavior.  
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Figure 4.14 Data quality check for Study 2: (a) Histogram of survey response rate; (b) His-
togram of proportion of days with missing sensor data; (c) Correlation between self-report 
and objective behavior rate. 

Description and modeling of changes 

As in Figure 4.15, the distributions and temporal changes of sensor-measured and self-re-
ported behavior rate were pretty similar, except for two small differences. First, based on 
multilevel null models, the variance in sensor-measured behavior rate was more heavily at-
tributed to individual difference (ICC = 0.720) than the variance in self-reported behavior 
rate (ICC = 0.610). Second, while the objective measure showed a small decline in behavior 
rate (B = -0.03, 95% CI = [-0.07, -0.01], p = .021), the self-reported behavior rate stayed 
stable over time (B = 0.02, 95% CI = [-0.01, 0.05], p = .22). 

Compared to Study 1, instrumental attitude was also clearly more positive than affective atti-
tude on average (Figure 4.16 & 4.17), but in Study 2 there were relatively more between-per-
son variations in affective attitude (ICC = 0.688) than in instrumental attitude (ICC = 0.550). 
Over the 5 measurement points, both attitudinal dimensions showed small peaks at meas-
urement 3, quantified by the positive effects of a linear time predictor (instrumental: B = 0.58, 
95% CI = [0.41, 0.75], p < .001; affective: B = 0.57, 95% CI = [0.33, 0.80], p < .001) and the 
negative effects of a cubic time predictor (instrumental: B = -0.08, 95% CI = [-0.11, -0.05], p 
< .001; affective: B = -0.09, 95% CI = [-0.13, -0.05], p < .001). This abrupt increase in attitude 
was probably due to the lab intervention session that happened between measurement 2 and 
3 (these two measurements were on the same day, before and after the intervention).  

a c b 
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Figure 4.15 Histogram of behavior rate and its change over the weeks in Study 2 (errorbars 
represent one standard error). 

 

Figure 4.16 Histogram of instrumental attitude and its change over the weeks in Study 2 
(errorbars represent one standard error). 

Figure 4.17 Histogram of affective attitude and its change over the weeks in Study 2 (er-
rorbars represent one standard error). 
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Figure 4.18 Histogram of self-reported habit strength and its change over the weeks in 
Study 2 (errorbars represent one standard error). 

The most evident difference between Study 1 and Study 2 was that in Study 2 participants 
had much higher habit strengths overall, and especially even at the beginning of the study 
(Figure 4.18). Probably due to the lenient inclusion criterion, many participants were not 
learning a completely new habit of brushing twice a day, although they were aware of the 
recommended duration during the lab intervention session. As a result, habit strength dif-
fered mostly between-person (ICC = 0.769) and showed a much smaller growth over the 
weeks (B = 0.08, 95% CI = [0.0001, 0.15], p = .049).  

Effects of attitude and habit strength on behavior 

As shown in Table 4.4, the results of the between-person correlations between pairs of varia-
bles largely coincided with the results in Study 1. Participants who had more positive instru-
mental or affective attitudes, or had stronger habits of brushing teeth twice a day, indeed 
brushed twice a day more frequently on average. The correlation between habit strength and 
brushing behavior was particularly strong when the behavior was measured by self-reports. 
Inter-individually, habit strength again correlated more strongly with affective attitude than 
with instrumental attitude. 

Intra-individually, however, there were two differences compared to Study 1. First, instru-
mental attitude also had a slight within-person effect on self-reported behavior rate, meaning 
that if a person happened to consider brushing twice more beneficial or healthy, they would 
also be more likely to comply with the behavior. Second, inconsistent with the results of Study 
1, habit strength did not correlate with instrumental attitude, nor with affective attitude 
within-person. 
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Table 4.4 Between-person and within-person correlations between pairs of variables in 

Study 2. 

 1 2 3 4 5 

1. Behavior rate 

(sensor-based) 
1 0.40*** 0.02 0.04 -0.16 

2. Behavior rate 

(self-reported) 
0.73*** 1 0.24*** 0.17 -0.01 

3. Instrumental attitude 0.42*** 0.35*** 1 0.41*** 0.09 

4. Affective attitude 0.47*** 0.63*** 0.34*** 1 0.15 

5. Habit strength 0.45*** 0.73*** 0.18 0.55*** 1 

Note: Between-person and within-person correlations are shown below and above the diagonal. Sig-

nificance indicators were adjusted for multiple test (p < .05*, p < .01**, p < .001***). 

With a sample size twice as large, Study 2 was certainly more informative about the interac-
tion effect between habit and attitude in determining toothbrushing behavior (see Table 4.5 
& 4.6). There was some suggestive evidence that inter-individually, there was a negative in-
teraction effect between affective attitude and habit strength – for those who had stronger 
habits of brushing teeth twice, the positive influence of affective attitude on behavior rate was 
attenuated. There was also a trend at the within-person level that habit strength could have 
similarly moderated the effect of affective attitude on sensor-measured behavior, though the 
marginal effect would require replications with more observations. Besides the interaction 
effect, when habit strength was a predictor alongside with attitude at the within-person level, 
it had unexpected negative effects on sensor-measured behavior rate. Finally, as with the re-
sults of Study 1, it was clear that when the three behavioral determinants were considered at 
the same time, the effect of affective attitude tended to diminish, even though it correlated 
strongly with behavior by itself. 
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Table 4.5 Regression models of attitude, habit strength, and their interaction on objective 

behavior rate (Study 2). 

 Between-person Within-person 

 B 95% CI B 95% CI 

Instrumental attitude (IA) 0.23** [0.09, 0.37] 0.0002 [-0.04, 0.04] 

Affective attitude (AA) 0.03 [-0.05, 0.11] 0.01 [-0.02, 0.05] 

Habit strength (HS) 0.07** [0.02, 0.11] -0.04* [-0.07, -0.01] 

IA By HS 0.08 [-0.04, 0.19] -0.02 [-0.08, 0.05] 

AA By HS -0.05+ [-0.11, 0.001] -0.05+ [-0.10, 0.01] 

Adjusted R2 0.342  0.029  

Note: Significance levels were indicated as p < .10+, p < .05*, p < .01**, p < .001***. 

Table 4.6 Regression models of attitude, habit strength, and their interaction on self-re-

ported behavior rate (Study 2). 

 Between-person Within-person 

 B 95% CI B 95% CI 

Instrumental attitude (IA) 0.10* [0.01, 0.20] 0.07** [0.02, 0.12] 

Affective attitude (AA) 0.05+ [-0.06, 0.16] 0.03 [-0.01, 0.07] 

Habit strength (HS) 0.08*** [0.05, 0.11] -0.01 [-0.05, 0.03] 

IA By HS 0.0005 [-0.08, 0.08] -0.002 [-0.07, 0.07] 

AA By HS -0.05* [-0.09, -0.01] -0.003 [-0.06, 0.06] 

Adjusted R2 0.566  0.045  

Note: Significance levels were indicated as p < .1+, p < .05*, p < .01**, p < .001***. 

Effects of behavior on the changes in attitude and habit strength 

For the reciprocal influences, results again indicated no dependence of attitude change on 
behavior rate in the preceding week – neither for the instrumental (objective: B = 0.09, 95% 
CI = [-0.13, 0.31], p = .41; subjective: B = 0.07, 95% CI = [-0.15, 0.28], p = .54) nor the affec-
tive dimension (objective: B = 0.11, 95% CI = [-0.23, 0.45], p = .53; subjective: B = 0.12, 95% 
CI = [-0.23, 0.46], p = .50). In contrast with Study 1, Study 2 with a larger sample did not 
reveal any correlation between behavior rate in the previous week and change in habit 
strength over the week (objective: B = 0.07, 95% CI = [-0.31, 0.44], p = .71; subjective: B = 
0.21, 95% CI = [-0.17, 0.58], p = .27).  

Because participants’ habit strengths were much higher at baseline in Study 2 than in Study 
1, we checked the same effects of behavior rate on change in habit strength for a sub-group of 
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participants who had weaker habit strengths than the mid-point of the scale (3.5). Figure 4.19 
shows that for the sub-group, the distribution and temporal change of habit strength were 
very similar to those in Study 1, and there was some fluctuation of habit strength over the 
weeks based the significant coefficients of linear and cubic time predictors in multi-level 
growth curve modeling (linear: B = 1.22, 95% CI = [0.59, 1.85], p < .001; cubic: B = -0.18, 95% 
CI = [-0.31, -0.06], p = .004). For this sub-group, again no significant correlation was found 
between behavior rate and change in habit strength, even though the estimates were clearly 
larger than those in the whole sample (objective: B = 0.33, 95% CI = [-0.21, 0.87], p = .23; 
subjective: B = 0.47, 95% CI = [-0.07, 1.01], p = .09).  

 

Figure 4.19 Histogram of self-reported habit strength and its change over the weeks for 
participants with weak baseline habits in Study 2 (errorbars represent one standard error).

4.4 Predicting toothbrushing behavior with theory-based models 

4.4.1 Computational models of cognitive variables 

We computed two cognitive variables – habit strength (HS) and memory accessibility (Acc) 
– to examine whether they can improve prediction for toothbrushing behavior on the next 
day (1-step forecasting). We used the equation from Klein, Mogles, Treur, & van Wissen (2011; 
henceforth as Klein’s equation) for modeling habit strength, which was similar to the equa-
tion from Miller et al. (2019) used in Chapter 3. In Chapter 3, the focus was on decision-
making rather than learning, so Miller’s equation was preferred for its simplicity and its de-
sirable numeric property that habit strength was bounded between 0 and 1 regardless of its 
free parameters. However, while Miller’s equation was controlled by one parameter of learn-
ing rate, Klein’s equation with two free parameters allowed different rates in habit growth 
and decay, which was more consistent with the empirical findings about human habit for-
mation (e.g., Lally et al., 2010). The equation with a habit decay parameter (𝐻𝐻𝐷𝐷𝑃𝑃) and a habit 
gain parameter (𝐻𝐻𝐺𝐺𝑃𝑃) is the following: 

𝐻𝐻𝑆𝑆𝑡𝑡+1 =  𝐻𝐻𝑆𝑆𝑡𝑡 − 𝐻𝐻𝐷𝐷𝑃𝑃 × 𝐻𝐻𝑆𝑆𝑡𝑡 + 𝐻𝐻𝐺𝐺𝑃𝑃 × (1 − 𝐻𝐻𝑆𝑆𝑡𝑡) × 𝐵𝐵𝑚𝑚ℎ𝑡𝑡 × 𝐶𝐶𝐶𝐶𝑚𝑚𝑡𝑡 
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The equation models habit strength to decay naturally but to grow with decreasing speed 
when the corresponding behavior (𝐵𝐵𝑚𝑚ℎ) is performed under the corresponding cue. Habit 
strength at the start of the study (𝐻𝐻𝑆𝑆0) was initiated by scaling the self-reported behavioral 
automaticity to the interval between 0 and 1, and later habit strengths were computed by the 
equation. Because we did not measure whether the same cues were always encountered when 
participants brushing their teeth (e.g., whether the locations were always their bathrooms at 
home), the variable cue was assumed to always take the value 1. We considered it as a reason-
able simplification for a first evaluation of our approach. 

Memory accessibility of options was modeled using the equation in Tobias (2009). Accessi-
bility decays naturally as a natural memory process, but can be enhanced by behavior execu-
tions and external reminders. The equation controlled by three free parameters – accessibil-
ity decay parameter (𝐴𝐴𝐷𝐷𝑃𝑃), accessibility gain parameter with behavior execution (𝐴𝐴𝐺𝐺𝑃𝑃𝑏𝑏𝑒𝑒ℎ), 
and accessibility gain parameter with reminder (𝐴𝐴𝐺𝐺𝑃𝑃𝑙𝑙𝑒𝑒𝑟𝑟), is as the following: 

𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡+1 =  𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡 − 𝐴𝐴𝐷𝐷𝑃𝑃 × 𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡 + (𝐴𝐴𝐺𝐺𝑃𝑃𝑏𝑏𝑒𝑒ℎ × 𝐵𝐵𝑚𝑚ℎ𝑡𝑡 + 𝐴𝐴𝐺𝐺𝑃𝑃𝑙𝑙𝑒𝑒𝑟𝑟 × 𝑅𝑅𝑚𝑚𝑚𝑚𝑡𝑡) × (1 − 𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡)

Accessibility of the target brushing behavior was assumed to be 1 (maximum) at the beginning 
of the studies, as participants were either just told to perform the behavior (Study 1) or were 
highly aware of the optimal dental routine (Study 2) in face-to-face meetings. Accessibility on 
the date of the lab session in Study 2 was also set to 1 for all participants, as they were told 
how to brush optimally. For simplicity, both receiving reminders (Study 1) and receiving no-
tifications or e-mails for answering surveys (Study 1 & 2) were considered as the same type of 
reminder, modulated by a single parameter 𝐴𝐴𝐺𝐺𝑃𝑃𝑙𝑙𝑒𝑒𝑟𝑟.  

4.4.2 Model comparison method 

We set to evaluate the predictive value of computed habit strength and memory accessibility 
by comparing the performance of statistical models with and without these variables. The 
target for prediction was the brushing behavior on the next day, with the occurrence of brush-
ing as the negative cases and the absence of brushing as the positive cases. They were coded 
in this way because in applications a more important goal would be to detect the positive 
cases, i.e., the days on which the brushing behavior was likely to be omitted. The theory-based 
computational approach would be considered valuable if it led to models that performed bet-
ter than models based simply on past behavior and on weekly self-reported variables. Specif-
ically, models with 4 different feature sets were compared: 

• Survey model: The primary features in the survey model were the variables meas-
ured by weekly surveys, including instrumental attitude, affective attitude, and 
self-reported behavioral automaticity. In addition, the occurrence of lab sessions 
(including the introduction meeting in Study 1) and the occurrence of reminders 
(including notifications and e-mails for surveys) were also included as features. 
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• Past-behavior model: The primary feature in this model was the past behavior rate 
until the day of the last observation. For example, if the brushing behavior on the 
11th day was to be predicted, the brushing rate in the last 10 days (e.g., 0.8) would 
be the value for this variable. For the first day, past behavior rate was set to 0 in 
Study 1, as participants self-reported to rarely brush twice. In Study 2, the self-re-
ported behavior rates in the previous week were used for the initial values. Again, 
the occurrence of lab sessions and the occurrence of reminders were also included 
as features. 

• Theory-based model: This was the model of our interest that includes only com-
puted habit strength and accessibility as features.  

• Combined model: The combined model included features in both the past-behavior 
model and the theory-based model. It was used mainly to evaluate whether combin-
ing past behavior and computed cognitive features could further boost prediction 
performance.  

For each model type, three common statistical learning algorithms were used, including lo-
gistic regression, support vector machine, and random forest. In total, this resulted in 12 
models (4 model types × 3 algorithms) to be trained and tested. 

Two different approaches were used to compare model performance. First, a two-level hier-
archical k-fold cross-validation procedure was used on each of the two data sets separately 
(see Figure 4.20).  For each data set, all observations were divided into k non-overlapping 
groups (with the restriction that one participant’s data were always in only one group), so 
that 1 group was reserved for model testing, and the remaining k-1 groups were used for train-
ing in each round (the outer loop). Because tuning was needed for both the free parameters 
in the equations of HS and Acc and the hyperparameters for support vector machine and 
random forest, the training set in each round was further divided, with 1 group reserved as 
the test set for parameter tuning and the remaining k-2 groups as the training set for param-
eter tuning (the inner loop). For each free parameter in the theory-based equations, a 3000-
step random search was used, and in each step a random value was drawn from a uniform 
distribution between 0 and 1. For the hyperparameters, grid-search was used to swipe the 
parameter space as defined in Table 4.6. These parameter values were optimized to obtain 
the best overall prediction performance in the inner cross-validation loop, indicated by area 
under curve (AUC) in receiver operating characteristic (ROC) curves for logistic regression 
and random forest and by Matthews correlation coefficient (MCC) for support vector machine. 
Due to the sample size difference between the two studies, 9 folds were used for Study 1 (4 
participants in each group) and 5 folds were used for Study 2 (15 participants in each group), 
in order to have sufficient data for training.  
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Figure 4.20 An illustration of the nested cross-validation procedure used (it shows the 5-
fold scenario for Study 2, but the same idea applies to Study 1). 

Table 4.6 Range of values used in hyperparameter tuning. 

Support vector machine 

C (regularization parameter) 0.1, 1, 10, 100, 1000 

γ (width parameter of the Gaussian kernel) 0.0001, 0.001, 0.01, 0.1, 1, 10 

Random forest 

ntree (number of trees) 500 

nodesize (minimum observations in the terminal nodes) 1, 4, 16, 64, 256 

mtry (number of features used for node split) 1, 2, …, nfeature 

Since we had two similar data sets, in a second approach, we evaluated the ability of each 
model type to predict new data. This approach was used to measure the generalizability of 
the models, in particular the theory-based model. Specifically, one of the two data sets was 
used to train the models, and the resultant models were used to predict the observations in 
the other data set. When parameter tuning was required, a k-fold cross-validation was used 
on the whole training data set, with the same search methods indicated above. Again, 9-fold 
or 5-fold cross-validation was used when Study 1 or Study 2 was used as the training data set 
respectively.  

For model comparison, we primarily focused on AUC and MCC, since they provided a more 
balanced evaluation of prediction performance for both positive and negative cases. Overal 
prediction accuracy, F1-score, and other case-sensitive performance measures (e.g., true and 
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false positive rates) were also used for comparision. All analyses were performed in R statis-
tical programming environment (version 3.3.3), with the help of the mlr (machine-learning 
R, version 2.1.3) package (Bischl et al., 2016).  

4.4.3 Model comparison results 

Cross-validation within each data set 

Study 1 included 711 non-missing observations for the prediction task, with 376 positive cases 
(non-brushing) and 335 negative cases (brushing). Thus, the baseline prediction accuracy 
was 53% if a null model predicted all positive cases. Figure 4.21 shows the testing ROC curves 
of different models, and Table 4.7 compares additional testing performance measures of the 
models (aggregated over cross-validation iterations). Overall, various performance measures 
indicated that the theory-based modles were better than the survey models, but were slightly 
worse than the past-behavior models. It was also clear that combining the features of the 
theory-based and past-behavior models did not improve performance any further. All models 
were able to achieve prediction accuracy substantially higher than the baseline, ranging be-
tween 63% and 70%. If detecting positive cases was the main interests, it seems that the the-
ory-based models were more reluctant in predicting positive cases, which was also reflected 
in the relatively high precision but low true positive rate (TPR). In terms of learning algo-
rithms, their results were largely the same, although more complex algorithms (SVM and 
random forest) showed more decline of performance from training to testing set, suggesting 
some overfitting in training. Results of Study 1 did not show any support for the benefits of 
using the theory-based computational approach. 

 

 

 

 

 

 

 

Figure 4.21 Model comparison results of Study 1 based on ROC curves for different models 
and algorithms. 
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Table 4.7 Comparison of model performances in predicting testing data (Study 1). 

 AUC MCC Acc TPR FPR Precision F1-score NPV 

Lo
gi

st
ic

 r
e-

gr
es

si
on

 Survey 0.660 0.261 0.632 0.644 0.382 0.654 0.649 0.607 

PB 0.758 0.394 0.698 0.702 0.307 0.719 0.711 0.674 

Theory 0.737 0.337 0.668 0.660 0.322 0.697 0.678 0.639 

Combined 0.750 0.367 0.684 0.681 0.313 0.709 0.695 0.657 

SV
M

 

Survey 0.655 0.277 0.640 0.662 0.385 0.659 0.660 0.619 

PB 0.753 0.338 0.671 0.721 0.385 0.678 0.698 0.662 

Theory 0.698 0.311 0.648 0.564 0.257 0.711 0.629 0.603 

Combined 0.740 0.391 0.689 0.614 0.227 0.752 0.676 0.641 

R
an

do
m

 
fo

re
st

 

Survey 0.663 0.309 0.655 0..673 0.364 0.675 0.674 0.634 

PB 0.700 0.313 0.657 0.662 0.349 0.680 0.671 0.632 

Theory 0.704 0.274 0.633 0.574 0.301 0.681 0.623 0.594 

Combined 0.707 0.312 0.655 0.638 0.325 0.688 0.662 0.624 

Note: Survey = survey model; PB = past-behavior model; Theory = theory-based model; SVM = sup-

port vector machine; Acc = accuracy; TPR = true positive rate; FPR = false positive rate; NPV = neg-

ative prediction value; MMC = Matthews correlation coefficient. 

Study 2 included 1508 non-missing observations for the prediction task, with 557 positive 
cases (non-brushing) and 951 negative cases (brushing). Thus, the data were less balanced 
and the baseline prediction accuracy was 63% if a null model predicted all negative cases. 
Figure 4.22 shows the testing ROC curves of different models, and Table 4.8 compares addi-
tional testing performance measures of the models in Study 2. In contrast with Study 1, the 
theory-based models performed much better than the survey models, and also slightly better 
than the past-behavior models. The models with combined features was arguably the best, 
although the improvements over the theory-based models were very small. Since the data 
were more unbalanced (more negative cases due to a higher brushing rate) compared with 
Study 1, all models were able to predict more accurately, with average accuracy between 67% 
and 78%. When examining the case-sensitive measures, the advantages of the theory-based 
models seemed to be mainly driven by more accurate predictions for the negative cases. Thus, 
consistent with Study 1, the theory-based models were able to predict some more negative 
cases (days on which participants would not forget to brush twice) than the past-behavior 
models, as the latter produced more false positives. Again, differences between the three al-
gorithms used were very small, but again logistic regression was less prone to overfitting in 
our prediction task. 
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Figure 4.22 Model comparison results of Study 2 based on ROC curves for different models 

and algorithms. 

Table 4.8 Comparison of model performances in predicting testing data (Study 2). 

 AUC MCC Acc TPR FPR Precision F1-score NPV 

Lo
gi

st
ic

 r
e-

gr
es

si
on

 Survey 0.676 0.278 0.684 0.372 0.132 0.622 0.465 0.702 

PB 0.792 0.447 0.752 0.521 0.113 0.730 0.608 0.760 

Theory 0.815 0.504 0.776 0.533 0.082 0.792 0.637 0.771 

Combined 0.816 0.514 0.781 0.555 0.087 0.788 0.651 0.778 

SV
M

 

Survey 0.678 0.282 0.687 0.354 0.118 0.638 0.455 0.700 

PB 0.743 0.410 0.736 0.506 0.129 0.696 0.586 0.751 

Theory 0.757 0.491 0.771 0.531 0.089 0.777 0.631 0.768 

Combined 0.778 0.488 0.769 0.528 0.089 0.776 0.628 0.767 

R
an

do
m

 
fo

re
st

 

Survey 0.661 0.217 0.660 0.339 0.152 0.566 0.424 0.687 

PB 0.772 0.441 0.746 0.585 0.160 0.682 0.630 0.776 

Theory 0.791 0.484 0.767 0.555 0.108 0.750 0.638 0.774 

Combined 0.804 0.498 0.773 0.576 0.111 0.752 0.652 0.782 

Note: Survey = survey model; PB = past-behavior model; Theory = theory-based model; SVM = sup-

port vector machine; Acc = accuracy; TPR = true positive rate; FPR = false positive rate; NPV = neg-

ative prediction value; MMC = Matthews correlation coefficient. 

Predicting new data 

Results of the models’ abilities in predicting new data are summarized in Figure 4.23 and 
Table 4.9. As would be expected, performances of all models dropped significantly when new 
data were predicted, leaving an accuracy around 65% at best for Study 1 and around 70% at 

Logistic regression Support vector machine Random forest 
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best for Study 2. Encouragingly, although the theory-based models included a few free pa-
rameters to be estimated from the training data before features could be computed, their per-
formance drops were no worse than the other model types. Consistent with the results in the 
last section, the theory-based models and past-behavior models performed substantially bet-
ter than the survey models, while the differences between them were quite small. When cat-
egory-sensitive measures were considered, it was again shown that the past-behavior models 
were better at predicting positive cases, while the theory-based models were better at 
predicting negative cases. 

Figure 4.23 Model comparison results in terms of predicting new data, based on ROC curves 
of different models (Left panel: predicting Study 2’s data using models trained on Study 1’s 
data; Right panel: predicting Study 1’s data using models trained on Study 2’s data). 

    
Table 4.9 Comparison of model performances in predicting new data. 

 AUC MCC Acc TPR FPR Precision F1-score NPV 

Pr
ed

ic
ti

ng
 

da
ta

 s
et

 2
 Survey 0.680 0.195 0.570 0.715 0.515 0.448 0.551 0.744 

PB 0.793 0.421 0.710 0.749 0.313 0.583 0.656 0.823 

Theory 0.753 0.362 0.702 0.601 0.239 0.596 0.599 0.765 

Combined 0.795 0.422 0.711 0.745 0.309 0.585 0.656 0.822 

Pr
ed

ic
ti

ng
 

da
ta

 s
et

 1
 Survey 0.677 0.247 0.605 0.431 0.200 0.707 0.536 0.556 

PB 0.733 0.311 0.637 0.473 0.179 0.748 0.580 0.581 

Theory 0.718 0.365 0.648 0.423 0.099 0.828 0.560 0.582 

Combined 0.749 0.364 0.647 0.418 0.096 0.831 0.556 0.580 

Note: Survey = survey model; PB = past-behavior model; Theory = theory-based model; Acc = accu-

racy; TPR = true positive rate; FPR = false positive rate; NPV = negative prediction value; MMC = 

Matthews correlation coefficient.  
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Lastly, for theoretical interests, we examined the optimal parameter values for the free pa-
rameters in the theory-based equations of habit strength and accessibility. For parameters 
governing the dynamics of habit strength, optimal ranges of parameter values could be found, 
and the results were similar regardless of the data set used (see Figure 4.24). To achieve best 
performance based on AUC, the optimal value for the habit decay parameter (𝐻𝐻𝐷𝐷𝑃𝑃) was in 
the range of 0.15 and 0.2, while the optimal value for the habit gain parameter (𝐻𝐻𝐺𝐺𝑃𝑃) was in 
the range of 0.1 and 0.2. 

Figure 4.24 Tuning results for parameter HDP and HGP in the computational model of 
habit strength, shown as the relationship between parameter values (x-axis) and model per-
formance (area under curve, y-axis).  

In contrast, for parameters that determine the dynamics of accessibility, there seemed to be 
no relationships between their values and model prediction performance (see Figure 4.25). If 
one examined the individual features in the theory-based models, the feature habit strength 
contributed to most of their predictive powers, while the feature accessibility did not contrib-
ute as much. 
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Figure 4.25 Tuning results for parameter HDP and HGP in the computational model of 
habit strength, shown as the relationship between parameter values (x-axis) and model per-
formance (area under curve, y-axis).

4.5 General discussion 

In this chapter, we investigated habit formation in the real-world through two field interven-
tion studies of promoting optimal dental routines. The theoretical construct of habit strength 
was operationalized both as self-reported behavioral automaticity and as a computed variable 
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based on its theoretical relationship with behavioral repetition. Adding to the growing litera-
ture on habit formation in health-related behaviors, we examined the reciprocal relationships 
between self-reported habit strength, attitude, and objectively-measured toothbrushing be-
havior. In the second half of the chapter, we ventured a bit further to explore whether a com-
putational approach to habit formation could assist behavior prediction in intervention trials. 

4.5.1 The reciprocal relationships between habit strength, attitude, and brushing be-
havior 

First, our results suggest a clear and moderately strong positive relationship between habit 
strength and brushing behavior, in addition to the positive effects of instrumental and affec-
tive attitude on behavior. This finding is consistent with a series of empirical findings on the 
role of habit strength on behavior execution in health-related behaviors (Gardner, 2015). As 
we measured brushing behavior and the behavioral determinants multiple times, we could 
quantify the strengths of the inter-individual and intra-individual effects separately. It is 
somewhat surprising that both the effects of attitude and habit strength on brushing behavior 
are found to be only between-person but not within-person. This finding, if generalizable, 
would imply that people with an overall more positive attitude and stronger habit also engage 
in the corresponding behavior more frequently, but for one specific person a positive change 
in attitude or habit strength is not associated with increased behavior frequency. Such an 
implication also contradicts with psychological theories that treat habit formation as a 
within-person process. However, we consider this interpretation as premature, because the 
lack of within-person effects may be attributed to measurement errors. Unlike the more reli-
able person means used for computing between-person effects, the within-person scores (de-
viations from person means) inherently include a component of random variations from one 
measurement point to another. Given that the variations in these within-person scores are 
already smaller than the individual differences (ICC between 50-75%), the inherent measure-
ment errors may mask any small but meaningful within-person effects. More longitudinal 
studies with better controls for measurement error are needed to study habit formation 
within-person.  

Second, our results provide some support for the theoretical idea that strong habit attenuates 
the influences of attitude on behavior (e.g., Triandis, 1977; Verplanken et al., 1994), and the 
effect also applies to toothbrushing behavior. This moderation effect of habit strength on the 
relationship between attitude and behavior was found in Study 2, but not in Study 1. Given 
that Study 2 had a sample size twice as large and that habit strength in Study 2 was much 
more varied between-person than Study 1, the significant finding in Study 2 should be 
weighted more, yet more replications are clearly needed to verify the effect. Even if the mod-
eration effect exists, it is smaller and perhaps less robust than the main effects of habit 
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strength and attitude. This may explain why some null results have been reported in the lit-
erature (Murtagh et al., 2012; Norman, 2011; Gardner et al., 2012), although significant ef-
fects were reported more frequently (see Gardner, 2015). 

Third, we found mixed results regarding the reciprocal effect of behavior execution on the 
growth of habit strength. A strong positive correlation was found between weekly behavior 
rate of toothbrushing and the change in habit strength measured before and after the week 
in Study 1, but the effect was estimated to be much smaller and non-significant in Study 2. 
According to the computational models of habit formation (e.g., Klein, Mogles, Treur, & van 
Wissen, 2011; Miller et al., 2019; Psarra, 2016; Tobias, 2009) and its empirically observed 
dynamics (Lally et al., 2010), the positive influence of behavior execution on habit strength 
should gradually decrease as habit strength increases. This may explain the negative result in 
Study 2, since the average self-reported habit strength in the second sample was already quite 
high.  

While more research is needed to examine the effect, we did provide a more rigorous test 
when compared with previous studies (de Bruijn et al., 2014; Fleig et al., 2003; Gardner & 
Lally, 2013; Wiedemann et al., 2013) by improving two aspects of study design: (1) Change in 
habit strength was perfectly matched to the preceding behavior frequency in our repeated-
measure design; (2) Difference score was used as an unbiased way to control for baseline 
habit strength. For baseline adjustment in our studies, the use of difference score is preferable 
to the use of analysis of covariance (ANCOVA) or regression with baseline habit strength as 
covariate (see Verplanken & Melkevik, 2008), because the former is less biased than the latter 
in correlational designs (see Allison, 1990; Glymour et al., 2005; Maris, 1998). The superior-
ity of difference score was further confirmed in a simulation study using the same habit for-
mation model presented in 4.6.1.   Specifically, even if a behavioral determinant (e.g., attitude) 
is not influenced by behavior execution but changes randomly across measurement points, 
using its baseline as a covariate would produce a strong but spurious correlation between 
behavior frequency and the behavioral determinant, as long as there is a causal link from the 
behavioral determinant to behavior execution. Such strong correlations were indeed evident 
in our data when using the covariate-method, even though there is no strong theory on the 
change of attitude based merely on behavior repetition. The difference-score method was 
shown to be immune to this problem through the simulation. It should be noted that although 
the difference-score method is less biased, it may lack the power to detect small effects due 
to measurement error. 

Some of the controversies in our findings and in the empirical literature overall (e.g., lack of 
within-person effects, the mixed results regarding the moderation effect of habit) might even-
tually be resolved if researchers start to distinguish process theories of habit formation on 
one hand and statistical models of empirical data on the other. While statistical models de-
scribe mostly linear relationships at the weekly level (or other aggregated temporal level), the 
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actual causal influences of habit strength and other determinants on behavior and verse versa 
are likely to be non-linear and operate at the level of individual decisions. Thus, rather than 
literally mapping statistical relationships to causal processes (e.g., habit and attitude inter-
acts literally in a way described by interaction effect in linear regression models), it may be 
more fruitful to generate more precise statistical hypotheses at different temporal scales us-
ing computational models of the underlying behavioral processes. 

To further appreciate the difference between statistical models and process theories, one can 
consider the reciprocal relationship between habit strength and behavior as an example. As 
discussed already at length, habit strength can influence behavior either through its contri-
bution to the activations of behavioral options (see Chapter 2) and as a mechanism to shift 
one’s baseline preferences for the habitual behavioral options (see Chapter 3). Reversely, 
habit strength increases through behavior execution nonlinearly as described in 4.6.1. Given 
these mechanisms, although people with stronger habit obviously tend to perform the behav-
ior more often, the corresponding within-person effect may not be straightforward. Suppose 
that a person is learning to brush their teeth in the evening as a completely new habit, this 
person might comply with the behavior every day in the first week even though habit strength 
the beginning of the week is near zero. For the second week, because the preceding habit 
strength is much higher, if the person somehow omits brushing for two evenings, a negative 
within-person correlation between habit strength and behavior might be produced if the two 
week’s data are analyzed statistically.  

In addition, the within-person effect of habit strength on behavior is likely to be nonlinear, in 
the sense that at a certain level of habit strength the effect is saturated but habit strength itself 
can still increase to its possible maximum. If this assumption is correct, then the complex 
interaction between habits and goals at the cognitive level may also not lead to a straightfor-
ward statistical prediction of a negative interaction term as in linear regression models. More-
over, while a statistical interaction effect assumes relative independence between the predic-
tors (e.g., the distribution of attitude does not change at different levels of habit strength), in 
natural habit formation processes the combination of strong habit and very negative attitude 
is rarely to be found. Thus, to really test the moderation role of habit strength, experimental 
manipulations might be needed to change the attitude of people with strong or weak habits, 
in a way similar to the devaluation paradigm used in laboratory learning experiments (e.g., 
Dickinson, 1985). 

4.5.2 Implications for objective behavior measurements in habit research 

One particular methodological contribution of our studies is the use of sensor-based objective 
measures of behavior in habit research. Although objective behavior monitoring is becoming 
more accessible due to the advancements in sensor technologies, applications of sensor-based 
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measures in psychological research on habits is still very scarce (see Gardner, 2015). The suc-
cess of our application is evident in the strong correlation between sensor-based and self-
reported weekly brushing rate, and in the comparable results for the main research questions 
of interests when using the two types of measures. Our data also give an indication of the 
common-method bias, as the correlations of interests were almost consistently higher when 
self-reported behavior rate was used than when sensor-based behavior rate was used. 

The strong correlations between self-reported and sensor-based behavior rates may lead 
some researchers to question the benefits of using the more complex technology-based ap-
proach. If the information provided by the two types of measures is redundant, would it be 
more convenient just to use retrospective self-reports? Here we defend the use of objective 
measures for a few reasons. First, even though the two type of measures correlated highly, 
sensor-based measures may still be more accurate and potentially lead to more precise esti-
mates of effect size. This would be especially true when some participants in a study have 
memory problems or difficulties in understanding rating scales. For example in our second 
study with some older and less educated participants, there was clear evidence that on a few 
occasions the self-report measures were erroneous. The advantage of sensors over human 
memory systems is likely to be continuously enlarged by technology developments. Second, 
even if weekly self-reports are accurate, day-level behavioral data or even continuous behav-
ioral monitoring are only feasible with sensors in real digital interventions. Self-reporting 
every occasion of a target behavior is a lot of burden for users and it may affect the primary 
research on behavior change in unintended ways. Third, although not explored in this chapter, 
sensor-based methods can actually collect much more information than the occurrence of 
behavior. For example, from our accelerometer data, brushing duration, intensity, and even 
temporal orders of brushing locations can be obtained, which are even more cumbersome for 
self-reporting. Bearing these advantages in mind, our approach can be further strengthened 
by calibrating the preprocessing algorithms with labeled brushing data (ground truth) and by 
reducing the physical salience of the sensors in the future. 

4.5.3 Potential of using computed habit strength for behavior prediction 

Our predictive modeling work shows some promises for using computed habit strength to 
improve behavior prediction. Through a nested cross-validation procedure on the data from 
both studies, the theory-based models that include computed habit strength and option ac-
cessibility as features performed better than the survey models that used self-reported behav-
ioral determinants as features. With Study 2’s data, the theory-based models also performed 
better than the models that are based simply on past behavior rate, although this advantage 
was not shown when model performance was measured in terms of predicting new data. Alt-
hough the differences in prediction accuracies between the theory-based and past-behavior 
models are quite small, the two types of models actually make somewhat distinct predictions: 
The theory-based models tend to predict more negative cases (brushing) and thus produces 
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higher true negative rates at the cost of lower true positive rates. Conversely, past-behavior 
models predict more positive cases (non-brushing) and thus achieves higher true positive 
rates at the cost of lower true negative rates. If one examines their prediction patterns, it can 
be found that the above difference is mainly attributed to the early phases of individuals who 
often alternate between brushing and non-brushing. Because of the modeled dynamics of 
habit formation and the very small habit decay parameter (0.05 - 0.2), the occasional omis-
sions of brushing (positive cases) do not affect habit strength very much, so the theory-based 
models seem to “forgive” these positive cases more easily. In contrast, when the total number 
of observations is still small at the early phase, omissions of brushing can lower past behavior 
rate quite substantially and thus more predictions of positive cases are made. 

Besides the interests in behavior prediction, the parameter estimation procedure used in our 
studies also has implications for the theoretical understanding of habit formation. The opti-
mal values tuned for the habit gain parameter are very close to the corresponding values ob-
tained through a statistical modeling of the temporal dynamics of self-reported habit strength 
or behavioral automaticity (0.19 in Lally et al., 2010), although the optimal values for the 
habit decay parameter were larger than the 0.007 from Lally et al. (2011). In general, these 
results speak to the theoretical meaningfulness of the computational model of habit strength 
used for prediction. In contrast, the parameters in the equation of accessibility did not seem 
to have optimal values, which casts doubts onto the validity of modeling memory accessibility 
in the current way. The contrasting result is not surprising given that the computational mod-
eling of habit strength has more theoretical foundations and has been researched more ex-
tensively. 

We initially thought that the computed cognitive variables would increase the predictive 
power of model based on other commonly used features, such as behavioral determinants 
(e.g., attitude) and contextual factors (e.g., emotional states, environmental cues). Therefore, 
we were surprised that combining the computed habit strength with either instrumental or 
affective attitude did not perform better than the theory-based models alone (not reported in 
the result sections). Of course, the measurements of attitude were on the weekly level, so it is 
yet to know whether knowing more immediate contextual factors would further increase pre-
diction accuracy of brushing behavior (e.g., sleepiness of the person in the evening, behavior 
of the partner, etc.). Without knowing these information, the current prediction accuracy of 
around 65 - 75% might be the limit. 

Although the equation of habit strength was motivated by theories (e.g., Klein, Mogles, Treur, 
& van Wissen, 2011; Miller et al., 2019), the computed variable also represents a specific sum-
mary of past behavior. The similarity between the theory-based models and the past-behavior 
models was also reflected in the fact that they seemed to provide similar information, since 
adding these features together did not improve performance much further. Without knowing 
the true effect size of habit strength’s influence on behavior, optimizing the parameters in the 
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equation to produce the best prediction performance might return parameter values that 
transform the computed variable to capture other influences other than habit strength on 
behavior. Compared with past-behavior models that weight each behavior in the past evenly, 
the equation of habit strength weights behavior at different time point in the past in a more 
sophisticated way. Given the habit decay parameter, the contributions of behaviors that are 
far in the past to current habit strength are discounted in an exponential way, given by the 
decay parameter to the power of 𝑛𝑛 (𝐻𝐻𝐷𝐷𝑃𝑃𝑗𝑗), where 𝑛𝑛 denotes the number of time steps to the 
past. Behaviors in the later stage of habit formation also tend to have increasingly smaller 
immediate contributions to the current habit strength because the habit gain parameter is 
modulated by the term 1 −𝐻𝐻𝑆𝑆𝑡𝑡. For the purpose of behavior prediction alone, it would be 
interesting to examine more closely the mathematical properties of the equation and to ex-
plore whether other ways of weighing past behaviors could result in better prediction perfor-
mance. 

4.5.4 Implications on using theory-based computational models in digital interven-
tions 

Although more research is clearly needed, the theory-based computational approach used in 
our studies can be potentially used in digital intervention systems. As long as behaviors are 
observed by the system’s sensors and parameter values are estimated from existing data, such 
a system can update its representations of users’ cognitive states after every daily decision, 
bypassing the need of asking users to report their cognitive states repeatedly. This type of 
information can be used in two ways. First, tracking a user’ habit strength of a newly trained 
behavior may give the system a better idea about the progress of behavior change. For exam-
ple, even when the target behavior is already consistently performed, a habit strength less 
than its maximum would suggest some rooms for improvement, before the current coaching 
can be stopped at a minimum risk of relapse. Second, the computed cognitive states may in-
deed assist the system’s behavior prediction, which can then be used to inform intervention 
decisions. For instance, although sending reminders did not cost much economically, psy-
chologically too many reminders may irritate users. As a result, reminders are better to be 
saved for the occasions that the system has confidence in anticipating behavior omissions 
from the users. In conclusion, a better understanding and modeling of the dynamics of habit 
formation should motivate more intelligent digital intervention systems in the near future. 
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Chapter 518 
Evaluating Mouse-tracking as a Technique to Re-
veal Self-Control Processes 

 

 

5.1 Introduction 

The self-control problem in many daily lifestyle decisions can be described as a decision di-
lemma (see Berkman et al., 2017). Typically, a decision-maker is faced with two (almost) 
equally attractive options, but they are attractive for opposite reasons. For example, one op-
tion gratifies the immediate desires of the person, but it comes with the potential cost of im-
peding their long-term health, and thus the impulse towards this option is to be “controlled”. 
The other option, although providing less or no instant gratification, complies nonetheless 
with their conscientious of living a healthy life and with the norms and expectations from 
today’s society. There is a strong trade-off to be made in making such decisions, as accepting 
either of the two desirable aspects means rejecting the other. People face these trade-offs all 
the time in daily lives, such as choosing between tasty French fries and healthy salads, or 
deciding to make the extra effort to floss teeth or not. With today’s digital technologies, peo-
ple’s actual decisions in these situations can be tracked by sensors (see Chapter 4), their per-
sonal health standards and social norms can be self-reported, but their cognitive processes 
crucially involved in representing and resolving this decision dilemma remain difficult to be 
revealed. 

It is without doubt that revealing these cognitive processes is of crucial importance for ad-
vancing the theoretical understanding of self-control. For instance, one may ask the question 
why people tend to be spontaneously attracted more to the gratifying but unhealthy options, 
to the point that the tendency has to be “controlled”. Many studies have shown show, for 
example, the aspect of taste has much larger impact than the aspect of health on people’s 
dietary choices (e.g., Sullivan et al., 2015; Hare et al., 2009; this Chapter). If one accepts the 
general assumption in most decision theories that people compare options based on their 

                                                   
 
18 This chapter is partly based on Zhang, C., Willemsen, M., & Lakens, D. (2018). Can Mouse-tracking Reveal 
Attribute Processing Speeds in Dietary Self-control? Commentary on Sullivan et al. (2015) and Lim et al. 
(2018) with A Simulation Study. PsyArXiv. doi: 10.31234/osf.io/725vp. 
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attributes, the answer to the above question must lie in how people represent attribute health-
iness differently than the other attributes, such as tastiness and effort. Several hypotheses 
have indeed been proposed, for example, that the value of health is discounted due to the 
delay of gratification (e.g., Ainslie, 1975), that healthiness is more abstract and processed 
more slowly (Sullivan et al., 2015), or healthiness does not capture automatic visual attention 
(Motoki, Saito, Nouchi, Kawashima, & Sugiura, 2018). But testing these hypotheses requires 
a method to reveal unobservable cognitive processes.  

Going beyond merely measuring behavior also has additional values for improving digital 
lifestyle interventions. For example, an e-coaching system may observe that two users choose 
an apple over a chocolate bar on a given day, but their underlying cognitive processes of re-
making the decision might be very different. One person might choose the healthy option 
without any hesitation, while the other barely managed to resist the temptation of the choc-
olate bar. Similarly, before a user reverses her choices at the behavioral level, the conflict-
resolving process at the cognitive level might already be shifted gradually. Thus, knowing the 
amount of conflicts experienced and self-control effort mobilized by users could inform the 
system more about the progress of behavior change and interventions needed for consolidat-
ing new habits. Besides, although some self-control situations can sometimes be identified 
based on the profiles of the choice options, this is not always the case given individual differ-
ences in perceptions, for example, in taste preferences. One interesting question is how to 
automatically identify decision situations with strong heath-pleasure trade-offs from the sit-
uations where decisions are difficult merely because the options are equally good in both as-
pects. 

In this chapter, we evaluate a mouse-tracking technique in the context of self-control, as it 
has been used for continuously tracking dynamic cognitive processes (for reviews, see Free-
man, 2018; Song & Nakayama, 2009; Stillman, Shen, & Ferguson, 2018). Compared with 
other techniques that have also been applied to self-control, such as eye-tracking (Motoki et 
al., 2018) and neuroimaging (e.g., Hare et al., 2009; Maier, Makwana, & Hare, 2015), mouse-
tracking has the unique advantages that it is cheap and readily applicable to digital systems 
in people’s daily environments. Before outlining specific research aims and questions, a re-
view of the mouse-tracking technique, applications, and its theoretical assumptions is pro-
vided. 

5.1.1 The mouse-tracking technique and paradigm 

In typical mouse-tracking experiments, the experimental task itself is rather simple and can 
be illustrated with the following example, where participants are asked to categorize the gen-
der of face stimuli shown at the center of the screen (e.g., Freeman & Ambady, 2009; see 
Figure 5.1). Instead of pressing keys associated with the two gender categories as in tradi-
tional reaction-time tasks, participants indicate their responses by moving the cursor at the 
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bottom-center of the screen to the category labels (“Female” or “Male”) in the top-left and 
top-right corners of the screen using a computer mouse. The response labels are usually 
shown after participants click the “start” button and initiate a movement of the cursor, in 
order to prevent that they make decisions before any movements. When one of the response 
labels is clicked, a response is recorded, as well as the temporal-spatial profile of the move-
ment trajectory. The raw data of a single trial thus contain the positions of the cursor (x and 
y-coordinates) and the associated timestamps of the positions sampled at a certain frequency 
(e.g., 60 Hz). 

 

Figure 5.1 An example of a mouse-tracking task (a: click the button to start; b: a face stim-
ulus shown briefly; c & d: two exemplar mouse trajectories from the starting position to the 
response labels).  

Different types of parameters can be extracted from the raw data to describe the characteris-
tics of individual movement trajectories, and to examine the correlations with task manipu-
lations. Most commonly used parameters describe each trajectory as a whole, focusing on 
either spatial or temporal information (Freeman & Ambady, 2010; Hehman, Stolier, & Free-
man, 2015). Area under curve (AUC) and maximum deviation (MD) are two popular spatial 
parameters that measure the general tendency of a trajectory to deviate from the straight line 
connecting the starting position of the cursor and the positions of the response labels (see 
Figure 5.1c & d), or the tendency to be “attracted” to the non-chosen response. In addition to 
the general deviation tendency, spatial complexity of the trajectories is measured by x-flip 
and y-flip, the number of directional reversals along the x- or y-axis during the whole move-
ment. Because x- and y-flip count all the reversals regardless of magnitude, a different pa-
rameter called number of commitments was developed recently to measure how many times 
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a decision-maker actually “changes their minds” (Szaszi, Palfi, Szollosi, Kieslich, & Aczel, 
2018). This number is computed by counting the number of times the cursor enters the im-
mediate spatial areas surrounding the two response labels, called the “areas of interests”. Ag-
gregated temporal parameters, though used to a lesser degree, include response time, the 
maximum speed, and the maximum acceleration during the movement. Response time tends 
to correlate with AUC or MD, but the correlation is often weak, which justifies the use of 
mouse-tracking to provide non-redundant information. Finally, there are more advanced 
analysis methods that look at the temporal dynamics of trajectories rather than the aggre-
gated trial-level measures (e.g., Scherbaum, Dshemuchadse, Fischer, & Goschke, 2010; Cal-
cagnì, Lombardi, & Sulpizio, 2017).  

The most robust and omnipresent finding in mouse-tracking studies is that regardless of what 
categorization, judgment, or decision-making tasks are used, the more difficult the task, the 
longer the response time and the larger the spatial deviation from the hypothetical straight 
movement. The effect itself is not surprising, but the implications of the effect proposed by 
pioneers of the method have led to the practical popularity and presumed theoretical signifi-
cance of the paradigm. The earliest application of mouse-tracking was in the field of language 
comprehension (Spivey, Grosjean, & Knoblich, 2005) and social categorization (Freeman, 
Ambady, Rule, & Johnson, 2008), where the researchers were interested in comparing two 
opposing theories of cognition. The traditional view of human cognition, as rejected by these 
researchers, posits that processing of either spoken language or social information takes dis-
crete stages, and the outputs of a completed earlier stage (e.g., cognition) are passed as inputs 
to the next stage (e.g., motor-control). The contrasting view is that the processing of compet-
ing stimuli involves parallel activations of mental representations (e.g., two different words 
or social categories). These mental representations continuously compete with each other, 
and the intermediate states of the competition (i.e., partial information) are cascaded onto 
the subsequent stages. 

Two characteristics of the associated mouse-tracking data were used as support for the par-
allel partial activation account. First, the initial movements along the midline between the 
two response labels and the distinguishable onsets of departures from the midline depending 
on task difficulty (e.g., phonological similarity between the two words, or the gender ambigu-
ity of the face) are believed to reflect a continuous pulling on the cognitive system by the two 
competing activations or attractors. Second, distributions of spatial parameters (e.g., MD) 
were found to be closer to normal distributions (though with higher kurtosis) than bimodal 
distributions, and this pattern was used to reject the stage-based account that completing 
motor responses are initiated and the incorrect ones are later corrected. The later account 
would predict a pattern where some trajectories follow direct lines, while others are with ex-
tremely large changes of directions. Note that these mouse-tracking results were used to sup-
port both the cognitive theories and at the same time the assumption that mouse-tracking 
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data reflected the dynamic cognitive processes. We shall argue in section 5.14 that such an 
interpretation of mouse-tracking data is questionable, and the theoretical assumption that 
movement trajectories are affected continuously by ongoing cognitive process has never been 
tested independently. Nonetheless, the mouse-tracking technique has since been applied to 
many other research topics, including judgment and decision-making (e.g., Dshemuchadse, 
Scherbaum, & Goschke, 2013; Koop, 2013; McKinstry, Dale, & Spivey, 2008), based on the 
same untested assumption. 

5.1.2 Applications of mouse-tracking in dietary self-control research 

All applications of mouse-tracking in health-related self-control research have focused on di-
etary choices. This is not surprising, because compared with other lifestyle decisions (e.g., 
physical activities or dental behaviors), dietary choices can be easily studied in laboratory 
tasks without losing much of the ecological validity. Despite the common goal of studying 
decision conflicts in dietary self-control, several variations of decision tasks with mouse-
tracking were developed for specific research aims, including: (1) evaluating or categorizing 
food stimuli as positive or negative (Gillebaart, Schneider, & de Ridder, 2015); (2) deciding 
whether or not to eat particular food items (Ha et al., 2016; Lim, Penrod, Ha, Bruce, & Bruce, 
2018); (3) or choosing between pairs of food items based on personal preferences (Sullivan 
et al., 2015) or experimental instructions (e.g., to choose healthy food, Stillman, Medvedev, 
& Ferguson, 2017). 

By asking participants to evaluate food items as positive or negative, Gillebaart et al. (2015) 
extracted MD from mouse-tracking data as a measure of conflict magnitude, and response 
time and timing of MD as measures of temporal aspects of conflicts. When comparing trials 
with self-control success (evaluating healthy food as positive and unhealthy food as negative) 
and trials with self-control failure (evaluating healthy food as negative and unhealthy food as 
positive), MD did not differ but success trials were associated with faster response time and 
earlier timing of MD. Besides mouse-tracking data, self-reported conflicts and trait self-con-
trol were also measured. Results indicated that higher trait self-control was not correlated 
with more conflict as indexed by MD. However, in self-control success trials, participants 
with higher trait self-control responded faster and their decision conflicts seemed to be re-
solved faster as indicated by earlier timing of MD. 

Ha et al. (2016) did a similar study with school children, with a modification that the partici-
pants directly indicated with mouse-movement whether they preferred to eat food items or 
not. Instead of comparing self-control success trials and self-control failure trials, they com-
pared trials with health foods as targets and trials with unhealthy foods as targets. Results 
suggested more conflicts – indicated by larger MD, slower responses, and later timing of MD 
– when children made decisions on unhealthy foods than on healthy foods. The conflicts were 
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especially strong when they had to reject unhealthy foods. They also reported that children’s 
body mass index (BMI) correlated positively with larger MD in trials with unhealthy food. 

Stillman et al. (2017) adapted the mouse-tracking paradigm to real choice tasks, where par-
ticipants chose between healthy and unhealthy food items (self-control trials), between two 
healthy food items (comparison trials), or between one healthy food and one non-food item 
(control trials). Decision conflict, as measured by AUC, was largest in comparison trials, fol-
lowed closely by self-control trials, and then by control trials with minimum conflicts. This 
seems to suggest that choosing between two similar options invokes more conflicts than 
choosing between two options with strong trade-offs, although the effect was limited to 
healthy options. Moreover, inconsistent with Gillebaart et al. (2015), trait self-control was 
found to correlate negatively with conflict magnitude (measured by AUC), and this correla-
tion only existed in self-control trials but not in comparison trials. Finally, similar to the ear-
lier studies on language comprehension and social categorization (e.g., Spivey et al., 2005; 
Freeman et al., 2008), Stillman and colleagues (2017) also analyzed the distribution of tra-
jectory AUC, and used the absence of bimodality in distributions as a support for a continuous 
conflict-resolving theory of self-control. As they argued, if instead a dual-processing account 
of self-control is true (e.g., Hofmann et al., 2009), binary trajectory patterns would have been 
found – some trials with direct movement (no impulse at all) and others with extreme rever-
sals of movement directions (impulse and then inhibition). 

The studies above contributed to the exploration and description of the relationships between 
mouse-tracking parameters, task characteristics, and person characteristics, but they did not 
follow strongly from any concrete models of self-control, nor did they test directly any mech-
anism of self-control. In contrast, Sullivan et al. (2015) used mouse-tracking data to test a 
specific mechanism of dietary self-control following a concrete computational model. If self-
control is conceptualized as a process of value-based decision-making (Berkman et al., 2017), 
the process can be modeled by sequential sampling models or accumulation models, and in 
particular by a drift diffusion model (e.g., Ratcliff & Rouder, 1998). To model a dietary choice 
between, for example, an apple and a chocolate bar, the drift diffusion model proposes that 
the competition between the two options is resolved in time, while the process can be de-
scribed as a value-signal drifts stochastically between two decision boundaries or thresholds, 
before eventually the signal exceeds one of the boundaries. The direction and magnitude of 
the drifts are determined by the attributes of healthiness and tastiness of the two options plus 
some random noises. Sullivan et al. (2015) also assumed that both healthiness and tastiness 
take time to be processed, and only after processing they can be integrated into the drift rates 
of the value-signals. Based on the overall setup of the model, the question why people weigh 
tastiness more than healthiness in dietary choices can be explained by two mechanisms: (1) 
Healthiness is processed slower than tastiness (as being more abstract), so it has less oppor-
tunity to influence the accumulation process (latency difference); (2) Healthiness is weighted 
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less than tastiness (e.g., due to temporal discounting) when integrated into the drift rate of 
the value signal (slope difference). 

By analyzing the temporal unfolding of movement trajectories in dietary choice tasks with 
mouse-tracking, Sullivan et al. (2015) claimed to find evidence for the mechanism of latency 
difference. Raw trajectory data were normalized to 101 timesteps, and then self-reported tast-
iness and healthiness differences were correlated with trajectory angle (i.e., the angle meas-
uring the momentary cursor position relative to the starting position) at all the timesteps. 
Processing speeds or latencies of the two attributes were estimated as the earliest timesteps 
at which their correlations with angle became significantly larger than zero. Results consist-
ently show that the latency estimates for healthiness are larger than the latency estimates for 
tastiness. Using the same method, a more recent study claimed to found that by providing 
participants with calorie information, the latency difference between processing tastiness and 
healthiness was reduced (Lim et al., 2018). If these claims are valid, the results would have 
profound implications for self-control theories and interventions. 

5.1.3 Theoretical assumptions underlying the mouse-tracking method 

Most mouse-tracking studies are based on the assumption that movement trajectories are 
affected continuously by the ongoing cognitive process of resolving the competition between 
response options. For example, Spivey et al. (2005) concluded that “our present findings vir-
tually project the ongoing output of the language comprehension process onto a two-dimen-
sional action space in which the potential goal objects act like attractor points and the manual 
movement serves as a record of the mental trajectory traversed as a result of the continuously 
updated interpretation of the linguistic input” (p. 10398). Similarly, Stillman et al. (2017) 
introduced mouse-tracking as a method that “captures, in a nonobvious and unobtrusive 
manner, the real-time temporal profile of conflict during a successful self-control choice” (p. 
1). Surprisingly, this strong assumption has never been directly tested and the general confi-
dence in this assumption might be attributed to a logical fallacy passed on from the earliest 
studies (Spivey et al., 2005; Freeman et al., 2008). In these two studies, the basic logic was 
that given the assumption that mouse-tracking provided a continuous measure of cognitive 
processes, certain data patterns (e.g., correlations between MD and task difficulty, a lack of 
bimodality in MD distribution, etc.) would strongly favor the parallel partial activation theory 
over the stage-based theory. However, it seemed that when the expected data patterns were 
found, the authors used the results not only as a support fir the theory, but also for the as-
sumption itself.  

The continuous-mapping assumption is not the only assumption that can explain the basic 
effect that trajectory deviation correlates positively with task difficulty. We consider three 
different assumptions here, ordered by the strength of the coupling between cognition and 
motor-control required by them. The strong assumption of a continuous mapping between 
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cognition and motor-control is shared by most mouse-tracking researchers. It can be de-
scribed more concretely by sequential sampling models: the momentary positions or direc-
tions of trajectory movements are partially determined by the status or drifts of the value-
signal in the cognitive process. For example, if a value signal is momentarily attracted mainly 
by the right response, the hand movement is causally biased rightwards. Not all but some 
sequential sampling models (e.g., decision field theory, Roe et al., 2001) also assume that the 
drift rate at one time point is only affected by only one attribute, e.g., either by healthiness or 
tastiness. With this additional assumption, the strong assumption should predict clear differ-
ences between trajectories in trials with two different kinds of difficulty – a strong trade-off 
between options (trade-off trials, or self-control trials), or two options similar in all aspects 
(similar trials, or comparison trials). Trade-off trials should invoke large momentary drifts 
to both directions that may be cancelled out over time, while similar trials should lead to only 
small momentary drifts. Mapping this difference to movement trajectories, trade-off trials 
should be more complex than similar trials, as measured by e.g., x-flips. Thus, finding the 
differences between these two types of trials would provide stronger empirical support for the 
strong assumption than the basic difficulty-deviation relationship. 

A weaker assumption, or the moderate assumption, also demands simultaneous motor 
movements when a decision-making process (e.g., a sequential sampling) is ongoing, but it 
assumes that the movements are always upwards before decisions are made (Sullivan, 
Hutcherson, Harris, & Rangel, 2019). This strategy is functionally efficient because it reduces 
the distances to both response targets. Only when choices are committed, people move in a 
straight line to the response targets. In this way, decision-making influences the distance of 
the upwards movement, but it does not affect the momentary movement direction or cursor 
position as in the strong assumption. It is nonetheless sufficient to produce the basic effect 
that more difficult tasks lead to larger and later maximum deviations. However, the moderate 
assumption does not predict different trajectories for trade-off and similar trials, because re-
gardless of what causes the conflicts, equally difficult decisions will lead to the same amount 
of upwards movements. 

The weakest one of the three, or simply the weak assumption, does not posit any coupling 
between cognition and motor-control. Participants in mouse-tracking tasks may simply make 
their choices in mind and then start to move, so the size of trajectory curvature is entirely 
determined by some motor-control properties (e.g., people naturally move with some curva-
tures rather than completely straight). In addition, if participants do change their minds in 
some difficult trials and reverse the movements to the opposite response targets, the same 
positive correlation between task difficulty and deviation can be found. Note that the com-
monly used strategy of detecting bimodality does not rule out this possibility. The number of 
reversal trials could be very small, and empirically this is consistent with the often very posi-
tively skewed distributions of MD or AUC (e.g., see Stillman et al., 2017). These patterns do 
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not necessarily produce bimodality, but statistical tests of no difference between the distri-
bution means will yield significant effects.  

5.1.4 Open issues before applying mouse-tracking to digital interventions 

One important consideration for applying the mouse-tracking technique to digital lifestyle 
interventions is not theoretical but pragmatic. If one uses it to study decision conflicts in daily 
environments, the tasks have to be adapted to mobile devices, usually with much smaller dis-
plays and touch-control instead of a computer mouse. Although the adaptation of mouse-
tracking to different screen sizes and various control devices is sometimes discussed in meth-
odological papers (e.g., Freeman & Ambady, 2010), we could only identify two previous stud-
ies that used the mouse-tracking technique in non-traditional settings. In a study by Buc Cal-
deron, Verguts, and Gevers (2015), a mouse-tracking task was performed on a 17-inch Wacom 
LCD tablet, placed on tables with a 30° orientation, and with a cordless pen to control digital 
widgets. In an even more “mobile” setting, Wirth, Pfister, & Kunde (2016) asked participants 
to perform “mouse-tracking” by dragging a cursor on iPads to response targets in portrait 
mode. However, even in the latter study, there was no direct comparison between a tradi-
tional physical-mouse condition and a touch-screen condition. Given the drastically different 
screen sizes and different motor-control constrains embedded in moving a mouse (e.g., Phil-
lips & Triggs, 2001) and in moving one’s fingers (e.g., Dillen, Phillips, & Meehan, 2005), it is 
necessary to directly compare the trajectory profiles and test whether the differences influ-
ence the paradigm’s ability to reveal theoretically interesting effects or not. 

Two use cases for the mouse-tracking technique in digital intervention systems can be iden-
tified: (1) to measure the strength of decision conflicts as a proxy of tracking behavior change 
progress; (2) to distinguish the type of decision conflicts, e.g., trade-off or similar, faced by 
users in making lifestyle decisions. Both cases require moderate to strong correlations of 
mouse-tracking parameters with conflict strength, and with different decision scenarios. In 
most theory-driven mouse-tracking studies, researchers primarily care about explanation so 
they are content with any statistically significant differences between conditions or correla-
tions with task factors. However, for the applied purpose of prediction or measurement, the 
sizes of effects are crucial, which have not been well documented in the literature yet. More-
over, although Stillman et al. (2017) found a small MD difference between experimentally 
defined trade-off trials versus comparison trials, more systematic investigation is needed to 
cover a larger range of trade-off trials and similar trials as perceived by users, and to docu-
ment effect sizes for different mouse-tracking parameters. 

5.1.5 The current investigation 

The overall goal of this chapter is to evaluate the usefulness of the mouse-tracking technique 
in revealing cognitive mechanisms underlying self-control and its applicability to measuring 
decision conflicts in digital intervention systems. We report a food-choice experiment with 
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both touch-screen and physical mouse conditions to address the two open issues mentioned 
above.  

1. Whether the mouse-tracking technique can be adapted to touch-screen devices. 

2. Whether mouse-tracking parameters are sensitive enough to measure decision con-
flicts or to classify different decision scenarios. 

Because the results of the first experiment had casted more doubts to the default strong the-
oretical assumption in the field, additional work as done to scrutinize the different theoretical 
assumptions mentioned earlier. First, a replication of Sullivan et al. (2015) and a simulation-
based re-revaluation of their method of revealing self-control mechanisms are reported. Also, 
a second experiment was conducted to further differentiate the three theoretical assumptions 
underlying the mouse-tracking technique.

5.2 Study 1: food-choice experiment with touch-screen and physical-
mouse 

5.2.1 Method 

Participants & design 

Forty-three students (23 males and 20 females) from Eindhoven University of Technology 
participated in the experiment as part of a course fulfillment. Their age varied from 19 to 31 
years-old, with a mean of 21.5 years and a standard deviation of 1.9 years. Their BMIs were 
between 17.2 and 27.8 (mean = 22.3, SD = 2.57). According to the questionnaire used in the 
study, three participants reported to be vegan, one reported to be vegetarian, and one re-
ported to have a low-carbohydrate diet. In addition, three participants indicated that they 
had hay fever, Celiac disease, or were lactose intolerant.  

In a within-subject design, 180 food-choice trials were evenly divided into two blocks – one 
with a laptop and a mouse and one with a tablet. The order of the blocks was counterbalanced 
between participants. Moreover, as we were also interested in whether nudging could affect 
movement trajectories, in some trials additional information was shown underneath the food 
images to emphasize either the healthiness or tastiness difference between the two food items. 
Because this was beyond the scope of the current chapter and no effect was found (nor did it 
affect our main results), data analyses for our main objectives treated all trials as equal. Fi-
nally, 10 filler trials in each block were used to measure participants’ natural movement pro-
files when no food-choice was involved. 
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Food stimuli 

Food images were selected from the Standardized Food Image Database provided by the Im-
age Sciences Institute, UMC Utrecht (Charbonnier, van Meer, van der Laan, Viergever, & 
Smeets, 2016). This database has the advantage that all food images were presented in a 
standardized manner, eliminating effects from visual differences in presentation. Based on 
the healthiness ratings of the food items from a Dutch sample (N = 136, Charbonnier et al., 
2016) and their tastiness rated by a sample of Germans and North Americans (N = 1988, 
Blechert, Meulie, Busch, & Ohla, 2014), we selected 5 food items that were expected to score 
high on healthiness but low on tastiness, and 5 food item that were expected to score high on 
tastiness but low on healthiness. Each pair of food items was presented 4 times in the exper-
iment and positions of the items (top-left or top-right) were counterbalanced. In filler trials, 
one of the two images was an empty plate without food, photoshopped from the food images, 
and the task was always to select the image with a food item. 

Apparatus and measurements 

Because the mouse-tracking paradigm was adapted for Android tablets, we developed our 
own application using Kivy - a Python library for building multi-touch applications across 
platforms (http://www.kivy.org/). In the touch-screen condition, the application was in-
stalled on Samsung Galaxy Tab S3 SM-T210 tablets, with a 7-inch screen (1024 x 600 pixels). 
In the laptop condition (with mouse), the application was installed on Window systems and 
was presented with a window size that matched exactly with the full screen size of the tablets. 
Therefore, the window sizes in both conditions were smaller than the one used in the original 
study. 

During each food-choice trial, a blue round cursor first appeared at the bottom-center of the 
screen, and only when the participants started to drag it, the two images of the food items 
were shown at the top-left and top-right (see Figure 5.2). Additional nudges, if any, would 
appear underneath the food images to emphasize the healthiness or tastiness difference be-
tween the two items. Positions (x and y coordinates) of the movement trajectories and 
timestamps were tracked at a frequency of around 67 Hz. When the cursor was moved to the 
area of one of the food images and released, actual choice of that trial was recorded. Healthi-
ness and tastiness of each food item were rated by the participants on 7-point scales using the 
same application before the food-choice task. After the food-choice task, basic information, 
including age, gender, BMI, special diet, and allergies, was measured using the application.

http://www.kivy.org/
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Figure 5.2 The mouse-tracking task in the food-choice experiment. When participants click 
and move the blue cursor (left), the food images are shown (right).  

Procedure 

Participants were invited to the lab for the experiments in a group of 4. After introduction 
and signing of consent forms, they were assigned to one of the four desks to perform all the 
tasks independently. They were not able to see the behaviors of other participants and they 
were told not to interact with each other. A table in the middle of the room was filled with 
real food items, the same ones as in the food images shown in the application. They were told 
by the experimenters that they would be given one food item to eat, randomly chosen from 
all the food items they chose during the main task. Participants performed the attribute rating 
task first, and then continued with the two blocks of food-choice tasks using the laptops and 
tablets. When tablets were used, they were vertically placed against the screen of the laptop 
in order to control screen orientation. There was a 60-second break between the two blocks. 
Finally, participants answered the short questionnaire about the general information men-
tioned above. At the end, they were debriefed and were asked to eat the randomly chosen food 
item, unless they had very strong reasons not to eat. 

Data preprocessing 

A time and space normalization was used on the raw trajectory data, following the standard 
processing procedure for mouse-tracking data (e.g., Freeman & Ambady, 2010). Specifically, 
trials with different durations were normalized to 101 time points and the x and y-coordinates 
at all time points were computed based on the raw coordinates. The new coordinates were 
then shifted and normalized to a coordinate space of two squares, from [0, 0] to either [-1, 1] 
(left item chosen) or [1, 1] (right item chosen). After normalization, problematic trials were 
removed based on predefined criteria. Firstly, trials in which the participants released the 
cursor prematurely were removed (6%). Secondly, 9 trials with technical faults, indicated by 
extremely large x and y-coordinates or negative area under curve (AUC), were removed 
(0.1%). Thirdly, trials with (log-transformed) reaction times larger than three standard devi-
ations from the grand mean were removed (1.2%). Fourthly, trials in which the participants 
changed their minds more than twice were removed (0.8%; detected using areas of interests, 
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see Szaszi et al., 2018). Finally, one participant’s data from the laptop condition were missing, 
and one participant’s data were unusable due to an unfinished attribute rating task. The final 
dataset for analysis consists of 6932 food-choice trials and 794 filler trials from 42 partici-
pants. 

5.2.2 Results 

Comparison of trajectory parameters between the two control conditions 

Three different types of statistics were used for the comparison between the two control con-
ditions: (1) the density distributions of the trajectory parameters; (2) the correlations be-
tween trajectory parameters; (3) and the percentage of variance in these parameters ac-
counted by participant (as intra-class correlation estimated from multilevel null models). We 
focused on the most commonly used parameters, including AUC, MD, and x-flip as spatial 
parameters, and response time (RT)19, maximum velocity, and maximum acceleration as 
temporal parameters. Because the sample size at the trial-level was very large, even very small 
differences between the two conditions would be statistically significant. Thus, we mainly 
evaluated whether the effect sizes of the differences or any substantial qualitative differences 
(through visualizations) would affect the validity of using mouse-tracking on touch-screen 
devices. 

Figure 5.3 shows the density plots of the trajectory parameters for the two control conditions 
separately. Except for x-flip and response time, the distributions of all parameters in the 
touch-screen and mouse conditions overlapped greatly. The small existing differences were 
mostly not in the central tendencies of the distributions (e.g., the modes), but in the distribu-
tion tails that represented extreme values. For example, for the two spatial parameters AUC 
and MD and for maximum velocity, there were more large extreme values in the mouse con-
dition than in the touch-screen condition. In contrast, the touch-screen condition produced 
more extremely large maximum accelerations than the mouse condition. The distributions 
for x-flip and response time were more clearly separated, suggesting that more horizontal 
reversals were identified and responses were slightly slower in the touch-screen condition 
than the mouse condition. When the parameters were subjected to multilevel models with 
control condition as the predictor, results showed the same picture: although statistical sig-
nificant differences were found for all parameters, the explained percentages of variance by 
control modes were extremely small in most cases (all marginal-R2 < 0.015). Only for x-flip, 
control mode could account for a sizable of 32.0% of the variance measured by marginal-R2. 
On average, participants horizontally reversed movement directions around 1 more time 
when using a touch-screen than using a physical mouse (B = 0.95, p < .001). 

                                                   
 
19 Response time was measures as the time between touching on the cursor and releasing the cursor at the 
target positions.  
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Table 5.1 shows the zero-order correlations between pairs of trajectory parameters. Overall, 
the relationships among parameters were consistent between the two control conditions, and 
unsurprisingly the two deviation measures AUC and MD correlated highly and temporal pa-
rameters also correlated moderately to highly among themselves. Moreover, in both condi-
tions, the correlations between response time and the deviation measures were relatively 
small, which indicated that AUC or MD provided different information than response time. 
The major differences between the two control modes were again in x-flip: it correlated more 
with the deviation measures in the mouse condition, but more with response time in the 
touch-screen condition. Furthermore, it seemed that maximum velocity and maximum accel-
eration correlated positively with the deviation measures more strongly in the mouse condi-
tion than in the touch-screen condition. 

Figure 5.3 Density plots for the trajectory parameters (histogram for x-flip). 
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Table 5.1 Zero-order correlations between pairs of parameters (coefficients in the mouse 
and touch-screen conditions were shown below and above the diagonal respectively).  

 1 2 3 4 5 6 

1. AUC 1 0.89 0.18 0.17 0.03 -0.07 

2. MD 0.86 1 0.24 0.27 0.00 -0.13 

3. x-flip 0.41 0.55 1 0.49 -0.12 -0.25 

4. RT 0.08 0.18 0.26 1 -0.50 -0.64 

5. MV 0.30 0.39 0.23 -0.23 1 0.91 

6. MA 0.12 0.11 0.00 -0.48 0.78 1 

Note: MV = maximum velocity; MA = maximum acceleration. 

In terms of percentages of variance explained by inter-individual differences, the intra-class 
correlations (ICCs) for most parameters were in the range of 20 - 35%, and the differences 
between the two control conditions were very small (AUC: ICCmouse = 0.230, ICCtouch = 0.286; 
MD: ICCmouse = 0.234, ICCtouch = 0.271; response time: ICCmouse = 0.250, ICCtouch = 0.265; 
maximum velocity: ICCmouse = 0.329, ICCtouch = 0.333; maximum acceleration: ICCmouse = 
0.315, ICCtouch = 0.340). In contrast, inter-individual variation in x-flip was smaller in the 
mouse condition (ICCmouse = 0.160) and was close to zero in the touch condition (ICCtouch = 
0.012). 

Choice level analyses and estimation of personal decision weights 

In order to compute conflict strength and to categorize trials into different types (trade-off 
versus similar), decision weights for healthiness and tastiness were estimated for each par-
ticipant first. A simple example can explain why using raw attribute ratings is not sufficient 
for the requirement computations. When a person rates apple to be much healthier than 
chocolate bar (7 and 1) but much less tasty (1 and 7), it may appear like a strong trade-off trial. 
However, if this person weighs tastiness as much more important than healthiness, then 
choosing between chocolate and apple is actually very easy because the difference in healthi-
ness is not subjectively important for the person. Thus, subjective utility, as multiplication of 
attribute ratings and attribute weights, should be used instead. 

Choice was modeled in a multilevel logistic regression with healthiness difference and tasti-
ness difference between left and right food items as predictors, and random-slopes were in-
cluded to allow for individual differences in how the two predictors influenced choice. Results 
indicated that tastiness (B = 1.68, p < .001) had a much larger impact on choice than health-
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iness (B = 0.17, p = .007), and the two attributes together explained the majority of the vari-
ance in choice (marginal R2 = 0.64). When models were fitted to the data of each individual 
participant, tastiness and healthiness together were shown to account for 13% to 94% of the 
variance (median = 55%). Figure 5.4 illustrates the estimated personal decision weights for 
healthiness and tastiness for each participant. It was evident that tastiness had positive influ-
ences on choice for everyone, while for 11 participants healthiness had negative or no influ-
ence on choice. Based on the estimated personal decision weights, two new variables were 
computed: 

● Utility difference between two food options was calculated as the sum of the abso-
lute differences in healthiness and tastiness weighted by the attribute weights: 
|𝑤𝑤ℎ𝑒𝑒𝑙𝑙𝑠𝑠𝑡𝑡ℎ × (𝐻𝐻𝑚𝑚𝑚𝑚𝐻𝐻𝑚𝑚ℎ𝐿𝐿 − 𝐻𝐻𝑚𝑚𝑚𝑚𝐻𝐻𝑚𝑚ℎ𝑅𝑅)| + |𝑤𝑤𝑡𝑡𝑙𝑙𝑠𝑠𝑡𝑡𝑒𝑒 × (𝐷𝐷𝑚𝑚𝑇𝑇𝑚𝑚𝑚𝑚𝐿𝐿 − 𝐷𝐷𝑚𝑚𝑇𝑇𝑚𝑚𝑚𝑚𝑅𝑅)|. 

● Tradeoff strength was computed as the absolute difference between the difference 
scores in healthiness and tastiness weighted by the attribute weights: |𝑤𝑤ℎ𝑒𝑒𝑙𝑙𝑠𝑠𝑡𝑡ℎ ×
(𝐻𝐻𝑚𝑚𝑚𝑚𝐻𝐻𝑚𝑚ℎ𝐿𝐿 − 𝐻𝐻𝑚𝑚𝑚𝑚𝐻𝐻𝑚𝑚ℎ𝑅𝑅) − 𝑤𝑤𝑡𝑡𝑙𝑙𝑠𝑠𝑡𝑡𝑒𝑒 × (𝐷𝐷𝑚𝑚𝑇𝑇𝑚𝑚𝑚𝑚𝐿𝐿 − 𝐷𝐷𝑚𝑚𝑇𝑇𝑚𝑚𝑚𝑚𝑅𝑅)|. When the difference scores in 
the two attributes are with opposite signs (e.g., one positive and one negative), 
tradeoff strength represents the intuitive meaning of tradeoffs, but it also extends 
to the situations where both difference scores are with the same sign (e.g., both fa-
voring the left option). To estimate the influence of tradeoff strength on trajectory 
parameters, we included the utility difference by tradeoff strength interaction term, 
so that the main effect of tradeoff strength became more intuitively as the estimate 
would equal to the effect when utility difference between two food options was zero. 

 

Figure 5.4 Distribution of personal decision weights for healthiness and tastiness. 

 

 



5.2 Study 1: food-choice experiment with touch-screen and physical-mouse  

 

125 
 

Sensitivity of trajectory parameters to variables describing decision conflicts 

Because of the very strong correlations between MD and AUC, and between maximum veloc-
ity and maximum acceleration, only MD, x-flip, response time, and maximum velocity were 
used for the rest of the analyses. For each parameter, three random-intercept models were 
built with – utility difference (model 1), utility difference, tradeoff strength, and their inter-
action (model 2), and utility difference, utility of the stronger option, and their interaction 
(model 3) – as predictors. Because x-flip is a count variable, Poisson distribution was as-
sumed in its models. We included model 3 to explore whether the utility of the stronger option 
in a pair would actually influence decision process in addition to the utility difference between 
the options. Intuitively, decisions become easier not only when there are larger differences 
between two options, but also when (at least) one of the option is very attractive. This intui-
tion is also consistent with a variant of sequential sampling models in which absolute utilities 
of options rather than the differences or contrasts between their utilities are used as value 
signals (Bhatia, 2013; see also our model in Chapter 3). 

Table 5.2 summarizes the analysis results First of all, model 1 made it clear that utility differ-
ence had significant effects on MD, x-flip, and response time – when the utility difference 
between two food options was smaller, trajectories showed larger spatial deviation and more 
reversals of directions, and response became slower. Their effects were nonetheless very 
small, as the percentage of variance explained was between 0.012 and 0.043. Secondly, add-
ing tradeoff strength to the model (model 2) almost did not improve model fits at all, and the 
estimates for the effects of tradeoff strength when utility difference was zero were very close 
to zero. Thirdly, model 3 showed that adding the utility of the stronger option substantial 
improved the model fits, and very often the new variable had an even larger impact than util-
ity difference. Among all mouse-tracking parameters, response time was slightly more sensi-
tive to the variables describing decision conflicts than MD and x-flip. Finally, in most cases, 
data from the two control conditions yielded nearly identical results, further suggesting the 
high similarity between trajectories generated on a touch-screen and with a physical mouse. 
The only exception was that maximum velocity was negatively associated with conflict 
strength in the touch-screen condition, but not in the mouse condition.   

We also looked at whether these associations were mainly driven by the more extreme trials 
where participants changed their minds at least once, by fitting model 3 to the data with these 
trials excluded (16.9% of all trials). For MD, x-flip, and response time, the effect sizes (mar-
ginal R2) were indeed attenuated, with the effect size of MD suffered the most (MD: 0.088 to 
0.019; x-flip: 0.062 to 0.033; response time: 0.11 to 0.087). There was also a surprising in-
crease of effect size for maximum velocity from 0.005 to 0.036. 
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Table 5.2 Sensitivity of trajectory parameters to variables describing decision conflicts. 
Model estimates before and after “/” were based on data from the mouse and touch-screen 
condition respectively. 

 MD x-flip RT MV 

Model 1     

Utility difference -0.15***/-0.10*** -0.15***/-0.08*** -0.21***/-0.20*** 0.02/0.10*** 

marginal R2 0.018/0.012 0.025/0.020 0.042/0.043 0.0004/0.013 

Model 2 
    

Utility difference -0.18***/-0.14*** -0.19***/-0.10*** -0.25***/-0.23*** 0.02/0.10*** 

Tradeoff strength -0.002/0.0006 0.02/0.001 -0.01/-0.06* 0.009/0.006 

Interaction -0.03*/0.04*** 0.03*/0.02* 0.04***/0.05*** 0.0003/-0.01 

marginal R2 0.020/0.016 0.025/0.021 0.046/0.051 0.0004/0.014 

Model 3 
    

Utility difference -0.15***/-0.10*** -0.15***/-0.10*** -0.23***/-0.22*** 0.007/0.10*** 

Utility of the 
stronger option 

-0.21***/-0.27*** -0.17***/-0.09*** -0.26***/-0.20*** -0.03/0.11*** 

Interaction 0.05**/0.05*** 0.05*/0.05*** 0.07***/0.06*** 0.03/-0.03 

marginal R2 0.069/0.114 0.066/0.054 0.115/0.097 0.002/0.035 

Note: Significance levels were indicated as p < .10+, p < .05*, p < .01**, p < .001***. 

Sensitivity of trajectory parameters to trial type 

The above analyses showed the sensitivity of trajectory parameters to continuous variables 
describing decision conflicts was small, but one might expect stronger sensitivity to be found 
if distinctively different types of trials are examined. Therefore, we identified three types of 
trials – tradeoff trials, similar trials, and dominant trials, from the data based on the meas-
ure of utility difference and tradeoff strength (see Box 5.1 for the categorization logic). The 
categorization resulted in 1047 tradeoff trials (mean utility difference = 0.10; mean tradeoff 
strength = 3.57), 2207 similar trials (mean utility difference = 0.08; mean tradeoff strength 
= 0.67), and 1080 dominant trials (mean utility difference = 5.01) (see Figure 5.5 for a visual 
illustration).  
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Box 5.1 Logic for the trial categorization. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 Visualization of the categorization of trials. 

Results based on random-intercept models turned out to be very similar with the analyses 
using continuous variables (see Figure 5.6 for the means, 95% CIs, and distributions in the 
different types). Compared with dominant trials, tradeoff trials had slightly larger maximum 
deviation (B = 0.35, p < .001), more x-flips (B = 0.29, p < .001), and longer response time (B 
= 0.41, p < .001). This was not surprising given that the main difference between these two 
types was utility difference. However, when comparing tradeoff trials to similar trials, which 

  

If (utility difference > 2.5): 

 If (no real tradeoff presents): 

  If (the stronger option was chosen): 

   trial type = “dominant”; 

else if (utility difference <= 2): 

 if (no real tradeoff presents): 

  trial type = “similar”; 

 else: 

  if (tradeoff strength < 1): 

   trial type = “similar”; 

  else: 

   trial type = “tradeoff”; 
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shared the same level of utility difference, all trajectory parameters did not differ at all (all 
ps > .394). 

Figure 5.6 Comparison of trajectory parameters in the three different types of trials (error 
bars represent 95% CIs). 

5.2.2 Discussion of Study 1 

In summary, the results provide very clear answers to the research questions in Study 1. First, 
we could conclude that trajectory data generated from touch-screen devices were very similar 
to those generated using the traditional mouse-tracking setting, as indicated by a variety of 
parameters. Although some small differences existed, they did not have much impact on the 
estimations of the other effects of interests. The only sizable difference was that more hori-
zontal direction reversals were found in the touch-screen setting. This was likely to be caused 
by a technical factor that the spatial resolution of detecting any movement was higher on the 
touch-screen device than on the desktop (given the different configuration of the Kivy app for 
Android and Windows system), rather than a human motor-control factor. Thus, if the same 
setting is used in the future, some filter should be used to exclude x-flips with very small 
distance. 
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In terms of the sensitivity of parameters to decision conflicts, our results replicated the gen-
eral finding that more difficult decisions lead to larger deviation, more reversals, and longer 
decision time. However, the effect sizes were unlikely to be large enough to be used for accu-
rately measuring conflicts strength at single-trial level, making them less useful for interven-
tion applications than for theory-driven research. We also did not find any difference between 
the two types of difficulties, i.e., trials with or without tradeoffs. This casts some doubts on 
the strong assumption of the mouse-tracking paradigm, at least given sequential sampling 
models that assume sampling shifts among attributes. Motivated by the lack of strong rela-
tionship between movement trajectory and decision scenarios, we decided to replicate previ-
ous effects relating to self-control using the data from Study 1, and to further examine the 
different theoretical assumptions underlying the mouse-tracking technique.

5.3 Study 2: (conceptual) replications of previous findings 

In Study 2, we attempted to replicate previous findings in studies that applied the mouse-
tracking technique to self-control with our own data from Study 1. In section 5.3.1, we dis-
cussed several loosely related effects about self-control, including the differences between 
trajectories in trials with self-control success and self-control failure (Gillebaart et al., 2015; 
Ha et al., 2016), and the difference between self-control trials and comparison trials (Stillman 
et al., 2017). In section 5.3.2, evidence suggesting a processing latency difference in Sullivan 
et al. (2015) was closely replicated. Because at the trial-level the sample size was several thou-
sand, even very tiny effects would be significant at an alpha level of 0.01. Thus, for brevity, 
we only report detailed statistics (e.g., exact effect sizes, confidence intervals, or p-values) 
when the effect sizes were at least equal to those found in Study 1 (e.g., marginal R2 >= 0.01). 

5.3.1 Replicating associations between trajectory parameters and self-control 

Comparison between trials with self-control success and self-control failure 

Although slightly different response labels were used (positive versus negative, or eat versus 
not to eat), both Gillebaart et al. (2015) and Ha et al. (2016) compared if trajectories were 
different between the trials in which participants controlled themselves successfully (e.g., 
evaluated chocolate bar as negative) and in the trials in which they yielded to unhealthy foods 
(e.g., chose to eat French fries). The findings were inconsistent because while Gillebaart et al. 
(2015) found faster responses for self-control success trials, Ha et al. (2016) found slower 
responses and larger deviations for this type of trials (where participants rejected to eat un-
healthy food items). 

We categorized self-control success and self-control failure using two methods. In the first 
method, tradeoff trials were defined as in Study 1 as the trials in which weighted healthiness 
difference and weighted tastiness difference between two options had the opposite signs. The 
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second method, as used in the previous studies (Gillebaart et al., 2015; Ha et al., 2016), 
tradeoff trials were those that included one typical healthy food and one typical unhealthy 
food. For example, pear and donut would be considered as such a trial, regardless of the ac-
tual attribute ratings made by the participants. After tradeoff trials were identified from all 
trials, trials in which participants chose the healthier option were categorized as self-control 
success trials, and vice versa as self-control failure trials. Using both methods, random-in-
tercept models with trial type (success versus failure) as the predictor did not reveal any 
meaningful difference for all four trajectory parameters considered (MD, x-flip, response 
time, and maximum velocity; all marginal R2 < 0.003).  

Comparison between different types of trials defined by the food stimuli 

As discussed in the introduction, Stillman and colleagues (2017) found that choices between 
two comparable health foods led to more conflicts, as measured by trajectory MD, than 
choices with tradeoffs. It could be said that we did not replicate the effect in Study 1, as no 
difference in MD or other parameters was found between tradeoffs trials and similar trials. 
However, the trial categorization in Study 1 was based on attribute ratings and personal de-
cision weights, rather than a task manipulation as in Stillman et al. (2017). Here we emulated 
their manipulation by categorizing trials by the typical categories the food options belonged. 

Trials were thus categorized into healthy trials (two healthy foods), unhealthy trials (two 
unhealthy foods), and tradeoff trials (one healthy and one unhealthy food). Using this cate-
gorization variable as the predictor in random-intercept models, results did not reveal any 
significant differences between tradeoff trials and healthy trials in terms of all trajectory pa-
rameters considered. However, very small differences were found between healthy trials and 
unhealthy trials that the latter was associated with larger MD, more x-flips, and longer re-
sponse time (though all marginal R2 < 0.003). Taking a closer look at the utility differences 
underlying the health and unhealthy trials, it was evident that the small effects could be at-
tributed to the smaller average utility difference underlying the latter type (see Table 5.3). 

Table 5.3 The continuous decision conflict measures (as in Study 1) underlying difference 

types of trials categorized based on the food stimuli’s typical categories. 

 
Healthy Unhealthy Tradeoff 

Tradeoff - 
Success 

Tradeoff - 
Failure 

Utility difference 2.02 3.09 3.09 2.89 3.22 

Utility of stronger option 10.26 10.50 10.68 10.67 10.68 

Tradeoff strength 1.99 2.84 3.43 2.83 3.82 
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5.3.2 Replicating Sullivan et al. (2015) to test cognitive mechanisms of self-control 

Replication of the results using regression coefficients 

As with Sullivan et al. (2015), for all the trials with conflicts (one food item scored high on 
healthiness while the other scored high on tastiness), self-control success rate (SCSR) was 
computed as the percentage of trials in which the healthier item was chosen. Results showed 
that SCSR was between 0% to 43%, with a mean of 10% and a standard deviation of 11%. The 
participants in our study had lower SCSR rates, higher weights for tastiness, and lower 
weights for healthiness, compared to those the original study. Eleven participants even had 
negative weights for healthiness, while this was true for only four participants in Sullivan et 
al. (2015). It seems that our participants generally exerted less dietary self-control than those 
in the original study, possible because the health education session in Sullivan et al. (2015) 
was not used in our replication. 

Next, trajectory angles at the 101 timesteps were computed as the angles between the lines 
connecting [0, 0] and the current coordinates and the y-axis. For each participant and each 
timestep, the variable angle was regressed to healthiness difference and tastiness difference 
separately to estimate their correlations. Figure 5.7a shows the temporal unfolding of the 
standardized regression coefficients20 of the attributes on trajectory angle. The general pat-
tern was very similar to the original study, but the coefficients of healthiness had larger stand-
ard errors and did not eventually become significant. The reason for this can be seen in Figure 
5.7b: The coefficients of healthiness for participants with low SCSR (median-split) actually 
became to be significantly negative over time. This was again possibly due to the fact that 
participants in our study were less motivated to execute self-control. Nonetheless, the order 
of the timesteps when the coefficients of the attributes for sub-groups became significant was 
exactly the same as in Sullivan et al. (2015). For participants with high SCSR, the earliest 
timestep for tastiness and healthiness to have significant and enduring influences were 43 
and 54 respectively; for participants with low SCSR, the gap between the timesteps for the 
two attributes was much larger (0 and 79). In our sample, healthiness never had positive in-
fluence on trajectory angle for 57% of the participants (35% in Sullivan et al., 2015). For 31% 
of the participants, healthiness eventually had negative influence on trajectory angle. 

For the analyses at the individual level, the 13 participants with eventual significant negative 
coefficients for healthiness were excluded21. For the remaining participants, a paired t-test 

                                                   
 
20 Note that unstandardized regression coefficients were used in Sullivan et al. (2015) and Lim et al. (2018). 
We used standardized coefficients, which are easier to interpret because they equal correlation strengths 
between pairs of variables.  

21 Unlike Sullivan et al. (2015), we only excluded participants with significant negative coefficients for 
healthiness, but not those with nonsignificant coefficients for healthiness. Including all participants would 
lead to a stronger effect (mean difference = 18.62, t(41) = 4.66, p < .001, dz = 0.72). 



Chapter 5 - Evaluating MT as A Technique to Reveal Self-Control Processes 

 

132 
 

revealed that trajectory angles were influenced by tastiness (mean = 57.07, SD = 19.74) at 
significantly earlier timestep compared with healthiness (mean = 74.03, SD = 26.5; mean 
difference = 16.97, 95% CI = [6.61, 27.32], t(28) = 3.35, p = .002, Cohen’s dz = 0.62). Moreo-
ver, as in the original study, individual estimates of processing speed difference between 
healthiness and tastiness correlated strongly with participants’ SCSR (β = 0.70, p < .001), 
explaining 44.5% of the variance in SCSR (R2 = 0.39 in Sullivan et al., 2015; see Figure 5.7c). 

Figure 5.7 Temporal patterns of the regression coefficients of the attributes on trajectory 
angle for all participants (a), for SCSR sub-groups (b), and (c) correlation between difference 
in earliest significant timesteps and SCSR. 

 

 

 

a 

c 

b 
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Replication of the results using proportion curves 

As noted by Sullivan et al. (2015), the above method of estimating processing speed suffers 
from a statistical issue. If the coefficients of both attributes increase from zero to their final 
weights and a similar level of noise applies to both curves, the coefficients of tastiness are 
destined to become significant earlier than the one of healthiness. Therefore, in a different 
method, instead of using the raw regression coefficients, timesteps at which the attributes’ 
coefficients exceeded certain proportions (from 0.1 to 0.9) of their final weights were com-
puted. Cubic polynomials were then fitted to the timestep data to indirectly estimate the tim-
ing of the two attributes’ coefficients when they exceeded the proportion of 0.0 (intercepts of 
the proportion curves). The intercepts were used as an alternative measure of when healthi-
ness and tastiness began and continued to influence trajectory angle. 

Inconsistent with the original results, it can be seen from Figure 5.8 that healthiness was able 
to exceed certain proportions between 0.1 and 0.9 slightly faster than tastiness. When cubic 
polynomials were fitted to the data, results did show that the y-intercept of healthiness was 
slightly larger than the intercept of tastiness (44.5 and 36.4 respectively), but the difference 
was much smaller compared to the original study. 

 

Figure 5.8 Estimated timesteps at which the weighing of the two attributes exceeded cer-
tain proportions of their final weights. 

Trajectory curvature in filler trials and processing speed estimates 

As filler trials were included in our experiment, we explored whether participants’ average 
trajectory curvatures (MD) in filler trials correlated with their average MD in the food-choice 
trials, and whether they correlated with the estimated processing speeds. We though that 
since no healthiness or tastiness information was relevant for making responses in the filler 
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trials, the trajectories in those trials were approximations of how participants naturally 
moved cursors from one point to another. Correlation analysis revealed that curvature mag-
nitude in the filler trials correlated strongly with the curvature magnitude in the food-choice 
trials, explaining over 60% of the variance of the latter. Thus, any genuine influences from 
the two attributes on trajectories had to be superimposed onto the strong effects of motor-
control. 

Results also indicated a significant positive correlation between MD in the filler trials and 
estimated processing speed (β = 0.39, p = .003, ∆R2 = 0.15; see Figure 5.9), while controlling 
for decision weights. In other words, if participants moved hands with larger trajectory cur-
vatures in the filler trials, their estimated processing speeds of the attributes appeared to be 
slower. This pattern was especially strong for tastiness (β = 0.65, p < .001, ∆R2 = 0.39), but 
weaker and nonsignificant for healthiness (β = 0.24, p = .179, ∆R2 = 0.06). The nonsignificant 
correlation for healthiness might due to the small sample size and the ceiling effect that 
healthiness did not correlate with trajectory angle significantly for 12 participants even at the 
last timestep.  

 

Figure 5.9 Correlations between participants’ average MD in the filler trials and the earliest 
significant timesteps of the two attributes. 

5.3.3 Discussion of Study 2 

The results of Study 2 were polarizing in terms of the two groups of findings we attempted to 
replicate. We did not replicate the associations between trajectory parameters and some trials 
characteristics used in earlier studies (Gillebaart et al., 2015; Ha et al., 2016; Stillman et al., 
2017) - no difference was found between tradeoff trials with either self-control success or self-
control failure, and between tradeoff trials and trials containing two healthy foods. The for-
mer effect was inconsistent previously as well (Gillebaart et al., 2015; Ha et al., 2016), and the 
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later effect was very small in the original study (Stillman et al., 2017). Also considering the 
findings in Study 1, we suspect that trajectory parameters are more related to conflict 
measures based on individual attribute ratings and decision weights (i.e., utility difference, 
utility of stronger option). When trials are categorized more coarsely as in the previous stud-
ies, perceived utility difference may differ between trial types in unpredictable way and lead 
to the observed differences in trajectory parameters. Finally, as those studies are largely ex-
ploratory, without correction for multiple comparisons, the large number of mouse-tracking 
parameters combined with many ways to categorize trials may lead to some false positives. 

Given the overall very small effects between trajectory parameters and several conflict 
measures, it was surprising that Sullivan et al. (2015)’s results of testing an even more subtle 
cognitive mechanism of self-control with a more novel analytic method could be almost per-
fect replicated (except for the results based on proportion curves). Also the effect sizes were 
consistently large with correlations between key variables reaching r = 0.6, and Cohen’s dz 
between 0.6 and 1 for the main hypothesis tests. The analyses on the filler trials also seem to 
suggest that people’s natural movement tendencies contribute to the estimation of processing 
latency, so at least these estimates cannot be interpreted in absolute. In the next study, we 
reanalyzed Sullivan et al. (2015)’s data and conducted a model-based simulations to find out 
whether the highly robust results could be interpreted as evidence for mechanism of self-
control based on processing latency difference.

5.4 Study 3: re-analyses of Sullivan et al. (2015) and simulations 

5.4.1 Re-analyses of Sullivan et al. (2015)’s data 

Sullivan et al. (2015)’s method and results can be better understood by examining closely the 
interrelationship between attributes, choice, and trajectory angle (see a visual explanation in 
Figure 5.10a). The correlations between the attributes and trajectory angle (path x) may exist 
because they are both correlated with choice (path y and z in Figure 5.10b). On the one hand, 
both attributes influence choice (path y), and tastiness is usually weighed more than health-
iness (e.g., Sullivan et al., 2015; Hare et al., 2009). On the other hand, the relationship be-
tween trajectory angle and choice is temporarily constrained (path z): the distributions of the 
angle for left and right choices overlap strongly from timestep 1 till around timestep 50, then 
start to diverge, until they approach the Bernoulli distribution of final choices (Figure 5.10c). 
The resulting temporal paths of the correlations between choice and angle must be an S-curve 
(Figure 5.10d, grey curve), as long as trajectories are curved towards the midline. Assuming 
that the attribute-angle correlations are mainly mediated by choice, even if a cognitive mech-
anism unrelated to processing speed causes the decision weight difference, these correlations 
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will unfold in similar S-curves, one consistently above the other (Figure 5.10d, red and blue 
curves), and thus an alleged processing speed difference would appear.  

 
Figure 5.10 (a) Visual explanation of the variable angle; (b) Choice potentially mediating 
the correlations between attributes and angle; (c) Development of the distributions of angle 
for choices to the left and right; (d) Regression coefficient paths of the attributes mimicking 
the S-shaped regression coefficient paths of choice; (e) Regression coefficient paths of the 
attributes after controlling for choice. 

a b 

c 

d e 
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The conceptual analysis above raises the question how much choice accounts for the attrib-
ute-angle correlations in the empirical data. This question can be answered by removing the 
common correlations with choice through a mediation analysis, i.e., to estimate the direct 
effects of attributes on angle while controlling for choice. This is equivalent to splitting the 
data based on choice direction or recoding attribute differences and angle into absolute values 
before analyses. If there are sizable effects unmediated by choice, even when directional in-
formation is removed, the magnitudes of attribute differences should correlate with the mag-
nitude of angle. Results indicated that the total effects were attenuated by a factor of 11, and 
the remaining temporal patterns became noisier (Figure 5.10e). Although small significant 
correlations remained between timesteps 65 and 85 (all ΔR2 < 0.021), the data pattern does 
not allow one to confidently infer any processing speed difference. 

In the next section, we report a simulation study to confirm the problem identified by the 
mediation analysis that choice accounts for the majority of the correlations between attrib-
utes and trajectory angle. The simulation also helps to address the question how this problem 
influences the ability of Sullivan et al. (2015)’s method to distinguish cognitive mechanisms.  

5.4.2 Simulation study method 

Models and assumptions 

A simple drift diffusion model was used to model how people make decisions in the food-
choice task (see Sullivan, Hutcherson, Harris, & Rangel, 2019). It assumes that people accu-
mulate a value signal that measures the relative preference to one food item over the other, 
until the signal exceeds a threshold and the decision is made (see Figure 5.11a). The drift rate 
of the value signal at each accumulation step is partially determined by the attribute differ-
ences in tastiness (∆𝑇𝑇) and healthiness (∆𝐻𝐻), but only after the attributes are processed and 
integrated into a decision-making circuit (i.e., after 𝑚𝑚𝑇𝑇  and 𝑚𝑚𝐻𝐻  respectively), defined by the 
equations in Figure 5.11a. Besides a possible latency difference, a slope difference between 
𝑆𝑆𝐻𝐻 and 𝑆𝑆𝑇𝑇 could provide an alternative mechanism that shifts the relative weights of healthi-
ness and tastiness on choice. 

For the relationship between decision-making and motor-control, three different assump-
tions were examined. In the deterministic scenario, the model assumes that people move up-
wards in straight lines (0°) before decisions are made, possibly as a way to reduce distances 
to both stimuli, and then move towards the chosen stimuli in straight lines (Sullivan et al., 
2019; see Figure 5.11b). It is also assumed that the movement speed is a constant, so that the 
points at which trajectory turns (𝑦𝑦0) is completely determined by decision time. Finally, we 

followed Sullivan and colleagues (2019) to model angles after decisions to be either 45° or -
45°. This might sound odd because even when people move straightly to the target, the angle 



Chapter 5 - Evaluating MT as A Technique to Reveal Self-Control Processes 

 

138 
 

will gradually change from 0° to ±45°. However, it can be observed in empirical data that peo-
ple often stop at the targets for quite some normalized timesteps, so fixing angles at ±45° can 
be seen as a reasonable simplification. Despite its simplicity, the deterministic scenario could 
clearly reproduce the classical finding in mouse-tracking paradigms that more difficult deci-
sions lead to larger curvatures (e.g., Dshemuchadse, Scherbaum, & Goschke, 2013; Freeman 
& Ambady, 2009; McKinstry et al., 2008; Spivey, Grosjean, & Knoblich, 2005; Stillman, 
Medvedev, & Ferguson, 2017). This is because when integrated attribute differences are small, 
decisions take longer to resolve and lead to larger 𝑦𝑦0. However, it should be noted that the 
relationship between attribute differences and 𝑦𝑦0 is overly deterministic. Given an appropri-
ate level of drift rate noise (σ)22, attribute differences as weighted by slopes could explain 16% 
of the variance in 𝑦𝑦0, while the marginal-R2 estimated from empirical data was only 1.4% 
(Sullivan et al., 2015).  

Figure 5.11 (a) A drift diffusion model of the decision-making process; (b) A simple compu-
tational model of movement trajectory in food-choice task, where people move upwards while 
making decisions, and then move directly to the target;. 

In the random scenario, we detached the decision-making process from motor movements. 
The same drift diffusion model produced choices and decision time, but the turning point 𝑦𝑦0 
was not influenced by decision time but randomly sampled from a beta distribution bounded 
between 0 and 1, with a mean of 0.5. Thus, any correlations between attributes and trajectory 
angle in this scenario are attributed only to the indirect path, i.e., their common correlations 
with choice.  

                                                   
 
22  Sigma σ was set to 0.035 so that attribute differences could account for about the same amount of var-
iance in choice as with empirical data (marginal-R2 = 0.52 in Sullivan et al., 2015). 

a b 
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Unlike the two extreme scenarios above, in the third and realistic scenario, we calibrated the 
model with Sullivan et al. (2015)’s data to resemble real mouse-tracking tasks. As with the 
previous scenarios, accumulation noise 𝜎𝜎 was set at 0.035, so that about half of the variance 
in choice was accounted by tastiness and healthiness differences (marginal-R2 = 52% in Sul-
livan et al., 2015). However, the correlation between decision time and 𝑦𝑦0 was attenuated by 
allowing trial-to-trial variations in movement speed 𝑣𝑣1 during the upward movement. Based 
on empirical data, movement speed 𝑣𝑣2 after decision-making was also assumed to vary and 
on average much faster than 𝑣𝑣1. More specifically, both 𝑣𝑣1 and 𝑣𝑣2 were drawn from beta dis-
tributions, while the distribution for 𝑣𝑣2 had a larger mean (about 2.5 times). The exact pa-
rameter values for the two beta distributions were calibrated to ensure that 𝑦𝑦0 or the maxi-
mum deviation of the trajectory would correlate weakly with the integrated and weighted at-
tribute difference (|𝑤𝑤𝐻𝐻 ∆𝐻𝐻 +  𝑤𝑤𝑇𝑇 ∆𝑇𝑇 |), approximating a marginal-R2 of 1.4% in the empirical 
data (Sullivan et al., 2015). Finally, we relaxed the strong assumption of fixing angles after 
decision-making at ±45° by allowing 50% of the trajectory angles to change gradually after 
the turning.  

Conditions for different cognitive mechanisms 

In each of the three scenarios, the latency and slope parameters in the drift diffusion model 
were varied to create three different conditions of what cognitive mechanisms are at work: (1) 
equal latency and slope for healthiness and tastiness (𝑚𝑚𝐻𝐻 =  𝑚𝑚𝑇𝑇 = 250; 𝑆𝑆𝐻𝐻 =  𝑆𝑆𝑇𝑇 = 0.01); (2) 
equal slope but larger latency for healthiness (𝑚𝑚𝐻𝐻 = 420, 𝑚𝑚𝑇𝑇 = 250; 𝑆𝑆𝐻𝐻 =  𝑆𝑆𝑇𝑇 = 0.01); (3) equal 
latency but smaller slope for healthiness (𝑚𝑚𝐻𝐻 =  𝑚𝑚𝑇𝑇 = 250; 𝑆𝑆𝐻𝐻 = 0.002, 𝑆𝑆𝑇𝑇 = 0.02)23. The latter 
two conditions were critical for testing the competence of the commented method in different 
scenarios. If the method is competent, it should only detect latency differences when a true 
latency difference was implemented in the simulation, but not when a slope difference was 
implemented.  

Data analysis  

For each modeling scenario and each cognitive condition, 1000 trials were simulated to gen-
erate the data for analyses. Three different methods were compared. First, as in Sullivan et 
al. (2015), raw regression coefficient paths were produced by computing the correlations of 
trajectory angle to healthiness and tastiness difference at 100 timesteps. A latency difference 
could be identified by inspecting whether one of the paths arose above zero earlier than the 
other. Second, the alternative method of proportion paths in Sullivan et al. (2015) were used. 
As a method to normalize the raw correlation coefficients, the proportion paths estimated at 

                                                   
 
23 The exact values for latencies and slopes were calibrated as to reproduce the large empirical difference 
in decision weights of the two attributes at choice level (e.g., 𝑤𝑤𝑇𝑇 = 1.17 and 𝑤𝑤𝐻𝐻 = 0.33 in Sullivan et al., 
2015; also see Hare et al., 2009).  
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which timesteps the coefficients exceed certain proportion (from 0.1 to 0.9) of their corre-
sponding endmost values (usually the maximums). The shapes of the proportion paths would 
indicate which one exceeded the proportion of zero first. Third, the mediation modeling in 
our re-analyses was used. Regression coefficient paths were again produced, but under the 
condition where variable choice was controlled in the regression models. 

5.4.3 Simulation results 

The deterministic scenario 

In the deterministic scenario, results indicated that different mechanisms could often be dif-
ferentiated by visually inspecting the raw regression coefficient paths (Figure 5.12a-c). When 
the slope difference was large (Figure 5.12c), it could come close to mimic a true latency dif-
ference in raw regression coefficient paths, but proportion paths would still sharply separate 
the two mechanisms (Figure 5.12e & 5.12f)24. In addition, it is crucial to note that when the 
decision-making process truly influence movement trajectories, our method of controlling for 
choice direction preserved the critical features in the regression coefficient paths that could 
be used to differentiate the three conditions25 (Figure 5.12g - 5.12i). Although the coefficients 
dropped to 0 when choice direction completely overlapped angle at the end, in a sizeable 
window the patterns were clean albeit attenuated. 

Even when a latency difference can be detected in the deterministic scenario, one should re-
alize that the processing speed or latency estimates are relative rather than absolute. As 𝑦𝑦0 is 
determined by both decision time and movement speed, for people with faster movement 
speed, the absolute estimates for both tastiness and healthiness will increase, even though 
processing latencies for the two attributes remain the same. 

                                                   
 
24 Following Sullivan et al. (2015), timestep in the plots of proportion curves is represented by the y-axis 
rather than the x-axis. 

25 Readers might be puzzled by the negative coefficients observed in the random value accumulation stage 
(before 𝑚𝑚𝑇𝑇 and 𝑚𝑚𝐻𝐻) when choice direction was controlled. This can be more easily understood if one consid-
ers the effect of controlling for choice as analyzing trials with choices to the left and the right separately. 
When directional information was removed, the distributions of absolute attribute difference scores (|∆𝐻𝐻| 
and |∆𝑇𝑇|) were severely right-skewed (i.e., a much larger sample for differences of 0 than differences of 4), 
as the raw attribute ratings were drawn from uniform distributions. Therefore, just by random accumula-
tion, turning points were more likely to be reached in trials with smaller attribute difference due to the 
sample size differences.  
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Figure 5.12 Simulations results in the deterministic scenario (Top: results based on regres-
sion coefficient paths for three conditions – (a) equal latency and equal slope , (b) latency 
difference and equal slope, and (c) equal latency and slope difference; Middle: Results of the 
same conditions when using proportion paths; Bottom: Results when controlling for choice. 
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The random scenario 

Results in the random scenario showed that without controlling for choice, similar S-shaped 
paths for correlation coefficients were obtained in the same three conditions (Figure 5.13a - 
5.13c). The commented method was clearly problematic here because even when a slope dif-
ference was the true mechanism, the pattern of the raw regression coefficient paths (Figure 
5.13b & 5.13c) showed a latency difference, and its proportion paths were also hardly distin-
guishable from the ones generated by a true latency difference (Figure 5.13e & 5.13f). The 
results confirmed our conceptual analysis that the exact shapes of coefficient paths depended 
mainly on the decision weight difference between healthiness and tastiness at the choice level, 
regardless of whether a latency or a slope difference was the underlying mechanism. 

Critically, when choice was controlled for, the previous regression coefficient paths com-
pletely collapsed, with only negligible random variations remained around timestep 50 (Fig-
ure 5.13g - 5.13i). These results show that the method of controlling for choice direction can 
be used to distinguish the condition where decision-making affected movement trajectory 
from the condition where decision-making and motor-control were unrelated. In other words, 
the mediation analysis could provide an estimate of the relative contribution of the direct 
causal influences of attributes on trajectory angle and the choice-mediated attribute-angle 
correlations. When examining the empirical patterns before and after controlling for choice 
direction (Figure 5.10d & 5.10e), it seemed that the empirical situation was closer to the ran-
dom scenario than the deterministic scenario, which supported our mediation analysis that 
the attribute-angle correlations in the empirical data were mostly mediated by choice. How-
ever, note that unlike the proportion paths estimated in Sullivan et al. (2015), these paths in 
all conditions in the random scenario did not show clear latency difference (the paths over-
lapped greatly). This indicated the needs to evaluate the commented method in a more real-
istic scenario. 
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Figure 5.13 Simulations results in the random scenario (Top: results based on regression 
coefficient paths for three conditions – (a) equal latency and equal slope , (b) latency differ-
ence and equal slope, and (c) equal latency and slope difference; Middle: Results of the same 
conditions when using proportion paths; Bottom: Results when controlling for choice. 
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The realistic scenario 

With the calibrated model in the realistic scenario, the regression coefficient paths appeared 
to be smoother and more similar to the empirical observations. For the raw regression coef-
ficient paths (Figure 5.14a - 5.14c), results indicated that an apparent latency difference could 
be attributed to a true latency difference or a slope difference, and that after controlling for 
choice direction, the magnitudes of attenuated patterns were in between those in the deter-
ministic and random scenarios (Figure 5.14g - 5.14i). For proportion paths (Figure 5.14d - 
5.14f), a clear latency difference could be consistently observed under a true latency differ-
ence, but also sometimes (Figure 5.14e) though not always (Figure 5.14f) under a slope dif-
ference. Because of this stochastic property, we ran the same simulation for an additional 100 
times, from which slope difference appeared as latency difference in both raw regression co-
efficient paths and proportion paths for 46 times. These findings question the competence of 
the commented method to differentiate between the two distinct mechanisms in the realistic 
scenario. The empirical proportion paths in Sullivan et al. (2015) seems at least equally plau-
sible to be drawn from the varying patterns under the slope difference than from the clean 
and consistent patterns under the latency difference.  

Overall, the simulation study strengthened our critics in two ways. First, it confirmed that 
our re-analysis method of controlling for choice was a sound and informative approach to 
separate the indirect effects via choice from the more meaningful direct effects of attributes 
on trajectory angle. Second, it answered the question under what conditions the commented 
method would be competent – it worked under the noise-free deterministic scenario, but 
would fail when motor-movement was unrelated to decision-making or when the relationship 
was very weak, as in the real mouse-tracking data on food-choice (e.g., Gillebaart et al., 2016; 
Lim et al., 2018; Stillman et al., 2017; Sullivan et al., 2015). Note that the models used in the 
simulation study were not meant to be the true cognitive and motor-control models underly-
ing mouse-tracking, but were simplified but plausible models that helped to illustrate the 
limitations of the commented method.  
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Figure 5.14 Simulations results in the realistic scenario (Top: results based on regression 
coefficient paths for the two critical conditions: (a) latency difference and equal slope, and (b 
& c) equal latency and slope difference for two instances; Middle: Results of the same condi-
tions when using proportion paths; Bottom: Results when controlling for choice. 
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5.4.4 Discussion of Study 3 

We have shown with the re-analyses and simulations that using Sullivan et al. (2015)’s 
method latency differences may appear even when a mechanism unrelated to processing 
speed underlined dietary self-control. Although the method works given a deterministic ver-
sion of the moderate assumption of mouse-tracking, it is inadequate to differentiate different 
mechanisms under the realistic and noisy task environment that characterize the current 
mouse-tracking paradigm. 

5.5 Study 4: food-choice experiment with practice trials and different ori-
entations 

Given all the findings in the previous three studies, it seemed to us that the moderate assump-
tion was more plausible than the strong assumption for the mouse-tracking paradigm – there 
is no direct continuous mapping between decision-making and motor-control, but decision-
making does partially influence the distances of upward movements. Yet it remained an in-
teresting question whether the moderate assumption was also more plausible than the weak 
assumption, which states that trajectory curvatures are sole product of motor-control and 
that typical difficulty-deviation relationship is fully attributed to extreme direction reversals 
(i.e., change of mind). Results in Study 1 showed that even when trials with “change of mind” 
were excluded, small correlations between deviation parameters (e.g., MD, x-flip) and con-
flict measures (e.g., utility difference, utility of stronger option) still existed, even though the 
effect sizes were greatly attenuated. This seems to provide some support for the mechanism 
implied in the moderate assumption. On the other hand, the strong correlation between MD 
in the filler trials and MD in the food-choice trials might be in favor of a pure motor-control 
account of movement trajectory, trajectories in the filler trials indeed measure people’s nat-
ural movements. However, although the filler trials did not involve food choices, decisions 
regarding on which side of the screen the only food item would appear were still required. 

In Study 3, we designed a similar food-choice experiment as with Study 1, but included a 
neutral practice block to better measure people’s natural dragging movements between two 
points on the screen. Decision-making of any form was not needed for the practice trials. If 
the upward movements, which result in various curvature sizes, are only shown in food-
choice trials (with decision-making) but not in practice trials (without decision-making), the 
moderate assumption should gain some verisimilitude. 
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Figure 5.15 For the solid frame (normal spatial orientation), the trajectory is curved towards 
the midline between stimuli; For the dashed frame (a vertical orientation), the same trajec-
tory is curved away from the midline. 

In addition, as another way of testing the moderate assumption against the weak assumption, 
we designed the food-choice trials with different spatial orientations – participants do not 
only drag upwards (as in the traditional mouse-tracking paradigm), but also downwards, left-
wards, and rightwards. If decision-making is the key for the vertical movements in between 
two options, then movements should be along the midline between two options in all orien-
tation conditions. Conversely, if the upward movements in the traditional paradigm is mainly 
due to the motor-control constrain imposed by the particular spatial arrangement, then tra-
jectory patterns could be dramatically different in the conditions with novel orientations. For 
example, in the traditional paradigm, if up-left and up-right movement trajectories are 
curved towards the midline due to a motor-control constrain but not decision-making, then 
in conditions with left-right or right-left orientations trajectories to the top responses should 
be curved away from the midline (see Figure 5.15). 

5.5.1 Method 

Participants & design 

Forty-three students (20 males and 23 females) from Eindhoven University of Technology 
participated in the experiment as part of a course fulfillment. The age of the participants 
ranged between 19 and 25 (mean = 21.3, SD = 1.36). Their BMIs were between 17.6 and 31.2 
(mean = 22.8, SD = 2.46). Of all the participants, four were following a diet, of which one 
followed a general healthy diet, two followed a gluten-free diet, and one followed a gluten-
free and lactose-free diet. Seven participants indicated one or more food-related allergies, 
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including gluten intolerance, and allergies to shrimps, shellfish, fruits, milk, and pork meat. 
Four people indicated that they were vegetarians. All participants used their right hand to 
perform the mouse-tracking task. 

 

 

Figure 5.16 Top: Food-choice task with different spatial orientations (the horizontal condi-
tions are scaled smaller for the ease of presentation); Bottom: One of the practice trials of 
dragging the folder to the recycle bin.  

All participants were exposed to four different conditions in a within-subject design. In each 
condition, the orientation of the food stimuli relative to the starting position of the cursor 
changed (see Figure 5.16, top) – participants needed to either drag the cursor at the bottom 
upwards (the traditional up condition), at the top downwards (the down condition), from the 
right to the left (the left condition), or from the left to the right (the right condition). Ninety 
pairs of food stimuli were repeated twice, giving 180 trials, which were randomly distributed 
to the four orientation conditions. The order of the conditions was counter-balanced across 
participants. For the four conditions, all other spatial parameters except for the orientation 
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were identical (e.g., distance to travel, angles, and stimuli sizes).  

Prior to the food-choice task, participants performed 40 practice trials, in which they were 
required to drag a folder icon at the center of the screen to the 4 corners (see Figure 5.16, 
bottom). For each direction, 10 trials were repeated consecutively. Unlike the filler trials used 
in Study 1, no decision had to be made at all. The supposed direction of dragging was ex-
plained in text before the start of the first trial for each direction, and later trials simply fol-
lowed the same direction. The distance and angle of the 4 required movements in the practice 
were exactly matched to the distance and angle of movements in the corresponding orienta-
tion conditions in the food-choice task.  

Food stimuli 

The same 10 food stimuli were used as in Study 1. 

Apparatus and measurements 

The same mouse-tracking task and measurements were used as in Study 1. Because control 
modes did not seem to matter in Study 1, we only included the physical-mouse setup in this 
study.  

Procedure 

The procedure was very similar to Study 1. Participants first performed the practice trials, 
then the four conditions of food-choice trials in a random order, and lastly they rated the food 
items and completed the same general questionnaire. Before leaving the experiments, they 
were again asked to eat a food item randomly chosen from all the foods they chose at least 
once during the task, in order to increase the ecological validity of the experiment.  

Data preprocessing 

The raw trajectory data were preprocessed in the same way as with Study 1. Note that for 
trajectories in the non-conventional conditions (down, left, right), the trajectory data were 
rotated first, so that all spatial parameters computed would have the same meaning in all 
conditions. For example, a MD of larger than 0 always meant some curvature towards the 
midline between the response options. Moreover, the same trial-exclusion criteria were used. 
Firstly, trials in which the participants released the cursor prematurely were removed (6%). 
Secondly, 7 trials with technical faults, indicated by extremely large x and y-coordinates or 
negative area under curve (AUC), were removed (0.1%). Thirdly, trials with (log-transformed) 
reaction times larger than three standard deviations from the grand mean were removed 
(0.5%). Fourthly, trials in which the participants changed their minds more than twice were 
removed (0.8%). The final dataset for analysis consists of 7875 food-choice trials and 1585 
filler trials from 43 participants. 
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5.5.2 Results26 

Comparison of trajectories in different orientation conditions and in practice 

Figure 5.17 visualizes the averaged trajectories per person per condition (including practice). 
The pattern makes two things crystal clear. First, when there was no decision to be made in 
practice trials, participants’ trajectories were very close to the straight lines connecting the 
origin and destinations (pink lines in Figure 5.17), and the deviations were much smaller than 
those in the other conditions. Second, for food-choice task with all orientations, trajectories 
tended to curve towards the corresponding midlines, showing upward movements at the early 
stage of a trial response. 

 

Figure 5.17 Average trajectories per person per condition in the task space. 

The same conclusions can be drawn by comparing the distributions of trajectory parameters 
in different conditions (see Figure 5.18). Compared with food-choice trials, practice trials 
produced much smaller MD, fewer x-flips, shorter response time, and faster maximum veloc-
ity. The fact that movements were close to straight lines was more evident in density plot for 
MD, in which the distribution of MD for practice centered exactly around zero. On the other 
hand, the distributions of parameters largely overlapped for the four orientation conditions. 
Without statistical tests, it was safe to say that if any differences existed between those con-
ditions at all, the effect sizes would be even smaller than the small difference between the 
                                                   
 
26 Data from Study 4 would also replicate the results in Study 2 (e.g., findings in Sullivan et al., 2015), but 
for brevity, I do not report them in this chapter.  
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touch-screen condition and the mouse condition used in Study 1. 

Lastly, contrary to the results of the filler trials in Study 2, participants’ average MD in prac-
tice trials did not correlate with their average MD in the food-choice trials for all four different 
spatial orientations (all ps > .05), nor was any correlation found for x-flip between the two 
types of trials (all ps > .16). However, participants did behave similarly in practice trials and 
in food-choice trials, in terms of how fast or slow they completed the trials. For all movement 
directions considered, weak to moderate correlations were observed for response time (Pear-
son’s r between 0.25 and 0.48) and for maximum velocity (Pearson’s r between 0.26 and 
0.46).  

Figure 5.18 Density plots for the distributions of trajectory parameters in different condi-
tions (histogram for x-flip). 

Orientation and the sensitivity of trajectory parameters to conflict strength 

We also examined whether spatial orientation affected the sensitivity of trajectory parameters 
to attribute-based measures of conflict strength. For this analysis, we used the model that 
showed the strongest effects in Study 1 – random-intercept model that predicted parameter 
values (MD, x-flip, response time, and maximum velocity) using utility difference, utility of 
stronger option, and their interaction. Table 5.4 compares the overall model fit (marginal R2) 
in the four different conditions, and with or without the removal of trials that participants 
changed their minds (i.e., 19.2% of all trials). The overall pattern of the results did not change 
much across the orientation conditions, and the effect sizes generally replicated the results in 
Study 1. When trials became more difficult due to smaller utility difference and/or smaller 
utility of the stronger option, MD, x-flip, and response time all increased. Also consistent with 
Study 1, when trials with more than one choice commitment were removed, all parameters’ 
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effect sizes were attenuated, among which MD was affected the most and response time the 
least. Finally, one might be tempted to conclude that the right condition produced the rela-
tively largest sensitivity of parameters to decision conflict, but this result should be replicated 
with new data first.  

Table 5.4 Model fit (marginal R2) in different orientation conditions (with or without 

“change of mind (CoM)” trials). 

 Up Down Left Right 

MD     

With CoM 0.056 0.036 0.059 0.101 

Without CoM 0.003 0.004 0.001 0.012 

x-flip     

With CoM 0.060 0.055 0.047 0.064 

Without CoM 0.012 0.022 0.022 0.038 

Response time     

With CoM 0.094 0.077 0.066 0.102 

Without CoM 0.074 0.061 0.041 0.064 

Maximum velocity     

With CoM 0.020 0.014 0.026 0.019 

Without CoM 0.004 0.007 0.015 0.014 

Note: The random-intercept models included each parameter as the outcome variable, and utility 

difference, utility of stronger option, and their interaction as predictors. 

5.5.3 Discussion of Study 4 

Results of Study 4 made two things clear. First, unlike trajectories in the filler trials in Study 
2, trajectories in the practice trials were very close to straight lines, and their deviations did 
not correlate with the deviations of trajectories in food-choice trials. Second, trajectories in 
all spatial orientations curved towards the midline, suggesting some vertical movement along 
the midline at the early phases of responses, which were potentially influenced by the deci-
sion-making process. Both findings support the moderate assumption of the mouse-tracking 
paradigm that people move in between two response options while the decision-making pro-
cess is still ongoing.
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5.6 General discussion 

In this extensive chapter of evaluating the mouse-tracking technique on self-control research, 
our investigation was a quite unexpected journey. Initially after reading the work by Sullivan 
et al. (2015) and Stillman et al. (2017), we were excited about the possibility of using the tech-
nique to uncover cognitive processes underlying health-related decision-making, particularly 
in real-world applications. We hoped to find the differences in trajectories between the trials 
with what we called “the two kinds of difficulty”: the trials with strong tradeoffs as in typical 
self-control dilemmas, and the trials with two options that were simply similar to each other. 
Our hypothesis was clearly rejected, and later we uncovered the methodological limitations 
with Sullivan et al. (2015)’s method on using mouse-tracking to reveal cognitive mechanisms 
of self-control. These results made us very skeptical about the whole mouse-tracking para-
digm, and we suspected that the weak assumption was all there was: trajectory curvatures 
were completely under the influence of motor-control. Finally, Study 4 again proved us wrong 
– the moderate assumption turned out to be the most plausible. 

5.6.1 Trajectory parameters as a function of different decision scenarios 

A major contribution of this chapter is the systematic analysis on how common trajectory 
parameters are influenced by different decision scenarios. As discussed earlier, previous 
studies had looked at the same issue, for example, by comparing self-control success trials 
with self-control failure trials (Gillebaart et al., 2015; Ha et al., 2016), or by comparing trials 
involving self-control and trials with two health food options (Stillman et al., 2017). However, 
the focus of these studies was pretty scattered, and the hypotheses did not seem to follow 
clearly from theories. In addition, the trial types used for their comparisons were based on 
rough manipulations or categorizations (e.g., stimuli’s typical categories, success versus fail-
ure), rather than perceived characteristics of the trials. Our results suggest that trajectory 
parameters are more sensitive to different decision scenarios subjectively perceived by indi-
viduals (based on both perceived attribute values and subjective decision weights) than to the 
collectively defined food categories (healthy or unhealthy)27. Unlike some other mouse-track-
ing applications, where stimuli characteristics and differences between stimuli could be uni-
vocal for everyone, food-choices are likely to be driven by personal perceptions of food. There-
fore, to reason whether and how trajectories parameters might differ between decision sce-
narios defined at higher-level, the underlying subjective perceptions have to be taken into 
account.  

                                                   
 
27 Although not reported in detail, we also examined the correlations of trajectory parameters to attribute 
differences with population-level decision weights or without any decision weights. In both cases, the cor-
relations were weaker when compared with the analyses with individual decision weights. 
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It was found that both the utility difference between two options and the utility of the stronger 
option influenced trajectory parameters. This finding is quite intuitive: decisions should be-
come easier and take less time when there is a large difference between two options in terms 
of their values, and also when one of the options (or both options) is very satisfying. For ex-
ample, choosing between two very good job offers is probably easier than choosing between 
two that barely meet one’s aspirations. This intuitive finding, if replicated in other decision 
domains as well, may have significant implications for some sequential sampling models of 
decision-making. This is because different variants of sequential sampling models assume 
different types of value signals or preference accumulators, which may have different predic-
tions regarding the influences of utility difference and the utility of the stronger option. The 
drift diffusion model used in Study 3 and the multialternative decision field theory (Roe et 
al., 2001) use contrasts between options as value signals, so they seem to naturally predict an 
effect of utility difference, but not obviously an effect of the utility of the stronger option. 
Conversely, some variants, such as the associative accumulation model (Bhatia, 2013), em-
ploy independent value accumulators for individual options without any contrasting mecha-
nism, so that decision time in these models seems to mainly depend on the value of the best 
option. Lastly, the multiattribute decision field theory proposed by Diederich includes an ad-
ditional mechanism to distinguish approach and avoidance conflicts – deciding between two 
equally good options is easier and faster than deciding between two equally bad options 
(Diederich, 2003a; 2003b). Simulation studies can be done in the future to understand what 
these models predict and how the results compare to our empirical finding. 

We did not find any differences in trajectory parameters between trials with the two types of 
difficulty, namely two options with a strong health-taste tradeoff, or two options that were 
equal in all aspects. Under the assumption that people shift their attentions between health-
iness and tastiness, as in decision field theories (Roe et al., 2001), the null-result may cast 
some doubts on the strong assumption of the mouse-tracking paradigm, which states that the 
continuous attractions to the opposing options at the cognitive level are mapped directly to 
motor movements (Freeman et al., 2008; Spivey et al., 2005). However, if attribute values 
are integrated into one value signal, as in the drift diffusion model used in Study 3, then even 
the strong assumption may not predict the effect we wished to find. Given the theoretical and 
practical significance of self-control dilemma, as well as the phenomenological feelings of be-
ing pulled towards two extremes in situations with strong tradeoffs, it remains an important 
open question how such conflicts are resolved at the cognitive level, and whether any traces 
can be revealed using indirect measures. 

Throughout the chapter, we have implicitly taken the position of calibrating the trajectory 
parameters as novel measures to some more refined measures of decision conflict, such as 
utility difference computed based on attribute ratings. This position was less of a theoretical 
commitment, but more of a convenient choice given that it was impossible to assert a ground 
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truth of conflict strength. For example, if one observes a much deviated trajectory and a long 
response time, but the attribute ratings of the decision-maker suggest an easy trial, what 
should one believe? Attribute ratings, as with any self-report, can be biased for various rea-
sons and may not reflect the values processed in the subsequent decision moments. Some 
researchers have instead advocated the use of decision time as a measure of conflict strength 
(Diederich, 2003b). Moreover, it may be argued that decision conflicts are primarily subjec-
tive feelings and direct self-report measures are closer to the truth (for an example, see Gil-
lebaart et al., 2015), but again how much such feelings are accessible to introspection is de-
batable. Finally, conflict strength might be reflected in actual choices as well, in a way that 
more choice reversals may occur if the same difficult decision is made repeatedly. If one’s 
primarily goal is behavior prediction, the number of choice reversals may serve as a criterion 
variable for other direct or indirect measures. In our experiments, as the same food pairs were 
only repeated twice, this behavior-based approach was unfortunately unattainable. 

5.6.2 Using mouse-tracking data to reveal specific cognitive mechanism of self-con-
trol 

Through a conceptual replication, re-analyses on Sullivan et al. (2015)’s data, and model-
based simulations, it has become clear that the temporal analysis method on mouse-tracking 
data cannot provide strong evidence to the processing latency difference hypothesis of self-
control. Given that choice accounts for most of the attribute angle correlations, their method 
cannot distinguish different plausible mechanisms underlying self-control in realistic set-
tings. We have shown in the simulation study that a slope difference as in the drift diffusion 
model is also a plausible cause of the weight difference at the choice-level, and it can appear 
as a latency difference using Sullivan et al. (2015)’s method. Moreover, according to decision 
field theories (e.g., Bhatia, 2013, Roe et al., 2001), the fact that people weight tastiness more 
than healthiness can also been explained by a higher sampling probability of tastiness than 
healthiness in the preference accumulation process.  

Note that our criticism does not apply to previous works on the Simon task using the mouse-
tracking paradigm, where a similar method of temporal analyses was used (Scherbaum et al., 
2010; see also Scherbaum & Kieslich, 2018)28. In fact, choice direction was used as a predictor 
in multiple regressions but the coefficients of other predictors were not attenuated. This was 
because, unlike attribute differences, those predictors of interests (e.g., location, congruence 
of previous trial) were orthogonal or independent to choice direction by experimental design.  

 

                                                   
 
28 It should be noted that in those studies angle was defined as the angle to the y-axis for each difference 
vector between two time steps. Thus, it measured the instantaneous movement angle rather than the angle 
relative to the starting position as in Sullivan et al. (2015).   



Chapter 5 - Evaluating MT as A Technique to Reveal Self-Control Processes 

 

156 
 

5.6.3 Theoretical assumptions underlying the mouse-tracking paradigm 

The results of our experiments contribute to the growing empirical record of the relationship 
between trajectory deviations and decision difficulty (e.g., Dshemuchadse et al., 2013; Free-
man et al., 2008; Koop, 2013; McKinstry et al., 2008; Spivey et al., 2005). In the introduction, 
we mentioned three possible theoretical assumptions that can account for this general effect. 
Although our studies cannot provide a definite answer to the verisimilitude of these theoret-
ical assumptions, some insights are gained. Results of Study 4 imply that some form of deci-
sion-making is a necessity for trajectory curvatures (otherwise people move in straight lines 
as in the practice trials), and it is plausible as in the moderate assumption that while still 
making decisions people tend to move upwards in order to reduce the distances to both re-
sponse options (as a strategy to improve response efficiency). Thus, the deviation-difficulty 
relationship is partially due to the (imperfect) mapping of decision duration and the distance 
of the upward movement. Apparently, trials in which people actually reverse their choices 
would result in larger deviations and they contribute to the effect as well, but these trials only 
count for a small portion of all food-choices (under 20% in our studies). 

It was more difficult to find any evidence for the strong assumption that momentary prefer-
ential status or shift at the cognitive level are reflected in the movement trajectories, given 
the use of the common parameters. It remains interesting to see whether the direction of the 
upward movements during decision-making is affected by the relative attractiveness of the 
options, or any directional biases are purely motor-control noisy. For example, if an upward 
movement slightly leans towards the left, does it mean that although the commitment to the 
left option is not yet made, the movement is already biased because of the option’s favorable 
status in preference accumulation? Testing this hypothesis would require move advanced 
method to disaggregate movement trajectories to distinct stages or segments (see e.g., Cal-
cagnì et al., 2017). 

In general, when applying the mouse-tracking technique to self-control or any other research 
areas, researchers should carefully consider the theoretical assumptions they believe to un-
derlie the mouse-tracking paradigm and to use theory-driven predictions whenever possible. 
This would require one to connect cognitive models of interests (e.g., a self-control mecha-
nism based on processing latency difference) to a model of how the cognitive processes relate 
to motor-control processes. In this respect, although Sullivan et al. (2015)’s method is limited, 
their model-based approach should be encouraged. The field should be moving forward faster 
if researchers move beyond the vague verbal descriptions of how mouse-tracking is supposed 
to work, and not to be satisfied with merely demonstrating correlations between parameters 
and coarse task manipulations. 
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5.6.4 Implications for applying mouse-tracking techniques to digital interventions 

An encouraging finding in this chapter is that the validity of the mouse-tracking paradigm 
does not seem to depend on control method or spatial orientation of the display. Thus, 
mouse-tracking techniques can be used on mobile devices, such as smartphones, and in por-
trait mode. There is a tentative indication that the unconventional setup of moving the cursor 
from the left to the right seems to produce the strongest relationship between trajectory pa-
rameters and attribute-based conflict strength. However, in general, the correlations between 
trajectory parameters and attribute-based conflict strength might be too small to be useful 
for the use cases discussed in the introduction. If one’s goal is indeed to predict or measure 
attribute-based conflict strength (e.g., the utility difference between two food options experi-
enced by a user), then a single trial or a few trials cannot guarantee much higher accuracy in 
prediction than random guesses. However, because attribute-based measures may not reflect 
the true underlying conflict strength, future research should also use behavior-based criterion 
variables in field intervention studies to see if mouse-tracking data can be useful for predict-
ing actual behavior change (e.g., relapses). 

For promoting the use of mouse-tracking, it is also important to demonstrate the added value 
of spatial parameters beyond response time. Although spatial parameters and response time 
do not correlate strongly, they seem to react in the same way to attribute-based conflict 
strength, and often response time is more sensitive than e.g., MD or x-flip. If only response 
time is needed, simpler response formats are no less applicable than the mouse-tracking 
setup, and they tend to be flexible in terms of interface design requirements in the digital 
systems. Nonetheless, there is at least one unique source of information that can only be ob-
tained by mouse-tracking – choice reversals (change of mind) within each single trial (e.g., 
Szaszi et al., 2018). If detecting within-trial choice reversals is valuable for an application, the 
mouse-tracking paradigm is ready to be used in digital systems. 
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Chapter 629 

Experience Sampling Method to Study the Varia-
tions of Self-Control Capacity in Daily Life 

 

 

6.1 Introduction 

As one of the hallmarks of human behavior, self-control has always been an important re-
search topic in psychology and other behavioral sciences (Duckworth, 2011). Despite the last-
ing debate about the nature of self-control (e.g., Inzlicht & Berkman, 2015; Kurzban, 2012), 
self-control is generally described as inhibiting one’s responses to immediate rewards (e.g., 
eating a delicious chocolate bar) for the sake of pursuing long-term goals, for example, to lose 
weight or to be healthier. (cf. Loewenstein, 2000). For decades, theorists have been puzzled 
by the ability of mankind to value abstract goals over concrete short-term rewards (Kanfer & 
Karoly, 1972), while at the same time people often fail to utilize this ability (Baumeister & 
Heatherton, 1996). There are many factors that may influence self-control outcomes, such as 
the nature and strength of temptation in a self-control task (e.g., Hur, Koo, & Hofmann, 2015; 
see also Chapter 5) and the personal value of a long-term goal (e.g., Saunders & Inzlicht, 2018). 
Among all the factors, self-control capacity as a person factor has been very central for the 
explanation in both folk theories (Bergen, 2011) and scientific models of self-control 
(Baumeister, Vohs, & Tice, 2007; Kotabe & Hofmann, 2015; Robinson, Schmeichel, & Inzlicht, 
2010). Its central role is perhaps grounded in the casual observations as well as empirical 
evidence that the ability of controlling oneself differs greatly between individuals (de Ridder, 
Lensvelt-Mulders, Finkenauer, Stok, & Baumeister, 2012) as well as within individuals (e.g., 
Randles, Harlow, & Inzlicht, 2017). For developing digital interventions that can adapt to 
both individual differences and time-varying personal states, examining the inter-individual 
and intra-individual differences in self-control capacity is also of great importance. 

                                                   
 
29 This chapter is based on Zhang, C., Smolders, K. C., Lakens, D., & IJsselsteijn, W. A. (2018). Two expe-
rience sampling studies examining the variation of self-control capacity and its relationship with core affect 
in daily life. Journal of Research in Personality, 74, 102-113. 
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Mischel and colleagues provided the first demonstration of the compelling effects of self-con-
trol capacity in the 1980s (Mischel, Shoda, & Peake, 1988; Mischel, Shoda, & Rodriguez, 
1989). In a series of experiments, young children showed large differences in their ability to 
delay gratification (e.g., to receive more candies if they could withhold themselves from eating 
one candy for several minutes), and this individual difference was associated with their 
achievements much later in life. Although research on the origins of these differences has just 
begun (e.g., Hofmann, Gschwendner, Friese, Wiers, & Schmitt, 2008), the significance of in-
ter-individual differences in self-control capacity have been suggested in a variety of domains 
(for a review, see de Ridder et al., 2012). For example, lower trait self-control is associated 
with lower academic achievements (Duckworth & Seligman, 2005) and poorer health 
(Crescioni et al., 2011; Moffitt et al., 2011). 

Adding to the substantial correlational evidence, the experimental paradigm of ego-depletion 
(Muraven, Tice, & Baumeister, 1998) and its associated strength model (Baumeister et al., 
2007) further established the special status of self-control capacity in self-control research. 
According to numerous ego-depletion studies (for a review, see Hagger et al., 2010), when 
people exert their self-control in an initial task, their performance in a second unrelated task 
that demands self-control worsened. This effect led to the view that self-control capacity is a 
resource that is domain-general and limited. However, recent meta-analyses failed to demon-
strate convincing evidence for an ego-depletion effect, after correcting the literature for pub-
lication bias (Carter, Kofler, Forster, & McCullough, 2015; Etherton et al., 2018). More criti-
cally, a recent large multi-lab pre-registered replication study did not find support for a do-
main-general limited resource view of self-control (Hagger, et al., 2016). 

Although the strength model seems too simplistic based on the empirical support, the concept 
of self-control capacity is still central to several more recent models of self-control (e.g., Hall 
& Fong, 2007; Hofmann et al., 2009; Kotabe & Hofmann, 2015; Robinson et al., 2010; but 
see Inzlicht & Schmeichel, 2012; Inzlicht, Schmeichel, & Macrae, 2013). Without direct evi-
dence, it is perhaps prudent to be skeptical about the theoretical status of self-control capacity, 
especially because resource-like constructs have long been criticized as seemingly intuitive 
but lacking true exploratory power (see Navon, 1984). A specific question is whether and how 
self-control capacity is distinct from core affect in their causal roles of influencing self-control 
processes and outcomes. In the valence-arousal model (Russell & Barrett, 1999), core affect 
is defined as the change of a neurophysiological state underlying daily prototypical emotions 
(e.g., happiness, fear, anger, etc.) and can be expressed as subjective experiences on the va-
lence (feeling good or bad) and arousal (feeling sleepy or activated) dimensions. The close 
relationship between core affect and self-control processes is both intuitive and supported by 
empirical research, as for example acute stress or tense arousal undermines self-control (e.g., 
Maier et al., 2015) and a certain level of arousal or alertness is required for the functioning of 
attention and cognitive control (e.g., Thomas et al., 2000). Moreover, some recent theories 
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have positioned affect at the core of cognitive control (Pessoa, 2009) and higher-level self-
regulatory processes (Inzlicht, Bartholow, & Hirsh, 2015; Saunders & Inzlicht, 2018; also see 
Carver & Scheier, 1990). For example, in the appraisal framework by Saunders and Inzlicht 
(2018), conflict-elicited negative affect is proposed as a driving force for mobilizing self-con-
trol. Combining the empirical evidence and theoretical considerations, it is possible that the 
state variation of core affect is the major person-factor to explain self-control outcomes, 
which may at the same time give rise to the phenomenological feelings that capacity of self-
control varies. One may even compare self-control capacity to emotional episodes (e.g., fear 
or anger), in the sense that they are psychologically constructed based on a momentary state 
of core affect and additional appraisal processes (Russell, 2003), rather than being causal 
entities. Given these open questions, it is valuable as a first step to accurately describe the 
inter-individual and intra-individual variations of self-control capacity, and to examine how 
these variations are associated with the variation of core affect (i.e., to build a nomological 
network, Cronbach & Meehl, 1955). We report here two experience sampling studies to fulfill 
these objectives with the hope to facilitate future theoretical work on the role of self-control 
capacity in self-control processes. 

Firstly, we measure both trait self-control and self-reported state self-control capacity in a 
multi-session multi-day experience sampling protocol to differentiate the variation of self-
control capacity at person-to-person, day-to-day, and moment-to-moment levels. We also 
aim to examine whether moment-to-moment variation can be explained by a time-of-day ef-
fect, and especially as a diurnal pattern, using a statistical technique called cosinor fitting 
(e.g., Hasler, Mehl, Bootzin, & Vazire, 2008; Murray et al., 2009). There are clear indications 
for diurnal patterns in people’s core affect, such as arousal levels (e.g., Smolders, de Kort, & 
van den Berg, 2013; Stone et al., 2006; Wood & Magnello, 1992), and valence (Stone et al., 
2006; Murray et al., 2009). A similar pattern in self-control capacity can be predicted based 
on its close link to the affective system, and this hypothesis was indirectly supported by a 
study in which students’ performance in an online learning platform showed a diurnal pattern 
over the day (Randles et al., 2017). We use a self-report measure of state self-control capacity 
to examine its diurnal patterns more directly. 

Secondly, we follow the valence-arousal model (Russell & Barrett, 1999) to measure four di-
mensions of core affect − valence, pure arousal, energetic arousal, and tense arousal (i.e., 
feeling of stress) − in the same experience sampling protocol. Thus, the relationships between 
self-control capacity and core affect can be quantified not only as correlations between trait 
self-control and dimensions of core affect, but also as disaggregated between-person and 
within-person correlations based on repeated state measures (see Curran & Bauer, 2011). 
Previous studies have demonstrated that trait self-control is associated with valence (Daly, 
Baumeister, Delaney, & MacLachlan, 2014; Galla & Wood, 2015; Hofmann, Luhmann, Fisher, 
Vohs, & Baumeister, 2014) and tense arousal (Bowlin & Baer, 2012; Galla & Wood, 2015; 
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Hofmann et al., 2014), using survey, daily diary, and experience sampling methods. These 
results suggest that people with higher trait self-control are also slightly happier in their daily 
lives (meta-analytic r = 0.26) and experience less psychological stress (meta-analytic r = -
0.28; for forest plots with our studies added, see Figure 6.3 & 6.4 in the Discussion section30). 
We replicate these results and extend these findings to include within-person correlations. 
Moreover, although arousal is clearly related to cognitive performance (Thomas et al., 2000) 
and its link to self-control capacity has been suggested (Randle et al., 2017), we provide a first 
direct description of the association. 

The two research questions are also motivated by their relevance to digital lifestyle interven-
tions. In theory, depending on a user’s overall and temporary self-control capacity, the timing 
and types of interventions can be tailored. If state self-control capacity shows a strong and 
stable diurnal pattern, intervention messages for coaching a new healthy behavior can be sent 
during the hours when self-control capacity peaks for the user, as the person is likely to be 
more motivated to take effort to learn the new behavior. Similarly, if day-to-day variation in 
self-control capacity is large, preventive interventions may be used on the days when users 
has a more difficult time controlling themselves. Moreover, although experience sampling 
questions can be easily administrated in digital intervention systems to prob useful user in-
formation, answering these questions repeatedly can be burdening and irritating. Therefore, 
to minimize the number of questions, it is useful to know whether self-control capacity 
measures can provide different information than measures of core affect. 

As the two experience sampling studies are very similar in their design and statistical analyses, 
we report the method and results of the two studies together in the following sections.

6.2 Method31 

6.2.1 Participants 

Study 1 was conducted within a larger experience sampling project in September 2015. In 
total, 172 Bachelor students at Eindhoven University of Technology participated in the data 
collection as partial fulfillment for a course. From this sample, 140 students provided per-
mission to use their data for scientific research, so all analyses are based on this subset. The 
final sample consisted of 85 men and 55 women, and the median age was 19 (18-26, SD = 
2.43). Study 2 was conducted in the same setting as Study 1 in September 2016. Out of the 

                                                   
 
30  Meta-analyses and forest plots were done using the R package metafor (Viechtbauer, 2010). 

31 Raw data, scripts, and other materials of the two experience sampling studies are available at Open Sci-
ence Framework: https://osf.io/hguz4/. As our analyses focused on describing correlational patterns ra-
ther than testing specific hypotheses, we did not pre-register our data analyses. 

https://osf.io/hguz4/
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163 students, 146 provided permission to use their data for scientific research. The final sam-
ple consisted of 83 men and 63 women, and the median age was 18 (17-25, SD = 1.75). Both 
studies were conducted in the third and fourth week of the academic year when students were 
not yet under the pressure of deadlines or exams.  

The sample sizes were limited by the number of students enrolled in the course, which was 
deemed sufficient because analyses at measurement level (results in section 3.3, 3.5) were 
well-powered to detect even very small correlations with over 5000 observations. The inten-
sively repeated measurements were also necessary to accurately measure diurnal patterns of 
the variables of interest. For the analyses at the person level (i.e., effects of trait self-control, 
section 3.4), sensitivity analyses in G*Power v3.192 revealed that our sample sizes in Study 1 
and Study 2 were able to detect minimum effect sizes of ρ = 0.230 and ρ = 0.234 respectively, 
given an alpha level of 0.05 and 80% power. These effect sizes were just below the meta- 
analytic effect sizes of the correlations of trait self-control with affective valence and stress (r 
= 0.26 and r = -0.28). 

6.2.2 Apparatus 

A mobile experience sampling app was developed for the studies by the first author based on 
the open-source framework Experience Sampler32 (Thai & Page-Gould, 2018). The frame-
work is a Cordova-based application template, supporting fast development of customized 
experience sampling apps for both Android and iOS platforms. In both studies, participants 
downloaded the app on their own smartphones to answer the experience sampling question-
naires.  

6.2.3 Measurements 

In both studies, trait self-control was measured by the brief version of the Trait Self-Control 
Scale (Tangney, Baumeister, & Boone, 2004). The scale is based on a comprehensive concep-
tualization of self-control and has been shown to have good internal reliability (alpha = 0.83 
and 0.85 in Tangney et al., 2004; alpha = 0.77 and 0.83 in our studies), good test-retest reli-
ability (0.87 in Tangney et al., 2004), and to correlate relatively well with behavioral indica-
tors of self-control outcomes (de Ridder et al., 2012). Participants indicated to what extent 
they agreed with 13 statements on 5-point scales ranging from 1-Completely disagree to 5-
Completely agree, such as “I am good at resisting temptation” and “I wish I had more self-
discipline”.  

                                                   
 
32 A tutorial to get started with Experience Sampler by Sabrina Thai and Elizabeth Page-Gould can be 
found on http://www.experiencesampler.com/  

http://www.experiencesampler.com/
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We measured state self-control capacity using selected items from the State Self-Control 
Scale (Ciarocco, Twenge, Muraven, & Tice, 2015). With the intention to capture different as-
pects of state self-control, but not to overburden our participants, four items were selected, 
namely general willpower (Right now, I feel my willpower is gone), concentration (Right 
now, it would take a lot of effort for me to concentrate on something), urge-control (Right 
now, I am having a hard time controlling my urges), and motivation (Right now, I am mo-
tivated to pursuit my (long-term) goals33). Participants responded to the items on 7-point 
scales, ranging from 1-Not true to 7-Very true.  In a post-hoc content analysis on the State 
Self-Control Scale, our selection turned out to cover four out of the total six theoretical sub-
constructs identified. Conceptually, the two omitted sub-constructs – mental fatigue and 
tense arousal – were captured when measuring the energetic and tense arousal dimensions 
of core affect. We decided to analyze the four items separately in order to explore potential 
sub-constructs in state self-control capacity and their variations, and to assess the reliability 
and validity of a potential short composite scale. According to a recent review on construct 
validity (Strauss & Smith, 2009), focusing on cohesive unidimensional rather than complex 
constructs should help to describe nomological networks more precisely.   

The measurements of core affect followed the valence-arousal model of core affect (Russell & 
Barrett, 1999). In Study 1, each dimension of core affect was measured by a single item to 
minimize the burden on participants. Specifically, affective valence was measured on one 7-
point bipolar scale, ranging from 1-Very bad to 7-Very good. Energetic arousal was measured 
on one 7-point unipolar scale, ranging from 1-Not at all to 7-Very energetic. Tense arousal or 
stress was measured on one 7-point scale, ranging from 1-Not at all stressful to 7-Very stress-
ful. Sleepiness was measured by the 9-point Karolinska Sleepiness Scale (Åkerstedt & Gill-
berg, 1990) which included the following labels: 1-Extremely sleepy, 3-Sleepy, but no diffi-
culty remaining awake, 5-Neither alert nor sleepy, 7-Alert, and 9-Extremely alert. In Study 
2, two changes were made to the measurements. First, in order to increase reliability of the 
measures (see Schimmack, 2003), two items were used for each dimension of core affect, 
except that the standard 1-item Karolinska Sleepiness Scale was unchanged. Second, bipolar 
scales were used for all variables as recommended by Russell and Carroll (1999). As a result, 
two 7-point scales each were used for affective valence (Unpleasant-Pleasant, and Sad-

                                                   
 
33 This item was adapted as the original item was simply “I am motivated”, and the phrase “long-term” was 
only added in Study 2. The reason was to emphasize long-term goals, and to match a related item in the 
Total Trait Self-Control Scale (Tangney et al., 2004).  



6.2 Method   

 

165 
 

Happy), and for energetic arousal (Inactive-Active, and Depleted-Energetic). For the dimen-
sion of tense arousal or stress, two 7-point bipolar items (Relaxed-Nervous, and Calm-Tense) 
were added to the unipolar item used in Study 134.  

6.2.4 Procedure 

Both studies were introduced to the participants during one of their lectures in an introduc-
tion to psychology course. They were instructed to download the experience sampling app on 
their smartphone and to use it for one week. One day prior to the start of the study, partici-
pants indicated in the app when they normally wake up and go to sleep on weekdays and 
weekends. Between the self-reported wake-up time and sleep time, they were prompted eight 
times a day to answer the experience sampling questionnaires. The notifications were trig-
gered by a semi-random algorithm to ensure that the adjacent two sessions were always at 
least one hour apart. In each experience sampling questionnaire, the state questions de-
scribed above were presented in the following order on separate pages: affective valence, 
stress, energetic arousal, sleepiness, and state self-control (Study 1), or affective valence, en-
ergetic arousal, tense arousal, sleepiness, stress, and state self-control (Study 2). To prevent 
a drop in response rate, we sent two motivational messages to the participants during the 
study (on the 3rd and 6th day since the beginning of the study). Trait self-control was meas-
ured in a separate online questionnaire either before (Study 1) or after the sampling period 
(Study 2). 

6.2.5 Data analysis 

Given the three-level crossed design of our studies (all participants completed surveys in all 
seven days of a week, and in all 8 sessions from waking-up to sleep), we first built variance 
component models (multilevel null models) to decompose variance in each variable to differ-
ence sources. For variables with single-item measures, three-level models were built, result-
ing in variance from person (P), day-of-week (D), session number (S), and their interactions 
(see Equation 1). For variables with multiple-item measures, four-level models were built, 
resulting in variance from person (P), day-of-week (D), session number (S), item (I), and their 
interactions (see Equation 2). After variance decompositions, we followed generalizability 
theory (Cronbach, Gleser, Nanda, & Rajaratnam, 1972; Webb, Shavelson, & Haertel, 2006) 
to compute between-person and within-person reliability coefficients for the measurements 
used in the studies. Specifically, generalizability coefficients (𝐸𝐸𝜌𝜌2) as measures of between-

                                                   
 
34 Initially, stress was considered as a different construct from tense arousal, but the correlation between 
the two measures turned out to be very high and their relationships with other constructs were almost 
identical. Thus, we report stress and tense arousal as the same construct. Our current position is that even 
though the conceptualization of stress may be broader (e.g., to include stressors and behavioral responses), 
feelings of stress overlaps with the tense arousal dimension of core affect.    
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person reliability were computed (see Equation 3, based on Webb et al., 2006), which indi-
cated the reliability of obtaining relative ranks of participants in terms of the measured vari-
ables when observed scores were averaged over all measurement facets (e.g., days, sessions, 
and items). Coefficients for within-person reliability of change (𝑅𝑅𝑐𝑐) were computed to esti-
mate the precision of measuring systematic changes in participants’ self-control capacity and 
core affect over the 56 observations (see Equation 4, based on Cranford et al., 2015; Shrout & 
Lane, 2011). 𝑅𝑅𝑐𝑐 could only be calculated for multiple-item measures, for which variance com-
ponents of the person by day by session interaction (𝜎𝜎𝑝𝑝∗𝑓𝑓∗𝑠𝑠) could be separated from meas-

urement error. Alternatively, we also computed averages of the observation-specific 
Cronbach’s alpha coefficients for multiple-item measures (𝛼𝛼𝑙𝑙𝑎𝑎𝑒𝑒 in Table 6.1 and 6.3).  

            𝑌𝑌𝑖𝑖𝑗𝑗𝑖𝑖 =  𝛽𝛽0 + 𝑃𝑃𝑖𝑖 +  𝐷𝐷𝑗𝑗 +  𝑆𝑆𝑖𝑖 + (𝑃𝑃𝐷𝐷)𝑖𝑖𝑗𝑗 + (𝑃𝑃𝑆𝑆)𝑖𝑖𝑖𝑖 + (𝐷𝐷𝑆𝑆)𝑗𝑗𝑖𝑖 +  𝜀𝜀𝑖𝑖𝑗𝑗𝑖𝑖 (1) 

𝑌𝑌𝑖𝑖𝑗𝑗𝑖𝑖𝑠𝑠 =  𝛽𝛽0 + 𝑃𝑃𝑖𝑖 +  𝐷𝐷𝑗𝑗 +  𝑆𝑆𝑖𝑖 + 𝐼𝐼𝑠𝑠 +  (𝑃𝑃𝐷𝐷)𝑖𝑖𝑗𝑗 +  (𝑃𝑃𝑆𝑆)𝑖𝑖𝑖𝑖 +  (𝑃𝑃𝐼𝐼)𝑖𝑖𝑠𝑠 +  (𝐷𝐷𝑆𝑆)𝑗𝑗𝑖𝑖 + (𝐷𝐷𝐼𝐼)𝑗𝑗𝑠𝑠 

 + (𝑆𝑆𝐼𝐼)𝑖𝑖𝑠𝑠 + (𝑃𝑃𝐷𝐷𝑆𝑆)𝑖𝑖𝑗𝑗𝑖𝑖 +  (𝑃𝑃𝐷𝐷𝐼𝐼)𝑖𝑖𝑗𝑗𝑠𝑠 +  (𝑃𝑃𝑆𝑆𝐼𝐼)𝑖𝑖𝑖𝑖𝑠𝑠 + (𝐷𝐷𝑆𝑆𝐼𝐼)𝑗𝑗𝑖𝑖𝑠𝑠 + 𝜀𝜀𝑖𝑖𝑗𝑗𝑖𝑖 (2) 
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 +
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2

𝑝𝑝𝑝𝑝
 +
𝜎𝜎𝑝𝑝∗𝑖𝑖
2

𝑝𝑝𝑖𝑖
+ 
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+ 
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2
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2

𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖
+ 
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2

𝑝𝑝𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖

  (3) 

 
𝜎𝜎𝑝𝑝∗𝑑𝑑∗𝑝𝑝
2

𝜎𝜎𝑝𝑝∗𝑑𝑑∗𝑝𝑝
2 + 

𝜎𝜎𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟
2

𝑝𝑝𝑖𝑖

  (4) 

After obtaining variance components and reliability coefficients, we moved on to build four 
types of multilevel models to answer more substantial research questions. First, for each var-
iable, a simplified multilevel null model was built to serve as the baseline model, with only 
person and person by day-of-week interaction as grouping variables in the model (model 1, 
see Equation 5)35. 

       𝑌𝑌𝑖𝑖𝑗𝑗𝑖𝑖 =  𝛽𝛽0 + 𝑃𝑃𝑖𝑖 + (𝑃𝑃𝐷𝐷)𝑖𝑖𝑗𝑗 +  𝜀𝜀𝑖𝑖𝑗𝑗𝑖𝑖     (5) 

Secondly, a cosinor fitting procedure (e.g., Hasler et al., 2008; Murray et al., 2009) was used 
to model the diurnal pattern of state self-control capacity and core affect. The basic idea was 
to estimate how much variance of a variable can be explained by fitting sinusoids to the data. 
Technically, for each variable, a random-intercept model (model 2) was fitted by adding a 
sine component (𝑇𝑇𝑖𝑖𝑛𝑛𝐷𝐷𝑖𝑖𝑗𝑗𝑖𝑖 ) and a cosine component (𝐴𝐴𝑐𝑐𝑇𝑇𝐷𝐷𝑖𝑖𝑗𝑗𝑖𝑖) to the null model defined in 

Equation 5. The sine and cosine components were computed from the time variable (𝐷𝐷𝑖𝑖𝑗𝑗𝑖𝑖 in 

hours after midnight, e.g., 10.5 for 10:30) as in Equation 7 and 8. 

                                                   
 
35 Simplification was made for two reasons: (1) variance components of day-of-week (𝜎𝜎𝑓𝑓𝑙𝑙𝑑𝑑–𝑓𝑓𝑓𝑓–𝑤𝑤𝑒𝑒𝑒𝑒𝑖𝑖) and 
day-of-week by session (𝜎𝜎𝑓𝑓∗𝑠𝑠) were very small (see Section 3.2); (2) time variables 𝑇𝑇𝑖𝑖𝑛𝑛𝐷𝐷𝑖𝑖𝑗𝑗𝑖𝑖 and 𝐴𝐴𝑐𝑐𝑇𝑇𝐷𝐷𝑖𝑖𝑗𝑗𝑖𝑖 would 
correlate highly with session number and person by session as grouping variables.  
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               𝑌𝑌𝑖𝑖𝑗𝑗𝑖𝑖 =  𝛽𝛽0 + 𝑃𝑃𝑖𝑖 + (𝑃𝑃𝐷𝐷)𝑖𝑖𝑗𝑗 +  𝛽𝛽1𝑇𝑇𝑖𝑖𝑛𝑛𝐷𝐷𝑖𝑖𝑗𝑗𝑖𝑖 +  𝛽𝛽2𝐴𝐴𝑐𝑐𝑇𝑇𝐷𝐷𝑖𝑖𝑗𝑗𝑖𝑖 +  𝜀𝜀𝑖𝑖𝑗𝑗𝑖𝑖  (6) 

     𝑇𝑇𝑖𝑖𝑛𝑛𝐷𝐷𝑖𝑖𝑗𝑗𝑖𝑖 = sin�𝐷𝐷𝑖𝑖𝑗𝑗𝑖𝑖 ×  2𝜋𝜋  24⁄ �  (7) 

      𝐴𝐴𝑐𝑐𝑇𝑇𝐷𝐷𝑖𝑖𝑗𝑗𝑖𝑖 = cos(𝐷𝐷𝑖𝑖𝑗𝑗𝑖𝑖 ×  2𝜋𝜋  24)⁄   (8) 

The improvement of model fit from model 1 to model 2 provides a measure of the strength of 
the diurnal pattern of modeled variables. The amplitude and phase angle of each fitted sinus-
oid can be calculated from 𝛽𝛽1 and 𝛽𝛽2 using Equation 9 and 10. Amplitude measures the max-
imum deviation of a variable from its mean so that a larger amplitude implies a stronger di-
urnal pattern, or in other words, larger cyclical fluctuations around the mean. Phase angle 
indicates at what time of day a variable shows its maximum deviation from the mean (peaks 
and valleys of the sinusoid).  

 𝐴𝐴𝑚𝑚𝑚𝑚 =  �𝛽𝛽12 + 𝛽𝛽22
2   (9) 

 𝑃𝑃ℎ𝑚𝑚𝑇𝑇𝑚𝑚 𝑇𝑇ℎ𝑖𝑖𝑖𝑖𝑚𝑚 =  �
tan−1(𝛽𝛽1 𝛽𝛽2⁄ ) +  𝜋𝜋, 𝐼𝐼𝐼𝐼 𝛽𝛽2 < 0
tan−1(𝛽𝛽1 𝛽𝛽2⁄ ), 𝐼𝐼𝐼𝐼 𝛽𝛽2 > 0 𝐴𝐴𝑁𝑁𝐷𝐷 𝛽𝛽1 > 0
tan−1(𝛽𝛽1 𝛽𝛽2⁄ ) + 2𝜋𝜋, 𝐼𝐼𝐼𝐼 𝛽𝛽2 > 0 𝐴𝐴𝑁𝑁𝐷𝐷 𝛽𝛽1 <  0

 (10) 

Thirdly, for each variable, a random-slope model (model 3) was fitted by allowing the coeffi-
cients of 𝑇𝑇𝑖𝑖𝑛𝑛𝐷𝐷𝑖𝑖𝑗𝑗𝑖𝑖 and 𝐴𝐴𝑐𝑐𝑇𝑇𝐷𝐷𝑖𝑖𝑗𝑗𝑖𝑖  to vary for different participants and for different days within 

participants, in order to explore variations in amplitude and phase angle at the person-to-
person and day-to-day levels (see Equation 11). 

𝑌𝑌𝑖𝑖𝑗𝑗𝑖𝑖 =  𝛽𝛽0 + 𝑃𝑃0𝑖𝑖 + (𝑃𝑃𝐷𝐷)0𝑖𝑖𝑗𝑗 +  𝛽𝛽1𝑇𝑇𝑖𝑖𝑛𝑛𝐷𝐷𝑖𝑖𝑗𝑗𝑖𝑖 +  𝛽𝛽2𝐴𝐴𝑐𝑐𝑇𝑇𝐷𝐷𝑖𝑖𝑗𝑗𝑖𝑖 +  𝑃𝑃1𝑖𝑖𝑇𝑇𝑖𝑖𝑛𝑛𝐷𝐷𝑖𝑖𝑗𝑗𝑖𝑖 + (𝑃𝑃𝐷𝐷)1𝑖𝑖𝑗𝑗𝑇𝑇𝑖𝑖𝑛𝑛𝐷𝐷𝑖𝑖𝑗𝑗𝑖𝑖 

 + 𝑃𝑃2𝑖𝑖𝐴𝐴𝑐𝑐𝑇𝑇𝐷𝐷𝑖𝑖𝑗𝑗𝑖𝑖 +  (𝑃𝑃𝐷𝐷)2𝑖𝑖𝑗𝑗𝐴𝐴𝑐𝑐𝑇𝑇𝐷𝐷𝑖𝑖𝑗𝑗𝑖𝑖 +  𝜀𝜀𝑖𝑖𝑗𝑗𝑖𝑖 (11) 

Finally, for examining the relationship between self-control capacity and dimensions of core 
affect, analyses were done using three different methods. To estimate the association between 
trait self-control and core affect, trait self-control was added as a person-level predictor in 
model 4. The effects were measured as 𝛽𝛽3 (see Equation 12). Between-person and within-per-
son correlations were estimated based on the data of state self-control capacity and core affect. 
The between-person component of each variable was estimated as 𝛽𝛽0 in the corresponding 
random-slope models (Equation 11), and then Pearson correlation coefficients were com-
puted based on the estimated person means. The within-person component of each variable 
was estimated as the residuals (𝜀𝜀𝑖𝑖𝑗𝑗𝑖𝑖) in model 3 (Equation 11), and then Pearson correlation 

coefficients were computed based on the estimated within-person residuals. The within-per-
son correlations estimated represented correlations between the momentary fluctuations of 
pairs of variables, after removing stable time-of-day effects.  
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𝑌𝑌𝑖𝑖𝑗𝑗𝑖𝑖 =  𝛽𝛽0 + 𝑃𝑃0𝑖𝑖 + (𝑃𝑃𝐷𝐷)0𝑖𝑖𝑗𝑗 +  𝛽𝛽1𝑇𝑇𝑖𝑖𝑛𝑛𝐷𝐷𝑖𝑖𝑗𝑗𝑖𝑖 +  𝛽𝛽2𝐴𝐴𝑐𝑐𝑇𝑇𝐷𝐷𝑖𝑖𝑗𝑗𝑖𝑖 +  𝑃𝑃1𝑖𝑖𝑇𝑇𝑖𝑖𝑛𝑛𝐷𝐷𝑖𝑖𝑗𝑗𝑖𝑖 + 

          (𝑃𝑃𝐷𝐷)1𝑖𝑖𝑗𝑗𝑇𝑇𝑖𝑖𝑛𝑛𝐷𝐷𝑖𝑖𝑗𝑗𝑖𝑖 + 𝑃𝑃2𝑖𝑖𝐴𝐴𝑐𝑐𝑇𝑇𝐷𝐷𝑖𝑖𝑗𝑗𝑖𝑖 +  (𝑃𝑃𝐷𝐷)2𝑖𝑖𝑗𝑗𝐴𝐴𝑐𝑐𝑇𝑇𝐷𝐷𝑖𝑖𝑗𝑗𝑖𝑖 + 𝛽𝛽3𝐷𝐷𝑆𝑆𝐶𝐶𝑖𝑖 +  𝜀𝜀𝑖𝑖𝑗𝑗𝑖𝑖 (12) 

All models were fitted using the package lme4 version 1.1-12 (Bates, Maechler, Bolker, & 
Walker, 2015) in R programming environment 3.2236 (R Development Core Team, 2015). 

6.3 Results 

6.3.1 Response rate 

In Study 1, 4987 observations were collected from 140 participants. The mean response rate 
was 63.6% (median = 69.6%, SD = 23.8%). In Study 2, 5599 observations were collected from 
the 146 participants. The mean response rate was 68.5% (median = 75.0%, SD = 22.0%)37. 
Given that there was no monetary reward for the participants, the respondent rates were 
slightly lower than the ones in some other experience sampling studies (77% in a meta-anal-
ysis, see Hofmann & Patel, 2015), but they were still comparable to some studies with pay-
ment (e.g., Wilt, Funkhouser, & Revelle, 2011). As we planned to estimate diurnal patterns in 
model 3 and model 4, a sufficient number of observations for different periods of the day were 
required. Therefore, participants with less than 5 observations in either the morning (06:00 
- 12:00), afternoon (12:00 - 18:00), or evening (later than 18:00) were excluded, leaving us 
with 125 participants in Study 1 and 132 participants in Study 2 for the following analyses38.  

6.3.2 Descriptives, variance components, and reliability coefficients 

Table 6.1 to Table 6.3 summarize descriptive results of the data, including sample means, 
variance components, and derived reliability coefficients. According to the sample means, on 
average, participants were in positive mood, experienced low tense arousal or stress, and re-
ported to have relatively high state self-control capacity (particularly for the willpower and 
urge control items). In general, inter-individual difference (𝜎𝜎𝑝𝑝𝑒𝑒𝑙𝑙𝑠𝑠𝑓𝑓𝑗𝑗2 ) accounted for a sizable 

portion of total variance for all variables (10-40%), and its contribution was larger for three 
components of state self-control capacity (willpower, urge control, and motivation) and tense 
arousal (25-40%) than for energetic arousal, sleepiness, and concentration (10-20%). In con-
trast, there was no overall day-to-day variance (𝜎𝜎𝑓𝑓𝑙𝑙𝑑𝑑–of–week

2 ), but person-specific day-to-day 

                                                   
 
36 We also fitted a Bayesian version of all models by using the package “brms” version 1.10.0 (Bürkner, 
2017), with order-1 autoregressive structure specified within the outcome variables. As results of the two 
approaches were almost identical, only results from the “lme4” package are reported. Code for the Bayesian 
models can be found in the scripts at the Open Science Framework.  

37 For each scheduled notification, only responses that were made within half an hour were included to 
avoid largely overlapping observations in time. 

38 Including the excluded participants did not change the results to any significant extent.  
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variation (𝜎𝜎𝑝𝑝∗𝑓𝑓2 ) did explain a small portion of total variance for each variable (6-12%).  

This trend of was slightly more evident for core affect than for state self-control capacity. 
Moreover, overall and person-specific session-to-session variation accounted for about 10% 
of the total variance for sleepiness, around 3-5% for energetic arousal, concentration, and 
motivation, but not for other variables. Finally, when within-person within-day momentary 
variations (𝜎𝜎𝑝𝑝∗𝑓𝑓∗𝑠𝑠2 ) were estimated for variables with multiple-item measures, they greatly re-

duced residual variance and accounted for about 15-40% of the total variance. Results also 
indicated that state self-control capacity had less momentary fluctuations than core affect.  

In terms of reliability, between-person reliability (𝐸𝐸𝜌𝜌2) was good for most measures, with 

generalizability coefficient ranging from 0.75 to 0.95. For determing the relative rank of par-
ticipants’ scores on core affect and state self-control capacity, single-item measures seem to 
be good enough in typical experience sampling designs, since large number of observations 
are averaged (56 in our case). However, within-person reliability coefficients of change (𝑅𝑅𝑐𝑐) 
were lower, ranging from acceptable for core affect (0.69 to 0.77) to insufficient for state self-
control capacity (below 0.7). Although the number of measurement items should be increased 
whenever possible to increase within-person reliability, our results of within-person correla-
tions were unlikely to suffer from this issue because measurement errors of a pair of variables 
were independent in theory. Our analyses of reliability did question the validity of combining 
state self-control capacity items to a total score (see Table 6.3), as evident by the low average 
alpha coefficients (𝛼𝛼𝑙𝑙𝑎𝑎𝑒𝑒), low reliability of change, and the large percentages of total variance 
accounted by overall and person-specific item-to-item variations (𝜎𝜎𝑖𝑖𝑡𝑡𝑒𝑒𝑟𝑟2  and 𝜎𝜎𝑝𝑝∗𝑖𝑖2 ).  

Table 6.1 Means, variance components, and reliability coefficients for core affect. 

 Valence % EA % TA % Sleepiness % 

𝜎𝜎𝑝𝑝𝑒𝑒𝑙𝑙𝑠𝑠𝑓𝑓𝑗𝑗2  0.31  
0.25 

20.7  
17.6 

0.28 
0.24 

15.0  
12.1 

0.61 
0.50 

30.6 
24.9 

0.32  
0.58 

11.0 
18.0 

𝜎𝜎𝑓𝑓𝑙𝑙𝑑𝑑–𝑓𝑓𝑓𝑓–𝑤𝑤𝑒𝑒𝑒𝑒𝑖𝑖
2  0.02 

0.01 
1.2 
0.4 

0.02 
0.02 

0.9 
0.8 

0.03 
0.01 

1.6 
0.5 

0.02  
0.03 

0.6 
0.8 

𝜎𝜎𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠𝑖𝑖𝑓𝑓𝑗𝑗2  
0.03 
0.01 

1.9 
1.0 

0.08 
0.06 

4.1 
3.2 

0.02 
0.01 

0.8 
0.6 

0.32 
0.25 

10.9 
7.9 

𝜎𝜎𝑖𝑖𝑡𝑡𝑒𝑒𝑟𝑟2  
− 

0.00 
− 
0 

− 
0.00 

− 
0.2 

− 
0.01 

− 
0.5 

− 
− 

− 
− 

𝜎𝜎𝑝𝑝∗𝑓𝑓2  0.18 
0.11 

11.9 
7.7 

0.19 
0.14 

10.4 7.4 
0.23 
0.16 

11.7 
7.7 

0.31  
0.27 

10.4 
8.5 

(To be continued) 
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 Valence % EA % TA % Sleepiness % 

𝜎𝜎𝑝𝑝∗𝑠𝑠2  0.02 
0.02 

1.2 
1.2 

0.07 
0.10 

4.0 
5.0 

0.02 
0.03 

0.9 
1.7 

0.20  
0.29 

6.9 
8.9 

𝜎𝜎𝑝𝑝∗𝑖𝑖2  − 
0.03 

− 
2.2 

− 
0.03 

− 
1.8 

− 
0.05 

− 
2.4 

0.03  
0.04 

0.9 
1.3 

𝜎𝜎𝑓𝑓∗𝑠𝑠2  
0.01 
0.01 

0.5 
0.6 

0.02 
0.02 

1.2 
0.9 

0.00 
0.01 

0.2 
0.4 

− 
− 

− 
− 

𝜎𝜎𝑓𝑓∗𝑖𝑖2  
− 

0.00 
− 
0 

− 
0.00 

− 
0 

− 
0.00 

− 
0.2 

− 
− 

− 
− 

𝜎𝜎𝑠𝑠∗𝑖𝑖2  
− 

0.00 
− 
0 

− 
0.00 

− 
0 

− 
0.00 

− 
0 

− 
− 

− 
− 

𝜎𝜎𝑝𝑝∗𝑓𝑓∗𝑠𝑠2  − 
0.62 

− 
43.3 

− 
0.69 

− 
35.6 

− 
0.58 

− 
29.0 

− 
− 

− 
− 

𝜎𝜎𝑝𝑝∗𝑓𝑓∗𝑖𝑖2  − 
0.00 

− 
0.2 

− 
0.03 

− 
1.3 

− 
0.05 

− 
2.4 

− 
− 

− 
− 

𝜎𝜎𝑝𝑝∗𝑠𝑠∗𝑖𝑖2  − 
0.00 

− 
0 

− 
0.00 

− 
0 

− 
0.01 

− 
0.3 

− 
− 

− 
− 

𝜎𝜎𝑓𝑓∗𝑠𝑠∗𝑖𝑖2  
− 

0.00 
− 
0 

− 
0.00 

− 
0 

− 
0.00 

− 
0 

− 
− 

− 
− 

𝜎𝜎𝑙𝑙𝑒𝑒𝑠𝑠𝑖𝑖𝑓𝑓𝑢𝑢𝑙𝑙𝑠𝑠2  
0.93  
0.37 

62.6 
25.8 

1.19  
0.61 

64.4  
31.6 

1.08  
0.59 

54.2  
29.4 

1.76  
 1.76 

59.4  
54.6 

𝜎𝜎𝑡𝑡𝑓𝑓𝑡𝑡𝑙𝑙𝑠𝑠2  
1.48  
1.44 

100  
100 

1.85  
1.94 

100  
100 

1.99  
2.01 

100 
100 

2.95  
3.22 

100  
100 

𝛼𝛼𝑙𝑙𝑎𝑎𝑒𝑒 
− 

0.82 
 

− 
0.77 

 
− 

0.84 
 

− 
− 

 

𝐸𝐸𝜌𝜌2  0.87  
0.84 

 
0.83  
0.77 

 
0.92 
0.89 

 
0.76  
0.85 

 

𝑅𝑅𝑐𝑐 
− 

0.77 
 

− 
0.69 

 
− 

0.75 
 

− 
− 

 

mean 
5.04 
4.81 

 
4.10 
4.12 

 
2.67 
2.96 

 
4.34   
4.71 

 

Note: EA = energetic arousal; TA = tense arousal; In interaction terms, p = person, d = day–of–week, 
s = session, i = item. For ease of presentation, the results of Study 1 and Study 2 are shown at the top 
and bottom of each cell respectively. 
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Table 6.2 Means, variance components, and reliability coefficients for items of state self-

control capacity. 

 SSC_con % SSC_wil % SSC_urg % SSC_mot % 

𝜎𝜎𝑝𝑝𝑒𝑒𝑙𝑙𝑠𝑠𝑓𝑓𝑗𝑗2  0.54 
0.51 

20.1 
16.1 

0.90 
0.70 

37.5  
27.2 

0.88 
0.78 

39.0 
31.2 

0.62 
0.76 

26.4 
32.1 

𝜎𝜎𝑓𝑓𝑙𝑙𝑑𝑑–𝑓𝑓𝑓𝑓–𝑤𝑤𝑒𝑒𝑒𝑒𝑖𝑖
2  0.01 

0.00 
0.4 
0.1 

0.01 
0.00 

0.2 
0 

0.01 
0.01 

0.3  
0.5 

0.01 
0.00 

0.3 
0.2 

𝜎𝜎𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠𝑖𝑖𝑓𝑓𝑗𝑗2  
0.11 
0.18 

4.1 
5.6 

0.02 
0.04 

0.9 
1.5 

0.01 
0.03 

0.6 
1.0 

0.06 
0.07 

2.4  
3.0 

𝜎𝜎𝑝𝑝∗𝑓𝑓2  0.19 
0.21 

7.2  
6.6 

0.15 
0.18 

6.2  
7.0 

0.14 
0.21 

6.3  
8.4 

0.19 
0.16 

7.9 
6.8 

𝜎𝜎𝑝𝑝∗𝑠𝑠2  0.11 
0.19 

4.3  
5.9 

0.07 
0.07 

2.9  
2.6 

0.05 
0.06 

2.2 
2.3 

0.07 
0.11 

3.1 
4.5 

𝜎𝜎𝑓𝑓∗𝑠𝑠2  
0.01 
0.02 

0.3  
0.7 

0.00 
0.01 

0.1 
0.4 

0.00 
0.00 

0 
0.1 

0.01 
0.00 

0.4  
0.1 

𝜎𝜎𝑙𝑙𝑒𝑒𝑠𝑠𝑖𝑖𝑓𝑓𝑢𝑢𝑙𝑙𝑠𝑠2  
1.70 
2.08 

63.5  
65.0 

1.25 
1.57 

52.2  
61.2 

1.16 
1.42 

51.6  
56.4 

1.41 
1.26 

59.6  
53.2 

𝜎𝜎𝑡𝑡𝑓𝑓𝑡𝑡𝑙𝑙𝑠𝑠2  
2.68 
3.20 

100  
100 

2.40 
2.57 

100  
100 

2.24 
2.51 

100  
100 

2.24 
2.51 

100  
100 

𝐸𝐸𝜌𝜌2 0.88 
0.85 

 
0.95 
0.92 

 
0.95 
0.93 

 
0.91 
0.93 

 

mean 
4.40 
4.28 

 
5.29 
5.06 

 
5.35 
5.20 

 
3.98 
3.95 

 

Note: SSC_con = state self-control, concentration; ssc_wil = state self-control, willpower; SSC_urg = 
state self-control, urge control; SSC_mot = state self-control, motivation; In interaction terms, 𝑚𝑚 = 
𝑚𝑚𝑚𝑚𝑃𝑃𝑇𝑇𝑐𝑐𝑛𝑛, 𝑑𝑑 = 𝑑𝑑𝑚𝑚𝑦𝑦– 𝑐𝑐𝑖𝑖–𝑤𝑤𝑚𝑚𝑚𝑚𝑤𝑤, 𝑇𝑇 = 𝑇𝑇𝑚𝑚𝑇𝑇𝑇𝑇𝑖𝑖𝑐𝑐𝑛𝑛, 𝑖𝑖 = 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚. For ease of presentation, the results of Study 1 and 
Study 2 are shown at the top and bottom of each cell respectively. 
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Table 6.3 Means, variance components, and reliability coefficients for 4-item and 2-item 

state self-control scales. 

 
4-item state self-

control 
% 

2- item state self-
control (willpower, 

urge control) 
% 

𝜎𝜎𝑝𝑝𝑒𝑒𝑙𝑙𝑠𝑠𝑓𝑓𝑗𝑗2  0.28 / 0.31 9.8 / 10.2 0.65 / 0.61 28.1 / 24.0 

𝜎𝜎𝑓𝑓𝑙𝑙𝑑𝑑–𝑓𝑓𝑓𝑓–𝑤𝑤𝑒𝑒𝑒𝑒𝑖𝑖
2  0.01 / 0.00 0.3 / 0 0.01 / 0.00 0.3 / 0.1 

𝜎𝜎𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠𝑖𝑖𝑓𝑓𝑗𝑗2  0.04 / 0.07 1.3 / 2.2 0.02 / 0.03 0.8 / 1.3 

𝜎𝜎𝑖𝑖𝑡𝑡𝑒𝑒𝑟𝑟2  0.43 / 0.37 15.0 / 12.1 0.00 / 0.01 0.1 / 0.4 

𝜎𝜎𝑝𝑝∗𝑓𝑓2  0.09 / 0.10 3.1 / 3.3 0.09 / 0.14 3.8 / 5.5 

𝜎𝜎𝑝𝑝∗𝑠𝑠2  0.06 / 0.05 2.1 / 1.6 0.04 / 0.00 1.8 / 0 

𝜎𝜎𝑝𝑝∗𝑖𝑖2  0.46 / 0.38 16.0 / 12.6 0.23 / 0.13 10.0 / 5.1 

𝜎𝜎𝑓𝑓∗𝑠𝑠2  0.00 / 0.00 0.1 / 0.2 0.00 / 0.00 0 / 0.1 

𝜎𝜎𝑓𝑓∗𝑖𝑖2  0.00 / 0.00 0 / 0.1 0.00 / 0.00 0 / 0.1 

𝜎𝜎𝑠𝑠∗𝑖𝑖2  0.01 / 0.01 0.4 / 0.4 0.00 / 0.00 0 / 0 

𝜎𝜎𝑝𝑝∗𝑓𝑓∗𝑠𝑠2  0.43 / 0.52 15.0 / 17.1 0.40 / 0.51 17.1 / 20.0 

𝜎𝜎𝑝𝑝∗𝑓𝑓∗𝑖𝑖2  0.08 / 0.09 2.8 / 3.1 0.05 / 0.06 2.4 / 2.2 

𝜎𝜎𝑝𝑝∗𝑠𝑠∗𝑖𝑖2  0.02 / 0.06 0.6 / 1.9 0.02 / 0.07 0.7 / 2.8 

𝜎𝜎𝑓𝑓∗𝑠𝑠∗𝑖𝑖2  0.00 / 0.01 0.1 / 0.2 0.00 / 0.00 0 / 0.2 

𝜎𝜎𝑙𝑙𝑒𝑒𝑠𝑠𝑖𝑖𝑓𝑓𝑢𝑢𝑙𝑙𝑠𝑠2  0.95 / 1.06 33.4 / 35.1 0.81 / 0.98 34.8 / 38.2 

𝜎𝜎𝑡𝑡𝑓𝑓𝑡𝑡𝑙𝑙𝑠𝑠2  2.85 / 3.04 100 / 100 2.32 / 2.56 100 / 100 

𝐸𝐸𝜌𝜌2  0.65 / 0.70  0.81 / 0.85  

𝑅𝑅𝑐𝑐 0.64 / 0.66  0.50 / 0.51  

𝛼𝛼𝑙𝑙𝑎𝑎𝑒𝑒 0.69 / 0.70  0.69 / 0.66  

mean 4.76 / 4.62  5.32 / 5.14  

Note: In interaction terms, 𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑃𝑃𝑇𝑇𝑐𝑐𝑛𝑛, 𝑑𝑑 = 𝑑𝑑𝑚𝑚𝑦𝑦– 𝑐𝑐𝑖𝑖–𝑤𝑤𝑚𝑚𝑚𝑚𝑤𝑤, 𝑇𝑇 = 𝑇𝑇𝑚𝑚𝑇𝑇𝑇𝑇𝑖𝑖𝑐𝑐𝑛𝑛, 𝑖𝑖 = 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚. For ease of presen-
tation, the results of Study 1 and Study 2 are separated by “/”.  



6.3 Results  

 

173 
 

6.3.3 Modeling diurnal patterns in state self-control and affective states 

Adding the time variables (𝑇𝑇𝑖𝑖𝑛𝑛𝐷𝐷𝑖𝑖𝑗𝑗𝑖𝑖  and 𝐴𝐴𝑐𝑐𝑇𝑇𝐷𝐷𝑖𝑖𝑗𝑗𝑖𝑖) into the models (from model 1 to model 2) 

significantly improved model fit for all state measures (p < .0001 in all Chi-square tests), 
indicating some degree of diurnal patterns in the temporal variations of state self-control ca-
pacity and core affect. Table 6.4 summarizes the results of the random-intercept models 
(model 2) and the random-slope models (model 3). An increase in pseudo R2 indicates an 
improved model fit by adding the time variables as predictors (model 2), or by further allow-
ing the coefficients for the time variables to vary between participants and between days 
within each participant (model 3)39. Among the four state self-control components, concen-
tration had a stronger diurnal pattern than the other three components, and according to the 
phase angle estimates, concentration level on average peaked at around 13:30 - 14:00 for the 
student participants. It was also interesting to observe that the peak of urge control happened 
in the late morning (around 10:30), while all the other components of state self-control ca-
pacity peaked in the early afternoon (13:00 - 14:30). However, as the diurnal patterns for urge 
control and willpower were very weak, the estimated phase angles should be interpreted with 
caution. Among the dimensions of core affect, sleepiness had the strongest diurnal pattern, 
followed by energetic arousal, while valence and tense arousal had very weak patterns. Ac-
cording to the phase angle estimates, participants were happiest in the evening (cf. Kahne-
man, Krueger, Schkade, Schwarz, & Stone, 2004), most stressed in the early afternoon 
(around 13:00), most vital at around 15:00, and sleepiest at around 3:00. 

  

                                                   
 
39  ∆pseudo-R2 was calculated as the increase in conditional R2LMM (see Johnson, 2014; Nakagawa & 
Schielzeth, 2013) from the null models (model 1) to the random-intercept models (model 2), and to the 
random-slope models (model 3). The calculations were done using the piecewiseSEM package in R 
(Lefcheck, 2015).  
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Table 6.4 Results of the random-intercept and random-slope cosinor models. 

State 

Variable 

Model 2 Model 3 

Model fit 

change 

(∆ pseudo-

R2) 

 

Amplitude 

 

 

Phase angles 

 

Model fit 

change 

(∆ pseudo-

R2) 

 

Amplitude 

 

 

Phase angles 

 

Valence 
1.5%  
1.3% 

0.18  
0.16 

18:52   
20:41 

11.8%   
9.9% 

0.18  
0.15 

18:50   
20:34 

EA 
4.3%  
4.0% 

0.36  
0.37 

15:03  
15:05 

16.6%  
16.6% 

0.37  
0.37 

15:04  
15:11 

TA 
1.1%  
0.8% 

0.16  
0.14 

13:55  
13:06 

8.0%  
9.1% 

0.16  
0.13 

13:56  
13:14 

Sleepiness 
11.6%  
 7.8% 

0.62  
0.53 

3:17  
3:03 

27.2% 
23.3% 

0.63  
0.54 

3:16  
3:06 

SSC_con 
5.2%  
5.7% 

0.37  
0.36 

14:14  
13:21 

14.4%  
19.1% 

0.36  
0.37 

14:09   
13:38 

SSC_wil 
1.3%  
1.5% 

0.17  
0.16 

13:11  
11:50 

7.9%  
9.1% 

0.17  
0.17 

13:01   
12:06 

SSC_urg 
0.7%  
1.1% 

0.11  
0.14 

11:05  
11:17 

7.3%  
7.4% 

0.10  
0.13 

10:50   
11:09 

SSC_mot 
3.1%  
3.7% 

0.28  
0.27 

14:26  
13:10 

11.9%  
 11.5% 

0.27  
0.27 

14:25   
13:12 

Note: For ease of presentation, the results of Study 1 and Study 2 are shown at the top and bottom of 
each cell respectively. 
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6.3.4 Effects of trait self-control on affective states and state self-control capacity 

The effects of trait self-control on affective states were estimated as the parameter 𝛽𝛽3 (stand-
ardized regression coefficient) in model 4. As expected, trait self-control seemed to positively 
correlate with valence across both studies (see Figure 6.1), although the effects were quite 
small and nonsignificant in the individual studies (Study 1: 𝛽𝛽 = 0.07, 95% CI = [-0.01, 0.16], 
p = .097, r = 0.1340; Study 2: 𝛽𝛽 = 0.08, 95% CI = [-0.01, 0.16], p = .090, r = 0.11). Moreover, 
trait self-control was correlated to tense arousal in the studies (see Figure 6.1), meaning that 
students with higher trait self-control experienced, on average, less tension or stress during 
the sampling week (Study 1: 𝛽𝛽 = -0.14, 95% CI = [-0.24, -0.05], p = .005, r = -0.24; Study 2: 
𝛽𝛽 = -0.15, 95% CI = [-0.26, -0.04], p = .009, r = -0.22). However, in both studies, trait self-
control did not significantly correlate with energetic arousal (Study 1: 𝛽𝛽 = 0.02, 95% CI = [-
0.05, 0.10], p = 0.57; Study 2: 𝛽𝛽 = 0.05, 95% CI = [-0.03, 0.13], p = .24) nor sleepiness (Study 
1: 𝛽𝛽 = -0.04, 95% CI = [-0.11, 0.02], p = .20; Study 2: 𝛽𝛽 = -0.05, 95% CI = [-0.13, 0.03], p 
= .24). 

We also examined the relationship between trait self-control and state self-control capacity 
in the same way (see Figure 6.2). Results revealed reliable positive correlations between trait 
self-control and three components of state self-control capacity, including concentration 
(Study 1: 𝛽𝛽 = 0.15, 95% CI = [0.08, 0.23], p < .001, r = 0.28; Study 2: 𝛽𝛽 = 0.16, 95% CI = 
[0.08, 0.23], p < .001, r = 0.31), willpower (Study 1: 𝛽𝛽 = 0.18, 95% CI = [0.08, 0.28], p < .001, 
r = 0.28; Study 2: 𝛽𝛽 = 0.25, 95% CI = [0.16, 0.34], p < .001, r = 0.41), urge control (Study 1: 
𝛽𝛽 = 0.25, 95% CI = [0.15, 0.35], p < .001, r = 0.39; Study 2: 𝛽𝛽 = 0.26, 95% CI = [0.17, 035], p 
< .001, r = 0.48). For motivation, the results were inconsistent across the two studies − trait 
self-control had a small positive effect on motivation in Study 2 (𝛽𝛽 = 0.12, 95% CI = [0.02, 
0.23], p = .027, r = 0.19), but not in Study 1 (𝛽𝛽 = 0.005, 95% CI = [-0.09, 0.10], p = .92, r = 
0.01). The inconsistency might be due to the change in the phrasing of the item between the 
two studies – emphasizing long-term goals better matched the conceptualization of self-con-
trol in the Brief Trait Self-Control Scale (see 6.2.3 for details). 

  

                                                   
 
40 The r henceforth, as an effect-size measure, was calculated as the correlational strength between trait 
self-control and the between-person components of the state variables. It provides a way to compare our 
data with the effect sizes in previous studies with different data structures.  
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Figure 6.1 Modeled diurnal patterns of core affect dimensions for high and low trait self-
control capacity groups. Mean values with error bars (one SE) for different hours of the day 
(between 7 and 23) are plotted together with the fitted sinusoidals.  
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Figure 6.2 Modeled diurnal patterns of components of state self-control capacity for high 
and low trait self-control capacity groups. Mean values with error bars (one SE) for different 
hours of the day (between 7 and 23) are plotted together with the fitted sinusoidals.  
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6.3.5 Between and within-person correlations between state self-control and affective 
states 

Table 6.5 and Table 6.6 summarizes between-person and within-person correlations between 
pairs of state measures used in the two studies respectively. For understanding the relation-
ship between two variables, a between-person correlation reflects the accumulated associa-
tion over time at person-level, indicating whether a person scoring high on one variable tends 
to score high or low on the other variable. In contrast, a within-person correlation indicates 
whether two variables tend to deviate from personal means at the same time. Overall, results 
showed a clear pattern that between-person correlations were generally stronger than within-
person correlations. 

In the cluster of core affect (top-left of the tables), the within-person correlations in general 
supported the valence-arousal model of core affect (Russell & Barrett, 1999): Weak or no cor-
relation between the orthogonal dimensions (valence-arousal, energetic arousal-tense 
arousal), and moderate correlations in the expected directions between the adjacent dimen-
sions (valence-energetic arousal, valence-tense arousal, and energetic arousal-sleepiness). 
However, inconsistent with valence-arousal model, a negative correlation between tense 
arousal and sleepiness (or positive correlation between tense arousal and pure arousal) was 
not found.  

In the state self-control cluster (bottom-right), it was interesting to observe that the motiva-
tion component only correlated very weakly with the other three highly correlated compo-
nents at the between-person level, but it did correlate strongly with them at the within-person 
level. In other words, participants’ average levels of motivation were largely independent 
from the other components, but they tended to have stronger motivation at the time when 
they had more willpower, could concentrate well, and control their urges. 

The relationship between state self-control capacity and core affect is shown in the left-bot-
tom of the two tables. At the between-person level (Table 6.5), participants with higher aver-
age self-control capacity were also happier, more energetic, less stressed, and less sleepy on 
average. These results were in line with the correlations of trait self-control and these dimen-
sions of core affect. However, the motivation component of self-control correlated strongly 
with energetic arousal and sleepiness, weakly with valence, but was independent from tense 
arousal. When within-person correlations were examined (Table 6.6), it was intriguing to ob-
serve that state self-control’s correlations with valence shrank, and the correlation with stress 
disappeared almost completely. In contrast, its relationship with energetic arousal and sleep-
iness remained at the same level, with even a small increase for the motivation component. 
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Table 6.5 Between-person correlation matrix of state measures. 

 Valence EA TA Sleepiness SSC_con SSC_wil SSC_urg SSC_mot 

Valence 1        

EA 
0.64 
0.68 

1       

TA 
-0.56 
-0.46 

-0.33 
-0.28 

1      

Sleepi-
ness 

-0.51 
-0.43 

-0.66 
-0.52 

0.33  
0.27 

1     

SSC_con 
0.31 
0.32 

0.27 
0.36 

 
-0.46 
-0.36 

-0.43 
-0.48 

1    

SSC_wil 
0.50 
0.24 

0.34 
0.25 

-0.55 
-0.35 

-0.38 
-0.23 

0.65 
0.60 

1   

SSC_urg 
0.32 
0.17 

0.16 
0.12 

-0.47 
-0.47 

-0.30 
-0.19 

0.58 
0.55 

0.71 
0.76 

1  

SSC_mot 
0.13 
0.23 

0.35 
0.30 

-0.04 
0.02 

-0.36 
-0.17 

0.14  
0.24 

0.08 
0.24 

-0.04 
0.09 

1 

Note: For ease of presentation, the results of Study 1 and Study 2 are shown at the top and bottom of 
each cell respectively. 
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Table 6.6 Within-person correlation matrix of state measures. 

 Valence EA TA Sleepiness SSC_con SSC_wil SSC_urg SSC_mot 

Valence 1        

EA 
0.43 
0.44 

1      
 

TA 
-0.28 
-0.36 

-0.06  
-0.03 

1     
 

Sleepi-
ness 

-0.34 
-0.28 

-0.56 
-0.54 

0.01  
-0.02 

1    
 

SSC_con 
0.23 
0.19 

0.37 
0.36 

-0.05 
-0.01 

-0.41  
-0.38 

1   
 

SSC_wil 
0.36  
0.31 

0.32 
0.39 

-0.16 
-0.15 

-0.33  
-0.33 

0.41  
0.45 

1  
 

SSC_urg 
0.16  
0.14 

0.14 
0.18 

-0.08 
-0.11 

-0.18  
-0.19 

0.30 
0.30 

0.35  
0.34 

1 
 

SSC_mot 
0.27 
0.23 

0.36 
0.33 

-0.02 
-0.04 

-0.35  
-0.28 

0.33 
0.34 

0.33 
0.32 

0.25 
0.23 

1 

Note: For ease of presentation, the results of Study 1 and Study 2 are shown at the top and bottom of 
each cell respectively.
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6.4. Discussion 

In two experience sampling studies, we studied the variation of self-control capacity among 
university students in their daily lives. Using a multilevel modeling approach and the cosinor 
fitting method, we were able to quantify the variation of self-control capacity at different lev-
els of interests, and to model its temporal variation as diurnal patterns. Moreover, we sys-
tematically examined the relationship between self-control capacity and core affect, in order 
to facilitate better theorization of self-control capacity as a construct. With two large group of 
participants and time-intensive repeated measures, results were quite consistent across the 
two studies and are likely to be robust, at least for similar student samples in similar contexts. 
We discuss the implications of the results for self-control research and for potential applica-
tions to digital lifestyle interventions. 

6.4.1 Variations of self-control capacity 

The first set of findings simply characterizes the variability of self-control capacity. Compared 
with valence, pure arousal (sleepiness), and energetic arousal, self-control capacity seems to 
differ more strongly between participants (approximately one-third of the total variance is 
due to between-subject factors). Although numerous studies have suggested a stable trait dif-
ference in the ability of self-control (de Ridder et al., 2012), our results provide the first quan-
titative information about the percentage of the inter-individual difference in comparison 
with other psychological states. Even though the absolute percentage estimation could have 
been inflated by response style differences between participants, the relative ranking suggests 
that inter-individual difference is more stable for self-control capacity than for core affect. In 
contrast, intra-individual day-to-day variation of self-control capacity is quite small in our 
data, despite common folk psychological beliefs (e.g., people often talk about having days in 
which they are able to control themselves better or worse, see Bergen, 2011). In fact, among 
all variables measured, state self-control components had the smallest day-to-day variations 
(all less than 9% of the total variance). Similarly, as estimated using the 4-item composite 
scale, self-control capacity also appears to have smaller intra-individual variation from mo-
ment to moment (around 15%), when compared to the momentary variation in core affect 
(30-40%). For the concentration and motivation components of self-control capacity, a small 
portion of their variations can be modeled as diurnal patterns. A typical student’s ability to 
concentrate, and their motivation to pursue important goals, seems to increase after awaken-
ing, reach a peak at around 13:00 in the afternoon, and then decrease till sleep time. This 
mirrors the time-of-day pattern of learning performance in Randle et al. (2017), where per-
formance also peaked early in the afternoon. Nonetheless, these time-of-day effects are only 
small parts of their temporal variations, which may otherwise be influenced by contextual 
factors (e.g., their physical and social environment, ongoing activities, etc.). Future experi-
ence sampling studies should attempt to measure contextual factors in people’s daily lives. 
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Figure 6.3 Forest plot of the correlation between trait self-control and affective valence. 
Note: Forest plot of the correlation between trait self-control and affective valence. The meta-
analytic effect size and 95% CIs were estimated using a random-effect model. (DRM = day 
reconstruction method; ESM = experience sampling method). 

 

 

Figure 6.4 Forest plot of the correlation between trait self-control and stress (tense arousal). 

Note: Forest plot of the correlation between trait self-control and stress (tense arousal). The 

meta-analytic effect size and 95% CIs were estimated using a random-effect model. (ESM = 

experience sampling method). 
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6.4.2 Relationship between self-control capacity and core affect 

A second contribution of our studies is the systematic examination of the relationship be-
tween self-control and core affect. When self-control is measured at trait level, our results 
corroborate previous studies on the associations of trait self-control with affective valence 
and tense arousal (Bowlin & Baer, 2012; Daly et al., 2014; Galla & Wood, 2015; Hofmann et 
al., 2014). Although the effect on valence was estimated to be small and nonsignificant, we 
can reject a null-effect if we combine the data across the studies meta-analytically (see Figure 
6.3). One reason for the smaller effect sizes in our studies (r = 0.14 and r = 0.11) compared 
with the ones in earlier studies (meta-analytic r = 0.26) might be that we used bipolar 
measures of valence while other studies mostly used unipolar scales selected from PANAS 
(Watson, Clark, & Tellegen, 1988). The bipolar items we used (e.g., happy-sad, pleasant-un-
pleasant) measure only the valence dimension, whereas the unipolar scales of positive affect 
sometimes also include items related to tense arousal, such as calm, which might have biased 
effect sizes in those studies. Regardless of the different conceptualizations and measurements 
of affective valence, when evaluated based on all available data, we can conclude that a small 
positive association between trait self-control and valence is reliable and robust in different 
populations. For tense arousal, our data provide the first clear evidence using an experience 
sampling design that people with higher trait self-control are likely to experience less psycho-
logical stress in daily lives, complementing evidence obtained using a one-time survey 
(Bowlin & Baer, 2012) and a daily diary method (Galla & Wood, 2015). The effect sizes of 
correlation between trait self-control and tense arousal are similar to those observed in ear-
lier studies (see Figure 6.4).  

In addition, by measuring state self-control capacity multiple times for multiple days, we 
could model the relationship between self-control capacity and core affect as both between-
person and within-person correlations. The estimated between-person correlations between 
self-control capacity and core affect are in line with the results at the trait level, but with larger 
effect sizes (e.g., an increase of r from around 0.2 to 0.4 for sleepiness). The larger effect sizes 
may be explained by the fact that state measures of both self-control capacity and core affect 
are constrained by participants’ experience in the week of the studies, while the trait self-
control scale measures people’s retrospective beliefs about their abilities based on broader 
past experience. However, as state measures of all variables were contingent to each other in 
each experience sampling session and were in similar formats, the between-person correla-
tions might have been inflated by individual differences in response styles (e.g., some partic-
ipants tended to rate all scales more extremely). When the between-person components and 
structural time-of-day effects are accounted for, the residual correlations at a within-person 
level reflect the genuine intra-individual relationship between self-control capacity and core 
affect. Intra-individually, it is clear that a person’s self-control capacity changes together with 
their level of alertness and vitality. When someone is alert and energetic, they are likely better 
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able to concentrate, to control urges, and to pursue long-term goals. Surprisingly, results sug-
gest no correlation between self-control capacity and tense arousal at the within-person level, 
even though inter-individually the correlation seems to be robust (see Figure 6.4). Despite 
the evidence that acute stress elicited experimentally can impede self-control process (Maier 
et al., 2015), the natural variation of stress and self-control capacity may not be strongly re-
lated in people’s daily lives. This conclusion should be treated with caution, given the uncon-
trolled factors in our experience sampling design and the limited measurement reliability. 

Another intriguing finding, for which we currently see no clear theoretical explanation, was 
that the motivation component of state self-control capacity did not correlate with concen-
tration, willpower, and urge-control at between-person level, but did correlate strongly with 
these components intra-individually. According to self-control models from a dual-system 
perspective (Hofmann et al., 2009), it might be that the motivation item captured the dynam-
ics of control motivation in the exertion cluster, whereas the willpower and urge-control items 
captured desire strength in the activation cluster. Moreover, our finding that motivation is 
distinct from willpower and urge-control seems to complement recent work that implies an 
overarching control role of motivation in self-control processes (Milyavskaya, Inzlicht, Hope, 
& Koestner, 2015). Given the seemingly deviating result for motivation, future work should 
particularly explore the role of motivation in self-control processes. 

6.4.3 Implications for the conceptualization and measurement of self-control capacity 

Our studies have important implications for the conceptualization of state self-control capac-
ity, and how this construct should be measured. By positioning self-control capacity in a no-
mological network with dimensions of core affect, it becomes clear that the state variation of 
self-control capacity cannot be fully explained by the variation in core affect. This distinction 
is consistent with results from the ego-depletion paradigm in that changes in self-control ca-
pacity are generally not mirrored by changes in positive and negative affect (e.g., Muraven et 
al., 1998), and the distinction also extends to feelings of arousal and vitality. Although our 
results are far from resolving the theoretical debate about the causal role of self-control ca-
pacity, they do suggest that self-control capacity may provide additional explanatory power, 
above and beyond variation in core affect. This tentative conclusion could be strengthened if 
future studies using behavioral measures of self-control outcomes would conceptually repli-
cate these results. For such studies to be successful, other potential determinants of self-con-
trol outcomes need to be carefully controlled, including task factors (e.g., attractiveness of 
immediate rewards) as well as control motivation as a different person factor (cf. Kotabe & 
Hofmann, 2015). 

On the other hand, our results cast further doubt on the view that self-control capacity is a 
unified finite resource (see also Randle et al., 2017). At the very least, results suggest that the 
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concentration and motivation components of state self-control capacity are two sub-con-
structs that are distinct from a third sub-construct as measured by the willpower and urge-
control items. With the temporal richness of experience sampling data, the distinctions are 
made based not only on the pattern of between-person correlations, but also on the pattern 
of within-person correlations and the temporal characteristics of the measured items. For 
future research, instead of treating state self-control capacity as a unified construct, a more 
fruitful approach might be to examine concrete sub-constructs of self-control capacity and to 
study how each of these sub-constructs influences self-control outcomes. For measuring the 
sub-constructs, we would recommend using 2-3 items for each construct based our reliability 
analyses, in order to achieve sufficient within-person reliability. Following the network per-
spective of psychometrics, these sub-constructs can be treated as real psychological entities 
that are causally linked (e.g., bad concentration may make controlling urges more difficult), 
rather than as measurement items that are causally determined by one single construct called 
self-control capacity, as in the traditional latent variable approach (for network perspectives 
on other psychological constructs, see e.g., Costantini et al., 2015; Schmittmann et al., 2011). 

6.4.4 Implications for digital lifestyle interventions 

The results of decomposing variations in self-control capacity have some implications for dig-
ital lifestyle interventions. As our results corroborated previous findings of the large individ-
ual difference in self-control capacity, digital systems may personalize intervention tech-
niques to users with high or low self-control capacity to increase intervention effectiveness. 
For within-person variations, it is less whether tailoring the timing of interventions to strong 
or weak “self-control moments” is beneficial, given the very small day-to-day variation and 
diurnal patterns of the state self-control measures. Future research is required to confirm the 
hypothetical associations between self-reported state self-control capacity and meaningful 
lifestyle behavioral measures (e.g., giving in to temptations, actual engagement in new 
healthy behaviors), and to test if tailoring to the small within-person variations is of any use-
fulness. At the very least, the relative independence of state self-control capacity from core 
affect justifies more research on applying the construct in digital lifestyle interventions. 

 

 

 

 

 

 

 



Chapter 6 - Experience Sampling Method to Study the Variations of Self-Control Capacity 

 

186 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

187 
 

Chapter 7 
Epilogue  

 

 
On one of those days busy writing my thesis, my attention was caught by a tweet from a psy-
chology professor I followed: “Put away your Fitbit. You won’t walk any less and your wrist 
won’t smell funky”. It was a retweet commenting on a mobile health news titled “consumer 
fitness apps show nonsignificant behavior improvements”. The media coverage was based on 
a brand-new meta-analysis published in the Journal of Medical Internet Research, showing 
no evidence based on available randomized controlled trials for the benefits of using health 
apps to increase physical activity levels (Romeo et al., 2019). I saved the link and thought that 
the study was a nice addition to the long existing list of negative findings I referred to in the 
introduction chapter.  

Given the apparent lack of evidence for the usefulness of digital intervention systems, it seems 
puzzling that there has been and still is an optimism towards the technology and that millions 
of self-tracking devices are sold. Of course, self-tracking devices and mobile apps work as 
pedometers (e.g., Case, Burwick, Volpp, & Patel, 2015), but their marketing has always been 
linked with promotions of better lifestyle and health, a benefit that is not fully delivered yet. 
There seems to be a wishful thinking by both producers and consumers that fills the gap be-
tween the steps being tracked and actual changes of behaviors. To draw on the distinction I 
made between physical technologies and behavioral technologies, a clear boundary between 
what works and what doesn’t work can always be applied to the former, and selling something 
that doesn’t work as advertised would be considered as unethical. In the infamous fraud of 
Theranos, the fake promises were eventually debunked cleanly. This is not so much true for 
behavioral technologies. Taking mindfulness or cognitive behavioral therapy as examples, 
despite the continuous doubts and criticisms over their efficacy, they continue to enjoy mar-
ket success to some degree. The same applies to digital solutions for behavior change. Perhaps 
because the relatively weaker status of psychology compared to physical sciences, it is more 
difficult to evaluate these technologies rigorously. One might also suspect whether behavior 
change is so challenging that people are desperate to celebrate any new approaches that might 
work. Either way it feels critical to scrutinize the question why digital interventions would be 
a good solution for behavior change in theory by examining the problem in a broader context. 
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As an intro to this thesis, I quoted two paragraphs from Yuval Noah Harari’s excellent book, 
Sapiens: A Brief History of Humankind, which contrasts the drastic differences between the 
environment people live in now and the one lived by Paleolithic humans. The same contrast 
can be used to explain why some unhealthy behaviors are so difficult to change from an evo-
lutionary perspective (Tybur, Bryan, & Hooper, 2012). One popular example is the explana-
tion of why most people prefer sweets and fast food (see Birch, 1999; Tybur & Griskevicius, 
2013). In the stone-age when food were scarce, a preference for food with a lot of sugar and 
fat can be adaptive, as these nutrients provide more energy for surviving41. In today’s society 
with abundant food and less physical work, such a selected genetic trait becomes maladaptive, 
or at least harmful for long-term health. More generally, it can be conjectured that humans 
are not evolved to remain healthy later in their lives, but to survive and have enough energy 
to reproduce at the right time. Our brains are not hardwired to consider long-term health as 
very important. 

A lesson can also be learned from a narrower stretch of human history. While ruminating on 
why health behavior change is so hard, I started to suspect that the obsession with healthy 
lifestyle, such as low-carb diet or daily workout, is a very recent social phenomenon. A book 
on the public’s health perception and awareness throughout different eras of human exist-
ence would be a fantastic book to read, but in its absence there are at least a few points to be 
considered. 

First, never before has worrying about unhealthy lifestyles been so constantly salient at the 
level of individuals, since the concept of health is traditionally more of a social responsibility, 
and economical status largely constrains the quality of life one can lead. The general public 
has to take hold of what they can have, but they were not in the luxury position to choose 
between living healthily or unhealthily. Indeed, health promotion (the idea that individuals 
and groups should take care of their health) as a terminology was only coined in 1974 by the 
Canadian government (see the 1974 Lalonde report) and a decade later became recognized 
by the WHO. 

Even at the level of society, there were many more pressing issues facing humanity than pre-
venting chronic diseases in the past. Other threats, such as infectious disease, newborn mor-
tality, poverty, and war, were more salient. Chronic diseases only became the main cause of 
mortality in the mid-20th century. The interests in health promotion and lifestyle interven-
tion have perhaps also been fueled by scientific progress in fields of behavioral medicine and 
health psychology, which are only a few decades old. 

                                                   
 
41 Despite its popularity and plausibility, as with many other evolutionary accounts of behavior, I do not 
think it has been thoroughly tested. 
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Third, whereas religions have had a large impact on individuals’ lives in the past, it is doubtful 
whether living a healthy life has ever been at the core of people’s belief systems. It is none-
thelss true that some religious practices played a positive role in promoting healthy behaviors, 
e.g., through prescribing a certain diet or prohibiting excessive drinking, though the focus 
was always on combating one’s desires and doing what’s right in a moral or godly sense. When 
the religious obligations are removed for many people today, it remains questionable whether 
the abstract concept of health can play the same role. 

Fourth, beyond a mere consideration of health, having a healthy lifestyle is also a signaling of 
social status today. For example, going to gym regularly shows that one has time as well as a 
virtue of self-control and persistence. Restaurants that prepare natural, fresh, and healthy 
food are usually more expensive than their fast-food competitors. Such a perception has not 
always been the case. When foods are not abundant and heavy labor is a main form of physical 
exercise, being fat and pale were symbols of wealth and high social class. The old perception 
might be culturally universal, considering the corpulent and fleshy depiction of female beauty 
in both Western and Eastern traditional paintings. This is still an aesthetic ideal even in many 
areas of present-day Africa.  

Overall, it is safe to say that compared with hardwired evolutionary preferences, the values 
attached to healthy lifestyles are more transient and perhaps more fragile. For the society as 
a whole, the newly established emphasis on self-driven lifestyle improvements certainly has 
great values for battling chronic diseases and for alleviating the burden on the healthcare 
system. However, as with many other social norms, although healthy living has become an 
important part of how individuals express themselves today, it may not be internalized 
enough to shape actual behaviors. As two sides of the self-control problem, evolutionary val-
ues and modern health concerns are not balanced in their strengths. 

Having considered some reasons why lifestyle behavior change is so hard, it is time to realize 
that behavior change in general can also be very easy. Large-scale social changes and the as-
sociated changes of individual behaviors have frequently occurred throughout history. Often 
driven by technology progressions, changes in these scenarios are usually due to the availa-
bility of superior means to achieve certain goals, such as private cars for transportation and 
internet for acquiring information. Other times changes are simply forced by social institu-
tions, in the sense that the individuals involved do not have a choice. One example is the food 
rationing by the UK government during the Second World War. Due to the special economic 
and social status, millions of British citizens adapted to the regulated diet overnight. Hard 
restrictions can also come from personal conditions, such as serious medical conditions that 
force one to avoid certain food or drinks. Instead of changing for a better long-term health, 
the immediate negative consequences or even life threats can quickly reshape behavior. Fi-
nally, a lesser restrictive but still powerful factor is the manipulation of monetary incentives, 
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such as the use of taxation to regulate consumer behavior. If not for other constraints, re-
warding healthy behaviors financially would likely to be effective. In fact, a mobile app called 
SweatCoin, which I discovered in a behavior change conference, allows its users to convert 
steps to products and services (Derlyatka, Fomenko, Eck, Khmelev, & Elliott, 2019). 

Of course, behavior change being difficult or easy is a human perception, but the underlying 
driving forces of human behaviors are the same. The situations where people find lifestyle 
behavior so hard to change are also the ones where people want the changes so much. The 
strong wanting for a healthy lifestyle comes from the Zeitgeist, which is also fueled by media 
exposure, social conversations, and even the digital gadgets around, but a different kind and 
often strong wanting for things that are more fundamentally pleasing. I believe that it is in 
those situations where we expect a form of behavioral technology on the basis of digital tech-
nologies to really help out for the motivated individuals. In many other situations the job is 
better to be left to society-level interventions, such as changes in incentive structure, policies, 
and commercial environment. 

So why would digital intervention systems work for promoting healthy lifestyles? What is it 
special about digital technologies that would make what was not possible before possible? It 
is not that they can change the evolutionary forces, nor can they function in the same way as 
policies, regulations, and restrictive personal conditions. A more likely candidate is the per-
vasiveness and ubiquitousness of the technology. The fact that everyone carries digital de-
vices with them means that if the technology works, it can be scaled up so easily and be a 
much more cost-effective solution than traditional intervention programs. However, the 
technology has to work first before the scaling up becomes relevant. The fact that people carry 
digital devices everywhere and at any time means that specific interventions can always to be 
initiated, and machines can always stay alert and objective. But higher quantity does not nec-
essarily mean higher quality. Compared with human coaches, the digital machines lack the 
persuasive power from a social presence42, as well as some high-level human capacities, such 
as empathy. 

Machine intelligence, as being hyped to revolutionize various applications, is another factor 
that should contribute to lifestyle interventions. However, there are some points of caution 
to be made. In many artificial intelligence applications of today, machines are made to per-
form as well as humans (e.g., image recognition) or to beat humans in areas where humans 
are also doing very well (e.g., chess and Go). In contrast, how lifestyle behavior change or 
human psychology in general works is not even comprehensible by ourselves, so making ma-
chines to do the same task is of a very different nature. Nonetheless, machines are better than 

                                                   
 
42 This is not to say that machines cannot be perceived as social actors at all (see Reeves & Nass, 1996), but 
certainly to a much lesser degree than humans. 
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humans at extracting complex relationships from large amount of data and potentially mak-
ing more accurate predictions. 

This has naturally lead us to a feature of digital intervention systems that I regard as crucial 
for their (future) success in promoting lifestyle behavior change – the large amount of time-
intensive data collected in people’s natural living environments. These data contain infor-
mation about how people behave, feel, and even think, and how their bodies function. This 
data abundance has never happened in history before. If digital interventions have a chance 
to solve the health behavior change problem, the breakthrough has to do with data.   

From data abundance, there are two routes to successful digital lifestyle interventions. The 
first route is the one of self-tracking, also known as quantified-self (see Lupton, 2016). Self-
tracking can serve other purposes than behavior change, for example, to track one’s health 
status (e.g., trend of heart rate, blood pressure), or to assist planning (e.g., on which days of 
the week to do exercises), and at these tasks the technology works well. However, for behavior 
change, it relies on the following assumption: the reason why people do not behave healthy 
enough is that they do not know enough, so the new kind of data provided by the digital sys-
tems can lead to discoveries of knowledge and insights about oneself (Kersten-van Dijk et al., 
2017; Li et al., 2011). As much as this route is promising and research continues to improve 
it, there is one caveat. It is not guaranteed that the digital data can lead to self-discovery. 
From an evolutionary perspective, because the complex and time-intensive data have only 
existed for a decade, our brains may not be adapted to deal with such data optimally, even if 
the data indeed contain valuable information. In addition, machines are much faster and 
more accurate in processing complex data than humans, and it has been shown that when 
making complex decisions, data-driven models often perform better than human experts (e.g., 
Ayres, 2008; Dawes, 1979; Silver, 2012).  

The second route is the one I argued throughout this thesis. This route relies on the data 
abundance on one hand but also theory-based models about human behavior on the other, in 
order to exploit the dynamics of daily behavioral processes, including the cognitive processes 
of self-control and habit formation. Instead of letting the users learn about themselves from 
data, in this route the digital systems take the responsibility of learning, prediction, anticipa-
tion, and eventually guidance for actions. The future of this approach depends critically on 
the progress of behavioral and psychological sciences, and also on transforming theories into 
computational models that can be implemented in digital systems. This route, I call the psy-
chological computing approach to lifestyle behavior change.



Chapter 7 - Epilogue 

 

192 
 

7.1 Contributions and insights of the thesis to the psychological compu-
ting approach 

So what are the contributions and insights of this thesis, if one considers it as the first few 
steps towards the psychological computing approach? In the first half of the thesis (Chapter 
2 to Chapter 4), we have realized a particular paradigm within the psychological computing 
approach, starting from a theoretical framework (Chapter 2), to a computational model of 
some processes in the framework (Chapter 3), and finally to an application of behavior pre-
diction (Chapter 3). Here I shall mainly discuss the contributions of the research results and 
outputs from our paradigm to the psychological computing approach, and what we learned 
about the strengths and limitations of the approach. It should be noted that the psychological 
computing approach is much broader than the particular paradigm in this thesis. For exam-
ple, the control-engineering model of self-efficacy (Riley et al., 2015) and the COMBI model 
(Klein et al., 2014) discussed in Chapter 1 can also be considered as examples of the same 
general approach, but with different focuses. Based on the stage model of behavior change, 
the COMBI model tailors its interventions on daily decisions according to the current stages 
of users and the identified behavioral determinants that limit their progressions (i.e., bottle-
necks). Unlike our approach, because the identifications of the bottlenecks are based on pe-
riodical self-reports, the COMBI model does not compute rapid changes in cognitive and psy-
chological states that underline repeated daily decisions. The control-engineering model of 
self-efficacy clearly focuses on a specific cognitive mechanism in behavior change and it uses 
a very different modeling language.  

The adaptive decision-making framework is one of the most valuable outputs of the thesis, as 
it offers a much needed integration of traditional and more cutting-edge theories that focuses 
specifically on lifestyle behaviors and digital interventions. It also serves as a point of contact 
between psychologists, intervention designers, and modelers. We chose to transform some 
processes of the framework to simulation models using a sequential sampling approach, but 
the framework is open to computational models of other processes or using other modeling 
methods (e.g., differential equations, probabilistic graphical model). It can be the starting 
point of many more paradigms within the psychological computing approach. 

A recurrent theme in this thesis is the use of sequential sampling models. It was used for 
explaining habit-goal integration (Chapter 3) and also for modeling dietary decisions during 
mouse-tracking tasks (Chapter 5). The beauty of the modeling approach is that, when being 
validated in one domain (e.g., instrumental learning), it can be extended, for example, by 
adding an option generation component (Chapter 4), to simulate results in a much broader 
behavioral space and to make new testable predictions. Although the sequential sampling 
approach has had success in many sub-fields of psychology, we are the first to introduce it to 
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behavior change research. As a result, there are many open questions regarding how the ap-
proach, besides its explanatory power, can be practically useful for digital interventions. It 
may be questioned, for example, what’s the use of the low-level cognitive process of prefer-
ence accumulation, if one is only interested in behavior-level prediction or intervention. 
Without any further proof, we consider a unique strength of sequential sampling models to 
be the disentanglement of three decision determinants, the habit-related starting position, 
the goal-related drift rate, and the decision threshold. With recent progresses in fitting deci-
sion field theory to actual data (e.g., Berkowitsch, Scheibehenne, & Rieskamp, 2014), it may 
become possible to estimate the values of these determinants from data about a user’s re-
peated decisions, and then to find the suitable interventions accordingly.  

In Chapter 4, we applied the habit formation part of the model in Chapter 3 in a realistic task 
of digital intervention systems – behavior prediction. The results provide some support for 
the value of using theory-based models for behavior prediction, although its advantage over 
simple data-driven models (i.e., based on past behavior) was not clear-cut. More generally, 
our work can be viewed as a concrete example how the psychological computing approach 
can combine theory-driven computational models and machine learning for applications, 
which resembles the use of domain knowledge in machine learning in many engineering 
problems. Essentially, what a theory-based equation does is defining a-priori relationships 
among some cognitive or behavioral variables, and allowing computations of some variables 
from others. When incorporated into machine learning models, the equation can supply un-
observable features based on raw observed features or constrain the combination of features, 
in order to increase the efficiency of learning (e.g., less trial-and-error, or parameter tuning). 
Besides behavior prediction, it might also be valuable for systems to simply have knowledge 
about unobservable states of the users, although this has to be tested in future research.  

The remaining part of the thesis (Chapter 5 & 6) turned to a specific issue with the psycho-
logical computing approach – how digital systems collect information about users’ psycho-
logical and cognitive states that cannot be observed directly. Two methods, mouse-tracking 
and experience sampling, were explored because they can be relatively easily implemented in 
mobile computing devices. Our work of evaluating the mouse-tracking method highlights the 
challenges of using task-based indirect measures for practical applications. These tasks, in-
cluding mouse-tracking, are usually used in laboratory settings where researchers are inter-
ested in showing differences between manipulated extreme conditions. Even small effects can 
have significant theoretical implications. However, applying them in behavior change inter-
ventions imposes a very different set of requirements, such as measurement reliability and 
sensitivity to the changes in the variables of interests. 
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7.2 Challenges and future research  

There is still a long way to go from here, but the results and lessons I learned from the last 4 
years already point to some future directions. First of all, while I considered data abundance 
as the main reason why digital interventions are promising for lifestyle behavior change, 
more data are needed in terms of variety and quality. When the concept of “big data” is talked 
about today, the bulk of behavioral data is generated through online behaviors, such as Face-
book posts, Twitter conversations, and logged events in using mobile apps. Offline behavioral 
data that can be tracked by digital devices in the field are still relatively rare, and mostly are 
restricted to physical activities measured by accelerometers and motion sensors. The review 
paper by Gardner (2015) I cited in the last chapter perhaps illustrates the point nicely and 
somewhat ironically: in the tables summarizing all the reviewed studies, there was a dedi-
cated column that codes the behavior measure in each study as self-report or objective, but 
in over 90 studies included only 7 employed sensor-based measures in the field43. Except in 
one paper where an electronic monitoring pill bottle was used to measure medication adher-
ence (Alison Phillips, Leventhal, & Leventhal, 2013), all others used accelerometers to meas-
ure physical activities. Another example for the lack of variety in sensor-based measures are 
the goal-compliance monitoring mechanisms used in GameBus, an excellent gamification 
app to promote healthy lifestyle developed by colleagues in our neighboring research group 
(see Shahrestani et al., 2017). GameBus users compete socially by complying with personal-
ized lifestyle goals (e.g., daily steps, drinking water, sleep on time etc.), but all measures of 
compliance are self-reported except for physical activities, which can be measured by accel-
erometers in smartphones. Despite the current status, I do believe the future is bright in this 
regard, as sensor technologies and activity recognition algorithms continue to improve and 
the emerging trend of “internet of things” may also help. 

Improving data quality can be more challenging. Often the large volume of data collected by 
self-tracking devices are not very useful from a psychological perspective. Data from digital 
systems can have very high temporal and spatial resolution, but often very poor psychological 
resolution. Considering data of daily step count as an example, numbers of steps can be mon-
itored per hour or even minute, and associated location data can be available, but what mean-
ingful behavioral units constitute the steps are often unknown. Ten-thousand steps a day 
could come from many different behaviors that serve very different goals, for example, com-
muting to work by foot, mandatory walking to meetings and toilets, and intentional walking 
exercises after lunch to improve one’s fitness. Improved activity recognition algorithms may 
help to segregate continuous movement data to isolated exercise events (walking, cycling, 

                                                   
 
43  In three studies about snacking choice, the behavior measures were coded as objective, but those 
measures were one-time snacking choices made in the laboratory experiments. 
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etc.), but even if several walking episodes are detected, inferring a person’s goals and inten-
tions behind the episodes remains difficult. If a digital intervention aims at creating a habit 
of doing a walking exercise, or a study focuses on understanding goal-setting in behavior 
change, coding measured behaviors based on their cognitive driving forces is required. My 
impression is that for non-psychologists, the importance of the goals and intentions (or the 
lack thereof) behind behaviors is not fully appreciated. This is understandable because the 
aggregated behavioral patterns (e.g., daily step count) are indeed what counts for people’s 
health, but to promote change behavioral data need higher psychological resolution.  

Second, more computational models are highly needed, especially those that can be imple-
mented and tested in digital interventions. It is important to point out that models do not 
have to be perfect to be useful (see Smaldino, 2017), and models of different levels of com-
plexity and realism are needed. This need is also recognized by computer scientists and AI 
researchers, and collaborations between them and behavioral scientists can really help mov-
ing the field forward. Recently, I started a project with a machine-learning researcher from 
University of Amsterdam, who was interested in using reinforcement learning to optimize the 
notification function in digital intervention systems for promoting physical exercise. Consid-
ering a digital system as a learning agent, its rules for sending notifications under some con-
strained budget can be gradually optimized by observing the users’ actual behavioral re-
sponses to the notifications as feedback (e.g., compliance as reward). What is also important 
in the project is to design a simple simulation model of human behavior – how users make 
exercise decisions depending on both external factors (e.g., time of day, weather) and whether 
notifications are received at the decision moments. Without gathering any empirical data, 
such a simulation model can be used to train the system using reinforcement learning, in 
order to reduce training time substantially. When real data are available, the differences be-
tween the learning outcomes in the simulated environment and the real-world can also tell 
us how to improve the computational model.  

A crucial part of the adaptive decision framework that was not addressed in any depth in my 
PhD work are the reflection-level processes, including goal-setting, planning, and self-reflec-
tion, as well as their interactions with the action-level processes. My first personal advice for 
behavior change is always to set up a concrete and measurable goal and to keep the goal and 
goal-related progress always accessible. For example, in order to meet my goal of drinking at 
least 1 liter of pure water a day, my girlfriend bought me a nicely-designed bottle with exactly 
1-liter of capacity and now I always see my progress in front of me on my working desk. My 
choice of not focusing on the reflection-level processes was due to research interests and 
chances, but one of the more logical reasons was that these flexible higher-level cognitive 
functions are more difficult to model computationally (i.e., lack of literature compared with 
self-control and habit formation) and to measure in the field. For example, we actually in-
cluded a protocol of measuring self-reflective moments in an experience sampling study to 
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study when people reflected and what they reflected about in relation to their goals and what 
the consequences of these reflections had. It turned out that participants found it particularly 
hard to recall and report the details of such episodes (e.g., timing, frequency, and content), 
clearly more difficult than reporting momentary affects, thoughts, and feelings. Methodolog-
ical innovations are required in the future to answer these very basic questions about the 
reflection-level processes.  

Third, future research should explore different methods for measuring the cognitive and af-
fective states included in computational models. The measured states can contribute not only 
to behavior predictions and the selection of intervention techniques, but also to the testing of 
the core mechanisms and other assumptions in the models. Advances in measurements are 
of crucial importance to any fields in behavioral sciences, but for research on behavior change 
and digital interventions, measurement developments should pay special attention to the ap-
plicability of new methods to digital intervention systems to be used in noisy real-world en-
vironments. Chapter 5 & 6 have shown how challenging this endeavor can be. The experience 
sampling method has proved to provide high-quality data and the method continues to be 
more accessible to researchers, but measures in most studies are still based on self-reports. 
Although self-reports of affective variables are easily administrated and the data are usually 
accurate and reliable, in real digital intervention trials answering those questions does re-
quire a lot of effort from users and it may interfere with their natural behaviors. A promising 
alternative would be to estimate affective states from physiological data, such as heart rate, 
skin conductance, as in the approach of affective computing. Future research should also 
evaluate the possibility of transforming other indirect measures of cognitive states from la-
boratory settings to real-world settings, such as eye-tracking and neuroimaging. A lesson 
learned in our experience with mouse-tracking is that because ground truth for a cognitive 
measure is often lacking, computational models about how the associated cognitive processes 
work can contribute a lot to measurement developments. 

7.3 Ethical considerations 

The psychological computing approach may eventually lead us to a future where digital sys-
tems know more about us than we do ourselves. At one point, new ethical issues will emerge, 
so perhaps it is desirable to discuss some significant ethical implications of the technology 
even in this early stage of its development. A very important issue will of course be privacy. 
Threats to privacy in the digital age and how to take measures to relieve them have been dis-
cussed frequently in scholarly articles, books, and online media, but what’s particularly inter-
esting is how the systems envisioned here may redefine what private and personal infor-
mation is. The systems may not only know about users’ past and current behaviors, but also 
their future behaviors to some degree of accuracy based on the model predictions. Even in 
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2012, some fears for machine predictions were spread when a Forbes article entered the spot-
light, describing how predictive models used by the supermarket Target could know a teen-
ager was pregnant before her father did. Although it was later confirmed as a hypothetical 
story, one day digital intervention systems may actually predict, for example, what users 
would eat for lunch the next day, or how likely a particular user is going to relapse to a sed-
entary lifestyle. In addition to predictions, such systems may also be able to infer with confi-
dence about users’ cognitive and affective states that they themselves know very little about. 
It is unclear how users should decide when and when not to share this type information if 
they do not know what the information entails (e.g., what does it mean if a mobile app knows 
my habit strength of eating crisps?). Perhaps, if such measurements are accurate enough, 
they should be considered as a form of “privacy of mind” as comparable to the classical notion 
of “privacy of body” (Westin, 1967). 

Trust is another ethics-related issue that has to be addressed in the future. Obviously, users 
of digital intervention systems put themselves at some risks if they opt to let the machines 
figure out what’s the best for them to change unhealthy lifestyles, in order to prevent or even 
manage chronic diseases. Among the situational factors that determine trust (e.g., Hurley, 
2006), benevolence might be less of an issue assuming there is a good will behind the devel-
opments of these systems. But for the reasons that it is difficult to verify the accuracy of pre-
dictions and inferences by users themselves, their opinions about the competence of the sys-
tems may differ greatly. Like many other behavioral technologies, effectiveness of the systems 
may only be guaranteed at the level of groups rather than individuals, which complicates the 
process of developing trust by observing trustworthy behaviors from the systems. Also be-
cause users may have a hard time understanding how the systems work (e.g., its inner com-
putational model), judging the integrity or predictability of the systems will not be easy. The 
systems may need to be able to explain its recommendations to the users to enhance trust.  

Finally, compared with the route of self-tracking, the route of psychological computing may 
be criticized for undermining users’ sense of autonomy in lifestyle behavior change (see Kam-
phorst & Kalis, 2015). I would defend the later approach for two reasons. First, at the action-
level as in the adaptive decision framework, digital lifestyle interventions in most cases sup-
port decisions by providing and highlighting options but leave the final choice to the users44. 
After decision-making, the actual actions (motor-control) to execute the behaviors are totally 
at the disposal of humans. Thus, the level of machine autonomy would mostly remain at a 
low level (e.g., level 3 in Sheridan & Verplank, 1978). Second, at the reflection-level, with the 
assistance from the digital applications on the how of goal-setting and planning, users would 

                                                   
 
44 In this sense, nudging or other influences outside of users’ awareness are exception, and there is indeed 
ongoing debate on whether nudging restricts people’s freedom of choice or not (see Marchiori, Adriaanse, 
& de Ridder, 2017).   
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still be allowed to choose freely what specific behaviors in their lifestyles they would want to 
change, and this should enforce a sense of meaning. If one wishes to carefully examine this 
ethical issue, the adaptive decision framework proposed in this thesis could also be useful for 
differentiating the impacts of different intervention techniques on human autonomy based 
on the nature of the behavioral and cognitive processes being targeted.

7.4 Conclusion 

For researchers interested in both psychology and technology, lifestyle behavior change is 
one of the most challenging yet rewarding problems to be tackled. The psychological compu-
ting approach proposed, as it relies on computational modeling of cognitive and behavioral 
processes, is applicable particularly to the challenges in lifestyle behaviors – the complexities 
in long-term habit formation and the self-control problem in the on-the-fly daily decisions. 
This thesis has taken some concrete steps towards the proposed approach through a collec-
tion of theoretical, computational, and empirical studies. With limitations and open ques-
tions remained, I wish it to stimulate similar future works and to reinforce a belief that psy-
chological science and digital technologies must advance in symbiosis.  
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Summary 

Towards a Psychological Computing Approach to Digital Lifestyle Interventions 

 

The rapid development of digital technologies has led to the belief that digital lifestyle inter-
vention systems can alleviate the global problems of unhealthy lifestyles and chronic diseases. 
Yet, the lack of long-term effectiveness and user engagement suggests that the research and 
development of such systems are still in the early stage. Many researchers advocated the im-
portance of applying psychological theories in digital lifestyle interventions, but the realiza-
tion of this proposal is hindered by a lack of theory integration and the limitations of tradi-
tional behavior change theories. Based on the recent development in computational modeling 
of human behavior, a psychological computing approach was proposed, in which theory-
based computational models are implemented in digital systems to predict and intervene in 
lifestyle behaviors. Research reported in this thesis takes the first few steps to bridge the gap 
between psychological theories and digital lifestyle interventions, and to move towards a psy-
chological computing approach.  

In Chapter 2, the psychological computing approach is introduced by developing an inte-
grated theoretical framework of lifestyle behavior change, called the adaptive decision-mak-
ing framework. This was done by reviewing relevant individual theories of learning and de-
cision-making in the psychology literature, and then integrating the theoretical ideas into a 
two-level representation of lifestyle behaviors, including both daily decisions and periodical 
reflections. Common digital intervention techniques were mapped to the framework. The 
framework offers a much needed theory integration that is dynamic and matches with the 
temporal granularity of digital data and interventions. It can be used by intervention design-
ers to select theory-based behavior change techniques, and by scientists as a scaffold to de-
velop computational models of behavior change. The chapter also identified habit formation 
and self-control as the two main topics for the rest of the thesis. 

Following a sequential sampling approach, Chapter 3 transformed the action-level decision-
making and learning processes in the adaptive decision framework into a computational 
model. The model focused on explaining how habits and goals interact with each other to 
influence value-based decisions. Through three simulation studies, it was shown that the 
model could reproduce important laboratory findings from the literature of habit-goal inter-
action, including effects in the devaluation and reversal learning paradigms, and predict 
gradual changes in decision time. Our model challenges the current approach of arbitration 
models and provides a more parsimonious explanation for habit-goal conflicts. By incorpo-
rating the process of option generation, our approach can be extended to model habit for-
mation in daily environments.  
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In Chapter 4, the habit formation part of the computational model developed in Chapter 3 
was evaluated in two real-world digital intervention trials of changing dental behavior. Data 
collected in two studies were used to understand the reciprocal relationship between habit 
strength, attitude, and behavior, and also to test whether habit strength computed by the 
computational model could improve behavior prediction. Statistical analyses showed that 
habit strength influenced actual toothbrushing behavior besides attitude, but its moderation 
on the attitude-behavior relationship was only found in Study 2. Predictive modeling results 
suggested that models based on computed habit strength predicted behavior better than 
models based on self-reported behavioral determinants, and in Study 2 also better than the 
models based on past behavior rate. In line with the psychological computing approach, the 
theory-based computational model of habit formation has the potential to be implemented 
in digital systems to predict and intervene in lifestyle behaviors.  

Chapters 5 and 6 explored two methods of understanding self-control in daily lifestyle deci-
sions. Through two laboratory food-choice experiments, Chapter 5 evaluated whether a 
mouse-tracking technique could be used in digital systems to measure users’ decision con-
flicts experienced in self-control dilemmas. Results showed that while the mouse-tracking 
paradigm could be transferred from a desktop setting to touch-screen devices, the correla-
tions between mouse-tracking parameters and the decision-conflict strength were too small 
to be practically useful. Combined with simulation studies, the chapter also helped to scruti-
nize an existing method of using mouse-tracking data to reveal the cognitive mechanisms 
underlying self-control, and to clarify the plausibility of various theoretical assumptions as-
sociated with the mouse-tracking paradigm.  

In Chapter 6, the variations of self-control capacity in people’s daily lives are studied using 
an experience sampling method. Data from two field studies were used to understand how 
self-control capacity varied inter- and intra-individually and how these variations were re-
lated to changes in people’s affective states. Results showed that variations in self-control 
capacity were attributed largely to individual differences, slightly to diurnal patterns, but very 
little to day-to-day changes. State self-control capacity correlated more with affective valence 
and tense arousal inter-individually, but more with alertness and energetic arousal intra-in-
dividually. We also discussed the challenges of defining and measuring self-control capacity 
as a unified construct and the implications of the results for designing lifestyle interventions.  

Finally, in the concluding chapter, the relevance of the psychological computing approach to 
the problem of behavior change was positioned in a larger context, and discussed from both 
an evolutionary and a historical perspective. Contributions of the thesis, future research di-
rections, and ethical issues were discussed with reference to the psychological computing ap-
proach.   
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