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disentangle the association between
UFP and PM2.5 on health risks.
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for Southern California cohort.
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independent health risks discernable
g r a p h i c a l a b s t r a c t
a r t i c l e i n f o

Article history:
Received 29 April 2019
Received in revised form 31 August 2019
Accepted 31 August 2019
Available online 2 September 2019

Editor: Jay Gan

Keywords:
UFP
Particle number concentration
PM2.5

BC
Land use regression
a b s t r a c t

Exposure models are needed to evaluate health effects of long-term exposure to ambient ultrafine parti-
cles (UFP; <0.1 lm) and to disentangle their association from other pollutants, particularly PM2.5

(<2.5 lm). We developed land use regression (LUR) models to support UFP exposure assessment in the
Los Angeles Ultrafines Study, a cohort in Southern California. We conducted a short-term measurement
campaign in Los Angeles and parts of Riverside and Orange counties to measure UFP, PM2.5, and black car-
bon (BC), collecting three 30-minute average measurements at 215 sites across three seasons. We aver-
aged concentrations for each site and evaluated geographic predictors including traffic intensity, distance
to airports, land use, and population and building density by supervised stepwise selection to develop
models. UFP and PM2.5 measurements (r = 0.001) and predictions (r = 0.05) were uncorrelated at the sites.
UFP model explained variance was robust (R2 = 0.66) and 10-fold cross-validation indicated good perfor-
mance (R2 = 0.59). Explained variation was moderate for PM2.5 (R2 = 0.47) and BC (R2 = 0.38). In the
cohort, we predicted a 2.3-fold exposure contrast from the 5th to 95th percentiles for all three pollutants.
The correlation between modeled UFP and PM2.5 at cohort residences was weak (r = 0.28), although
higher than between measured levels. LUR models, particularly for UFP, were successfully developed
and predicted reasonable exposure contrasts.

� 2019 Published by Elsevier B.V.
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1. Introduction

Numerous epidemiologic studies have shown associations of
short- and long-term exposure to particulate matter air pollution
characterized as particles <10 lm in aerodynamic diameter
(PM10) or <2.5 lm (PM2.5) and adverse health effects (Kim et al.,
2015). Evidence of health effects of ultrafine particles (UFP;
<0.1 lm) is still accumulating (Ohlwein et al., 2019); however,
UFP may be more toxic due to unique physiochemical properties
that increase their potential for adsorption and interaction with
tissues and cellular targets (Health Effects Institute, 2013). Impor-
tantly, although UFP dominate the number-based concentration of
airborne PM, they comprise a small fraction of particle mass and
thus are not well represented by measurements of other PM size
fractions, including PM10 and PM2.5.

Outdoor UFP are not included in the U.S. National Ambient Air
Quality Standards, therefore no routine monitoring data exist and
the spatial distribution of UFP in urban areas of the U.S. is not well
characterized. UFP are formed by direct emissions from anthro-
pogenic sources such as traffic (mobile sources) or industrial
sources, or by nucleation and condensation of volatile and semi-
volatile vapors (Brines et al., 2015; Kulmala et al., 2004; Sowlat
et al., 2016). Directly emitted and nucleated sources tend to be
localized and dissipate quickly after emission, but UFP are also
influenced by meteorology and can form via further atmospheric
transformation and may be regionally dispersed as a result. The
agglomeration of UFP into larger particles (e.g., PM2.5) results from
atmospheric condensation of low-volatility organic species
(Sioutas et al., 2005) under rates and conditions that vary depend-
ing on season and region. UFP are chemically complex, but the
main constituents from mobile source combustion are agglomer-
ated organic and black carbon (BC; a marker for diesel exhaust),
ions such as sulfate, and trace amounts of metals (Daher et al.,
2013; Mathis et al., 2004; Robert et al., 2007). The relative contri-
bution of other sources to outdoor UFP, such as combustion
byproducts of indoor cooking and heating, are region-dependent
(Denier van der Gon, 2010). In large cities, the major UFP exposure
source is traffic, especially emissions from heavy-duty diesel trucks
and accelerating vehicles (Sowlat et al., 2016; Hasheminassab
et al., 2013; Kaur et al., 2005; Morawska et al., 2008). Studies in
the U.S. have found that traffic contributions to outdoor UFP vary
dramatically by distance to roadways, and that most UFP exposure
for individuals living in a major city likely arises from outdoor
sources rather than from other microenvironments (Charron and
Harrison, 2003; Wahlina et al., 2001; Zhu et al., 2005).

Land use regression (LUR) is a modeling approach used to char-
acterize long-term average air pollutant concentrations at a fine
spatial scale, providing high-resolution exposure estimates for epi-
demiologic studies. LUR models for UFP have been developed pri-
marily in Europe and Canada (Abernethy et al., 2013;
Sabaliauskas et al., 2015; Eeftens et al., 2012; Eeftens et al.,
2016; Hoek et al., 2011; Montagne et al., 2015; van Nunen et al.,
2017; Rivera et al., 2012; Cattani et al., 2017; Wolf et al., 2017;
Weichenthal et al., 2016a). To fully capture the spatial variability
of UFP, many studies have applied short-term and mobile mea-
surements collected in real time at a variety of sites to represent
the range of sources and concentrations in the area of interest. Pre-
viously published long-term LUR UFP models have differed in
model structure and performance, likely due to differences in mon-
itoring area characteristics, number of sites, and the duration and
frequency of monitoring. Few previous studies have developed
multiple pollutant models derived from the same monitoring
effort, and similarly, there are few U.S.-based LUR models for UFP
(Fuller et al., 2012; Li et al., 2013; Hankey and Marshall, 2015;
Hankey et al., 2019; Patton et al., 2014; Zwack et al., 2011). Several
LUR models have been applied in recent years in epidemiologic
evaluations of health effects of long-term UFP exposure (Bai
et al., 2019; Downward et al., 2018; Weichenthal et al., 2017a;
Weichenthal et al., 2017b; Ostro et al., 2015). These studies have
either focused on UFP alone or included measurements of PM2.5

from another monitoring effort, raising issues of the comparability
of exposure assessment for ultrafine and fine particles.

The objective of the current effort was to develop a LUR to pro-
vide high spatial resolution UFP exposure estimates for the Los Ange-
les Ultrafines Study, a subcohort of NIH-AARP Diet and Health Study
participants residing in Los Angeles, Orange, and Riverside counties
of California. We additionally aimed to develop LUR models for BC
and PM2.5 from the same short-term monitoring effort. The study
area differs from most European and Canadian study areas in that
freeways are the most prevalent transportation routes in the
metropolitan area of Los Angeles, and thus are the most dominant
source of traffic emissions that include UFP (Sowlat et al., 2016).
2. Materials and methods

2.1. Sampling design

The study catchment area included the South Coast Air Basin
(hereafter, LA Basin) covered by Los Angeles County and parts of
Orange and Riverside counties (Fig. 1). The short-term monitoring
campaign was based on protocols in the EXPOsOMICS study (van
Nunen et al., 2017) and modified to accommodate the layout of
the LA Basin and its major UFP emissions source, freeways. Poten-
tial monitoring sites were identified within 12 freeway-centered
clusters covering the area, including near I-405, I-10, CA-110, I-
710, I-5, CA-210 east, and CA-60 highways (Fig. 1). Because Los
Angeles International Airport (LAX) is also an important source of
UFP in the Los Angeles area (Shirmohammadi et al., 2017; Hudda
et al., 2014), we defined a LAX cluster and included sites near this
source. Within each cluster, sites were placed in four categories
relative to the freeway: upwind of this source, or downwind at
minimum fixed distances of 50–150 m, >150–300 m, and >300 m
(Fig. S1). Initially, we selected 238 candidate locations across the
catchment area using a Geographic Information System (GIS)
and/or other mapping tools to cover locations with varying air pol-
lution concentrations, traffic intensities and composition, and dif-
ferent land uses in order to maximize exposure and predictor
contrasts. Sites were also selected to avoid other local emission
sources (e.g., gas stations, fast food restaurants) within a 100 m
radius. Potential sites were evaluated in 360o view in Google
Maps� and visited by field staff to confirm suitability for monitor-
ing, which required that the sampling vehicle could safely remain
stationary for the 30-minute measurement period and the site had
limited local emission sources nearby. Characteristics of each site
were noted by field staff and reviewed by the full study team. After
excluding unsuitable sites, the 215 final sampling sites included a
minimum of 20 sites in each cluster, with the exception of Orange
and Riverside Counties (12 sites each).
2.2. Short-term monitoring campaign

Pollution measurements were collected using a hybrid vehicle
as a measurement platform, installed with battery-operated
instruments to measure three key air pollutants at each sampling
site: UFP particle number concentrations (#/cm3), and BC (ng/
m3) and PM2.5 (lg/m3) mass concentrations. UFP measurements
were collected with a DiSCmini (miniature diffusion size classifier,
Matter Aerosol, Wohlen, Switzerland) portable particle counter,
which measures UFP with diameters of 10–700 nm in a concentra-
tion range of 103 to 106 cm�3 within a sampling interval of 1 s
(Fierz et al., 2011; Ragettli et al., 2014). Concentrations of BC were



Fig. 1. Map of 215 UFP monitoring sites within 12 sampling clusters and four South Coast Air Quality Management District (AQMD) stationary monitoring sites.
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measured using a micro-Aethalometer in 10 second intervals
(model AE-51 microAeth, Magee Scientific, Berkeley, CA). DiSCmini
and micro-Aethalometer AE-51 units were calibrated by the man-
ufacturer prior to the study. Since two units of each device type
were used during this study, we collocated them on a monthly
basis to ensure consistency between their measurements. Past
studies have evaluated particle number concentrations measured
by the DiSCmini by comparing to widely used scanning mobility
particle sizers and condensation particle counters and reported
agreement within 10–20% (Fierz et al., 2011; Habre et al., 2018;
Meier et al., 2013; Mills et al., 2013). Several studies have also eval-
uated the performance of the AE-51 against other BC monitors (e.g.
multi-angle absorption photometer and rack mount aethalometer)
and reported agreement within 7–12% (Cai et al., 2014; Cheng and
Lin, 2013; Viana et al., 2015). A DustTrak (Model 8520, TSI Inc.,
Shoreview, MN) was also deployed to measure continuous PM2.5

mass concentrations (1 s) at the sites. Agreement within 10–15%
of gravimetric PM2.5 measurements has been previously demon-
strated for this device (Kam et al., 2011).

Sampling was conducted in three separate time periods over
the course of 9 months in 2016, during a cool phase (Jan–March),
spring phase (April–June) and warm phase (July–August). During
each phase of sampling, short-term measurements (i.e., 30 min/
site) were collected during non-rush hours (9:30–16:00) in order
to represent the long-term traffic mean and site-specific UFP con-
centrations. Monitoring took place on different non-rainy week-
days and at various times of day; measurements were taken at
the sites during different time intervals in each season.
2.3. Geographic predictors

Spatial predictor variables were generated for each of the sites
in ArcGIS� using the site coordinates (derived first from Google
maps and confirmed or adjusted during site visits from GPS) and
digital datasets on land use, traffic, proximity to airports and ports,
and population and housing characteristics. Predictors and buffer
sizes were similar to those used in studies in Europe and Canada
(Hoek et al., 2011; Montagne et al., 2015; van Nunen et al., 2017;
Weichenthal et al., 2016b). We generated traffic predictors in cir-
cular buffers at radii of 50, 100, 300, 500, 1000 and 5000 m using
road network data (TIGER/Line Shapefiles, 2000), including the
sum of all road lengths within the buffer, and the sums of different
road types separately, including A1 (major highway), A2 (major
highway with restricted access), A3 (secondary roads), and A4
(neighborhood roads). For each buffer, we generated weekday
vehicle miles traveled (VMT) for trucks and passenger vehicles
from a local traffic demand model (Southern California
Association of Governments, 2012), and computed the inverse dis-
tance and inverse distance squared to roadways and to major local
sources (airports, ports). To account for average wind direction at
the sites, we used an approach similar to Abernethy et al. to also
create wedge-shaped buffers for roadway predictors (Abernethy
et al., 2013; NOAA Automated Surface Observing System, n.d.).
Land use variables reflected the percent of area within the buffers
of each land use type (USGS, 2011), and population and housing
unit density estimates included counts per square km within the
buffers (American Community Survey, 2010). NO2 at the Census
block level from a national spatiotemporal model was used to rep-
resent background concentrations of traffic-related air pollutants
(Bechle et al., 2015). A complete list of predictors and variable
names is shown in Table S1.
2.4. Data preparation and analysis

We developed LUR models for log-transformed UFP concentra-
tions using linear regression approaches similar to previous studies
(Eeftens et al., 2012; vanNunen et al., 2017), first implementing uni-
variate regressions followed by a supervised selection procedure
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that evaluated all potential predictor variables in a stepwise fashion
as to correlation and an a priori anticipated direction of effect. We
applied standard model diagnostics, including assessments of nor-
mality and influential observations using Cook’s distance. Collinear-
ity between variableswas assessed by variance inflation factor (VIF)
(Eeftens et al., 2012; van Nunen et al., 2017). In the stepwise regres-
sion, the first predictor chosen was the variable with the highest
adjusted explained variance (adjusted R2) and the pre-specified
direction of effect. Remaining predictors were evaluated iteratively
and added to the model one-by-one if they contributed the largest
improvement in adjusted R2 and also had the pre-specified direction
of effect. Subsequent variables were excluded if: a) the direction of
effect changed for previously added predictors; b) the newly added
variable was collinear with existing predictors (defined as VIF �3);
or c) upon inclusion, p-values for the previously added variables
exceeded a = 0.1. This selection procedure was repeated until no
remaining variable contributed an improvement to the adjusted
R2.Weapplied a 10-fold cross-validation approachbyfirst randomly
distributingmonitoring sites into 10 groups, with each group acting
as a validation set for one of the 10 models. HV R2 and RMSE were
obtained by regressing the predictions of all 10 validation sets
against measured values. We also implemented strategies to
improve model stability by running model selection procedures
again after excluding predictorswith >10% zero values. All statistical
analyses were conducted in SAS version 9.3.

We initially developed spatio-temporal models based on the
644 individual 30-minute concentrations at each site and incorpo-
rating the wedge-shaped buffers for roadway predictors to account
for wind direction in addition to other predictors in circular buf-
fers. To account for temporal variation in pollutant concentrations
both within and between days, we corrected raw UFP measure-
ments using background measurements from four South Coast
Air Quality Management District stationary monitoring sites
(AQMD, 2014) using both ratio and absolute difference approaches
as in the ESCAPE study (Eeftens et al., 2012). These modeling
approaches did not result in meaningful models, and hence we
developed spatial-only models including the raw UFP measure-
ments without background correction. Most sites (n = 214) had
three individual measurements and one site had two measure-
ments. Variability of these individual 30-minute observations
was high, therefore we implemented models after averaging the
observations at each monitoring site, as was done in most other
studies (Eeftens et al., 2016; Montagne et al., 2015; van Nunen
et al., 2017).
Fig. 2. Distributions of site-averaged 30-minute mean concentrations of UFP
(#/cm3), PM2.5 (lg/m3), and BC (ng/m3) across 12 sampling clusters.
2.5. Predictions at cohort residences

The final LUR models were applied to participant addresses in
the Los Angeles Ultrafines Study. Briefly, the cohort is comprised
of 53,833 NIH-AARP Diet and Health Study (Schatzkin et al.,
2001) participants who resided in Los Angeles and parts of Orange
and Riverside counties at study enrollment in 1995. The study pop-
ulation was aged over 50 years in 1995 and has been followed
prospectively for ascertainment of cancer and other health out-
comes for over 20 years. Participants were limited to those with
well-geocoded (i.e., point or street address matches) addresses at
study enrollment (97%; n = 52,164). After restricting values of geo-
graphic predictors to the bounds observed at monitoring sites, we
applied the LUR models to cohort residences and generated predic-
tions for UFP, PM2.5, and BC.
3. Results

We found a high degree of spatial variability in the averaged 30-
minute UFP means across the 215 sites, with a four-fold difference
from the 5th to 95th percentiles. As expected, UFP concentrations
were highest at the downwind sites closest to the roadway (50–
150 m); however, measured levels at upwind sites were higher
than downwind sites >300 m away (medians = 15,068 vs. 13,192
#/cm3, respectively). There was also variability in average UFP con-
centrations across the 12 clusters (Fig. 2); concentrations were
highest at the sites in downtown Los Angeles (median = 17,194
#/cm3) and near LAX (median = 27,490 #/cm3), where two extreme
observations were noted (104,569 and 186,198 #/cm3). The pat-
tern of PM2.5 and BC concentrations across these clusters differed



Table 1
Land use regression models for log-transformed UFP (#/cm3), PM2.5 (lg/m3) and BC (ng/m3).

Pollutant Modela R2 RMSE HV
R2

HV
RMSE

UFP 7.74338 + 2.761089 ⁄ DIST_INV_LAX + 0.01834 ⁄ NO2 + 0.03491 ⁄ AIRPORTPCTA_1KM + 0.00877
⁄ A1ROADLENGTH_CIRCLE_50 + 0.004705449 ⁄ DEV_HIGHINT_5000M
+ 0.10298 ⁄ VMT_PASS_1KM_LN � 3.3755 ⁄ DECID_FOREST_5000M � 0.3454 ⁄ CULTCROPS_1000M � 0.0801485
⁄MIXED_FOREST_5000M + 0.001980555 ⁄ DEV_MEDINT_50M + 0.00588122 ⁄ DEV_OPENSP_100M
+ 0.00307249 ⁄ DEV_HIGHINT_50M

0.66 0.27 0.59 0.29

PM2.5 �1.714 + 0.37251 ⁄ VMT_PASS_5KM_LN + 0.00024061 ⁄ ACSHUDENS_5000 + 0.018289032 ⁄ DEV_LOWINT_5000M
+ 0.02109 ⁄ NO2 � 0.1615035 ⁄MIXED_FOREST_5000M + 0.00012780 ⁄ A2ROADLENGTH_CIRCLE_1000
+ 0.00122303 ⁄ DEV_HIGHINT_50M

0.47 0.21 0.44 0.24

BC 4.70754 + 0.05269 ⁄ NO2 + 0.09068 ⁄ VMT_PASS_1KM_LN + 1.55328726 ⁄ DIST_INV_LAX
+ 0.010466185 ⁄ DEV_LOWINT_5000M
+ 0.00907 ⁄ A1ROADLENGTH_CIRCLE_50 � 0.1911475 ⁄ CULTCROPS_500M � 3.5168 ⁄ DECID_FOREST_5000M
+ 0.01483 ⁄ AIRPORTPCTA_1KM + 0.00089133 ⁄ A3ROADLENGTH_CIRCLE_100

0.38 0.35 0.32 0.36

a VARIABLE (label; unit): DIST_INV_LAX (inverse distance to LAX airport; dist/KM); NO2 (NO2 estimate for 2010 at year 2000 census block-level; PPB); AIRPORTPCTA_1KM
(percent of 1KM buffer that is airport; % area); A1ROADLENGTH_CIRCLE_50 (sum of A1 road length within 50M buffer; M); DEV_HIGHINT_5000M (percent of 5000M buffer
classified as highly developed; % area); VMT_PASS_1KM_LN (traffic intensity from passenger vehicles in 1KM buffer; log VMT/yr); DECID_FOREST_5000M (percent of 5000M
buffer classified as deciduous forest; % area); CULTCROPS_1000M (percent of 1000M buffer classified as cultivated crops; % area); MIXED_FOREST_5000M (percent of 5000M
buffer classified as mixed forest; % area); DEV_MEDINT_50M (percent of 50M buffer classified as developed, medium intensity; % area); DEV_OPENSP_100M (percent of 100M
buffer classified as developed, open space; % area); DEV_HIGHINT_50M (percent of 50M buffer classified as highly developed; % area); VMT_PASS_5KM_LN (traffic intensity
from passenger vehicles in 5KM buffer; log VMT/yr); ACSHUDENS_5000 (housing unit density within 5000M buffer; housing-units/km2); DEV_LOWINT_5000M (percent of
5000M buffer classified as developed, low intensity; % area); A2ROADLENGTH_CIRCLE_1000 (sum of A2 road length within 1000M buffer; M); CULTCROPS_500M (percent of
500M buffer classified as cultivated crops; % area); A3ROADLENGTH_CIRCLE_100 (sum of A3 road length within 100M buffer; M).
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from UFP; BC concentrations were less variable across clusters
than either UFP or PM2.5. PM2.5 concentrations were highest in
the Covina cluster (median = 50.1 lg/m3) and the average across
all sites was 30.9 lg/m3. Concentrations of all three pollutants
were lowest at the Orange County sites (medians = 10,183 #/cm3,
19.4 lg/m3, and 585.6 ng/m3 for UFP, PM2.5, and BC, respectively).

Final UFP models including the proximity to LAX and to free-
ways, housing unit density and highly developed land use
explained 66% of the spatial variability in UFP concentrations
(Table 1). Model R2 indicated less good fit for PM2.5 and BC models
(R2 = 0.47 and 0.38, respectively). Cross-validation indicated good
model performance for all three pollutants; HV R2 were <7% lower
than the model R2 and RMSE increased by about 7% for UFP, 14% for
PM2.5, and 3% for BC (Table 1). When we forced a constraint that
predictors have <10% of observations as zero values, fewer predic-
tors were retained in models (mostly land use variables were
excluded) and we saw no gain in model stability as reflected by dif-
ferences between model R2 and cross-validated R2 (data not
shown). In sensitivity analyses, we added sampling cluster to final
models to assess whether the developed LUR models accounted for
differences in background concentrations across clusters. Inclusion
of terms for cluster altered the significance of and degree of
collinearity between several predictors but increased the percent
of variability explained for the UFP models only by 1%, as assessed
by the percent change in the adjusted R2 compared to the final
model. Inclusion of cluster increased the percent variability
explained in PM2.5 and BC models by 15% and 7%, respectively
(Table S2).

Predictors common to both the UFP and PM2.5 models included
only NO2 concentration and highly developed land use; predictions
were uncorrelated at the sites (Pearson r = 0.05; Fig. 3). In contrast,
UFP and BC models shared predictors reflecting traffic and nearby
roads, NO2, and airports, and predictions were moderately corre-
lated at the sites (r = 0.62; p<0.001; Fig. 3). PM2.5 and BC predic-
tions were also moderately correlated at the sites (r = 0.51;
p<0.001). Measurements of UFP were not correlated with PM2.5

(r = <0.001) and weakly correlated with BC (r = 0.41; p < 0.001);
correlations between PM2.5 and BC measurements were moderate
(r = 0.59; p < 0.001; Fig. 3).

At cohort residences, average predicted exposure to UFP was
13,159 #/cm3, ranging from 3,160 to 106,359 #/cm3. An approxi-
mate 2.3-fold exposure contrast was observed between the 5th

and 95th percentiles and was 1.8-fold between the 10th and 90th

percentiles (Table 2). The ratios of the 95th to 5th percentiles for
PM2.5 and BC were both 2.3-fold, respectively. UFP predictions at
residences were weakly correlated with PM2.5 (r = 0.28) and mod-
erately so with BC (r = 0.64; Fig. 3). BC and PM2.5 predictions were
also moderately correlated (r = 0.58) at cohort addresses.
4. Discussion

We developed LUR models for ambient UFP, PM2.5, and BC in
Southern California to characterize the spatial variability in these
pollutants across an area of the U.S. well known for traffic conges-
tion and high outdoor air pollution. Few previous studies imple-
menting LUR approaches have included both UFP and PM2.5

models derived from the same monitoring effort such as we under-
took in this study. The simultaneous collection of measurements
and modeling efforts derived from these data allowed us to assess
correlations between UFP, PM2.5, and BC, both in terms of mea-
sured and modeled concentrations.

Our UFP model explained a greater proportion of the spatial
variability in ambient UFP compared to models based on short-
term monitoring in Vancouver (R2 = 0.48) (Abernethy et al.,
2013), the Netherlands (R2 = 0.33–0.42) (Montagne et al., 2015)
and a recent multi-site European effort (R2 = 0.50) (van Nunen
et al., 2017), and is comparable to a model in Toronto (R2 = 0.67)
(Weichenthal et al., 2016a). These R2s reflect how well these mod-
els predict the average of short-term measurements, which still
exhibit some temporal variability. We developed a spatial predic-
tor model for UFP that likely will explain longer term averages bet-
ter than shorter term average measurements, as the former have
less temporal variation (Montagne et al., 2015; van Nunen et al.,
2017; Kerckhoffs et al., 2016). Several Dutch studies have indeed
documented that spatial models explained external longer-term
measurements better than the short-term measurements from
which the models were developed (Montagne et al., 2015; van
Nunen et al., 2017). Our measurement of pollutants at a relatively
large number of sites compared to other short-term monitoring
studies was also important given the large size of our study area.
Taken together, our results suggest that our UFP model is suitable



Fig. 3. Pearson correlations between log-transformed UFP (#/cm3), PM2.5 (lg/m3) and BC (ng/m3) measurements and predictions at monitoring sites and predictions at cohort
residences in 1995.

Table 2
Distribution of predicted concentrations of UFP, PM2.5, and BC at cohort residences in 1995.

Pollutant Min 5th 10th 25th Mean Median 75th 90th 95th Max

UFP (#/cm3) 3160 8316 9614 11,046 13,159 12,647 14,628 17,171 19,002 106,359
PM2.5 (lg/m3) 7.5 15.5 16.9 20.6 24.5 24.2 27.8 32.1 35.8 54.4
BC (ng/m3) 141 593 664 796 959 963 1109 1254 1360 3871
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for application to epidemiologic analyses of long-term exposure
(Abernethy et al., 2013; Montagne et al., 2015; Rivera et al.,
2012; Ragettli et al., 2014). In contrast, our PM2.5 and BC models
performed comparatively less well than the UFP model. Several
LURs for PM2.5 exist. In Hong Kong, the R2 for a PM2.5 model was
0.63 (Shi et al., 2016). A modified LUR in Southern California that
included a machine learning approach to model selection yielded
a stronger PM2.5 prediction (R2 = 0.65) (Beckerman et al., 2013).
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In the ESCAPE study, median model explained variance for PM2.5

was 71%, although models predicted as little as 31% of the variation
in PM2.5 concentrations in some areas (Eeftens et al., 2012). One
explanation for our lower prediction for PM2.5 was limited avail-
ability of traffic intensity data, represented in our models via road-
way metrics reflecting road type and estimates from a traffic
demand model. A BC model in Toronto derived from bicycle-
based mobile monitoring measurements included similar near-
roadway predictors to our model and yielded only a modestly
higher R2 (0.43) (Minet et al., 2018). In contrast, the BC model
developed by Hankey et al. in rural Virginia, U.S., was compara-
tively more predictive of mean BC (R2 = 0.67) (Hankey et al.,
2019), as was a model in Vancouver (R2 = 0.51) (Larson et al.,
2009), and in the ESCAPE study, where PM2.5 absorbance was used
as a marker of BC (median R2 = 89) (Eeftens et al., 2012).

The key predictors of UFP in our model, density of major road-
ways and traffic intensity, are similar to important predictors in
many other published LUR models to date (Abernethy et al.,
2013; Eeftens et al., 2016; Hoek et al., 2011; Montagne et al.,
2015; van Nunen et al., 2017; Rivera et al., 2012; Cattani et al.,
2017; Wolf et al., 2017; Weichenthal et al., 2016a). Our sampling
campaign was designed around the major UFP source in the area,
freeways, and both major roadway density in a 50 m buffer and
traffic demand (passenger vehicle miles traveled) were indeed pre-
dictive of UFP measurements. In the more compact European cities
where these other models have been developed, traffic on major
urban roads (versus the freeways in our study) is a common pre-
dictor of UFP. Among a limited number of U.S. LUR models based
on mobile monitoring, traffic was similarly consistently a strong
predictor of UFP, both in urban (Li et al., 2013; Patton et al.,
2014; Zwack et al., 2011; Hankey and Marshall, 2015) and rural
(Hankey et al., 2019) settings. Our data also demonstrated the
influence of airports on UFP concentrations in the study catchment
area. Airport predictors were included in both UFP and BC models
and suggest that airports, specifically LAX, contribute to concentra-
tions of these pollutants even when accounting for traffic sources.
A recent emission rate study by Shirmohammadi et al. reported
that within the impact zone of the LAX airport, which is roughly
similar to the LAX cluster in our study, the LAX daily contribution
to UFP, BC, and PM2.5 were approximately 11, 2.5, and 1.4 times
greater than the emissions from the surrounding freeways
(Shirmohammadi et al., 2017). This finding further corroborates
the significance of the proximity to LAX as a predictor of UFP and
BC in our study. Few of the previous UFP LURs have evaluated air-
port predictors (Eeftens et al., 2016; Weichenthal et al., 2016a)
although airports have been recognized as an important UFP emis-
sions source, especially in the Los Angeles area (Shirmohammadi
et al., 2017; Hudda et al., 2014; Hudda et al., 2018). In contrast,
in a Swiss study, percent of airport land cover in a buffer was not
an important predictor of UFP (Eeftens et al., 2016). Two Canadian
studies found mixed results; in Montreal, airport proximity was
positively associated with ambient UFP in single pollutant models
but not in a multivariable model (Weichenthal et al., 2016b), and in
Toronto the distance to the local international airport was a signif-
icant UFP determinant (Weichenthal et al., 2016a).

Measurements of UFP were not correlated with PM2.5 and were
weakly correlated with BC at our monitoring sites. These observa-
tions agree with the findings of previous dynamometer and ambi-
ent measurement studies conducted in Los Angeles. Biswas et al.
showed that the advanced PM and NOx emissions control tech-
nologies on diesel trucks resulted in substantial reduction of PM
from these sources but increased UFP emissions, mainly due to
the nucleation of semivolatile organic vapors (Biswas et al.,
2008). Moreover, using historical ambient speciation data,
Hasheminassab et al. showed substantial and concurrent reduc-
tions in PM2.5 and elemental carbon (a surrogate for BC) over the
past decade in the LA Basin (Hasheminassab et al., 2014), while
during the same period of time the ambient levels of UFP remained
almost unchanged (Sowlat et al., 2016). These findings that PM
mass and BC emissions from traffic went down over time while
UFP emissions remained unaffected or increased may explain at
least some of the low correlations between these pollutants in
our data.

The correlations in concentrations of UFP with PM2.5 and BC
were higher for modeled than for measured concentrations in
our data. The correlation between PM2.5 and BC was similar for
measured and modeled values. This difference in correlations
may have been the result of residual temporal variation even after
averaging individual measurements per site, and the temporal cor-
relations may differ from spatial correlations. These results could
also be an artifact of offering a limited number of spatial predictors
into models, or due to the different performance of the models
(Montagne et al., 2015). Another explanation for the somewhat
stronger correlations between modeled UFP and PM2.5 compared
to their measurements is due to differences in the variability of
predictor values at cohort residences compared to the monitoring
sites, which were purposely selected to capture the full distribu-
tion of these determinants. The difference in correlation could also
be due to insufficient accounting of sampling cluster effects reflect-
ing background concentrations that clearly differed in the mea-
surements of these pollutants. We added cluster to final models
to assess whether these terms accounted for differences in back-
ground concentrations, and the explained variability in UFP con-
centrations was largely unchanged in models additionally
adjusting for cluster. However, for PM2.5 and BC, adding cluster
to final models did increase model R2s, suggesting that background
concentrations of these pollutants were not fully explained by their
respective LUR models. Given that the pattern of pollutant concen-
trations for BC and PM2.5 were less variable across clusters than
UFP, excluding the cluster from final models may explain the dif-
ferences in correlations between UFP predictions and those of
PM2.5 and BC. As discrete clusters were defined for the purpose
of sampling, application of models including clusters to the cohort
residences spread over the study area is not feasible. LUR models
generally have limited ability to account for differences in back-
ground pollution at scales larger than 5–10 km. Few other studies
have assessed spatial correlations between both measured and
modeled concentrations of UFP, PM2.5 and BC. The correlations
between measurements in our data were markedly lower than
those in a study in Amsterdam, where the correlation between
measured UFP and PM2.5 was 0.66 (Hoek et al., 2011). However,
the pattern of higher correlations between modeled and measured
UFP and PM2.5 concentrations was similar to that observed in our
study.

One goal of our effort was to develop models reflective of long-
term average exposures, and we developed models that used mea-
surements collected across all hours of the day as one strategy to
achieve this objective. Although we collected data only January–
August, comparison of these data to measurements collected at
the background monitoring sites for the full calendar year show
that average levels of all three pollutants during our monitoring
period were reflective of their respective annual averages (<10%
absolute difference for all pollutants; data not shown). Similarly,
we avoided peak exposure periods for sampling to better represent
the long-term mean exposure experienced by the cohort members
at their residence. Inclusion of peak exposures may have value in
identifying areas with high levels of these pollutants but may be
less ideal for estimates of chronic exposure, as peaks are less stable
than average values.

Our study had a number of advantages, including repeated
short-term measurements of multiple important traffic-related
pollutants at a large number of monitoring sites, and covering a
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broad geographic area. The stable weather in Southern California
and our 9-month monitoring campaign covering the major sea-
sonal changes indicate our measurements are reasonably reflective
of concentrations over the full year. We used modeled traffic inten-
sity estimates from 2012 in lieu of counts collected at the monitor-
ing sites, which may have more accurately reflected this predictor.
Like most prior studies, the temporal coverage of land use and road
predictors also pre-dated our measurement campaign, but these
estimates would be expected to be relatively stable over time
(Yang et al., 2018). Given our objective to derive long-term expo-
sure estimates, the design of our sampling campaign also focused
on key exposure sources (e.g., airports, traffic) anticipated to be
more stable over time. However, our choice to avoid other local
sources, such as restaurants and gas stations, is another potential
limitation of this effort. Our final models ultimately did not include
background correction to account for temporal variability, as we
observed minimal changes to our models with this adjustment. A
study in the Netherlands similarly observed a lack of improvement
to a spatial UFP model based on short-term measurements after
reference site adjustment (Montagne et al., 2015), indicating that
valid models for UFP may be obtained without this adjustment.
Our sensitivity analyses suggested somewhat limited representa-
tion of background concentrations in models of PM2.5 and BC
across clusters. We also recognize the potential importance of
meteorological factors to these predictions and attempted to
address this source of variation in our modeling. Similar to our
study, others have also shown a lack of improvement in model
fit with inclusion of meteorological variables (Abernethy et al.,
2013; Hankey et al., 2019), while another study found that adjust-
ment for meteorological variables led to more predictive models
than did correction for background concentrations (Minet et al.,
2018).
5. Conclusions

We developed LUR models for ambient UFP, PM2.5, and BC in
three counties in Southern California to support UFP exposure
assessment in the Los Angeles Ultrafines Study. Simultaneous mea-
surement of all three pollutants allowed comparison of their corre-
lations in measured concentrations as well as their predictions. The
majority of spatial variability in mean UFP was explained in a
model comprised primarily of traffic- and airport-related predic-
tors, and moderate levels of variability in PM2.5 and BC were
explained in separate models for these pollutants. These models
will be used to evaluate health effects of UFP in epidemiologic
studies in Los Angeles, although use of the PM2.5 and BC models
may require incorporation of additional data to provide more
robust exposure estimates.
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