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The exposome and health: Where chemistry
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Despite extensive evidence showing that exposure to specific chemicals can lead to disease, current
research approaches and regulatory policies fail to address the chemical complexity of our world. To
safeguard current and future generations from the increasing number of chemicals polluting our
environment, a systematic and agnostic approach is needed. The “exposome” concept strives to capture
the diversity and range of exposures to synthetic chemicals, dietary constituents, psychosocial
stressors, and physical factors, as well as their corresponding biological responses. Technological
advances such as high-resolution mass spectrometry and network science have allowed us to take
the first steps toward a comprehensive assessment of the exposome. Given the increased recognition
of the dominant role that nongenetic factors play in disease, an effort to characterize the exposome at a
scale comparable to that of the human genome is warranted.

A
basic tenet of biology is that the pheno-
type results from a combination of genes
and environment. The field of genomics
has provided an extraordinary level of
genetic knowledge, aided by large-scale,

unbiased genome-wide association studies
(GWAS). A similar level of analysis, however,
is still lacking for the environmental influences
on the phenotype. The “exposome” conceptwas
conceived by C. P. Wild in 2005 as a way to
represent the environmental, i.e., nongenetic,
drivers of health and disease (1). For these
external forces to have aneffect on
health, they must alter our biol-
ogy, suggesting that a detailed
analysis of accessible biological
samples at different molecular
levels, coupledwith information
provide snapshots of both the in-
ternal (biological perturbations)
and external contributors to the
exposome. As Rappaport and
Smith described in 2010, “toxic
effects aremediated throughchem-
icals that alter critical molecules,
cells, and physiological processes
inside the body…under this view,
exposures are not restricted to chemicals (tox-
icants) entering the body from air, water, or
food, for example, but also include chemicals
produced by inflammation, oxidative stress,
lipid peroxidation, infections, gut flora, and

other natural processes” (2). The exceptional
variety and dynamic nature of nongenetic fac-
tors (Fig. 1) presents us with an array of sam-
pling and analytical challenges. Fifteen years
after the exposome concept was introduced,
this review discusses progress in assessing the
chemical component of the exposome and its
implications on human health.

From environment to genes
Mapping the human genome revolutionized
our ability to explore the genetic origins of

disease, but also revealed the
limited predictive power of indi-
vidual genetic variation for many
common diseases. For example,
genetics contributes to less than
half of the risk for heart disease,
the leading source of mortality in
the United States and many other
parts of the world (3). The health
impact of environmental risk fac-
tors was highlighted by the Global
Burden of Disease (GBD) project,
which estimated the disease bur-
denof 84metabolic, environmental,
occupational, and behavioral risk

factors in 195 countries and territories, and
found that thesemodifiable risks contribute to
~60% of deaths worldwide (4). Using estab-
lished causal exposure–disease associations,
9 million deaths per year (16% of all deaths
worldwide) were attributed to air, water, and
soil pollution alone (5). However, the true im-
pact of the environment is likely to be grossly
underestimated by these studies, as many of
the known chemicals of concern were not con-
sidered and less than half of the nongenetic
risk burden was explained, suggesting the ex-
istence of missing exposome factors (4). These
missing factors are analogous to the miss-
ing heritability challenge observed in genetic
studies. Even with this incomplete inventory,
the economic costs of chemical pollution are

considerable, with healthcare and disability-
related productivity loss estimated at $4.6 tril-
lion U.S. dollars per year, representing 6.2% of
global economic output (5). Reducing or pre-
venting chemical pollution is a multifaceted
problem that involves medical, legal, and regu-
latory input (see Box 1).

Measuring chemicals en masse

Several research efforts have pioneered differ-
ent approaches for the systematic mapping of
the exposome, taking advantage of develop-
ments inmass spectrometry, sensors,wearables,
study design, biostatistics, and bioinformatics
(6)—advances that now position us to pursue
Dr. Wild’s original vision of the exposome (1).
A prime example is how high-resolution mass
spectrometry (HRMS) has transformed our
ability to measure multitudinous chemical
species in a wide range of media, expanding
our analytical window beyond targeted anal-
ysis of well-known metabolites and priority
pollutants (7). HRMS provides the means to
simultaneously measure a vast number of ex-
ogenous and endogenous compounds, offering
a description of the system and its changes in
response to exposure to environmental factors
(6, 8). As Fig. 2 (top panel) indicates, HRMS
is capable of measuring thousands to tens of
thousands of chemical features in a single an-
alytical run, although most of these features
remain unannotated. Although the systems bi-
ology approaches inmetabolomics originally
focused on detecting endogenous metabolites,
HRMS methods can also detect exogenously
derived smallmolecules such as pharmaceuti-
cals, pesticides, plasticizers, flame retardants,
preservatives, and microbial metabolites (9).
Historically, these exogenous compoundswere
often viewed as noise and artifact but in reality
they carrydirect evidenceof the complex environ-
ments to which living organisms are exposed.
Data resources relevant for HRMS-based

exposomics range from specialized lists [e.g.,
(10)] to medium-sized databases containing
tens to hundreds of thousands of chemicals,
through to huge resources such as PubChem
(11), which has 96 million entries (see Fig. 2).
Of the >140,000 chemicals produced and used
heavily since the 1950s, only ~5000 are esti-
mated to be dispersed in the environment
widely enough to pose a global threat to the
human population, although many thousands
more would be expected to affect individuals,
local communities, or specific occupational
settings (5). Specialized lists compiled by, for
example, the U.S. Environmental Protection
Agency (EPA) (12) and environmental com-
munities such as the NORMANNetwork (13)
often contain additional information (e.g.,
exposure data and product information) to
help annotate chemicals of interest in the
study context. Medium-sized databases such
asHumanMetabolomeDatabase (HMDB) (14)
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are commonly used in approaches involving
metabolic network analysis, offering typically
one to a few possible chemicals per feature of
exact mass detected by HRMS. Databases that
contain spectral information (i.e., structural
“fingerprints”) can be used to increase the con-
fidence of exact mass matching when experi-
mental fragmentation information is available
(15, 16). Comprehensive chemical resources
such as PubChem are so large that they often
offer several thousand possible chemical can-
didates per exact mass. Despite the excep-
tional size of the chemical space, the knowledge
and computational tools required to inter-
rogate these data are increasingly available
(15, 17). For instance, incorporation of lit-
erature and patent information with in silico
methods has greatly improved annotation rates
(from <22% to >70%) for >1200 chemicals in
HRMS experiments using PubChem (17).
Chemicals are not static entities; they react

in our bodies and the environment to form
metabolites or transformation products. Com-
putational tools exist to predict suchmetabolic
and environmental transformations (15, 18) but
often produce many false-positive and false-
negative candidates. Merely predicting first-
order reactions of PubChem chemicals would
result in billions of possibilities (Fig. 2, second
row from bottom). As a result, few studies so
far have been able to successfully capitalize
on this information in high-throughput iden-
tification efforts. The dispersed nature of the
essential chemical, metabolite, and spectral
information across a wide range of resources
with various formats and forms of accessibil-
ity (fully open, academic use only, commer-
cial, etc.) is a major impediment to progress
in the field.

Integrating chemical knowledge

The interconnected nature of the available
chemical information indicates the need for
an interdisciplinary and integrative approach
to further define the exposome and the as-
sociated data science challenges. Literature
mining of PubMed and mapping to discrete
chemicals can be used to compile and synthe-
size the chemical information in the scientific
literature (10, 19). The expansion and automa-
tion of literature mining for more accurate
chemical candidate retrieval during high-
throughput identification, e.g., with MetFrag
(17) or other in silico approaches (15), will be
crucial for faster, more efficient annotation of
the complex and highly varying datasets that
characterize studies of chemical exposures and
health.
Many of the chemicals of interest in exposo-

mics come from the same or related sources
(e.g., industrial processes, consumer goods,
diet), meaning that such exposures exhibit a
population structure (i.e., complex correlations
and dynamic patterns) akin to observed cor-

relations in complex biological systems. Thus,
the reduction of dimensional complexity will
be possible by grouping correlated exposures.
Indeed, several reports have shown correlation
patterns between different chemicals and
chemical families within populations (20, 21).
These relationships between chemicals can be
presented as networks of chemicals (i.e., expo-
sure enrichment pathways) that reveal commu-
nities of exposures (20, 21), which in turn can
be used to explore the impact that they have on
the biological system (see the following section).
Much of our current knowledge about the

health effects of chemicals comes from epide-
miological and toxicological studies in which a
few pollutants are analyzed in relation to a
specific phenotype, representing a hypothesis-

driven path toward understanding exposure–
disease relationships. However, our exposures
are not a simple sum of a handful of chemicals.
To overcome the limitations of traditional epi-
demiological studies, environment-wide asso-
ciation studies (EWAS) have been proposed
for identifying new environmental factors
in disease and disease-related phenotypes at
scale. EWAS was inspired by the analytical
procedures developed in GWAS (22) in which
a panel of “exposures,” analogous to genotype
variants, is studied in relation to a phenotype
of interest. For example, using the National
Health and Nutrition Examination Survey
dataset, an EWAS study explored the associ-
ations of 543 environmental attributes with
type 2 diabetes, identifying five statistically
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Fig. 1. The exposome concept. The exposome is an integrated function of exposure on our body, including
what we eat and do, our experiences, and where we live and work. The chemical exposome is an important and
integral part of the exposome concept. Examples of external stressors are adapted from (39). These stressors
are reflected in internal biological perturbations (Fig. 3); therefore, exposures are not restricted to chemicals
(toxicants) entering the body, but also include chemicals produced by biological and other natural processes.

Box 1. The exposome and regulation.

Many of the influential regulatory bodies in Europe and North America have been expanding their
computational and high-throughput approaches to address the increasing number of chemicals to which
humans are exposed, but there are still major challenges regarding prioritization. Networks such as
NORMAN (13), which bridge scientists, regulators, and practitioners, are becoming increasingly valuable
avenues of knowledge exchange. Large-scale exposome studies provide a systematic approach to
prioritization, allowing regulatory bodies to focus on those chemicals that have the largest adverse
effects on health. If systematic analysis reveals major adverse effects on human health from exposure to
currently approved or potential replacement chemicals, then those compounds should be removed from
the marketplace. Although thousands of compounds are classified as “generally recognized as safe,” they
have never been subjected to the scientifically rigorous testing systems currently in place. A data-driven
exposome approach ignores historical decision-making and can help to evaluate the effects of classes of
chemicals on specific biological pathways known to be perturbed, which will help in the design of new
compounds with minimal impact on human health and the environment.
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significant associations (including persistent
organic pollutants and pesticides) validated
across independent cohorts (22). However, by
focusing on a predetermined list of chemi-
cals, these initial EWAS studies likely suffer
from the same limitations of candidate gene
searches. Further, current EWAS approaches do
not test for interactions and/or combinations of
factors (mixtures). Recent efforts have been
undertaken to develop statistical methods to
screen for interactions and test the effects of
mixtures or to apply frameworks
such as aggregated exposure and
adverseoutcomepathways to study
combinatorial effects (9).
As systematic exposomicsmoves

forward to elucidate the impact
of the constellation of chemical
exposures on our health, increas-
ingly rich and high-dimensional
datamust be captured (Fig. 3). In
addition, defining the appropriate
frameworks for establishing con-
trols, as well as background and
negative responses, is essential
for enabling causal inference. To
aid inference, more insights into
the boundaries of what are “normal” responses
are required and necessitate definitions of a
reference exposome.

Network science to address
exposome complexity

The challenge in understanding the role of the
exposome on our health lies not only in the
large number of chemical exposures in our
daily lives, but also in the complex ways that
they interactwith cells. A reductionist approach
might isolate the role of a single variable, but
it will inadequately capture the complexity of

the exposome. Network science (23), which
has well-developed applications in medicine
and systems biology (24), offers a platform
with which to achieve an understanding of the
impact of multiple exposures. Each chemical
will exert its effect through interactions with
various cellular components supplying or
perturbing cellular networks. To capture the
diversity in these interactions, wemust first cat-
alog the sum of all physical interactions as a
multilayer network (25) consisting of several

distinct biological layers (Fig. 3).
Although each of these networks
will rely on different biological
mechanisms, they are not inde-
pendent; for example, protein
production is governed by the
regulatory network, and the cat-
alysis of the metabolic reactions
is in turn governed by the enzymes
and protein complexes of the regu-
latory network (26).
To fully understand the role of

the exposome, we must similarly
develop a multilayer network–
based framework capable of un-
veiling the role of chemicals, their

combinations, and biological perturbations
on our health. However, there are several data
andmethodological challenges. The first chal-
lenge is the paucity of systematic data on the
various dimensions of exposure, from bio-
availability to protein-binding information of
the hundreds of thousands of exposome mol-
ecules. The U.S. National Toxicology Program,
the EPA, and the European Molecular Biol-
ogy Laboratory (EMBL) are developing plat-
forms to generate, collate, and organize data
on chemical–biological interactions, but there
is a need for high-throughput approaches that

offer greater coverage (12, 27, 28). The second
challenge in developing a framework is that
the current statistical toolset assumes that we
are facedwith a collection of randomvariables
that are independent, identically distributed,
and measured with equal precision. In a net-
work environment, these assumptions are inher-
ently false, as interactions couple the probability
distribution of most network-based variables.
Furthermore, most of the chemicals we are ex-
posed to represent communities of exposures,
so the effect of a chemical is rarely observed in
isolation. Therefore, identifying meaningful
associations from high-dimensional exposo-
mic data poses major statistical and compu-
tational challenges that need to be addressed
in parallel with experimental developments.
The third challenge is that, beyond cataloging
interactions, we must also understand the
dynamics of the biochemical pathways (29)
through which different elements of the ex-
posome affect our health. Indeed, the human
interactome, representing the sumof all physi-
cal interactions within a cell (Fig. 3), is often
depicted as a static graph but is in reality a
temporal network (30) with nodes and links
that disappear and reemerge depending on
factors ranging from the cell cycle to variabil-
ity in environmental exposures across the life
course. Modeling the fully temporal nature of
these networks remains a challenge, as the
kinetic constants underlyingmetabolic processes
are not known and we currently lack system-
atic tools with which to identify them (31).

Informative exposome study designs

A systematic and unbiased assessment of the
exposome that does not focus on a selected
set of readily measured or priority chemicals
requires access to biological samples that
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Fig. 2. Chemical complexity of HRMS and the exposome. Top: Known versus unknown features in a typical HRMS measurement [data from (7)]. Bottom: Selected
data sources relevant to the chemical exposome (10–14, 19). Arrows show the overlap of potential neurotoxicants in FooDB (http://foodb.ca/) and FooDB components
in NORMAN SusDat (www.norman-network.com/nds/susdat/) (prioritized chemicals of environmental interest).
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reflect exposures, biological effects, and, pref-
erably, the health phenotype of interest. This
is challenging because it will be rare that the
variability of exposures (E) aligns perfectly
with the kinetics of the biological effects (B)
or the etiological time window of the health
phenotype, including developmental and trans-
generational effects (P). Optimizing each step
(E–B and B–P) in separate studies, however,
has the disadvantage that overlapping patterns
in each step restrict us from unveiling the true
association between exposure and the health
phenotype (E–P). The meet-in-the-middle
(MITM) design attempts to address this chal-
lenge (32). InMITM, exposures can be assessed
in individuals using HRMS or upstream esti-
mates of external factors (Fig. 1) and are com-
pared with downstream biological changes in
persons who develop a specific health pheno-
type and those who do not.
The MITM approach using HRMS data has

successfully identified single and combinato-
rial effects of chemicals (33–36). For exam-
ple, the HELIX study explored the early-life
exposome of population-based birth cohorts
and identified several environmental chemi-
cals that were associated with lung function in
children (35). The EXPOsOMICs study showed
how air pollution alters biological pathways,
particularly linoleate metabolism, which pre-
dicted the occurrence of adult-onset asthma
and cardiovascular disease (36).

Scaling up

By pooling studies, sample sizes for GWAS
have increased from a few thousand to tens
to hundreds of thousands of individuals over
the past decade (37). However, enrollment in
studies of nongenetic environmental exposures
remains relatively low. The large-scale genomic
consortia efforts allowed GWAS to detect
many common genetic traits related to health
phenotypes and, although the combined effects
of the identified traits are still modest, they pro-
vide insights into the underlying biological
pathways of disease. It is estimated that sam-
ple sizes of 500,000 to 2,000,000 are needed
to explain a substantial portion of the projected
genomic heritability of common chronic dis-
eases (38). For the multitude of factors within
the exposome, most of which likely exert small
effects, similar or even greater sample sizes
would be required for future environmental
studies and EWAS (22). Scaling exposome re-
search to these numbers will require a joint
effort across multiple cohort consortia and
research programs. Recently funded programs
to work toward a human exposome project
are a first step toward reaching tensof thousands
of people with detailed environmental and bio-
logical analysis of exposures. Although these
numbers are large enough to identify themost
prevalent and strongest chemical risk factors,
progressive increments in sample size will be

needed for a systematic understanding of the
impact of combinatorial exposome factors on
specific and rare phenotypes. The systematic
identification of the impact of nongenetic fac-
tors and chemical exposures would enable the
establishment of an exposome risk score (ERS)
akin to the polygenic risk score (PRS) (see Box 2).

Next steps for the exposome

The rate, volume, and variety of chemicals
being introduced into our environment con-
tinue to expand. The importance of these
chemical exposures on humanhealth is exem-
plified by the large proportion of disease caused
by as yet unknown exposome factors (3). Indeed,
the nongenetic component exceeds known and
missing heritability. We therefore need inno-
vative ways to study these factors and trans-
late our findings into policy. Currently, many of
the regulatory agencies are expanding their
computational andhigh-throughput approaches

to account for the ever-increasing number of
chemicals, but there are still major challenges
regarding prioritization and new approaches
are urgently needed (see Box 1). Open science
efforts such as Global Natural Product Social
Molecular Networking (GNPS), which allow
users to archive huge amounts of raw data
and in return offers computational mass spec-
trometry workflows coupled with open mass
spectral libraries and continuous updates of
new identifications, are beginning to be lever-
aged for large-scale studies (20). However,
as discussed above, we must address several
challenges to exploit the full potential of
exposome research as it relates to improving
our understanding of exposure to complex
chemical mixtures. To address these chal-
lenges, we must: (i) improve our technology
to screen for exogenous chemicals and their
biological consequences at higher-throughput
rates and lower costs; (ii) continue to develop
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Fig. 3. Impact of the exposome on subcellular networks. (A) Network medicine views the cell as a
multilayer network with three principal, interdependent layers: (i) a regulatory network capturing all
interactions affecting RNA and protein expression, (ii) a protein interaction network that captures all binding
interactions responsible for the formation of protein complexes and signaling, and (iii) a metabolic
network representing all metabolic reactions, including those derived from the microbiome, a network of
interacting bacteria linked through the exchange of metabolites. Exposome-related factors can affect each
layer of this multilayer network. (B) For example, the polyphenol epigallocatechin gallate (EGCG), a
biochemical compound in green tea with potential therapeutic effects on type 2 diabetes mellitus (T2D),
binds to at least 52 proteins (40). Network-based metrics reveal a proximity between these targets and
83 proteins associated with T2D, suggesting multiple mechanistic pathways to potentially account for
the relationship between green tea consumption and reduced risk of T2D. (C) As another example,
trichloroethylene (TCE) is a volatile organic compound that was widely used in industrial settings and is now a
widespread environmental contaminant present in drinking water, indoor environments, ambient air, groundwater,
and soil. Multiple lines of evidence support a link between TCE exposure and kidney cancer and possibly non-
Hodgkin’s lymphoma (33). TCE perturbs at least two different layers of the cellular network: It covalently binds to
proteins from the protein interaction network, altering their function, and affects the cellular metabolic network,
eventually leading to adenosine triphosphate (ATP) depletion. Network-based tools could be used to explore the
mechanistic role of many other exposome chemicals on our health and to build experimentally testable hypotheses.
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the current chemical and spectral data re-
sources needed to identify these signals in
samples; (iii) increase the scale and scope of
studies to a level that provides the necessary
statistical power to precisely characterize the
effects of the chemicals and their combina-
tions; (iv) further develop and support chem-
informatic and bioinformatic tools, including
network theory and network medicine, to
elucidate the constellation of the chemical
environment and its biological consequences;
and (v) ensure adequate protection for the
generation of false-positive results by insisting
on replication in independent studies and the
use of methods to establish causation, such as
Mendelian randomization,within-sibling com-
parisons, and exposure-negative and outcome-
negative controls.

Conclusion
A concerted and systematic effort to profile the
nongenetic factors associatedwith disease and
health outcomes is urgently needed because
we lack important insights that might assist
us in curtailing the ever-growing burden of
chronic disease on society. Emerging exposome
research frameworks are poised to enable the
systematic analysis of nongenetic factors in-
volved in disease. Technology has enabled the
first generation of studies to evolve into the
comprehensive study of combinatorial chem-
ical exposures. Future efforts must ensure that
analytical approaches and study designs are
rigorous and validated. A coordinated and in-
ternational effort to characterize the exposome,
akin to the Human Genome Project, would
provide rigorous data to allow exposome-based
EWAS to be conducted at the scale of GWAS.
By taking advantage of the nontargeted nature
of HRMS, EWAS provide a true complement
to GWAS. Consolidating knowledge garnered
fromGWAS and EWASwould allow us tomap
the gene and environment interface, which is
where nature meets nurture and chemistry
meets biology.
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Box 2. Toward an ERS.

There has been substantial progress in the
identification of genetic risk factors for chronic
diseases. Analysis of high-risk mutations and
estimation of PRS for these diseases are now
becoming routine and can be included when
developing individual-based (i.e., precision) pre-
vention and treatment strategies. Similarly, the
establishment of ERS would help to summarize
relevant nongenetic risk factors, enabling the
identification of hotspots of concern where mul-
tiple environmental factors come together, and
would aid in the prioritization of risk factors on
the basis of their population and individual im-
pact. For example, an ERS could provide data
on exposure to chemical toxicants that are based
on the biological processes or organ systems that
aremost vulnerable and couple themwith indices
of associated biological injury or response. Such
ERS, in contrast to PRS, would be time varying
and dynamic through age-related exposures
and susceptibilities.
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