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1  | INTRODUC TION

Although indigenous peoples have used coral reef resources for tens of 
thousands of years (Kirch, 2017) and coral fossils were known in Nicolaus 
Steno's time (the late 17th century; Rosenberg, 2009), coral reefs were 
first brought to wider European knowledge by accident, at 11 p.m. on 
11 June 1770, when Lieutenant James Cook's ship, HM Bark Endeavour, 

“bumped” and ran aground on the Great Barrier Reef off the northeast 
coast of Australia (Cook, 1770). The ship was slightly damaged, but to 
free it, the crew had to throw about 50 tons of cargo, including six can-
nons, over the side; they subsequently repaired the damage and the ship 
continued on its voyage. From that time forward, however, most British 
captains of both naval and merchant ships became extremely cautious 
about approaching land in uncharted waters of tropical and subtropical 
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Abstract
Hard, or stony, corals make rocks that can, on geological time scales, lead to the  
formation of massive reefs in shallow tropical and subtropical seas. In both historical 
and contemporary oceans, reef-building corals retain information about the marine 
environment in their skeletons, which is an organic–inorganic composite material. The 
elemental and isotopic composition of their skeletons is frequently used to reconstruct 
the environmental history of Earth's oceans over time, including temperature, pH, and 
salinity. Interpretation of this information requires knowledge of how the organisms 
formed their skeletons. The basic mechanism of formation of calcium carbonate skel-
eton in stony corals has been studied for decades. While some researchers consider 
coral skeletons as mainly passive recorders of ocean conditions, it has become in-
creasingly clear that biological processes play key roles in the biomineralization mech-
anism. Understanding the role of the animal in living stony coral biomineralization and 
how it evolved has profound implications for interpreting environmental signatures in 
fossil corals to understand past ocean conditions. Here we review historical hypoth-
eses and discuss the present understanding of how corals evolved and how their skel-
etons changed over geological time. We specifically explain how biological processes, 
particularly those occurring at the subcellular level, critically control the formation 
of calcium carbonate structures. We examine the different models that address the 
current debate including the tissue–skeleton interface, skeletal organic matrix, and 
biomineralization pathways. Finally, we consider how understanding the biological 
control of coral biomineralization is critical to informing future models of coral vulner-
ability to inevitable global change, particularly increasing ocean acidification.
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seas. Some, who took short cuts, were unlucky, resulting in the multi-
tude of shipwrecks that speak of the dangers of coral reefs, both to the 
vessels and to the reefs (Work, Aeby, & Maragos, 2008).

Seventy-two years after Cook's “bump,” in May 1842, Charles 
Darwin, at the age of 33, published his first monograph, a treatise 
entitled, “The Structure and Distribution of Coral Reefs” (Darwin, 
1842). He realized that reefs, although considered (rightfully) geo-
logical structures, were the result of biological processes and subject 
to competition. He wrote,

In an old-standing reef, the corals, which are so different 
in kind on different parts of it, are probably all adapted to 
the stations they occupy, and hold their places, like other 
organic beings, by a struggle one with another, and with 
external nature; hence we may infer that their growth 
would generally be slow, except under peculiarly favour-
able circumstances. (p. 76)

This was an amazing observation. It was sheer intuitive logic that would 
later lead to his second treatise, “On the Origins of Species,” first pub-
lished on 24 November 1859 (Darwin, 1859), the first printing of which 
sold out within 1 day.

It would take the rest of the 19th century to understand that 
reef-forming corals are geologically ancient organisms. Their evolu-
tionary origins are still not well constrained. However, reef-building 
corals have profound influences on the evolution, geology, ecology, 
and geochemistry of the world's oceans. Here we examine the role 
of corals from the perspective of biological mineralization and their 
incredible history of survival, evolution, and adaptability throughout 
hundreds of millions of years of global climate change.

2  | WHAT ARE STONY COR AL S?

Together with several anatomically distinct groups, scleractinian 
corals (commonly called “hard” or “stony” corals; see Cairns, 2007) 
belong in the class Anthozoa which is in one of the oldest inverte-
brate phyla, the Cnidaria. Cnidarians are some of the earliest meta-
zoans to possess an organized body structure (Erwin et al., 2011). 
A characteristic of these marine animals is a radially symmetrical 
body with only two cell layer types: an ectoderm and an endoderm, 
separated by the mesoglea, a noncellular gelatinous matrix (Pochon  
et al., 2010). Their life cycle begins from soft-bodied, planktonic, planula 
larvae that cannot eat, but rather rely on their yolk for nutrition (Figure 1a).  

F I G U R E  1   The general organization of the scleractinian coral soft tissue and underlying skeleton. (a) Planktonic larva (planula, greenish 
color due to symbiotic algae) and newly settled polyp (d) with incipient skeletal deposits (i). (b) Main skeletal and soft tissue structures 
of colonial coral with (c) enlargement showing simplified section of two main tissue layers with symbiotic algae in oral endoderm. Such 
organization is exemplified by the symbiotic scleractinian Stylophora pistillata (e, with tissue cover, brown-green tiny dots (j, enlarged, arrows) 
are symbiotic algae; k, l, bare skeleton). (g) Solitary and asymbiotic coral Desmophyllum dianthus (f, bare skeleton, upper view). (h) 3D view of 
solitary corallum with main soft tissue and skeleton structures. Images (b) and (h) are courtesy of Ewa Roniewicz
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The amount of yolk nutrients determines their ability to survive 
as plankton without feeding, and therefore, the distance they can 
travel as plankton from where they were spawned. Upon settle-
ment on a hard substrate, however, the planulae undergo meta-
morphosis to form polyps with a mouth that allows them to capture 
zooplankton (Figure 1b,g). For some shallow-water stony corals, 
this serves to supplement the nutrition they receive from endos-
ymbiotic dinoflagellates (Figure 1e,f), while other species, including 
deep-water corals, remain asymbiotic or aposymbiotic. Stony cor-
als are sessile and remain at their site of settlement for the rest of 
their lives.

Scleractinian corals (Figure 2a), which can form reefs in shal-
low tropical and subtropical seas, are the only extant anthozoans in 
which settlement and tissue reorganization during metamorphosis 
leads to deposition of an external mineral skeleton comprised of 
calcium carbonate. During metamorphosis, the aboral ectoderm of 
the planula transforms from a columnar epithelium into squamous 
cells called calicoblasts (the tissue layer composed of such cells is 
called the calicoblastic cell layer or calicoblastic epithelium [Von 
Heider, 1881]). The calicoblastic epithelium is in contact with the 
skeleton (Tambutté et al., 2011) and is mechanically anchored to it 
by specialized cells (desmocytes), which leave attachment scars on 
the skeleton (Muscatine, Tambutté, & Allemand, 1997; Figure 1c,l). 
The first mineral deposits of the initial polyp form a circular plate 
that shortly is supplemented by vertical blades known as septa 
and structures forming a cylindrical or cup-like wall (or theca; 
Figure 1d,h,i). In effect, the coral animals are a thin “glove” of a 
living organism on a biomineral skeleton of their making and that 
continuously grows as long as the animals live (Figure 2a). In colo-
nial taxa, these polyps can ultimately form large reefs visible from 
space (Figure 2a,b).

3  | E VOLUTIONARY HISTORY OF  
REEF-FORMING COR AL S

The transition from abiotic calcium carbonate deposition on microbial 
surfaces to biomolecule-mediated skeletal calcite and aragonite for-
mation by eukaryotes is one of the most dramatic transitions in the 
evolution of life in the oceans. In the early Archean eon, 4,000 to 
2,500 Ma (millions of years before present), prokaryotic photosyn-
thetic microorganisms, such as cyanobacteria, formed vast deposits 
of calcium carbonate around their sheaths (Allwood, Walter, Kamber, 
Marshall, & Burch, 2006; Riding, 2006). This process, which occurs on 
some eukaryotic algae today, is primarily a result of elevated pH on 
the cell walls. In Archean time, photosynthetic microbes made layer 
upon layer of carbonates, forming vast stretches along the coastlines 
of primordial continental landmasses. These ancient reef-like struc-
tures, called stromatolites, record some of the earliest evolution of 
life on Earth (Awramik, 1984). The transition, 2,000 Ma later, to the 
Phanerozoic eon (“visible life,” 541 Ma to present) was marked by the 
rapid appearance and evolution of basal metazoa, including those that 
calcify, ending stromatolite dominance, and kick-starting multicellular 
animal biomineralization in the oceans (Valentine, 2002).

Prior to the Cambrian “explosion” of animal life, the Ediacaran 
Period (635–541 Ma) marks a brief intermezzo (on geological times-
cales) with an abundance of enigmatic, soft-bodied organisms called 
the “Ediacaran Biota.” The Ediacarans represent an early stage in mul-
ticellular animal evolution; however, their relationships with marine 
animal phyla that subsequently emerged in the Cambrian (and repre-
sent the majority of extant phyla) remain enigmatic (Xiao & Laflamme, 
2009). Most of the soft-bodied Ediacaran organisms went extinct at 
the Ediacaran–Cambrian boundary, but some probably continued to 
diversify (Cai, Xiao, Li, & Hua, 2019; Wood et al., 2019) and several 

F I G U R E  2   Coral reefs viewed underwater and by satellite. (a) Massive Porites building reef structures as observed by SCUBA divers 
(Photo credit: Hagai Nativ, University of Haifa, Israel). (b) Palau Atoll surrounding Babeldaob, Koror, and Peleliu islands in the Republic of 
Palau, as seen by NASA SeaWIFS satellite (courtesy of NASA: https ://eoima ges.gsfc.nasa.gov/image s/image recor ds/87000/ 87423/ palau_
oli_20140 80_wide.jpg)

(a) (b)

https://eoimages.gsfc.nasa.gov/images/imagerecords/87000/87423/palau_oli_2014080_wide.jpg
https://eoimages.gsfc.nasa.gov/images/imagerecords/87000/87423/palau_oli_2014080_wide.jpg
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are now considered to be basal Cnidaria (Gehling, 1988; Ivantsov 
& Fedonkin, 2002). Indeed, molecular clock analysis suggests that 
Cnidaria originated about 740 Ma, prior to the Ediacaran Period (Park 
et al., 2012). Cnidaria, therefore, rank among the most basal metazoan 
phyla dating back to the Neoproterozoic. Within Cnidaria is the class 

Anthozoa (Figure 3), a group that includes Hexacorallia (Scleractinia, 
Corallimopharia, Anthipatharia, Actiniaria, Zoanthiniaria), Ceriantharia, 
and Octocorallia and is thought to be a sister group to all other cnidari-
ans, including Cubozoa (box jellyfish), Hydrozoa (jellyfish and hydroids), 
and Scyphozoa (true jellyfish; Collins, 2002; Kayal et al., 2018). All 

F I G U R E  3   Overview of Phanerozoic anthozoan diversity. (a–g) Recent scleractinian corals are represented by ca. 1,500 species, of 
which about half are shallow-water, often colonial taxa living in symbiosis with dinoflagellate algae (Z, zooxanthellate), and half are shallow- 
and deep-water, often solitary taxa lacking symbiotic algae (AZ, azooxanthellate). Molecular phylogeny suggests the presence of three 
major clades among modern scleractinians that diverged more than 400 Mya: (1) Basalia (e.g., (a) Gardineria [AZ], (b) Letepsammia [AZ]), (2) 
Complexa (e.g., (c) Fungiacyathus [AZ], (d) Galaxea [Z], (e) Acropora [Z], and Robusta (e.g., (f) Acanthastrea [Z], (g) Stylophora [Z]). (h) Simplified 
anthozoan phylogeny: sudden appearance of highly diversified scleractinian corals about 14 Ma after the Permian–Triassic boundary (Middle 
Triassic) is preceded by the rare occurrence of scleractinian-like forms in Paleozoic (e.g., (o) Kilbuchophyllia). Despite of major shifts in 
seawater Mg/Ca ratio which dictates calcium carbonate polymorph selection in abiotic conditions (low Mg/Ca favors calcite, whereas high 
Mg/Ca favors aragonite [Berner, 2013]) scleractinians almost invariably form aragonite skeletons throughout their fossil record (possible 
exception is calcite “Coelosmilia” (i)): (j) Astrocoenia, (k) Donacosmilia, (l) Columnastrea, (m) Tropiastraea (left), Margarophyllia (right),  
(n) Haimeicyclus, (p) Pamiroseris. Paleozoic calcifying corals were represented by mostly calcite rugose (solitary and colonial: e.g., (r) 
Hexagonaria, (s) Hadrophyllum, (t) Tachylasma), and colonial tabulate corals (e.g., (u) Heliolites). There is a pre-Ordovician record of calcifying 
corals, but their exact taxonomic attribution is uncertain (“Corallomorpha,” e.g., (q) Cothonion). Approximate age of illustrated fossil corals is 
given in bottom-left corner of the image. Scale bars = 2 mm
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cnidarians share cnidae, or nematocytes; basically cellular “harpoons” 
that spear and poison zooplanktonic prey. Furthermore, the anthozoan 
life cycle is characterized by a planula larval stage that (Figure 1a), after 
settlement, develops into a sessile polyp (Figure 1d).

The fossil record during the early Cambrian period is poor 
(Savarese, Mount, Sorauf, & Bucklin, 1993). Many early anthozoans 
appear to have been soft-bodied, or used chitin-like structures to 
build their skeletons (Baliński, Sun, & Dzik, 2012). However, some 
exceptionally well-preserved soft-bodied fossils provide glimpses of 
early anthozoan evolution. Tiny fossils of soft-bodied sea anemones 
have been described from the Lower Cambrian of China (Han et al., 
2010). These fossils, from 538 Ma, share characteristics exhibited by 
all modern anthozoans, and are thus likely stem group representa-
tives (Figure 3h).

Two groups of now extinct calcifying anthozoans emerged in the 
Ordovician (Figures 3 and 4). Tabulata, exclusively colonial corals, 
appeared in the early Ordovician (485 to 445 Ma). The first Tabulata 
were encrusting and small in size (Scrutton, 1999), and the group rep-
resented a first attempt of biomineralizing cnidarians to contribute 
to the construction of reef belts in the paleotropical seas (Copper, 
2001; Webby, 1992). The Rugosa emerged during the middle 
Ordovician around 460 Ma (Baars, Ghobadi Pour, & Atwood, 2012). 
Although colonial forms of rugose corals occur in the fossil record, 
the overwhelming majority were solitary and composed of calcite, 
the more stable of the two major polymorphs of calcium carbon-
ate. Unlike modern scleractinian corals, which are radially symmetric 
with septa inserted cyclically, rugose corals typically exhibit strong 
bilateral symmetry with septa inserted in a tetraradial fashion. Most 
likely, rugosans were monophyletic and evolved independently from 
soft-bodied anthozoans (Baars et al., 2012).

Overall, during Paleozoic time, tabulate and rugose corals built 
reefs and increased in size, diversity, and geographic distribution, 
peaking during the Devonian. The end-Devonian crisis, marked by 
the collapse of reef environments, led to a significant taxonomic 
decline of tabulates, which suffered a major extinction and did 
not fully recover during the Carboniferous. In contrast, Rugosa 
were less affected and diversity remained high until the end of the 
Permian (250 Ma), at which time the largest extinction event in the 
Phanerozoic occurred (Raup & John Sepkoski, 1982).

Molecular phylogenies (Kitahara, Cairns, Stolarski, Blair, & 
Miller, 2010; Stolarski et al., 2011) suggest the emergence of the 
predecessors of modern reef-forming scleractinian corals in the 
early Ordovician (ca. 445 Ma). The oldest scleractinian lineages 
were almost certainly solitary and asymbiotic. Such an ancient 
origin of scleractinian corals is supported by the occurrence of 
solitary, conical-to-discoidal corals with septal insertion patterns 
identical to modern scleractinian corals (Figure 3o). Surprisingly, 
these fossil corals are limited to the Ordovician period and, thus 
far have only been found in southern Scotland and Northern 
Ireland (Scrutton, 1998; Scrutton & Clarkson, 1991). Regardless, 
fossils of scleractinian corals reappear after the end-Permian 
extinction, in the mid-Triassic (ca. 245 Ma), and became highly 
diverse (Stanley & Fautin, 2001). These mid-Triassic ancestors 

exhibited all growth forms found in modern reef-building corals 
(Figure 4).

3.1 | Extinction and biomineralization of reef-
forming corals

Although reef-forming corals were present throughout most of the 
Phanerozoic period, they underwent several mass extinction events, 
sometimes followed by so-called “reef gaps” of millions of years, dur-
ing which time they were absent in the fossil record (Stanley, 1988, 
2003). For example, the end of the Cambrian is marked by an ex-
tinction and led to a period of nearly 30 Ma without significant reef 
formation by metazoans (Copper, 2001). The end-Devonian extinc-
tion affected mainly colonial tabulate corals wiping out 80%–90% 
of taxa (Zapalski & Berkowski, 2012), but solitary Rugosa, living in 
deeper waters, were less affected. Following the complete extinc-
tion of all Rugosa and Tabulata during the end-Permian extinction, 
there was a second “reef gap” during the first few million years of 
the Triassic. During this period, Scleractinia rose to prominence and 
became prolific reef builders along the margins of the Tethys Sea 
(Flugel & Senowbari-Daryan, 2001), an environment similar to many 
modern, tropical marine regions (Wang et al., 2016). The fossil rem-
nants of these reefs can be seen in the Alpine mountain range in 
Austria and Italy (Bosellini, Gianolla, & Stefani, 2003; Figure 5). The 
end-Permian extinction also marked a prominent shift in the miner-
alogy of coral biomineralization: while Tabulata and Rugosa gener-
ated calcite, scleractinian corals began to produce aragonite which 
they continue to do today. Fine-scale skeletal features and stable 
isotope skeletal signatures, such as δ15N, suggest that symbiosis with 
photosynthetic dinoflagellates was a key driver of their evolutionary 
success (Frankowiak et al., 2016; Muscatine et al., 2005; Figure 1e,f). 
This intracellular symbiotic association with photosynthetic algae 
marked the beginning of modern-type scleractinian coral reefs.

Perhaps the most famous, but not the most extreme, of all 
Phanerozoic extinctions at the end of the Cretaceous (66 Ma), led to 
the demise of sauropod dinosaurs as well as extensive ocean acidifi-
cation (Henehan et al., 2019). However, this event only resulted in a 
moderate loss of scleractinians; approximately 45% of all taxa went 
extinct (Kiessling & Baron-Szabo, 2004). The extinction was more 
severe for highly integrated zooxanthellate corals, but these also 
recovered quite rapidly on geologic time scales (Kiessling & Baron-
Szabo, 2004).

The causes that led to coral extinction throughout the Phanerozoic 
are likely varied. Ocean acidification, due to strong increases in at-
mospheric CO2, has been suggested (Greene et al., 2012), but the 
patterns shown in the fossil record of corals are more complex. 
Development of extensive ice caps, decreases in global temperature, 
and sea-level fluctuations were likely responsible for end-Ordovician 
coral extinctions that could also have led to their disappearance from 
the fossil record and potentially led to their migration into deep wa-
ters. The extinction of the Tabulata at the end of the Devonian and 
reef decline several million years prior to the end-Permian extinction 
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suggest other factors. Suessialean dinoflagellates, which includes 
the family Symbiodiniaceae (LaJeunesse et al., 2018), the main sym-
biont of extant corals, almost completely disappeared at the end of 

the Triassic (Stanley & van de Schootbrugge, 2009). A breakdown in 
symbiotic relationships could have led to preferential extinction of 
colonial corals during several mass extinction events. In turn, the rise 

F I G U R E  4   Growth forms of the Triassic and Recent corals in direct comparison. Triassic scleractinian corals that emerged en masse 
after the Permian–Triassic boundary (extinction of Paleozoic rugosan corals) were highly diversified and showed solitary (a), phaceloid (d), 
cerioid (f), thamnasterioid (i), and meandroid (k) growth forms fully comparable to modern scleractinians (c, e, g, j, l, respectively). Some 
well-preserved Triassic corals (b) show regular banding of TD's (arrows) which characterize modern corals symbiotic with dinoflagellates (h); 
coral–dinoflagellate symbiosis was likely a key driver in the evolution and expansion of shallow-water Mesozoic scleractinians. Scale bars: a, 
c–g, i–l = 5 mm, b, h = 50 µm. Triassic (Carnian) specimens from (a, b, d, f, i, k) Carnian of Italian Dolomites and (b) Norian of Turkey
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of scleractinians during the Triassic was likely linked to the evolution 
of photosymbiosis (Frankowiak et al., 2016; Kiessling, 2010).

Changes in atmospheric pCO2 may have indirectly shaped the 
trajectories of corals and other calcifying organisms through changes 
in temperature. This is perhaps most clearly illustrated by the large 
carbon cycle perturbation that occurred 55 Ma, at the boundary 
between the Paleocene and Eocene periods, and which serves as a 
deep time analog for current anthropogenic carbon emissions. The 
Paleocene–Eocene Thermal Maximum (PETM) was marked by the 
rapid release (<20,000 years) of 1,000s Pg of carbon, likely through 
the destabilization of seafloor gas hydrates or volcanism, driving an 
increase in global temperature of 5–8°C (Gutjahr et al., 2017; Sluijs 
et al., 2006; Zachos et al., 2005, 2003; Zeebe, Zachos, & Dickens, 
2009). Surprisingly, most shallow-water marine calcifiers, including 
scleractinian corals, were not severely affected (Gibbs, Stoll, Bown, 
& Bralower, 2010).

4  | SKELETAL STRUC TURE AND 
FORMATION

The principal crystalline “building block” of the approximately 1,500 
listed species of modern Scleractinia (Cairns, 2007; Veron, 2000) 
consists almost exclusively of calcium carbonate crystals in the form 
of aragonite (e.g., Clode, Lema, Saunders, & Weiner, 2011; Foster 
& Clode, 2016; Von Euw et al., 2017). However, the presence of 
extracrystalline phases coexisting with aragonite has sometimes 
been reported. These include not only calcite (Frankowiak, Mazur, 

Gothmann, & Stolarski, 2013; Gladfelter, 1983; Houck, Buddemeier, 
& Chave, 1975; Lazareth et al., 2016; Wainwright, 1963) but also 
other noncarbonate minerals such as brucite (Mg(OH)2; Nothdurft 
et al., 2005). Nonetheless, these extracrystalline phases are not con-
sidered as the direct result of the coral biomineralization process 
since their presence could have different origins such as a mineral 
deposition due to the activity of boring organisms present within 
the skeleton (Macintyre & Towe, 1976), diagenetic alteration of the 
primary skeletal deposits (Frankowiak et al., 2013), secondary depo-
sition of calcareous matter (Cusack et al., 2008; Dalbeck et al., 2011; 
Enmar et al., 2000), or even the result of an inorganic precipitation 
upon drying.

4.1 | Contrasting the geological and biological 
model of biomineralization in corals

Although seawater is supersaturated with respect to calcium and 
bicarbonate ions, carbonates do not form spontaneously in seawa-
ter. However, they do form in a reliable, species-specific manner 
between coral tissue and the substrate. To examine this paradox, ge-
ochemists have investigated the chemistry of coral calcifying fluid, 
biologists have widely examined the skeletal organic matrix (SOM), 
while materials scientists have used various physical techniques to 
characterize the skeletal inorganic material. However, there is on-
going debate on the degree to which the biomineralization process 
in corals is directly related to seawater carbonate chemistry versus 
biological control.

One of the motivations to understand biomineralization 
in stony corals is that their skeletons incorporate atoms of ele-
ments other than calcium, carbon, and oxygen, often in relation 
to various environmental parameters such as pH (e.g., Hönisch 
et al., 2004; McCulloch et al., 2018), temperature (e.g., Dunbar, 
Wellington, Colgan, & Glynn, 1994; Mitsuguchi, Matsumoto, Abe, 
Uchida, & Isdale, 1996; Weber, 1973), and salinity (e.g., Giri, Swart, 
& Devlin, 2018; review by Corrège, 2006). Thus, through so-called 
geochemical “proxies,” the chemistry of coral skeletons can po-
tentially allow reconstruction of past ocean conditions. However, 
with very few exceptions, trace element and stable isotope incor-
poration in coral skeletons is not in thermodynamic equilibrium 
with abiotically precipitated aragonite. The offsets are termed 
“vital effects” (e.g.; Adkins, Boyle, Curry, & Lutringer, 2003; Erez, 
1978; Hönisch et al., 2004), a phenomenon that is often viewed 
as a geochemical process that has been slightly modified by the 
living coral. Such modifications include increased concentrations 
of Ca2+ (Al-Horani, Al-Moghrabi, & De Beer, 2003; Ohno et al., 
2017; Sevilgen et al., 2019; Taubner, Hu, Eisenhauer, & Bleich, 
2019) and HCO−

3
 (Chen, Gagnon, & Adkins, 2018; Comeau et al., 

2017; McCulloch et al., 2018; Sevilgen et al., 2019; Zoccola et al., 
2015, among others). These are then reflected in altered ratios of 
element/Ca and offsets in the isotopic ratio of elements such as C, 
O, and B as compared to seawater. These vital effects arise from 
the biomineralization process.

F I G U R E  5   View on the Sassolungo (Langkofel) mountain in the 
Dolomites (northern Italy). These steep cliffs are 1,000 m high, 
rising up to nearly 3,200 m above sea level and represent remnants 
of middle Triassic (Ladinian) reef atolls that formed over millions of 
years after the end-Permian extinction with the help of the first 
scleractinian corals. Despite extensive alpine deformation, these 
Triassic atolls are still in their original position with respect to the 
surrounding deep-water clays. The extensive build-ups were the 
result of sea level rise, basin subsidence, and rapid growth of reef 
organisms
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Coral biomineralization is geochemically framed in the context of 
aragonite saturation state, Ωarag, which relates the concentrations of 
Ca2+ and CO2−

3
 dissolved in seawater to their equilibrium concentra-

tions as (Zeebe & Wolf-Gladrow, 2001):

Therefore, geochemists usually consider the chemical compo-
sition of the calcifying fluid with respect to Ωarag, and hence the 

ability of calcium carbonate to precipitate abiotically (e.g., Cohen 
& Holcomb, 2009; Figure 6a). In this context, decreased pH due 
to the release of anthropogenic CO2 to the atmosphere leads to 
lower Ωarag and therefore should, logically, result in decreased cal-
cification rates (e.g., Doney, Fabry, Feely, & Kleypas, 2009; Erez, 
Reynaud, Silverman, Schneider, & Allemand, 2011; Kleypas et al., 
1999; Silverman, Lazar, Cao, Caldeira, & Erez, 2009). Although, 
there is evidence that this simplified model can explain calcifi-
cation in some coral species in response to decreased pH (e.g., 
Anthony, Kline, Diaz-Pulido, Dove, & Hoegh-Guldberg, 2008; 

Ωarag=
[Ca

2+
]SW× [CO

2−

3
]SW

[CaCO3]
.

F I G U R E  6   Coral aragonite crystal growth as a physicochemically dominated process (a) versus biologically controlled process (b). In 
the often-held view of a physicochemically dominated process, the calicoblastic ectoderm and skeleton provide a wide space (Gagnon, 
Adkins, & Erez, 2012; see criticism in Brahmi et al., 2016) in which biological processes determine the extracellular calcifying medium 
(ECM) composition, but from there on, the process is dominated by crystal growth by a classical pathway of ion-by-ion attachment yielding 
a smooth, faceted surface. This is in contrast to the biologically controlled process, in which Ca2+ and bicarbonate, as well as ACC and 
biomolecules, are transported, in some cases by vesicles (yellow spheres), to the narrow ECM (width based on microsensor dimensions 
in Ammann, Bührer, Schefer, Müller, & Simon, 1987; de Beer, Kühl, Stambler, & Vaki, 2000). Structural molecules such as the proteins 
coadhesin, peroxidasin, and collagen, which form functional triple helices, adhere calicoblastic cells to the skeleton and may have a role 
in mineral formation. ACC nanoparticles are deposited on both ECM biomolecules and the growing mineral surface, and crystallization 
proceeds through a nonclassical pathway to crystallization by ACC particle attachment to yield a biogenic aragonite crystal with 
characteristic nanocomposite appearance
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Drenkard et al., 2013; Strahl et al., 2015), in many others there 
appear to be mechanisms to resist this stressor to some extent 
(e.g., Comeau, Edmunds, Spindel, & Carpenter, 2013; Crook, Potts, 
Rebolledo-Vieyra, Hernandez, & Paytan, 2012; Fabricius et al., 
2011; Ries, Cohen, & McCorkle, 2009; Shamberger et al., 2014; 
Strahl et al., 2015).

Preparation of cross sections of coral branches or nubbins in 
which the tissue can be preserved using a chemical fixative have al-
lowed for increased understanding of how the calcifying milieu is 
established (e.g., Tambutté et al., 2007; Vandermeulen, 1975). This 
and other approaches focusing on the skeleton allow for inves-
tigation of the skeletal surface and/or internal regions (Benzerara  
et al., 2011; Cuif & Dauphin, 2005b; Cuif, Dauphin, Doucet, Salome, 
& Susini, 2003; DeVol et al., 2015; Gutner-Hoch et al., 2016; Isa, 
1986; Nothdurft & Webb, 2007; Stolarski, 2003; van de Locht et al., 
2013; Von Euw et al., 2017), along with the putative “calcification 
site” on the skeleton's surface or possibly within the animal tissue. 
Sites of biomineralization are any locations in which nucleation of 
the solid mineral phase occurs, including vesicles present within the 
calicoblastic cells (Hayes & Goreau, 1977; Mass, Drake, Heddleston, 
& Falkowski, 2017; Neder et al., 2019) or in the subectodermal 
space potentially present at the interface between the calicoblastic 
cells and the established skeleton (Clode & Marshall, 2002, 2003a, 
2003b).

4.2 | Composition of the coral SOM

There is significant organic matter in coral skeletons. Indeed, the 
organic portion of the coral skeleton has been studied for over 
150 years. Silliman described the skeletal composition of 30 species 
in the mid-1840s (Silliman, 1846) and calicoblastic cells were recog-
nized as being responsible for skeleton formation as early as 1881 
(Von Heider, 1881; reviewed in Bourne, 1899). Furthermore, Duerden 
describes the remaining “colloidal material” following skeleton de-
calcification as bearing a resemblance to the mesoglea (Duerden, 
1905), but that the appearance of this matrix becomes finer in older 
portions of the skeleton (Duerden, 1904). Mucopolysaccharides 
including chitin (Goreau, 1956, 1959; Wainwright, 1963), proteins 
(Johnston, 1980; Mitterer, 1978; Young, 1971; Young, O'Connor, 
& Muscatine, 1971), and lipids (Johnston, 1980; Young et al., 1971) 
were subsequently extracted from coral skeleton and described, 
with symbiont-derived photosynthate as one ultimate source of this 
fixed carbon (Muscatine & Cernichiari, 1969; Young, 1973; Young  
et al., 1971).

The most extensively studied component of the coral SOM is the 
protein complex retained in the inorganic aragonite skeleton even 
after the overlying animal dies. These proteins are secreted by the 
calicoblastic ectoderm (Puverel, Tambutté, Zoccola, et al., 2005; 
Yamashiro & Samata, 1996), serve to connect that cell layer to the 
pre-existing skeleton (Clode & Marshall, 2002, 2003a), and pattern 
both the physical and chemical environment of the calcifying me-
dium (Chen et al., 2018; Clode & Marshall, 2003a, 2003b; Drake  

et al., 2018). The SOM allows coral aragonite precipitation even 
under calcite-promoting conditions (Higuchi et al., 2014; Higuchi, 
Shirai, Mezaki, & Yuyama, 2017; Yuyama & Higuchi, 2019). The 
amino acid composition of the SOM proteins across Scleractinia is 
heavily biased toward aspartic and glutamic acids (Mass et al., 2012; 
Mitterer, 1978; Young, 1971), a phenomenon not observed for tissue 
protein complexes (Yamashiro & Samata, 1996). Due to the prolif-
eration of sequenced coral genomes and proteomes, the identities 
of approximately 30 skeleton proteins have been determined and 
functions of several of these proteins have been established.

The most interesting of the coral SOM proteins are the coral 
acid-rich proteins (CARPs), or alternatively called skeletal aspartic 
acid-rich proteins (SAARPs; Drake et al., 2013; Mass et al., 2013; 
Ramos-Silva et al., 2013; Takeuchi, Yamada, Shinzato, Sawada, & 
Satoh, 2016). To dispel confusion introduced by using two differ-
ent names for some members of this class of proteins, CAPR4 and 
SAARP1 are homologs, CARP5 and SAARP2 are homologs, and a 
previously described partial protein sequence, P27 (Drake et al., 
2013) and SAARP3 are homologs. Together, these proteins group as a 
coral-specific clade exhibiting an expansion of two polyaspartic acid 
domains (Drake et al., 2013), part of which was originally sequenced 
by Edman degradation (Puverel, Tambutté, Periera-Mouries, et al., 
2005). CARPs have pH values between ca. 3 and 4.5, lead to cal-
cium carbonate precipitation when added to unamended seawater 
at physiologically relevant concentrations (Mass et al., 2013), and 
are upregulated upon settling of larvae as spat on hard substrate 
(Akiva et al., 2018; Mass et al., 2016). The discovery of these proteins 
strongly suggests that the control of carbonate precipitation within 
the calicoblastic space is not a simple function of Ωarag. There is a 
distinct spatial patterning of the CARPs in the skeleton (Mass, Drake, 
Peters, Jiang, & Falkowski, 2014) and on growing aragonite crystals 
in coral cell cultures (Mass, Drake, et al., 2017), suggesting specific 
roles for each of the CARPs in coral biomineralization. An additional 
group of acidic coral skeletal proteins about which little is known are 
the skeletal acidic proteins (SAPs), several of which appear to be re-
stricted to the family Acroporidae (Ramos-Silva et al., 2013; Shinzato 
et al., 2011; Takeuchi et al., 2016). CARPs and other highly acidic pro-
teins such as the SAPs may also function to transport concentrated 
Ca2+ from intracellular pools to the extracellular calcifying medium 
(Mass, Drake, et al., 2017).

One of the other best-studied nonacidic proteins in coral skel-
eton is α-carbonic anhydrase (CA), an enzyme responsible for the 
hydration of CO2 to bicarbonate and a proton (H+), an important 
process for biomineralization, and the dehydration of HCO−

3
 to CO2, 

which is necessary for aquatic carbon fixation. The function and 
evolution of CAs across life and their specialization in corals has 
been well-detailed elsewhere (Bertucci et al., 2013). Metazoan 
αCAs appear to have undergone multiple duplication events and 
those involved in biomineralization typically have a low complexity 
domain in the C-terminal half of the protein (Le Roy, Jackson, Marie, 
Ramos-Silva, & Marin, 2014). Their total activity in coral tissue has 
been determined to be sufficient, particularly when highly concen-
trated in certain areas, to supply CO2 in Symbiodinium-containing 
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cells for photosynthesis and HCO−

3
 in the calicoblastic space for 

biomineralization (Hopkinson, Tansik, & Fitt, 2015). Although it 
was originally proposed to be limited to the cytosol of calicoblas-
tic ectodermal cells (Bertucci, Tambutté, Supuran, Allemand, & 
Zoccola, 2011), a carbonic anhydrase, STPCA2, has been detected 
in coral skeleton (Drake et al., 2013; Ramos-Silva et al., 2013). 
STPCA2 and its scleractinian homologs belong to a clade of se-
creted αCAs with a cnidarian-specific secondary structure (Le Goff 
et al., 2016), exhibit significantly increased expression after larval 
settlement (Akiva et al., 2018; Mass et al., 2016), and are highly 
active when compared to other known CAs (Bertucci et al., 2011). 
While STPCA2’s catalytic activity exhibits a persistent decrease 
under decreased pH conditions, its expression shows a hyperbolic 
response with increased expression under moderate to low pH 
(~7.9 and 7.6, respectively; Drake et al., 2018), but greatly reduced 
expression at pHs corresponding to very high pCO2 (pH = 7.2–7.3, 
pCO2 = 2,000 ppm CO2; Drake et al., 2018; Zoccola et al., 2016). 
Although upregulation of STPCA2 under reduced pH conditions 
may compensate for its lower activity, allowing maintenance of 
biomineralization under moderately acidified conditions by con-
tinuously supplying bicarbonate to the calcifying medium (Chen  
et al., 2018; reviewed in Bertucci et al., 2013), its role is dramatically 
diminished under strong ocean acidification conditions (Zoccola  
et al., 2016).

Further coral SOM proteins that remain to be functionally char-
acterized include a very large protocadherin, mucin, vitellogenin, 
and proteins containing MAM and LDL receptor, zona pellucida, and 
EGF and laminin G domains (Drake et al., 2013; Ramos-Silva et al., 
2013; Takeuchi et al., 2016). The function of galaxin, the first fully 
sequenced coral SOM protein, also remains to be described (Conci, 
Wörheide, & Vargas, 2019; Fukuda et al., 2003; Reyes-Bermudez, 
Lin, Hayward, Miller, & Ball, 2009; Watanabe, 2003; Wirshing & 
Baker, 2014). The shared skeletal proteins comprise a portion of the 
coral biomineralization protein “toolkit” (Drake, Mass, & Falkowski, 
2014; Marin, Bundeleva, Takeuchi, Immel, & Medakovic, 2016; 
Ramos-Silva et al., 2013).

In addition to the acidic amino acids, coral SOM acidity is in-
creased bythe presence of polysaccharides and the sulfation and 
glycosylation of SOM proteins. Staining has revealed that epider-
mally derived mucus contains polysaccharides (Goreau, 1956), as 
does the extracellular matrix secreted by coral cell cultures (Helman 
et al., 2008). Saccharide moieties similar to the polysaccharides, 
hyaluronan (Goldberg, 2001a) and chitin (Adamiano et al., 2014), 
and a variety of monosaccharides (Naggi et al., 2018; Ramos-Silva  
et al., 2014; Takeuchi et al., 2018), as well as modifications by sulfa-
tion (Cuif & Dauphin, 1998; Cuif et al., 2003; Dauphin & Cuif, 1997; 
Goldberg, 2001a) have been observed in coral SOM.

While the coral SOM lipid fraction has not been well character-
ized, lipids may make up a significant fraction of the organic com-
ponent of skeleton (Adamiano et al., 2014; Falini et al., 2013; Farre, 
Cuif, & Dauphin, 2010; Goffredo et al., 2011). Phospholipids likely 
function in the vesicular transport of mineral precursors to the 
calcifying space (Akiva et al., 2018; Goffredo et al., 2011) and may 

stabilize amorphous calcium carbonate (Goffredo et al., 2011). It is 
also established that some skeletal phospholipids bind Ca2+ directly 
(Isa & Okazaki, 1987).

When added to a solution containing CaCl2 and bicarbonate or 
unamended seawater, macromolecules of the SOM complex interact 
with the growing mineral, often in a species-specific manner (e.g., 
Falini et al., 2013; Goffredo et al., 2011; Mass et al., 2013; Sancho-
Tomás et al., 2014). In vitro experiments have highlighted the effects 
of the SOM complex as combining with the aragonite saturation 
state of the calcifying milieu to distinguish various growth patterns 
such as early mineralization zones (Njegic et al., 2019).

4.3 | Cellular biochemical processes in coral 
skeleton formation

Coral skeletal aragonite is produced within a semienclosed ex-
tracellular compartment, termed the extracellular calcifying 
medium (ECM), proposed to be of a few nano- to micrometer 
thickness between the skeleton and the calicoblastic epithelium 
(Allemand, Tambutté, Zoccola, & Tambutté, 2011; Mass, Giuffre, 
et al., 2017; Sevilgen et al., 2019; Tambutté et al., 2007; Venn, 
Tambutté, Holcomb, Allemand, & Tambutté, 2011; Figure 6). 
Together with the three overlaying tissue layers, the calicoblastic 
epithelium spatially separates the ECM from direct contact with 
the surrounding seawater, which is the main source of ions to the 
ECM (reviewed in Allemand et al., 2011). Therefore, in order to 
precipitate CaCO3 the coral must transport Ca2+ and dissolved 
inorganic carbon (DIC) from the seawater or intracellular fluid, 
respectively, to the ECM. Furthermore, in addition to the im-
port of necessary ions, there are suggestions that corals must 
use additional means to raise the aragonite saturation state of 
the calcifying fluid to obtain rapid rates of calcification (Cohen & 
McConnaughey, 2003).

Ca2+ can be transported from seawater to the calcifying space 
through transcellular (i.e., diffusion or active transport out of the 
calicoblastic ectodermal cells; Cai et al., 2016; Sevilgen et al., 2019) 
or paracellular (i.e., between cells at junctions) processes (Allemand 
et al., 2011), or a combination of the two (Allemand et al., 2011; 
Ohno et al., 2017; Tambutté et al., 2011, 2012). A plasma membrane 
calcium pump (PMCA) in corals functions in the same manner as is 
known in mammals, where Ca2+ ATPases transport calicoblastic ec-
todermal cytosolic Ca2+ to the calcifying space (Zoccola et al., 2004). 
stpPMCA immunolocalizes to the calicoblastic ectoderm (Barott, 
Perez, Linsmayer, & Tresguerres, 2015; Zoccola et al., 2004) and is 
upregulated in coral nubbins grown at very low pH (7.2; Vidal-Dupiol 
et al., 2013). Combined with its added function of exchanging H+ 
and Ca2+ across the calicoblastic ectodermal membrane (Salvador, 
Inesi, Rigaud, & Mata, 1998), this upregulation of the gene likely al-
lows corals to increase the saturation state of the calcifying fluid 
to maintain biomineralization under suboptimal ocean conditions. 
Additional Ca2+ transport from the calicoblastic ectodermal cells 
to the calcifying space can be achieved by voltage-dependent Ca2+ 
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channels (Tambutté, Allemand, Mueller, & Jaubert, 1996), one of 
which has been identified and localized to the calicoblastic ectoderm 
in S. pistillata (Zoccola et al., 1999).

It has been suggested that corals biologically control the composi-
tion of the ECM by increasing pH and DIC concentrations above that 
of the surrounding seawater (Al-Horani et al., 2003; Allison, Cohen, 
Finch, Erez, & Tudhope, 2014; Cai et al., 2016; McCulloch, Falter, 
Trotter, & Montagna, 2012; Venn et al., 2011). This allows the forma-
tion of aragonite, which is thought to constitute a crucial step in the 
coral biomineralization process (Lowenstam, 1981). Recent studies 
conducted using microscope-guided microsensors, B stable isotopes, 
and B/Ca ratios to measure or calculate pH, [Ca2+], [CO3

2−] ,or [DIC] 
in the ECM, and Ωarag, showed that all parameters were elevated 
with respect to the surrounding seawater (Schoepf, Jury, Toonen, 
& McCulloch, 2017; Sevilgen et al., 2019). pH elevation is achieved 
through PMCA activity, exchanging H+ and Ca2+ as described above. 
Most of the inorganic carbon for biomineralization comes from an in-
ternal pool (Erez, 1978; Furla, Galgani, Durand, & Allemand, 2000) and 
is delivered to the site of calcification either by CO2 diffusion or by 
HCO

−

3
 transporters (Tambutté et al., 1996). It has also been suggested 

that elevation of ECM DIC occurs via a carbon concentration mech-
anism in the calicoblastic cells to favor calcification (Allison, Cohen, 
Finch, Erez, & Tudhope, 2014; Comeau et al., 2017; McCulloch et al.,  
2012). Metabolic CO2 can then diffuse from the coral tissue to the 
ECM (Erez et al., 2011; Furla et al., 2000; Hohn & Merico, 2012). 
Alternatively, a bicarbonate transporter in the SLC4γ family, which 
has been immunolocalized to the calicoblastic layer (Barott et al., 
2015; Zoccola et al., 2015), introduces bicarbonate anions from the 
cytosol of the calicoblastic cells to the ECM and so may both provide 
ECM DIC and raise ECM pH (Bhattacharya et al., 2016; Zoccola et al., 
2015). Furthermore, a sensory mechanism has been identified that 
enables the coral to sense the internal pH via the enzyme soluble ade-
nylyl cyclase (sAC) that is activated by bicarbonate ions to produce the 
secondary messenger molecule cyclic AMP (cAMP; Barott, Barron, & 
Tresguerres, 2017; Tresguerres, Barron, Barott, Ho, & Roa, 2013).

Although the macroscopic coral skeleton is clearly an extracel-
lular feature, there are increasing suggestions that some part of the 
process of its formation may commence intracellularly. Early coral 
research of the mechanism of ion transport to the site of calcifica-
tion suggested that the initial site of mineral formation is intracellu-
lar based on the observation of vesicles and calcareous elements in 
the calicoblastic cells (Bourne, 1899; Fowler, 1885; Hayes & Goreau, 
1977; Kawaguti & Sato, 1968; Ogilvie, 1896; Von Heider, 1881). While 
this model was later replaced by the concept of transcellular and 
paracellular pathways, recent studies have revisited this component 
of biomineralization, indicating a strong biological control of skeletal 
formation via an intracellular pathway. There is evidence that high 
concentrations of calcium can be transported via vesicles to the site 
of calcification in S. pistillata (Barott et al., 2015; Mass, Drake, et al., 
2017). Indeed, calicoblastic cells in rapidly calcifying portions of the  
calicodermis contain a higher concentration of such types of vesicles 
(Isa & Yamazato, 1981). Some intracellular vesicles, particularly those 
in calicoblastic cells, also contain a Na+/Ca2+ exchanger (Barron  

et al., 2018). Furthermore, Nano-SIMS reveals that intracellular sites 
of concentrated calcium colocate with aspartic acid-rich regions of 
the cell, such as those contained in highly acidic proteins later re-
tained in coral skeleton (Mass, Drake, et al., 2017).

In addition to the potential for intracellular aggregations of Ca2+ 
and/or mineral precursors, it has been revealed that the ECM of an 
intact coral is not a prerequisite for aragonite formation. Isolated 
coral cells in culture on bare Petri dishes re-aggregate into protopol-
yps and precipitate aragonite both on the exterior of these protopol-
yps (Mass et al., 2012) and on the extracellular matrix surrounding 
individual cells (Mass, Drake, et al., 2017; Figure 7). In these cultures, 
cells killed with azide do not form aragonite (Mass et al., 2012) sug-
gesting that such precipitation is actively controlled by the live cells. 
The three-dimensional structure of a coral should not be taken for 
granted, however, as it is precisely this which directs the aggregation 
of aragonite bundles into species-specific corallite patterns.

Further evidence that the precipitation of calcium carbonate is 
controlled biologically comes from the form of the crystal. It has 
been frequently suggested that major shifts in skeletal mineralogy of 
calcifying organisms, including corals, were driven by ocean Mg/Ca 
ratios (Morse, Wang, & Tsio, 1997; Porter, 2007; Stanley & Hardie, 
1998). During periods with high Mg/Ca ratios, aragonite-forming or-
ganisms dominated, whereas low Mg/Ca seawater ratios promoted 
diversification of calcite-secreting organisms, in line with the control 
of abiotically produced polymorphs by Mg/Ca ratios (Berner, 1975). 
The Mg/Ca ratio of seawater is modulated by a number of processes, 
one of which is sea floor spreading rates with high spreading rates 
leading to the removal of Mg by hydrothermal processes and a re-
lease of Ca. Inflated mid-ocean ridges will also lead to higher sea 
levels and higher CO2 in the atmosphere (Tolstoy, 2015). Although, 
experimental and fossil record examples show that occasionally the 
Mg/Ca seawater ratio may indeed have direct influence on coral skel-
etal mineralogy (Higuchi et al., 2014; Stolarski, Meibom, Przeniosło, 
& Mazur, 2007; Webb & Sorauf, 2002), the main body of evidence 
suggests a remarkable evolutionary stability of coral skeletal 

F I G U R E  7   CaCO3 crystal bundle growing from the extracellular 
calcifying medium (ECM) surrounding Stylophora pistillata cells 
aggregated into protopolyps. XRD analysis has previously 
determined that these crystal bundles are made of aragonite (Mass 
et al., 2012) and that they do not occur on coral cells killed with 
azide
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mineralogy despite the major Mg/Ca fluctuations (Figure 3). For ex-
ample, acroporid corals continued to form aragonitic skeletons from 
the Paleocene to the present, even as the seawater Mg/Ca increased 
from ca. 1.5 to 5.2 mol/mol (Stolarski et al., 2016) and aragonite is 
still detected among calcite in modern Acropora spp. when reared at 
Mg/Ca = 0.5 mol/mol (Higuchi et al., 2014, 2017; Yuyama & Higuchi, 
2019). Furthermore, calcite-promoting conditions in the Cretaceous 
seas (the lowest Mg/Ca in the Phanerozoic) did not dictate the 
CaCO3 polymorph change in skeletons of corals that remained ara-
gonitic through their entire fossil record (Janiszewska, Mazur, Escrig, 
Meibom, & Stolarski, 2017). These observations suggest that the 
skeletal formation process in corals is strongly physiologically con-
trolled and these organisms are capable of biomineralization using 
the same mineral in geochemically altered sea conditions.

4.4 | Effects of photosynthetic symbionts

Photosynthesis in shallow-water scleractinians is widespread but is 
neither a necessary nor sufficient process leading to biomineraliza-
tion. Deep-water Scleractinia calcify, but are totally heterotrophic, 
while many “soft” corals have photosynthetic symbionts but do not 
produce an extracellular skeleton. In the shallow-water species that 
have photosynthetic symbionts, the alga is an intracellular dinoflag-
ellate, formerly of genus Symbiodinium (Berkelmans & van Oppen, 
2006; Blank & Trench, 1985; Schoenberg & Trench, 1980). There are 
many species within the family Symbiodiniaceae (LaJeunesse et al., 
2018), commonly called zooxanthellae. The relationship between 
reef-building scleractinians and members of Symbiodiniaceae has 
been extensively described (e.g., Kirk & Weis, 2016; Roth, 2014).

Recent molecular clock recalibration suggests that members 
of family Symbiodiniaceae diversified during the Jurassic period 
(LaJeunesse et al., 2018), coincident with the radiation of shallow- 
water scleractinians (Park et al., 2012; Stanley, 2003). There are sev-
eral lines of evidence for photosymbiosis of fossil corals, determined 
from modern symbiotic stony corals and observed in the fossil re-
cord. Skeletal growth band spacing is regular in symbiotic corals and 
irregular in asymbiotic corals (Frankowiak et al., 2016). Additionally, 
while δ13C of skeletal organic matter is not significantly influenced 
by symbiotic status, δ15N is significantly depleted (Muscatine et al., 
2005; Tornabene, Martindale, Wang, & Schaller, 2017) and skeletal 
U/Ca exhibits a “clear and systematic decrease” (Inoue et al., 2018) in 
symbiotic versus nonsymbiotic corals. Differences in δ18O and δ13C 
have also been used to support the hypothesis of photosymbiosis in 
fossil corals (Frankowiak et al., 2016).

Photosymbiosis benefits stony corals, and specifically calcifi-
cation in a variety of ways. The most obvious is the in-house pro-
vision of fixed carbon provided by the dinoflagellate to the animal 
host (Falkowski, Dubinsky, Muscatine, & Porter, 1984; Muscatine, 
McCloskey, & Marian, 1981). While there is recent evidence that the 
animals themselves may respond to light of specific wavelengths with 
increased calcification rates (Cohen, Dubinsky, & Erez, 2016), his-
torically the increase in calcification rate by symbiotic corals during 

the day, termed “light-enhanced calcification” is attributed to pho-
tosynthesis and subsequent translocation of photosynthate to the 
coral host (Chalker & Taylor, 1975; Goreau, 1959; Goreau & Goreau, 
1959; Kawaguti & Sakumoto, 1948), with higher rates of calcifica-
tion observed in some coral species attributed to the assimilation of 
the fixed carbon by the animal (Gattuso, Allemand, & Frankignoulle, 
1999; Moya et al., 2006) or by increased O2 production (Chalker & 
Taylor, 1975; Galli & Solidoro, 2018; Rinkevich & Loya, 1984). The 
process is further enhanced by the reflective and refractive prop-
erties of the coral skeleton itself, although it may also increase sus-
ceptibility to “bleaching,” a phenomenon that leads to the expulsion 
of alga from the host animal (Enríquez, Méndez, Hoegh-Guldberg, & 
Iglesias-Prieto, 2017; Swain et al., 2018).

4.5 | Skeleton micromorphology

The relatively simple anatomy of scleractinian corals facilitates the 
study of early stages of coral biomineralization by analyzing the 
skeletal surface from intact coral branches and sectioning of various 
skeletal structures (typically perpendicularly to the growth direc-
tion; Barnes, 1970; Cuif & Dauphin, 1998; Cuif & Dauphin, 2005b; 
DeCarlo et al., 2019; Goldberg, 2001b; Hidaka, 1991). Traditionally, 
based on such observations, a two-step model was proposed that 
emphasized differences in the time of formation of “centers of cal-
cification” (first step) and the fibers (second step; Cuif et al., 2003). 
However, studies of longitudinal sections of the skeleton (thus 
showing ontogenetic succession of skeletal deposition; Stolarski, 
2003) and combined Nano-SIMS and SEM observations of isotopi-
cally labeled skeleton (86Sr) reveal that the skeleton is formed con-
tinuously although skeletal growth dynamics are different in various 
regions (Brahmi, Domart-Coulon, et al., 2012; Domart-Coulon et al., 
2014; Houlbreque et al., 2009). The distal-most regions of septa, col-
umella, and thecae form significantly faster than lateral skeletal lay-
ers (Brahmi, Kopp, Domart-Coulon, Stolarski, & Meibom, 2012). The 
fast-deposited regions are called rapid accretion deposits (RADs), 
whereas slower growing regions are termed thickening deposits 
(TDs).

Initially, the mineral deposits at the growing edges of skeletal 
structures were characterized as “randomly oriented fusiform crys-
tals” (Gladfelter, 1982; Hidaka, 1991) “patches of microcrystals” 
(Stolarski, 2003), “tiny isodiametric crystals” (Cuif & Dauphin, 2005a) 
or “granular nanocrystals” (Clode & Marshall, 2003b; Figure 8). The 
use of scanning helium ion microscopy (SHIM), which bridges the 
gap between SEM and transmission electron microscopy in terms of 
spatial resolution, provides ultrahigh-resolution three-dimensional 
images of RADs (Figure 8o; Von Euw et al., 2017) These are in the 
form of randomly arranged, spherical, nano-sized CaCO3 particles 
ca. 100 nm in diameter, which are characteristics typical of ACC 
nanoparticles as observed in in vitro experiments (Gal et al., 2014). 
Recently, a more complete picture of the earliest phase of biomin-
eralization has been revealed using X-ray photoemission electron 
spectromicroscopy (X-PEEM). ACC has been detected in very new 
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F I G U R E  8   Hierarchical structure of the coral skeleton. Skeletal structures of calcifying corals consist of two main regions: (1) skeletal 
tips which are composed of Rapid Accretion Deposits (RADs, called also Centers of Calcification [COCs]) and (2) lateral sides of skeleton 
composed of thickening deposits (TDs, called also “fibers”); (a) schematic drawing with RADs and TDs in longitudinal and transverse 
sections, (b–d) RADs are cyclically deposited and show alteration of organic-enriched/depleted layers (b, c, optical microscope image of 
longitudinally sectioned septum; e, epifluorescence microscope image highlighting organic-enriched regions). Individual skeletal layers are 
often continuous between RADs and TDs (d) pointing to different growth dynamics between two regions but not different timings of their 
formation; in transverse sections (f) that intersect layers of different growth stage this aspect is not observable. (g–k) Regular alteration of 
layers analogous to organic-enriched/depleted layers in modern corals can be found in skeletons of Paleozoic (e.g, (g) rugose calcite corals) 
and Triassic (h), Jurassic (i), Cretaceous (j, calcite Coelosmilia), and Cenozoic (k) scleractinian corals. Distinct patterns of TD arrangement 
are shared between phylogenetically related taxa (e.g., (l) tuberculate pattern in pocilloporiids (Seriatopora), and (m, n) shingled (red arrows) 
pattern in acroporiids (Acropora); l, m SEM; n section in polarized light. (o) RADs are composed of well-differentiated nanograins (ca. 100 nm 
in diameter); (p) TDs show larger, fibrous units that exhibit nanocomposite structure under AFM (q, amplitude image with arrows pointing to 
a different (?organic) phase of grain envelope)
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skeletal growth—minutes to hours old—of recently terminated S. 
pistillata; the newest material is hydrated ACC that dehydrates and 
then crystalizes as aragonite (Mass, Giuffre, et al., 2017), similar 
to noncrystalline units identified in sea urchin embryonic spicules 
(Politi et al., 2008). Similar ACC phases have also been detected 
within “centers of calcification” (COCs, sometimes alternatively 
called RADs) in the skeleton of Madracis sp. (DeVol et al., 2015) using 
X-PEEM. Furthermore, Mg-ACC (Akiva et al., 2018) and Mg-calcite 
(Neder et al., 2019) were detected in the initial mineral deposits of 
primary polyps of pocilloporid corals, which may explain the rapid 
production of skeleton during initial development and settlement.

Together, SHIM (Figure 4o) and X-PEEM (Mass, Giuffre, et al., 
2017) observations provide strong evidence that ACC nanopar-
ticles are initially deposited and then transform into aragonite 
crystals. Such a pathway to crystallization during which an amor-
phous solid phase is initially deposited seems to be a widespread 
strategy in the formation of biogenic crystals, including phos-
phates (Beniash, Metzler, Lam, & Gilbert, 2009; Mahamid, Sharir, 
Addadi, & Weiner, 2008), oxalates (Evan et al., 2007; Ihli et al., 
2015; Nakata, 2003), and carbonates (Beniash, Aizenberg, Addadi, 
& Weiner, 1997; DeVol et al., 2015; Griesshaber et al., 2009; Politi, 
Arad, Klein, Weiner, & Addadi, 2004; Politi et al., 2008; Weiss, 
Tuross, Addadi, & Weiner, 2002), and is likely achieved through 
Mg/Ca ratio modifications as well as inclusion of highly acidic pro-
teins in the calcifying milieu (Evans, Webb, Penkman, Kröger, & 
Allison, 2019). 

Although stable ACC solid phases have been observed in vivo 
(Akiva-Tal et al., 2011; Raz, Testeniere, Hecker, Weiner, & Luquet, 
2002), more frequently occurring metastable ACC solid phases, 
or “transient amorphous precursor phases,” are replaced by more 
stable phases (i.e., commonly, their crystalline counterparts such 
as aragonite and calcite) at a later stage of the biomineralization 
process (Addadi, Raz, & Weiner, 2003; Radha, Forbes, Killian, 
Gilbert, & Navrotsky, 2010). In coral, a close look at the RAD (or 
COC) in direct comparison to TD (sometimes referred to as fibers) 
regions in skeletal cross sections sheds light on the crystal growth 
process (Benzerara et al., 2011; Cuif & Dauphin, 2005b; Stolarski, 
2003; van de Locht et al., 2013; Von Euw et al., 2017). In RAD 
skeletal regions, fast skeletal deposition incorporates a relatively 
high amount of organic matrix (Cuif & Dauphin, 2005b; Mass et al., 
2014; Stolarski, 2003); therefore, the nano-sized spheres are easily 
distinguished well after initial deposition (even in well-preserved 
fossil corals; Stolarski & Mazur, 2005), and are not randomly ar-
ranged but are instead crystallographically aligned (Benzerara  
et al., 2011). In contrast, the TD regions consist of elongated fibers 
and have a much more compact structure which is an outcome of 
a significantly smaller amount of organics involved in their forma-
tion. Consequently, transformation of ACC to a crystalline phase 
occurs in a much more discreet way. Nonetheless, because the for-
mation of RAD and TDs occurs via an amorphous precursor phase, 
even fully crystalline aragonite TDs, the principal “building blocks” 
of the coral skeleton, show a highly textured surface (Figure 8). 
They are clearly distinct from the classical image of an inorganic 

crystal exhibiting a smooth, faceted surface derived from different 
crystallographic planes (Figure 8). Such a nanoparticulate texture 
has been observed across biomineralizing taxa (Gal et al., 2014; 
Gal, Weiner, & Addadi, 2015) and is associated with crystallization 
by particle attachment (De Yoreo et al., 2015), particularly in in-
vertebrates such as at the surface of mollusk nacre aragonite crys-
tals (Dauphin, 2001; DeVol et al., 2015; Macías-Sánchez, Willinger, 
Pina, & Checa, 2017).

Combining all lines of evidence (Brahmi, Domart-Coulon, et al.,  
2012; Brahmi, Kopp, et al., 2012; Domart-Coulon et al., 2014; Mass, 
Giuffre, et al., 2017; Neder et al., 2019; Stolarski, 2003; Stolarski 
et al., 2016; Von Euw et al., 2017), the coral skeleton deposition 
can be described as follows: (a) a transient amorphous precursor 
phase in the form of ACC nanoparticles is initially deposited in  
actively formed skeletal regions (in RADs, the individual nanograins 
are embedded in significantly higher amounts of organic matrix 
than in slower growing TD regions); (b) the ACC nanoparticles 
subsequently attach to one another so that (c) nascent aragonite 
crystals start to grow by the accretion of amorphous nanopar-
ticles; and this process progressively results in the formation of  
(d) acicular aragonite crystals following the crystallization of their 
ACC nanoparticulate building blocks. The full process by which 
ions are brought to the ECM by the paracellular pathway remains 
to be settled; this is an exciting resolution that we look forward to 
in the coming years.

5  | CONCLUSIONS

This overview of the evolutionary history of stony corals and their 
biomineralization process clearly shows that, although these or-
ganisms have experienced several major mass extinction events 
over geological time, reef-forming corals have continued to survive 
these events, as well as periods, such as the PETM, when atmos-
pheric CO2 increased rapidly and markedly and was accompanied 
by a decrease in ocean pH. The biomineralization process in corals 
is highly regulated by the host animal cells at a molecular level. 
While we do not understand the entire process in detail, much has 
been elucidated over the past century or more. It is clear, for ex-
ample, that coral biomineralization is not simply a function of the 
aragonite saturation state. Over geological time, natural selection 
facilitated the adaptation to changing ocean conditions, such that, 
although coral species inevitably change, the group as a whole has 
survived. While coral cover is likely to decline further in the com-
ing centuries due directly or indirectly to human activities (Hoegh-
Guldberg et al., 2019), that corals, in some form, have survived 
multiple traumas over the past 540 million years, strongly suggests 
that they will almost certainly survive our disruption of this planet.
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