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Questions and Dependency in Intuitionistic Logic

Ivano Ciardelli, Rosalie Iemhoff, and Fan Yang

Abstract In recent years, the logic of questions and dependencies has been
investigated in the closely related frameworks of inquisitive logic and depen-
dence logic. These investigations have assumed classical logic as the background
logic of statements, and added formulas expressing questions and dependencies
to this classical core. In this paper, we broaden the scope of these investiga-
tions by studying questions and dependency in the context of intuitionistic logic.
We propose an intuitionistic team semantics, where teams are embedded within
intuitionistic Kripke models. The associated logic is a conservative extension
of intuitionistic logic with questions and dependence formulas. We establish a
number of results about this logic, including a normal form result, a complete-
ness result, and translations to classical inquisitive logic and modal dependence
logic.

1 Introduction

Traditionally, the role of a semantics for a logic is to provide a relation of truth
between the formulas of the logic and some mathematical objects that stand for states
of affairs. For instance, in the standard semantics for classical propositional logic, a
state of affairs is modeled by a propositional valuation, and the semantics specifies
when a valuation makes a formula true. The fundamental logical relation of entail-
ment between formulas is then characterized as preservation of truth: an entailment
holds when the conclusion is true whenever all the assumptions are.

The last decade, however, has seen the rise of logics in which formulas are eval-
uated not with respect to objects which represent state of affairs—say, propositional
valuations—but with respect to sets of such objects, that we will refer to as teams.
Such logics have arisen independently in two different lines of research, namely,
dependence logic and inquisitive logic.
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The main motivation of dependence logic is to expand systems of classical logic
with formulas that express the existence of certain dependencies. For instance, con-
sider a formula D.p; q/ which expresses the fact that the truth-value of a proposition
q is completely determined by the truth-value of another proposition p. In a stan-
dard semantic framework, it is not clear how such a formula should be interpreted:
with respect to a specific propositional valuation, both p and q have well-defined
truth-values, and it is not clear what it would mean for the value of q to be deter-
mined by the value of p. This can be solved once we turn from single valuations to
sets of valuations. In such a set t , it is very clear what it means for the value of q
to be determined by the value of p: this means that if two valuations in t agree on
the value of p, they must also agree on the value of q. We can take this to be the
satisfaction condition for the formula D.p; q/ at t . In general, the fundamental idea
is that dependencies manifest themselves in the presence of a plurality of states of
affairs, and should therefore be viewed as properties of sets of states of affairs rather
than as properties of single states of affairs.

The main motivation for inquisitive logic comes from a different limitation of the
truth-conditional approach. While truth-conditional semantics provides a suitable
starting point for an analysis of statements, such as it is raining, it does not seem
equally suited to analyze questions, such as whether or not it is raining or whether it
is raining or snowing. For concreteness, consider a formula ‹p which expresses the
polar question whether or not p. Again, it is not clear what it should mean for such
a question to be true relative to a single propositional valuation. However, we can
interpret this question naturally relative to a set t of valuations: ‹p will be supported
by t if all the valuations in t agree on whether p is the case. More generally, the idea
is that a team t can be viewed as an information state: the information encoded by t
is that the actual state of affairs is an element of t . The idea is then to interpret both
statements and questions in terms of whether the information in t suffices to support
them, where supporting a statement means establishing that it is true, and supporting
a question means settling the issue it expresses. In this way, team semantics provides
a more general semantic framework which is suitable for both kinds of sentences.

While these two lines of research have arisen independently from one another,
they are in fact deeply related. Yang [30] first noticed and exploited a tight simi-
larity between propositional systems of inquisitive and dependence logic. Later on,
Ciardelli [5] argued that this similarity is not accidental, and that a fundamental rela-
tion exists between questions and dependency. Namely, the relation of dependency
is just a facet of the fundamental logical notion of entailment, once this applies to
questions, rather than statements. Given the link existing between entailment and
the implication operator, this also provides a general way to express dependencies
as implications between questions, generalizing the pattern expressed by the spe-
cialized atoms of dependence logic. Taking inspiration from this connection, Yang
and Väänänen developed a simplified deduction system for propositional dependence
logic in [31].

In the past decade, both areas of research have grown rapidly.1 With the exception
of Punčochář’s work [21], [22], discussed in Section 5, the research has focused
on enriching existing systems of classical logic (propositional, modal, or first-order)
with questions and dependence formulas. However, there is no a priori reason why
investigating the logic of questions and dependency would require a commitment
to an underlying classical logic of statements. A major open question that has so
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far received little attention is how questions and dependencies should be analyzed
semantically—and what logical features they have—in a nonclassical setting.

This question is interesting not just because nonclassical logics play an important
role in a number of areas—from constructive mathematics to philosophy to techno-
logical applications—but also because it would allow us to understand much better
which features of inquisitive and dependence logics are due to the classicality of the
underlying logic of statements, and which features depend only on the way in which
questions and dependencies are related to the underlying logical basis—regardless of
what this is taken to be.

In this paper we take a first step toward exploring this important question by
investigating propositional questions and dependencies in the context of intuition-
istic logic. The semantics that we will propose can be viewed as a generalization
of the standard semantics for propositional inquisitive and dependence logic, which
in turn can be recovered by specializing our semantics to a particular class of mod-
els. We will see that, once we start out with the right setup for the classical case,
the generalization works out smoothly, and many results carry over straightforwardly
from the classical to the intuitionistic setting. This includes the strong normal form
result that characterizes propositional inquisitive logic, as well as an axiomatization
of the associated logic. In terms of a natural deduction system, the only difference
between a classical system and our intuitionistic system lies in the availability of
the double negation law for standard propositional formulas. On the other hand, we
will also see that the intuitionistic setting is in many ways more fine-grained than
the classical one. For instance, even in terms of truth with respect to single worlds,
standard disjunctions come apart from inquisitive disjunctions—in contrast with the
situation in the classical case. Similarly, some syntactic manipulation techniques that
are heavily exploited in inquisitive logic, such as applying double negation to obtain
a noninquisitive formula, are no longer available in the intuitionistic case.

The paper is structured as follows. In Section 2 we review how a team-based
approach allows us to add questions and dependence formulas to classical proposi-
tional logic; we also recall a number of important notions and results that we will
later consider in the intuitionistic setting. In Section 3 we provide a team-based
semantics for intuitionistic propositional logic, and we show that this allows us to
introduce questions and dependence formulas in the intuitionistic setting. In Sec-
tion 4 we study in detail the logic that arises from this system. The relations between
our proposal and recent work by Punčochář in [21] and [22] are discussed in Sec-
tion 5. Section 6 sums up our findings and outlines some directions for further work.

2 Background: Questions in Classical Logic

In this section, we provide some background on how questions and dependence for-
mulas can be added on top of classical propositional logic, and what logic results
from this move. Following Ciardelli [5], we first review how classical propositional
logic can be reimplemented in a team semantic setting, then show how questions
can be added to this system, and how dependencies arise naturally as implications
among questions. The system that we present is an extension of standard proposi-
tional inquisitive logic InqB (see [11]) with the tensor disjunction connective from
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dependence logic (introduced by Väänänen [26], and studied in the propositional set-
ting by Yang [31]). We will refer to this system as InqB_. For proofs of the results
presented in this section, the reader is referred to [5].

2.1 Support semantics for classical logic The first step to get at a classical logic of
questions and dependencies is to provide a semantics for classical propositional logic
(CPL) which is based not, as usual, on the notion of truth relative to a state of affairs,
but rather on the notion of support relative to a state of information.
2.1.1 Syntax For our purposes, it will be convenient to start from a formulation of
classical logic which takes the connectives ?;^;_, and ! as primitive operators.
Standard propositional formulas are formulas built up from a set P of atomic sen-
tences by means of these operators. We will denote the set of standard formulas by
LŠ, and we will think of this as our language for statements, on top of which ques-
tions will be added in the next section. Negation is regarded as a defined connective,
by setting :' WD ' ! ?.
2.1.2 Models The context for our semantics is provided by a possible world model
for classical logic: this is a model that represents at once a multitude of possible
states of affairs, called possible worlds, each of which is completely described by a
valuation function for the atomic sentences of our language.2

Definition 2.1 (Classical possible world models) A classical possible world
model for a set P of atoms is a pair M D hW;V i, where:

(i) W is a set, whose elements we refer to as possible worlds;
(ii) V W W � P ! ¹0; 1º is a map that we refer to as the valuation function.

Given a model M D hW;V i, we refer to a set t � W as a team. Below, we will use
t and s, as well as variants like t 0; t 00; : : : as metavariables ranging over teams.

Intuitively, a team may be thought of as encoding a body of information: if w 2 t ,
then this means that w is compatible with the information available in t ; if w … t ,
then t is ruled out by the information in t . In other words, we can view t as encoding
the information that the actual state of affairs is one of those contained in t . Due
to this informational interpretation, in the inquisitive semantics literature teams are
referred to as information states. If t 0 � t , then this means that t 0 contains at least
as much information as t , and possibly more. In this case, we say that t 0 is at least
as strong as t , or an extension of t . The weakest of all teams is the total team, W ,
which is compatible with all possible worlds. The strongest team is the empty team,
;, which is compatible with no possible world. We refer to ; as the inconsistent
team, and to any team t ¤ ; as a consistent team.
2.1.3 Semantics Standardly, in a possible world model a semantics is specified in the
form of a relation of truth, holding between formulas and possible worlds. By con-
trast, in inquisitive and dependence logic, a semantics is given in terms of a relation
of support, holding between formulas and teams. Intuitively, if formulas of classical
logic are, as usual, regarded as statements, then the relation t ˆ ' may be read as
specifying when the information available in t suffices to establish that ' is the case.

Definition 2.2 (Support semantics for classical logic) Let M be a possible world
model. The relation of support between teams t and formulas ' 2 LŠ is defined
inductively as follows:

(i) M; t ˆ p ” V.w; p/ D 1 for all w 2 t ,
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(ii) M; t ˆ ? ” t D ;,
(iii) M; t ˆ ' ^  ” M; t ˆ ' and M; t ˆ  ,
(iv) M; t ˆ '_ ” 9t 0; t 00 such that t D t 0 [ t 00,M; t 0 ˆ ' andM; t 00 ˆ  ,
(v) M; t ˆ ' !  ” 8t 0 � t , M; t 0 ˆ ' implies M; t 0 ˆ  .

The clauses can be read as follows: an atom p is established in t in case only worlds
in which p is true are compatible with the information in t . The falsum constant
? is established in t just in case t is inconsistent. A conjunction is established in
t in case both conjuncts are established. A disjunction is established in t if the
possible worlds compatible with ' can be subdivided into two teams t 0 and t 00, where
t 0 establishes ' and t 00 establishes  . Finally, an implication ' !  is established in
t if extending the information in t so as to establish ' is bound to lead to a state where
 is established as well. These clauses yield the following clause for negation: :' is
established in t if it extending t so as to establish ' is bound to lead to inconsistency.

(vi) M; t ˆ :' ” 8t 0 � t , M; t 0 ˆ ' implies t 0 D ;.
2.1.4 Truth and conservativity Even though our semantics is based on the notion of
support at a team, the standard notion of truth can be recovered: it suffices to define
truth at a world as support with respect to the corresponding singleton team.

Definition 2.3 (Truth-conditions) Let M be a model, and let w be a world. We
say that a formula ' is true at w, and write M;w ˆ ', in case M; ¹wº ˆ '.

The following proposition shows that this indeed coincides with the standard notion
of truth in classical propositional logic.

Proposition 2.4 (Truth-conditions for standard formulas) For any model M D

hW;V i and any world w 2 W we have:
(i) M;w ˆ p ” V.w; p/ D 1,
(ii) M;w 6ˆ ?,
(iii) M;w ˆ ' ^  ” M;w ˆ ' and M;w ˆ  ,
(iv) M;w ˆ ' _  ” M;w ˆ ' or M;w ˆ  ,
(v) M;w ˆ ' !  ” M;w 6ˆ ' or M;w ˆ  .

This proposition shows that the standard notion of truth is completely determined
by our support definition. Conversely, let us say that a formula is truth-conditional
when its support conditions are completely determined by its truth-conditions, in the
sense that support at a team t amounts to truth at each world in t .

Definition 2.5 (Truth-conditionality) We say that a formula ' is truth-conditional
in case for any model M and team t :

M; t ˆ ' ” 8w 2 t W M;w ˆ ':

Truth-conditional formulas are also called flat formulas in the dependence logic lit-
erature. It is easy to show by induction that all standard propositional formulas are
in fact truth-conditional. Thus, for standard formulas the relation of truth completely
determines our relation of support.

Proposition 2.6 All standard formulas are truth-conditional.

To summarize, the support semantics given above is interdefinable with standard
truth-conditional semantics. It is easy to see that this implies that the resulting
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logic—where entailment is defined as support preservation—is just classical propo-
sitional logic. Thus, what we have done so far is simply to reimplement classical
propositional logic in a team semantic setting.

2.2 Adding questions to classical propositional logic Now that we have given a sup-
port semantics for classical logic, the stage is set for questions to enter the picture.
2.2.1 Inquisitive disjunction We achieve this by enriching our language with a new
connective nn= , called inquisitive disjunction. Thus, the full language L of our logic
InqB_ is given by the following definition.

Definition 2.7 (Language L) The set L of formulas of InqB_ is defined induc-
tively as follows:

' WWD p j ? j ' ^ ' j ' _ ' j ' ! ' j ' nn=':

The new connective nn= is interpreted by means of the following support clause.

Definition 2.8 (Support clause for inquisitive disjunction)

(i) M; t ˆ ' nn= ” M; t ˆ ' or M; t ˆ  .

Intuitively, we can regard a formula like p nn= q as a question whether p or q. To
support this question, the information available in the team should establish a specific
one of the disjuncts. In general, when we regard a formula � as a question, we can
read the relation t ˆ � as meaning that the information available in � settles the
question �. (For a more detailed discussion of how the notion of support provides a
unified semantics for statements and questions, see [6].)

Notice that if ˛ is a standard formula, then the disjunction ˛ nn= :˛ captures the
polar question whether or not ˛, which is supported by a team t if the information
in t implies that ˛ is true, or it implies that ˛ is false. This observation justifies the
introduction of the following abbreviation, which is standard in inquisitive semantics
and which will be useful throughout the paper:

‹' WD ' nn= :':

2.2.2 Persistency and truth-conditionality The logical system we just defined satis-
fies the following two properties.

Proposition 2.9 (Persistency and empty team property)

– Persistency property: if M; t ˆ ' and s � t , then M; s ˆ '.
– Empty team property: M;; ˆ ' for all ' 2 L.

The first claim states that the semantics is persistent, in the sense that if a formula is
supported by a team t , then it remains supported by any extension of t . The second is
a semantic analogue of the usual ex falso quodlibet principle: it states that the empty
team, which represents the state of inconsistent information, supports any formula.

Unlike standard formulas, formulas which contain nn= are not in general truth-
conditional. For instance, the formula ‹p is true at any world in any model, but it
is only supported at teams t such that the truth-value of p is constant within t . We
will refer to truth-conditional formulas as statements, and to non-truth-conditional
formulas as questions (for the conceptual motivation behind this terminology, see
[6]).
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Figure 1 The maximal supporting states for some propositional formulas. In the
figures, 11 stands for a world in which p and q are true, 10 for a world in which p is
true and q is false, and so on.

2.2.3 Statements and questions Proposition 2.6 implies that for a statement, we
always have a unique maximal supporting state, which coincides with the set of all
worlds in which the statement is true. As an illustration, Figure 1(a)–1(e) depicts the
maximal supporting states for some standard formulas.

By contrast, questions typically have multiple maximal supporting states, which
we can think of intuitively as mirroring the alternative ways in which the question can
be resolved. Figure 1(f)–1(j) depicts the maximal supporting states for some ques-
tions in InqB_. Notice that while nn= allows us to form questions out of statements,
these questions can then be combined by means of the standard connectives. Thus,
for instance, the conjunction ‹p ^ ‹q is a question which is only resolved when both
conjuncts are resolved, while the implication p ! ‹q is a question which is resolved
if the question ‹q is resolved restricted to those worlds in which p is true.
2.2.4 Dependence formulas Let us now turn our attention to the relation of depen-
dency. Consider a team t , and consider two questions � and �. It is natural to say
that � is determined by � in t if, relative to the team, resolving � implies resolving
�; or, more formally, in case in any extension of t where � is resolved, so is �:

� determines � in t ” 8u � t W u ˆ � implies u ˆ �:

Notice that the condition on the right is just the support condition for � ! �. Thus,
we have:

� determines � in t ” t ˆ � ! �:

This shows that for any two questions � and �, we can regard the implication � ! �

as expressing the existence of a certain dependency relation: a team t supports � !

� if and only if relative to t , the antecedent completely determines the consequent.
For this reason, we will refer to a formula of the form � ! � as a dependence
formula.

For a simple example, consider the implication ‹p ! ‹q. This formula is sup-
ported in a team t in case relative to t , whether q is true is completely determined
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by whether p is true. This happens if and only if within t we have a functional
dependency of the value of q on the value of p:

M; t ˆ ‹p ! ‹q ” 9f W ¹0; 1º ! ¹0; 1º

s.t. 8w 2 t W V.w; q/ D f
�
V.w; p/

�
:

Another way of stating this condition is the following:
M; t ˆ ‹p ! ‹q ” 8w;w0

2 t W V.w; p/ D V.w0; p/

implies V.w; q/ D V.w0; q/:

This is precisely the support condition which is assumed for the dependence atom
D.p; q/ in propositional dependence logic (see, e.g., [27], [31]). Thus, in our logic
we can take D.p; q/ to be an abbreviation for ‹p ! ‹q.

The point we just made generalizes to the case in which a question is jointly
determined by a number of other questions. If �1; : : : ; �n; � are questions, then the
implication �1 ^ � � � ^ �n ! � expresses the fact that � is jointly determined by
�1; : : : ; �n, that is, the fact that in the given team, � is resolved as soon as each of
�1; : : : ; �n is resolved.

In particular, if ˛1; : : : ; ˛n; ˇ are standard formulas, then we can express the fact
that the truth-value of ˇ is completely determined by those of ˛1; : : : ; ˛n by means
of the formula ‹˛1 ^ � � � ^ ‹˛n ! ‹ˇ. We can thus take the generalized dependence
atom D.˛1; : : : ; ˛n; ˇ/ from dependence logic as an abbreviation of this formula.

At the same time, however, in InqB_ we can express dependence patterns that
do not correspond to dependence atoms (for discussion of this point, see [5]). For
instance, the formula ‹p ! q nn= r expresses the fact that in the given team, settling
the truth-value of p leads to establishing one of q and r .

2.3 Resolutions and normal form In Section 2.1 we saw that any standard formula
is truth-conditional. Conversely, we can show that any truth-conditional formula
in L is equivalent to a standard formula. This means that, while InqB_ is more
expressive than classical logic, it has the same expressive power as classical logic as
far as statements are concerned.3 To show this, we associate with any formula ' a
corresponding standard formula 's which has the same truth-conditions.

Definition 2.10 (Standard variant) The standard variant of a formula ' 2 L is
the formula 's 2 LŠ obtained by replacing each occurrence of nn= by _.

Proposition 2.11 For any ' 2 L, ' and 's have the same truth-conditions.

If ' is itself truth-conditional, then this guarantees that ' and 's are equivalent.
Clearly, the opposite holds as well.

Proposition 2.12 For any ' 2 L, ' is truth-conditional ” ' � 's .

Thus, if ' is truth-conditional, then ' is equivalent to a standard formula. If ' is a
question, then obviously ' is not equivalent to any standard formula. Nevertheless,
any formula of InqB_ is equivalent to an inquisitive disjunction of standard formu-
las. This means that the inquisitiveness which is present in a formula can always be
brought all the way to the surface syntactic layer. The first step for this is to associate
with any formula ' a finite set of standard formulas, called resolutions of '.

Definition 2.13 (Resolutions) The set R.'/ of resolutions of a formula ' is
defined inductively as follows:
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(i) R.p/ D ¹pº,
(ii) R.?/ D ¹?º,
(iii) R.' ^  / D ¹˛ ^ ˇ j ˛ 2 R.'/ and ˇ 2 R. /º,
(iv) R.' _  / D ¹˛ _ ˇ j ˛ 2 R.'/ and ˇ 2 R. /º,
(v) R.' !  / D ¹

V
˛2R.'/ ˛ ! f .˛/ j f W R.'/ ! R. /º,

(vi) R.' nn= / D R.'/ [ R. /.

It is then possible to prove by induction that any formula is equivalent with the inquis-
itive disjunction of its resolutions.

Theorem 2.14 (Inquisitive normal form) If ' 2 L and R.'/ D ¹˛1; : : : ; ˛nº,
then we have ' � ˛1 nn= � � � nn=˛n.

This is a very strong normal form result, from which many features of the logic can
be deduced. It turns out that this result is quite stable with respect to the logic of
statements that we choose as a starting point for our construction: in Section 4.2 we
will prove that exactly the same normal form result holds in the intuitionistic setting.

2.4 The logic Standardly, semantics is given in terms of truth, and logical entailment
is characterized as truth preservation. In team-based logics, semantics is given in
terms of support, and logical entailment is defined as support preservation.

Definition 2.15 (Entailment) For any set of formulas ˆ [ ¹ º � L,

ˆ ˆInqB_  ” for any M; t if M; t ˆ ' for all ' 2 ˆ, then M; t ˆ  :

As mentioned already in Section 2.1, the system InqB_ is a conservative extension
of classical propositional logic.

Proposition 2.16 (Conservativity over classical logic) If ˆ [ ¹ º � LŠ, then
ˆ ˆInqB_  ” ˆ ˆCPL  .

Essentially, this says that we have preserved our classical logic of statements. How-
ever, now it is not only statements, but also questions that can take part in the rela-
tion of entailment. This allows us to capture as cases of entailment some interesting
logical notions besides the standard consequence relation between statements. For
instance, as discussed in [6] and [8], an entailment ˛ ˆ �, where ˛ is a statement and
� is a question, holds if and only if ˛ provides sufficient information to resolve �.
Thus, for instance, we have p ˆ ‹.p _ q/, but :p 6ˆ ‹.p _ q/.

Even more interestingly, an entailment �;ƒ ˆ �, where � is a set of statements,
ƒ is a set of questions, and� is a question, holds if and only if given the statements in
� , the question � is completely determined by the questions inƒ. Thus, for instance,
the entailment p $ q; ‹p ˆ ‹q captures the fact that, given the assumption p $ q,
the question ‹q is completely determined by the question ‹p.

Having briefly discussed the significance of entailment in InqB_, let us now turn
to the formal properties of this relation. First, classical logical laws do not generally
extend from statements to questions. In particular, the double negation law is valid
for statements, but not for questions.

Proposition 2.17 (Double negation and truth-conditionality) For any ' 2 L,
' � ::' ” ' is truth-conditional.
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This result shows, in particular, that the set of valid formulas in InqB_ is not closed
under uniform substitution: while ::p ! p is valid in InqB_, because p is truth-
conditional, substituting p with a question, say, with ‹p, yields an invalid formula.
Conceptually, the reason why uniform substitution fails in InqB_ is that, in this sys-
tem, atoms are not supposed to stand for arbitrary sentences. Rather, they are sup-
posed to stand for arbitrary statements; as such, they may validate logical principles
which are generally valid for statements, but which fail for questions. It is important
to understand that this feature of InqB_ is not an accident, but a deliberate archi-
tectural choice (for a discussion of the benefits of this choice, see Section 2.5.5 of
[8]).

The fact that the double negation law fails for questions also shows that questions
have constructive logical features. Another indication of this comes from the follow-
ing proposition, which establishes a generalized version of the disjunction property
for nn= . Intuitively, what this proposition says is that if a set of statements logically
resolves a question, then it must entail a specific answer to it.

Proposition 2.18 (Split property) If � is a set of truth-conditional formulas, then
� ˆ ' nn= implies � ˆ ' or � ˆ  .

In fact, a language-internal version of this property holds as well.

Proposition 2.19 (Internal split property) If ˛ is a truth-conditional formula, then
˛ ! .' nn= / ˆ .˛ ! '/ nn= .˛ !  /.

This validity plays an important role in the axiomatization of the logic InqB_. Fig-
ure 2 shows a natural deduction system for InqB_. This system was proved to be
sound and complete in [5], merging results obtained in [11] and in [30].4

Some comments on this system. First, notice that conjunction, implication, and
the falsum constant are governed by the standard logical rules, regardless of whether
they apply to statements or to questions. In particular, this tells us that we can rea-
son with dependence formulas just as we normally reason with implications in logic;
for instance, we can try to prove that a dependency � ! � holds by assuming �
and trying to derive �. Second, notice that inquisitive disjunction is governed by
the standard rules for disjunction in a natural deduction setup. Clearly, this means
that standard disjunction cannot be governed by the same rules—otherwise the two
disjunctions could be generally substituted for each other. Indeed, while the stan-
dard introduction rules are still valid for _, the standard elimination rule has to be
restricted to conclusions which are standard formulas. Without this constraint, the
rule would not be sound: for instance, it would incorrectly allow us to derive ‹p from
the tautology p _ :p, which is obviously unsound. However, since the elimination
rule for _ only allows us to infer standard formulas, we need additional rules to be
able to deduce those consequences of a disjunction ' _  which are not classical
formulas. This is the role of the rules ._c/ and ._d/, which stipulate that _ is com-
mutative and distributive over nn= , and of the rule ._r/, which allows us to replace
each disjunct by a consequence of it. The system also contains the rule S, which
encodes the internal split property of Proposition 2.19.5 Finally, the system allows
us to eliminate double negations in front of standard formulas. This encodes the fact
that the logic of our standard fragment is classical.6
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Figure 2 A natural deduction system for InqB_. In these rules, '; , and � range
over arbitrary formulas, while ˛ ranges only over standard formulas.

3 Questions in Intuitionistic Logic

In the previous section, we have reviewed how classical propositional logic can be
enriched with questions and with formulas expressing dependencies. In this section
we come to the novel enterprise of this paper. We will show that a similar result can
be achieved when our starting point is intuitionistic logic, rather than classical logic.7
As in the case of classical logic, we will proceed in steps. First, in Section 3.1 we
will provide a semantics for intuitionistic propositional logic (IPL) which is based on
the notion of support at a team, rather than on the notion of truth at a possible world.
Second, in Section 3.2 we will enrich IPL with questions by introducing inquisitive
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disjunction into the picture. We will call the resulting system InqI, where the last I
stands for intuitionistic. Some important features of this system, and some interest-
ing differences with the classical case, are discussed in Section 3.3. Finally, in Sec-
tion 3.4 we show that dependence relations can be expressed in InqI as implications
among questions. In the next section we will then turn to the investigation of the
logic that arises from this system.

3.1 Support semantics for intuitionistic logic As before, our starting point is the lan-
guage LŠ of standard propositional logic, consisting of formulas built up from atoms
and ? by means of the connectives ^;_, and !. We want to provide a semantics
for this language based on the notion of support at a team. However, now we want
this semantics to characterize intuitionistic logic, rather than classical logic. For this
purpose, we need to equip our space of possible worlds with some extra structure
besides a propositional valuation. This leads us naturally to the standard notion of an
intuitionistic Kripke model.
Definition 3.1 (Intuitionistic Kripke models) An intuitionistic Kripke model is a
triple M D hW;R; V i, where:

(i) W is a set, whose elements we will call possible worlds;
(ii) R � W �W is a partial order, that is, a reflexive, antisymmetric and transitive

relation;
(iii) V W W � P ! ¹0; 1º is a function which obeys the following condition:

Persistency: if wRw0, then V.w; p/ D 1 implies that V.w0; p/ D 1.
If w 2 W , we let RŒw� D ¹w0 j wRw0º. If t � W , we let RŒt� WD

S
w2t RŒw�.

In an intuitionistic Kripke model, worlds stand for partial, rather that total, states of
affairs. We may think of wRw0 as meaning that w0 is a refinement of w0, meaning
that any aspect of reality which is determined at w is also determined in the same
way at w0, and possibly some more things are determined at w0. This justifies the
persistency condition: if p is determinately true at w, then it must remain so at any
refinement of w. Notice that this implies that V.w; p/ D 0 should not be read as “p
is determinately false at w,” but rather as “p fails to be determinately true at w.” We
will come back to this point later in this section, where we will define a partialized
notion of the truth-value of a formula relative to a world.

As before, a team will simply be a set of possible worlds in our model. Moreover,
like before, we will think of a team as encoding a set of information: the team t

stands for the information that the actual state of affairs lies within t .
Definition 3.2 (Teams) A team in a Kripke model M D hW;R; V i is a set of
worlds t � W .
However, now there are two different ways in which a team t may be extended. On
the one hand, one may obtain more information about which state of affairs is actual,
which results in some worlds being eliminated from t . On the other hand, a state
of affairs in t may become more defined, that is, it may be replaced by one or more
R-successors. This gives the following definition of extensions.8

Definition 3.3 (Extensions of a team) Let M D hW;R; V i be a Kripke model.
A team t 0 is an extension of a team t if t 0 � RŒt�.
With these notions in place, we are now ready to define the intuitionistic notion of
support with respect to a team in a Kripke model.
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Definition 3.4 (Support semantics for intuitionistic logic) Let M D hW;R; V i

be a Kripke model. The relation of support between teams t and formulas ' 2 LŠ is
defined inductively as follows:

(i) M; t ˆ p ” V.w; p/ D 1 for all w 2 t ,
(ii) M; t ˆ ? ” t D ;,
(iii) M; t ˆ ' ^  ” M; t ˆ ' and M; t ˆ  ,
(iv) M; t ˆ '_ ” 9t 0; t 00 such that t D t 0 [ t 00,M; t 0 ˆ ' andM; t 00 ˆ  ,
(v) M; t ˆ ' !  ” 8t 0 � RŒt�, M; t 0 ˆ ' implies M; t 0 ˆ  .

Notice that the support clauses are exactly the same as for classical logic; only the
underlying notion of extensions of a team is different: whereas in classical logic we
only look at teams t 0 � t , here we look at all teams t 0 � RŒt�.

This observation can be sharpened by noticing that the classical support semantics
given above can be seen as a special case of the intuitionistic support semantics we
just defined: possible world models for classical logic can be identified with Kripke
models M D hW;R; V i where worlds are already complete, and no world can be a
proper refinement of another; that is, the refinement relation R is the identity. Let
us call these Kripke models classical. In a classical Kripke model, RŒt� D t , and so
the conditions t 0 � t and t 0 � RŒt� coincide. Therefore, classical support semantics
coincides with intuitionistic support semantics over the class of classical models.

Example 3.5 Consider the Kripke model M depicted in Figure 3. As usual, we
draw the relation R by means of edges going upwards, and we omit edges which are
implied by transitivity and reflexivity. Thus, in M we have w1Rv for all worlds v,
whilew2Rv ” v D w2. We depict the valuation V by listing besides each world
the atomic sentences which are true at that world; thus, in M the sentence p is true
only at w4, while q is true only at w5. The rectangles in the picture represent three
teams t1; t2; t3 in this model. Since RŒt1� D ¹w2; w3; w4; w5º, both t2 D ¹w2; w4º

and t3 D ¹w5º are extensions of t1. The team t3 is a maximal consistent team, in
the sense that its only proper extension is the inconsistent team ;. We have t3 ˆ q,
since the only world in t3 makes q true, and t3 ˆ :p, since t3 cannot be extended
to a consistent team that supports p. In general, a maximal consistent team like t3
gives rise to a complete theory, in the sense that for any formula ', either ' or :'

is supported. By contrast, the team t2 has both ¹w2º and ¹w4º as proper consistent
extensions. In this team, neither p nor :p is supported: for although p is not true

Figure 3 A Kripke model M in which three teams are indicated.
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at all worlds in t2, t2 can be extended to a team where p is supported, namely, ¹w4º.
Notice however that t2 ˆ p_:p is supported, since t2 D ¹w4º[¹w2º, and we have
¹w4º ˆ p and ¹w2º ˆ :p. Indeed, one can show that in any team t consisting only
of terminal points—that is, in every team consisting of complete worlds—we have
t ˆ ˛_:˛ for every standard formula ˛, even though t need not support either of the
disjuncts. In this respect, standard disjunction differs from the inquisitive disjunction
to be introduced below, which requires either disjunct to be supported in the team.
Finally, notice that although t1 does not contain any p-world, t1 6ˆ :p, since t1
can be extended to the team ¹w4º which supports p. In addition, now we also have
t1 6ˆ p _ :p: although t1 can be subdivided into ¹w2º and ¹w3º, this does not help,
since ¹w3º itself supports neither p nor :p. This also illustrates the fact that, unlike
in InqB_, in InqI singleton teams are not typically complete.

From our notion of support with respect to a team we can obtain a notion of truth
with respect to a possible world, in the same way as we did in the classical setting.

Definition 3.6 (Truth) We say that a formula ' is true at a world w in a Kripke
model M , notation M;w ˆ ', in case ' is supported at the singleton state ¹wº:
M;w ˆ ' ” M; ¹wº ˆ '.

It will also be useful to define a notion of the truth-value of a sentence with respect
to a world. As we mentioned above, in the intuitionistic case, we think of possible
worlds in a Kripke model as capturing partial states of affairs. This means that there
will be possible worlds in which a formula is neither true nor false.

Definition 3.7 (Truth-value of a formula at a world) Let M D hW;R; V i be
a Kripke model. The truth-value function associated to M is the partial function
T W W � LŠ ! ¹0; 1º defined as follows:

T .w; '/ D

8̂<̂
:
1 if M;w ˆ ';

0 if M;w ˆ :';

undefined otherwise:

This partial function is well defined, since it is easy to see that M;w ˆ ' and
M;w ˆ :' cannot both be true. Moreover, the next proposition states that truth-
values are persistent in the relation R.

Proposition 3.8 (Persistency of truth-values) Let M be a Kripke model, and let
w, w0 be two worlds in M with wRw0. If T .w; '/ is defined, then T .w0; '/ is also
defined and T .w0; '/ D T .w; '/.

Proof This can be proved directly by induction, but it also follows as a special case
of a more general result, namely, Proposition 3.15 below.

Thus, even though the basic semantic notion in our system is that of support at a team,
a notion of truth at a world can be recovered straightforwardly. As in the classical
case, we say that a formula is truth-conditional if support can in turn be recovered
from truth, in the sense that support at a team boils down to truth at each world in
the team.

Definition 3.9 (Truth-conditionality) We say that a formula ' is truth-conditional
if for all models M and teams t : M; t ˆ ' ” M;w ˆ ' for all w 2 t .



Questions and Dependency in Intuitionistic Logic 89

The following proposition states that all standard formulas are indeed truth-
conditional, just as in the classical case.

Proposition 3.10 (Standard formulas are truth-conditional) For any Kripke model
M , any team t , and any standard formula ' 2 LŠ:

M; t ˆ ' ” M;w ˆ ' for all w 2 t:

Proof The proposition is proved by induction on the complexity of '. We only
give the two nontrivial induction steps for disjunction and implication.

Case ' D  _�. First, notice that the induction hypothesis implies thatM;; ˆ  

andM;; ˆ �, since the right-hand side of the equivalence is trivially satisfied for ;.
It follows easily that M;w ˆ  _ � ” M;w ˆ  or M;w ˆ �. So, we have:

M; t ˆ  _ � ” 9t 0; t 00 s.t. t D t 0 [ t 00;M; t 0 ˆ  and M; t 00 ˆ �

” 9t 0; t 00 s.t. t D t 0 [ t 00; .M;w0
ˆ  for all w0

2 t 0/ and
.M;w00

ˆ � for all w00
2 t 00/ (by induction hypothesis)

” for all w 2 t; either M;w ˆ  or M;w ˆ �

” for all w 2 t; M;w ˆ  _ �:

Case ' D  ! �. Suppose M; t ˆ  ! �. For any w 2 t , we show that
M;w ˆ  ! �. Let t 0 � RŒw� be such that M; t 0 ˆ  . Since t 0 � RŒw� � RŒt�,
we obtain by the assumption that M; t 0 ˆ �, as required.

Conversely, suppose that M;w ˆ  ! � holds for all w 2 t . For any t 0 � RŒt�

such that M; t 0 ˆ  , we show that M; t 0 ˆ �. By the induction hypothesis, we have
M;w0 ˆ  for all w0 2 t 0. Now take any w0 2 t 0: since t 0 � RŒt�, we have some
w 2 t with wRw0. Since ¹w0º � RŒw�, our assumption implies M;w0 ˆ �. Since
this holds for any w0 2 t 0 by the induction hypothesis this yields M; t 0 ˆ �. So,
M; t ˆ  ! �.

Using this fact, we can see that the notion of truth that our semantics determines
for standard formulas is nothing but the notion which is familiar from intuitionistic
Kripke semantics.

Proposition 3.11 (Kripke semantics recovered) For any Kripke model M , world
w, and standard formulas ' and  , we have:

(i) M;w ˆ p ” V.w; p/ D 1,
(ii) M;w 6ˆ ?,
(iii) M;w ˆ ' ^  ” M;w ˆ ' and M;w ˆ  ,
(iv) M;w ˆ ' _  ” M;w ˆ ' or M;w ˆ  ,
(v) M;w ˆ ' !  ” 8v 2 RŒw�, M;v ˆ ' implies M;v ˆ  .

Proof We only give the proof for implication, which is the only case that does not
follow immediately from the definition.

Suppose M;w ˆ ' !  . For any v 2 RŒw� such that M;v ˆ ', since ¹vº �

RŒw�, the assumption implies M;v ˆ  , as required.
Conversely, suppose that for any v 2 RŒw�, M;v ˆ ' implies M;v ˆ  . Let

t � RŒw� be such that M; t ˆ '. By Proposition 3.10, we have M;u ˆ ' for all
u 2 t � RŒw�. It then follows from the assumption that M;u ˆ  . Hence, by
applying Proposition 3.10 again we obtain M; t ˆ  , as required.
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Summing up, then, we have seen that our team-based semantics is interdefinable with
standard Kripke semantics for intuitionistic logic. As we will see in Section 4, from
this connection it follows immediately that the logic determined by our semantics is
indeed intuitionistic logic. Thus, what we did so far is simply to provide an alter-
native semantic foundation for intuitionistic logic. From our perspective, the reason
why this new foundation is interesting is that, being based on the notion of support at
a team rather than on the notion of truth at a world, it allows us to introduce questions
and dependence formulas into the picture. To this we turn in the next section.

3.2 Adding questions to intuitionistic logic As in the classical case, questions will
enter the picture via the introduction of the inquisitive disjunction connective, nn= .
Thus, the full language L of the logic we will consider is the one given by Defini-
tion 2.7. The semantic clause for inquisitive disjunction remains the same as in the
classical case.

Definition 3.12 (Support conditions for inquisitive disjunction)

(i) M; t ˆ ' nn= ” M; t ˆ ' or M; t ˆ  .

It is easy to see that formulas formed by means of nn= are not in general truth-
conditional. As before, we will think of such formulas as questions. In particular, if ˛
is a standard formula, we will write ‹˛ as an abbreviation for ˛ nn= :˛. The following
proposition says that, as in the classical case, ‹˛ captures the question of whether ˛
is true or false, which is settled in a team t just in case all the assignments in t agree
about the truth-value of ˛.

Proposition 3.13 (Support conditions for polar questions) Let M be a Kripke
model, let t be a team in M , and let ˛ 2 LŠ. We have

M; t ˆ ‹˛ ” 8w;w0
2 t W T .w; ˛/

�
D T .w0; ˛/;

where T .w; ˛/ �
D T .w0; ˛/ means that the two values are defined and equal.

Proof Suppose M; t ˆ ‹˛. Then M; t ˆ ˛ or M; t ˆ :˛, which, by Proposi-
tion 3.10, implies thatM;w ˆ ˛ for all w 2 t , orM;w ˆ :˛ for all w 2 t . Clearly,
in both cases T .w; ˛/ is defined and has a constant value for all w 2 t .

Conversely, suppose that T .w; ˛/ is defined and has a constant value for allw 2 t .
If T .w; ˛/ D 1 for allw 2 t , thenM;w ˆ ˛ for allw 2 t , which by Proposition 3.10
implies M; t ˆ ˛, and thereby M; t ˆ ‹˛. If T .w; ˛/ D 0 for all w 2 t , then by the
same argument we obtain M; t ˆ :˛, and thereby M; t ˆ ‹˛ holds as well.

Notice that there only is a fact of the matter about whether ˛ is true or false in case
˛ does have a truth-value in the first place. This cannot be taken for granted in our
intuitionistic setting, since possible worlds can in general fail to assign a truth-value
to some formulas. To know that the question ‹˛ has a true answer, one has to know
that the standard disjunction ˛_:˛ is true. We may say that ˛_:˛ captures the pre-
supposition of the question ‹˛. The formula ˛ _ :˛ is not a tautology in our setting,
which means that in the intuitionistic setting—unlike in the classical setting—polar
questions have nontrivial presuppositions (for a discussion of the logical notion of
presupposition of a question, see [8, Chapter 1.3]).

Example 3.14 To get a concrete impression of the interpretation of statements
and questions in InqI, consider Figure 4. Since statements are truth-conditional by
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Figure 4 The maximal support teams for some propositional formulas.

definition, we always have a unique largest team where a given statement is sup-
ported, which coincides with the set of all worlds where the statement is true. For
standard formulas, Proposition 3.11 ensures that this team coincides with the truth-
set of the statement as given by standard Kripke semantics. This is illustrated by
Figures 4(a)–4(f). By contrast, for questions we typically have multiple maximal
supporting teams, corresponding to the different ways for the question to be resolved
in the given model. This is illustrated by Figures 4(g)–4(i). Notice the difference
between the meaning of the standard disjunction p_ :p and the meaning of the cor-
responding inquisitive disjunction p nn= :p, abbreviated as ‹p. To support p_:p, the
information available in the team just has to ensure that p has a definite truth-value.
This is also necessary in order to support ‹p, but it is not sufficient: in this case, the
information available in the team should also determine whether p is true or false.
The situation is analogous for the standard disjunction q _ :q and the inquisitive
disjunction ‹q. Finally, notice that, as in the classical case, standard connectives are
allowed to operate on questions. This is illustrated by Figure 4(i), which depicts the
meaning of the conjunctive question ‹p^ ‹q: as we expect, this question is only sup-
ported by those teams that determine both the truth-value of p, and the truth-value
of q.

3.3 General features of the semantics Now let us turn to some general feature of
the semantics. As in the classical case, the semantics is persistent, meaning that if
a formula ' is supported in a team t , it remains supported in any extension of t ;
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however, now the extensions of t are not only the subsets of t , but all teams s � RŒt�.
Moreover, as in the classical case, all formulas are supported by the empty team,
which models the state of inconsistent information.

Proposition 3.15 (Persistency and empty team property)

– Persistency property: if M; t ˆ ' and s � RŒt�, then M; s ˆ '.
– Empty team property: M;; ˆ ' for all ' 2 L.

Proof This is straightforward by induction on '.

An immediate consequence of persistency is the following property of our system:
if a formula is supported by a team t , it is also supported by the whole up-set RŒt�
generated by t , and conversely.

Proposition 3.16 (Up-set property) We have that M; t ˆ ' ” M;RŒt� ˆ '.

Proof Since RŒt� � RŒt� and t � RŒt� D RŒRŒt ��, this follows from persistency.

This proposition implies that, from the perspective of our semantics, the only thing
that matters about a team t is the up-set RŒt� that it generates. This can be used to
show a preservation result in the opposite direction, from a team t to a subteam: if
the relation R is well-founded (i.e., if every t � W contains an R-minimal element),
then a team t can be replaced by the set min.t/ of its R-minimal elements without
affecting support.

Proposition 3.17 (Minimal-set property) For any Kripke model M D hW;R; V i

where R is well-founded, for any team t and formula ':

M; t ˆ ' ” M;min.t/ ˆ ';

where min.t/ D ¹w 2 t j for all v 2 t W vRw implies v D wº.

Proof This follows from the previous proposition since, if R is well-founded, then
RŒt� D RŒmin.t/�.

Another important fact about the semantics is that, for the purposes of evaluation at
t , the part of the model which lies outside the up-set RŒt� is irrelevant. If M is a
model and t is a team in M , let us denote by Mt the submodel generated by t , that
is, the restriction of M to RŒt�. Then we have the following general property.

Proposition 3.18 (Restriction property) We have thatM; t ˆ ' ” Mt ; t ˆ '.

Proof This is straightforward by induction on '.

Proposition 3.16 implies that every formula that can be falsified in our semantics can
be falsified on an up-set. In a similar spirit, the following result states that every
formula that can be falsified can be falsified at a single world.

Proposition 3.19 (Single world property) If there are a Kripke model M and a
team t such that M; t 6ˆ ', then there are a model M 0 and a world w such that
M 0; w 6ˆ '.
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Proof IfM D hW;R; V i, letM 0 D hW 0; R0; V 0i be the model obtained by adding
a new root toM and making all propositional letters false at this root. More precisely,
W 0 D W [¹wº, wherew is a new world not inW . V 0 coincides with V on all worlds
in W , and it makes every atom false at w. Finally, R0 D R [ ¹hw;w0i j w0 2 W 0º.

Now, the restriction of the models M and M 0 to t is the same: M 0
t D Mt . By the

restriction property (Proposition 3.18), this gives the following:
M 0; t ˆ ' ” M 0

t ; t ˆ ' ” Mt ; t ˆ ' ” M; t ˆ ':

Since M; t 6ˆ ' by assumption, also M 0; t 6ˆ '. But by the definition of R0, t �

R0Œw�. Thus, persistency implies M 0; w 6ˆ '.

This means that, in InqI, all formulas that are true at all worlds are also supported by
all teams, and thus logically valid. This is in stark contrast to what happens in the
classical case: in InqB_, ‹p is true at all worlds in all models, but it is not logically
valid. Indeed, in InqB_ we have that from the perspective of a single world w, stan-
dard disjunction _ and inquisitive disjunction nn= are indistinguishable (see Proposi-
tion 2.11). So, if the single world property held in InqB_, then there would not be
any logical difference between standard disjunction and inquisitive disjunction. By
contrast, in InqI the single world property holds, but as we will see in Section 4.3,
even single worlds are in general sensitive to the difference between standard and
inquisitive disjunction.

3.4 Expressing dependencies in InqI As in the classical case, it is natural to say that a
question � determines another question � in a team t of a modelM in case extending
t so as to settle � is bound to lead to a state where � is settled as well:

� determines � in t ” 8s � RŒt� W M; s ˆ � implies M; s ˆ �:

The condition on the right is precisely what is required for the team t to support the
implication � ! �. Thus, we have:

� determines � in t ” M; t ˆ � ! �:

Just as in the classical case, then, in InqI implications between questions express
the existence of certain dependency relations. As an example, consider the formula
D.p; q/, which we took to be an abbreviation for ‹p ! ‹q. As in the classical
case, this expresses the fact that relative to the given team t , the truth-value of q
is functionally determined by the truth-value of p. However, now this dependency
has to be robust enough to take into account the fact that the worlds in t may also
become more defined. Concretely, we have the following characterization (where,
recall, T .w; p/ �

DT .w0; p/ means that the two values are defined and equal).

Proposition 3.20 We have that M; t ˆ ‹p ! ‹q ” 8w;w0 2 RŒt�; T .w;

p/
�
DT .w0; p/ implies T .w; q/ �

DT .w0; q/:

Proof Suppose M; t ˆ ‹p ! ‹q. Take worlds w;w0 2 RŒt� such that T .w; p/ �
D

T .w0; p/. This means that either p is true at both worlds, or :p is. In the for-
mer case, M; ¹w;w0º ˆ p; in the latter case, M; ¹w;w0º ˆ :p; in either case,
M; ¹w;w0º ˆ ‹p. Since ¹w;w0º � RŒt� and M; t ˆ ‹p ! ‹q, this implies
M; ¹w;w0º ˆ ‹q. This means that either M; ¹w;w0º ˆ p, or M; ¹w;w0º ˆ :p. In
the former case, by persistency p is true at both w and w0. In the latter case, by per-
sistency p is false at bothw andw0. In either case, we thus have T .w; q/ �

D T .w0; q/.
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Conversely, suppose that 8w;w0 2RŒt�; T .w; p/
�
D T .w0; p/ implies T .w; q/ �

D

T .w0; q/. Consider a team s � RŒt� such that M; s ˆ ‹p. By Proposition 3.13, this
means that the truth-value of p is defined and constant throughout s. Now take any
worlds w;w0 2 s. We must have T .w; p/ �

D T .w0; p/. Since w;w0 2 s � RŒt�,
our assumption applies, giving T .w; q/ �

D T .w0; q/. Since w and w0 were arbitrary
in s, this shows that the truth-value of q is defined and constant in s, which again by
Proposition 3.13 implies M; s ˆ ‹q. This shows that M; t ˆ ‹p ! ‹q.

An equivalent characterization of the support conditions of ‹p ! ‹q is the follow-
ing, which brings out even more explicitly the fact that this formula captures the
existence of a functional dependency between the truth-values of p and q. The proof
is straightforward, given Proposition 3.20.

Proposition 3.21 We have that

M; t ˆ ‹p ! ‹q ” there is a function f W ¹0; 1º ! ¹0; 1º s.t. 8w 2 RŒt�

if T .w; p/ is defined, then T .w; q/ D f
�
T .w; p/

�
:

Notice an interesting difference with the classical setting: in the present setting, a
dependency may fail to hold even with respect to a singleton team. For instance,
consider the model in Figure 5 and the singleton team ¹wº: the dependency ‹p ! ‹q

does not hold relative to this singleton, because there is no function f W ¹0; 1º !

¹0; 1º which, as soon as the truth-value of p becomes defined, allows us to derive
from this the truth-value of q. Indeed, p becomes true at both the proper successors
of w, but q is true in the one and false in the other.

Of course, this discussion extends easily to dependencies that involve more than
two questions. We say that � is determined by �1; : : : ; �n relative to a team t in case
extending t so as to settle the questions �1; : : : ; �n is bound to lead to a team that
settles �. This is precisely what is expressed by the implication �1 ^ � � � ^ �n ! �.

In particular, if ˛1; : : : ; ˛n; ˇ are standard formulas, then the fact that the truth-
value of ˇ is functionally determined by the values of ˛1; : : : ; ˛n is captured by the
implication ‹˛1 ^ � � � ^ ‹˛n ! ‹ˇ. Propositions 3.20 and 3.21 generalize straightfor-
wardly to this case, as follows.

Proposition 3.22 LetM be a Kripke model, let t be a team, and let ˛1; : : : ; ˛n; ˇ
be standard formulas. Then the following are equivalent:

1. M; t ˆ ‹˛1 ^ � � � ^ ‹˛n ! ‹ˇ;
2. 8w;w0 2 RŒt� W if T .w; ˛i /

�
D T .w0; ˛i / for all i � n then T .w; ˇ/ �

D

T .w0; ˇ/;

w

vu pp; q

Figure 5 A Kripke model where the dependency ‹p ! ‹q fails at the singleton ¹wº.
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3. 9f W ¹0; 1ºn ! ¹0; 1º such that T .w; ˇ/ D f .T .w; ˛1/; : : : ; T .w; ˛n//

whenever w 2 RŒt� and T .w; ˛1/; : : : ; T .w; ˛n/ are defined.

Working in the classical setting, Abramsky and Väänänen [1] noticed that, once
dependencies are expressed by means of implication, the Armstrong axioms for func-
tional dependency in [2], well known in the database theory literature, amount sim-
ply to the axioms of intuitionistic implicational logic. Since dependencies in the
intuitionistic setting are still captured by implications, this means that Armstrong’s
axioms are still valid for dependencies in the intuitionistic setting.

3.5 Two alternative setups for the semantics We close this section by considering
two alternative ways to set up a semantics for InqI which turn out to be formally
equivalent to the proposal we have spelled out in this section.

3.5.1 Teams as sets of rooted Kripke models In inquisitive logic, a team is considered
to be a set of possible states of affairs, which means a set of models for the underlying
logic of statements. What exactly these models are depends on the specific logic that
we start out with. In the classical propositional setting, these models are essentially
propositional valuations. In the intuitionistic setting, the natural counterpart of a
valuation is a rooted Kripke model. Therefore, one might take a team T to be a set
¹Mi j i 2 Iº of rooted Kripke models, rather than a set of nodes in a single Kripke
model. The clauses defining the support relation T ˆ ' (without a background
model, in this case) will be the same as those in Definition 3.4, modulo adapting the
definition of the extension relation between teams in the natural way.9

This alternative approach results in the same logic as our approach, for the fol-
lowing reason. On the one hand, given a Kripke modelM and a team t in our sense,
we can take the set Tt consisting of the submodels generated by the worlds in t :
Tt D ¹Mw j w 2 tº: this is a set of rooted Kripke models, and thus a team in the
alternative sense. Vice versa, given a set T D ¹Mi j i 2 Iº of Kripke models with
roots ¹wi j i 2 Iº, we can consider the set tT D ¹wi j i 2 Iº and regard it as a team
within the Kripke model MT D

U
i2I Mi . One can then verify that these two trans-

formations preserve the semantics, in the sense that we haveM; t ˆ ' ” Tt ˆ '

and T ˆ ' ” MT ; tT ˆ '.

3.5.2 Restricting to upward-closed teams Another natural perspective is to base
the semantics on information states construed not as arbitrary teams, but rather as
upward-closed teams, that is, teams t such that whenever w 2 t and wRv, we have
v 2 t . This view can be justified based on the idea that an information state consists
of those worlds that cannot be ruled out on the basis of the available information: it
is natural to assume that if w cannot be ruled out and if w may be refined to obtain v,
then v cannot be ruled out either. This means that, if an information state is modeled
as the set t of worlds which it does not rule out, then t must be upward-closed.

Notice that if u is an upward-closed team, then RŒu� D u. So, relative to upward-
closed teams, the extension relation u0 � RŒu� boils down to u0 � u, just as in
the classical case. Thus, in this perspective the move from classical to intuitionistic
logic is obtained not by modifying the extension relation between teams, but rather
by restricting the set of teams which are regarded as information states, and which
are thus available in the semantics. This goes in the direction of the approach taken
by Punčochář in [21], which will be discussed in Section 5.
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A modified support relation M;u ˆ0 ' can be defined simply by restricting the
clauses in Definition 3.4 in the obvious way to upward-closed teams. Again, it is
easy to see that this modification does not lead to a semantics which is genuinely
different from the one we have introduced in this section. In one direction, we can
show that for upward-closed teams u, the restricted semantics gives the same results
as our general semantics: M;u ˆ0 ' ” M;u ˆ '. Vice versa, our general
semantics can be simulated in the restricted setting by looking at the upward-closure
RŒt� of the team t under consideration: M; t ˆ ' ” M;RŒt� ˆ0 '.

4 Intuitionistic Inquisitive Logic

In the previous section, we have seen how standard Kripke semantics for intuitionistic
logic can be generalized so that we can interpret not only statements, but also ques-
tions and formulas that express dependencies. Let us now turn to the investigation of
the logic that arises from this system. We start in Section 4.1 by establishing some
fundamental features of this logic. In Section 4.2 we show that the inquisitive normal
form result that we have seen in the classical setting carries over to the intuitionistic
case. In Section 4.3 we look at some characterizations of truth-conditional formulas
in InqI. Finally, in Section 4.4 we establish a sound and complete axiomatization of
our logic.

4.1 Entailment in InqI Entailment in the logic InqI is defined in the natural way.

Definition 4.1 (Entailment) Let ˆ [ ¹ º � L. We say that ˆ entails  in InqI
(notation ˆˆInqI ) if for any Kripke model M and team t in M , then M; t ˆ ' for
all ' 2 ˆ implies M; t ˆ  .

When no confusion arises, we will allow ourselves to drop the subscript InqI. The
first thing that we can verify is that, as we expect from the discussion in Section 3.1,
the system InqI is a conservative extension of intuitionistic propositional logic (IPL).
This means that, on standard formulas, entailment in InqI is just entailment in IPL.

Theorem 4.2 (Conservativity over intuitionistic logic) For ˆ [ ¹ º � LŠ,
ˆˆInqI ” ˆ ˆIPL  .

Proof Suppose ˆˆInqI . This means that whenever all formulas in ˆ are sup-
ported, so is  . Since by definition truth is a particular case of support, this implies
that whenever all formulas inˆ are true, so is  . On the other hand, Proposition 3.11
ensures that for standard formulas, our notion of truth coincides with the notion given
by Kripke semantics. Since Kripke semantics characterizes IPL, we have ˆ ˆIPL  .

For the converse, suppose ˆ 6ˆIPL  . This means that there exist a Kripke model
M and a team t in M such that t supports all formulas in ˆ but does not support '.
Since  is a standard formula, by Proposition 3.10, there must then be a world w 2 t

which does not make  true. By persistency, w makes true all formulas in ˆ. Since
truth coincides with the notion given by standard Kripke semantics, this shows that
ˆ 6ˆIPL  .

Thus, as we wanted, our logic InqI integrates questions and dependence formulas
within an intuitionistic logic of statements. As in the classical case, the presence of
questions allows us to capture some interesting logical notions as cases of entailment
which involve questions. In particular, if � is a set of statements and � is a question,
then the entailment � ˆ � holds if and only if the information provided by the
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statements in � suffices to settle the question �. This is as in the classical case.
However, the fact that InqI is based on intuitionistic logic makes it harder for a set of
statements to qualify as settling a question. For instance, the entailment ::p ˆ ‹p

is valid in the classical system InqB_ described above, but it is invalid in our system
InqI: intuitionistically, the statement ::p does not provide sufficient information to
resolve the question ‹p, since the truth of ::p does not imply the truth of p.

If � is a set of statements, ƒ a nonempty set of questions, and � a question, then
the entailment �;ƒ ˆ � holds if and only if given the statements in � , the question�
is completely determined by the questions in ƒ. For instance, just as in the classical
case, the entailment p $ q; ‹p ˆ ‹q is valid, witnessing that given the assumption
p $ q, the truth-value of p determines the truth-value of q. Like in the case of
answerhood, however, whether a dependency holds is a matter that hinges partly on
the underlying logic of statements. For a basic example, the entailment ‹:p ˆ ‹p

is valid in the classical case, but not in InqI. Intuitionistically, the question ‹:p does
not logically determine the question ‹p, since one may settle ‹:p by establishing
::p, which as we saw would not settle the question ‹p.

To summarize, entailment in InqI provides an intuitionistic perspective on a num-
ber of interesting logical notions, which include not only the standard logical con-
sequence relation between statements, but also the relation of logical answerhood
between statements and questions, and the relation of logical dependency between
questions. To the best of our knowledge, these logical relations have not been inves-
tigated before in the context of intuitionistic logic.

Let us now turn to the formal features of the entailment relation in InqI. An unsur-
prising but important feature of our logic which is worth stating explicitly, since it is
often used without mentioning it later on, is the connection between entailment and
implication—the semantic analogue of the deduction theorem.

Proposition 4.3 For all ˆ [ ¹ ; �º � L, ˆ; ˆ � ” ˆ ˆ  ! �.

Proof This is straightforward, using the persistency property of the semantics.

Importantly, the disjunction property, which is characteristic of intuitionistic logic,
is preserved in this broader logical setting.

Theorem 4.4 (Disjunction property for _) For any formulas '; 2 L, ˆ ' _  

implies ˆ ' or ˆ  .

Proof Suppose 6ˆ ' and 6ˆ  . Then,M1; t1 6ˆ ' andM2; t2 6ˆ  for some Kripke
models M1 and M2, and teams t1 and t2. Let M be a Kripke model constructed by
putting one pointw below the disjoint unionM1]M2 of the two modelsM1 andM2

and making no propositional variable true at w. We know that M1; t1 ˆ ', which
by Proposition 3.18 implies M; t1 ˆ '. For the same reason, M; t2 ˆ  . Let R be
the partial order of M . Since t1; t2 � RŒw�, by persistency, we have M;w 6ˆ ' and
M;w 6ˆ  , which implies M;w 6ˆ ' _  . Hence, 6ˆ ' _  .

Interestingly, the same property is shared by inquisitive disjunction. In fact, inquis-
itive disjunction satisfies an even more general property, the split property that we
have already encountered in the context of InqB_ (Proposition 2.18).

Theorem 4.5 (Split property for nn= ) If � is a set of truth-conditional formulas,
then � ˆ ' nn= implies � ˆ ' or � ˆ  .
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Proof By contraposition, suppose � 6ˆ ' and � 6ˆ  . Then we have two Kripke
models M1, M2 and two teams t1, t2 such that:

(i) M1; t1 ˆ  for all  2 � , but M1; t1 6ˆ ',
(ii) M2; t2 ˆ  for all  2 � , but M2; t2 6ˆ  .

Now consider the model M WD M1 ]M2 defined in the natural way as the disjoint
union of M1 and M2, and consider the team t WD t1 ] t2. Take any  2 � . We
know that M1; t1 ˆ  , which by the restriction property (Proposition 3.18) implies
M; t1 ˆ  . For the same reason, we know that M; t2 ˆ  . By persistency, this
implies that  is true at any world w 2 t1 ] t2 D t . Since  is truth-conditional, it
follows that M; t ˆ  .

On the other hand, we know that M1; t1 6ˆ '. By the restriction property, it
follows that M; t1 6ˆ ', which by persistency implies M; t 6ˆ '. Proceeding analo-
gously we can conclude that M; t 6ˆ  . Hence, M; t 6ˆ ' nn= .

We have thus found a team which supports all formulas in � but does not support
' nn= , which shows that � 6ˆ ' nn= .

This property ensures that, in the intuitionistic case as well, a set of statements can
only logically resolve a question by entailing a particular answer to the question. By
taking � D ;, we obtain the disjunction property for nn= as a special case.

Corollary 4.6 (Disjunction property for nn= ) For any formulas '; 2 L, ˆ ' nn= 

implies ˆ ' or ˆ  .

Combining Theorem 4.4 and Corollary 4.6, we obtain the following corollary.

Corollary 4.7 For any formulas '1; : : : ; 'n 2 L,
ˆ '1 _ � � � _ 'n ” ˆ '1 nn= � � � nn='n:

In spite of what this corollary may suggest, however, the two disjunction operators
have different logical properties. To see this, let us first prove that, as in the classical
case, the split property also holds from the perspective of the object language.

Theorem 4.8 (Internal split property for nn= ) If ˛ is a truth-conditional formula,
then ˛ ! ' nn= ˆ .˛ ! '/ nn= .˛ !  /.

Proof Suppose M; t 6ˆ ˛ ! ' and M; t 6ˆ ˛ !  . We will prove that M; t 6ˆ

˛ ! ' nn= . Since M; t 6ˆ ˛ ! ', we have a team s1 � RŒt� such that M; s1 ˆ ˛

but M; s1 6ˆ '. Similarly, since M; t 6ˆ ˛ !  , we have a team s2 � RŒt� such that
M; s2 ˆ ˛ butM; s2 6ˆ '. Now consider the team s1[s2. Obviously, s1[s2 � RŒt�.
By persistency, ˛ must be true at any world in s1[s2, and since ˛ is truth-conditional,
this implies M; s1 [ s2 ˆ ˛. However, by persistency we have M; s1 [ s2 6ˆ ' and
M; s1[s2 6ˆ  , which impliesM; s1[s2 6ˆ ' nn= . Finally, since there exists a team
s � RŒt� such that M; s ˆ ˛ but M; s 6ˆ ' nn= , we have M; t 6ˆ ˛ ! ' nn= .

As we will see, the local split property plays an important role in establishing a nor-
mal form result and a completeness result for InqI. It also allows us to show that
standard disjunction and inquisitive disjunction have different logical properties. It
follows immediately by the internal split property and Proposition 4.3 that the for-
mula .p ! q nn= r/ ! .p ! q/ nn= .p ! r/ is logically valid. By contrast, the
formula .p ! q_ r/ ! .p ! q/_ .p ! r/ is not valid, as witnessed by the model
in Figure 6. Thus, some of the principles that hold for inquisitive disjunction do not
hold for standard disjunction.
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w

vu p; rp; q

Figure 6 A model that teases apart standard disjunction and inquisitive disjunction
on a singleton team. At the root w, p ! q _ r is true, but p ! q nn= r is not.

4.2 Normal form In Section 2.3 we have seen that the logic InqB_ has a strong nor-
mal form result: every formula is equivalent to an inquisitive disjunction of standard
formulas. This means that a formula can always be put in a form which brings all its
“inquisitive content” to the surface layer. Perhaps surprisingly, this strong result car-
ries over unmodified to the intuitionistic setting. Any formula ' 2 L is equivalent,
in InqI as well as in InqB_, to the inquisitive disjunction of its resolutions, as given by
Definition 2.13. In particular, any formula is equivalent to an inquisitive disjunction
of standard formulas.10

Theorem 4.9 (Inquisitive normal form) Let ' 2 L and R.'/ D ¹˛1; : : : ; ˛nº.
Then ' �InqI ˛1 nn= � � � nn=˛n.

Proof The theorem is proved by induction on the complexity of '. We only give
the proof of the induction step for standard disjunction _ and implication.

Case ' D  _ �. By the induction hypothesis, we have  �InqI nn=R. / and
� �InqI nn=R.�/. It is easy to verify that for all formulas �; ı1; ı2, the distributive
law � _ .ı1 nn= ı2/ �InqI .� _ ı1/ nn= .� _ ı2/ holds. By applying this law, we obtain
 _ � �InqI nn= ¹˛ _ ˇ j ˛ 2 R. / and ˇ 2 R.�/º D nn=R. _ �/.

Case ' D  ! �. We have

 ! � �InqI nn=R. / ! nn=R.�/ (by induction hypothesis)

�InqI =n
˛2R. /

�
˛ ! nn=R.�/

�
�
since �1 nn= �2 ! ı �InqI .�1 ! ı/ ^ .�2 ! ı/

�
�InqI =n

˛2R. /

nn=
ˇ2R.�/

.˛ ! ˇ/ (by Theorem 4.8)

�InqI nn=
®
=n

˛2R. /

�
˛ ! f .˛/

� ˇ̌
f W R. / ! R.�/

¯
�
since � ^ .ı1 nn= ı2/ �InqI .� ^ ı1/ nn= .� ^ ı2/

�
�InqI nn=R. ! �/:

Notice that this normal form result is immediately inherited by any strengthening of
InqI, since a stronger logic is bound to give rise to a coarser notion of equivalence.
In particular, the analogous result for the classical case, Theorem 2.14, falls out as a
corollary. It should be noted, however, that in stronger logics the normal form result
can be given alternative formulations which are not valid in InqI. For instance, the
first normal form result for classical inquisitive logic, established by Ciardelli and
Roelofsen [11], represents each formula as an inquisitive disjunction of negations.
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An analogous result fails for InqI: it is easy to see, for example, that an atom p is not
equivalent to any inquisitive disjunction of negations in InqI.

Using the normal form result, we can show that InqI has the finite model property.
Theorem 4.10 (Finite model property) If 6ˆ ', then there exist a finite Kripke
model M and a finite team t such that M; t 6ˆ '.
Proof For any ' 2 L, by Theorem 4.9 we have ' �InqI ˛1 nn= � � � nn=˛n, where
R.'/ D ¹˛1; : : : ; ˛nº. If 6ˆInqI ', then 6ˆInqI ˛i for all 1 � i � n. Since each
˛i is a standard formula, by Theorem 4.2, 6ˆIPL ˛i for each i . By the finite model
property of IPL, for each 1 � i � n and by Proposition 3.11, there exist a finite
Kripke model Mi and a world wi such that Mi ; wi 6ˆ ˛i . Consider now the finite
model M D M1 ] � � � ]Mn and the finite team t D ¹w1; : : : ; wnº. For each i 2 I ,
Proposition 3.18 gives M;wi 6ˆ ˛i , which implies M; t 6ˆ ˛i by persistency. Thus,
M; t 6ˆ ˛1 nn= � � � nn=˛n, whence by Theorem 4.9 we conclude that M; t 6ˆ '.

An important consequence of this result is that, together with the completeness result
that we are going to establish later on, it implies that InqI is a decidable logic: there
is a recursive procedure that, given a ' 2 L decides in a finite time whether ˆ '

holds. This procedure consists simply in searching in parallel for a proof of ' and
for a finite countermodel to '. By completeness and the finite model property, this
search is guaranteed to terminate in a finite time, yielding an answer to the question.
Corollary 4.11 We have that InqI is decidable.

4.3 Truth-conditionality and standard formulas Proposition 3.10 ensures that in InqI
all standard formulas are truth-conditional. We saw in Section 3.2 that adding inquis-
itive disjunction allows us to express questions, that is, formulas that are not truth-
conditional, such as ‹p. Clearly, then, the presence of inquisitive disjunction gives
us some extra expressive power over the standard language: formulas like ‹p are not
equivalent to any standard formula. However, one may wonder whether the presence
of inquisitive disjunction also allows us to express more statements beyond what
intuitionistic logic can express.

In the classical case, we saw that the answer is negative: standard formulas are
representative of all truth-conditional formulas. We proved this by associating every
formula ' with a standard formula 's obtained by replacing each inquisitive disjunc-
tion symbol nn= with _, and proving that this preserves the formula’s truth-conditions.
We might expect the same to be true in InqI, since the formulas ' _  and ' nn= 

have exactly the same truth-conditions: both are true at a world if one of the disjuncts
is true. Interestingly, this is not the case: a formula ' and the formula 's do not, in
general, have the same truth-conditions. In the intuitionistic case, even single worlds
can discriminate between the two disjunction operators. To see this, notice that at the
root of the model in Figure 6, p ! q _ r is true, but p ! q nn= r is not.

Technically, this difference between _ and nn= arises because, even if we start
from a singleton team, in the intuitionistic setting implication can lead us to consider
nonsingleton extensions of this team. This does not happen in the classical case:
in InqB_, extensions are just subsets, and thus a singleton state can never have a
consistent nonsingleton extension. This diagnosis leads us to suspect that the only
case in which a truth-conditional difference between the two disjunctions can arise is
when these disjunctions are embedded within an implication. The next proposition
ensures that this is indeed the case.



Questions and Dependency in Intuitionistic Logic 101

Proposition 4.12 Suppose that no occurrence of nn= is within the scope of an
implication in '. Then, ' and 's have the same truth-conditions.

Proof For any  ; � 2 L, the formulas  _ � and  nn=� have the same truth-
conditions: both are true when at least one of the disjuncts is true. Using this fact, a
simple proof by induction on the structure of ' suffices to establish the claim.

Even though nn= cannot generally be replaced by _ preserving truth-conditions, it
turns out that any truth-conditional formula in InqI is still equivalent to a standard
formula. To see this, we first associate with each formula ' a standard formula that
has the same truth-conditions.

Theorem 4.13 Let ' 2 L, and let R.'/ D ¹˛1; : : : ; ˛nº. Then, ' has the same
truth-conditions as ˛1 _ � � � _ ˛n.

Proof By Theorem 4.9, ' � ˛1 nn= � � � nn=˛n. In the formula ˛1 nn= � � � nn=˛n, no
inquisitive disjunction is within the scope of an implication. So, Proposition 4.12
applies, ensuring that ˛1 nn= � � � nn=˛n and ˛1_� � �_˛n have the same truth-conditions.

If a formula ' 2 L is truth-conditional, the previous theorem implies that it is equiv-
alent with the standard disjunction of its resolutions, which is a standard formula.
Thus, we get the following corollary.

Corollary 4.14 For any ' 2 L, ' is truth-conditional ” ' � ˛ for some
standard formula ˛.

This shows that, as far as statements are concerned, our logic is not more expressive
than intuitionistic logic. One can also prove that any truth-conditional formula ' is
equivalent to a specific one of its resolutions. To see this, notice that by the normal
form theorem, ' ˆ ˛1 nn= � � � nn=˛n; since ' is truth-conditional, the split property
applies, giving ' ˆ ˛i for some i � n. On the other hand, it follows immediately
from the normal form result that ˛i ˆ '. Hence, ' � ˛i .

Before turning to the topic of axiomatization, it is worth pointing out another way
in which our logic InqI departs from InqB_ and more generally from classical ver-
sions of inquisitive logic. In Section 2.4, we saw that in InqB_ the double negation
law is the hallmark of truth-conditionality, in the sense that ' is truth-conditional if
and only if ' � ::' (see Proposition 2.3). This no longer holds in the intuition-
istic setting: for a simple example, an atom p is truth-conditional, but p 6� ::p.
What remains true in InqI is that negations always are truth-conditional. Since :'

abbreviates ' ! ?, this is a particular case of the following, more general fact.

Proposition 4.15 If  is truth-conditional, then so is ' !  for every formula '.

Proof Consider a model M and a team t , and suppose M;w ˆ ' !  for all
w 2 t . Let t 0 � RŒt� be such that M; t 0 ˆ '. Now take any v 2 t 0: by persistency,
we must haveM;v ˆ '. Since t 0 � RŒt�, we must have wRv for some w 2 t . Since
M;w ˆ ' !  , it follows thatM;v ˆ  . Since this is true for any v 2 t 0 and since
 is truth-conditional, we can conclude that M; t 0 ˆ  . Thus, M; t ˆ ' !  .

4.4 Axiomatization In Section 2.4 we presented a sound and complete natural
deduction system for the logic InqB_. The rules of this system are given in Figure 2.
This system includes a complete natural deduction system for classical propositional
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logic. In particular, for standard formulas we have the double negation elimination
rule. This rule is no longer sound in our setting, since ::p 6 ˆInqIp. However, we
are now going to show that simply dropping the double negation elimination rule
yields a sound and (strongly) complete proof system for our logic InqI.

Definition 4.16 Let ˆ [ ¹ º � L. We write ˆ`InqI if there is a proof of  
from assumptions in ˆ which uses the inference rules in Figure 2 except for double-
negation elimination (DNE). We write 'a`InqI in case '`InqI and  `InqI'.

As usual, proving that the given proof system is sound is just a matter of checking
that each inference rule is sound. We omit the straightforward proof.

Proposition 4.17 (Soundness) If ˆ`InqI , then ˆˆInqI .

We are now going to prove that the given proof system is also strongly complete for
InqI. To show this, we first need to establish some lemmas. The first lemma tells us
that our system can prove the equivalence between a formula and its normal form.

Lemma 4.18 (Provable normal form) If ' 2 L and R.'/ D ¹˛1; : : : ; ˛nº, then
'a`InqI ˛1 nn= � � � nn=˛n.

Proof By induction on the structure of '. It suffices to check that each of the
equivalences used in the proof of Theorem 4.9 to bring a formula in inquisitive nor-
mal form can be deduced in the proof system.

The second lemma states that if  , together with some other assumption ˆ, fails to
derive �, then this can be traced to the fact that some specific resolution ˛ 2 R. /

together with ˆ fails to derive �.

Lemma 4.19 If ˆ; ° �, then ˆ; ˛ ° � for some ˛ 2 R. /.

Proof We will prove the contrapositive: if ˆ; ˛ ` � for all ˛ 2 R. /, then
ˆ; ` �. Let R. / D ¹˛1; : : : ; ˛nº. The rule . nn=e/ ensures that, if we have
ˆ; ˛i ` � for 1 � i � n, we also have ˆ; ˛1 nn= � � � nn=˛n ` �. Since the previous
lemma gives  ` ˛1 nn= � � � nn=˛n, we also get ˆ; ` �.

The next lemma extends this result from a single assumption to the whole set.

Lemma 4.20 (Traceable deduction failure) If ˆ °  , then � °  for some set
of standard formulas � which contains a resolution for each ' 2 ˆ.

Proof Let us fix an enumeration of ˆ, say, .'n/n2N. We are going to define a
sequence .˛n/n2N of standard formulas such that, for all n 2 N:

1. ˛n 2 R.'n/;
2. ¹˛i j i � nº [ ¹'i j i > nº °  .

We apply the previous lemma inductively. Suppose that we have defined ˛i for i < n,
and let us proceed to define ˛n. The induction hypothesis tells us that ¹˛i j i <

nº [ ¹'i j i � nº °  , that is, ¹˛i j i < nº [ ¹'i j i > nº; 'n °  . By the previous
lemma, we can find an ˛n 2 R.'n/ such that ¹˛i j i < nº [ ¹'i j i > nº; ˛n °  .
Hence, ¹˛i j i � nº[¹'i j i > nº °  , completing the inductive step.

Now let � WD ¹˛n j n 2 Nº. By construction, � is a set of standard formu-
las which contains a resolution of each ' 2 ˆ. We claim that � °  . To see
this, suppose toward a contradiction that � `  . Then for some n it should be
the case that ˛1; : : : ; ˛n `  ; but this is impossible, since by construction we have
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¹˛1; : : : ; ˛nº [ ¹'i j i > nº °  . Thus, we have � °  , which completes the proof
of the lemma.

Now let M IPL
c be the canonical Kripke model for intuitionistic logic (see, e.g., Cha-

grov and Zakharyaschev [3]). We will prove strong completeness by showing that if
ˆ °InqI  , then we can find a team t in the model M IPL

c which supports all formulas
in ˆ but not  .

Theorem 4.21 (Strong completeness) If ˆˆInqI , then ˆ`InqI .

Proof By contraposition, suppose ˆ 6 `InqI . By Lemma 4.20, we have a set � of
standard formulas which contains a resolution of each ' 2 ˆ and such that � °  .
Now let R. / D ¹˛1; : : : ; ˛nº. We must have � ° ˛i for 1 � i � n: for otherwise,
using . nn= i/ and Lemma 4.18 we could conclude that � `  .

Now consider any i � n: � [ ¹˛iº is a set of standard formulas, and � 6 `InqI˛i .
Since our system includes a complete proof system for intuitionistic logic, and since
truth for standard formulas coincides with truth in Kripke semantics, we know from
the properties of the canonical modelM IPL

c that we can find a world wi inM IPL
c such

that M IPL
c ; wi ˆ  for all  2 � , but M IPL

c ; wi 6ˆ ˛i .
Now let us consider the team t WD ¹w1; : : : ; wnº. We claim that t supports all

formulas in ˆ but does not support  . First take any ' 2 ˆ. The set � contains a
resolution  2 R.'/. By construction, we know that each formula in � is true at
each world in t . Moreover, all formulas in � are standard formulas, and therefore
they are truth-conditional (Proposition 3.10). This implies M IPL

c ; t ˆ  . Now, the
normal form result (Theorem 4.9) implies that  ˆInqI '. Therefore, M IPL

c ; t ˆ '.
Since ' was an arbitrary element of ˆ, the team t supports all formulas in ˆ.

To see that t does not support  , suppose toward a contradiction that M IPL
c ;

t ˆ  . By the normal form theorem this would mean that M IPL
c ; t ˆ ˛i for some

i � n. Since wi 2 t , by persistency we should also have M IPL
c ; wi ˆ ˛i , which is a

contradiction.
We have thus found a team in the Kripke modelM IPL

c which supports all formulas
in ˆ but not  , witnessing that ˆ 6ˆInqI  .

Notice that all that we used about our proof system to obtain this result was that (i)
it includes a proof system for intuitionistic logic, and (ii) it is capable of proving the
equivalence between a formula and its normal form. The first feature pins down the
underlying logic of statements, while the latter completely captures the behavior of
propositional questions relative to this underlying logic.

Also, notice that in terms of entailment, the only difference between InqI and
InqB_ is the validity in InqB_ of the double negation law for the standard language—
in other words, the fact that the underlying logic of statements is classical in the case
of InqB_, but intuitionistic in the case of InqI. This shows that the logical features of
questions and dependencies are quite modular with respect to the underlying logic of
statements.

It is also worth remarking that Theorem 4.21 yields as an immediate corollary the
compactness of InqI.

Corollary 4.22 (Compactness) If ˆˆInqI , then there is a finite subset ˆ0 � ˆ

such that ˆ0ˆInqI .
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4.5 The _-free fragment of InqI Consider the sublogic InqI� obtained from InqI by
dropping the standard disjunction _ from the language. If we simply regard nn= as the
“official” disjunction operator of the system, then InqI� has a standard repertoire of
connectives. Thus, it can be meaningfully compared in terms of strength with ordi-
nary logics, such as intuitionistic logic, classical logic, and other intermediate logics.
Our axiomatization result for InqI immediately shows that all principles of intuition-
istic logic are valid for InqI�. Moreover, all principles of InqI� are valid in classical
logic, for it is easy to see that any entailment which is not classically valid can be
falsified in a Kripke model consisting of a single world. Thus, InqI� is a logic which
is intermediate in strength between intuitionistic and classical logic. However, InqI�

is not an intermediate logic in the usual sense, since its set of validities, just as in
the case of InqB_ and InqI, is not closed under uniform substitution: for instance, the
formula .p ! q nn= r/ ! .p ! q/ nn= .p ! r/ is valid in InqI�, although replacing p
by q nn= r yields an obviously invalid formula.

It turns out that our results above can easily be adapted to give a sound and com-
plete axiomatization of InqI�. Such an axiomatization is obtained simply by dropping
from the system given for `InqI all the rules dealing with _. This leaves us with what
is essentially the standard natural deduction system for intuitionistic logic—with nn=

now in the role of intuitionistic disjunction—augmented with the split scheme S.
Denoting this system by `InqI� , we have the following result.

Theorem 4.23 (Soundness and completeness for InqI�) For any formulasˆ[¹ º

in the language of InqI�: ˆ ˆInqI�  ” ˆ `InqI�  .

Proof We just need to repeat for the _-free fragment the same proof given above
for the whole language, and verify that none of the rules concerned with _ is ever
needed to reach the conclusion.

Punčochář [21] discusses a family of logics, called G-logics, which, like our logic
InqI, can be seen as variants of classical inquisitive logic where the underlying logic
of statements is weaker than classical logic. The result we have just established tells
us that the _-free fragment of our intuitionistic inquisitive logic InqI coincides with
the least element of this family, the logic that Punčochář denotes by IL+H.

4.6 Uniform interpolation in InqI Uniform interpolation is a strengthening of inter-
polation in which the interpolant of an implication only depends on the antecedent
or the conclusion of the implication, but not on both. It is well known that IPL has
uniform interpolation (see Pitts [19]). In this section we show that InqI inherits this
property.

Theorem 4.24 (Uniform interpolation for InqI) Given a formula ' and an atom
p, there exist formulas 8p' and 9p' of L, the left and the right interpolant, respec-
tively, that do not contain p and no atoms that do not occur in ', and such that for
all formulas  that do not contain p:11

' ˆInqI  ” 9p' ˆInqI   ˆInqI ' ”  ˆInqI 8p': (1)

Proof Consider a formula ', and suppose R.'/ D ¹˛1; : : : ; ˛kº. Let 9p˛i
and 8p˛i be the right and left interpolants for ˛i in IPL that exist according to
Pitts’s result. Let 9p' and 8p' denote the formulas 9p˛1 nn= � � � nn= 9p˛k and
8p˛1 nn= � � � nn= 8p˛k , respectively. We show that they are the right and left inter-
polants of '.
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Consider a formula that does not contain p, and suppose R. / D ¹ˇ1; : : : ; ˇlº.
Since ˛i ˆInqI 9p˛i and 8p˛i ˆInqI ˛i by the definition of interpolants and the
conservativity of InqI over IPL, the direction from right to left in (1) is clear.

For the other direction, we first treat 9. Assume that ' ˆInqI  . This implies that
˛i ˆInqI  for all i � k. In turn, by the split property (Theorem 4.5), this implies
that ˛i ˆInqI ˇj for some j � l . Since InqI is conservative over IPL and 9p˛i is the
right interpolant of ˛i in IPL, we have 9p˛i ˆInqI ˇj , and thus also 9p˛i ˆInqI  .
This implies 9p' ˆInqI  .

For 8, assume that  ˆInqI '. Then, ˇi ˆInqI ˛1 nn= � � � nn=˛k for all i � l . Hence,
again by the split property (Theorem 4.5), ˇi ˆInqI ˛j for at least one j � k. Since
InqI is conservative over IPL and 8p˛j is the left interpolant of ˛j in IPL, ˇi ˆInqI

8p˛j follows. This implies that ˇi ˆInqI 8p'. Therefore,  ˆInqI 8p'.

Corollary 4.25 (Interpolation for InqI) If ' ˆInqI  , then there exists a formula �
in the common language of ' and  such that ' ˆInqI � and � ˆInqI  .

Proof Suppose that p1; : : : ; pk ; q1; : : : ; qm are the atoms that occur in ' and that
q1; : : : ; qm; r1; : : : ; rn are the atoms that occur in  . Let � be either of the formu-
las 9p1 � � � 9pk' and 8r1 � � � 8rn . Then � only contains atoms q1; : : : ; qm in the
common language and has the desired properties.

4.7 Translation of InqB_ into InqI Glivenko’s theorem states that a formula ' is valid
in classical propositional logic if and only if its double negation ::' is valid in
intuitionistic propositional logic. In fact, the map ' 7! ::' yields an embedding of
CPL into IPL. Does the same relation hold between the classical system InqB_ and
its intuitionistic counterpart InqI?

The answer is negative: for instance, the formula ‹p is not valid in InqB_, but it is
easy to see that its double negation ::‹p is valid in InqI. Nevertheless, an embedding
of InqB_ into InqI can be obtained if we take care of distributing the double negation
translation over the resolutions of a formula. That is, if R.'/ D ¹˛1; : : : ; ˛kº, then
we make the following definition:

'n WD ::˛1 nn= � � � nn= ::˛k :

If ˛ is a standard formula, then ˛n coincides with the double negation ::˛.
Glivenko’s theorem generalizes to the inquisitive setting in the following form.

Proposition 4.26 For every � 2 L, ˆInqB_ ' ” ˆInqI '
n .

Proof Recall that the disjunction property holds for inquisitive disjunction nn= in
both systems InqB_ and InqI. Suppose ˆInqB_ ': since ' �InqB_ ˛1 nn= � � � nn=˛k , the
disjunction property yields ˆInqB_ ˛i for some i � k. But ˛i is a standard formula,
and on standard formulas InqB_ coincides with CPL. So ˛i is classically valid, which
by Glivenko’s theorem implies that ::˛i is valid in IPL. Since InqI coincides with
IPL on standard formulas, we have ˆInqI ::˛i , which immediately implies ˆInqI '

n.
The argument for the converse direction is analogous.

In fact, it is easy to strengthen this result to show that .�/n gives a translation of InqB_

into InqI, in the following sense.

Proposition 4.27 Let ˆ [ ¹ º � L, and let ˆn D ¹'n j ' 2 ˆº. Then
ˆ ˆInqB_  ” ˆn ˆInqI  

n:
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What this result tells us is that the Lindenbaum–Tarski algebra of the logic InqB_

embeds via .�/n into the one of the logic InqI. Thus, InqB_ can be identified with a
fragment of InqI, namely, the fragment consisting of formulas which are equivalent
to an inquisitive disjunction of negations.

An interesting question that remains is whether a translation of InqB_ into InqI
can be defined directly by induction on the structure of the formula ', in analogy
with the Gödel–Gentzen negative translation of CPL into IPL. Interestingly, this does
not appear to be the case, but we will not try to provide an impossibility proof here.

4.8 Translation of InqI into downward-closed modal team logic Gödel’s S4 transla-
tion embeds IPL into the classical modal logic S4—the logic of Kripke frames with
a reflexive and transitive accessibility relation. It is easy to generalize this transla-
tion to an embedding from InqI into S4 modal dependence logic (see [27]) extended
with intuitionistic connectives, also called downward-closed modal team logic MT0
in Yang [29].

Let us briefly recall the basics of MT0. We refer the reader to [29] for further
information.
Definition 4.28 (Language Ld ) The set Ld of formulas of MT0 is defined induc-
tively as follows:
' WWD p j ? j D. p1; : : : ; pn; q/ j ' ^ ' j ' _ ' j ' ! ' j ' nn=' j �' j Þ':

Formulas of MT0 are evaluated on modal Kripke models, that is, triples M D

hW;R; V i, where W is a set, R is a binary relation on W , and V W W � P ! ¹0; 1º

is a valuation function. Exactly as with InqI, a team in a modal Kripke model
M D hW;R; V i is a set of worlds t � W . However, in this setting a team t 0 is
said to be an R-successor of a team t (notation tRt 0) in case t 0 � RŒt� and for all
w 2 t , RŒw� \ t 0 ¤ ;.
Definition 4.29 (Team semantics for MT0) Let M D hW;R; V i be a modal
Kripke model. The relation of satisfaction between teams t and formulas ' 2 Ld is
defined inductively like the support relation defined in Definitions 3.4 and 3.12 except
for the following clauses for dependence atoms, implication, and modalities:12

(i) M; t ˆ D. p1; : : : ; pn; q/ ” 8w;w0 2 t , V.w; pi / D V.w0; pi / for all
1 � i � p implies V.w; q/ D V.w0; q/;

(ii) M; t ˆ ' !  ” 8t 0 � t , M; t 0 ˆ ' implies M; t 0 ˆ  ;
(iii) M; t ˆ Þ' ” 9t 0 such that tRt 0 and M; t 0 ˆ ';
(iv) M; t ˆ �' ” 8t 0, tRt 0 implies M; t 0 ˆ '.

MT0-formulas enjoy the same empty team property as InqI, and the following version
of the persistency property:

– Persistency property: if M; t ˆ ' and s � t , then M; s ˆ '.
In view of persistency, the semantic clause for �' can also be written as:

(v) M; t ˆ �' ” M;RŒt� ˆ '.
We call a formula ' 2 Ld that does not have any occurrences of dependence atoms
or nn= a standard formula. As with InqI, standard formulas of MT0 are also truth-
conditional in the same sense (see Definition 3.9). There is also a disjunctive normal
form for MT0 that is very similar to the one for InqI: every MT0-formula is equiv-
alent to a formula of the form ˛1 nn= � � � nn=˛n, where each ˛i is a standard formula.
A natural deduction system that is sound and (strongly) complete with respect to MT0
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can be found in [29]. Without going into detail we remark that using the disjunctive
normal form of MT0, by a very similar argument to that of Theorem 4.21, one can
prove that the system of MT0 extended with the usual T axiom �˛ ! ˛ and 4 axiom
�˛ ! ��˛ for standard formulas ˛, denoted S4-MT0, is sound and (strongly)
complete with respect to the class of reflexive and transitive modal Kripke frames,13

called S4-modal Kripke frames. We write ˆS4-MT0
' if ' is valid in this semantics

with respect to S4 models, that is, if M; t ˆ ' for all S4-modal Kripke models M
and teams t . Gödel’s S4 translation can then be generalized to a translation of InqI
into S4-MT0 as follows.
Definition 4.30 (S4 translation of InqI into MT0) We define a translation .�/� W

L ! Ld inductively as follows:
(i) p� D �p,
(ii) ?� D �?,
(iii) .' ^  /� D '� ^  �,
(iv) .' _  /� D '� _  �,
(v) .' nn= /� D '�

nn= �,
(vi) .' !  /� D �.'� !  �/.

Theorem 4.31 For every � 2 L, ˆInqI ' ” ˆS4-MT0
'�.

Proof For every S4 Kripke modelM D hW;R; V i, define an intuitionistic Kripke
model �M D h�W; �R; �V i by taking

1. �W D ¹wc j w 2 W º, where wc WD ¹v 2 W j wRv and vRwº,
2. wc �R vc ” wRv,
3. �V.wc ; p/ D 1 ” M;w ˆ �p.

We leave it for the reader to verify (or see Section 3.9 in [3]) that �M is well defined,
and that if M is an intuitionistic Kripke model, then M , viewed as an S4-modal
Kripke model, is isomorphic to �M . Letting tc D ¹wc j w 2 tº, we claim that for
any ' 2 L:

M; t ˆS4-MT0
'�

” �M; tc ˆInqI ':

The claim can be proved by induction on '. If ' D p, then exploiting the definition
of �V and the fact that �p is standard and thus truth-conditional in MT0, we have

�M; tc ˆInqI p ” 8wc 2 tc W �V.wc ; p/ D 1

” 8w 2 t W M;w ˆ �p
” M; t ˆ �p:

If ' D ?, then since R is reflexive,
M; t ˆS4-MT0

�? ” RŒt� D ; ” tc D ; ” �M; tc ˆInqI ?:

For the only nontrivial inductive case ' D  ! �, we have

M; t 6ˆS4-MT0
�. �

! ��/

” M;RŒt� 6ˆS4-MT0
 �

! ��

” 9s � RŒt� s.t. M; s ˆS4-MT0
 � and M; s 6ˆS4-MT0

��

” 9sc � �RŒtc � s.t. �M; sc ˆInqI  and �M; sc 6ˆInqI �

(by induction hypothesis, and since s � RŒt� iff sc � �RŒtc �)
” �M; tc 6ˆInqI  ! �:
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We now complete the proof by applying the claim. If 6ˆS4-MT0
'�, then

M; t 6ˆS4-MT0
'� for some S4-modal Kripke model M , which by the claim implies

that �M; tc 6ˆInqI ', and thereby 6ˆInqI '.
Conversely, if 6ˆInqI ', then M; t 6ˆInqI ' for some intuitionistic Kripke model M .

The modelM can be viewed as an S4-modal Kripke model that is isomorphic to �M .
Thus, by the claim,M; t 6ˆS4-MT0

'�, from which we conclude that 6ˆS4-MT0
'�.

5 Related Work

In this section, we discuss in some detail the relation between our proposal and
the related work developed by Punčochář in [21] and [22]. Broadly speaking,
Punčochář’s aim is similar to the one we pursued, namely, to investigate how ques-
tions may be added, in the style of inquisitive semantics, to a propositional logic
which is weaker than classical logic. In particular, in the two papers cited above
Punčochář proposes two ways of generalizing inquisitive logic to a setting in which
the underlying logic of statements is an intermediate logic, including intuitionistic
logic. (A further generalization to substructural logics is pursued by Punčochář in
[23].)

Our proposal converges with Punčochář’s in some important respects: most
importantly, the intuitionistic inquisitive logic that emerges from our system InqI
is a syntactic fragment of the logic that arises from the approach of [22] (where
the language also contains a modal operator) and in turn, as pointed out above, it
contains as a fragment the minimal element of the family of inquisitive logics studied
in [21].

At the same time, our work here differs from Punčochář’s in its technical workings
as well as in its conceptual focus. Let us first consider the technical differences. In
[21], the weakening of the base logic is obtained by assuming that only certain teams
are available as information states. That is, the semantics is based on structures called
spaces of information states, which consist of a universeW of worlds equipped with
a designated family I of subsets of W . In [22], a similar but more abstract approach
is taken: information states are treated as primitives, rather than as sets of worlds, and
an algebraic structure on the space of information states is assumed; more precisely,
the semantics is based on structures called algebras of information states, which are
join-semilattices with a bottom element. In both cases, the semantics is a natural
adaptation of the one given by Definition 2.2.

In this paper, we have taken a different approach: information states are still
viewed as arbitrary sets of worlds, but the worlds themselves, that is, the actual states
of affairs, may be partially defined in some respects; this means that an information
state can be extended not only by ruling out some worlds, but also by making some
of the worlds more defined. Technically, this is achieved by equipping the space of
worlds with a binary relation R that encodes when a state refines another—just as
in standard Kripke semantics for intuitionistic logic. Here, too, the semantic clauses
for the connectives remain essentially the same as in the classical case. Thus, our
approach provides a different and somewhat more standard semantic framework that
allows us to interpret both statements and questions in an intuitionistic logical setting.

This technical difference is also connected to a difference in focus between
Punčochář’s work and our own. Punčochář’s main aim is to generalize the way that
inquisitive logic builds on classical logic, and to show how many results obtained



Questions and Dependency in Intuitionistic Logic 109

for inquisitive logic admit much more general counterparts. Thus, the scope of
his work is very broad, and the focus is mostly on the logics themselves and the
relations between them. By contrast, our focus here has been narrower—we have
zoomed in on intuitionistic logic as a logic of statements—but our interest has been
as much in the semantics itself as in the logic that arises from it. Our starting point
was the semantic analysis of questions and dependency in a classical propositional
framework, as given by propositional inquisitive and dependence logic; we have
looked at how this analysis can be extended to a framework that does not assume the
law of excluded middle, and where states of affairs are partial by default. This led us
to study in detail the features of inquisitive logic when worlds are embedded in an
intuitionistic Kripke model. (To the best of our knowledge, this is also the first study
of a team-based semantics in this setting.) Moreover, we have looked in detail at
how the analysis of propositional dependencies given by inquisitive and dependence
logic extends to the intuitionistic setting, and at the interesting issues that arise in
connection with the possible lack of a definite truth-value for a statement at a world.

We think that our approach provides novel insight into the workings of questions
and dependency in the intuitionistic setting, and that our results contribute to the
exploration of the landscape of nonclassical inquisitive logics which was initiated by
Punčochář’s work.

6 Conclusion and Further Work

The move from a world-based semantics to a team-based one—from states of affairs
to states of information—allows inquisitive and dependence logic to broaden the
scope of classical logic, bringing questions and dependencies into play. In this paper,
we have seen that this move is possible also in the intuitionistic setting. In this
case, we are dealing with information about states of affairs which can themselves
be partial—that is, not defined in every respect. Formally, this means dealing with
teams of worlds embedded within an intuitionistic Kripke model—or, equivalently,
with sets of rooted Kripke models. The semantics remains exactly the same as in the
classical case, except that now, extending a state does not just amount to eliminating
some possibilities, but also to refining some of them in one or more ways. Just like in
the world-based setting, the classical system is obtained as a special case by restrict-
ing the intuitionistic semantics to discrete Kripke models, models in which worlds
are already complete and never have proper refinements.

We have seen that many key features of propositional inquisitive logic are pre-
served in the intuitionistic setting. In particular, the disjunctive normal form theorem
carries over unmodified, and a sound and complete axiomatization is obtained sim-
ply by dropping the double negation rule for statements. In other words, we have
seen that the only difference between the classical and the intuitionistic version of
inquisitive logic lies in the underlying logic of statements, while the relation between
statements and questions is the same in both cases.

From the perspective of the semantics, on the other hand, we find many interesting
novelties with respect to the classical case. For instance, in the intuitionistic case,
even simple polar questions have nontrivial presuppositions—that is, cannot always
be truthfully resolved. Dependencies may fail to hold even with respect to singleton
teams. Any formula which is not logically valid can be falsified relative to a single
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world. The disjunctions _ and nn= have the same truth-conditional behavior, and the
disjunction property holds for both, yet they have different logical properties.

Clearly, many interesting issues must be left for future work. We briefly mention
some of them here. First, while in this paper we have restricted ourselves to a propo-
sitional language, our approach can be extended straightforwardly to the first-order
case by working with Kripke models for intuitionistic predicate logic. The predicate
logic case is very interesting from our point of view since, as shown in [8] for the
classical setting, it allows us to capture many important classes of questions (e.g., the
question 8x‹Px of which individuals have property P ) and dependencies (e.g., the
formula 8x‹Px ! 8x‹Qx holds if the extension of property Q is determined by
the extension of property P ).

Remaining within propositional logic, it would be interesting to investigate more
precisely the expressive power of InqI: What properties of teams in a Kripke model
can be expressed by means of a formula in InqI? Similar issues have been addressed
for modal dependence logic in Kontinen, Müller, Schnoor, and Vollmer [18], and for
inquisitive modal logic in Ciardelli and Otto [10], which may provide a good starting
point to answer the question for InqI.

In a slightly different direction, it would also be interesting to look at the issue
of frame definability in InqI. Clearly, if a standard formula defines a certain frame
class in IPL, then this formula still defines the same class in InqI. At the same time,
however, some frame classes which cannot be characterized in IPL can now be char-
acterized with the help of inquisitive formulas: for instance, ‹p characterizes the
class of singleton frames. Recent work on frame definability in the context of modal
dependence logic (see, e.g., Sano and Virtema [24], [25]) might provide a handle on
this question.

Finally, the work done in this paper could be taken further by studying ques-
tions and dependency in the context of other nonclassical logics besides intuition-
istic logic. This research direction is explored in recent work by Punčochář [23]
which considers a broad range of substructural logics. Other cases that seem worth
investigating include Kleene’s three-valued logic or other n-valued logics.

Notes

1. For dependence logic, see, for example, Väänänen, Galliani, Hella, Grädel, Ebbing,
Meier, Müller, Virtema, Vollmer, and Yang ([26], [27], [17], [15], [16], [13], [28], [31],
[32]); for inquisitive logic, see, for example, Ciardelli, Roelofsen, Punčochář, Fritella,
Greco, Palmigiano, and Yang ([11], [12], [4], [6], [8], [9], [20], [21], [22], [14]).

2. This semantic setup differs slightly from the one assumed in most previous work on
propositional inquisitive and dependence logic (e.g., [11], [31]). Most previous work
assumes a fixed model !, having the propositional valuations themselves as possible
worlds. Since this model contains a copy of each possible state of affairs, the difference
between the two setups is immaterial to the logic. The setup used here is adopted in
[8] as it facilitates the transition between the propositional setting and the modal setting.
Similarly, in this paper, this choice facilitates the transition from a classical to an intu-
itionistic semantic basis. In both cases, one only needs to equip the space of possible
worlds with additional structure on top of the propositional valuation.
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3. This is not the case for stronger logics. In inquisitive modal logic (see, e.g., [12], [4], [8]),
the presence of questions embedded under modalities allows us to express statements that
have no counterpart in a standard modal language.

4. The system given in [5] contains an extra rule which stipulates the associativity of _,
however, as pointed out by a reviewer, this rule is not necessary for completeness.

5. Early work on inquisitive logic by Ciardelli and Roelofsen in [7] and [11] did not use
the split scheme S. Rather, the split property was captured by the well-known Kreisel–
Putnam scheme

KP WD .:' !  nn=�/ ! .:' !  / nn= .:' ! �/:

In other words, the semantic restriction to truth-conditional formulas in Proposition 2.19
was matched in the proof system by a syntactic restriction to negative formulas, whereas
in the present system it is matched by a restriction to standard formulas. In the classi-
cal case, both formulations work, essentially because any truth-conditional formula is
equivalent both to a standard formula and to a negation. However, for our purposes it is
crucial to use S, and not KP: this is because, in the intuitionistic setting that we are going
to explore, standard formulas are still representative of all truth-conditional formulas,
but negations are not. Thus, the KP scheme, while still valid, would only capture some
particular cases of the split property, and would not be sufficient to obtain a complete sys-
tem. This illustrates a more general point: if the classical results that we are reviewing
here carry over smoothly to the intuitionistic case, this is partly due to a careful choice
between multiple classically equivalent formulations of the relevant results.

6. Alternatively, we could have allowed as an axiom the law of excluded middle (LEM),
˛ _ :˛, for all standard formulas ˛. It is well known that adding either LEM or DNE to
IPL yields classical logic, and this suffices to obtain completeness for InqB_.

7. In fact, our result will be slightly stronger: we will be able to add questions and depen-
dence formulas on top of any logic which can be characterized as the logic of a certain
class of intuitionistic Kripke models.

8. With this definition, the extension relation between states is always a preorder, but not
necessarily a partial order, since two distinct states may be extensions of each other.
While this feature is unproblematic semantically, one may find it somewhat counterintu-
itive. This can be avoided if we allow only upward-closed sets of worlds in the semantics.
Relative to such sets, the extension relation amounts to inclusion, just as in the classical
case; in particular, it is a preorder. We will discuss this different setup in Section 3.5,
and show that it is essentially equivalent to the more liberal semantics that we develop
here.

9. Namely, we can regard a team T 0 as an extension of T if every model in T 0 is a generated
submodel of some model in T . This means that, as in our approach, a team T can be
extended not only by discarding some candidate M 2 T , but also by refining some
M 2 T in one or more ways.

10. It is important to note that the inquisitive normal form only concerns the interactions
of inquisitive disjunction with the standard part of the language—not the interactions of
standard connectives with each other. Indeed, one can check that for each standard for-
mula ˛ we have R.˛/ D ¹˛º, and thus the inquisitive normal form theorem boils down
to the trivial equivalence ˛ � ˛. This illustrates the fact that, although the normal form
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results allows us to bring all occurrences of inquisitive disjunction at the surface layer of
the formula (i.e., to avoid occurrences of nn= within the scope of other connectives), it
does not impose any specific constraints on the form of the standard formulas occurring
below this layer.

11. Notice that 8p' and 9p' are just ordinary propositional formulas of L, and do not
actually contain propositional quantifiers. The notation 8p' and 9p' is just meant to
be suggestive of the relevant property of these formulas.

12. It is easy to see that in MT0, the dependence atoms are definable by means of the remain-
ing connectives in exactly the way we described in Section 2.2.4, that is, by taking
D.p1; : : : ; pn; q/ to be an abbreviation for ‹p1 ^ � � � ^ ‹pn ! ‹q. Thus, dependence
atoms are not really needed in the syntax of MT0. Also, notice that our translation does
not make use of Þ, so that our translation can also be viewed as an embedding into the
Þ-free fragment of MT0.

13. It is easy to check that reflexive and transitive frames validate the T and 4 axioms for
standard formulas. For the strong completeness, assume that ˆ °S4-MT0

 . Suppose
 a` ˛1 nn= � � � nn=˛n, and 'i a` i1 nn= � � � nn= ini

for every 'i 2 ˆ. Then, � °S4-MT0

 for some set � consisting of one disjunct i ik for each formula 'i in ˆ, and therefore
� °S4-MT0

˛i for all ˛i . For each i , the canonical model MS4
c of S4 (whose frame is

reflexive and transitive) contains a witness wi such that MS4
c ; wi ˆ  for all  2 � ,

while MS4
c ; wi 6ˆ ˛i . For t D ¹w1; : : : ; wnº, we get MS4

c ; t ˆ  for all  2 � , and
MS4
c ; t 6ˆ  .
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