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41.1  Introduction

When comparing data from different countries, time points, or groups, we run 
into at least two problems. First, we want to avoid large measurement artifacts 
that lead to erroneous substantive conclusions [1, 2]. For example, when 
comparing Finnish to Columbian survey answers, we may want to account 
for  any differences in exuberance. Second, we want to ignore the  –  likely 
plentiful – small measurement artifacts whose effect on substantive conclusions 
is negligible [3, 4]. For example, when comparing Finns in 2002 with Finns in 
2004 on an income question, most of the differences found are likely to be 
substantive; we would not want to spend an inordinate amount of time and 
modeling power on identifying all the small measurement differences between 
these already highly comparable groups. Tests for the presence or absence of 
measurement differences are typically called measurement invariance tests, 
sometimes also known as tests of differential item functioning [5] or item bias 
[6, 7]. Techniques to test for measurement invariance are numerous [8] but, for 
the purposes of this chapter, can be described as broadly falling into one of two 
categories: exact and approximate.

In the exact methods (see Refs. [9–11] and Chapter  40, this volume), the 
researcher looks for a measurement model in which any small measurement 
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differences are assumed to be exactly zero, while large differences are left com-
pletely free to be estimated from the data (termed partial measurement invari-
ance [12]; also see Chapter 40 in this volume). Methods to establish the fit of 
such models include chi‐square difference testing [13], comparative fit index 
(CFI), root mean squared error of approximation (RMSEA), and other fit 
measure comparisons [14, 15] and examination of local fit measures such as 
modification indices (MI) and the expected parameter changes (EPC) [12], or 
the EPC of interest [16]. One way or another, all of these methods ultimately 
aim to find a model that balances two strategies, namely, accounting for large 
measurement differences while ignoring the small ones.

An alternative to the family of exact methods, and the focus of this chapter, 
is the approximate approach [17]. In this approximate measurement invariance 
model, large and small differences alike are assumed to follow a known distri-
bution of nonzero values. Random effects distributions [18], multilevel models 
[19, 20], and strong Bayesian priors [21, 22] have all been used for this purpose. 
The idea in all of these techniques is that any smaller differences are automati-
cally accounted for in the model. Thus, approximate measurement invariance 
is primarily designed to deal with the second strategy – that of ignoring small 
differences automatically. The first strategy – dealing with large measurement 
artifacts – is problematic, although several existing proposals are discussed at 
the end of this chapter.

According to the advocates of approximate measurement invariance, exact 
zero constraints are overly strict, especially when there are many groups or 
time points involved (e.g. Ref. [23]). One consequence is a frequent rejection of 
the exact invariance model, even when the parameter differences are ignorable 
(i.e. the second strategy). Another consequence is often a large series of model 
modifications that may capitalize on chance [24]. In approximate measure-
ment invariance, small differences in parameters are allowed. Moreover, the 
mind‐boggling search through all possible combinations of measurement 
restrictions is replaced by a relatively simple estimation procedure. With many 
groups and measurement parameters, this practical advantage is considerable. 
For example, even in the simplest testing setup, a 10‐factor analysis of 21 items 
over 19 countries (e.g. Refs. [25–27]) yields 380 possible univariate violations 
of intercept equalities alone. The number of models resulting from all possible 
combinations of equality restrictions on intercepts and loadings is in the tens 
of millions. The corresponding approximate measurement invariance model 
aims to allow for measurement differences in these models by parameterizing 
them and imposing zero mean and small variance distributions in a more man-
ageable procedure.

Figure 41.1 illustrates the difference between the exact (a) and approximate 
models (b). Each graph shows the theoretical, unobserved, true value to be 
measured on the horizontal axis and the obtained survey answer on the 
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vertical axis. The lines thus correspond to the answers given by respondents 
with a particular true value: the response functions. These response functions 
may differ in intercept over groups to be compared (grayscale); if so, the same 
answer (point on the vertical axis) given by respondents from different groups 
(gray lines) could correspond to very different true values (corresponding 
points on the horizontal axis). Thus, comparing answers from these groups 
will compare not only true value differences but also differences in the inter-
cepts of their response functions. If the true value differences are of the same 
order of magnitude as these measurement artifacts, the differences should 
be accounted for to prevent bias in the comparisons. Likewise, the slope of the 
response function may differ across groups (i.e. the loading of the survey item 
onto the latent factor [11]). To keep matters simple, this chapter focuses on 
differences in intercepts only.

Figure 41.1a demonstrates the exact model: most of the lines are held equal, 
while others (one in the example) are allowed to differ by any amount. How 
much it will differ is estimated from the data without restriction. The distribu-
tion of lines, shown in gray on the vertical axis, consists of a spike and a dot, 
since all intercepts are assumed equal except for some, which can differ by any 
amount. Figure 41.1b illustrates the corresponding approximate model. All lines 
are allowed to differ here, turning the spike into a normal distribution. This 
means that the lines that differed somewhat from the average are now allowed 
to differ by some amount. How much they will differ is determined in part by 
the data and in part by the restriction that the difference follows a normal distri-
bution, shown on the vertical axis. This also implies that the lightest gray group, 
which was estimated to differ considerably from the others in the exact model, 
is now pulled strongly toward the average by this prior. In other words, the strat-
egy for allowing for small measurement differences is accomplished but traded 
off against reduced detection of large measurement differences.
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Approximate
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Figure 41.1  Response functions (lines) for different groups (grayscale) under exact (a) vs. 
approximate (b) measurement invariance models.
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41.2  The Multigroup Confirmatory Factor Analysis

This chapter discusses the use of measurement invariance testing as illustrated in 
Figure 41.1 in latent variable measurement models. In such models, the response 
functions are estimated through presumed conditional independence assump-
tions, and investigation of measurement invariance proceeds through restrictions 
on the parameters of these estimated functions. The most common model for this 
test is the confirmatory factor model, but this framework also includes item 
response theory (IRT) models, latent class models, and generalized multitrait–
multimethod models (see Ref. [2]). To simplify the discussion, we will limit our-
selves to a multigroup confirmatory factor analysis (MGCFA) here. Given a 
survey response yigj for respondent i, group g, and item j, a MGCFA measurement 
model is

	 yigj gj gj igj igjε
	 (41.1)

where

ηigj is the unobserved true value (latent variable) for respondent i
ϵigj is the unobserved measurement error value (latent variable) for respondent i
τgj is the group‐specific intercept for item j
λgj is the group‐specific loading (slope) for item j

Measurement invariance then imposes cross‐group restrictions on the item 
structure (configural invariance), the factor loadings (metric invariance), and 
the intercepts (scalar invariance [28, 29]). Exact scalar invariance as in 
Figure 41.1a (for all groups except for the lightest gray group), for example, may 
imply τ1, j = τ2, j = τ3, j = τ4, j ≠ τ5, j. Since the intercept of the lightest gray group (τ5, j) 
is allowed to differ from the other groups, we speak of “partial” rather than 
“full” measurement invariance (Ref. [12]; see also Chapter 40 in this volume). 
We can test a similar assumption for the slopes, though we will simplify matters 
here by limiting ourselves to intercept differences, as in Figure 41.1, and assum-
ing that all slopes are equal in the data. Approximate measurement invariance 
suggests that the intercept differences follow a certain probability distribution, 
often normal (Gaussian):

	 gj gj jN~ ,0 	 (41.2)

for all differing pairs of groups g ≠ g′. This distribution corresponds to the 
distribution of differences shown on the vertical axis of Figure 41.1b. As in the 
exact procedure, on average intercept differences are expected to be zero. 
Differences may vary, however, and the standard deviation of these differences 
for item j is denoted here as σj. When σj is estimated from the data, a random 
effect [18] or a multilevel model [29–31] results. When it is fixed in advance by 
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the researcher, a Bayesian approximate measurement invariance model results 
[21]. An important question is how large the typical difference σj should be to 
appropriately balance the two strategies of measurement invariance analysis: 
accounting for the large measurement differences while ignoring the small ones.

In the remainder of this chapter, we will focus on a practical analysis of the 
Bayesian approximate measurement invariance model using standard soft-
ware. The following section contains a worked example. We then discuss some 
of the outstanding pitfalls and issues with this technique in the discussion and 
conclusion section.

41.3  Illustration

For this illustration, we have simulated a simple dataset (dataset 1) consisting 
of continuous variables y1–y4, each believed to measure a certain continuous 
latent construct f1. Two groups are created, consisting of 500 respondents 
each. Mplus [32] is used to apply the approximate measurement invariance 
testing procedure to this data. Together with the R package Blavaan [33], Mplus 
is currently the only software package that allows you to test for approximate 
measurement invariance. The Mplus (Version 7.4) input file that is used 
to  simulate the data can be found in Figure  41.2. Notice that the intercept 
differences are relatively small (0.1 vs. −0.1) and cancel each other out between 
as well as within groups. The latent mean difference between groups 1 and 2 is 
0.5 (i.e. 0 in group 1 and 0.5 in group 2).

Montecarlo:
names = y1–y4;

ngroups = 2;
nobs = 500 500;

nreps = 1;
save = dataset 1.dat;

Model montecarlo:
f1 by y1@0.7  y2@0.6  y3@0.5  y4@0.4;

y1@0.51 y2@0.64 y3@0.75 y4@0.84;     ! 1 – factor loading^2

[y1@–0.1 y2@0.1 y3@–0.1 y4@0.1]; 
[f1@0];
f1@1;

Model montecarlo–g2: ! group 2
[y1@0.1 y2@–0.1 y3@0.1 y4@–0.1]; 
[f1@0.5];

Figure 41.2  Mplus input file containing the population parameter values for the intercepts, 
factor loadings, latent means, and latent variances.
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Using the MGCFA chi‐square difference test procedure to test for measure-
ment invariance [9] – which is the default in Mplus – one would conclude that 
exact measurement invariance does not hold in dataset 1. This can be seen in 
Figure 41.3, which shows that the chi‐square difference test of scalar versus 
metric equivalence is statistically significant (α = .05). Since chi‐square tests 
are known to be sensitive to sample size and violations of the normality 
assumption [34], some authors (e.g. Refs. [11, 15]) have suggested to take into 
account commonly used fit indices such as the CFI [35] and the RMSEA [36] 
in the judgment of measurement invariance. Following the guidelines of Chen 
[15, p. 501], also based on the CFI and RMSEA differences, we would con-
clude that scalar invariance does not hold (∆CFI ≥  − 0.01; ∆RMSEA ≥ 0.015; 
Table 41.1). Ignoring the absence of scalar invariance leads to an underestima-
tion of the f1 mean difference between groups 1 and 2 (i.e. 0.399 instead 
of 0.500).

Instead of forcing the differences in intercepts to be exactly zero, we could 
opt for approximate measurement invariance by using the Mplus input file 
depicted in Figure  41.4 (based on Refs. [21, 22]). This input file is a special 
application of Bayesian structural equation modeling (BSEM) in which strict 
zero constraints are replaced by probability distributions with zero mean and 
small variance (see Refs. [37, 38]). These probability distributions are called 
priors in the Bayesian terminology. The prior distributions are confronted with 
the data, reflected in the likelihood, to come to a posterior distribution that is 
essentially a compromise of the prior and the likelihood (for a more thorough 
discussion of Bayesian statistics, see, e.g. Refs. [39–41] and [42]). Thus, when 
we place a small variance prior with zero mean on the intercepts, the posterior 

Degrees of
Models Compared              Chi-square    Freedom     P-value

Metric against Configural         0.797         3       0.8502
Scalar against Configural        63.928         6       0.0000
Scalar against Metric            63.131         3       0.0000

Figure 41.3  Mplus output of the MGCFA chi‐square comparisons. The scalar equivalence 
model fits significantly worse than the metric equivalence model; hence exact 
measurement equivalence does not hold.

Table 41.1  RMSEA and CFI differences between the configural, metric, 
and scalar models.

Configural Metric Scalar

CFI 0.991 0.995 0.873
RMSEA 0.047 0.025 0.112
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balances model fit on the one hand (i.e. the likelihood) and measurement 
invariance restrictions (i.e. the prior) on the other. The smaller the prior vari-
ance, the more the posterior will be influenced by the prior measurement 
invariance restrictions.

The key part in the input file in Figure 41.1 is MODEL PRIOR: DO(1,4) DIFF 
(nu1_#‐nu2_#) ~ N(0,0.01); the part where the small variance prior is speci-
fied. Let us disentangle this part of the input file step by step, beginning with 
the last comment “N(0,0.01)”. This comment shows that in this input file, the 
prior follows a normal distribution with mean zero and variance 0.01. 
Remember that the choice of variance is important, since it is the variance that 
determines the wiggle room we allow in the intercept estimates of groups 1 and 
2 [22]. In front of “N(0,0.01)” we find the statement “DIFF (nu1_#‐nu2_#).” 
Because of this “DIFF” statement, we place the small variance prior on the 

DATA: FILE = ̎dataset 1.dat ̎;

VARIABLE: NAMES ARE y1-y4 group;

ANALYSIS: TYPE = MIXTURE;

KNOWNCLASS IS g(group=1 group=2); 
CLASSES ARE g (2);

ESTIMATOR = BAYES;
MODEL = ALLFREE;

BCONVERGENCE = .01;
BITERATIONS = 500000(100000);
bseed = 123;

MODEL:

%OVERALL%
f1 by y1* y2 y3 y4 (lam#_1-lam#_4);
[y1-y4] (nu#_1-nu#_4);

%G#1%
[f1@0];
 f1@1;

%G#2%
[f1];
 f1@1;

MODEL PRIOR:
DO(1,4) DIFF (lam1_#-lam2_#) ~ N(0,.01);
DO(1,4) DIFF (nu1_#-nu2_#) ~ N(0,.01);

Knownclass is used to
describe the grouping
variable: needed when “type
is mixture” is specified in the
analysis command

MODEL = ALLFREE is
needed for DIFF and
automatic labeling with #
(see MODEL statement)

Stricter convergence
guidelines than default to
reduce any bias due to
precision

Labeling;  the # makes sure
labels are automatically
specified for groups 1 and 2

DO(1,4) loop applies the
DIFF statement to all four
variables. DIFF statement is
used to place a prior on the
differences in intercepts and
factor loadings.

Figure 41.4  Input file in Mplus for the Bayesian approximate measurement 
equivalence test.
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difference in intercepts between group 1 and group 2, instead of on the 
intercepts themselves. “nu1_#‐nu2_#” between brackets are the labels referring 
to the intercepts for y1−y4 in group 1 and group 2. These labels were attached 
previously to the intercepts of y1−y4, under the “MODEL” statement. Since 
labeling can be cumbersome, in this input file automatic labeling is applied. 
Specifically, the # in the labels is automatically replaced by the number of the 
item (1, 2, 3, or 4). As such, Mplus automatically places the small variance prior 
on the difference between nu1_1 (the intercept of y1 in group 1) and nu2_1 
(the intercept of y1 in group 2), the difference between nu1_2 and nu2_2, the 
difference between nu1_3 and nu2_3, and the difference between nu1_4 and 
nu2_4. Finally, the “DO(1,4)” comment makes sure Mplus correctly replaces 
the # of the automatic labeling by 1, 2, 3, and 4.

When we run the input file of Figure 41.4, posterior draws of the parameters 
are generated over and over again in each iteration of the Bayesian algorithm. 
As an illustration, Figure 41.5 shows the posterior draws of iteration 1–20 for 
the intercept of y1 in group 1 (left) and group 2 (right). Posterior draws for 
groups 1 and 2 in a specific iteration are connected by a line. The steepness of 
this line – i.e. the difference between y1 in groups 1 and 2 – is restricted by the 
prior we have specified. If the parameters were equal in each draw, the lines 
would be horizontal; the steeper the lines, the larger the intercept differences 
between groups in each posterior draw. As can be seen in Figure 41.5, these 
differences in each posterior draw are present but modest  –  exactly as the 
Gaussian prior on these differences stipulates.

When the Bayesian algorithm is completed, we first need to check whether 
this algorithm has converged to the appropriate posterior (see Ref. [43]). In 
Mplus, convergence can be assessed visually, by looking at the traceplot for 

Group 1 Group 20.3

0.2

0.1

0.0

–0.0

–0.2

–0.3

Figure 41.5  Visualization of the estimation of the intercept y1 in group 1 and group 2.
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every parameter in the model, and statistically, by checking the potential scale 
reduction factor that should be close to 1 (PSR [44]). Mplus stops the Bayesian 
algorithm when the PSR drops below 1 + ϵ with a default ϵ between 0.05 and 1 
for most of the models1 [45]. We choose a more stringent stopping rule by 
specifying BCONVERGENCE = 0.01 (Figure  41.4). We additionally force 
Mplus to run at least 100 000 iterations by specifying BITERATIONS = (100 000). 
Mplus informs us that convergence has been accomplished according to the 
adjusted PSR criterion (THE MODEL ESTIMATION TERMINATED 
NORMALLY). Based on the traceplots of the intercepts, we would also 
conclude that the algorithm has converged (Figure 41.6), allowing us to turn to 
the Mplus output.

A part of the Mplus output resulting from the input in Figure 41.4 is shown 
in Figure  41.7. Notice first that most of the fit indices usually provided by 
Mplus (RMSEA, CFI) are not available anymore. To judge whether our Bayesian 
approximate measurement invariance model fits our data, we rely on a likeli-
hood ratio test (LRT) between the approximate measurement invariance 
model and an unrestricted mean and (co)variance model [45]. Specifically, 
in  every iteration Mplus conducts two LRTs using the current parameter 
estimates. The first of these LRTs, (1), evaluates the fit between the current 
model and the original data. The second one, (2), confronts the current model 
with a newly generated dataset, simulated on the basis of the estimated model. 
This latter one shows LRT chi‐square values can reasonably be expected when 
approximate measurement invariance holds. Chi‐square values of (1) that are 
systematically higher than those of (2) are an indication of model misfit. To 
determine whether this is the case, we can either look at the PPP‐value [44] or 
the 95% credibility interval provided in the Mplus output (Figure 41.7). The 
PPP expresses the proportion of chi‐square values obtained with (2) that 
exceed (1). PPP‐values around 0.5 are indicative of good model fit, and low 
PPP‐values close to zero should be avoided. In this case, we would be fairly 
satisfied with a PPP‐value of 0.269 (Figure 41.7), although a PPP closer to 0.5 
would be preferable. The 95% credibility interval is determined for the distri-
bution of differences between (1) and (2). When (1) is not systematically higher 
than (2), zero is included in this 95% credibility interval, which is fortunately 
the case in the present example. Turning to the estimates (Figure 41.7), we see 
that the intercepts of the two groups are estimated in line with their true val-
ues (Figure  41.2) but are generally pulled closer to zero. The DIFFERENCE 
OUTPUT shows the mean intercept across groups and the  amount by 
which every group‐specific intercept deviates from this value. The latent 

1  ϵ = fc where c is 0.05 by default and f is a multiplicity factor that takes into account the number 
of parameters in the model. Bconvergence = 0.01 replaces c by 0.01, hence yielding a more 
stringent convergence criterion.
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Figure 41.6  Traceplots to judge the convergence of intercept Y1–Y4 in groups 1 and 2. Note 
that only the last 50 000 (after the gray vertical line) are used for the parameter estimates.
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mean difference is estimated to be 0.477, reasonably close to the true differ-
ence of 0.5. In this example, we initially allowed a prior variance of 0.01, tak-
ing into account the scale of the y1−y4 variables. Since the choice for a 
suitable prior variance is crucial to the Bayesian approximate measurement 
procedure, it is good practice to perform a sensitivity analysis with multiple 
plausible prior variances, as displayed in Table  41.2 [46]. In this way, it is 

MODEL FIT INFORMATION

Bayesian Posterior Predictive Checking using Chi-Square

95% Confidence Interval for the Difference Between
the Observed and the Replicated Chi-Square Values

-14.418            27.098

Posterior Predictive P-Value       0.269

MODEL RESULTS

Posterior  One-Tailed         95% C.I.
Estimate S.D. P-Value Lower 2.5%

Latent Class 1 (1)

Means

Intercepts

F1 0.000 0.000 1.000 0.000

Y1
Y2
Y3

-0.069 0.044 0.056 -0.155
0.127 0.045 0.002 0.039
0.058 0.044 0.095 -0.145

Y4 -0.112 0.044 0.006 0.025

Latent Class 2 (2)

Means

Intercepts

F1

Y1 0.121 0.080
Y2 -0.084 0.072
Y3 0.053 0.066
Y4 -0.011 0.056

0.069 -0.041
0.121 -0.227
0.212 -0.079
0.421 -0.125

DIFFERENCE OUTPUT

NU1_1       NU2_1
5       0.026      0.053     -0.095*      0.095*

NU1_2       NU2_2
6       0.022      0.049      0.105*     -0.105*

NU1_3       NU2_3
7      -0.003      0.046     -0.055       0.055

NU1_4       NU2_4
8       0.050      0.041      0.062*     -0.062*

Upper 2.5% Significance

0.000

0.017
0.215*
0.029
0.197*

0.477 0.122 0.000 0.242 0.721*

0.272
0.056
0.177
0.096

Figure 41.7  Part of the Mplus output resulting from the input file in Figure 41.4.
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possible to carefully balance model fit (i.e. PPP, 95% credibility interval) and 
the possibility to compare groups (i.e. keeping the prior variance as small as 
possible). When we increase the prior variance to 0.05 in this example, the 
PPP‐value moves closer to 0.5, and the 95% credibility interval becomes more 
symmetric around zero. However, increasing the prior variance also enlarges 
the standard errors of the intercepts and the latent mean difference estimate. 
The resulting latent mean difference estimate (0.457) is slightly worse than the 
one we obtained with prior variance 0.01 (0.477). Increasing the prior variance 
to 0.1 does not yield a further improvement of the PPP/95% credibility interval 
and only changes the parameter estimates slightly. Therefore, a prior variance 
of 0.01 or 0.05 seems the best choice here.

Altogether, Bayesian approximate measurement invariance seems to largely 
solve the problem of exact scalar noninvariance (Figure  41.3) in dataset 1. 
Indeed, Bayesian approximate measurement invariance is suggested to be 
useful in situations in which there are many small parameter differences that 
cancel each other out both within and between groups [21, 22, 47, 48]. What if 

Table 41.2  The influence of prior variance on parameter differences.

σj = 0.1 σj = 0.05 σj = 0.01

Est (se) G1 Est (se) G2 Est (se) G1 Est (se) G2 Est (se) G1 Est (se) G2

Intercepts
y1 −0.09 

(0.04)
0.17  
(0.19)

−0.08 
(0.04)

0.16 
(0.14)

−0.07 
(0.04)

0.12 
(0.08)

y2 0.15  
(0.05)

−0.10 
(0.19)

0.15  
(0.05)

−0.10 
(0.14)

0.13  
(0.05)

−0.08 
(0.07)

y3 −0.07 
(0.05)

0.09  
(0.15)

−0.07 
(0.05)

0.09 
(0.11)

−0.06 
(0.04)

0.05 
(0.07)

y4 0.13  
(0.05)

−0.02 
(0.12)

0.13  
(0.05)

−0.02 
(0.09)

0.11  
(0.04)

−0.01 
(0.06)

∆f1 0.447  
(0.296)

0.457  
(0.216)

0.477  
(0.122)

Model fit
95% CIa −15.78 25.19 −15.86 24.80 −14.42 27.10
PPP‐value 0.322 0.326 0.269

a In each iteration, a chi‐square value is obtained for (1) the difference between the current model 
and the original data and (2) the current model and a newly generated dataset, simulated on the 
basis of the current model. Subtracting (2) from (1) in every iteration leads to a distribution of 
observed (1) minus replicated (2) chi‐square values. 95% of this distribution lies between the 
lower bound and the upper bound of the 95% credibility interval.
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the differences between intercepts become larger, or if the differences between 
the groups are systematic (i.e. do not cancel each other out within groups)? 
To check the performance of Bayesian approximate measurement invariance 
in these situations, we altered the intercept values of dataset 1 in the way 
described in Table 41.3.

Regardless of prior variance choice, when intercept differences are system-
atic, the intercept estimates are no longer in line with their true values. With a 
prior variance of 0.01, the latent mean difference estimate, 0.789, is too high. 
Interestingly, the PPP fails to detect the misfit (PPP = 0.368). As stated by 
Muthén and Asparouhov [21], recovery of parameters is not expected when 
the noninvariance is not in line with BSEM. Enlarging the intercept differences 
as in the first row of Table 41.2 leads to a PPP‐value of 0.000 with prior variance 
0.01. Increasing the prior variance to 0.05 yields a PPP‐value of 0.186 and a 
latent mean difference estimate of 0.642. Increasing the prior variance even 
further to 0.1 changes the PPP to 0.278 and a more acceptable latent 
mean difference estimate of 0.566. In sum, when differences are systematic or 
relatively large, one should be cautious in applying the approximate measure-
ment testing procedure.

41.4  Discussion and Conclusion

The increasing availability of large cross‐cultural and cross‐country surveys in 
the last several decades has significantly increased the possibilities for research-
ers to conduct comparative studies. However, they have also considerably 
increased the risk of drawing wrong conclusions that researchers may run into. 
Therefore, the methodological literature on cross‐cultural and cross‐country 
analysis has recommended testing for measurement equivalence to guarantee 
that differences across groups are due to substantive true differences and not 
methodological artifacts. This recommendation has been increasingly applied 
by researchers, who tested for the measurement equivalence properties of 

Table 41.3  Alteration of the intercept values of dataset 1.

Differences

Group 1 Group 2

y1 y2 y3 y4 y1 y2 y3 y4

Large −0.5 0.5 −0.5 0.5 0.5 −0.5 0.5 −0.5
Systematica −0.1 −0.1 −0.1 −0.1 0.1 0.1 0.1 0.1

a Systematic in the sense that the direction of the intercepts (i.e. negative or positive) 
is systematically different in the two groups.
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various scales (e.g. Ref. [49]; for an overview, see Ref. [2]). Unfortunately, a new 
problem has come up, namely, that many scales failed to display high levels of 
equivalence.

In this chapter we have discussed approximate measurement invariance as a 
possible solution to this problem. Instead of restricting the differences between 
all measurement parameters (i.e. factor loadings, intercepts) to be exactly zero, 
approximate measurement invariance assumes that these differences follow a 
(normal) distribution with mean zero and small variance σj. This variance σj 
can either be estimated from the data [18, 19] or be fixed in advance by the 
researcher [21, 22]. The latter is known as Bayesian approximate measurement 
invariance and is illustrated in this chapter with standard software. Approximate 
measurement invariance seems especially advantageous when the number of 
groups or repeated measurements is large, there are many small differences in 
intercepts and factor loadings, and differences cancel each other out both 
within and between groups [21, 22, 48]. Exact measurement invariance almost 
never holds in this scenario and is cumbersome to test.

When additionally there are some large differences in intercepts or factor 
loadings, approximate measurement invariance may not establish equivalence. 
The small variance prior tends to pull strongly deviating parameter estimates 
toward the average across groups and/or time points. The result is that the 
deviating parameter will be smaller, while the invariant parameters will be 
larger than their true values [37]. This leads to a considerable bias in the latent 
mean estimates [22]. As illustrated in this chapter, bias may also result from 
systematic differences between groups. A promising solution to reduce bias is 
to combine approximate measurement invariance testing with the newly 
developed alignment procedure in [50]. This alignment procedure rotates the 
solution in such a way that there are many invariant parameters and a few 
(large) noninvariant parameters using the same principles as used in CFA 
(see Ref. [51] for technical details; for an application see Ref. [52]). Another 
solution is to free noninvariant parameters and only apply approximate 
measurement invariance to the remaining parameters (see Ref. [21]).

Several studies have already applied the approximate measurement 
invariance test (e.g. Refs. [23, 53]). These studies have demonstrated that 
approximate equivalence may be given also when exact equivalence is rejected 
by the data. However, as [23] mentioned, it “does not do magic”; there is a point 
at which one must conclude that measurement invariance simply does not 
exist [54]. The key question is when exactly that point is reached. More research 
into this key question, the role of large deviating parameters, and the size of σj 
is necessary.

This chapter has introduced the concept of approximate measurement 
invariance and illustrated the use of its most basic variant. More complex vari-
ants, such as multilevel/hierarchical models and other types of Bayesian priors 
on differences, have fallen out of the scope of this chapter. For applications of 
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multilevel hierarchical models to measurement invariance, see Refs. [19, 20, 
30, 31, 55–59]. Additionally, it is not yet clear how exactly to compare models 
with different priors in the context of approximate measurement invariance. 
Some preliminary results show that the PPP and DIC are not so well suited and 
alternatives have been proposed [60]. Furthermore, we have avoided issues 
external to measurement equivalence, such as overall model fit and concept 
equivalence (see, e.g. Ref. [61]).
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