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This study contributes to the field of cycling route choice by adopting the unprecedented
combination of the Metropolis-Hastings (MH) path-sampling algorithm and the
Expanded Path Size Logit (EPSL) model. The MH sampling approach is used to generate
15 alternative route choice sets for cyclists. The EPSL multivariate route choice framework
is utilized to account for the correlation between sampled and non-sampled alternatives
(joint MH-EPSL model). The data used in this paper is drawn from GPS data collected by
the City of Toronto using a custom-built smartphone application in 2014–2015. The study
focuses on non-work-related cycling trips (shopping, leisure, social and others) in down-
town Toronto on weekdays.
The estimated results indicate that the presence of bicycle lanes and road medians

attractions and number of trees along the path have a positive impact on cyclist route
choice. In general, cyclists prefer to take shorter routes on lower speed roads with less pub-
lic transit stops especially during the evening rush hour, and less willing to take one-way
streets, local roads, and steep road segments. These findings are useful to policy makers as
well as transportation and urban designers when developing a cycling network aiming to
attract more cyclists. Finally, our results indicate that the MH-EPSL model performance is
an appropriate framework to study cyclists’ route choice decisions.
� 2018 Tongji University and Tongji University Press. Publishing Services by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Canadian auto ownership has increased from 65% of households owning at least one automobile in 1992, to 84% in 2007
(Natural Resources Canada, 2009; Turcotte, 2005). The same pattern is observed in the U.S., where the household auto own-
ership increased from 80% in the early 1970s to 92% in 2001 (Polzin and Chu, 2005; Pucher and Renne, 2003). The well-
established negative impacts of auto-dependency range from a decrease in economic stability and public health, to impacts
on the global climate, noise pollution, urban livability and energy security (Boyle, 2005; Sener et al., 2009). Over the years,
these negative impacts have lead local, regional and federal policy makers to propose different transportation strategies
herlands.
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aiming to increase and encourage more sustainable travel modes. Cycling has gained a lot of attention due to its personal,
societal and environmental benefits such as improving health, alleviating traffic congestion, improving air quality, decreas-
ing fuel consumption, and providing an affordable mode of transport (Boyle, 2005; Natural Resources Canada, 2009; Polzin
and Chu, 2005; Sallis et al., 2004; Sener et al., 2009; Turcotte, 2006). Despite efforts and investments to increase bike use, the
low cycling mode share has been a subject for investigation in the last decade.

Although cycling is an ideal alternative to the private car for short-distance travel (less than 1.6 kilometer), which adds up
to 41% of all trips (Pucher and Renne, 2003; U.S. Department of Transportation, 2001), cycling mode share accounts for only
1.3% of the commuters in Canada and 1% of all trips in the U.S. in 2001 (National Household Traffic Survey of America, 2013;
U.S. Department of Transportation, 2001). To increase cycling mode share, a comprehensive understanding of cyclist’s needs
and perceptions will help researchers, policy makers and transportation agencies to propose better infrastructural designs
and policy regulations. To this end, route choice studies have adopted numerous modeling approaches to investigate the
effects of different infrastructural, environmental, traffic, and sociodemographic variables to identify attractive features
for cyclists (Cheng and Yang, 2015; Lam and Small, 2001; Papinski and Scott, 2011).

Conducting a route choice study requires extensive data collection and processing. Four elements should be considered in
these studies: 1) data collection, 2) large dataset processing (such as map matching and variable derivation), 3) alternative
choice set generation, and 4) data analysis (e.g. discrete choice estimation) (Papinski and Scott, 2011). In the first element,
there are two forms of data that have been used in route choice analysis: stated preference data (see (Amirgholy et al.,
2017)), and revealed preference data (e.g. GPS trajectories or video recordings, see (Fan and Gurmu, 2015; Papinski and
Scott, 2011). Reviewing literature shows that most studies used stated preference surveys, possibly since the alternative
has a higher relative cost and complex network algorithm computations (Hood et al., 2011). More recently revealed prefer-
ence data is being used, with the widely available combination of smartphone applications with GPS sensors to record trace
tracking, travel mode, activity purpose, and sociodemographic information, providing a comprehensive dataset which is
ideal for route choice studies.

The second element of a route choice study requires dataset processing. Deriving variables from the available datasets, as
well as processing the data. The third element in route choice studies includes alternative route generation. A choice set of
random routes from origin to destination does not consider realistic and attractive alternatives and the preferences of indi-
viduals (Hess, 2010). This is especially true in the case of cyclists where the road network is a mix of various types of cycling
facilities (shared, dedicated, counter-flow, etc.) where road characteristics such as direction, traffic flow volume and speed
limit need to be considered. Route choice studies have used different types of alternative choice set generation criteria such
as shortest path based on travel time or travel distance, reducing total cost, congestion, intermodal interchanges, minimizing
number of turns or obstacles such as intersections, stop signs, and maximizing aesthetics (Golledge and Gärling, 2002;
Papinski and Scott, 2011). In past studies, different deterministic and stochastic path generation methods based on repeated
shortest path algorithm were used for generating alternative choice sets such as link-labelling, link-elimination, and link-
penalty methods (for more details see (Frejinger and Bierlaire, 2010; Prato, 2009)). These studies made use of a sampling
approach to compare the chosen path to a set of alternative paths available to the cyclist. Ignoring sampling probability
of every alternative in the universal set, or assuming equal sample probability are the main shortcomings of these methods
which lead to biased model estimates. To overcome this issue, Frejinger et al. applied a biased random walk to sample a sub-
set of paths and calculated a sampling correction factor to obtain unbiased estimated results (Frejinger et al., 2009). Further-
more, Flötteröd and Bierlaire proposed a more efficient method using the Metropolis-Hastings (MH) algorithm to create
sample choice sets and arbitrary probability distributions for each alternative (Flötteröd and Bierlaire, 2013). The MH frame-
work considers the road network and definition of path weight as inputs and the Markov Chain process is employed to sam-
ple feasible alternatives and also calculate their probability (Flötteröd and Bierlaire, 2013).

Finally, the fourth element requires detailed analysis of the results. Most of the earlier studies in this field adopted
descriptive analysis with small sample sizes and neglected to use multivariate analysis (Hood et al., 2011; Sener et al.,
2009). Although descriptive analysis of stated and revealed preference datasets provides valuable information, the applica-
tion of econometric modeling frameworks will provide more accurate evidence of route choice preferences. Cyclist route
choice modeling gained considerable attention in the past decade where studies have been employing several different
frameworks and increasingly detailed evaluation methods. Earlier studies used C-Logit and Path-Size Logit (PSL) models
in their cycling route choice analysis (see (Ben-Akiva and Bierlaire, 1999; Cascetta et al., 1996)). These modeling approaches
focus on the effects of attributes related to the whole trip. In these models, the similarity issue between alternative routes is
addressed by adding a correction term to the deterministic part of the utility function. However, the applied correction fac-
tors in these models account only for similarities between the considered set of routes. To overcome this limitation, Frejinger
et al. proposed the Expanded Path Size Logit (EPSL) model to account for correlations between sampled and non-sampled
alternatives (Frejinger et al., 2009). In this approach, a correction factor is applied to the sum of the number of paths using
a particular link.

Since cyclists are observed to behave differently in different conditions such as at different times of the day (rush hour
and off-peak hours), during weekdays and weekends, for different trip purposes, etc., route choice studies evaluate these
datasets separately. Most previous studies on travel behaviour and trip patterns limited their study to work related trips
(commute to work and school) (Ben-Akiva and Lerman, 1985; Mannering, 1989; Swait and Ben-Akiva, 1987), and only a
few studies focused on non-work related trips (see (Bhat et al., 1999; Boarnet and Crane, 2001; Boarnet and Sarmiento,
1998; Handy, 1992; Reilly, 2002; Sobhani et al., 2013)). Bhat reported that 75% of the daily urban trips in the San Francisco
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Bay area are taken for non-work related activities, which is expected to increase as cities expand and people’s lifestyle
changes (see (Bhat, 1998; Lockwood and Demetsky, 1994)). The flexible nature of non-work trips compared to work related
trips, significantly affects the general travel pattern and affects urban traffic and emission, since it brings uncertainty in tra-
vel behavior Given the high proportion of these trips, it is important to study the travel behaviour and route choice prefer-
ences of individuals traveling for non-work purposes. Furthermore, the U.S. Department of Transportation National
Household Travel Survey indicates that more than 72.5% of household trips are taken during weekdays (Lockwood et al.,
2005; Parsons Brinkerhoff Quade and Douglas Inc.m, 2000; U.S. Department of Transportation, 2001). Since the temporal
and spatial characteristics of weekday and weekend trips are different, their individuals’ travel behaviour and route choice
is usually studied separately. For instance, Lockwood et al. reported that not only is the weekend travel peak period during
the midday, but also the trip lengths are longer compared to peak periods in weekdays (Lockwood et al., 2005). Additionally,
since Toronto is one of the cultural and tourist centers in Canada, weekend sporting or cultural events that are mostly located
in the downtown area could result in traffic conditions not usual to weekdays such as higher pedestrian volumes, different
locations and times for congestion, higher or lower traffic volume in certain areas (Sall and Bhat, 2007; Sobhani et al., 2013).

The factors mentioned above motivate the focus of our research to analyze non-work-related weekday cyclist route
choice in downtown Toronto. A large-scale GPS-based travel survey is used as well as Toronto’s georeferenced road and
cycling network databases. The GPS cyclist trajectory data includes information on route, trip purpose, travel date and time.
For modeling purposes, the MH sampling algorithm along with the EPSL model are adopted together, which to best of our
knowledge has not been used together for cycling route choice analysis. Our research effort contributes to cyclists’ route
choice literature by considering a comprehensive set of individual and route-based attributes and evaluating the effects
of these variables on cyclist route choice. In the current study, cyclists choose among a maximum of fifteen route alternatives
generated by the MH algorithm in addition to the observed route, each with their set of infrastructural and physical
variables.

The remainder of the paper is organized as follows. The next section provides a background of earlier studies in cycling
route choice modeling and highlights the current study in context. Section 3 describes the methodology detailing the sam-
pling algorithm and modeling methodology used for data analysis. Section 4 outlines the preparation and analysis of the
sample data. The empirical results, cyclist’s route choice baseline utility profile based on the estimated parameters, and
model validation are presented in Section 5. The final section concludes the research findings and presents the study limi-
tations and future work.
2. Earlier studies and current study in context

2.1. Background

There is a large body of literature in micro-economics, behavioural science, psychological, and behavioural travel patterns
of individuals, aiming to understand the essentials of individuals’ decision-making process. Consequently, several modeling
frameworks have been proposed to simulate travelers’ route choice behaviour. This section briefly summarizes earlier
research on route choice, common variables and models employed for studying cyclist preferences.

Sener et al. categorized earlier cyclist route choice research into two scaled level classes: 1) the aggregated-level studies
which analyse the effects of route attributes by aggregating bicycle use factors on cyclists’ route choice decisions or by cross-
comparing bicycle level of service between different cities or regions (Forester, 1996; Moritz, 1997), and 2) the disaggregate-
level studies at the decision makers’ level (Sener et al., 2009). Unlike the former group, the interpretations of the latter stud-
ies denote essential cyclist’s preference. In other words, disaggregate-level studies are able to capture the underlying cyclist
route preferences and their mainsprings (Koppelman and Bhat, 2006; Sener et al., 2009). That said, few studies have made
use of econometric models to evaluate the elasticity and trade-offs between route variables, while many simply adhered to
descriptive analysis methods (see (Antonakos, 1994)).

Among the studies adopting and econometric framework, the multinomial logit model (MNL) is the most popular model
used in literature. However, this model in its traditional form is not suitable for route choice analysis especially for cyclists,
since it neglects the relationship between routes with shared road segments (Dhakar and Srinivasan, 2014). Over the years,
new models have addressed this shortcoming, for example Bekhor and Prato used a modified version of the MNL model
which outperformed the traditional MNL especially in the of presence of a large number of alternatives (Bekhor and
Prato, 2009). Furthermore, models proposing changes to the deterministic component have been used such as the C-logit,
PSL, Path Size Correction Logit (PSCL), and EPSL (see (Dhakar and Srinivasan, 2014) for more detail on these models). The
traditional PSL model has been used in recent cyclist route choice studies each employing different methods for choice
set generations. For example, Broach developed a modified method of route labeling by maximizing individual criteria while
applying multiple distance constrain values (Broach et al., 2012). A study by Hood, Sall and Charlton investigated cyclists’
route choice using GPS data collected in San Francisco by combining a stochastic path generation and labeling method devel-
oped by Bovy and Fiorenzo-Catalano called a doubly stochastic method (Bovy and Fiorenzo-Catalano, 2007; Hood et al.,
2011), and adopted a Path Size Multinomial Logit framework to evaluate the effects of variables on cyclist route choice.
To address the shortcomings of these models in route choice evaluation, studies took into account errors across alternatives
by conducting generalized extreme value-based models with closed form probability functions (e.g. cross nested logit) or
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mixed models without closed-form probability functions (e.g. mixed logit) (Dhakar and Srinivasan, 2014). Comparing these
two approaches indicates that the computation of C-logit, PSL, PSCL, or EPSL models are more straightforward in general;
however, to estimate error components in the latter group, more complex probability functions were used which are time
consuming especially with a large number of observations in a dense and large road network which is the case in most trans-
portation studies (Bovy et al., 2008). An application of the sequential link choice method has been applied by Fosgerau et al.
in the context of a recursive logit model, which can be consistently estimated without the need of path sampling (Fosgerau
et al., 2013). The link-based formulation suggests that drivers have a link-by-link perception of the network and their choices
are based on link-level attributes. Since a real network consists of a large number of links, the estimation of these models
could be very computationally expensive (Alizadeh et al., 2017; Fosgerau et al., 2013). A different framework has been slowly
growing in the past decade for route choice analysis: random regret minimization model (RRM). These models assume that
users aim to minimize the experienced regret when considering alternatives (see (Chorus, 2012; Li and Huang, 2017)).

The attributes analysed in route choice vary among studies. Some studies examined travel time delay with regard to free-
flow (see (Bekhor and Prato, 2009) for more detail). These studies, mainly focused on the effect of delay on route choice deci-
sions (Dhakar and Srinivasan, 2014). Moreover, some studies examined a route’s physical and functional characteristics in
their analysis for decision making process (e.g. number of turns, number of speed bumps). Chen et al. examined participants’
travel behaviour by taking into account the effects of several route choice criteria assigning criterion weights to these attri-
butes without assuming independency between them (Chen et al., 2001). Most studies in this field were not able to generate
a series of essential variables (due to data availability), and also focused solely on bicycle facility characteristics or cycling
network continuity as determining factors for cycling route choice decisions. Exceptions to this pattern include Sener et al.
who employed six extensive categories of variables including the cyclist’s characteristics, on-street parking, bicycle facility
type, road physical characteristics, road functional characteristics (traffic volume and speed limit), and road operational
characteristics (Sener et al., 2009). Although, distance and travel time are most frequently considered in route choice studies,
surprisingly few studies examined the impact of these attributes in the cyclist’s context. Studies that did consider the two
variables have identified them to be one of the important attributes in cyclists’ route choice especially for commuters (see
(Hunt and Abraham, 2006; Sener et al., 2009)). Additionally, other than the mentioned study by Sener et al., there has not
been any study in the past on cyclists’ route choice behaviour that took into account sensitivity variations across cyclists
(latent class variables) such as perception of individuals over time (time-conscious versus time-relaxed) (Sener et al.,
2009). Also, to be best of our knowledge, only few studies looked into individual and trip level characteristics together as
potential attributes that might have an effect on cyclist’s route choice decisions such as trip purpose, time of day, day of
the week, and cyclist attributes (Dhakar and Srinivasan, 2014).
2.2. The current research effort

The summary of literature presented in the preceding section highlights the recent progress in understanding cyclists’
route choice decisions. The current study identifies different attributes that might have significant effects on cyclists’ route
choice from a Canadian perspective where the road and cycling network as well as cyclist behaviour may differ from other
locations. For the first time, to be best of our knowledge, a joint MH-EPSL framework is employed to is employed on cyclist
route choice behaviour. The sample in our study is drawn from GPS data collected by the City of Toronto using a custom-built
smartphone application in 2014–2015. Downtown Toronto has the third highest concentration of businesses and skyscrap-
ers in North America, and is densely packed with mixed-use residential, commercial, parks, government and other land use
areas. The majority of Toronto’s cycling facilities are located in the downtown area (City of Toronto, 2017). Also, most non-
work activities such as shopping, sporting, cultural, and musical events are located in the downtown area.

The model estimation is performed on a sample of 500 observations and the results are validated based on a holdout sam-
ple of 229 observations not considered in the choice sampling. In addition to the several route attributes, road, individual and
origin-destination (OD) location factors are also included in the model estimation.
3. Methodology

This section presents the Metropolis-Hastings (MH) algorithm used for choice set generation based on Flötteröd and Bier-
laire’s (2013) work, and the Expanded Path Size Logit model (EPSL) based on Frejinger et al. (2009) as the econometric frame-
work employed for the analysis. The EPSL model was programmed in Python Biogeme, while Bioroute was used for the MH
sampling.
3.1. Choice set generation

The MH method is adopted to generate an un-normalized form on the Markov Chain (MC) with a predefined stationary
distribution to address the enumeration of paths (Flötteröd and Bierlaire, 2013). This algorithm requires a road network and
a definition of path weight as an input. The underlying Markov Chain process samples alternatives and calculates their sam-
pling probability without the need to normalize over the full choice set. The MH sampling algorithm starts with an arbitrary
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path, such as the shortest path between an OD pair, and makes random modifications to the path, which are accepted or
rejected based on the known probability of the modification.

Let us consider h as the iteration counter, ah as an arbitrary initial state, d as a candidate state, e(ah, d) as an irreducible
proposal distribution which defines the probability of proposing a transition from state ah to state d, Ϛ(ah, d) as the accep-
tance probability which is specified such that the desired stationary distribution is attained. The predefined stationary dis-
tribution can be defined in un-normalized form through positive weights {g(a)} a 2 O where O is the MC’s finite state space
and g(a) is proportional to the stationary probability of state a 2 O.

The steps of the algorithm are (Flötteröd and Bierlaire, 2013):

1. Set iteration counter h = 0
2. Select arbitrary initial state ah
3. Repeat beyond stationarity:
Draw candidate state d from {e(ah, d)}d

Compute acceptance probability Ϛ(ah, d) =min g dð Þeðd;ahÞ
g ahð Þeðah ;dÞ ;1

� �
With probability Ϛ(ah, d), let ah+1 = d; otherwise let ah+1 = ah

Increase h by one
Based on the steps in this algorithm, we are able to compute the e(a,d)/e(d,a) for every proposed transition a to d in an

efficient manner automatically eliminating the probability of self-loops (Flötteröd and Bierlaire, 2013). The observed chosen
route of the cyclist is also added to the choice set along with the paths generated by the MH algorithm (Dhakar and
Srinivasan, 2014; Elgar et al., 2015; McFadden, 1978; Nur Arifin, 2012).

The MH algorithm is adopted to generate a maximum of fifteen feasible alternatives per observation and the observed
route is added to the choice set (maximum of sixteen in total) (see (Bekhor et al., 2008; Bovy and Fiorenzo-Catalano,
2007; Elgar et al., 2015) for extensive discussion on choosing an optimum sample size). To apply this algorithm on down-
town Toronto’s dense road network, 298 separate input files were prepared to provide the possibility of parallel calculation
of paths. Files are imported into a cluster of 26 computers (2 processors Intel(R) Xeon(R) X5675 @ 3.07 GHz) taking up to
880 min to generate the output files. The generated alternatives choice sets are then added to the data sample for estimation.

3.2. Econometric model structure

The EPSL model has a correction factor Expanded Path Size (EPS) in the utility function that applies to each alternative
with all the possible paths in the true choice set. That said, this factor, unlike in the PSL model, takes into consideration
the correlation between non-sampled paths (for more details see (Frejinger et al., 2009)). In the traditional path size mod-
eling framework, the choice sets contain all possible paths connecting each OD. The similarity issue between alternatives is
addressed by adding a correction term to the deterministic part of the utility function, which alters the utility of paths based
on their similarities. However, the applied correction factor in this model accounts only for similarities between the consid-
ered set of paths (see (Frejinger and Bierlaire, 2007)). To address this, the EPS correction factor corrects the alternatives’ path
utilities based on the sampling prototype for estimating asymptotically unbiased parameters affecting route choice
(Frejinger et al., 2009).

Let us consider n as an individual who chooses path i, l as the scale factor, Ci as the set of links in path i, Zkn as the empir-
ical frequency or the actual number of times path k is drawn, Lb as the length of path b and Li the length of path i. The equa-
tion

P
k2un

qbkxkn refers to the number of paths in the considered choice set (un) using link b. And so, qbk = 1 if path k
contains link b, and qbk = 0 otherwise. xkn is the expansion factor defined in Eq. (2). Finally, Rn indicates the total number
of paths drawn with replacement from the universal choice set ðCnÞ and q(k) is the sampling probability of path k. The cor-
rection factor EPS can be defined as Eq. (1) (Frejinger et al., 2009):
EPSin ¼
X
b2Ci

Lb
Li
P

k2un
qbkxkn

ð1Þ
where xjn is defined by:
xkn ¼ 1; if qbk ¼ 1 or q kð ÞRnð Þ � 1
1

q kð ÞRn ;Othewise

(
ð2Þ
Once the EPS factor is defined, the EPSL’s conditional probability for individual n choosing path i from the universal choice
set (Cn) can be defined as Eq. (3) (Frejinger et al., 2009):
PEPSL ijCnð Þ ¼ e
l VinþlnEPSinð Þþln

Zin
q ið Þ

� �
P

k�Cne
l VknþlnðEPSknÞð Þþln

Zkn
q jð Þ

� � ð3Þ
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Finally, Vi represents the value term of the utility which can be measured by s number of exogenous variables (Xsi) and
their relative estimated coefficients (bs) (Eq. (4)) (Frejinger et al., 2009):
1 Bik
enter a

2 A c
3 Sha

bicycle
Vi ¼ b1X1i þ b2X2i þ . . .þ bsXsi ð4Þ
4. Empirical analysis

4.1. Data sources and sample formation

The data for this study is drawn from the Toronto Cycling smartphone application with GPS trip traces and additional
information from cyclists who used the application in Toronto during 2014–2015. The application was manually activated
by users and at the end of each trip they were asked to enter their trip purpose. The dataset includes trip level information of
the cyclists such as reason of travel, day of the week, season, average speed, start and end time and trip duration. Other
sociodemographic and individual-level attributes were also collected which were not available to us for this study. It should
be noted that since participants are anonymized, the traveller cannot be identified. For this reason, all trips are assumed to be
taken independently and the agent-effect cannot be considered in the model. It should be noted that this data does not rep-
resent all bicycle trips in Toronto as the participants were limited to the smartphone application users.

For analysis purposes, the sample generation exercise requires a series of transformations to the original GPS and road
datasets:

� The duration of each trip is calculated and trips shorter than two minutes are removed from the data.
� The activity purposes (except work/school or commute related activities) are compiled and classified into four categories:
leisure, shopping, social, and others.

� Trip characteristics such as travel time, time of day, day of the week (weekends versus weekdays), and season are
appended to the database.

� In the process of data assembly, the origin and destination of trips are mapped to Toronto’s road network (obtained from
Open Street Map), and trips with the same start and end location are deleted from the data due to chain effects which is
not the focus of this research.

� The map-matching process for assembling GPS traces and the road network adopts a direction-based nearest link point-
to-curve algorithm. Since GPS points are matched to their closest link, the results might not be accurate in dense net-
works. This issue is more noticeable at intersections as the mentioned method does not consider trip direction (see
(Zhou and Golledge, 2006) for more details). To address this shortcoming, we associated the GPS records to their nearest
links with respect to their azimuths to ensure GPS points are matched to closer links with respect to their related trip
direction. At the end, the distance-based shortest-path algorithm is applied between consecutive GPS records to deduce
the entire path for each trip while considering one-way streets as a restriction.

� By merging the information from various secondary data sources (Toronto open data and DMTI Spatial Inc.) link and route
level characteristics are added to the GPS database (see Section 5.1).

� The database is split into two components based on whether the observed trip occurred during a weekday or weekend.
� There are 5123 observed trips in downtown, 4391 (86%) of which are during weekdays. Furthermore, 1929 of these week-
day downtown Toronto trips are non-commute trips (38 % of all trips), 500 of which are chosen randomly for model esti-
mation and analysis, and 229 trips are selected as a holdout sample for model evaluation.

4.2. Cyclists’ trip data and Downton Toronto road network descriptive analysis

Toronto is the most populous metropolitan area in Canada and was ranked the fifth largest city in North America in 2011
(Statistics Canada, 2015). Our study area is in downtown Toronto between Sherbourn street and Batherst street from east
and west, and Bloor street and Queens Quay from north and south (Fig. 1). This area covers 15.7 square kilometers, consisting
of 6447 nodes and 2312 links; 53.1% of the area’s land use is residential, 5.3% is commercial, 29.7% is governmental and
industrial, 6.6% is parks and green spaces and the rest is other types of land use. In this area, 7.7% of the 232.6 road kilometers
are highways, 31.5% are major roads (arterials), and 60.8% are local roads. Moreover, there are only 34.0 kilometers of bicycle
facilities in this area covering 17.3% of the road network. The bicycle network in this area consists of 47.9% painted bike
lanes1, 29.9% are physically separated cycle tracks2, and 22.2% are assigned to shared roadways (sharrows3). One-way streets
cover 40.4% of the network which is a big constraint for road users and might lead to longer routes. Moreover, 44.3% of the
roads’ speed limit in downtown Toronto are more than 60 kilometers per hour which can affect the route choice of cyclists
who have safety concerns.
e lanes are panted lanes on the road separating bikes and motor vehicles with the exception when vehicles have to cross the painted lane to park or
driveway.
ycle track is physically separated from motor traffic along the road.
rrows are designated roadways where cyclists and vehicles share the same space and are not separated by any means. Itis usually indicated by a painted
on the road.



Fig. 1. Study area indicating observed high demand roads for cyclists.
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The observation of Torontonian cyclists’ profiles (Tables 1 and 3) indicates that cyclists traveled on average 743.6 meters
during weekdays to participate in non-work activities. Among the activity types, the most common reason of travel is the
‘‘other” non-work activity type (49.2%) followed by shopping (22.6%) and social (22.6%) activities. Cyclists in downtown Tor-
onto traveled longer for leisure activities (805.3 meters) while less for shopping (670.6 meters), indicating that the down-
town area has a well-mixed land use with shopping, restaurants, sport centers, theaters and other recreational locations
that are accessible in less than one kilometer. Looking at the time distribution of activities’ start time indicates that 53.2%
of the observed trips started after 8 PM. This is reasonable since during weekdays, participants prefer to be involved in
non-work activities after business hours. Furthermore, 53.6% of the reported weekday non-work-related trips occurred dur-
ing the summer season, and 4.2% in the winter which is expected. Investigating the number of turns shows that only around
15% of the cyclists, used straight routes to get to their destinations (no turns) which is expected since downtown Toronto has
a dense network where turns are inevitable.

Further, analyzing the participants’ observed routes shows that 81.2% of the trips used bicycle facilities along their routes,
where 77.8% of cyclists rode on major roads such as arterials and collectors (See Table 3).
4.3. Variable specification

Several types of variables are considered in this study which are selected based on past cyclist route choice studies (see
Section 2.1 for more details). The independent variables are classified into four categories (see Tables 2 and 3):

1) road-level physical attributes: road type, speed limit, road segment elevation, bicycle facility type, bicycle racks, inter-
sections, one-way streets, presence of median, trees, public transit stop type, attraction places4 and land use type along
road segments;

2) route level attributes: route length and number of turns;
3) individual level attributes: reason of travel, activity start time, and season; and
4) origin and destination location: distance from central business district (CBD).
4 Places of attraction include museums, the beach, historic buildings, parks, waterfront port, urban open space (e.g. Dundas square), and theaters.



Table1
Downtown Toronto cyclists’ sample GPS observation rate and length.

Variables Trip rates (%) Average length (meter)

Activity type Leisure 5.60 805.25
Shop 22.60 670.62
Social 22.60 794.83
Other activities 49.20 746.53
Total length 100.00 743.58

Activity start time 0 to 8 AM 10.60 751.43
9 AM to 2 PM 12.60 773.33
3 PM to 7 PM 23.60 729.42
8 PM to 11 PM 53.20 745.04

Season Winter 4.20 676.31
Spring 13.60 832.51
Summer 53.60 717.78
Autumn 28.60 759.50

Bicycle facility type Bike lane 49.80 37.49
Bike track 36.80 35.36
Sharrow 45.60 17.74
Total bike segments 81.20 48.98

Road type Major roads 94.80 56.26
Local roads 77.80 43.74
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For variables in category one and two besides estimating the impact on different bicycle route alternatives (sixteen alter-
natives), deviations of reasonable variables from all four categories are evaluated through interaction variables, for example
leisure * local, and 9 AM to 2 PM * length, etc.
5. Model results

5.1. Model parameters

Table 4 presents the parameter estimates corresponding to exogenous variables affecting the baseline utility specification
for downtown Toronto cyclists who participated in no-work and non-commute activities during the week. Various combi-
nations of the mentioned three attribute categories are tested (e.g. combination of leisure activity and local road type). It
should be noted that in the estimation process, observed route is considered as the base alternative.

5.1.1. Scale and correction parameters
The EPSL scale (l) and EPS correction parameters estimated in our model are significant (Table 4). Hence, the sampling

correction is valid, and the parameter estimates are asymptotically unbiased. Based on these parameters and the results pre-
sented in our study, the importance of correcting the utilities are well established for sampling and employing MH algorithm
(which also provides sampling correction) (see supporting results in (Frejinger et al., 2009)).

5.1.2. Estimated parameters and discussion of results
Two attributes are used to define route level characteristics: route length and number of turns. The findings presented in

Table 4 indicate a coefficient of -1.36 for the route length, reflecting a preference for shorter distance trips to participate in all
non-work activities (see (Sener et al., 2009) for similar results). Reviewing the literature shows that this attribute has the
same affect for both non-work and work related trips. (see (Broach et al., 2012; Tilahun et al., 2007) for similar results in
work related trips). Interaction effects of the mentioned variable with activity type, distance of trip origin from CBD, season,
presence or number of trees, attractions along route, time of day, presence of median, presence and type of bicycle facilities
and presence of public transits stops are also considered. Among the mentioned combined variables, it is observed that dur-
ing the summer, cyclists travel longer routes which is reasonable since weather conditions and activities justify longer jour-
neys (see same travel pattern for commute and work related trips in (Tilahun et al., 2007)).

Analysing the distance of trip origin from CBD along with route length shows that cyclists whose trips originate further
from CBD take the shortest route, which is reasonable since trips originating closer to the CBD have more restrictions in the
dense CBD area such as avoiding high traffic volume and congestion, more stops, higher number of turns etc. The results cor-
responding to the time of the day in association with route length shows a preference for longer paths when departing in the
morning and afternoon hours (9 AM to 2 PM) compared to late evening (8 PM to 11 PM). This is intuitive, since most people
are tired during late evening period and would prefer to take other modes for longer trip lengths; while in the morning they
are fresh and enthusiastic toward traveling longer trips for their non-work activity. Safety concerns during nighttime
(reduced visibility due to lack of light and presence of drunk drivers) can be an explanation for this behaviour as well.



Table 2
Attributes chosen for model estimation.

Attributes Attribute Levels Description

Road-level physical
attributes

Road type Local road Length/total path length

Arterial

Bicycle facility type Bike lane Length/total path length
Cycle track
Sharrow
No cycling facility

Speed limit Average Average and Maximum in each link in the total path
Maximum

Road segment elevation (considering
segment length)

Average Average, Maximum, and Minimum of the grade link
length/the total path

Maximum
Minimum

Bicycle rack occupancy Number of bike racks/total path length

Number of intersections o Number of intersections
o Number of intersections/total path length

Number of one-way streets o Number of one-way streets/total path length
o length of one-way streets/total path length

Presence of median Dummy variables based on if there is any medium in the
path

Presence and number of trees o Dummy variables based on if there is any trees in
the path

o Number of trees/ total path length

Number of public transit stops Number of stops/total path length

Number of attraction places Number of attractions/total path length

Land use type Commercial Area of land use type/ area of the path in the 5 m buffer
Residential
Parks and green
spaces
Governmental and
industrial

Route level attributes Length Sum of the length of the links in the path
Number of turns Number of turns/total path length

Reason of travel Leisure Dummy variables based on the generated activity type
Shop
Social
Other activities

Activity start time 12 AM to 8 AM Dummy variables based on the generated time slot
9 AM to 2 PM
3 PM to 7 PM
8 PM to 11 PM

Individual-level
attributes

Season Winter Dummy variables based on the generated season

Spring
Summer
Autumn

A. Sobhani et al. / International Journal of Transportation Science and Technology 8 (2019) 161–175 169
Furthermore, the implication of activity type and trip length interaction shows that trip length does not differentially impact
cyclist’s route choice for different non-work activity types (for similar results see (Dhakar and Srinivasan, 2014)).

The second variable in this attribute category is the number of turns per meter. The positive coefficient corresponding to
this variable surprisingly underlines the preference among cyclists for trips with more turns (see (Bailenson et al., 1998;
Golledge and Gärling, 2002; Papinski and Scott, 2011) for different results). This could be because of the dense downtown
grid road network and also presence of many one-way streets along the routes which leads to less straight-like paths in
the study area. That said, the exact reasons for this impact requires further investigation. On the other hand, results from
literature on commute and work related trips shows that cyclists prefer paths with less turns in general (e.g. see (Broach
et al., 2012)).



Table 3
Descriptive information of the bike trips’ sample in Downtown Toronto.

Attributes Attribute levels Mean Std.
Dev.

Minimum Maximum

Road-level physical
attributes

Road type Local road 0.44 0.29 0.00 0.97
Arterial 0.56 0.28 0.03 1.00

Bicycle facility type Bike lane 0.37 0.26 0.00 1.00
Cycle track 0.35 0.27 0.00 1.00
Sharrow 0.18 0.21 0.00 1.00

Speed limit Average 53.96 6.23 40.00 90.00
Maximum 57.3 7.12 40.00 90.00

Road segment elevation (considering segment
length)

Average -11.41 81.57 -533.06 400.09
Maximum 257.21 304.60 0.00 2068.98
Minimum -

376.75
568.02 -3687.51 0.00

Bicycle racks occupancy 0.09 0.04 0.00 0.40

Number of Intersections 0.009 0.003 0.002 0.020

One-way streets 0.41 0.29 0.01 1.00

Presence of median 0.17 0.08 0.09 0.43

Number of trees 0.24 0.08 0.03 0.64

Number of public transit stops (considering path length) 0.002 0.001 0.000 0.008

Number of attraction places 0.003 0.002 0.000 0.013

Land use type Commercial 0.09 0.17 0.00 0.59
Residential 0.26 0.46 0.00 0.72
Parks and green spaces 0.06 0.03 0.00 0.13
Governmental and
industrial

0.59 0.16 0.00 0.91

Route level attributes Length 743.58 390.84 151.57 2312.76
Number of turns over the total length 0.004 0.002 0.001 0.011

Individual-level attributes Reason of travel * Length Leisure 805.25 448.31 212.66 1779.20
Shop 670.62 318.10 157.78 1545.35
Social 794.83 413.60 158.52 1862.57
Other activities 746.53 400.50 151.57 2312.76

Activity start time * Length 12 AM to 8 AM 751.43 451.16 158.52 2286.23
9 AM to 2 PM 773.33 377.18 151.57 1545.35
3 PM to 7 PM 729.42 350.40 169.23 1780.43
8 PM to 11 PM 745.04 401.47 157.78 2312.76

Season * Length Winter 676.31 280.43 164.73 1080.38
Spring 832.51 422.04 164.30 1780.43
Summer 717.78 370.14 157.78 2312.76
Autumn 759.50 422.02 151.57 2286.23
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Analyzing the effect of speed limit shows that cyclists are less willing to ride along high-speed roads. This is justified since
70% of the cycling network is not physically separated from motor vehicles meaning cyclists are sharing the road with vehi-
cles and their safety perception is affected by vehicle speeds (for similar results see (Akar and Clifton, 2009; Caulfield et al.,
2012; Habib et al., 2014)).

Estimating the effects of presence of attractions and number of trees along the route indicates that Torontonian cyclists
prefer to take routes with more attractions and green area.

Another attribute that has a significant effect on cyclist route choice is the number of public transits stops along the route.
Results show that cyclists are less willing to ride on paths with more public transit stops especially during the evening rush
hour compared to late evening (8 PM to 11 PM). This is reasonable since cyclists do not want to be restricted or stopped by
streetcars especially during the evening rush hour when there is a higher frequency of streetcars and pedestrians getting on
or off.

The presence of median on roads along the cyclists’ route has a positive effect on cyclist route choice. This can be due to
the fact that medians restrict left turns providing a safer environment for cyclists. Moreover, studying one-way streets shows
that cyclists are less willing to take one-way streets possibly since it sets a restriction in their direction of movement.

The next set of variables in Table 4 corresponds to road type, which show a preference for arterial roads compared to local
roads (see (Stinson and Bhat, 2003a) for different results for commute and work related trips). While this result may seem
counterintuitive, it might be reflecting the fact that these cyclists perceive a health benefit from being able to ride at



Table 4
Effects of exogenous variables on Downtown Toronto cyclists’ baseline utility in the MH-EPSL route choice model.

Attributes Coefficient t-statistics

EPSL parameters l 5.81 2.23
EPS 0.06 2.23

Length (meter) General �1.36 �4.42
Summer 0.50 1.39
9 AM to 2 PM 0.54 2.49
Origin distance from
CBD

�0.12 �1.37

Number of turns (per meter) General 0.20 1.84
Average of maximum speed limit (km/h) General �1.56 �1.28
Presence of attraction General 0.21 1.32

Number of trees (per meter) General 0.32 1.48
Number of public transit stops (per meter) General <=2 �0.44 �1.38

=>3 �1.80 �1.55
3 PM to 7 PM �0.30 �1.28

Presence of a median General 0.14 1.57
One-way street General �0.23 �1.43
Local road (base: Arterial road) General �0.88 �2.11

Social �0.44 �1.54

Bike lane (base: Cycle track) General 0.33 1.43

Average road segment elevation (considering segment length) in the total path General �0.36 �7.21
Bike lane �0.13 �1.37
Sharrow �0.28 �1.55
Social �0.11 �1.21
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relatively higher speeds on arterials (similar results found here (Sener et al., 2009)). Furthermore, cyclists are travelling to
participate in non-work activities that are mostly located on major roads. In addition, most of the local and minor roads
in downtown Toronto are one-way, therefore the preference arterials can be expected. The interaction of this variable with
activity type shows that cyclists traveling for social activities are more likely to take arterial roads which may provide a fas-
ter more direct route to their destination.

In the group of road characteristics, the effect of bicycle facility type is introduced as well as their interactions with other
variables. This attribute is categorized into bike lane cycle track, sharrow and links with no cycling facility as illustrated in
Table 4, cyclists in our study are more willing to ride on painted bicycle lanes compared to physically separated cycle tracks
(for similar results for commute and work related trips see (Stinson and Bhat, 2003a; Tilahun et al., 2007)). As supported by
other studies, this can be due to the cyclist’s preference to have more maneuvering room by not being limited to a cycle track
and having the psychological freedom to move around as needed (see (Sener et al., 2009; Wilkinson et al., 1994) for similar
results and (Forester, 1993, 1996; Pucher et al., 1999) for reasons behind this behaviour). Another explanation of the fact
could be that around 48% of the cycling network is composed of bike lanes, and cycle tracks take up to 30% of the downtown
Toronto cycling network.

The coefficient of average road elevation along the segment indicates that cyclists participating in non-work activities
during weekdays avoid routes with steep hills (see (Bhat and Lockwood, 2004; Sener et al., 2009; Stinson and Bhat,
2003b,a) for similar results), especially when participating in social activities which is expected since cyclists prefer not
to sweat or run out of breath before attending their social activity. The interaction of this variable with bike facility type
shows that cyclists are willing to ride a hill if they are on a cycle track while they are less willing if they are riding on a shar-
row. This could be due to the fact that when cyclists choose to ride on a safer and more comfortable space provided by the
cycling facility, they are willing to overlook the road grade.

5.2. Cyclist’s route choice baseline utility profile

The estimates presented in Table 4 provide an indication of how different variables influence cyclists’ route choice. To
illustrate how cyclist route choice preference for different road, route and individual attributes has changed, Fig. 2 presents
the route choice utility profile of a synthetic cyclist by plotting the changes in the baseline utility. The cyclist is assumed to
travel to participate in a leisure activity during the summer after 8 PM, traveling a straight route on major roads with no
trees or attraction places along the route. Further, the syntactic cyclist prefers roads with medians but does not choose
one-way streets or cycling facility.

In the analysis process, the defined variables (season, time of the day, number of turns, presence of attraction places,
number of trees, number of public transport stops, presence of median, one-way street) are changed each time, and the rote
choice baseline utility values for the new synthetic person is plotted. The results of these exercises are presented in Fig. 2.
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Fig. 2. Exogenous attributes’ effect on cyclist route choice baseline.
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Fig. 2a illustrates the baseline utility profile changes due to season. As it is observed, during the fall, the cyclist’s route
choice utility decreased compared to summer time. This is reasonable since during the relatively colder fall season in Canada,
cycling is less desirable. Fig. 2b represents the utility profile of the synthetic cyclist based on the time of the day (night time
vs. morning/early afternoon). The route choice profiles across morning/early afternoon had a positive impact on the cyclist’s
route choice and increased the utility (52%). Fig. 2c denotes the effects of turns on cyclist route choice. As illustrated in this
figure, when the synthetic person took a route with multiple turns compared to a straight route, their route choice utility
increased slightly (8%) which indicates a preference for routes with more turns.

Fig. 2d–f represent the effect of presence of attraction places, trees, and median on the road on cyclist route choice respec-
tively. It is observed that absence of these attributes reduces the choice utility of a cyclist route. In other words, the synthetic
cyclist route choice utility improved when there were more attraction places (23% percent increase) (Fig. 2d), green areas
(Fig. 2e), and medians (13% percent increase) (Fig. 2f) along the route.

Finally, Fig. 2g and h illustrate the influence of number of public transport stops and one-way streets on cyclist route
choice. The figures show that when the number of public transport stops and one-way street along the route increases,
the likelihood of choosing that route for cycling decreases by 82% (Fig. 2g), and 21% (Fig. 2h) respectively. This denotes that
among the effective variables on cyclist route choice, number of public transport stops along the route has a stronger neg-
ative effects on cyclist route choice compared to the rest of the attributes. Hence, it can be concluded that public transport
stops have a stronger impact on cyclist route choice compared to other variables.

5.3. Model validation

To confirm the estimated results and ensure estimation did not over fit the dataset, the route choice prediction exercise
was undertaken on a holdout sample of 229 observations. For validation purposes, the predicted route is computed based on
the EPSL model estimated parameters and applied to the holdout sample. It should be noted that similar to the estimation
sample, fifteen alternatives were generated using the MH approach plus the observed route for the holdout sample and the
approached used by Alizadeh et al. is adopted for route prediction (Alizadeh et al., 2017). Subsequently, the calculated pre-
dicted trip results are compared to the actual observed trip in the holdout dataset (see Fig. 3).

The comparison between observed and predicted route probabilities highlights the high route choice accuracy offered by
the MH-EPSL model. It should be noted that in this study area a very high proportion of the roads are one-way streets (40%),
imposing a high restriction on cyclists to choose between possible routes, which was well captured in the MH route sample
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generation. Analyzing the MH generated alternative routes shows a high disparity between feasible and unfeasible alterna-
tives given the one-way restriction i.e. the presence of these one-way streets resulted in alternatives that were too long or
had too many turns. Therefore, some of the MH generated alternatives are considered unreasonable routes where by apply-
ing the EPSL model, the more reasonable routes that were chosen were in fact the actual observed route. This shows that
despite this high disparity, the MH-EPSL model is very well calibrated and it is able to capture the nature of the network
and chose the most feasible route among the alternatives based on the estimated results.

It can be concluded that the MH-EPSL model performance capability emphasizes the importance of bringing the concept
of sampling correction in bicycle route choice modeling which leads to more consistent results with regards to cyclist’s
actual behaviour.
6. Conclusion

The data sample used in this paper is drawn from downtown Toronto’s cyclists using the GPS-based Toronto Cycling
smartphone application in 2014–2015 travelling to participate in non-work activities (shopping, leisure, social and others)
during weekdays. The increase of non-work related cycling trips (Bhat, 1998; Lockwood and Demetsky, 1994), highlights the
importance of studying their behaviour compared to the previously popular focus on commute travel behaviour. Similarly,
since weekday and weekend travel behaviours are different, our study focuses on non-work-related cycling trips during
weekdays since behavioural attributes may have an effect on cyclists and other road users who are traveling for work pur-
poses. Given the large Toronto area and the limited cycling network concentrated in the downtown area, we focus our atten-
tion to cycling trips with origins and destinations in downtown Toronto (a dense area which consists of 6447 nodes and 2312
links).

A joint MH-EPSL framework is adopted to generate a maximum of sixteen route alternatives and evaluate the effect of 18
variables along with their combined interactions (around 250 feasible combinations) on cyclist route choice behaviour. The
major advantage of MH sampling algorithm over conventional methods (e.g. link labelling, link elimination) is that it pro-
vides researchers with path sampling probabilities, so that model estimates based on these sets are asymptotically unbiased.
The variables that may influence cyclist’s route choice decisions include road physical attributes (such as road type, speed
limit, segment elevation, bicycle facilities, intersections, one-way streets, etc.), route attributes (such as route length and
number of turns), individual attributes (such as reason of travel, activity start time, day of the week, and season), and
origin-destination location attribute (distance from CBD). The joint MH-EPSL framework which predicted the route choice
with high accuracy was employed in the bicycle route choice field for the first time. The results from our study confirm
the suitability of using the MH-EPSL model for cyclist route choice behaviour. Our results provide policy makers and plan-
ners with a better understanding of cyclists’ behaviour which would result in more informed decisions made for implement-
ing and improving cycling infrastructure.

The estimated results show that in general, cyclists prefer to take shorter routes on lower speed roads with less public
transit stops especially during the evening rush hours. Moreover, they are less willing to take one-way streets, local roads
and steep road segments. The presence of bicycle lanes and road medians as well as attractions and number of trees have
a positive impact on cyclist route choice. Hence, policy makers, transportation and urban designers can incorporate these
features when planning the cycling network in order to attract more cyclists.
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The MH sampling algorithm proved to performwell despite downtown Toronto’s dense road network, which provides the
possibility of many road link combinations (routes) between each origin-destination pair, and also presence of many one-
way streets (40% of the network) which resulted in alternative routes that were too long and had too many turns (i.e. high
disparity between feasible and non-feasible routes). The MH-EPSL model was very well calibrated to capture the nature of
the network and chose the most feasible route among the alternatives based on the estimated results. In other words, the
estimated results clearly highlight the fact that sample generation algorithm combined with utility correction and scale fac-
tors (EPS and l respectively) improve model performance. That said, the MH-EPSL model performance capability emphasizes
the importance of bringing the previously overlooked concept of sampling correction in bicycle route choice modeling which
leads to more consistent results with regards to a cyclist’s actual behaviour. Hence, it is safe to say that sampling correction is
valid, which means the parameter estimates are asymptotically unbiased.

Our study is not without limitations. The lack of more individual level information (age, gender, etc.) along with their per-
ception variables (latent variables), level of experience, road traffic flow and parking information reduces the versatility of
the impacts that can be examined in our analysis. Hence, it is possible that in the presence of these data their impacts on
cyclist behaviour might offer significant inputs for policy makers. Moreover, employing the spatial and temporal transfer-
ability of the proposed framework on different datasets along with adopting multilevel nested models can be implemented
in future work to explore the effects of multiple cyclists’ route choice decision levels. Another appealing aspect to investigate
further would be extending the Recursive Logit (RL) model proposed by Fosgerau et al. (see (Fosgerau et al., 2013)) by con-
sidering activity type, destination and start time as the three dimensions of cyclist route choice decisions. Comparison of the
findings of this paper with recursive logit and Regret theory-based route choice approach by Chorus (see (Chorus, 2012)) can
be interesting not only from a behavioural point of view but also from the modeling goodness of fit and performance point of
view.
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