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ABSTRACT
A focussing function is a specially constructed field that focusses on to a purely down-
going pulse at a specified subsurface position upon injection into the medium. Such
focussing functions are key ingredients in the Marchenko method and in its applica-
tions such as retrieving Green’s functions, redatuming, imaging with multiples and
synthesizing the response of virtual sources/receiver arrays at depth. In this study, we
show how the focussing function and its corresponding focussed response at a speci-
fied subsurface position are heavily influenced by the aperture of the source/receiver
array at the surface. We describe such effects by considering focussing functions
in the context of time-domain imaging, offering explicit connections between time
processing and Marchenko focussing. In particular, we show that the focussed re-
sponse radiates in the direction perpendicular to the line drawn from the centre of
the surface data array aperture to the focussed position in the time-imaging domain,
that is, in time-migration coordinates. The corresponding direction in the Cartesian
domain follows from the sum (superposition) of the time-domain direction and the
directional change due to time-to-depth conversion. Therefore, the result from this
study provides a better understanding of focussing functions and has implications in
applications such as the construction of amplitude-preserving redatuming and imag-
ing, where the directional dependence of the focussed response plays a key role in
controlling amplitude distortions.
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1 INTRODUCTI ON

The Marchenko method is a relatively novel technique that re-
lates surface reflection data to Green’s function from any sub-
surface position based on the concept of focussing function.
The theoretical construction of focussing functions is gener-
ally done using the one-way reciprocity theorems and two
specific acoustic states – the true medium and its correspond-
ing truncated medium with a homogeneous half space below
the chosen focussing depth as shown in Fig. 1 (Slob et al.

2014; Wapenaar et al. 2014a,b; van der Neut, Vasconcelos
and Wapenaar 2015). By definition, the Marchenko focussing
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function is related to the inverse transmission operator be-
tween the surface and the chosen focussing location at depth
in the truncated medium. The truncated medium itself can be
arbitrarily heterogeneous, and free-surface effects can also be
included in the construction of focussing functions (Ravasi
2017; Singh et al. 2017). Upon propagation (injection) of fo-
cussing functions into the medium under investigation, the
wavefields will interact with the medium in such a way that
leads to a purely downgoing, band-limited delta function (e.g.
Wapenaar et al. 2014b) at the specified subsurface position –
hence the term focussing.

In conventional seismic imaging, a subsurface model
can be expressed in either the time- or depth-imaging
domain (Yilmaz 2001). The former comes from time-domain
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Reflection-free

STATE A STATE B

Figure 1 The two acoustic states A and B used in the derivation of
the single-sided Green’s function representations (equation (1)). State
A has a reflection-free region (e.g. homogeneous) below a specified
surface S f that contains the focussing points at depth. The reflection
and transmission responses (operators) in this state are RA and T,
respectively. State B is the true medium, which is the same medium of
State A between Sa and S f , but below S f it is arbitrarily inhomoge-
neous. The total reflection response in this state is R, usually assumed
to be represented by the recorded reflection data on the surface Sa , g+

and g− are, respectively, the desired downgoing and upgoing Green’s
functions for virtual receivers on S f . These can be obtained by solv-
ing the time-constrained coupled Marchenko equations based on an
initial focussing function from a smooth (migration) velocity model.

Image ray

Depth coordinates Time coordinates

Figure 2 The relationship between the time- and depth-imaging do-
mains defined by image rays. An example image ray that originates
from xs with slowness vector normal to the surface travels along a
curvilinear path in spatial Cartesian coordinates (x, z). Every point
along this raypath is mapped to the time-imaging domain or image-
ray coordinates (x0, t0) according to the traveltime ts along the ray.

processing, which is computationally efficient, but has limited
applicability in complex media. On the other hand, the latter
is the result of depth-domain processing, which offers a better
performance when dealing with complex subsurface, but
comes at the expense of considerably higher computational
cost. These two domains are related via the image-ray
mapping (Fig. 2) that defines the time-to-depth conversion
process (Hubral 1977; Yilmaz 2001; Cameron, Fomel and
Sethian 2007; Sripanich and Fomel 2018). When the medium
in question is moderately (laterally) complex and the assump-
tions behind time-domain processing are valid, its subsurface

Reflection-free

Figure 3 A schematic illustrating the downgoing focussing function
f +
1 and its reflection f −

1 in the truncated medium (state A).

Figure 4 Analytical x0 with its contours overlain, denoting image
rays, and analytical t0 with its contours denoting image wavefronts.
The stars denote three scatterer locations along the image ray that
emerges at 3.5 km on the surface of the model.

models expressed in either the time- or depth-imaging domain
properly represent the same, actual medium. Thus, the
position of the focussed responses in both time- and depth-
imaging domain correctly map to one another through the
image rays.

In this study, under the regime of time-domain imaging
and its assumptions, we show that the focussed responses in
the time- and depth-imaging domains are not only related in
terms of spatial locations, but also amplitudes. Due to the as-
sumptions of effective medium (i.e. time migration) velocity
and straight-ray geometry in time imaging, we first show that
there is a straightforward relationship between the radiation
direction of the focussed response in the time-imaging domain
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(a) (b) (c)

Figure 5 Direct-wave focussing in depth (a) and time (b) domains, where orange boxes denote the surface aperture of the source/receiver array.
We can observe that the focussed positions bend laterally, following the image-ray direction in the depth domain, (a) but align along the vertical
in the time domain (b). The blue line is parallel to the injecting-source surface for reverse-time propagation, and the red line is parallel to the
image wavefront. The injected data, symmetric around the 3.5 km, is shown in (c).

and the aperture of the source/receiver array at the surface.
The corresponding radiation direction in the depth-imaging
domain can be obtained after taking into account the addi-
tional change in direction from the time-to-depth conversion
process. This knowledge may lead to key implications in the
design of directionally controlled, amplitude-preserving vir-
tual subsurface sources (i.e. redatuming) based on the concept
of Marchenko focussing.

2 A BRIEF OVERVIEW OF FOCUSS ING
FUNCTIONS

In the Marchenko method, the following single-sided Green’s
function representations (Wapenaar et al. 2014a,b; van der
Neut et al. 2015) can be established from one-way reciprocity
theorems (Wapenaar and Grimbergen 1996):

g−(x f , xa, t) =
∫

Sa

R(x′
a, xa, t) ∗ f +

1 (x′
a, x f , t)dx′

a

− f −
1 (xa, x f , t),

−g+(x f , xa, t) =
∫

Sa

R(x′
a, xa, t) ∗ f −

1 (x′
a, x f , −t)dx′

a

− f +
1 (xa, x f , −t), (1)

where ∗ denotes time convolution. xa and x f denote the lateral
position on the acquisition surface Sa and S f , respectively. Us-
ing this system of equations, the downgoing (g+) and upgoing
(g−) Green’s functions at locations on the focussing surface
S f can be found from the knowledge of the reflection oper-
ator R, together with the downgoing ( f +

1 ) and upgoing ( f −
1 )

focussing functions. Figure 1 illustrates the two states used to
derive the single-sided representations in equation (1).

The downgoing focussing function f +
1 (Fig. 3) is defined

as the inverse of transmission operator T in state A (Fig. 1),
which can be written as (Wapenaar et al. 2014b, 2017):

δ(x − x f )δ(t) =
∫

Sa

T(x f , x′
a, t) ∗ f +

1 (x′
a, x f , t) dx′

a . (2)

Note that δ(x − x f ) is a delta function on the focussing
surface S f . In the Fourier domain at some angular frequency
ω, equation (2) can be expressed as (van der Neut et al. 2015;
Vasconcelos et al. 2015):

δ(x − x f ) =
∫

Sa

T̂(x f , x′
a, ω) f̂ +

1 (x′
a, x f , ω) dx′

a, (3)

or equivalently, when numerically discretizing the integral, in
matrix notation:

I = T̂F̂+
1 . (4)

T̂ denotes a n f × na transmission matrix for the trun-
cated medium with elements representing Green’s functions
between na points on the acquisition surface and n f focussed
points at some specified depth. We seek F̂+

1 denoting a na × n f

downward-going focussing function that is an inverse of T̂.
When the medium is smooth, there is only one event in f +

1

associated with the direct waves traveling from the specified
focussing position to the surface Sa . On the other hand, if
the medium produces scattering (i.e. reflections, diffractions),
parts of the signals are reflected upward when injecting the
downgoing focussing function f +

1 to generate a focussed field
at some specified location. This upward reflected response is
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Figure 6 Direct-wave focussing in depth (a,d) and time domains (b,e). The asymmetric source/receiver array is denoted by the orange boxes.
The results from right-skewed injection are shown in (a)–(c) and those from left-skewed injection are shown in (d)–(f). The dashed red line has
a cumulative slope of the solid red and blue lines.

referred to as f −
1 (Fig. 3) and the combination of the two

functions gives the total focussing function:

f1(xa, x f , t) = f +
1 (xa, x f , t) + f −

1 (xa, x f , t). (5)

A good illustration of this concept can be found in Figs. 3
and 4 of Wapenaar et al. (2014b) and in Figs. 7 and 8 of
Wapenaar et al. (2017).

To create a focussed field in the subsurface, Wapenaar
et al. (2014b) show that one needs to inject the total downgo-
ing field f at Sa given by

f (x f , xa, t) = f +
1 (xa, x f , t) − f −

1 (xa, x f , −t), (6)

where we swap the position of the arguments x f and xa to
emphasize that f is to be injected from Sa (Wapenaar et al.

2014b; Thorbecke et al. 2017). The f −
1 is now time-reversed

and subtracted from f +
1 to handle, in real time, the unwanted

reflections resulting from the injection of f +
1 . Equation (1)

can then be rewritten using f as follows (Wapenaar et al.

2017):

Figure 7 One-dimensional synthetic velocity model with vertical im-
age rays. The star denotes the considered focussing positions on the
third reflector.

g(xa, x f , t) = g(x f , xa, t)

=
∫

Sa

R(x′
a, xa, t) ∗ f (x f , x′

a, t)dx′
a + f (x f , xa,−t), (7)

where the first equality is due to the source–receiver reci-
procity of Green’s function g = g+ + g−. Therefore, at the
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(a) (b)

Figure 8 Focussing experiment in 1D model. Subpart (a) is the focussed response from injecting the focussing function shown in (b) that is
obtained with symmetric aperture (orange box). In this example, the image rays are vertical and thus the directionality of the focussed response
is represented by a horizontal solid blue line.

(a) (b)

Figure 9 Focussing experiment in 1D model with asymmetric injection. Subpart (a) is the focussed response from the focussing function shown
in (b) that is obtained with asymmetric aperture (orange box). The image rays are also vertical in this example, but the directionality of the
focussed response is controlled by the effects of asymmetric injection (solid blue). Note that the waveforms in (b) are not equivalent to spatially
windowing those of Fig. 8(b).

surface Sa , the total field is a summation of the incident
field f (x f , xa, t) and its reflected response g(x f , xa, t) −
f (x f , xa,−t). The homogeneous Green’s function gh from the
virtual source at the specified focussing position to any point
in the medium can then be obtained by summing of the total
field at Sa with a time-reversed version of itself. This result
is originally presented by Broggini and Snieder (2012) who
validate it in 1D media. Extensions to 2D and 3D media can
be found in, for example Wapenaar et al. (2017). Mathemat-
ically, this amounts to

( f (x f , xa, t) + g(xa, x f , t) − f (x f , xa, −t)) + ( f (x f , xa, −t)

+ g(xa, x f ,−t) − f (x f , xa, t)), (8)

which gives the homogeneous Green’s function gh(x f , xa, t)
defined as

gh(xa, x f , t) = g(xa, x f , t) + g(xa, x f ,−t). (9)

In the following sections, we will specifically rely on the
focussing function f (equation (6)) and the resulting homo-
geneous Green’s function gh from the virtual source (equa-
tion (9)) to establish the connection between the radiating di-
rection of the focussed response (i.e. the virtual source) in the
time- and depth-imaging domains. We follow the workflow
as described by Wapenaar et al. (2014b), van der Neut et al.

(2015) and Thorbecke et al. (2017) to solve for the focussing
functions f. This consists of three main steps:

C© 2018 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
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Figure 10 Two-dimensional synthetic velocity model with bending
image rays. The star denotes the considered focussing position at
(−80, 900 m).

1. approximate the initial focussing function f +
1,0 by the

time-reversed direct-wave Green’s function (e.g. from a
smooth/background model);
2. using the known R-operator and initial f +

1,0, solve the
time-windowed Green’s function representations (coupled
Marchenko equations) by iterative substitution (van der Neut
et al. 2015) for f −

1 and an update of f +
1,m, where f +

1 =
f +
1,0 + f +

1,m;
3. finally, use the estimates of f +

1 and f −
1 from the previous

step to estimate the homogeneous Green’s functions, using
equations (6), (7) and (9).

In this study, we consider the effects of the surface
source/receiver array aperture on the radiation direction at
depth. We achieve this in Step 1 by windowing (multiplying
by a Heaviside weight) R and f +

1,0 corresponding to different
source/receiver array sizes. Implementing Steps 2 and 3 then
gives estimates of focussing functions, which will be injected
into the medium for our study on the radiation direction of
the resulting homogeneous Green’s function. Because we di-

rectly modify the input R and f +
1,0, it is to be expected that

the focussing functions obtained this way for different surface
source/receiver array apertures are not the same as those ob-
tained from simply windowing the focussing functions with
a larger source/receiver array aperture as we shall see later in
our numerical examples.

3 FOCUSS ING IN TIME- A ND
DEPTH- IMAGING D OMAINS

Upon the retrieval of focussing functions f (equation (6)), we
employ the acoustic wave equation and its counterpart in the
time-imaging domain (Fomel 2013) to back-propagate them
into the subsurface model. Their expressions can be given as
follows.
� Depth (Cartesian) coordinates

∂2u
∂x2

+ ∂2u
∂z2

= 1
v2(x, z)

∂2u
∂t2

. (10)

� Time (image-ray) coordinates

v2
d(x0, t0)

∂2u

∂x2
0

+ ∂2u

∂t2
0

= ∂2u
∂t2

. (11)

We use u to denote the wavefield, v is the medium ve-
locity in the Cartesian coordinates, and vd is the Dix velocity
obtained after applying the Dix inversion on time-migration
velocity (e.g. Cameron et al. 2007; Li and Fomel 2015;
Sripanich and Fomel 2018). The Dix velocity vd lives in the
image-ray coordinates defined by x0 and t0 for the surface
escape location and the one-way traveltime of image rays,
respectively. In the next section, we use equations (10) and
(11) to back-propagate the focussing function injected at the
surface, and establish connections between the directionally
dependent properties of the focussed responses in both
domains.

(a) (b)

Figure 11 Focussing experiment in 2D
model. Subpart (a) is the focussed re-
sponse from injecting the focussing func-
tion shown in (b) that is obtained with sym-
metric aperture (orange box). The image
rays are not vertical in this example and
the directionality of the focussed response
(dashed red) is controlled by a cumulative
effect of symmetric injection (solid blue)
and the image-ray bending (solid red). Be-
cause the solid blue line is horizontal, the
solid and dashed red lines are overlaying
each other.

C© 2018 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
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(a) (b)

Figure 12 Focussing experiment in 2D model with asymmetric injection. Subpart (a) is the focussed response from injecting the focussing function
shown in (b) that is obtained with asymmetric aperture (orange box). The image rays are not vertical in this example and the directionality of
the focussed response (dashed red) is controlled by a cumulative effect of asymmetric injection (solid blue) and the image-ray bending (solid
red). Note that the waveforms in (b) are not equivalent to spatially windowing those in Fig. 12(b).

Figure 13 Various weight functions for data aperture used to study
the compactness of the corresponding focussed responses.

4 RADIATION D I R E C T I O N A N D D A T A
A P E R T U R E

4.1 Direct waves

We first study the focussed responses from the focussing func-
tions corresponding to direct waves only (Thorbecke 1997).
This experiment represents the case of smooth-background
media with f −

1 = 0 and the initial f +
1 approximated by the

time-reversed direct-wave Green’s function, which is taken as
a leading-order estimate of the time-reversed transmission re-
sponse. Using the notation from equation (4), we can write
this as

F̂+
1,0 ≈ T̂†

0, (12)

where † denotes conjugate transpose (adjoint). Here, F̂+
1,0 is

the focussing operator that contains the frequency-domain
version of the initial focussing functions f +

1,0 between the sur-
face Sa and all discrete focussing locations on S f at depth. T̂0

is the discrete truncated-medium transmission operator for a
smooth-background medium, containing only direct arrivals,
unlike the full-wavefield T̂ that yields the true-medium, full-
waveform F̂+

1 (equation (4)).
We consider a synthetic medium (Fig. 4) with constant

velocity gradients in both x and z directions given by

v(x, z) = 2.0 + 0.6z + 0.25x, (13)

because it is convenient for our arguments as it has an an-
alytical image-ray map (Li and Fomel 2015; Sripanich and
Fomel 2018). We consider three scatterers along the image
rays originating from 3.5 km as noted by the stars in Fig. 4.
According to the relationship between the two coordinates
as defined by image rays (Fig. 2), we expect the focussed re-
sponses to align along the vertical in the time coordinates and
follow the trajectory of the image ray in the depth coordi-
nates. The result from injection of the focussing function with
symmetric aperture (with respect to the central image ray at
3.5 km) from 2.5 to 4.5 km is shown in Fig. 5. The solid red
line in Fig. 5 denotes the image wavefront, that is, a surface
of constant t0, which is parallel to the focussed response in
the depth domain in this case. On the other hand, the solid
blue line is perpendicular to the line drawn from the middle
of the source/receiver array (injecting sources for reverse-time
propagation) to the focussed position in the time domain. This
blue line is observed to be parallel to the focussed response due

C© 2018 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
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Blue

(a)

Red

(b)

Purple

(c)

Green

(d)

Figure 14 Direct-wave focussing with asymmetric injection and various weighting schemes from Fig. 13; (a) Blue = Heaviside, (b) red, (c)
magenta, and (d) green. One can observe a reduction in edge artefacts when a smoother weight is used but our conclusions regarding the
radiating direction remain the same.

to the straight-ray geometry in time-domain imaging. In this
experiment, the blue line is horizontal because the receivers
are distributed equally from 2.5 to 4.5 km with the middle at
3.5 km, corresponding to the scatterer focal locations in the
time-domain focussed fields.

To investigate aperture effects, we consider two receiver
geometries in the 3.25–4 km and 2.5–3.75 km position ranges.
Both are asymmetric with respect to the focal position of
3.5 km. The results from injection of f obtained with
asymmetric aperture are shown in Fig. 6, where we note the
additional dashed red line that has a combined slope of the
solid red and blue lines. In other words, if the solid blue
line (asymmetric aperture) has a slope mb and the solid red
line (image ray bending) has a slope mr , the dashed red line
(final directionality) has a slope of mb + mr . In this study, we
obtain mb from

mb = aperture centre – lateral focal position in time-imaging domain
event one-way time × migration velocity

,

(14)

and mr directly from the image-ray map. Note that this calcu-
lation is done based on Heaviside weighting, where the aper-
ture centre is at the middle of the source/receiver array. More-
over, both slopes must be scaled properly to handle different
grid sizes in both time- and depth-imaging domains before
comparing with wavefields.

Considering the results from Figs. 5 and 6, we can make
several observations.

1. Having a surface source/receiver array that is asymmetric
relative to the focal position (i.e. limiting data aperture) is
equivalent to windowing/weighting parts of the data, which
changes the dynamics (amplitudes) of the resulting focussed
field, but not the location of the focal points. Because the
focussed positions remain the same, they are controlled solely
by the kinematics (phase/traveltime) of the available data.
2. In the time-imaging domain, the directionality of the
focussed response (blue line) is perpendicular to the line
drawn from the middle of the surface source/receiver

C© 2018 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
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(a) (b)

Figure 15 Focussing experiment in 1D model. Subpart (a) is the focussed response from injecting the focussing function shown in (b) that is
obtained with a large symmetric aperture from −1000 to 1000 m. Note the reduced artefacts in (a), in comparison with Fig. 8.

(a) (b)

Figure 16 Focussing experiment in 1D model with asymmetric injection. Subpart (a) is the focussed response from injecting the focussing
function shown in (b) that is obtained with a large but asymmetric aperture from −200 to 1000 m. The image rays are vertical in this example
and the directionality of the focussed response is controlled by the effects of asymmetric injection (solid blue). Note the decrease in artefacts in
comparison with Fig. 9.

array to the focussed position in the time (image-ray)
coordinates.
3. In depth (Cartesian) coordinates, the directionality of the
focussed response is a direct combination (dashed red line)
of the effects from limited aperture (blue) and the bending
of image rays (red line) used for time-to-depth conversion.
Specifically, the slope of dashed red line is the sum of those of
the solid red and blue lines.

An interpretation of such observations can be achieved
by considering a least-squares estimate of F+

1 based on equa-
tion (4) given by

(
F̂+

1

)
LS

= (T̂†T̂)−1T̂† = DT̂†, (15)

where D is a deblurring operator. In other words, a fo-
cussing function that will focus at a specified position can
be interpreted as a deblurred version of the adjoint (time-
reversed) transmission response as used in this experiment
(equation (12)). Because D is zero-phase (being the inverse of
the operator T̂†T̂), the amplitude weight of the surface data
(Heaviside weighting in our case) controls the directionality of
the focussed response in both time and depth domains, while
not altering the location of the focal point. A mathematically
extensive treatment of directionally varying ‘amplitude blur-
ring’, in the context of depth imaging, is presented by Thom-
son, Kitchenside and Fletcher (2016). In the following section,
we build on the above remarks and extend our conclusions to
the cases of focussing functions for 1D laterally homogeneous
and 2D heterogeneous media.

C© 2018 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
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4.2 Focussing functions with 1D model

We consider the 1D model shown in Fig. 7 and a focussing
point at (0, 1000 m) on the third reflector. The image rays
are vertical in this model and the additional change of the
radiation direction due to the time-to-depth conversion can
thus be neglected. We follow the procedure outlined above
and obtain the initial focussing function for the Marchenko
method from the time-reversed direct-wave Green’s function
from this focussing position. Figure 8 shows the final estimate
of the focussing function (f) obtained and injected with a sym-
metric surface aperture and its corresponding homogeneous
Green’s function at time equal to zero.

From Fig. 8, we can clearly see that the focussed response
has a directionality defined by the solid blue line similarly to
the case of direct waves (Fig. 5). Note that the remaining edge
artefacts of the focussed response are due to the relatively
small surface aperture (from −500 to 500 m) considered here.
Similar results for the case of asymmetric surface aperture
(from −200 to 500 m) are shown in Fig. 9. The focussed
response shown in Fig. 9(a) now has a directionality defined
by the solid blue line and a similar conclusion can be drawn
as in the case of direct waves. We note that the resulting
focussing function obtained in Fig. 9(b) is not the same as
simply windowing the full focussing function with symmetric
aperture in Fig. 8(b).

These results are not entirely surprising because, given
the choice of a direct-wave Green’s function with an ar-
bitrary spatially dependent weighting (e.g. limited aper-
ture or deblurring-derived weights), the Marchenko method
(equation (1)) solves for f +

1 and f −
1 that in turn would lead to

a focussed response that is directionally weighted according
to such a choice. Therefore, the observations on the effects
of aperture on the focussed response of direct waves stud-
ied in the previous section can be extended to the case of
any version of any spatially weighted Marchenko focussing
functions.

4.3 Focussing functions with 2D model

Next, we turn to a 2D laterally heterogeneous model with
bending image rays (Fig. 10), where both effects from asym-
metric surface aperture and the time-to-depth conversion
are important. We consider the focussing position at (−80,
900 m), which is along the image ray originating from 0 m.
Figure 11 shows the results from the case of symmetric sur-
face aperture. We can see that the directionality of the fo-
cussed response is no longer defined by the solid blue line,

but instead by the solid red line that denotes the image wave-
front orientation at that location. The results for the asym-
metric case are shown in Fig. 12, where the directionality
of the focussed response is defined by the dashed red line,
which combines the effects from asymmetric surface aperture
and image-ray bending. The observed results agree with those
from the study of direct waves and the 1D model. We also note
the observed artefacts, which are the results of the small sur-
face aperture from −500 to 500 m and from −300 to 500 m
used.

5 D I S C U S S I O N

In our numerical examples, we limit the aperture of focussing
functions by using a Heaviside weighting. Alternative methods
with edge tapering may lead to smaller artefacts. Figures 13
and 14 show one such example, where we provide a compar-
ison of back-propagated direct-wave focussed responses with
smooth weights. We observe that the artefacts are tapered due
to the smooth data weighting, but our observations regarding
the effects of weighting on directionality still apply.

Moreover, we emphasize that limiting the aperture di-
rectly influences both compactness of the focussed response
and performance of the Marchenko method. Unless a suffi-
cient range of aperture is considered in the first place, the
resulting focussing functions will contain artefacts from this
truncation (van der Neut et al. 2015). As a consequence of
this observation, it follows that for any fixed-aperture data
set, the directionality of the focussing functions depends not
only on the medium properties, but on the relative position of
the focal point to the source/receiver array.

In this study, we rely on straight-ray geometry that is im-
plicit in time-domain imaging to draw our conclusions on the
directionality of the focussed response. This assumption is ex-
act for 1D media and approximately valid for small-offset data
in other (laterally heterogeneous) models. Therefore, there are
noticeable artefacts in our injected panels (Figs. 8a, 9a, 11a,
12a) due to the use of short-offset data. However, in a 1D
model or media with a largely flat geology, a larger surface
aperture can potentially be used to reduce artefacts. For exam-
ple, in our Figs. 8(a) and 9(a), we can extend our experiments
to a larger aperture from −1000 to 1000 m and from −200 to
1000 m, respectively. The results are shown in Figs. 15 and 16
with a notable decrease of artefacts, while our previous con-
clusions on the directionality of the focussed responses still
hold.

In a companion paper (Sripanich et al. 2018), we fur-
ther explore the Marchenko method in the context of time
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imaging. We show that the initial focussing function f +
1,0

can be directly estimated from the local slopes of recorded
CMP gathers, as opposed to using an explicit depth veloc-
ity model, which is generally less straightforward to obtain.
The measured local slopes in the midpoint direction – associ-
ated with local subsurface structures – can be used together
with the results from this study to create focussed responses
(virtual sources) with special directionality such as orthog-
onal to the local subsurface structure in the time-imaging
domain.

Another possible implication of this study is to consider
the focussing effects in the context of local (targeted) am-
plitude variation with offset (AVO) analysis. By utilizing the
Marchenko method to eliminate the effects from the overbur-
den, it is, in principle, possible to carry out an efficient time-
domain AVO analysis to estimate reflection coefficients free
from overburden effects while honouring the finite-aperture
effects.

6 C ONCLUSIONS

Building on the concept of time-domain imaging, we provide
further insight on directionality of focussed responses at
depth from the injection of the Marchenko focussing func-
tions. Assuming that the image rays are well defined with
no caustics, the directional dependence of the focal pulse in
Cartesian depth coordinates is a geometric superposition of
the effects from limited aperture and the bending of image
rays for time-to-depth conversion. This finding has implica-
tions to the construction of amplitude-preserving redatuming
and imaging, from focussing functions with controlled
directionality and an appropriate handling of finite-aperture
effects.
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