
Geophysical Prospecting, 2019, 67, 1312–1328 doi: 10.1111/1365-2478.12779

Target-oriented imaging using extended image volumes: a low-rank
factorization approach

Rajiv Kumar1,2∗, Marie Graff1,3, Ivan Vasconcelos4 and Felix J. Herrmann1,2

1Formerly Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver BC, Canada, 2School of Earth
and Atmospheric Sciences, Georgia Institute of Technology, Atlanta GA, USA, 3Department of Mathematics, University of Auckland,
Auckland, New Zealand, and 4Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands

Received May 2018, revision accepted February 2019

ABSTRACT
Imaging in geological challenging environments has led to new developments, includ-
ing the idea of generating reflection responses by means of interferometric redatum-
ing at a given target datum in the subsurface, when the target datum lies beneath
a complex overburden. One way to perform this redatuming is via conventional
model-based wave-equation techniques. But those techniques can be computationally
expensive for large-scale seismic problems since the number of wave-equation solves
is equal to two times the number of sources involved during seismic data acquisition.
Also conventional shot-profile techniques require lots of memory to save full subsur-
face extended image volumes. Therefore, we can only form subsurface image volumes
in either horizontal or vertical directions. To exploit the information hidden in full
subsurface extended image volumes, we now present a randomized singular value
decomposition-based approach built upon the matrix probing scheme, which takes
advantage of the algebraic structure of the extended imaging system. This low-rank
representation enables us to overcome both the computational cost associated with
the number of wave-equation solutions and memory usage due to explicit storage of
full subsurface extended image volumes employed by conventional migration meth-
ods. Experimental results on complex geological models demonstrate the efficacy of
the proposed methodology and allow practical reflection-based extended imaging for
large-scale five-dimensional seismic data.

Key words: Extended-image volume, Interferometry, Low-rank factorization,
Redatum, Point spread function, Randomized SVD, Target-imaging.

1 INTRODUCTI ON

Seismic data are the primary source of information used
to image structures, evaluate rock properties and monitor
their changes in the Earth’s subsurface. To achieve these
goals, seismic reflection imaging relies on kinematically cor-
rect background-velocity models. However, imaging from ac-
quired data struggles to reveal the true location of the subsur-
face reflectors at the deeper sections, particularly in geological
environments presenting complex overburden structures such
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as high-velocity salt bodies or low-velocity gas chimneys. This
is due to the fact that the ray-based imaging methods cannot
adequately describe the wave propagation in complex geologi-
cal scenarios and sophisticated wave-equation-based methods
are very sensitive to the accuracy of the near-surface or over-
burden velocity model.

The seismic community proposed various methods to
overcome these difficulties. These methods can be roughly
divided into two main categories. The first method is called
virtual source technology (Bakulin and Calvert 2004, 2008),
where borehole seismic data are acquired with receivers
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being deployed beneath the complex part of the overburden
and sources are placed at the surface. Virtual source data at the
receivers locations are created using time reversal techniques
applied to the surface-to-downhole data, where time-gated
data are passed through the time reversal process and con-
volved with the surface-to-downhole data. The resulting vir-
tual source data are then imaged with conventional methods
using the velocity information below the receivers. Although
this method is beneficial for removing artifacts caused by the
complex overburden, it requires receivers to be placed in the
borehole, which is not practical in exploration surveys.

The second method is called interferometric redatuming,
which has been studied extensively in the literature (Snieder
2004; Schuster and Zhou 2006; Snieder, Sheiman and Calvert
2006; Wapenaar and Fokkema 2006; Mehta et al. 2007;
Schuster 2009; Curtis and Halliday 2010; Broggini, Snieder
and Wapenaar 2012; Wapenaar, Broggini and Snieder 2012;
van der Neut and Herrmann 2013). In interferometric reda-
tuming, seismic data are acquired by placing both sources and
receivers at the surface during the acquisition. Then a vir-
tual seismic response at the subsurface datum is created by
performing a multi-dimensional deconvolution of the upgo-
ing waves with respect to the downgoing waves, where the
downgoing and upgoing wave constituents are created from
the transmitted waves by inverting the model-based wavefield
composition matrix (Schuster and Zhou 2006; Wapenaar,
Slob and Snieder 2008). One drawback of this method is that
one has to invert this composition matrix, which can be chal-
lenging because it exhibits singularities at critical angles. We
can overcome this by regularizing the least-square solutions to
generate the down- and upgoing wavefields as shown in van
der Neut and Herrmann (2013), where the authors proposed
to solve a sparsity-promotion-based least-squares formula-
tion. Alternatively, Wapenaar and van der Neut (2010) and
Vasconcelos and Rickett (2013) proposed multi-dimensional
deconvolution-based imaging conditions using extended im-
age volumes, where two-way wave equation–based extrapola-
tion is used to generate the full non-linear reflection response
at a given target-datum in the subsurface, as a function of time
or frequency.

Although, multi-dimensional deconvolution based imag-
ing conditions using extended image volumes have shown po-
tential benefits in target-oriented imaging (van der Neut and
Herrmann 2013; Vasconcelos and Rickett 2013; Ravasi et al.

2016), evaluating these reflection responses is prohibitively
expensive in realistic three-dimensional (3D) settings. This is
due to the fact that it involves solving two-way wave-equation
extrapolation with a conventional shot-profile approach at

any particular datum in the subsurface. For the conventional
shot-profile approach, the required number of partial differen-
tial (wave) equation’s (PDE’s) evaluations is equal to twice the
number of sources. Since, we need to solve so many PDEs, the
use of conventional two-way approaches to perform target-
oriented imaging is very expensive especially for industrial
scale problems in 2D and 3D.

To overcome the computational cost of building extended
image volumes, analytic solutions have been proposed in ten
Kroode (2012), Hou and Symes (2015), Symes (2008), Stolk,
De Hoop and Symes (2009) and Stolk and De Hoop (2005)
by adding horizontal subsurface offset variables. Here we pro-
pose to analyse the algebraic structure of full subsurface ex-
tended image volumes organized as a matrix. Each column of
this matrix represents a source experiment that captures the
reflection response in both horizontal and vertical directions
since it is derived from the two-way wave-equation (Berkhout
1992; van Leeuwen, Kumar and Herrmann 2017). Following
van Leeuwen, Kumar and Herrmann (2017), we build the full
extended image volume by using matrix-free operations with
probing vectors that cost only two PDE solves per vector.
However, this still requires to compute the extended image
volume for each single point source and the final resulting
matrix is often too huge for storage.

By construction, we find that monochromatic full subsur-
face extended image volumes exhibit a low-rank structure for
low-to-mid range frequencies. If we can somehow gain access
to this low-rank structure, we will be able to reduce the num-
ber of required PDE solves to a number that is proportional to
the rank and not the number of sources. To accomplish this,
we propose a framework using randomized singular value
decomposition (SVD) (Halko, Martinsson and Tropp 2011)
that gives us the needed low-rank factorization of full subsur-
face extended image volumes. Unlike van Leeuwen, Kumar
and Herrmann (2017), we now probe the extended image
volume (EIV) with a small number of random vectors rather
than the Dirac vectors as suggested before. This means that,
instead of considering a single point source only, we shoot
a random combination of all sources together. This random
configuration of the sources has already been proposed for full
waveform inversion in Haber, Chung and Herrmann (2012),
but not for EIVs. Then, thanks to the randomized SVD al-
gorithm (Halko, Martinsson and Tropp 2011), we are able
to reveal a low-rank factorization of the EIV, consisting of
two thin matrices. As a result, the computation cost is re-
duced and the low-rank approximation of the EIV is now
storable. Moreover, from this low-rank representation of the
EIV, we can extract reverse time migration (RTM) images
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and/or common-image point gathers through easy algebraic
operations, whereas the former probing technique (with Dirac
vectors) required to recompute the EIV for each extraction.
Finally, the randomized SVD algorithm has already been used
for seismic data, for instance in Demanet et al. (2012) and
Jumah and Herrmann (2014), but not yet applied to EIV.

With this technique, we only need to compute a low-
rank representation of the full subsurface extended image
volume, which contains all subsurface offsets for all subsur-
face points once. Using this low-rank representation of the
EIV, which requires greatly reduced storage, we can extract
information, like the RTM image from the diagonal or the
common-image point gathers from columns of the full ma-
trix, of any part of the model without recomputing it. This
was not the case in earlier work by van Leeuwen, Kumar and
Herrmann (2017), since the probing technique with Dirac
vectors do not allow us to build and store the entire EIV
for all subsurface points. For this reason, we needed to re-
compute the probed EIV everytime for each subsurface point
in the model. As a result, the computational and storage
cost of forming the EIV for all subsurface offsets and all
subsurface points is now much smaller using the proposed
randomized SVD formulation compared to the conventional
probing.

The paper is organized as follows: we begin by intro-
ducing the multi-dimensional deconvolution-based extended
imaging conditions in a two-way wave-equation setting. Next,
we show a computationally affordable and memory-efficient
way of computing the reflection response at a subsurface da-
tum using probing techniques. We illustrate these features on
a small section of the Marmousi model for which we can
form the matrices for comparison and we show that our low-
rank approach is in principle scalable with the model size.
On a larger more complex model, we carry out our reda-
tuming and show that we are able to handle the low-velocity
zone in the overburden. Although, probing techniques over-
come an important computational bottleneck, we only have
very limited access to the full subsurface reflection response
because we are restricted to the physical locations of the prob-
ing vectors. To get access to the full subsurface image volume
for all subsurface points, we propose to take the randomized
singular value decomposition with probing a step further by
representing the image volumes themselves in a low-rank fac-
tored form. Finally, we demonstrate the computational advan-
tages of low-rank factored form to perform the target-oriented
imaging beneath the salt using a section of Sigsbee2A model
(http://www.delphi.tudelft.nl/SMAART/sigsbee2a.htm) (The
SMAART JV 2001).

2 EXTENDED IMAGE V OLUMES VIA
DECONVOLUTION

Before we describe the proposed methodology of extracting
the target-oriented reflection response from full subsurface
extended image volumes, we first review the governing equa-
tions. Given the time-harmonic source and receiver wave-
fields, denoted by u(x, xs, ω) and v(x′, xs, ω), the reflection
response r (Berkhout 1992; Vasconcelos, Sava and Douma
2010; Thomson 2012) of the medium below the datum ∂ Dd

satisfies the following relationship

v(x′, xs, ω) =
∫

x∈∂ Dd

r (x′, x, ω)u(x, xs, ω)d2x, (1)

where x, x′ ∈ D ⊂ R
n (n = 2 or 3) represent any subsurface

position, ω ∈ � ⊂ R is the temporal frequency and xs ∈ Ds ⊂
R

n−1 the location of sources deployed at the surface. For more
details on how to derive the subsurface reflection response in
the acoustic case, we refer to Wapenaar and van der Neut
(2010). The source and receiver wavefields are obtained by
solving the following two-way wave-equations

H(m)u(x, xs, ω) = q(x, xs, ω),

H(m)∗v(x′, xs, ω) =
∫
Dr

dxr d(xr , xs, ω)δ(x′ − xr ), (2)

where H(m) = ω2m(x)2 +∇2 is the Helmholtz operator with
Sommerfeld boundary conditions, m the squared slowness,
the symbol ∗ represents the conjugate-transpose, q denotes the
source function and d the reflection-data at receiver positions
xr ∈ Dr ⊂ R

n−1.
To do numerical computations, we discretize our do-

main of interest D with a rectangular grid with a total of
Nx grid points. We will denote Ns the number of sources, Nr

the number of receivers and Nf the number of frequencies.
The discretized source and receiver wavefields U and V be-
come three-dimensional (3D) tensors of size Nx × Ns × Nf .
For the ith frequency, Ui and Vi represent complex valued
source and receiver wavefields organized as Nx × Ns matrices,
where each column of these matrices contains a monochro-
matic source experiment. The reflection response can also be
expressed as a 3D tensor R of size Nx × Nx × Nf , where a slice
Ri at the ith frequency is a Nx × Nx matrix, which satisfies

Vi = Ri Ui . (3)

The discrete form of equation (2) is then obtained by
solving

Ui = Hi (m)−1PT
s Qi ,

Vi = (Pr Hi (m)−1)∗Di ,
(4)

C© 2019 European Association of Geoscientists & Engineers, Geophysical Prospecting, 67, 1312–1328



Targeted-imaging via probing 1315

where Hi is a discretization of the two-way Helmholtz oper-
ator (ω2

i m+∇2) for temporal frequency ωi and for a gridded
squared slowness m. We use the notations ∗ for the conjugate-
transpose, −∗ for its inverse and T for the transpose. Each col-
umn of the Ns × Ns matrix Qi represents the discretized source
function, and the Nr × Ns matrix Di contains the monochro-
matic observed wavefields, without free-surface multiples, af-
ter removing the direct wave and source and receiver side
ghosts. Matrices Ps and Pr sample the wavefields at the source
and receiver positions. Their transpose injects the sources and
receivers wavefields into the grid at the source and receiver
locations. For the sake of simplicity, we drop the frequency
index i for the remainder of paper.

To perform the target-oriented imaging, we need access
to the reflection response R at the subsurface datum ∂ D of
interest for given source and receiver wavefields. Because U
is not a full rank (the maximum rank of U is Ns), we cannot
straightforwardly compute its inverse to calculate R. For this
reason, we compute the subsurface reflection response R in
the least-squares sense as follows:

minimize
R

1
2
‖V− RU‖2F , (5)

where ‖A‖2F =
∑

i, j |ai, j |2 denotes the Frobenius norm
squared. One way to solve equation (5) is by cross-correlating
both sides of equation (3) with U, which results in the follow-
ing normal equation

VU∗︸︷︷︸
E

= R(UU∗)︸ ︷︷ ︸
�

. (6)

Here,

E = VU∗ = H−∗PT
r DQ∗PsH

−∗

represents the monochromatic extended image for all sub-
surface offsets and for all subsurface points computed as the
cross-correlation between the source and receiver wavefields,
whereas

� = UU∗ = H−1PT
s QQ∗PsH

−∗

corresponds to the monochromatic wavefield point-spread
function (PSF), which can be seen as the radiation pattern
of the virtual sources (van der Neut et al. 2010). Both E and
� are matrices of size Nx × Nx. Given the above relationship,
E can be interpreted as a defocusing (lower resolution) of the
reflection response R by the PSF function � for all subsurface
offsets and for all subsurface points that lie on the subsurface
datum ∂ Dd.

To retrieve R from equation (6), we need to compute the
inverse of � and apply it as a filter to the cross-correlated

source and receiver wavefields E. This filtering process to re-
cover the focused R is known as multi-dimensional deconvo-
lution (MDD) (Wapenaar, Slob and Snieder 2008). Opposed
to cross-correlation (Wapenaar and Fokkema 2006), the re-
trieval of R with multidimensional deconvolution (Herrmann
and Wang 2008; Wapenaar and van der Neut 2010), com-
pensates for illumination, finite aperture, and intrinsic losses,
etc. In classical settings, the process to generate the reflec-
tion response at the subsurface datum ∂ Dd corresponds to
the following steps: (i) solve the wave-equation twice for each
surface source to calculate the U and V matrices, respectively,
(ii) perform the cross-correlations as per equation (6) to gen-
erate E and �, (iii) perform the MDD in the least-squares
sense to retrieve R. As a consequence, we have to solve the
wave-equation for all sources and receivers within the seis-
mic survey to compute the reflection response at a particular
datum in the subsurface. This operation can easily become
computationally and storage wise too expensive even for rel-
atively small two-dimensional cases.

To overcome the computational cost of calculating a
least-squares estimate for R at a particular datum in the sub-
surface, we follow the probing technique proposed by van
Leeuwen, Kumar and Herrmann (2017). This technique is de-
signed to perform matrix-free operations to extract informa-
tion from matrices that cannot be formed explicitly because
they are too big and dense. In this way, we remove most of the
computational and storage requirements to work with the full-
subsurface extended image volumes. Following van Leeuwen,
Kumar and Herrmann (2017), in order to probe we multiply
equation (6) from the right by a tall Nx × K (K 	 Nx) probing
matrix W = [w1, . . . , wK ] yielding

Ẽ = EW = H−∗PT
r DQ∗PsH

−∗W, (7)

�̃ = �W = H−1PT
s QQ∗PsH

−∗W.

In this expression, K is the number of probing vectors.
We denote probed quantities by the symbol ·̃ . For redatum-
ing, we chose the columns W, w j for j = 1 . . . K, to be given
by w j = [0, . . . , 0, 1, 0, . . . , 0] – that is a vector containing a
single point scatterer at the jth grid location. For the sake of
simplicity, we will call Dirac vectors the w j defined above.
Also, if we take K = N the total number of grid points in
the background, probing matrix W is the identity matrix and
the probed EIV Ẽ is exactly equal to E. The same argument
holds for �̃ and �. Therefore, computing the EIV with the
Dirac vectors describing the entire background is equivalent
to perform conventional MDD. Now, to extract the EIV for a
specified localized area in the background, we only consider
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the corresponding Dirac vectors in the probing. This is math-
ematically equivalent to extract the corresponding area from
the entire EIV once fully computed.

By virtue of the choice of Dirac probing vectors, the w j

plays the role of a point source located at the datum of interest
∂ Dd. As a result of this type of probing, each column of Ẽ rep-
resents a common-image point (CIP) gather and each column
of �̃ represents the source-side blurring kernel at the sub-
surface locations corresponding to the w j ’s. In Algorithm 1,
we describe how to compute Ẽ and �̃ in a computation-
ally efficient manner. According to van Leeuwen, Kumar and
Herrmann (2017), Algorithm 1 proposes a way to compute the
image volume through matrix–vectors multiplications, which
reduces the cross-correlation of the wavefields U and V to
the cross-correlation of the data matrices Q̃ = Q∗D̃, see step
2. With this technique, we avoid the loop over all shots that
are necessary to build wavefields U and V in the conventional
computation. The remaining cost lies in steps 1 and 5, where
we need to solve two PDEs (one per step) for each probing
vector, whereas one has to solve 2Ns PDEs to form both wave-
fields U and V. As a result, Algorithm 1 proves to be faster and
requires less storage capacity as long as the number of prob-
ing vectors K is much smaller than the number of sources Ns .
This may often be the case when we consider target-oriented
imaging for a small area of the background.

Algorithm 1. Computation of Ẽ and �̃ using matrix-free prob-
ing techniques (van Leeuwen, Kumar and Herrmann 2017)
with given sampling vectors W = [w1, . . . , wK ]. The compu-
tational cost is 3Nx wave-equation solves to which the cost of
correlating the wavefields should be added

Inputs: source matrix Q , data matrix D and probing ma-
trix W

Outputs: probed extended image volume Ẽ, and
probed point-spread function �̃

1. compute Ũ = H−∗W and sample this wavefield at the
source locations D̃ = PsŨ,

2. correlate the results with source function Q̃ = Q∗D̃,
3. use the result as data weights L̃1 = DQ̃ and L̃2 = Q∗Q̃,
4. inject the wavefield L̃1 at the receiver loca-

tions and compute the extended image as Ẽ = H−∗PT
r L̃1,

5. inject the wavefield L̃2 at the source locations and com-
pute the PSF as �̃ = H−1PT

s L̃2.

Now that we have access to probed versions of the rele-
vant quantities (̃E and �̃), we are now in a position to deter-
mine the reflection response from the relation: Ẽ = R̃�̃. Note
that compared to the earlier expressions, the matrix R̃ only

contains the reflection response restricted to the datum of
interest ∂ Dd probed by W. As before, we need to compute the
inverse of �̃ to compute R̃ . Since �̃ is rank deficient with a
maximum rank of K, we compute the reflection response via

R̃ = Ẽ�̃
‡
; (8)

where ‡ represents the damped Moore–Penrose pseudo-
inverse. After applying this pseudo-inverse, each column of
R̃ now contains a CIP gather after source-side deblurring at
the subsurface locations represented by the w j ’s located on the
datum of interest ∂ Dd. To summarize, target-oriented imag-
ing involves the following steps: (i) compute R̃ at a given
datum ∂ Dd using equation (8) for each frequency; (ii) take the
inverse Fourier-transform along the time-axis to get the time-
domain reflection response; and (iii) perform time-domain
reverse time-migration to generate the image in the area of
interest below the datum ∂ Dd. Before we demonstrate the va-
lidity of this approach, let us first make a detailed comparison
of the computational costs of our approach versus those that
use more traditional techniques.

3 C OMPUTATIONAL A SPECTS

The key contribution of this work lies in illustrating the advan-
tages probing techniques have compared to the cost involved
on methods that only rely on multi-dimensional deconvolu-
tions (MDDs). For this purpose, we compare the computa-
tional cost and memory usage of calculating the reflection
response at a single scattering point at the datum ∂ Dd some-
where in the subsurface. As we can see from Algorithm 1,
solving the wave-equation constitutes the main computational
bottleneck in retrieving the reflection response because we
have to solve as in any shot-profile scheme, 2Ns partial dif-
ferential equation (PDE). Conversely, with the probing tech-
niques of equation (7), we only need to compute three PDEs
per subsurface point irrespective of the number of sources Ns

in the acquisition survey. As a result, probing techniques can
significantly reduce the computational cost as long as the num-
ber of probing vectors K is small compared to the number of
sources – that is K 	 Ns . Note that for now K represents the
number of points in the domain where we want to compute
the common-image point (CIP), therefore we collect the corre-
sponding K Dirac probing vectors to retrieve that information
for the chosen points, without building the entire EIV.

To provide further evidence of the computational and
memory savings due to probing, we retrieve the matrix R̃
from a central part of the Marmousi model (Versteeg 1994)
(Fig. 1). We choose a small section so we can form R̃ explicitly
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Figure 1 A section of the Marmousi model. (a) true and (b) smooth velocity model (m/s). The yellow star represents the position of a subsurface
datum point, where we compute the reflection matrix R.

for comparison. Still this toy section does contain strong lat-
eral variations and dipping reflectors. We use a fixed-spread
acquisition configuration with a model grid spacing of 5 m,
401 co-located sources and receivers with 10 m spacing. We
only perform comparison for a single frequency at 10 Hz. The
source wavelet is a Ricker wavelet with a peak frequency of
30 Hz. The results are displayed in Table 1 where we report the
computational time (in seconds) and memory (in MB) required
to compute R̃ at a single point in the subsurface. Although we
get the same CIP gather using the classical approach versus
the proposed approach, probing reduces the computational
time by a factor of 10 and memory requirement by a factor
of 20. This is a first illustration of the computational and
memory benefits of probing techniques over classical dense
matrix techniques.

To understand how our approach scales, we also plot a
comparison between computational times of probing and the
conventional approach as we increase the size of the Mar-
mousi model (Fig. 2). This example confirms that our method
indeed scales better. We can see that the difference in com-
putational time is substantial with respect to the model size
even for this small two-dimensional (2D) example. We ex-
pect the benefit of our probing technique to be even more
pronounced when we switch from 2D to 3D seismic data ac-
quisition where both the size of the model and the number of
sources grow drastically.

Table 1 Computational complexity of the probing technique ver-
sus classical technique for computing the reflection response in terms
of the number of sources Ns and sample points Nx

# of PDE Solves Time(s) Memory(MB)

Conventional 2Ns 190 710
This paper 3Nx 15 35

Notes: Comparison of the computational time (in seconds) and memory (in
megabytes) while computing R at a datum point on a central part of the Mar-
mousi model. For this example, Ns = 401 and Nx = 1.

Figure 2 Comparison of computational time as the size of the Mar-
mousi model increases: clearly probing techniques are a computation-
ally feasible approach to compute the reflection matrix R whereas the
classical approach proves to be quickly expensive for the large size of
the model.

3.1 Target-oriented imaging with probing

We further demonstrate the advantages of probing for reda-
tuming and target-oriented imaging. To do so, we first con-
sider a simple velocity model consisting of horizontal layers
with low-velocity zones and a complex basement structure
with a fault (see Fig. 3). The aim here is to remove the effect
of a low-velocity zone to better image the basement of inter-
est. For this example, the velocity model is 4.6 km deep and
7.5 km wide, sampled at 5 m. The synthetic data are computed
from 376 sources and receivers sampled at 20 m, respectively.
We used the range of frequencies from 5 to 45 Hz sampled
at 0.25 Hz, where the source-signature is a Ricker wavelet
with a central frequency of 20 Hz. The subsurface datum ∂ Dd

is represented by the dashed white line in Fig. 3(a). To cap-
ture the redatuming data created by the complex basement
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Figure 3 Velocity model (m/s) with fault: (a) true and (b) smooth velocity model with the position of subsurface datum (dashed white line).

with fault, we take K = 50 virtual subsurface locations with
a sampling interval of 20 m, which covers the area of interest,
and compute the reflection response according to the method
outlined above.

Figure 4(a,c, d,f) show the frequency-space domain and
time-space domain reflection responses at datum point x = 3
and z = 2.5 km before and after source-side blurring correc-
tion. To calculate the frequency-space domain reflection re-
sponse, we solve equation (8) for all the frequencies, followed
by restricting it to the subsurface datum ∂ Dd, which will re-
sults in a reflection matrix R where rows correspond to fre-
quencies and columns correspond to horizontal offset δx. For
K probing vectors, R will be a three-dimensional (3D) ten-
sor of size Nδx × K × Nω. We perform the inverse Fourier-
transform along the time-axis to go from frequency-space do-
main to time-space domain. In Fig. 4(c), we observe that the
energy across the frequency spectrum of R is well distributed
compared to the spectrum of E. This results in a better reso-
lution of reflection events as observed in time-space domain
sections in Fig. 4(f). In this relatively small numerical example,
the computation of reflection response by probing is almost
three times faster than its shot-profile counterpart.

The time-domain reverse-time migration images before
and after blurring correction are shown in Fig. 5(a,b). We can
see that the blurring correction makes the reflectors sharper
but creates ringing effects, which is a side effect of multi-
dimensional deconvolution (MDD). To remove some of these
artifacts, Herrmann and Wang (2008) and van der Neut and
Herrmann (2013) proposed a curvelet-based sparsity promo-
tion approach to perform the MDD, which is more stable
with respect to missing data, finite aperture and bandwidth
limitation. We will address this issue in a future paper and
concentrate on the computational aspects.

Although probing techniques are an elegant approach
to retrieve the reflection response in a computationally fea-
sible manner, this approach only gives us limited access to

the full subsurface reflection matrix. Consequently, each new
target of interest requires new computations of Ẽ and �̃.
This can become an expensive procedure when we are in-
terested in multiple targets especially when we are dealing
with large-scale 3D problems. To address this issue, we pro-
pose to exploit the low-rank structure of full subsurface ex-
tended image volumes themselves. In this approach, the idea
is to factorize the full subsurface image volumes, that is E
and �. Given this factorized form, we can again use prob-
ing with W to extract the columns of interest from E and
�. Of course, this approach is only viable if we manage to
keep the number of probing vectors required by the low-
rank factorization process small compared to the number of
sources.

4 LOW-RANK FACTORIZATION OF IMAGE
VOLUMES – A RANDOMIZED S INGULAR
VALUE DECOMPOSITION A PPROACH

As we mentioned before, a monochromatic full subsurface
extended image volume is a matrix of size Nx × Nx, where
Nx is the total number of subsurface grid points. Clearly, this
is a very large object, especially in three dimension, suggest-
ing a need to exploit possible redundancies living in these
volumes. Mathematically, matrices with redundancy of infor-
mation exhibits a low-rank structure. Following the gist of
our probing approach, we analyse the decay of the singu-
lar values of these volumes for a realistic complex geological
model to see whether these extended image volumes can in-
deed be factored into a low-rank form. In particular, we are
interested in whether these singular values decay fast so that
these volumes can be approximated accurately by a rank r

matrix, where r 	 Nx. According to equation (6), the rank of
the monochromatic full subsurface extended image volume is
linked to the rank of the data matrix D or the source matrix
Q and is equal to Ns where Ns 	 Nx. While Q is full rank
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Figure 4 Redatumed data for the velocity model with a fault in the frequency-space domain (top row) and time-space domain (bottom row),
with respect to the horizontal lag δx at the datum point x = 3 km and z = 2.5 km (on the dashed white line in Fig. 3 a): Subsection from Ẽ in
(a,d), from �̃ in (b,e) and R matrices displayed in (c,f). We can clearly see that the reflection events are more focused in R compared to Ẽ.

Figure 5 Reverse-time migration at a given datum in case of velocity model with fault close to the zone of interest: (a) without and (b) with
blurring correction. We can see that the reflectors after blurring correction are sharper. However, MDD creates ringing artifacts that can be
reduced by using regularization while solving the least-squares problem for the reflection response.

when using spatially impulsive monopole source, in which
case it corresponds to the identity matrix, the singular values
of D typically decay quickly especially at the low to mid fre-
quencies. This property allows us to factorize the extended
image volume into a r -rank matrix with r 	 Ns for the lower
frequencies. For higher frequencies, the singular values of D

decay less rapidly, which eventually leads to an upper bound
smaller or equal to Ns for the image volumes.

To illustrate that image volumes indeed permit low-rank
factorizations at lower frequencies, we again consider a small
but geologically complex subset of the Marmousi model,
which consists of strongly dipping reflectors with strong
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Figure 6 Low-rank approximation of full subsurface extended image volume: (a) a subsection of the Marmousi model, which is highly complex
in nature with steeply dipping events, (b) corresponding full-subsurface extended image volume E at 5 Hz, (c) decay of the singular values that
illustrates the low-rank nature of E. We can clearly see the fast decay of singular values and the signal-to-noise ratio of the approximated image
volume is about 50 dB when we only select top 10 singular vectors.

lateral velocity variations (Fig. 6 a). We work with this small
subset so that we can compare the time and storage require-
ments to an explicitly formed full subsurface extended image
volume. Even for these complex velocity models, we observe in
Fig. 6(c) a fast decay for the extended image at 5 Hz depicted
in Fig. 6(b). This observation is crucial for our approach be-
cause it demonstrates that even for complex velocity models
full subsurface extended image volumes exhibit a low-rank
structure, which allows us to approximate the original image
volume at 50 dB by only using the top 10 singular values.

From the example of Fig. 6, we can clearly see that even
for complex geological structures, the full subsurface extended
image volume exhibits a low-rank behaviour, a property we
can exploit to compress the full subsurface extended image
volume in its factorized form. We do this by only computing

the top r singular vectors of E. While such an approach has
obvious benefits some important limitations of the proposed
approach remain, namely (i) we need to solve 2Ns partial
differential equation (PDE) to form and store full subsurface
image volume, which is computationally prohibitively expen-
sive, and (ii) the cost of singular value decomposition (SVD)
of a dense explicit full subsurface image volume is of the or-
der of O(N3

x ) using naive SVD algorithms (Holmes, Gray and
Isbell 2007).

To circumvent these prohibitive computational costs, we
propose to use randomized SVDs (Halko, Martinsson and
Tropp 2011) to compute our low-rank approximation of full
subsurface extended image volumes. Randomized SVDs (see
Algorithm 2) derive from probings and have a computational
time of O(N2

x × r ), which can lead to significant gains if r is
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small. As we can see from Algorithm 2, the computational
costs of randomized SVDs are dominated by the costs of eval-
uating PDEs in lines 1 and 3. Aside from these expensive
PDE solves, Algorithm 2 also involves carrying out a QR fac-
torization and an SVD. However, the costs associated with
these operations are small because they involved operations
on probed quantities – that is Y ∈ C

Nx×r and Z ∈ C
r×Nx are

both tall and thin matrices that require a total of only 4r (cf.
2× Ns PDE solves for conventional methods that loop over
shots) PDE solves to evaluate. In addition to obvious com-
putational gains, our SVD-based matrix factorization also al-
lows us to store and form (through actions) extended image
volumes while retaining most of the energy in E.

Mainly, Algorithm 2 consists in two stages. The first stage
includes steps 1–3 and uses probing to build an orthonormal-
ized basis of the range of the extended mage volume (EIV).
Typically, we start with r Gaussian random vectors X and
get r basis vectors B̃ to describe most of the energy of the
EIV, that is associated to the most significant singular values
of E. Then, in the second stage, from step 4 to step 6, we
compute the singular value decomposition of a much smaller
matrix Z̃ = B̃∗E that inherently contains most of the energy
of the EIV. Finally, we get a low-rank approximation of the
EIV, consisting of two N× r matrices for the singular vectors
and a real vector with r entries for the singular values. This
low-rank representation is now storable, in comparison with
the N× N EIV, and faster to compute than the conventional
techniques.

Algorithm 2. Low-rank SVD algorithm (Halko, Martinsson
and Tropp 2011) applied for image-volumes

Inputs: source matrix Q, data matrix D
Outputs: singular value decomposition of extended im-

age volumes G, S, and F
1. Generate a (Nx × r ) Gaussian random probing

matrix X
2. Form Ỹ = EX, where E is a function of Q and D

(matrix-free operation like in Algorithm 1)
3. Construct an orthonormal basis B̃ of range of E from

the QR-decomposition on Ỹ
4. Form Z̃ = B̃∗E (Transpose of matrix-free opera-

tion like Algorithm 1)
5. Compute the singular value decomposition of the

r × Nx matrix Z̃: [G, S, F] = svd(Z̃)
6. Update G← B̃G

Note that, we observed the same low-rank behaviour
for the matrix �, hence, we also exploit its low-rank struc-

ture in the multi-domain experimental section using the ran-
domized SVD algorithm, where we replaced E with � in
Algorithm 2. Given the low-rank matrix factorization form
for E and �, that is E ≈ G1S1F∗1, and � ≈ G2S2F∗2, we can
extract any column from E and � via probing with ba-
sis vectors w j = [0, . . . , 0, 1, 0, . . . , 0], that is Ẽ ≈ G1S1F∗1w j

and �̃ ≈ G2S2F∗2w j . As mentioned before, here, w j corre-
sponds to the grid location of the point scatterer at da-
tum ∂ Dd. Finally, our randomized SVD-based multi-domain
target-oriented imaging consists of the following main steps:
(i) compute the low-rank factorization form of E and � using
Algorithm 2; (ii) extract columns from E and � correspond-
ing to the grid location of the point scatterer at datum ∂ Dd;
(iii) perform multidimensional deconvolution to get reflection
response matrix R.

Remark. Randomized SVDs, derived from actions of E and
E∗ are not the only option to factorize E using the top r sin-
gular vectors. Krylov methods (Larsen 1998; Liu, Wen and
Zhang 2013) can accomplish the same decomposition. How-
ever, randomized SVDs-based methods have at least two main
advantages over Krylov-based methods. First, the matrix–
vector multiplication to form Ỹ and Z̃ can be performed
in parallel. This observation allows us to take full advan-
tage of parallel and distributed machines, especially in cloud-
computing environment. Second, randomized SVDs have en-
abled the development of highly efficient single-pass matrix
factorization algorithms (Martinsson 2019), where the com-
munication cost is low and we never have to stored the matri-
ces explicitly. For detailed comparison of Krylov methods and
randomized SVDs, we refer the interested readers to Halko,
Martinsson and Tropp (2011) and Martinsson (2019). Be-
cause of the above-mentioned reasons, we opt for randomized
SVDs in this work.

4.1 Target-oriented imaging using randomized SVD

To demonstrate the computational and memory benefits of
our approach with randomized singular value decomposition
(SVD) over the classical approach to approximate full sub-
surface image volume, we compare computation times and
memory use for a subset of the Marmousi model, sampled
at 10 m. The simulated data consist of 301 coincident sources
and receivers both sampled at 20 m. As before, we use a Ricker
wavelet with a central frequency of 30 Hz. To show the bene-
fits over the full bandwidth of the underlying signal, we com-
pute monochromaticfull subsurface image volumes for eight
frequencies ranging from 5 to 50 Hz.
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Table 2 Signal-to-noise ratio between the full extended image volume and the probed extended image volume using randomized SVD, for eight
different frequencies

Frequency(Hz) Real Rank Full Time(s) Estimated Rank Reduced Time(s) SNR(dB) Memory Ratio

5 301 490 7 11 29 43
10 301 490 8 11 24 38
15 301 490 10 12 21 30
20 301 490 11 12 20 28
25 301 490 13 13 22 24
30 301 490 16 15 22 19
40 301 490 20 17 22 15
50 301 490 25 21 20 12

Notes: Comparison of the computational times and memory storage ratio in both cases. Clearly, for this small 2D example extracted from the Marmousi velocity
model, the saving in computational time and memory is highly significant: with a factor of more than 25 in time and more than 15 in memory storage.

As we mentioned before, the rank of the extended image
volume is indeed intrinsically linked to the data matrix from
Formula (7), hence, we compute r by looking at the singular
values of data. Although, we get an approximation of rank
r using data matrix, this is not the optimal way of choosing
the rank since the singular values decay of the data matrix is
slower than the corresponding decay of the image volume. By
keeping only the number of singular values higher than 10%
of the largest one, we obtain the approximated rank values
for each frequency. We then use this estimated rank value
for each frequency and solve Algorithm 2 to compute the
low-rank factorization form of the full subsurface extended
image volumes. For comparison, we also form the full sub-
surface extended image volume using the classical approach.
As summarize in Table 2, randomized SVD-based approach
reduces the computational time of forming the full subsurface
image volume by a factor of approximately 25. This major
improvement in computational time is due to a reduction in
the number of partial differential equation solve (2r 	 2Ns).
Moreover, we only need to store G, S and F matrices, thus,
the storage of the extended image volumes using randomized
SVD is r × (2Nx + 1) (Algorithm 2). Even though the esti-
mated rank increases with the frequency in Table 2, it is still
much smaller than the number of shots needed to form the
full extended image volume. Finally, we compare the low-rank
approximation of the extended image volume with the full ex-
tended image volume by computing the signal-to-noise ratio
that is above 20 dB for all eight frequencies. Thus, the ap-
proximation of full subsurface extended image volume using
randomized SVD is satisfactory.

To illustrate the figures in Table 2, we propose to
compare the resulting reverse time migration (RTM) images
computing either with conventional multi-dimensional

deconvolution (MDD) or with the randomized SVD algo-
rithm. We obtain the RTM image by extracting the main
diagonal of the extended image volume (EIV). In the case of
conventional MDD, we actually use the Dirac probing coun-
terpart, which allows us to build the full EIV. As the chosen
velocity model is small, we are still able to compute and
store the full EIV. We display the RTM images for frequency
10 Hz in Fig. 7(a) and for 40 Hz in Fig. 7(c). For the com-
parison, we also extract the RTM image from the low-rank
approximation of the EIV computed with Algorithm 2, at 10
Hz in Fig. 7(b) and 40 Hz in Fig. 7(d) Clearly, the low-rank
approximation of the EIV gives satisfactory reconstitution of
the RTM image. Even though the values on the colour scale
are not relevant, we would like to stress that they are the
identical at fixed frequency for a better visual comparison.

Finally, we demonstrate our approach in a more realis-
tic setting, namely a subsection of the Sigsbee2A model (The
SMAART JV 2001), which contains complex sedimentary
basins interspersed with a high-contrast and high-velocity salt
body. The velocity model depicted in Fig. 8 is 6 km deep and
7.5 km wide and sampled at 5 m. In total, we acquire 1502
coincident sources and receivers sampled at 5 m. As before,
we use a Ricker wavelet as a source function with a central
frequency of 30 Hz. To compute the reflection response ma-
trix R, we use frequencies from 5 to 55 Hz with a sampling
interval of 0.125 Hz. We perform the target-oriented imaging
at the subsurface datums ∂ Dd represented by the black line in
Fig. 8(a).

Figure 9(a) shows the estimated rank values as a function
of the frequencies, which we compute by keeping the number
of singular values of data higher than 10% of the largest one.
We use these rank values in our randomized SVD Algorithm 2
to approximately factorize E and �. Figure 9(b) displays the
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Figure 7 Extraction of the RTM image from the diagonal of the EIV for the subsection of the Marmousi velocity model 6a, at 10Hz (top
row) and at 40Hz (bottom row). We compare the resulting RTM image obtained by conventional MDD or Dirac probing (on the left) with
the RTM image extracted of the low-rank representation computed with the randomized SVD algorithm (on the right). Clearly, the low-rank
approximation of the EIV gives satisfactory reconstitution of the RTM image. Even though the values on the colour scale are not relevant, we
would like to stress that they are the identical at fixed frequency for a better visual comparison.

total number of PDE’s solves needed to compute this approx-
imation as a function of increasing frequency and compares
it to the conventional method, which requires Ns PDE solves
on top of computing cross-correlations between the forward
and adjoint wavefield prior to summing over time. From this
approach, it is evident that our randomized SVD method is
computationally efficient both in its required number of PDE
solves (r versus Ns) and cross-correlation costs (cross corre-
lations in data versus model space). However, it is not unex-
pected that the numerical efficiency decreases as we move to
higher frequencies. Monochromatic seismic data exhibit low-
rank structure only at the low and intermediate frequencies,
but less so at the high-frequencies, that is above 60 Hz. This
behaviour can be explained because wavefields become in-
creasingly oscillatory at high frequencies. In addition to these
computational gains, we save a factor of approximately 15 in
memory usage, while forming the full subsurface extended

image volumes using the proposed factorization-based ap-
proach. Apart from memory savings, Figure 10 shows the gain
in the computational time to form full subsurface extended
image volume using the proposed randomized SVD approach
compared to the shot-profile-based extended imaging ap-
proach. The memory storage and the computational efficiency
make the randomized SVD-based approach a true enabler
for performing the target-oriented imaging for large-scale 3D
acquisition.

Figure 11(a–c, d–f) displays the frequency-space domain
and time-space domain data before and after source-side blur-
ring correction, for the subsurface datums ∂ Dd represented
by the black line. We again perform the inverse Fourier
transform along the frequency axis to go from frequency-space
domain to time-space domain. In Fig. 11(c), we can observe
that energy is distributed evenly along lower and higher end
of the frequency spectrum of R compared to the spectrum of
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Figure 8 Sigsbee2A velocity model (The SMAART JV 2001): (a) true and (b) smooth velocity model (m/s). Position of the subsurface datum
(black line) is overlay on velocity model (a).

Figure 9 (a) Estimated rank values as a function of frequency for the Sigsbee2A velocity model. (b) Number of PDEs solve as a function of
frequency to form the full subsurface reflection response matrix R using randomized SVD approach and comparison to the classical approach.

E in Fig. 11(a). The well balanced energy distribution along
the spectrum results in more sharper (high-resolution) reflec-
tion events as evident in time-domain sections (cf. Fig. 11 d,f).
Figure 12(a,b) shows the reverse-time migration images be-
fore and after our blurring correction. From these Figures, we
see that the increase in the energy distribution across the fre-
quencies after the blurring correction improves the resolution
of reflectors.

5 D I S C U S S I O N

The main objective of target-oriented wave equation–based
imaging is to reduce demand for computational and storage
resources to create images in localized areas. While many of
the proposed approaches to redatuming make claims to this
effect, the majority of the approaches still require expensive
loops over shots that involve simulations of forward and ad-
joint wavefields over the full domain. In most cases, reported
gains can be attributed to the use of target-based imaging

Figure 10 Computational gain in forming full reflectivity matrix R̃
with (blue line) and without (red line) blurring corrections using the
randomized SVD framework. Note that, to compute R̃ using random-
ized SVD, we need to solve 4r PDEs without blurring correction and
6r PDEs with blurring correction.

conditions over the targeted domain of interest, which leads
to savings in compute and storage of the wavefields.
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Figure 11 Redatum data for the Sigsbee2A model at the subsurface datum point x = 2 and z = 0.6 km, in frequency-space domain (top row)
and in time-space domain (bottom row), with respect to the horizontal lag δx at the datum represented by the black line in Fig. 8(a): subsection
from Ẽ in (a,d), from �̃ in (b,e) and R matrices displayed in (c,f). Here again, reflection events are more focused after the blurring correction.

By using techniques from randomized linear algebra, we
avoid the expensive loops over shots, explicit storage of the
forward and adjoint wavefields, and computations of cross-
correlations that involve these wavefields. Instead, we work
with low-rank factorizations of full-subsurface image vol-
umes. We reap information needed to form these factoriza-
tions via actions of extended image volumes on random prob-
ing vectors that act as subsurface simultaneous sources. By
using the wave equations themselves to carry out the heavy
lifting, for example we avoid computing the cross correla-
tions, we achieve significant computational and storage gains
as long as we can approximate these image volumes by a low-
rank matrix. In that case, the cost of our redatuming scheme
is dominated by the rank of the factorization instead of by

the main loop over shots while storage of and operations on
full wavefields are avoided. As a result, we end up with a
computationally feasible and scalable scheme that by virtue
of the low-rank singular-value decomposition also allows us
to cheaply apply the deconvolution imaging condition.

We verified the viability of our approach in two-
dimensional (2D) for monochromatic subsurface-offset vol-
umes, which as all extended full-subsurface image volumes,
are quadratic in the image size making it impossible to form
them explicitly except for the smaller 2D toy problems. Exper-
imentally, we found that an order of magnitude reduction in
memory usage and computation time is achievable for the low
to mid frequencies where image volumes can well be approxi-
mated by a low-rank matrix. In that regime, our method scales
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Figure 12 Reverse-time migration in case of the Sigsbee2A model
at the subsurface datum represented by the black line in Fig. 8: (a)
without and (b) with blurring correction. We can see that the reflectors
after blurring correction are sharper.

to three-dimensional where even bigger computational gains
are to be expected as we reported in van Leeuwen, Kumar and
Herrmann (2017). In that case, we could never hope to form
the image volumes explicitly so we have to completely rely on
our approach based on randomized probing where the cost
per probing vector corresponds to only two wave-equation
solves. As a result, we gain significantly if the extended image
volumes can well be approximated in low-rank form since the
costs will scale with this rank.

While we argue that our approach beats conventional ap-
proaches, as long as the rank is smaller than the number of
shots, we make this claim for the low-to-mid range frequencies
where extended image volumes are indeed low rank. For the
higher frequencies, we may have to exploit other approaches
that include exploiting the low-rank off-diagonal structure of
image volumes by hierarchical semi-separable representation
(Chandrasekaran et al. 2006; Lin, Lu and Ying 2011; Jumah
and Herrmann 2014). Another option would be to use power
iterations in the randomized singular value decomposition as
suggested in Halko, Martinsson and Tropp (2011) and Mar-
tinsson (2019) or in the recent work of Musco and Musco
(2015) on block Krylov methods. In either case, the presented
approach has the advantage that the probing can be done in
parallel and involves significantly fewer resources because we
only need to loop over the rank instead of over shots.

6 C ONCLUSIONS

The main premise of wave-equation-based redatuming, also
known as target-oriented imaging, is that it is computation-

ally efficient. Even though many elegant solutions to target-
oriented imaging exist, their computational costs often scale
linearly with the number of shots and exponentially with the
size of the full model. By using probing techniques from ran-
domized linear algebra, we mitigate these costs by representing
image volumes in low-rank factored form. By construction,
image volumes can be considered as redatumed data after
restriction to a particular datum. The low-rank factorization
gives us access to this restriction without having to form, work
with or loop over all shots.

Our approach is based on a ‘double two-way wave equa-
tion’, which is an object we can probe at the costs of two wave-
equation solves for each probing vector. These probings give
us access via the randomized singular-value factorization to re-
datumed data without the need to loop over shots, which can
lead to major computational gains if the rank of the factoriza-
tion is smaller than the number of shots. Since monochromatic
full subsurface extended image volumes indeed exhibit a low-
rank structure for low-to-mid range frequencies this leads to
a viable approach that leads to significant reductions in com-
putational costs. Rather than being dominated by the number
of shots in the survey, our costs are proportional to the rank
of the factorization, which is small as long as we do not work
at too high frequencies. Experimental results for these low-
to-mid range frequencies on synthetic two-dimensional (2D)
models demonstrate that the proposed low-rank factorization-
based approach is approximately 25 times faster in time and
more than 15 times cheaper in memory storage compared
to the conventional shot-profile approach. We further illus-
trate experimentally using 2D Sigsbee model that the target-
oriented images using low-rank factorization-based reflection
response can be computed with little to no compromise in
accuracy compared to the standard shot-profile approaches.
However, we could observe that the blurring correction, even
though making the reflectors sharper, creates ringing effects.
We believe that we could consider a curvelet-based spar-
sity promotion approach to perform the multi-dimensional
deconvolution (Herrmann and Wang 2008; van der Neut
and Herrmann 2013) in order to remove some of these
artifacts.

Finally, our experimental results on complex geological
models demonstrate the efficiency of the proposed methodol-
ogy even for large 2D velocity models. We believe that our
methodology should allow us practical reflection-based ex-
tended imaging in term of computational time and storage
capacity for large-scale five-dimensional seismic data from
three-dimensional velocity models.
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