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Objectives: AmpC-b-lactamase production is an under-recognized antibiotic resistance mechanism that
renders Gram-negative bacteria resistant to common b-lactam antibiotics, similar to the well-known ESBLs. For
infection control purposes, it is important to be able to discriminate between plasmid-mediated AmpC (pAmpC)
production and chromosomal-mediated AmpC (cAmpC) hyperproduction in Gram-negative bacteria as pAmpC
requires isolation precautions to minimize the risk of horizontal gene transmission. Detecting pAmpC
in Escherichia coli is challenging, as both pAmpC production and cAmpC hyperproduction may lead to third-
generation cephalosporin resistance.

Methods: We tested a collection of E. coli strains suspected to produce AmpC. Elaborate susceptibility testing for
third-generation cephalosporins, WGS and machine learning were used to develop an algorithm to determine
ampC genotypes in E. coli. WGS was applied to detect pampC genes, cAmpC hyperproducers and STs.

Results: In total, 172 E. coli strains (n=75 ST) were divided into a training set and two validation sets. Ninety
strains were pampC positive, the predominant gene being blaCMY-2 (86.7%), followed by blaDHA-1 (7.8%), and 59
strains were cAmpC hyperproducers. The algorithm used a cefotaxime MIC value above 6 mg/L to identify
pampC-positive E. coli and an MIC value of 0.5 mg/L to discriminate between cAmpC-hyperproducing and
non-cAmpC-hyperproducing E. coli strains. Accuracy was 0.88 (95% CI=0.79–0.94) on the training set, 0.79
(95% CI=0.64–0.89) on validation set 1 and 0.85 (95% CI=0.71–0.94) on validation set 2.

Conclusions: This approach resulted in a pragmatic algorithm for differentiating ampC genotypes in E. coli based
on phenotypic susceptibility testing.

Introduction

Escherichia coli is an important pathogen in both community and
healthcare-associated infections.1,2 ESBL-producing E. coli have
spread worldwide, restricting available treatment options.
Although to a lesser degree, acquired AmpC b-lactamases in E. coli
are also emerging as a potential threat to the activity of broad-
spectrum penicillins and third-generation cephalosporins (3GCs).
Acquired AmpC b-lactamases are encoded on plasmids and
hence transferable between species. The prevalence of plasmid-
mediated AmpC (pAmpC) b-lactamases in E. coli clinical isolates
reported in the literature varies between 0.06% and 10.1%;3,4

however, variance in prevalence is likely to be influenced by

diagnostic strategies used in these studies, and there are also re-
gional differences in prevalence. In the Netherlands, a country
with low levels of antimicrobial resistance, a pAmpC prevalence
between 0.6% and 1.3% was found in E. coli isolates recovered
from faecal samples in the community.5,6 Recently, Harris et al.7

described pAmpC as the second most common group (17.1%) of
3GC-hydrolysing b-lactamases in E. coli bloodstream infections in
Australia, New Zealand and Singapore. Different types of plasmid-
mediated ampC (pampC) genes have been detected in
Enterobacterales, with blaCMY-2 as the most common AmpC-
encoding resistance gene. Other, less frequently isolated AmpC b-
lactamase genes are other varieties of blaCMY, as well as blaDHA,
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blaACT, blaACC, blaMIR, blaMOX, blaFOX and blaCFE. Depending on the
type of pAmpC b-lactamase, the hydrolysing capability might
vary.8,9

E. coli naturally carries a chromosomal-mediated ampC
(campC) gene, but unlike in other Enterobacterales this gene is non-
inducible.8 In E. coli AmpC production is regulated by promoter and
attenuator mechanisms resulting in constitutive low-level ampC
expression and hence allows the use of b-lactam antibiotics to treat
these E. coli infections in the absence of other resistance mecha-
nisms. Various mutations in the promoter/attenuator region of
E. coli may cause constitutive hyperexpression of campC. These
E. coli strains may then become resistant to cephamycins, broad-
spectrum penicillins or even 3GCs, making it difficult to differentiate
these strains phenotypically from pAmpC enzyme production.

In contrast to hyperexpressed campC genes, pampC genes are
capable of spreading this resistance mechanism to other bacteria
within a hospital setting by horizontal gene transfer.10,11 This poses
a greater threat to infection control than pure clonal transfer.
Consequently, pAmpC production in E. coli requires active detection
and contact precautions for colonized or infected patients, as
recommended by different guidelines;12,13 however, this is often
ignored due to the more cumbersome identification in the micro-
biological laboratory.

Current commercial phenotypic AmpC confirmation tests fail to
reliably discriminate between pAmpC and constitutive hyperpro-
duction of the chromosomal-mediated AmpC (cAmpC).14 In E. coli,
an approach solely based on phenotypic testing has a high sensi-
tivity to detect pAmpC production, but lacks specificity as it detects
a high number of isolates that overproduce cAmpC, resulting in
unnecessary patient isolation precautions with increased unneces-
sary healthcare costs. PCR is capable of detecting various pampC
genes.15 The recommended method for detection of pAmpC
production in Enterobacterales according to the EUCAST guidelines
is to screen isolates for cefoxitin MICs >8 mg/L combined with
phenotypic resistance to cefotaxime and/or ceftazidime.16

Confirmation is advised in a two-step algorithm using cloxacillin
synergy detection and PCR to discriminate pampC from hyperex-
pressed campC in E. coli. Several studies suggest the screening
of isolates in a similar fashion.17,18 However, molecular tests are
not always available in laboratories and are relatively expensive
and often time-consuming.

The aim of this present study was to evaluate various diagnostic
approaches through determining the MICs of specific cephalospor-
ins, two commercial AmpC disc-diffusion confirmation tests
and WGS to develop an algorithm to detect pAmpC production in
ESBL-negative and cefoxitin-resistant E. coli.

Materials and methods

Overall study design

Three datasets consisting of E. coli cefoxitin-resistant and ESBL-negative
strains were identified. Most strains were suspected of having either a
pAmpC or a cAmpC resistance mechanism. All strains were subjected to
WGS to obtain the genotypes [pampC, campC, promoter mutations (hyper-
producer) and absence of both (negative)] and subjected to Etests and two
AmpC disc-diffusion confirmation tests. The training set contained a wide
variety of phenotypes and was used as input for constructing an algorithm
to classify the three genotypes (pampC, hyperproducer and negative). The
most accurate algorithm was selected as the final algorithm and validated

in two validation sets. Validation set 1 was used to validate the algorithm
and represents the epidemiology in a Dutch hospital setting. Due to a low
number of pampC-positive strains and restricted geographical background
we broadened the representation of suspect AmpC-producing isolates in
a second validation set (validation set 2). An extensive description of the
selection of samples in the training set, validation set 1 and validation set
2 can be found in the Supplementary Materials and methods (available at
JAC Online).

Etests and AmpC disc-diffusion confirmation tests
Deep-frozen samples of the selected strains were recultured on Columbia
III agar (BD Diagnostic Systems, Sparks, MD, USA) or blood agar (Media pro-
duction, Elizabeth-Tweesteden Hospital, Tilburg, the Netherlands) prior to
testing. Strains were tested using Etest (bioMérieux, Marcy-l’Étoile, France)
to determine the MICs of cefotaxime, ceftazidime and cefoxitin. Etests
were placed on Mueller–Hinton (Oxoid Ltd, Altrincham, Cheshire, England)
culture plates, which were placed in the oven within 15 min and incubated
for 16–20 h under an O2 atmosphere at 36�C. Exact MIC values were
noted. The presence of AmpC was phenotypically confirmed using the
AmpC Confirm Kit (Rosco Diagnostica A/S, Taastrup, Denmark) according to
the manufacturer’s guidelines. A second phenotypical confirmation with
the D68C AMPC ! ESBL detection set (MAST Group Ltd, Bootle, UK) was
performed according to the manufacturer’s guidelines. From both confirm-
ation tests the zone inhibition differences, measured in millimetres, were
recorded for further use.

DNA isolation, library preparation and DNA sequencing
For logistical reasons DNA isolation, library preparation and DNA sequencing
were performed at two different centres. For training and validation set 2,
bacterial DNA was extracted by a CTAB-based method and a paired-end
2%150 bp library was sequenced using an Illumina NextSeq500 sequencer
(Illumina, San Diego, CA, USA) (see the Supplementary Materials and meth-
ods). For validation set 1, bacterial DNA was extracted using the MagNA
Pure LC Total Nucleic Acid Kit - High Performance on a MagNA Pure LC
instrument (Roche Diagnostics International Ltd, Rotkreuz, Switzerland)
according to the manufacturer’s protocol. A 2%300 bp paired-end library
was sequenced on an Illumina MiSeq sequencer (Illumina, San Diego, CA,
USA) (Supplementary Materials and methods).

WGS analyses
Sequence reads were demultiplexed and merged to obtain fastq files for
each sample. Reads were quality assessed and adapter trimmed by
Trim_galore (version 0.4.1)19 followed by a custom NextSeq read cleaning
script to remove reads containing six or more As and Gs introduced by the
sequencing chemistry. Read coverage was calculated by dividing the
number of sequence bases for each sample by the length of E. coli K-12
strain C3026 (RefSeq: NZ_CP014272.1). Samples not exceeding 30% read
coverage were excluded for further analyses and samples containing
>120% read coverage were subsampled to 120%. Reads were de novo
assembled to create contigs by SPAdes (version 3.11.1)20 using default set-
tings and k-mer sizes 21, 41, 61, 81 and 101. MLST STs were derived from
the contigs using mlst (version 2.5 pubMLST, 31 October 2017).21,22

Plasmid-mediated ampC detection
To detect pampC genes, contigs were BLASTed (version 2.2.30!)23 against
the ResFinder database (2018-02-16)24 using abricate (version 0.5).25

Genes that had a coverage of �90% and a sequence identity >75% were
interpreted as present. To circumvent the absence of genes due to wrong
assembly, pampC genes were validated using KMA (version 0.14.3)26 with
the ResFinder database (2018–02-16), which is a method that uses raw
sequences as input. Genes were marked present if KMA matched >90%
coverage and >90% identity. Finally, pampC genes were considered present
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if both methods reported an identical gene and the strain was labelled
pampC accordingly.

Detection of ampC hyperproducer genotype
The promoter and attenuator region of campC was extracted from all sam-
ples to obtain a similar 271 bp fragment, as described by Peter-Getzlaff
et al.27 The sequence of each strain was aligned against the promoter/
attenuator region of the campC gene of the E. coli K-12 strain MG1655
(GenBank accession number U00096.3) using AliView (version 1.23).28

Strains were labelled cAmpC hyperproducer when promoter mutations
were found, as reported by Caroff et al.29 and Tracz et al.30

Creating an algorithm based on the training set
For the decision tree model, Recursive Partitioning And Regression Trees
(RPART), an R package (version 4.1-13), was used; this is an implementation
of Classification and Regression Tree (CART), a statistical technique to solve
classification problems, developed by Breiman et al.31 RPART was used to
create a decision tree model to classify strains based on Etest MICs, AmpC
Confirm Kit or D68C test results into a pampC, hyperproducer or negative
class. Model optimization and cross-validation were performed within the
caret R package (version 6.0-80) in R (version 3.5.1).32 The RPART model
was trained to optimize for accuracy and by using seed 825 to be able to
reproduce model creation. The cross-validation was performed using a 10-
fold three-times-repeated cross-validation using the repeatedcv param-
eter. Student’s t-test was used to compare model performances (P=0.05).
A two-class model was derived from the three-class model by combining
the negatives with the hyperproducer class and recalculating the statistics.

Results

Training set

Between January 2014 and March 2018, 267 E. coli strains that
had cefoxitin MICs >8 mg/L and were ESBL negative were found in
the laboratory information management system at Radboudumc.
Out of these strains, 98 were selected for further testing. Eleven of
these strains could not be retrieved from the freezer and three
strains were identified as not being E. coli by MALDI-TOF MS. This
resulted in a training set of 84 E. coli strains. MICs determined using
the BD Phoenix System indicated that the training set likely con-
sisted of a wide variety of different resistance phenotypes. A sub-
stantial proportion of strains were resistant to both ceftazidime
and ceftriaxone (42.9%, n=36) (Table 1), 20 strains (23.8%) were
susceptible to 3GCs and 28 strains (33.3%) were intermediate or
resistant to at least one of the 3GCs. WGS results revealed that 32
of 84 E. coli strains (38.1%) contained blaCMY-2 and 29.8% (n=25)
showed known mutations in the ampC promoter region and were
therefore labelled as hyperproducers, 20.2% (n=17) were negative
for both pampC genes and mutations in the promoter region of
campC and were classified as negative (Figure S1A, available as
Supplementary data at JAC Online).

Validation sets 1 and 2

Validation set 1 consisted of 47 clinical E. coli strains. WGS results
showed that 72.3% (n=34) of the strains were hyperproducers
and 12.8% (n=6) were pampC and hyperproduction negative. Two
pampC variants were found, 12.8% (n=6) blaCMY-2 and 2.1% (n=1)
blaDHA-1 (Figure S1B). To cope with the low number of pampC-posi-
tive strains in validation set 1, validation set 2 (n=41) consisted of
pampC-positive strains with mainly blaCMY-2 (97.6%) (Figure S1C).

Genomic composition

In total, the 172 E. coli strains represented 75 different MLST STs, of
which ST131 (8.14%, n=14), ST38 (6.98%, n=12) and ST73
(6.98%, n=12) were the most prevalent. Furthermore, the STs of
13 strains were unknown (see Table S1). For the identification
of pampC genes we found that there was 100% concordance
between the tools abricate and KMA, which supports the accurate
detection of pampC genes from WGS data. Overall, in 172 E. coli
strains, blaCMY-2 was the most prevalent (45.3%) resistance
mechanism followed by hyperproducers (34.3%) (Figure 1).

Table 1. BD Phoenix System susceptibility of 84 E. coli strains in the
training set

Cefoxitin
(R>8 mg/L)a

Ceftriaxone
(S �1 mg/L;
R >4 mg/L)b

Ceftazidime
(S �1 mg/L;
R >4 mg/L)b n Percentage

R S S 20 23.81

R S I 13 15.48

R S R 8 9.52

R R S 1 1.19

R I I 1 1.19

R R I 1 1.19

R I R 4 4.76

R R R 36 42.86

total=84 total=100.00

R, resistant; S, susceptible; I, intermediate.
aMIC cut-off adapted from EUCAST guideline on detection of resistance
mechanisms v2.0.
bMIC breakpoints according to EUCAST clinical breakpoints for bacteria v.9.0.

4.1%
13.4%1.7%

0.6%

0.6%

n = 172

34.3%

45.3%

50%

40%

30%

20%

10%

0%

blaCMY–2

blaDHA–1

blaCMY–59

blaCMY–4 ; blaDHA–1

blaCMY–42

Hyperproducer

Negative

Figure 1. Clockplot showing the distribution of ampC genotypes in all
172 E. coli strains. The key is sorted in decreasing order of occurrence.
Half a circle indicates 50%; each genotype fills part of the circle to indi-
cate the percentage of each genotype.
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Etests and AmpC disc diffusion confirmation tests

By combining the WGS results with the Etest results, we found
higher median MICs of cefoxitin, ceftazidime and cefotaxime for
strains that harbour a pampC gene (cefoxitin median=256 mg/L;
ceftazidime median=10 mg/L; cefotaxime median=12 mg/L)
compared with hyperproducers (cefoxitin median=48 mg/L;
ceftazidime median=2 mg/L; cefotaxime median=1.5 mg/L)
and negatives (cefoxitin median=32 mg/L; ceftazidime
median=0.38 mg/L; cefotaxime median=0.38 mg/L) (Figure S2).
Furthermore, zone inhibition differences found with the AmpC
Confirm Kit showed higher zone inhibition differences in the
pampC strains (ceftazidime! cloxacillin versus ceftazidime
median=12 mm; cefotaxime! cloxacillin versus cefotaxime
median=8 mm) compared with negative strains (ceftazidime!
cloxacillin versus ceftazidime median=3 mm; cefotaxime! cloxa-
cillin versus cefotaxime median=1 mm). However, pampC-positive
strains showed more overlap with the hyperproducer group
(ceftazidime! cloxacillin versus ceftazidime median=8 mm;
cefotaxime! cloxacillin versus cefotaxime median=7 mm) as
compared with the AmpC-negative group (Figure S3). The boxplots
of the D68C test illustrate that there was no clear separation
between hyperproducer (D68C C-A median=15 mm; D68C D-B
median=14 mm) and pampC-positive strains (D68C C-A
median=15 mm; D68C D-B median=15 mm) based on zone inhib-
ition differences (Figure S4).

MICs in relation to the presence of different ampC
genes

A ridge plot was generated to visualize the Etest MICs for each
genotype for all 172 E. coli strains (Figure 2). The plot reveals that
negative strains showed MICs of ceftazidime of �4 mg/L and of
cefotaxime of �3 mg/L. For hyperproducers, MICs of ceftazidime
were predominantly in the range of 0.75–12 mg/L and cefotaxime
MICs were in the range of 0.38–4 mg/L. Isolates that harboured
blaCMY showed ceftazidime MICs of 1.5–256 mg/L and cefotaxime
MICs of 1.5–32 mg/L. In contrast, blaDHA-1-positive strains showed
lower MICs of 3GCs (ceftazidime 2–8 mg/L and cefotaxime
1–4 mg/L), which overlapped with MIC ranges for hyperproducing
strains.

Performance of susceptibility tests to predict ampC type

Training of the RPART model and the cross-validation on the train-
ing set (n=84) were performed to predict whether strains have a
negative, hyperproducer or pampC genotype. The model indicated
that training with Etest MICs performed best (Figure 3). It had the
highest average accuracy (0.83) and the performance was signifi-
cantly better than the AmpC Confirm Kit (0.73) and the D68C test
(0.67). Furthermore, cross-validation using Etest MICs resulted in
the smallest quartile, implying that the model could be extra sta-
ble when applied to other datasets. Therefore, we selected the de-
cision tree trained on Etest MICs as the final decision tree model to
test performance on training and validation sets.

Model description and performance

The final RPART model contained two decisions and perfor-
mance was evaluated on the training set (n=84). In the first

decision—cefotaxime with an MIC of�6 mg/L for all pampC strains
(n=42)—34 were correctly classified as pampC positive (n=34/42).
In the second decision, samples with cefotaxime MIC <6 mg/L
were divided by a cefotaxime MIC breakpoint of 0.50 mg/L. With
an MIC breakpoint of cefotaxime <0.50 mg/L, 16 strains were cor-
rectly classified as negative (n=16/17). With a cefotaxime MIC
�0.50 mg/L, all hyperproducer strains except one were correctly
classified as hyperproducers (n=24/25). However, nine strains
categorized as hyperproducers were either negative (n=1/17) or
pampC positive (n=8/42) (Figure 4). This resulted in an overall
model accuracy of 0.88 (95% CI=0.79–0.94) (Table 2). From an in-
fection control perspective, it is most important to distinguish
pampC from non-pampC. Therefore, we recalculated the perform-
ance from a three-class model to a two-class model. The negative
and hyperproducer classes were merged to a non-pampC class.
The two-class model resulted in an accuracy of 0.90 (95%
CI=0.82–0.96) with a sensitivity and specificity of 0.81 (95%
CI=0.66–0.91) and 1.00 (95% CI=0.92–1.00), respectively (Table 2
and Table S2).

Model performance on validation sets

To perform a more extensive evaluation of the decision tree, the
model was tested by using two validation sets as input, as
described in the Materials and methods section. The performance
of the algorithm on validation set 1 (n=47) resulted in an accuracy
of 0.79 (95% CI=0.64–0.89) (Table 2). Using validation set
2 (n=41), the decision tree achieved an accuracy of 0.85 (95%
CI=0.71–0.94) (Table 2). More details on the performance of the
two- and three-class models can be found in the confusion matrix
in Table S2 and the confusion matrix in Table S3.

Discussion

To the best of our knowledge, this is the first study that combined
susceptibility testing, WGS and simple supervised machine
learning to develop a user-friendly algorithm to determine the like-
lihood of pampC in cefoxitin-resistant and ESBL-negative E. coli
strains (Figure 4). The decision tree requires a single cefotaxime
Etest as input, is easy to apply in most laboratory settings and
results in an accurate detection of pampC-positive strains.

Timely and more accurate identification of pampC isolates
improves infection control practices and minimizes unnecessary
and costly isolation measures. In the current setting a genotypic
confirmation is recommended to differentiate between pAmpC
and cAmpC production in cefoxitin-resistant E. coli as phenotypic
confirmation is not reliable.16 Our comparison of the AmpC
Confirm Kit, D68C test and Etests shows that disc-diffusion zone
differences are useful to detect AmpC production in general,
but are inadequate to differentiate between pAmpC and cAmpC
production (Figures S2–S4). Therefore, rapid and accurate differen-
tiation is needed to further improve infection control policies.
Introducing an Etest in combination with the proposed algorithm
illustrates that accurate phenotypic detection and identification
of pampC harbouring E. coli is feasible.

A relationship between 3GC resistance and the presence
of pAmpC has been reported in the literature.17,18,33 Although
pAmpC-producing E. coli isolates in this present study showed
higher MICs of 3GCs than isolates without pampC genes, the
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distributions of MIC between pAmpC and hyperproducing cAmpC
isolates overlap. This overlap was mainly caused by the E. coli
strains that produced DHA-1 enzymes. Edquist et al.18 also
concluded that clinical resistance to cefotaxime and/or ceftazi-
dime as a screening criterion for pAmpC might be useful, although
discriminatory performance was more prominent when using disc

diffusion as compared with MIC testing by Etest strips. In their
study, a multiplex PCR was performed to detect pampC genes, but
there was no verification for cAmpC hyperproducers in the strain
collection used. Our WGS results reliably show that phenotypic
hyperproduction of cAmpC b-lactamase can be caused by muta-
tions in the ampC promoter region.18 No conclusions can be drawn
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Figure 2. Ridge plot of Etest MICs for 172 E. coli strains grouped by genotype. The x-axis indicates MICs in mg/L. The left-hand y-axis indicates geno-
types of strains. The right-hand y-axis indicates number of counts for each MIC; counts are scaled for each Etest to enhance visibility. R, resistant;
S, susceptible. aMIC cut-off adapted from EUCAST guideline on detection of resistance mechanisms v2.0. bMIC breakpoints according to EUCAST
clinical breakpoints for bacteria v.9.0. This figure appears in colour in the online version of JAC and in black and white in the print version of JAC.
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about mutations resulting in elevated AmpC production, in add-
ition to previously mentioned mutations. However, there is evi-
dence that alterations of the AmpC b-lactamase34,35 or changes in
membrane permeability may lead to differences in cephalosporin
resistance.36 Further analysis on the incorrectly classified campC
isolates is needed to exclude causes of cephalosporin resistance,
other than the known promoter mutations.

ACT-1, DHA-1, DHA-2 and CMY-13 are inducible while other
pAmpC b-lactamases (such as CMY-2) are constitutively
expressed.8,9,37 Reisbig et al.37 previously reported that absence of
the ampD gene in combination with the inducible ACT-1 pampC
gene increased MICs of 3GCs. If we assume that the inducible
blaDHA group might have a similar mechanism, we would expect
higher ceftazidime and cefotaxime MICs in the absence of ampD;
our strains with blaDHA showed lower MICs of 3GCs compared with
the non-inducible blaCMY-2 genes, so we can infer that ampD might
be present; however, further analysis on the influence of ampD on
blaDHA expression is needed.

Additionally, Reisbig et al.37 described the contribution of
plasmid copy number of ACT-1 and MIR-1 pampC genes to 3GC re-
sistance. They concluded that plasmid copy number probably
impacts MIC values for pampC-positive strains; however, this was
not substantiated.38 We were able to accurately detect pampC-
positive strains even without measuring plasmid copy numbers.

A strength of the present study is that ST information on E. coli
in our datasets was provided, which made it possible to exclude
clonal origin, in contrast to other studies.17,18,33 Though ST131,
ST73 and ST38 predominated, a wide variety of STs was repre-
sented in our collection (Table S2). This is in line with other studies
that report higher prevalence of ST131 and ST73 in human
samples39,40 and ST38 in animal samples.41

blaCMY-2 is the predominant pampC gene in Enterobacterales in
the Netherlands, which is consistent with the number of blaCMY-2-
positive strains in our datasets.5,42 The CMY group, including
blaCMY-2, is the most prevalent pampC gene.8 It should be noted
that a higher prevalence of other pampC genes could influence al-
gorithm outcomes. For example, blaACC will be omitted because it
has a cefoxitin-susceptible phenotype.9 Moreover, blaDHA-1 was
included in our panels and use of the decision tree model resulted
in a lower discriminatory value for this pampC variant. So, our
decision tree is probably most optimal in settings with relatively
high amounts of blaCMY.

Strains from validation set 1 were only sequenced when D68C
was positive for AmpC. Analyses of the MICs for D68C-negative
samples illustrate that MICs of cefotaxime are <6 mg/L (Figure S5).
Moreover, it seems unlikely that these strains would have con-
tained pampC, as previous studies have shown high sensitivity and

1.0

P = 0.05 ***

****
NS

0.9

0.8

0.7

0.6

A
cc

ur
ac

y

0.5

0.4

0.3

0.2

0.1

0

Etests AmpC Confirm kit D68C

Figure 3. Boxplots of model performance. The x-axis indicates the
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Cut-offs are based on Etest values. CTX, cefotaxime; FOX, cefoxitin.

Table 2. Accuracy of final decision tree model trained using the 84 E. coli
strains of the training set on all datasets

Dataset n

Three-class
model, percentage
accuracy (95% CI)

Two-class
model, percentage
accuracy (95% CI)

Training set 84 0.88 (0.79–0.94) 0.90 (0.82–0.96)

Validation set 1 47 0.79 (0.64–0.89) 0.91 (0.80–0.98)

Validation set 2 41 0.85 (0.71–0.94) 0.85 (0.71–0.94)

Coolen et al.

3486

D
ow

nloaded from
 https://academ

ic.oup.com
/jac/article-abstract/74/12/3481/5554444 by U

niversity Library U
trecht user on 20 February 2020

https://academic.oup.com/jac/article-lookup/doi/10.1093/jac/dkz362#supplementary-data
https://academic.oup.com/jac/article-lookup/doi/10.1093/jac/dkz362#supplementary-data


specificity with the D68C test for the detection of AmpC
production.14,43

This present study focused on E. coli, being the most common
and well-studied pathogen.1 Nonetheless, there are other species
with inducible expression of campC, such as Enterobacter spp.,
Citrobacter freundii and Pseudomonas aeruginosa.8 Our study
outcomes may not be extrapolated to these other species.

In conclusion, the use of a cefotaxime MIC test is an inexpensive
and relatively quick method to detect pAmpC-producing E. coli.
Therefore, the proposed decision tree could serve as a good
alternative to EUCAST guidelines, which include cloxacillin synergy
testing in combination with PCR. A comparison between the two
algorithms in a clinical setting may be of interest for future studies.

WGS combined with machine learning algorithms is useful to
improve laboratory and infection control methods.44,45 We used a
simplified version of machine learning, which is directly applicable
in current settings. Results show great potential for further opti-
mization of present microbiological methods. Future work may
use an extensive amount of data and state-of-the-art machine
learning to improve accuracy of b-lactamase detection.
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40 Miajlovic H, Aogáin M, Mac Collins CJ et al. Characterization of Escherichia
coli bloodstream isolates associated with mortality. J Med Microbiol 2016; 65:
71–9.

41 Pietsch M, Irrgang A, Roschanski N et al. Whole genome analyses of
CMY-2-producing Escherichia coli isolates from humans, animals and food
in Germany. BMC Genomics 2018; 19: 601.

42 Den Drijver E, Verweij JJ, Verhulst C et al. Decline in AmpC b-lactamase-
producing Escherichia coli in a Dutch teaching hospital (2013-2016). PLoS One
2018; 13: e0204864.

43 Nourrisson C, Tan RN, Hennequin C et al. The MASTVR D68C test: an
interesting tool for detecting extended-spectrum b-lactamase (ESBL)-
producing Enterobacteriaceae. Eur J Clin Microbiol Infect Dis 2015; 34:
975–83.

44 Quainoo S, Coolen JPM, van Hijum S et al. Whole-genome sequencing of
bacterial pathogens: the future of nosocomial outbreak analysis. Clin
Microbiol Rev 2017; 30: 1015–63.

45 Nguyen M, Wesley Long S, McDermott PF et al. Using machine
learning to predict antimicrobial MICs and associated genomic
features for nontyphoidal Salmonella. J Clin Microbiol 2019; 57:
e01260-18.

Coolen et al.

3488

D
ow

nloaded from
 https://academ

ic.oup.com
/jac/article-abstract/74/12/3481/5554444 by U

niversity Library U
trecht user on 20 February 2020

https://github.com/tseemann/abricate
https://www.R-project.org/
https://www.R-project.org/

	dkz362-TF1000
	dkz362-TF1
	dkz362-TF2

