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CRISPR Craze to Transform Cardiac Biology
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Highlights
CRISPR is an easily accessible, versatile
and affordable genome editing tool. It
can be used to modify basically any as-
pect of gene regulation both in vitro and
in vivo.

Novel knock-in and knockout animal
models can be generated within
one generation using CRISPR-based
approaches.

Pathogenic variants can now easily be
Clustered regularly interspaced short palindromic repeats (CRISPR) has revolu-
tionized many research areas and has rapidly become the gold standard in
genome editing by outrivaling all other available tools. Its unprecedented versa-
tility creates the opportunity to modify any aspect of gene regulation. Even
though the cardiac field is starting to appreciate the potential of CRISPR, many
applications to study cardiac biology and disease so far have remained
untouched. In particular, CRISPR-based strategies that act independent of the
homology-directed repair pathway could help circumvent issues of modifying
the genome of postmitotic cardiomyocytes, which is currently limiting its utility
in the heart. Here, we review current applications and future potential for the
use of CRISPR to study cardiac biology and disease.
reverted or introduced in human induced
pluripotent stem cells, yielding isogenic
controls.

The modular nature of the CRISPR sys-
tem enables one to fuse it to essentially
any effector protein, thereby modulating
gene function.

Currently, many CRISPR-Cas applica-
tions remain unexplored for cardiac
biology.
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Genome Editing Tools to Tackle Cardiac Disease
Over the past decades, functional genomics has advanced our understanding of cardiac biology and
disease. Yet, cardiac disorders are among the leading causes of morbidity and mortality, according
to the World Health Organization information on cardiovascular disease (https://www.who.int/
cardiovascular_diseases/en/). Patients suffering from these disorders frequently show changes in
their genetic and epigenetic (see Glossary) landscape. However, the molecular pathways affected
by these transformations are often poorly understood. A better understanding of cardiac biology is
therefore necessary for the identification of disease-driving mechanisms and for the development
of novel therapeutics.

In the last two decades, the field of genome editing has advanced at great speed, yielding easily
accessible, versatile, and affordable tools to study biology and disease. In particular, the CRISPR
system has developed into a widely applied technology to modulate gene function in vitro and
in vivo [1–5]. The CRISPR genome editing tool, as we know it today, consist of the CRISPR-
associated protein Cas9 from Streptococcus pyogenes (SpCas9), which is an RNA-guided nucle-
ase that is directed to a specific genomic region by a single guide RNA (sgRNA) [6–8]. The only
prerequisite for proper binding of the Cas–sgRNA complex is the presence of a protospacer
adjacent motif (PAM) that is recognized by the PAM-interacting domain of the Cas9 protein
[9,10]. Upon binding, Cas9 creates a nick on the complementary and noncomplementary DNA
strand, thereby creating a double-strand break (DSB). Recently, a number of reports have revealed
that Cas9 tends to leave a single nucleotide overhang four nucleotides distal of the PAM sequence,
opposing the general idea that a blunt cut is created [11,12]. The DSB created by Cas9 will subse-
quently be repaired by endogenous repair mechanisms such as nonhomologous end-joining
(NHEJ) or homology-directed repair (HDR) (Figure 1). Importantly, researchers have demon-
strated that the HDR pathway can be used to insert any genomic sequence of interest into the
genome of the host by supplying an exogenous DNA sequence with homology arms [13–17]. The
latter can be used to knock in loxP sites, fluorescent proteins, SNP, or other regulatory sequences
(Figure 1). Detailed descriptions of the CRISPR system can be found elsewhere [18,19].

Also for the cardiac field, genome editing using CRISPR has accelerated the generation of new
insights into physiological and pathological cardiac biology. Here, we provide an overview of
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Glossary
Adeno-associated virus: small virus
often used for therapeutic purposes
because of its lack of pathogenicity.
Multiple serotypes exist varying in their
capsid protein composition and tropism.
Cardiotropic: attracted to and
functions in the heart.
CTCF looping sites: specific DNA
sequences bound by CTCF proteins.
Upon binding, these proteins bring two
DNA strands together, thereby forming
chromatin loops. The latter are essential
in the regulation of gene expression.
Enhancers: short regulatory DNA
sequences located upstream and
downstream of an associated gene.
Transcription factors can bind to these
sequences, consequently enhancing the
expression of the associated gene.
Epigenetics: includes all reversible
processes (e.g., histone modifications
and chromosome looping) that affect
gene expression but do not change the
genetic code.
Genome editing: controlled
manipulation of the genetic code of a cell
or animal. Genomic regions of interest
can be deleted, inserted, or replaced.
Homology-directed repair: process
by which a cell repairs a DNA DSB in the
presence of a repair template (e.g., sister
chromosome or exogenous DNA
strand). Only occurs during the S andG2
phases of the cell cycle.
Hypertrophic cardiomyopathy:
disease in which the heart muscle
becomes thickened.
Intraperitoneal injection: method
commonly used to inject a substance
(e.g., virus) into the body cavity of
animals.
Mosaicism: indicates that an individual,
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Figure 1. Mechanisms to Repair CRISPR-Induced DSBs. The sgRNA binds to the Cas nuclease, directing it towards
specific genomic regions. Upon localization, the Cas protein creates a DSB that is repaired via the NHEJ or HDR pathway
NHEJ-mediated repair occurs throughout the cell cycle and is error prone in the absence of a repair template, ultimately
resulting in small insertions or deletions at the cut site, thereby affecting gene function. The HDR pathway, in contrast, is a
high-fidelity repair mechanism that utilizes an endogenous (e.g., sister chromatid) or exogenous DNA template to
accurately repair the DSB. This property can be used to incorporate DNA elements of foreign origin, such as nucleotide
variants, tags and loxP sites. Abbreviations: DSB, double-strand break; gDNA, genomic DNA; HDR, homology-directed
repair; Indels, insertions/deletions; NHEJ, nonhomologous end-joining; sgRNA, single guide RNA.
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originating from a single fertilized egg, is
composed of multiple genotypes. For
example, CRISPR-mediated genome
editing may only affect a subpopulation
of cells, introducing multiple genotypes.
Nonhomologous end-joining: error-
the studies that have applied CRISPR to better understand cardiac disease mechanisms and list
anticipated developments that further optimize and broaden the use of the CRISPR toolbox in the
cardiac field.

The CRISPR Toolbox Applied in Cardiac Biology

In Vivo CRISPR-Cas Applications

prone process by which a cell repairs a
double-stranded DNA break in the

absence of a repair template. May occur
throughout the cell cycle.
Off-target (CRISPR-related):
biological activity of the CRISPR-Cas
system at unintended sites in the
genome. The result can either be
destructive or silent.
Postmitotic organ/cell: condition in
which a cell (e.g., adult cardiomyocyte) is
no longer capable of undergoingmitosis.
CRISPR-Cas has been exploited to alter gene function in somatic cells by delivering both Cas9
and a sgRNA to a desired cell population. Routinely, researchers utilized cardiotropic adeno-
associated virus (AAV) constructs to specifically deliver components of interest to the heart
(see Clinician’s Corner). For example, several groups demonstrated that AAV-mediated delivery
of Cas9 and a sgRNA could restore dystrophin expression in the heart in models of Duchenne
muscular dystrophy; a disease characterized by lethal degeneration of cardiac and skeletal
muscle (Figure 2A) [20–26]. Many of the above-mentioned studies utilized a dual-vector approach
in which the SpCas9 (4.2 kb) and the sgRNAs were delivered to the heart by separate AAV
constructs [20,24–26]. This allows one to easily modify the ratio of SpCas9 and sgRNA, which

Image of Figure 1


Pronuclear DNA injections: process
in which genetic material is injected into
the nucleus of a fertilized oocyte. This
methodology is often used for the
creation of transgenic animals.
Protospacer adjacent motif: short
DNA sequence adjacent to the genomic
region targeted by CRISPR-Cas. This
sequence is essential for proper
recognition by the Cas-effector protein
and initiates its cleavage activity.
SNP: change of a single nucleotide at a
specific position in the genome and
should be present in more than 1% of a
population. SNPs may drive disease
processes.
T-tubules: transverse invaginations of
the sarcolemma towards the center of
cardiomyocytes. Rich in ion channels,
transporters and pumps, hence they
fulfill an essential role in cardiac
contraction. Well-developed T-tubules
are characteristic of mature and
functional cardiomyocytes.
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Figure 2. Current Applications of CRISPR in Cardiac Biology and Disease. (A) Cas9 and sgRNAs targeting a gene o
interest can be delivered with a cardiotropic AAV construct to the postnatal heart of mice. Alternatively, genome editing o
cardiomyocytes can also be achieved by delivery of only a sgRNA to the heart of transgenic mice expressing Cas9. These
CRISPR-based methods enable one to interrogate gene function in adult cardiomyocytes, which previously was no
always possible due issues regarding embryonic lethality. (B) Biomaterial (e.g., fibroblasts) from healthy individuals o
patients diagnosed with a genetic cardiac disorder can be reprogrammed into hiPSCs. Subsequently, CRISPR can be
applied to revert the ‘disease-driving’ variant in mutant cells, yielding an isogenic control. In case patient material is no
available, one may utilize CRISPR to knock in the desired variant in healthy hiPSCs. Finally, the mutant line together with
the isogenic control can be differentiated into cardiomyocytes, followed by functional phenotyping at desired timepoints
(C) dCas9 fused to transcriptional effector proteins can be used to inhibit or stimulate gene expression of endogenous
genes in hiPSC-derived cardiomyocytes. Abbreviations: AAV, adeno-associated virus; CM, cardiomyocyte; CRISPR
clustered regularly interspaced short palindromic repeats; dCas9, dead Cas9; hiPSC, human induced pluripotent stem
cell; sgRNA, single guide RNA.

Trends in Molecular Medicine

Trends in Molecular
f
f

t
r

t

.

,

may turn out to be critical for efficient targeting. Additionally, several studies have used the
smaller Cas9 variant from Staphylococcus aureus (SaCas9; 3.2 kb), enabling one to pack
one or multiple sgRNAs together with the nuclease in the same AAV vector [21,22]. This
single-vector approach assures that a transduced cell receives all required components for
genome editing. With respect to Duchenne muscular dystrophy, both strategies are capable
of restoring dystrophin levels in the heart with similar efficiency [23]. While these studies
show therapeutic potential, future research will have to prove whether these strategies are
also applicable to other cardiac indications.
Medicine, September 2019, Vol. 25, No. 9 793
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To ensure that the presence of Cas9 is not limiting for studying gene function in cardiomyocytes,
Carroll and colleagues generated a transgenic mouse model in which the Cas9 gene was
expressed under the control of the cardiomyocyte-specific Myh6 promoter. In a proof-of-
principal experiment, the authors used the cardiotropic AAV9 to deliver a sgRNA targeting the
Myh6 locus via a single intraperitoneal injection and analyzed the hearts 5–6 weeks later
(Figure 2A). They observed robust transduction efficiencies (75%) and a marked decrease in
Myh6 expression, which was accompanied by severe cardiomyopathy and diminished cardiac
function [27]. Pu and colleagues used a similar CRISPR-Cas9-based strategy to partially deplete
nine different genes specifically in cardiomyocytes to investigate their role in T-tubulematuration.
In their approach, they delivered an AAV9 construct with cardiac troponin-T promoter-driven Cre
and multiple sgRNAs targeting a gene of interest to RosaCas9GFP/Cas9GFP neonatal mice. This
enabled them to demonstrate that junctophilin-2 is required for T-tubule stabilization in the failing
heart, and that ryanodine receptor-2 can function as a novel T-tubule maturation marker [28].
Utilizing the same methodology, this group also demonstrated that a tight regulation of serum
response factor activity during the mouse neonatal stages of development is essential for proper
cardiomyocyte maturation [29]. Although these results are promising, an additional study showed
that these strategies might not work for all targets due to redundancy or mosaicism in cellular
targeting. This study demonstrated that AAV9-mediated delivery of sgRNAs against Sav1 and
Tbx20 does not result in a cardiac phenotype, whereas targeting ofMyh6 caused severe cardiac
dysfunction [30]. Importantly, these studies demonstrated similar levels of gene disruption for all
these targets, underscoring the possibility that certain genes are more sensitive towards genetic
modifications than others (see Clinician’s Corner).

The use of CRISPR can also be beneficial for generation of mouse models. Traditionally,
researchers created knock-in and knockout animal models via pronuclear DNA injections
or via the injection of modified embryonic stem cells (mESCs) into the blastocyst. However, the
cloning strategies exploited to generate targeting constructs or modified mESCs are laborious,
ineffective, and expensive [31–33]. By now several reports have demonstrated that delivery of
recombinant Cas9 protein together with a sgRNA into the zygote of mice is effective in genome
editing [34–38]. Since this implies that a desired mouse model can be obtained within one
generation, the time required is reduced to roughly 1 month, instead of several months to a
year when standard cloning and targeting methods are applied. However, to the best of our
knowledge, so far there are no reports on mouse models designed with CRISPR to study the
heart.

While most of the cardiac-related genome editing studies with CRISPR-Cas9 so far have been
done in mice, the CRISPR toolbox has also been successfully applied for targeting the genome
of other species, such as rats [39–41], rabbits [42], pigs [43,44], zebrafish [45,46], dogs [25],
and even, although highly controversial, in human embryos (see Clinician’s Corner) [47,48].

In Vitro CRISPR-Cas Applications
Human induced pluripotent stem cells (hiPSCs) have transformed the field of cardiac biology and
have provided us with valuable disease models to help define pathogenic mechanisms underlying
cardiac disease [49]. A key advantage of hiPSCs is that they can be differentiated into basically
any cell type relevant to the heart. CRISPR can be used to correct or introduce disease-driving
mutations in hiPSCs to generate a suitable in vitro model to study pathogenic mutations with
appropriate controls (Figure 2B). The utility of using CRISPR-Cas to generate an in vitro model
of human heart disease was first shown by Liang and colleagues, who obtained hiPSCs
from two patients with type 1 Brugada syndrome (BrS) with two different mutations within the
sodium voltage-gated channel α subunit 5. BrS is a channelopathy characterized by an elevated
794 Trends in Molecular Medicine, September 2019, Vol. 25, No. 9
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precordial ST segment, ventricular fibrillation, and sudden cardiac death. This study demon-
strated that CRISPR-Cas9-mediated correction of the causative variant restored the disease
phenotype back to healthy conditions [50]. In a second study, Ang et al. used the CRISPR tool-
box to correct a heterozygous missense mutation in the cardiogenic transcription factor GATA4,
which is known to cause congenital heart defects [51]. The authors showed that this mutation
affected recruitment of TBX5 to cardiac super enhancers, which in turn resulted in de-
repression of noncardiac genes. This resulted in impaired cardiomyocyte contractility, calcium
handling, and metabolic activity, which was not observed in the isogenic control [51]. Also related
to hypertrophic cardiomyopathy (HCM), CRISPR-Cas9 was utilized to better understand
the disease mechanism. The authors created multiple hiPSC lines harboring the p.R453C
substitution in MYH7, which is one of the most affected proteins in HCM. When comparing the
diseased cells to the isogenic controls, they observed all the main hallmarks of HCM, including
multinucleation, sarcomeric disarray, and hypertrophy. Furthermore, the mutant cells showed
higher metabolic respiration activity, impaired calcium handling, and contraction force. The au-
thors concluded that their findings supported the energy depletion model proposed to be
involved in the progression of HCM [52]. In a similar study, Wu and coworkers utilized CRISPR-
Cas9 to correct two different MYBPC3 mutations implicated in HCM. Mutant hiPSC-derived
cardiomyocytes displayed the major hallmarks of HCM, which were absent in the isogenic control
cells [53]. Finally, Jehuda et al. corrected a missense mutation in the PRKAG2 gene that is in-
volved in HCM. Abnormal firing patterns, delayed after-depolarizations, and structural defects
were observed in mutant cardiomyocytes but not in isogenic control cardiomyocytes [54].

Together, these studies demonstrate the value of CRISPR-Cas-mediated reversion or knock-in of
mutagenic variants in hiPSC lines, thereby excluding confounding effects due to differences in
pluripotency, genetics, sex, and differentiation capacity [55].

Catalytically Dead Cas9 to Modulate Gene Expression
Recently, a catalytically inactive variant of Cas9 (dCas9) has been exploited to modulate gene ex-
pression by fusing it to several effector proteins (Figure 2C). For example, Qi and colleagues fused
dCas9 to the transcriptional inhibitor Kruppel-associated box (KRAB) and successfully disrupted
gene expression in human cells [56]. More recently, Yue and colleagues applied this system to
knock down the mutant and wild-type allele of CALM2 in hiPSC-derived cardiomyocytes of a
patient harboring a heterozygous dominant negative mutation (D130G) in this gene. This variant
is associated with calmodulinopathy, a disease characterized by severe long QT syndrome due
to impaired Ca2+/Calmodulin-dependent inactivation of L-type Ca2+ channels [57]. Importantly,
CRISPR-mediated knockdown of CALM2 resulted in restoration of the phenotype.

Besides gene inactivation, dCas9 can also be exploited to enhance gene expression by fusing
it to transcriptional activators (Figure 2C). For example, dCas9 was fused to the transcriptional
activator domain VP64, which resulted in robust activation of gene expression in human cells
[56]. In order to enhance transcriptional activation of endogenous genes, more complex activa-
tion systems were developed [58–60]. In one system, robust activation of gene expression was
achieved by fusing dCas9 to a tripartite consisting of the VP64, p65, and Rta activator domains
[58]. In addition, several groups used optogenetics to modify these activation systems, making
them inducible and reversible simply by the use of a laser [61–63]. However, these approaches
to enhance gene expression have not been used in cardiac studies.

Current Developments to Improve and Expand the CRISPR Toolbox
While the use of CRISPR has been limited in the cardiac field so far, additional improvements and
broadening of its utility will increase enthusiasm for using CRISPR-Cas as a research tool.
Trends in Molecular Medicine, September 2019, Vol. 25, No. 9 795
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Reducing Off-Target Cleavage of CRISPR

An ongoing improvement in the CRISPR field is the reduction in off-target effects. Even though
sgRNAs are designed to specifically target a unique genomic region, multiple reports demon-
strate that mutations occur at other regions than the desired target site [64–66]. However, the
rate of CRISPR-induced off-target mutations is unclear, and likely depends on the nature of a
particular sgRNA and the biological context in which one wants to modify a desired target
[67–73]. This is a major concern for the scientific and medical community as they could uninten-
tionally alter the expression or change the function of unrelated genes.

Recently, a novel methodology termed GUIDE-Seq (genome-wide unbiased identification
of DSBs enabled by sequencing) was developed, which makes use of a modified oligo that
labels CRISPR-induced DSBs. The authors investigated multiple sgRNAs and compared their
computational predicted off-target sites with the CRISPR-induced DSBs observed with
GUIDE-Seq. Strikingly, many of the off-targets identified by GUIDE-Seq were not among the
expected off-targets, suggesting that the predictive power of these computational programs is
inadequate [74].

To increase the reliability and specificity of CRISPR as a genome editing tool, several approaches
are currently being tested to reduce the number of off-target events. Shen and colleagues dem-
onstrated that the use of a Cas9 nickase, of which one of the two endonuclease subunits of
SpCas9 is inactivated, resulted in efficient on-target cleavage but without detectable off-target ef-
fects [75]. In another approach, structure-guided protein engineering was successfully used to in-
crease the specificity of SpCas9 [76]. Kleinstiver and colleagues reasoned that off-target events
could be minimized by reducing the number of nonspecific interactions between the SpCas9–
sgRNA complex and its DNA target. Indeed, GUIDE-Seq demonstrated a marked reduction in
off-target events for the SpCas9–High-Fidelity variant 1 (SpCas9-HF1), which contains four
amino acid substitutions (N497A/R661A/Q695A/Q926A) compared to SpCas9. Slaymaker
et al. developed a different Cas9 variant, termed enhanced specificity SpCas9 [eSpCas9(1.1)],
in which the positively charged nontarget strand groove was neutralized [77]. They hypothesized
that neutralization of this groove would attenuate the helicase activity of Cas9 when bound to an
off-target site due to less-favorable energetics. Unbiased whole-genome off-target analysis and
targeted deep sequencing revealed that the eSpCas9(1.1) variant had reduced off-target
effects but maintained efficient on-target cleavage activity [77]. In an effort to better understand
the mechanism underlying the improved specificity, Chen et al. performed a series of biochemical
assays, which revealed that the SpCas9-HF1 and eSpCas9(1.1) variants, upon binding to an off-
target site, remained trapped in an inactive state, suggesting that the threshold for activation was
raised [78]. The authors subsequently identified the REC3 domain of Cas9 as an effector domain
that proofreads RNA/DNA heteroduplexes and is required for HNH nuclease domain activation.
These structural insights led to the development of a hyperaccurate Cas9 variant (HypaCas9)
that contains amino acid substitutions in the REC3 domain. These substitutions improved
Cas9 target discrimination and reduced the number of off-target cuts as demonstrated by
GUIDE-Seq [78].

Genome Editing in Postmitotic Tissues
Originally genome modifications via the HDR-machinery required DNA replication to allow for the
incorporation of exogenous repair templates [79]. As the heart is a postmitotic organ, HDR-
mediated repair of CRISPR-induced DSBs rarely occurs and might not be relevant [80].

Recently, a novel methodology, termed homology-independent targeted integration (HITI), was
developed that supports the integration of exogenous DNA into the genome of nondividing
796 Trends in Molecular Medicine, September 2019, Vol. 25, No. 9
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cells in a HDR-independent manner [81]. This strategy relies on NHEJ-based ligation of CRISPR-
Cas9-induced DSBs. By supplying a donor sequence the authors demonstrated robust integra-
tion into the targeted genomic locus. In particular, HITI showed a threefold higher knock-in
efficiency relative to HDR-based integration events in the neonatal heart.

In another approach, dCas9 was fused to several base pair deaminases. These fusion pro-
teins allow for precise base editing in the absence of a DSB and a repair template, thereby
reducing the risk on complex DNA rearrangements [82,83]. Importantly, these base editors
act independently from the HDR machinery and may provide a way to edit specific bases in
postmitotic cells such as cardiomyocytes (Figure 3A, Key Figure). In an elegant report,
dCas9 was fused to APOBEC1, a cytidine deaminase allowing the conversion of a C*G
base pair to a T*A base pair [84]. Importantly, this fusion protein only acts on single-stranded
DNA, hence the likelihood that random base pair conversions occur is low. One year later,
Gaudelli et al. used directed evolution to generate an adenosine deaminase fused to dCas9,
which is capable of acting on DNA [85]. They demonstrated that this fusion protein achieves
high rates of A*T to G*C conversion in human cell lines. Together, the cytidine and adenosine
deaminase base editors are able to convert all known base pair conformations, holding great
potential for the correction of hereditary cardiac diseases.

A natural occurring variant in the Pcsk9 gene, observed in African Americans, reduces the risk of
coronary heart disease by a striking 88% [86]. Musunuru and coworkers have exploited the base
editor system to introduce this variant in mice. They demonstrated efficient conversion of a base
pair in the Pcsk9 gene upon delivery of a vehicle containing dCas9 fused to a cytidine deaminase
and a sgRNA to the liver. After conversion, they observed a 50% and 30% reduction in PCSK9
and cholesterol levels in plasma, respectively. Importantly, the researchers did not observe any
base editing or indel events at predicted off-target sites as determined by next-generation DNA
sequencing [87]. This observation, however, is in disagreement with recent reports that revealed
extensive off-target events at the DNA and RNA level for cytidine deaminases fused to dCas9 [88,
89]. One explanation for this discrepancy is the difference in detection method used. Zuo et al.
exploited a novel method termed genome-wide off-target analysis by two-cell embryo injection
(GOTI) that allows one to interrogate the off-target effects of a sgRNA in the progeny of genome
edited blastomeres [88]. The latter facilitates the detection of off-target events and contrasts other
approaches that aim to detect these type of events in mixed cell populations. Importantly, these
reports underscore the need for a gold standard for the detection of off-target events. Further-
more, base editors have been the subject of extensive tweaking to improve specificity and effi-
ciency in human cells, which is key in understanding and reducing off-target events [90].

Together, these approaches provide exciting opportunities to modify the genome of noncycling
cells, such as cardiomyocytes. Nevertheless, is has to be seen how effective these strategies
will be to modify the adult heart. On the contrary, the application in vitro should be more straight-
forward and will likely yield numerous publications in the near future.

Epigenetics and Chromatin Looping
Gene expression is not only influenced by transcriptional activators and repressors but also by the
epigenetic state of the cell (Figure 3B,C). DNA methylation and histone modifications are forms of
epigenetic modifications that have profound impacts on the epigenetic landscape. In addition,
over the years it has also become clear that the 3D chromosome confirmation and density are
key aspects in gene regulation, adding yet another layer of complexity. Recently, CRISPR has
also been used to induce epigenetic changes and influence chromosomal arrangements; some
examples are outlined below.
Trends in Molecular Medicine, September 2019, Vol. 25, No. 9 797



Clinician’s Corner
Cas9 of Streptococcus pyogenes
and Staphylococcus aureus are the
most widely used proteins to modify
and modulate cell function. However,
it has been shown that the majority
of humans harbor a pre-existing
anti-Cas9 immunity, which obviously
hampers the efficacy of potential
CRISPR-based therapeutics [102].
Nonetheless, optimizing the type of
delivery vector, dose, administration
route and/or utilizing immunosuppres-
sants might aid in minimizing the immu-
nogenicity towards Cas9-expressing
cells in vivo.

Cardiotropic AAV vectors are the gold
standard to deliver CRISPR compo-
nents to cardiomyocytes in vivo.
Nevertheless, adult cardiomyocytes
are recognized as nondividing cells,
hence the viral vector is expressed
throughout the lifespan of infected
cells due to its episomal nature. Re-
cently, Gersbach and coworkers
addressed the long-term effects of
AAV-mediated delivery of Cas9 and
sgRNAs in a mouse model of
Duchenne muscular dystrophy [103].
Even though the expression of Cas9
and the sgRNAswas barely detectable
1 year after administration, sustained
expression of dystrophin was ob-
served. Furthermore, the authors re-
vealed a host response to Cas9 and
demonstrated that CRISPR-Cas9-
induced DSBs may induce AAV inte-
gration at unintended genomic loci.
To combat these potential adverse
effects, non-viral-based methods are
currently being developed [104].

At present, CRISPR-mediated ge-
nome modification rates in the heart
are below 20% [27,28,30]. Depending
on the target, these editing rates
might be insufficient to alter functional
outcome. Alternatively, ex vivo modifi-
cation of patient-derived hiPSCs
followed by directed differentiation to-
wards cardiomyocytes yields a homo-
geneous cell population. Subsequent
transplantation of these modified
cells into the heart of a patient might
therefore be a more effective strategy.
However, studies comparing these
methods side by side are lacking.

Several groups successfully applied
CRISPR to correct disease-causing
variants in human embryos, paving

Key Figure

Future Applications of CRISPR in Cardiac Biology
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Figure 3. (A) CRISPR base editors provide a means to precisely modify base pairs at any desired genomic region in the
absence of a double-strand break. In this strategy, dCas9 is fused to either a cytosine or adenosine deaminase which
allows the conversion of a cytosine to thymine or an adenine to a guanine, respectively. (B, C) Novel CRISPR-based
approaches provide opportunities to modulate the cardiac epigenetic landscape in vitro and in vivo. (B) High abundance o
methylated cytosines in the promoter region is associated with gene repression, which can be modulated by dCas9 fused
to methyltransferases or members of the ten–eleven translocation methylcytosine dioxygenases. Histone acetylation is
associated with gene activation, which can be elevated or decreased by fusing dCas9 to histone acetyltransferases o
deacetylases, respectively. (C) Genes in close proximity to the nuclear envelope are often repressed. To study the
underlying processes, a CRISPR-based strategy can be used to loop desired genomic regions to the nuclear envelope
To achieve this, EMERIN, a protein residing in the NE, is fused to PYL1, whereas dCas9 is fused to ABI. Upon addition o
abscisic acid (ABA, chemical inducer), these complexes bind to each other, thereby reorganizing the chromatin
landscape. This process can be reversed by removal of ABA from the system. Abbreviations: ABI, ABA insensitive 1; Ac
acetylation; dCas9, dead Cas9; Me, methylation; NE, nuclear envelope; PYL1, pyrabactin resistance (PYR)/PYR1-like
protein 1.
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the way for so-called designer babies
[47,48]. Even though these reports
are exciting and hold therapeutic po-
tential, they also bring many ethical
dilemmas. Developments concerning
CRISPR are actively discussed in soci-
ety and proper regulation should be in
place to avoid misusage [105].
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Methylation of the fifth carbon of cytosine (5mC) in the DNA of mammalian cells is consid-
ered to be a repressive mark of gene regulation. For example, elevated levels of 5mC are
often observed at CTCF looping sites and in the promoter regions of repressed genes
and vice versa. Jaenisch and coworkers used dCas9 fused to DNA methyl transferase of
eukaryotes to methylate a specific CTCF looping site in the genome, thereby preventing
CTCF from binding and altering the expression of genes in the neighboring loop [91]. On
the contrary, dCas9 fused to the ten–eleven translocation 1 (TET1) protein, a demethylase,
is sufficient to induce robust demethylation in promoter, enhancer, and CTCF loci
(Figure 3B) [92,93].

Genomic DNA is tightly wrapped around nucleosomes that consist of four histone pro-
teins. These histones, in turn, can be modified by chromatin modifiers, which methylate,
acetylate, and ubiquitinate certain residues, thereby altering the epigenetic state of the
associated region. Hilton et al. utilized the p300 histone acetyltransferase fused to
dCas9 as tool to activate gene expression by targeting promoters, proximal and distal
enhancers [94]. Furthermore, robust histone demethylation of enhancers was observed
when dCas9 was fused to LSD1. With this tool the authors interrogated the functionality
of numerous enhancers in embryonic stem cell fate (Figure 3B) [95]. More recently, a sec-
ond-generation CRISPR-based chromatin-modifier tool, termed FIRE-Cas9, was devel-
oped by Crabtree and coworkers [96]. The authors aimed to increase the speed by
which chromatin modifiers are recruited to targeted genomic loci. To achieve this, they
developed an Fkbp/Frb inducible dimerization system, which consists of two modules.
In one module Frb (Fkbp–rapamycin-binding domain of mTor) is fused to a subunit of a
chromatin remodeling complex (e.g., Hp1/Suv39h1 or SS18), and the other module com-
prises the Fkbp (FK506 binding protein) domain fused to a bacteriophage MS2 anchor.
Upon addition of rapamycin, these two modules tether to each other and are directed
to specific genomic loci by the dCas9–sgRNA complex. Importantly, in contrast to the
first generation of CRISPR-based chromatin-modifier tools, this approach recruits endog-
enous chromatin remodelers. For example, FIRE-Cas9-mediated recruitment of the BAF
complex to the Nkx2.9 locus resulted in a significant increase in gene expression just 1
h after addition of rapamycin, compared to several days achieved with the first generation
of chromatin-modifier tools [96].

The spatial organization of the genome regulates gene expression. For example, looping of
genomic regions to the nuclear periphery is associated with repression of gene expression,
whereas looping towards the nuclear interior with transcriptional activation (Figure 3C). However,
the relation between looping of specific genomic loci to these compartments is not entirely clear.
Wang et al. interrogated the function of specific DNA elements by looping them to one of the
above-mentioned compartments [97]. To achieve this, the authors developed a novel tool,
termed CRISPR-genome organizer (CRISPR-GO), for which they utilized the abscisic acid
(ABA)-inducible pyrabactin resistance (PYR)/PYR1-like protein 1 (PYL1) and ABA insensitive 1
(ABI) dimerization system. On the one hand, the ABI domain was fused to dCas9, and on the
other hand, the PYL1 domain was fused to GFP-tagged EMERIN, which is a protein residing in
the nuclear envelope. Upon addition of ABA, the authors observed a significant increase in reor-
ganization events of targeted regions to the nuclear envelope, which was paralleled by a decrease
in gene expression.

Also for the heart, epigenetic regulation and chromosomal (re)arrangements are of importance for
development and disease [98–101]. For this reason, it is expected that the above-mentioned
CRISPR-based applications for the heart could have far-reaching implications.
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Outstanding Questions
Contradicting reports regarding the
rate of off-target effects exist. In addi-
tion, most of these studies has been
performed in an in vitro setting, and
therefore it has to be seen how well
these results correlate with the in vivo
situation.

CRISPR-mediated genome editing in
adult cardiomyocytes in vivo is chal-
lenging due to ineffective delivery
systems.

Genome editing of cardiac endothelial
cells, fibroblasts, and macrophages is
challenging due to the heterogeneity
of these cell types. Identification of
unique biomarkers is key to selective
targeting of cardiac subpopulations. If
successful, many novel research lines
can be initiated.

Trends in Molecular Medicine
Concluding Remarks
Whether it is the generation of novel (animal) models or the regulation of gene expression by alter-
ing the 3D chromosome conformation, CRISPR can do it due to its versatile nature. The simplic-
ity, precision, and efficiency by which CRISPR can modulate all aspects of gene expression are
great and will undoubtedly expand even further.

Thus far, the cardiac field has barely touched the extensive possibilities of CRISPR, resulting in
only a limited number of publications. These studies mainly applied CRISPR to genetically modify
cardiomyocytes or hiPSCs and did not fully explore all opportunities provided by this tool. Its ex-
tensive utility guarantees it will gain ground and become a widely used tool for many different
reasons.

However, despite all the excitement surrounding CRISPR-Cas, we should remain aware of
potential issues, such as off-target effects and ethical concerns (see Outstanding Questions).
This issues are becoming more relevant now that CRISPR-Cas is entering the clinical arena as
a new therapeutic approach to modulate the genome during disease.
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