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Purpose: To study the influence of gradient echo–based contrasts as input channels 
to a 3D patch‐based neural network trained for synthetic CT (sCT) generation in 
canine and human populations.
Methods: Magnetic resonance images and CT scans of human and canine pelvic 
regions were acquired and paired using nonrigid registration. Magnitude MR im-
ages and Dixon reconstructed water, fat, in‐phase and opposed‐phase images were 
obtained from a single T1‐weighted multi‐echo gradient‐echo acquisition. From this 
set, 6 input configurations were defined, each containing 1 to 4 MR images regarded 
as input channels. For each configuration, a UNet‐derived deep learning model was 
trained for synthetic CT generation. Reconstructed Hounsfield unit maps were evalu-
ated with peak SNR, mean absolute error, and mean error. Dice similarity coefficient 
and surface distance maps assessed the geometric fidelity of bones. Repeatability 
was estimated by replicating the training up to 10 times.
Results: Seventeen canines and 23 human subjects were included in the study. 
Performance and repeatability of single‐channel models were dependent on the TE‐
related water–fat interference with variations of up to 17% in mean absolute error, 
and variations of up to 28% specifically in bones. Repeatability, Dice similarity coef-
ficient, and mean absolute error were statistically significantly better in multichannel 
models with mean absolute error ranging from 33 to 40 Hounsfield units in humans 
and from 35 to 47 Hounsfield units in canines.
Conclusion: Significant differences in performance and robustness of deep learning 
models for synthetic CT generation were observed depending on the input. In‐phase 
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1 |  INTRODUCTION

The combined use of MRI and CT has proven useful in radio-
therapy planning,1 orthopedics,2,3 and for PET/MR atten-
uation correction.4 Magnetic resonance imaging provides 
images with a high soft‐tissue contrast required for soft‐tissue 
delineation. Computed tomography scans provide tissue radi-
odensity maps—a property expressed in Hounsfield units 
(HU)—that poorly discriminate soft tissues, but are perfectly 
suited to visualize osseous tissues and enable the calcula-
tion of dose and attenuation coefficient maps. Despite hav-
ing benefits, the consecutive imaging sessions increase the 
patient burden and introduce complex workflows with error‐
prone intermodality registration and extra costs, which moti-
vate research into MR‐only workflows. In such workflows, 
HU maps are reconstructed based on MR information. No 
intermodality registration is required, and there is a perfect 
voxel‐wise correspondence among all of the MR‐generated 
information. The main challenge resides in the accurate 
retrieval of HU values from MR images that do not directly 
measure radiodensity.

Many different techniques to generate a CT surrogate, 
referred to as synthetic CT (sCT), have been developed in 
recent years, primarily in the pelvis and head for radiotherapy 
treatment planning5-7 and for PET/MR purposes.8-11 A recent 
study12 has also been proposed in the lower arm for orthope-
dic purposes. These techniques can roughly be categorized 
as atlas‐based9,13 methods or voxel‐based14-19 methods, which 
include deep learning methods. They use different images as 
inputs, including acquired T1‐weighted,9,16 T2‐weighted,13,14 
ultrashort TE17,18 or zero‐TE8 (ZTE) images, reconstructed 
Dixon17 images, or combinations of these.15,19 Dixon‐based 
techniques have been used, as they facilitate water and fat sep-
aration, simplifying soft‐tissue HU assignment. Proton density– 
weighted ZTE images depict cortical bone with a specific low 
signal, potentially simplifying its identification.20-22

In parallel to the use of specialized and combined MR 
images, processing techniques have also expanded to involve 
statistical17 and machine learning models,14 with recent ad-
vances in deep learning.6,10,12,23-31 Recent studies23,25,31 have 
shown that deep learning–based models generate equivalent 
or better sCTs than more conventional methods. Particularly 
encouraging results were obtained for radiotherapy treatment 
planning purposes6,7 and PET/MR10,11,24,29 while using auto-
mated workflows. Most studies using deep learning exploit 

only single images obtained from a T1‐weighted gradient‐
echo acquisition.24-27 Recently, the information content of 
gradient‐echo images was further exploited by using Dixon 
reconstructions from multi‐echo gradient‐echo acquisitions 
as inputs to a neural network.6,11 Furthermore, proton den-
sity–weighted ZTE images have been used in the last few 
years10,29 to facilitate the discrimination between cortical 
bone and air, despite a potentially limited benefit.32

Intuitively, the performance of deep learning models is in-
fluenced by the data by which they are trained and evaluated. 
We hypothesize that combinations of MR images obtained 
from gradient‐echo experiments could provide the neural net-
work with additional information about tissue composition 
including proton density, water and fat fractions, as well as 
magnetic properties such as relaxation constants (T1, T∗

2
) and 

susceptibility.33 These properties may be particularly useful 
for the task of mapping MR data into HU values. However, 
the exact impact of these combinations of MR images, re-
ferred to as MR input configurations for the remainder of this 
paper, is unknown.

Therefore, in this study, we trained deep learning–based 
models using several MR input configurations with varied 
information about these properties. Each input configura-
tion contained 1 or several images acquired or reconstructed 
from a T1‐weighted multi‐echo gradient‐echo sequence. 
Synthetic CTs generated by each model were evaluated using 
voxel‐wise and image‐based similarity metrics. Models were 
trained independently on 2 data sets to assert the robustness 
of the results to changes in acquisition parameters and phys-
iological variations. Replications of the training assessed its 
repeatability and the statistical significance of the differences 
seen in the metrics.

2 |  METHODS

2.1 | Data collection
The reported study was performed on images of the pelvic 
region of canine (ex vivo) and human (in vivo) populations. 
The canine population provides a natural animal model for 
osteoarthritis34 and hip dysplasia.35 For conservation pur-
poses, the dogs were frozen and removed from the freezer 
2 days before the scanning.

The canine data set consisted of 18 domestic dogs 
(5 males and 13 females) that deceased of natural causes 

images outperformed opposed‐phase images, and Dixon reconstructed multichannel 
inputs outperformed single‐channel inputs.

K E Y W O R D S
deep learning, gradient echo, MR contrasts, synthetic CT
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and were admitted to the veterinary department for scien-
tific purposes. The MR images were acquired in a fixed su-
pine position in a 1.5T scanner (Ingenia; Philips Healthcare, 
Best, Netherlands) using a 3D RF spoiled T1‐weighted mul-
tiple gradient‐echo (T1w‐MGE) sequence. The following 
parameters were used during the acquisition: TE = 2.03 ms/ 
4.28 ms, TR = 6.7 ms, flip angle = 20°, FOV = 270 × 270 ×  
120 mm3, acquired voxel size = 1 × 1 × 1.34 mm3, recon-
structed voxel size = 0.6 × 0.6 × 0.67 mm3, bandwidth = 
541 Hz/px, and acquisition time = 4 minutes 38 seconds.

The human data set consisted of 27 male patients di-
agnosed with prostate cancer who underwent intensity‐
modulated radiotherapy. The T1w‐MGE MR images were 
acquired in a head‐first supine position on a flat table in a 
3T scanner (Ingenia; Philips Healthcare). A coil bridge and 
a knee wedge guaranteed similar positioning between MRI 
and CT scanning. The images were acquired in 2 minutes 38 
seconds with TR = 6.5 ms, TE = 2.1 ms/3.5 ms/4.8 ms, band-
width = 1122 Hz/pixel, FOV = 435 × 435 × 160 mm3, flip 
angle = 10º, acquired voxel size = 1.2 × 1.2 × 2 mm3, and 
reconstructed voxel size = 0.97 × 0.97 × 1 mm3.

For both acquisitions, 1 echo was acquired almost in 
phase (aIP—first echo for the human data set acquired at 3 T 
and second echo for the canine data set acquired at 1.5 T)  
and 1 almost opposed phase (aOP—second echo for the 
human data set, first echo for the canine data set). A Dixon 
reconstruction36,37 was performed on the scanner to obtain 
in‐phase (IP), opposed phase (OP), fat only (F), and water 
only (W) images for all subjects.

The CT scans (Brilliance CT Big Bore; Philips 
Healthcare) were acquired with a slice spacing of 0.7 mm 
and a pixel spacing ranging from 0.3 mm to 0.7 mm in the 
canine data set. Tube current ranged from 30 mA to 66 mA. 
For the human subjects, the CT slice spacing was 3 mm, 
and the pixel spacing ranged from 0.8 mm to 1.12 mm. 
Tube current ranged from 62 mA to 154 mA. For both data 
sets, tube voltage was 120 kV. Less than an hour separated 

the acquisitions on both modalities. Figure 1 provides 
samples of both data sets.

We excluded scans that contained foreign metallic body 
inside or in the surroundings of the FOV, as they could 
cause artifacts in either modality. All images were acquired 
in accordance with the regulations from the local ethical 
committee.

By working on these 2 data sets, we confirmed the 
robustness of the findings to variations in acquisition pa-
rameters and physiology. In addition, the in‐phase and op-
posed‐phase images were acquired at different TEs on both 
data sets, providing insight on the effect of T∗

2
 decay on the 

model.

2.2 | Input configurations
Six input configurations were investigated in the study, each 
containing 1, 2, or 4 channels. Here a channel refers to an 
MR image obtained from the single T1w‐MGE acquisition. 
In particular, we investigated the 2 first acquired echoes (aIP 
and aOP) and the Dixon reconstructed IP, OP, W, and F im-
ages. These images were combined into 6 input configura-
tions called aIP, aOP, Dual, IPOP, WF, and Dixon, which are 
defined in Figure 2. The input configurations were designed 
to study the influence of several properties of the tissues in-
cluding T∗

2
 weighting (aIP and aOP), water–fat interference 

(aIP and aOP), and water–fat decomposition (WF), and to 
compare the acquired images (Dual) against Dixon recon-
structed images (IPOP).

Because each image within an input was considered as a 
channel, input configurations containing more than 1 image 
are referred to as multichannel as opposed to single‐channel 
input configurations. For our statistical comparison, we pre-
ferred the use of the aIP configuration as a reference, because 
it is a single‐channel configuration with a higher correlation 
between MR intensities and CT HU than the aOP configura-
tion, as shown in Figure 3.

F I G U R E  1  Transverse slices of the 
canine and human data sets (paired in‐phase 
MR images and CT scans). As compared 
with the human data set, the canine 
data set showed substantial intersubject 
variability in morphology (e.g., shape, size). 
Abbreviation: HU, Hounsfield unit
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2.3 | Experimental setup

2.3.1 | Constraints
To perform a fair comparative study, a single network ar-
chitecture was used to process the heterogeneous data sets 
and the variable input configurations. Notably, the choices 
defining the neural network architecture and its hyperparam-
eters were constrained by 2 requirements: the neural network 
needed to (1) handle inputs containing different numbers of 
images without increasing the number of trainable param-
eters (fixed complexity) and to (2) make repeatable predic-
tions in order to identify input‐related changes easily in the 

reconstructed sCTs. The remainder of this section describes 
the neural network as it was implemented.

2.3.2 | Architecture
To generate sCT images from MR inputs, we used a patch‐
based convolutional neural network: a 3D extension of the 
widely used U‐Net.38,39 This architecture took as input 4D 
MR images with 3 spatial dimensions and a channel dimen-
sion. The size of the patches was C × 24 × 24 × 24 voxels, 
where C is the number of channels in the input configura-
tion. Our implementation included 3 × 3 × 3 convolution lay-
ers, 2 × 2 × 2 max pooling layers, instance normalization,40 

F I G U R E  2  Description of how MR images from the T1‐weighted multiple gradient‐echo (T1w‐MGE) were combined to form all 6 input 
configurations. Images were concatenated along the channel dimension, resulting in single‐channel input configurations (almost in phase [aIP] 
and almost opposed phase [aOP]) or multichannel input configurations (acquired images [Dual], Dixon reconstructed images [IPOP], water–fat 
decomposition [WF], and Dixon)

F I G U R E  3  Two‐dimensional histograms between MRI intensities and CT Hounsfield units for voxels corresponding to cortical bone (HU 
> 200). The correlation between bone voxel intensities in CT scans and MR images is stronger in in‐phase (IP) images (A) than in opposed phase 
(OP) images (B)
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and rectified linear unit activation layers, resulting in about 
4 million trainable parameters. A Glorot uniform initializa-
tion41 was used to initialize the kernels. Upsampling was 
implemented using nearest‐neighbor interpolation to avoid 
the checkerboard artifact that can occur in image generation 
tasks.42 The design of this architecture did not favor inputs 
with multiple channels, as all channels were combined in 
the first layer, which increased the number of trainable pa-
rameters by less than 0.1% between inputs containing 1 and 
4 channels. The network was implemented using Keras 2.1.3 
with a Tensorflow 1.7 backend. The training and evaluation 
of the model were performed with 2 GeForce GTX 1080 Ti 
(NVIDIA, Santa Clara, CA) GPUs.

2.3.3 | Training
An experiment consisted of the training of a neural network 
with 1 input configuration. The canine and human data sets 
being distinct, models were trained independently on each 
population. For each data set, a 3‐fold cross‐validation proce-
dure was applied to synthetize sCTs. Note that models trained 
on 1 data set were only evaluated on that data set.

Models were trained with a Nadam43 optimizer whose ob-
jective was to minimize the L1 loss between the CT and the 
sCT. The learning rate was constant and set at 10−4. With 
the L1 loss function, the optimization process was robust 
to outliers produced by noise, artifacts, or by the imperfect 
matching between MR and CT. It also resulted in sharper 
images than the L2 norm.44 Patches used to perform an opti-
mization step were randomly extracted from the MR images 
but were balanced between soft tissues and bone by using a 
weighted probability map that resulted in an equal sampling 
of bone and nonbone voxels. Because 6 input configurations 
were tested, 6 independent models were optimized per fold. 
Parameters defined for the optimization were kept identical 
for the training of all models.

2.3.4 | Replications
Because the training of the neural network contained random 
factors, the training of each model was replicated multiple 
times. This evaluated the repeatability of sCT generation 
and corroborated the statistical significance of the findings. 
Experiments were repeated 5 times on the human data set and 
10 times on the canine data set, because the latter presented a 
larger anatomical variability (Figure 1).

2.4 | Data processing

2.4.1 | Image preprocessing
The CT scans were registered to the magnitude of the aIP 
image using the Elastix registration toolbox45 to create a 

voxel‐wise MRI‐CT matching for training and evaluation. 
The registration was a composition of a rigid Euler transform 
and a nonrigid B‐spline transform, both optimized with an 
adaptive stochastic gradient descent procedure with mutual 
information as the similarity metric. A rigidity penalty46 was 
applied to the entire volume during deformable registration. 
In addition, CT scans were resampled to match the resolu-
tion of MR images using third‐order B‐spline interpolation. 
The parameter files used for the registration can be found 
at http://elast ix.bigr.nl/wiki/index.php/Par0059. No registra-
tion was needed between input channels, as they contained 
MR images or Dixon reconstructions obtained from a single 
T1w‐MGE sequence.

To facilitate the training of each model, a per‐subject lin-
ear normalization was applied on MR images and CT scans. 
The normalization mapped intensities to [−1; 1] using

For the MR image, the shift and scale were derived from 
minimal and maximum intensities. For the CT, these values 
were constant to preserve HU quantitative nature and were 
set to −1000 for the shift and 4000 for the scale.

2.4.2 | Masking
To include only relevant anatomy and to perform a tis-
sue‐specific evaluation, binary masks were automatically 
derived from the MR in‐phase images and CT scans by ap-
plication of thresholding and mask filling. For both mo-
dalities, the average intensity of the image was used as 
a threshold value. The intersection of MR and CT body 
masks isolated the volume of interest from the background. 
Bone voxels in the CT scan whose intensity was greater 
than 200 HU and that were within the volume of interest 
were defined as bone.

2.5 | Evaluation

2.5.1 | Synthetic CT synthesis
Prediction of the sCT was based on the extraction of overlap-
ping MR patches followed by a weighted mean fusion. In 
total, most voxels were predicted 72 times.

2.5.2 | Metrics
The similarity between the CT and sCT was assessed using 
5 metrics: mean error (ME), mean absolute error (MAE), 
Dice similarity coefficient (DSC), surface distance, and 
peak SNR (PSNR). The ME and MAE are voxel‐wise 
differences commonly reported in research for sCT gen-
eration and reflecting the sCT fidelity in radiodensity 

(1)Inorm =
(

I−shift

scale

)

∗2−1.

http://elastix.bigr.nl/wiki/index.php/Par0059


1434 |   FLORKOW et aL.

reconstruction, which is particularly useful for radio-
therapy planning and PET/MR reconstruction. They were 
computed on the entire body contour (MAEbody) and  
exclusively on the bone (MAEbone) using the aforemen-
tioned masks. The PSNR approximates human perception 
of reconstruction quality and was defined as

To estimate the degree of misclassification and the geo-
metric integrity of the bone, DSC47 was computed with re-
gard to bone. Being a global measure of overlap, DSC does 
not quantify local discrepancies between surfaces useful for 
orthopedics. Consequently, surface distance maps were com-
puted to evaluate local surface dissimilarities by measuring 
the bilateral distance48 between 2 surfaces. Bone segmenta-
tions used to compute the surface distance maps were obtained 
by thresholding the CT and sCT at 200 HU and by automat-
ically excluding nonosseous, unconnected components. The 
structural similarity index between the CT and sCT was also 
measured and is reported in Supporting Information Table S1.

Each measurement had 3 dimensions: a subject dimension 
s, an input configuration c, and a replicate dimension r. To 
evaluate the differences between input configurations within 
1 subject, metrics were averaged across replicates r such that

To gain a general overview of the performance of an input 
configuration across a population, metrics were averaged 
across replicates and subjects such that

The SD σ(Metric) was computed across the (human or 
canine) population as follows:

For the remainder of the paper, the input configuration c 
will be implied if not present.

2.5.3 | Repeatability
The repeatability per input configuration was assessed by 
calculating the standard deviation of MAEbody (r, s) averaged 
across subjects, as follows:

2.5.4 | Statistical analysis
We tested the significance of the differences observed be-
tween sCTs using a repeated‐measure analysis of variance. 
The null hypothesis assumed that all models achieved the 
same average MAEbody, regardless of their input configura-
tion. Because the variance of MAEbody was model‐depend-
ent, a Greenhouse‐Geisser sphericity correction49 was applied 
to meet the homogeneity of variance assumption required for 
the test. When the repeated‐measure analysis of variance re-
jected the null hypothesis at a 95% confidence level, the sCT 
generated from different input configurations was compared 
pairwise using post hoc Student’s t‐tests with Bonferroni cor-
rection for repeated pairwise comparisons. Statistical tests 
were performed on combined results from both data sets on 
IBM SPSS Statistics 23 using, for each subject, the MAEbody 
averaged across replicates 

(

MAEbody

R
(s)

)

. For all statistical 

tests, P < .05 was considered to be statistically significant.

3 |  RESULTS

In the human data set, 24 of 27 subjects met the inclu-
sion criteria of the study. All dogs were eligible except for  
1 (17 of 18), whose MR acquisition protocol did not fol-
low the study design format. The training set in each cross‐
validation fold contained 16 subjects for the human models 
and 11 for the canine models. The remainder of this section 
presents the results of all 3 folds of the cross‐validation for 
both data sets.

3.1 | Per subject results
Figure 4 presents the average MAEbody across replicates 
(MAEbody

R
(s)) obtained for each model. From this figure, 

it can be observed that (1) within single‐channel models, 
aIP‐based models always outperformed aOP‐based models,  
(2) all multichannel models but WF were equivalent to or 
outperformed single‐channel models, and (3) differences 
were small among multichannel models. These behaviors 
were observed in all subjects from both data sets.

3.2 | Per model results
Jointly performed on the canine and human data sets, the 
repeated‐measure analysis of variance demonstrated a sig-
nificant difference between models (P < 10−12), which was 
categorized into 3 levels using post hoc t‐tests.

First, within single‐channel models, MAEbody

RS

(aIP), 
the MAEbody averaged across replicates and subjects for the 
aIP input configuration, was lower than MAEbody

RS

(aOP) 
by 5.5 HU, which renders the aIP input configuration fa-
vorable over aOP (corrected t‐test, P < 10−56). The value of 

(2)PSNR=10log10

�

40952

1∕N
∑N

i=1
(ICT (i)− IsCT (i) )2

�

.

(3)Metric
R
(s, c)=

1

#replicates

#replicates
∑

r=1

Metric(r, s, c).

(4)Metric
RS

(c)=
1

#subjects

#subjects
∑

s=1

Metric
R

(s, c).

(5)
σ

Metric (c)=

√

√

√

√
1

#subjects

#subjects
∑

s=1

(Metric
R
(s, c)−Metric

RS

(c) )2.

(6)

Repeatability

=
1

#subjects

#subjects
∑

s=1

√

√

√

√
1

#replicates

#replicates
∑

r=1

(

MAEbody (r, s)−MAEbody

R
(s)

)2

.
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MAEbody

RS

(aOP) was 12% higher for the canine population 
and 17% higher for the human population, as indicated in 
Table 1, which reports the average performance obtained per 
input configuration and data set (∙

RS
).

Second, aIP‐based models, which have the lowest 

MAEbody

RS

 of single‐channel models, were always outper-
formed by multichannel models with differences of up to 
15% for the canine population and almost 6% for the human 

F I G U R E  4  Variation of mean absolute error (MAE) per subject averaged across the repeated experiments (MAE
R) for each input 

configuration. The shading represents the SD of MAEbody for each subject across replicates. To focus on variations between input configurations 
and remove intersubject variability, measurements were zero‐centered per subject: The average MAE across replicates and input configurations 
(MAEAvg) was subtracted from MAE

R. Therefore, negative values for the relative MAE indicate better performance. For completeness, MAEAvg per 
subject is present in the bar plot, indicating the intersubject variability

T A B L E  1  Performance (± σ) obtained for each model per data set, as measured by mean absolute error (MAE), mean error (ME), Dice 
similarity coefficient (DSC), surface distance, and peak SNR (PSNR) averaged across replicates and subjects

Population Input MAEbody (HU) MEbody (HU) MAEbone (HU) DSCbone (1)
Surface dis-
tance (mm) PSNR (dB)

Human aIP 34.1 ± 7.9 −1.2 ± 4.6 123 ± 54 0.81 ± 0.11 0.45 ± 0.10 36.1 ± 2.3

aOP 40.4 ± 6.7 −0.0 ± 9.2 158 ± 42 0.78 ± 0.10 0.49 ± 0.10 34.7 ± 1.7

Dual 32.7 ± 8.3 −2.0 ± 4.3 117 ± 56 0.83 ± 0.11 0.42 ± 0.05 36.4 ± 2.4

IPOP 32.7 ± 8.1 −1.4 ± 4.6 116 ± 56 0.83 ± 0.11 0.42 ± 0.05 36.4 ± 2.4

WF 33.6 ± 9.2 −1.2 ± 5.1 120 ± 58 0.82 ± 0.11 0.42 ± 0.16 35.9 ± 2.5

Dixon 32.1 ± 8.3 −1.5 ± 4.9 114 ± 56 0.83 ± 0.11 0.40 ± 0.03 36.5 ± 2.5

Canine aIP 42.2 ± 8.1 −0.9 ±14.1 144 ± 42 0.91 ± 0.03 0.38 ± 0.14 35.1 ± 1.6

aOP 47.2 ± 9.1 −3.8 ±16.3 169 ± 37 0.89 ± 0.04 0.57 ± 0.28 34.1 ± 1.5

Dual 37.1 ± 4.3 −0.4 ± 7.3 132 ± 36 0.92 ± 0.03 0.38 ± 0.14 35.9 ± 1.5

IPOP 37.2 ± 4.1 −0.1 ± 6.8 134 ± 36 0.92 ± 0.03 0.37 ± 0.14 35.8 ± 1.5

WF 36.9 ± 4.1 −0.6 ± 6.6 141 ± 34 0.92 ± 0.03 0.37 ± 0.14 35.4 ± 1.7

Dixon 35.8 ± 4.2 −1.4 ± 6.8 131 ± 34 0.92 ± 0.04 0.38 ± 0.14 36.1 ± 1.7
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population (Table 1). On average, when compared with aIP‐
based models, the difference between the sCT and the CT 
was 3.8 HU lower for Dixon models (corrected t‐test, P < 
5.10−18), 2.8 HU lower for IPOP and Dual models (corrected 
t‐test, P < 5.10−16), and 2.5 HU lower for WF models (cor-
rected t‐test, P < 10−7). In the heterogeneous canine data set, 
single‐channel models were also less robust with higher SD 
than multichannel models, which reflected higher intersub-
ject variations.

Third, within multichannel input configurations, IPOP, 
WF, and Dual models obtained similar results but were out-
performed by Dixon models by up to 1.3 HU difference (cor-
rected t‐test, P < 5.10−10). Although statistically significant, 
this difference was not observed in all subjects. In particular, 
the WF model strongly outperformed the Dixon model once 
(Figure 4, canine data set, subject 13) in a subject that pre-
sented soft‐tissue lesions.

Apart from aOP, all input configurations achieved a re-
peatability under 1 HU for the humans and under 2 HU for 
the canines, as given in Table 2. This high repeatability cor-
roborates the statistical significance of the aforementioned 
differences.

3.3 | Bone reconstruction
Regardless of the data set and input configuration, MAEbone 
was almost 4 times higher than MAEbody, with most 

MAEbone

RS

 ranging between 114 HU and 123 HU, and 

MAEbody

RS

 between 32 HU and 34 HU in the human data 
set (Table 1).

Figure 5 shows the sCTs obtained by each model for  
3 subjects. Although reflected by global metrics, the qual-
itative differences between sCTs were primarily local and 

especially observed in osseous structures such as the bacu-
lum or vertebrae.

The value of MAEbone

RS

(aOP) was higher than 

MAEbone

RS

(aIP) by up to 28% on the canine data set and by 

up to 17% on the human data set. The value of DSC
RS

 varied 
by up to 0.05 units on both data sets. This difference is visu-
ally supported by the sCT‐to‐CT absolute difference maps 
presented in Figure 6. Contrary to soft‐tissue reconstructions 
for which error maps are noise‐like (Supporting Information 
Figure S1), bone‐reconstruction difference maps clearly de-
pict bone structures. However, the distribution of errors is 
model‐dependent. Errors appeared primarily in the bone 
marrow for the aIP configuration (Figures 5B and 6A) and 
in the cortical bone for the aOP configuration. More specif-
ically, cortical bone intensity was either hypo‐intense (pel-
vis in Figures 5A and 6A) or hyperintense (femoral heads in 
Figure 5B and acetabulum in Figure 6B), resulting in very 
high MAEbone for the aOP configuration (Table 1).

Figures 5C and 6B also present a typical case of system-
atic errors in regions such as the bowels, which are caused 
by the lack of correspondence between MR and CT. These 
errors cannot be corrected by registration alone, as they are 
due to physiological changes between scanning sessions.

Figure 7 shows 3D bone renderings mapped with bilateral 
sCT‐to‐CT surface distance obtained for human and canine 
subjects. Locally, the largest errors appeared in the transverse 
process of vertebrae, in the femur, and in the sacral bone. 
These errors were sometimes dominated by registration er-
rors, especially in the in vivo human subjects (Figure 7A). 
However, the surface distance was on average submillimeter, 
as shown in Table 1, which suggests an overall accurate pel-
vic geometry. The aOP‐models had the highest errors, with 
mean errors up to 0.6 mm, but no significant difference was 
seen among all other models.

4 |  DISCUSSION

In this study, we compared 6 input configurations. For each 
input configuration, a deep learning–based model was trained 
up to 10 times for sCT generation in pelvic scans of ex vivo 
canines and human prostate cancer patients. Input configura-
tions contained 1, 2, or 4 MR images obtained from a single 
T1w‐MGE sequence. Each configuration incorporated diverse 
information content related to proton density, T∗

2
 relaxation, 

and water and fat content, as determined by the TEs and pres-
ence or absence of Dixon reconstructions.

This study showed that the choice of MR images within 
an input influenced sCT generation models in 3 ways. First, 
the aIP input configuration outperformed the aOP configura-
tion. This is most likely related to the lower degree of correla-
tion between MR and CT intensities (Figure 3) in OP images. 

T A B L E  2  Repeatability (± σ) obtained for each model per data 
set, averaged across replicates and subjects

Population Input Repeatability (HU)

Human aIP 0.6 ± 0.3

aOP 1.6 ± 1.3

Dual 0.7 ± 0.3

IPOP 1.0 ± 0.6

WF 0.9 ± 0.9

Dixon 0.7 ± 0.3

Canine aIP 1.9 ± 2.0

aOP 2.1 ± 1.5

Dual 1.1 ± 0.8

IPOP 1.2 ± 1.3

WF 0.8 ± 0.5

Dixon 0.7 ± 0.5
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The OP images present destructive interferences between 
water and fat protons, resulting in signal voids in regions at 
the interface between fat and muscle. These interferences are 
not present in IP images, rendering IP images favorable for 
sCT generation. This result is in accordance with the use of 
ZTE images for sCT generation,8,10,29 which also present a 
strong correlation between MR signal and cortical bone.18,21 
However, a study by Leynes and Larson32 showed that Dixon‐
reconstructed IP images outperformed ZTE images in sCT 
generation tasks. Another aspect that may have played a role 
in the performance difference observed between aIP and aOP 
images is their amount of T∗

2
 weighting. However, aIP models 

outperformed aOP models in both canine (1.5 T) and human 
(3 T) data sets, although their relative amount of T∗

2
 weighting 

differed due to their different TEs. The T∗
2
 weighting in the 

aIP echo was high in the canines and low in the humans when 
compared with the T∗

2
 weighting in the aOP echo. Hence, the 

effect of T∗
2
 decay appeared less important than the interfer-

ence between water and fat protons at the considered TEs. 
Consequently, the performance and repeatability of a model 
based on single‐channel T1w‐MGE inputs were dependent 
primarily on the water–fat proton dephasing associated with 
the choice of TE during the acquisition. The ability of the IP 
configuration to accurately reconstruct cortical bone, which 
is crucial in a CT contrast, suggests the importance of IP im-
ages for sCT generation.

Second, presenting multiple channels as inputs to the model 
improved sCT generation as compared with single‐channel 

F I G U R E  5  Computed tomography and synthesized CTs (sCTs) generated per input configurations for 3 subjects. The Dual configuration 
was omitted, as it was very similar to IPOP. A, Coronal view of the right femoral head and acetabulum of a human patient (subject 1). B, 
Transversal view of the pelvic anatomy of a canine subject (subject 1). C, Sagittal view of the spine of a canine subject (subject 12). Yellow arrows 
indicate hypo‐intense bone regions; red arrows indicate hyperintense regions; and the orange encircled area indicates the bowels that do not contain 
any air pockets on the sCTs

F I G U R E  6  Comparison of sCTs generated by the input configurations for canine (A) and human (B) subjects with a focus on bone. The Dual 
input configuration was omitted, as it was very similar to IPOP. A region defined by the red square was enlarged and its window level adapted 
to highlight bone structures. Errors maps show the absolute errors between the sCTs and the CT. For the human patient, the red arrow shows a 
sclerotic (hyperintense) region of the acetabulum, called the acetabular sourcil, which cannot be easily distinguished from the rest of the acetabulum 
in the aOP‐based sCT
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models. In particular, the WF configurations outperformed 
the in‐phase channel despite their close linear relation. This 
result suggests that explicit water–fat decomposition is favor-
able and important to the model. In addition, the Dual input 
configuration containing both aIP and aOP images outper-
formed separately trained aIP and aOP models. Because the 
complexities of the single‐channel and dual‐channel models 
were virtually identical, this benefit resulted from the com-
bined use of the information present in the separate images. 
Considering these 2 results, we can hypothesize that IPOP 
and Dual were potentially able to access information similar 
to water–fat decomposition.

Third, within multichannel models, the Dixon input con-
figuration outperformed the others despite containing inter-
dependent MR images. Presumably, explicitly providing this 
additional information simplified the learning task, improv-
ing processes such as soft‐tissue discrimination. Note that 
this result does not imply that more data in the input neces-
sarily results in better performance.32 Furthermore, models 
based on both IP and OP images, either acquired (Dual) or re-
constructed (IPOP), performed similarly. Likewise, no statis-
tically significant difference was found between the aIP and 
IP input configurations, as shown in Supporting Information 
Table S2. Hence, clinically, a standard multi‐echo gradient‐ 
echo sequence can be acquired with flexibility in TE for 
favorable soft‐tissue visualization, and the available water/ 
fat‐separated reconstructions can be used for sCT generation. 
All of these differences between input configurations were 
more apparent in the canine data set, which was more chal-
lenging due to its variability. This result suggests that using 
multichannel inputs can increase the robustness of a model.

Aiming for a fair comparison between the different input 
configurations, we chose to keep the same architecture for the 
different models. The resulting architecture may have been 
suboptimal for multichannel input processing, but demon-
strated significantly better results for multichannel input con-
figurations. Taking this fourth dimension into account in the 
design of the network, such as by considering separate paths 
per channel or 4D convolutions, could have potentially further 
amplified the difference between single and multichannel input 
configurations but at the cost of increased model complexity.

The differences observed between the different models 
were reinforced by the repeatability experiment we per-
formed. It established a SD as low as 1 HU for most mod-
els, which proves that the input‐related differences in this 
study were statistically significant. Besides, the systematic 
improvements seen on aIP over aOP and multichannel over 
single‐channel input configurations justify a prevailing use of 
IP and Dixon reconstructed images.

Quantitative evaluation on the human data set showed that, 
depending on the models, MAEbody

RS

, the MAEbody averaged 
across replicates and subjects, varied between 32.1 HU and 

40.0 HU. Similarly, ME
RS

 ranged from 0.0 HU to −2.0 HU 

and σME from 4.3 HU to 9.2 HU. The value of ME
RS

 obtained 
for aOP models were desirably centered at 0.0 HU, but they 
displayed a high SD, suggesting their low precision, which is 
unfavorable for clinical adoption.

Overall, the models we trained show competitive quan-
titative results when compared with the related literature 
on deep learning–based sCT generation in pelvic anatomy. 
Using single MR images, Nie et al31 obtained a MAEbody 

F I G U R E  7  Surface distance maps obtained for human (subject 8) (A) and canine (subject 13) (B) subjects. Meshes were obtained by 
thresholding the CT at 200 HU and removing unconnected components. The color map indicates the bilateral surface distance between the CT and 
a sCT obtained using a Dixon input configuration. The high errors in the human subject, especially in the left femur, originate from registration 
errors between the CT and the MR/sCT. The canine bone rendering shows the baculum, a thin penile bone present only in a small fraction of the 
data set that resulted in higher errors for male subjects
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of 42.4 ± 5.1 HU and a PSNR of 33.4 ± 1.1 dB with a 3D 
fully convolutional neural network. Using Dixon recon-
structed inputs, Maspero et al6 obtained a MAE of 61 ± 9 HU  
and a ME of 2 ± 8 HU using a 2D conditional generative ad-
versarial network. With a 3D UNet trained on Dixon and ZTE 
images (fractional fat, fractional water), Leynes et al10 reported 
a ME of −12 ± 79 HU. Although all of these studies were 
based on deep learning approaches and were performed on the 
same anatomy, any comparison is difficult, as the CT scans 
differ in slice spacing and noise levels, and the workflows dif-
fer in terms of preprocessing methods (rigid or nonrigid reg-
istration, air pockets relocation on the CT) in the architecture 
of the neural network and in the spatial dimensionality of their 
input. Such variations can even occur within a study when dif-
ferent data sets are used. Accordingly, the variations we ob-
served between the human and canine data sets are probably 
related to interpatient anatomical variability as well as to dif-
ferences in acquisition parameters such as CT slice thickness. 
However, within 1 data set, the models demonstrated the im-
pact of choices made about the MR input configurations, both 
in terms of performance and interpatient variability.

As reported in previous studies,27,30 the largest errors 
occurred in the bone anatomy. The results we obtained for 
the bone (MAEbone of 114 ± 56 HU and DSCbone of 0.83 
± 0.11) are in accordance with Fu et al,30 who reported a 
MAEbone of 154.3 ± 22.3 HU and a DSCbone of 0.82 ± 0.04 
in 20 prostate cancer patients using a 3D convolution neu-
ral network. However, we showed that bone reconstruction 
(voxels > 200 HU) was also input‐dependent, with differ-

ences in MAEbone

RS

 of up to 28% between aOP and aIP 
input configurations.

Registration errors related to interscan motion, physio-
logical changes, and deformations inherent to MRI gener-
ated noise during the training and introduced an offset in the 
evaluated metrics, especially in bone structures. To limit their 
influence, which could potentially have concealed model‐ 
related differences, we applied nonrigid CT‐to‐MR registra-
tion on our data sets. In addition, because we used a single 
sequence for MR image acquisition, all images within an 
input were perfectly registered. Therefore, all input config-
urations experienced the same MR‐to‐CT registration errors, 
and multichannel models were not corrupted by registration 
errors between the channels, as can be the case with Dixon‐
ZTE combinations.

In this work, we demonstrated that the choice of acqui-
sition parameters, and consequently MR contrasts, strongly 
influences the performance and repeatability of deep learn-
ing–based sCT generation models. This study does not aspire 
to determine the optimal MR input for sCT generation, as it 
may vary with anatomies and applications. For instance, for 
radiotherapy treatment planning purposes, inputs that do not 
lead to classification errors would be favored. For orthopedics, 

getting an accurate bone geometry and capturing variations in 
HU within the bone are required. However, the observed high 
repeatability and significant differences found between input 
channels justify the search for that optimal input.

5 |  CONCLUSIONS

We studied the influence of gradient echo–based contrasts 
as input to deep learning–based sCT generation models in 
canine and human populations. Two parameters were found 
to influence the performance and repeatability of sCT gen-
eration. First, the TE‐related water–fat interference of single 
MR images affected the performance of a model. Overall, 
in‐phase images outperformed opposed‐phase images be-
cause of their higher bone specificity. Second, the use of 
multiple related MR images combined in the input as chan-
nels improved the performance and robustness of a model. 
In particular, the Dixon input configuration showed the best 
results in terms of performance and repeatability, although it 
contained interdependent MR images.

This study established the influence of the choices made 
during MR acquisition for sCT generation. The systematic 
and statistically significant improvement that was demon-
strated motivates the research of an optimal MR contrast or 
combination of MR contrasts for a given task.
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FIGURE S1 Comparison of sCTs generated by the input 
configurations for a canine subject with a focus on soft tis-
sues. The Dual input configuration was omitted, as it was 
very similar to IPOP. A region defined by the red square was 
enlarged and its window level adapted to highlight soft tis-
sue. Errors maps show the absolute errors between the sCTs 
and the CT
TABLE S1 Structural similarity index (± σ) obtained for each 
model per data set, averaged across replicates and subjects
TABLE S2 Quantitative comparison between the aIP echo 
acquired from the T1w‐MGE sequence and the correspond-
ing Dixon‐reconstructed in‐phase image (measurements were 
averaged across replicates and subjects [± σ])
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