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Abstract
Anorexia nervosa (AN) is an often chronic, difficult to treat illness that leads to brain volume reductions in gray and
white matter. The underlying pathophysiology is poorly understood, despite its potential importance in explaining the
neuropsychological deficits and clinical symptoms associated with the illness. We used the activity-based anorexia
model (ABA), which includes food reduction and running wheel access in female rats to study brain changes after
starvation and refeeding. Longitudinal animal MRI and post-mortem brain sections confirmed a reduction in the mean
brain volumes of ABA animals compared to controls. In addition, the mean number of astrocytes was reduced by over
50% in the cerebral cortex and corpus callosum, while the mean number of neurons was unchanged. Furthermore,
mean astrocytic GFAP mRNA expression was similarly reduced in the ABA animals, as was the mean cell proliferation
rate, whereas the mean apoptosis rate did not increase. After refeeding, the starvation-induced effects were almost
completely reversed. The observation of the astrocyte reduction in our AN animal model is an important new finding
that could help explain starvation-induced neuropsychological changes in patients with AN. Astrocyte-targeted
research and interventions could become a new focus for both AN research and therapy.

Introduction
Anorexia nervosa (AN) is the third most common

chronic disease in adolescents, with the highest mortality
rate of any mental illness1. It is characterized by a com-
bination of insufficient energy intake and often increased
physical activity that results in severe weight loss2,3. Psy-
chotherapy shows low effectiveness during the starved
state. Medical intervention is very limited, and there is no
approved pharmacological treatment available for patients

with AN4. The relapse rate in AN is approximately
25–50% in the first year5, and the pathophysiology of AN
is not well understood6. As a consequence of starvation,
severe volume reductions in gray and white brain matter
have been found in patients with AN7. In two meta-
analyses by our group that included 473 patients with AN,
a reduction of 4.6% in gray matter and 2.7% in white
matter was found in patients with AN compared to
healthy controls7,8. These brain matter reductions were
associated with neuropsychological deficits, such as
cognitive impairments in learning and visuospatial
memory8–12. The gray matter loss was correlated with an
increased desire for thinness in AN patients13 and was
linked to a worse clinical outcome after one year12. After
long-term body weight restoration, the brain volume
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changes appear to be reversible7,14. However, chronically
underweight patients seem to have progressive brain
changes15. The underlying pathomechanism of this brain
volume reduction in AN is largely unknown. King et al.
analyzed several measures of serum and urine osmolarity
and thereby showed that a volume reduction solely based
on fluid shifts appears unlikely (also see Vogel et al.16,
King et al., 201817). Furthermore, no alteration of the glial
markers GFAP and S100b or the neuronal marker NSE
could be found in the serum of the patients with AN,
making it necessary to perform direct brain analyses18,19.
Systematic post-mortem data from human brain studies
are rarely available, as only two human post-mortem case
studies are known that analyzed the brains of 3 patients
with AN. These studies suggested the cellular degenera-
tion of neurons and an altered spine morphology20,21.
Translational animal research could help to unravel the
cellular mechanism of these observed volumetric brain
changes.
The best-established animal model that mimics the core

symptoms of AN, such as weight loss, hyperactivity, and
amenorrhea, is the so-called activity-based anorexia
(ABA) paradigm22, which combines restricted food
availability with access to a running wheel. This combi-
nation results in starvation and voluntary hyperactivity in
ABA animals; this seemingly contradictory activity can
possibly be explained as food seeking behavior and is
driven by lower leptin levels22,23. We established a mod-
ified version of the original ABA model by giving a limited
amount of food instead of a limited time for feeding with
the aim of preventing mortality in the animals24,25.
In a proof-of-concept study, our group showed that

brain volume reductions in the corpus callosum and the
cerebral cortex in the rat model parallel those of human
studies26. The pilot study found a reduction in glial
fibrillary acidic protein (GFAP)-positive astrocytes in the
cortex and corpus callosum, potentially underlying this
brain volume reduction. Furthermore, there was no
change in neuronal cell number. This finding could hint at
a completely overlooked mechanism in the patho-
mechanism of volume reduction in AN. Astrocytes play
an important role in providing neurons with nutrients and
modulating neurotransmitter reuptake and synaptic
plasticity27. There is increasing evidence for their invol-
vement in complex phenomena such as sleep homeostasis
as well as cognitive deficits associated with sleep loss and
depression, potentially due to synaptic dysfunction28,29.
Astrocyte reductions have also been shown by Reyes-
Haro et al22. in a dehydration-induced rat model of AN
and in patients with depression28. The deletion of frontal
astrocytes was even found to causally induce depressive
symptoms in rats23. Furthermore, Barbarich-Marsteller
et al.30 showed that the neogenesis of predominantly glial
cells in the hippocampus and corpus callosum was

reduced in ABA rats30. Thus, astrocyte loss and reduced
cell neogenesis could play an important role in influen-
cing neuronal function and could potentially help explain
some of the neuropsychological deficits, such as rigidity,
memory deficits and impaired learning, in AN. These
symptoms render the psychotherapeutic process difficult,
especially during acute starvation.
The principal aim of our study was to clarify the

underlying mechanism of brain volume loss in AN.
Therefore, we investigated the reduction of astrocytes
using immunohistochemical staining and mRNA expres-
sion analysis in a large group of ABA rats compared to
control animals. We further analyzed whether ad libitum
refeeding for 20 days resulting in bodyweight restoration
could reverse the starvation-induced brain volume and
astrocyte reduction in ABA rats. To verify the transla-
tional importance of these findings, we analyzed brain
volume changes using longitudinal MRI measurements.
Finally, immunohistochemical staining was applied to
visualize proliferating and apoptotic cells to gain insight
into the origin of the astrocyte reduction.

Methods and materials
Animals
Experiments were conducted on 47 4-week-old female

Wistar rats (Crl:WI, Charles River, Sulzfeld, Germany),
with an average body weight of 87.93 g (SD 9.03). Female
rats were used because of the higher prevalence of AN in
female patients than male patients and because of the
possibility of using amenorrhea as a quality control
symptom indicating an adequate level of starvation. The
animals were individually housed in Type IV cages
(Polysulfone, Tecniplast GmbH, Hohenpeißenberg, Ger-
many) under a 12-h light/dark cycle, and all rats had 24 h/
day running wheel access. The animal room was main-
tained at a standard temperature (21 ± 1 °C). The facility
was specific pathogen-free according to the FELASA
Guidelines and certified according to DIN ISO 9001:2008.
The animal procedure was permitted by the Govern-
mental Animal Care and Use Committee LANUV North
Rhine Westphalia (Landesamt für Umwelt, Natur, und
Verbraucherschutz, Recklinghausen, Germany). All tests
were performed in accordance with the German legisla-
tion governing animal studies following the Guide for the
Care and Use of Laboratory Animals (NIH publication,
8th edition, 2011) and the 2010/63/EU Directive on the
protection of animals used for scientific purposes (Official
Journal of the European Union, 2010).

Study design
The modified ABA model was established in our

laboratory, and a detailed description is given in24. In
brief, all rats had ten days to acclimatize to their indivi-
dual cages and had ad libitum (ad lib, unrestricted) access
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to food and water during this period. The animals were
randomly picked and assigned to the control and ABA
groups. Afterwards, all ABA animals received 40% of their
prior daily food intake (calculated with the feeding
amount of the acclimatization phase) until a 25% body
weight loss occurred. This acute starvation phase was
followed by a two-week long chronic starvation period in
which we increased the food intake to 60–80% of the
original daily food intake, keeping the body weight stable
at −25%. If the body weight differed by more than 2.5%
compared to the target weight, the food was increased or
decreased in increments of 5%. Half of the animals were
sacrificed after this chronic starvation period (ABA:
n= 12), while the other half were refed ad lib for 20 days
to model weight rehabilitation (ABA_R: n= 11). The
control groups were housed under the same conditions
but were fed ad lib during the whole experiment (controls:
n= 12, controls_R: n= 12). Sample size of 12 per group
was chosen to match our previous study. Body weight,
food intake and running wheel activity (RWA) were
measured daily. Due to the study design the carers were
not blinded to group allocation of the animals, however,
all outcome measurements were conducted blinded.

MRI-based brain volume measurement
MRI experiments were conducted in the refed group

(ABA_R+ controls_R) after habituation, after chronic
starvation and after refeeding on a 1 T Bruker ICON
horizontal bore that was a dedicated animal scanner
(Bruker Biospin, Ettlingen, Germany). After the induction
of anesthesia with 5% isoflurane, the rats were placed in
an MRI-compatible cradle, and each head was fixed in
place with tape. During the entire scan, animals were
anesthetized with 2% isoflurane (Forene, 100%, v/v, B506,
Wiesbaden, Abbott) in oxygen-enriched air. T2-weighted
imaging (T2 W, FLASH sequence, field of view: 50 cm,
slice thickness= 1mm, TE= 12 ms, TR= 645ms) was
chosen for the anatomical details of the images. Using the
Imalytics Preclinical 2.0 software, the total brain volume
of each rat was manually segmented by one independent
analyst blinded to the experimental groups, excluding the
bulbus olfactorius and the brainstem but including the
cerebellum31.

Histological brain volume measurement
The rats were transcardially perfused with artificial

cerebrospinal fluid solution, and the brains were separated
into two hemispheres at the midsagittal line. We used the
left hemisphere for mRNA analysis and the right hemi-
spheres for immunohistochemistry and volume analysis.
Therefore, the right halves were post-fixed with a 3.7%
paraformaldehyde solution and cryo-protected by
immersion with 10 and 30% sucrose. For embedding, we
used an optimal cutting temperature medium. Using a

cryostat (Leica CM 3050S, Nussloch, Germany), the whole
right brain hemispheres were cut frontally in a series of
100 µm sections. To analyze the volumes, hematoxylin-
eosin staining was performed. After digitalization, the
areas of the respective regions of interest were measured
by tracing with ImageJ software (1.48 v, Wayne Rasband,
National Institutes of Health, USA). We then used the
Cavalieri method by multiplying the individual areas by
the slice thickness and adding the results to calculate the
volumes of interest. The results of two independent
observers were averaged, and the analysis was performed
as previously described26 (cerebral cortex analysis from
Bregma 5.2 to 9.8, corpus callosum 3.7 to 8.0).

Immunohistochemistry
At Bregma −2.30, we made a series of 20 µm sections.

The histochemical stainings were performed using stan-
dard procedures, as previously reported26. The following
antibodies were used: goat GFAP (astroglia, 1:750, catalog
number: sc-6170, Santa Cruz, USA), rabbit anti-
microtubule-associated protein 2 (Map2, neurons,
1:1.500, catalog number: 8707, Cell Signaling), rabbit anti-
Ki67 (proliferation marker, 1:3.000, catalog number:
ab16667, Abcam) and rabbit anti-cleaved caspase 3 anti-
body (apoptosis marker, 1:800, catalog number:
mAB#9664, Cell Signaling).

Quantification of immunohistochemical parameters
Two immunohistochemically stained samples per ana-

lysis were digitalized and analyzed with ImageJ 3 software
(1.48 v, Wayne Rasband, National Institutes of Health,
USA) by two independent, blinded observers, and the
results were averaged. The observers counted all GFAP-,
Ki67- and caspase-3-positive cells containing a visible
nucleus and expressed this value as cells/mm2. Then, they
determined the area covered by GFAP staining to quantify
the GFAP signaling in the area as %. Within the cerebral
cortex analysis, three different regions (retrosplenial
granular cortex, primary motor cortex and primary
somatosensory cortex) were averaged. Similarly, the cor-
pus callosum was measured in three regions (next to the
midline, under the subcingulum and laterally). The
regions of interest for quantifying the different cellular
parameters are illustrated in Supplementary Fig. 3.
Ki67 staining analysis was performed for the midline
region. Like in our previous study, we excluded slices, if
the area containing the ROI was damaged.

Reverse transcription (RT) and real-time polymerase chain
reaction (rtPCR)
The mRNA of the cerebral cortex and the corpus

callosum (tissue from the left brain hemispheres) were
isolated with peqGold RNA Trifast (Peqlab, Germany),
as previously described26. All samples were reverse
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transcribed in complementary DNA, and their relative
expression was analyzed by calculating the ratio
between the gene of interest and the reference gene,
cyclophilin A (cycA; primer sequences: CycA sense: 5′-
GGCAAATGCTGGACCAAACAC, CycA antisense:
5′-TTAGAGTTGTCCACAGTCGGG AGATG; GFAP
sense: 5′-AGAAAACCGCATCACCATT, antisense: 5′-
GCACACCTCACATCACATCC). Alterations in the
levels of genes of interest were graphically shown by the
fold change relative to the control group of the same
region (controls set to 100%).

Statistical analysis
The repeatedly measured MRI brain volumes in ABA_R

and control_R rodents were analyzed using a linear mixed
effects model calculation with random intercept and
unstructured covariance matrix to allow for baseline dif-
ferences in brain volume between animals. One ABA
brain volume could not be analyzed because of poor scan
quality. Comparisons between ABA_R and control_R
animals after starvation and after refeeding were evaluated
by corresponding linear contrasts. Model assumptions
and model fit were checked by visual inspection of the
residuals and the measures of influence diagnostic.
Missing values were taken into account by a likelihood-
based approach within the framework of mixed linear
models with the assumptions that missing values occur at
random. For all comparisons, the significance level was set
to 5%. Due to the explorative nature of this study, no
adjustment was made to the significance level. The results
are reported as the means and standard deviations (±SD).
Two-sided p-values were accompanied by values of the
test statistic (t) and degrees of freedom (t(df)). In addition,
95% confidence intervals (CI) for the difference in mean
brain volume between ABA and control rats after star-
vation and after refeeding were provided. These analyses
were performed with SAS version 9.4 (PROC MIXED;
SAS Institute Inc., NC, USA).
The cellular outcome data were described as the means

and corresponding standard deviations in each starvation
and refeeding subgroups of the ABA and control animals.
The primary outcome was the astrocyte cell number, and
secondary outcomes were cerebral cortex and corpus
callosum volume, astrocyte cell size and cell surface,
numbers of Map2, Ki67 and Casp3-positive cells as well as
mRNA expression levels. Two-sided t-tests with sig-
nificance levels of 5% and corresponding degrees of
freedom (t(df)), values of the test statistic (t) and effect
sizes (Cohen’s d) were performed to compare the ABA
and control animals. No deviation from the normal dis-
tribution was detected by the Kolmogorov-Smirnov test.
These statistics were performed with SPSS version 20 for
Windows (IBM, Chicago, USA).

Results
The mean food intake and mean body weight of both

cohorts are depicted in Fig. 1 (RWA in Supplementary
Fig. 1).
The MRI whole-brain volume analysis showed that, on

average, the brains of the ABA animals were sig-
nificantly smaller than those of the controls after
starvation (t(df)= 40.7, t=−2.54, p= 0.02, Fig. 2,
Supplementary Table 1). This difference was not
observed after refeeding (t(df)= 40.7, t=−0.70,
p= 0.49, Fig. 2).
The quality of the histological slides that were used for

the histological volume detection was adequate for the
analysis of the cortex (controls: n= 10; ABA: n= 11,
controls_R: n= 12, and ABA_R: n= 10) and the corpus
callosum (controls: n= 7; ABA: n= 11, controls_R: n=
12, and ABA_R: n= 11, Supplementary Table 2). The
mean cerebral cortex volume was significantly decreased
by 9% after starvation in the ABA rats compared to
the control group (t(df)= 19, t= 2.85, Cohen’s d= 1.24,
p= 0.01, Fig. 3). The mean corpus callosum volume of the
ABA group was 6% smaller than that of the control group
(t(df)= 16, t= 1.89, Cohen’s d= 0.91, p= 0.08). After
refeeding, the difference in the cerebral cortex volumes
between the groups showed no statistically significant
difference (p= 0.57); however, the corpus callosum
volume was significantly reduced by 10% in the ABA_R
animals compared to the controls (t(df)= 21, t= 2.42,
Cohen’s d= 1.01, p= 0.02).
The mean number of GFAP-stained astrocytes in the

cerebral cortex in the ABA rats was significantly reduced
by 75% compared to the control group (t(df)= 22, t=
4.75, Cohen’s d= 1.94, p ≤ 0.001, Fig. 4, Supplementary
Table 2). Additionally, in the corpus callosum, the num-
ber of cells was also diminished in the ABA animals by
56% (t(df)= 22, t= 3.24, Cohen’s d= 1.32, p ≤ 0.01).
There were no statistically significant differences in the
mean number of Map2-stained neurons (cortex: after
starvation: p= 0.97, after refeeding: p= 0.38). After
refeeding, the number of astrocytes in the cerebral cortex
and corpus callosum of ABA_R was not significantly
altered (cortex: p= 0.72, corpus callosum: p= 0.39).
The mean cell surface of the astrocytes was reduced

after chronic starvation (cortex: t(df)= 22, t= 4.22,
Cohen’s d= 1.72, p ≤ 0.001, corpus callosum: t(df)= 22,
t= 3.14, Cohen’s d= 1.28, p ≤ 0.01, Fig. 4), but there was
no statistically significant difference after refeeding (cor-
tex: p= 0.18, corpus callosum: p= 0.11).
To substantiate the finding of the astrocyte reduction,

we analyzed GFAP mRNA expression. The mean level of
GFAP mRNA in the cerebral cortex and corpus callosum
of the ABA rats was significantly decreased by 39% and
53%, respectively (cortex: t(df)= 22, t= 4.59, Cohen’s d=
1.87, p ≤ 0.001, corpus callosum: t(df)= 22, t= 4.68,
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Cohen’s d= 1.91, p ≤ 0.001, Fig. 4). After refeeding, no
difference persisted (cortex: p= 0.77, corpus callosum: p
= 0.69).

The mean number of proliferating cells, as measured
with the marker Ki67, in the cortex and corpus callosum
of the ABA rats was significantly reduced by 34 and 51%,

Fig. 1 Mean food intake (a) and mean body weight (b) during the starvation of ABA and control animals (left) and during the starvation and
refeeding of ABA_R and control_R animals (right)

Fig. 2 Consequences of refeeding on the total brain volume as determined by MRI analysis. The figure depicts exemplary MRI images (a) and
the mean total brain volume and corresponding standard deviation of ABA and control animals at three different time points (b): before starvation,
after starvation and after refeeding. Analysis of MRI brain volume in the ABA and control animals was performed using a linear mixed effects model
with a random intercept and unstructured covariance. Pairwise comparisons were evaluated using the corresponding linear contrasts. *p ≤ 0.05

Frintrop et al. Translational Psychiatry           (2019) 9:159 Page 5 of 11



respectively, compared to the controls (cortex: t(df)= 22,
t= 2.95, Cohen’s d=−1.2, p ≤ 0.01, corpus callosum: t
(df)= 22, t= 2.89, Cohen’s d= 1.18, p ≤ 0.01, Fig. 5). No
change was noted after refeeding in this analysis. Fur-
thermore, we measured the number of apoptotic cells
with the marker Casp3 (Supplementary Fig. 2). In the
cortex, the mean number of Casp3-positive cells in the
ABA animals was reduced by 71%, while in the corpus
callosum, no significant alteration occurred between the
two groups (cortex: t(df)= 22, t= 2.87, Cohen’s
d=−1.17, p ≤ 0.01, corpus callosum: p= 0.22). All raw
data and statistics can be found in Supplementary Table 2.

Discussion
The primary goal of our study was to analyze the

mechanisms underlying brain volume reduction in anor-
exia nervosa. The present investigation explored whether
the brain volume reduction in AN compared to healthy
controls is associated with astrocyte loss, as proposed by
our exploratory study, and this hypothesis was confirmed.
The brain volume in the ABA animals did not increase as

appropriate for adolescent age and was significantly
reduced compared to controls in our MRI studies. We
found a loss of GFAP-positive astrocytes after approxi-
mately 3 weeks of starvation compared to the control
animals. We then analyzed whether the starvation-
induced volumetric and cellular changes in the brain
were reversible upon refeeding. This was mostly con-
firmed; the total volume of the cortex appeared to be
reinstated, and only the white matter in the corpus cal-
losum was still reduced. Furthermore, the cell surface of
GFAP-positive cells and GFAP mRNA expression nor-
malized after refeeding. Finally, we investigated whether
the cell reduction was derived from reduced proliferation
or increased apoptosis. Proliferation was reduced to less
than 50%, while there was no evidence of increased
apoptosis. Reversible astrocyte loss underlying the brain
changes in the ABA model is a very important and new
finding. If these findings are also be the case in AN
patients, this knowledge could help us to understand the
pathophysiological mechanisms of AN with astrocytic and
ensuing neuronal dysfunction.

Fig. 3 Mean total brain volume and corresponding standard deviation. Effects of starvation and refeeding on the cerebral cortex (a, b) and
corpus callosum volume (c, d) after starvation and refeeding, as analyzed with serial slide measurement. *p ≤ 0.05, two-sided Student’s t-test
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Astrocyte cell reduction
The results fit well with those of the proof-of-concept

study, which pointed to an astrocyte reduction in ABA
rats26 and with those of studies by Reyes-Haro et al., who
used the dehydration rat model32. The use of dehydration
could potentially have inhibited the latter from also
measuring brain volumes; thus, our findings extended
their results to show a direct association between brain
volume deficits and cellular changes. The astrocytic
mRNA analysis further strengthened our findings by
including a different method that yielded similar reduc-
tions. The cell reduction seemed to be specific to astro-
cytes, as neurons and oligodendrocytes were not reduced
in terms of size or number in our pilot study26. There is a
growing body of research on the multiple roles of astro-
cytes in the brain, as astrocytes appear to have been
underestimated as structural components. The functions
of astrocytes indeed include an active role in the blood-
brain barrier, transporting nutrients and messengers from
the bloodstream to the brain33. However, astrocytic
functions have now been shown to include complex
regulatory mechanisms, such as neurotransmitter

reuptake and synapse formation, both directly and indir-
ectly influencing learning and brain plasticity34–36.
Astrocytes can form a syncytium using calcium influx to
communicate directly between cells; they have receptors
for various neurotransmitters and can react by emitting
specific gliotransmitters33,37–39. Astrocytes have been
previously implicated in complex phenomena such as
sleep and mood: they appear to be involved in regulating
the brain rhythms that mediate sleep function. Astrocytes
are reduced in depressed patients, and impairing astro-
cytes in the frontal cortex leads to depressive-like symp-
toms in animal models40. Their reduction in AN could
explain the neural dysfunctions and equivalent symptoms
of sleep disturbance, depression and impaired learning
commonly found in patients with AN2,41,42. By impairing
proper synapse formation and plasticity, astrocytes could
be responsible for the decreased cognitive flexibility and
increased attention to detail that are often neuropsycho-
logical hallmarks of patients with AN. Together with the
lack of insight and the low motivation to change, this
could explain the difficulties encountered in the cognitive
processes implicated in the psychotherapy of patients with

Fig. 4 The figure shows the mean number of astrocytes, mean GFAP-positive cell surface area and mean mRNA expression of GFAP with respective
SDs after starvation and refeeding in the cerebral cortex (a) and corpus callosum (e). In the cerebral cortex and corpus callosum, the number of
astrocytes was significantly reduced compared to controls following starvation, and this reduction was recovered after refeeding (b, f, respectively).
Similarly, the total cell surface areas in both regions were significantly reduced following starvation but not refeeding (c, f). Furthermore, the ABA
group showed a significant reduction in GFAP mRNA expression in both regions following starvation, while no alterations occurred after refeeding
(d, h). *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001, two-sided Student’s t-test
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AN during acute starvation. During long-term chronic
starvation, astrocyte loss and the metabolic and functional
consequences of this loss could be in part responsible for
the behavioral neurodegenerative symptoms43. Morpho-
logical studies have also shown that the brain volume loss
in these patients worsens the longer the illness lasts15,44.

Reversibility of volume and cell reduction after weight
gain
The results of this study showed, for the first time, the

almost complete reversibility of brain volume reduction
and astrocyte reduction upon refeeding. The former
finding fits well with human MRI studies that have shown
largely reversible brain volume changes upon weight
gain8,45. Only the white matter volume seemed to remain
reduced in our study. This could have been an effect of
the relatively short time span, with more time being

required for complete restauration. Alternatively, it could
point to some sort of longer-lasting scarring in the still
developing brain. Previous meta-analyses seemed to sug-
gest different mechanisms underlying white versus gray
matter volume rehabilitation7,8. In patients, gray matter
loss has also been found to be strongly coupled with a low
body mass index. Thus, this may be a state marker for
starvation, whereas white matter had a stronger predictive
component towards the outcome after one year12. In
addition, diffusion-weighted images have shown white
matter tracts to be altered not only during acute starva-
tion16,46 but also partly after weight rehabilitation47

(however see Travis et al.48). Both astrocyte count and size
seemed to normalize after refeeding in our study. This
was a hopeful result, as it showed the reversibility of the
astrocyte loss after timely weight gain. Translated to
patient care, this argues for the need for a strong focus on

Fig. 5 The number of Ki67-positive cells (marker for cell proliferation) was reduced in the cerebral cortex (a, b) and corpus callosum (c, d) after
starvation and normalized after refeeding. **p ≤ 0.01, two-sided Student’s t-test
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nutritional rehabilitation and weight gain at the beginning
of therapy. More studies using longer starvation periods
are needed to examine whether the astrocyte cell reduc-
tions remain reversible after even longer time courses.

Reduced cell neogenesis
We found a significant reduction in cell neogenesis, as

evidenced by the decrease in Ki67-marked proliferative
cells, whereas cell apoptosis was not increased. This
finding corresponds with that of a study by the group of
Barbarich-Marsteller (2013). They found a reduction in
proliferation in regions with known glial but very little
neuronal cell neogenesis, such as the non-dentate gyrus
hippocampus and the corpus callosum, under acute ABA
conditions. In their study, the cerebral cortex was not
analyzed, and they used Ki67 staining and BrdU for pro-
liferation measurement30,49. Therefore, the brain volume
reduction seen in ABA could be due to the reduced
proliferation in the previously mentioned brain regions.
Thus, it could be that the astrocyte proliferation in corpus
callosum and cortex was reduced because there is only
very limited neurogenesis in these regions. This finding
would fit well with the catabolic state that occurs during
starvation, where the energy to build new cells would be
scarce rather than favorable to more rapid apoptosis.

Limitations
The presented results refer to animal data only, and

special care must be taken when translating animal
research to human patients. However, the ABA model is
the most widely used AN animal model with good
congruence in all somatic symptoms of patients with
AN (weight loss, endocrinological changes, brain
volume loss, etc.), so the translational significance
appears to be high50,51. Nevertheless, human post-
mortem studies of patients with AN are definitely nee-
ded. Brain atrophy in the ABA animals could have
slightly influenced the cell count (reference trap in
stereology52). Because of this volume reduction, the cell
count per volume would be expected to be approxi-
mately 6–9% too high in ABA animals, so the true
GFAP-positive astrocyte reduction could be expected to
be even slightly more pronounced. Furthermore, our
astrocyte marker GFAP is a marker for adult, differ-
entiated astrocytes;53 therefore, we do not know whe-
ther the astrocyte loss shown here extends to immature,
undifferentiated astrocytes. Further, also neuronal pro-
genitor cells are stained with this marker, but these cells
are only prominent in regions like the subventricular
zone of the lateral ventricle and in the dentate gyrus of
the hippocampus54. Lastly, we only analyzed brain
structure and the underlying cellular base but did not
study the functional consequences of astrocyte loss and
how it influences neuronal function and behavior.

Consequences
As stated above, a dramatic loss of astrocytes in the ABA

model does not bode well for the (developing) brain and
behavior of patients. If brain volume reduction and
astrocyte loss are reversible after a relatively short period
of starvation in ABA, rapid weight gain needs to be a
priority in the care of patients with AN. Furthermore, the
time-scale of astrocyte loss and regeneration as well as the
degree to which astrocyte functionality is also impaired,
along with the cell count reduction, needs to be further
researched. The questions of the specific mechanism of
changes in synapse formation and modulation and whe-
ther these changes result in altered levels of neuro-
transmitters or gliotransmitters require future studies.
Further investigation of altered astrocyte functionality
could provide a better understanding of the intermediate
brain alterations linking the cellular changes and psycho-
logical symptoms. Astrocyte studies are also important for
starvation in general, leading to psychological symptoms55

and other diseases involving under or malnutrition, such
as illnesses associated with cachexia (e.g., in cancer
patients) and even in developing countries56. Conse-
quently, astrocytes could become an entirely new focus for
research not only in AN but also other psychiatric diseases
that involve astrocyte cell reductions, such as depression,
anxiety disorder28 and chronic stress57.

Conclusion
Astrocytes were severely depleted in our AN animal

model following starvation, which reversed upon weight
restoration, possibly explaining typical neuropsychologi-
cal symptoms of AN of starvation in general. Astrocytes
could become an important target for further research
and interventions.
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