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A B S T R A C T

We studied the presence of benign infantile epilepsy (BIE), paroxysmal kinesigenic dyskinesia (PKD), and PKD
with infantile convulsions (PKD/IC) in patients with a 16p11.2 deletion including PRRT2 or with a PRRT2 loss-
of-function sequence variant. Index patients were recruited from seven Dutch university hospitals. The presence
of BIE, PKD and PKD/IC was retrospectively evaluated using questionnaires and medical records. We included 33
patients with a 16p11.2 deletion: three (9%) had BIE, none had PKD or PKD/IC. Twelve patients had a PRRT2
sequence variant: BIE was present in four (p= 0.069), PKD in six (p < 0.001) and PKD/IC in two (p=0.067).
Most patients with a deletion had undergone genetic testing because of developmental problems (87%), whereas
all patients with a sequence variant were tested because of a movement disorder (55%) or epilepsy (45%). BIE,
PKD and PKD/IC clearly showed incomplete penetrance in patients with 16p11.2 deletions, but were found in all
and 95% of patients with a PRRT2 sequence variant in our study and a large literature cohort, respectively.
Deletions and sequence variants have the same underlying loss-of-function disease mechanism. Thus, differences
in ascertainment have led to overestimating the frequency of BIE, PKD and PKD/IC in patients with a PRRT2
sequence variant. This has important implications for counseling if genome-wide sequencing shows such variants
in patients not presenting the PRRT2-related phenotypes.

1. Introduction

PRRT2 (MIM 614386) has been identified as a causal gene for be-
nign infantile epilepsy (BIE), paroxysmal kinesigenic dyskinesia (PKD),
and paroxysmal kinesigenic dyskinesia with infantile convulsions
(PKD/IC) (Chen et al., 2011; Heron et al., 2012; Lee et al., 2012). These
clinical entities reflect the core of the PRRT2-related phenotypic spec-
trum (Ebrahimi-Fakhari et al., 2015). Other epilepsies, movement dis-
orders and (hemiplegic) migraine have been reported to be possibly
related to PRRT2 sequence variants (Ebrahimi-Fakhari et al., 2015).

PRRT2 encodes for proline-rich transmembrane protein 2 that in-
teracts with SNAP25 in glutamatergic synapses in the brain to modulate

glutamate release (Chen et al., 2011; Heron et al., 2012; Lee et al.,
2012; Li et al., 2015). PRRT2 sequence variants have been shown to
result in a loss-of-function of PRRT2, impaired SNAP25 interaction,
raised intracellular glutamate levels and increased neuronal hyper-
excitability (Lee et al., 2012; Li et al., 2015).

Chromosome 16p11.2 deletions including PRRT2 are associated
with the 16p11.2 microdeletion syndrome (MIM 611913). We expected
that 16p11.2 deletions are also associated with PRRT2-related pheno-
types, because deletions and sequence variants of PRRT2 share an un-
derlying loss-of-function disease mechanism. So far, only six cases with
a 16p11.2 deletion and PKD (n=4) or PKD/IC (n= 2) have been re-
ported (Lipton and Rivkin, 2009; Dale et al., 2011, 2012; Silveira-
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Moriyama et al., 2013; Weber et al., 2013; Termsarasab et al., 2014).
Previous large 16p11.2 deletion cohort studies reported seizures in
24–31% of patients, dystonia in 1% and paroxysmal dyskinesia in 5%
without classifying these phenotypes as BIE, PKD or PKD/IC (Shinawi
et al., 2010; Steinman et al., 2016; Zufferey et al., 2012).

We systematically evaluated the presence of the PRRT2-related
phenotypes BIE, PKD, and PKD/IC in patients with a 16p11.2 deletion
including PRRT2, and compared these frequencies with those seen in
patients with a PRRT2 sequence variant.

2. Methods

We identified 129 Dutch-speaking patients with a 16p11.2 deletion
including PRRT2 in seven Dutch university medical centers (UMCs).
Five patients were not approached for participation (two were de-
ceased, two had an additional disease-associated 22q11.2 deletion, and
one was lost to follow-up before this study). Forty of 124 (32%) patients
agreed to participate, including 33/40 (83%) index patients from 33
families.

Following the same strategy, we identified 43 patients with a PRRT2
sequence variant in three UMCs. One patient was involved in another
study and not contacted. Fifteen (36%) patients agreed to participate,
including 12/15 (80%) index patients from 12 families.

All patients or their parents/caregivers gave written consent for
participation and completed a questionnaire containing (1) a PKD
Screening questionnaire, (2) a Headache-Attributed Restriction,
Disability, Social Handicap and Impaired Participation questionnaire
and (3) questions on epilepsy (seizure onset, remission, frequency and
semiology), school performance and development, height, weight and
family history (Steiner et al., 2014; Tan et al., 2014). An English version
of the questionnaire is available on request.

Phenotypes were compared between index patients with a 16p11.2
deletion (n=33) and those with a PRRT2 sequence variant (n=12).
To increase the validity of any observed differences, we compared the
phenotypes of patients with a 16p11.2 deletion in our cohort (n= 33)
with those of patients with a heterozygous PRRT2 sequence variant
reported in the large review cohort of Ebrahimi-Fakhari (n= 1423,
excluding patients with bi-allelic PRRT2 sequence variants (n= 15) or
a 16p11.2 deletion (n=6)) (Ebrahimi-Fakhari et al., 2015).

Additional information on methods is given in the Supplementary
Methods.

3. Results

We included 33 index patients with the recurrent ∼600 kb BP4-BP5
16p11.2 deletion (Supplementary Figure 1) and 12 index patients with
a disease-associated PRRT2 sequence variant: c.649dupC; p.(Arg217-
Profs*8) (n = 10), c.629dupC; p.(Ala211Serfs*14) (n = 1), or
c.824C > T; p.(Ser275Phe) (n = 1) (NM_145239.2, Supplementary
Table 1). All variants were added to public databases (see
Supplementary methods for more information). Patients with a 16p11.2
deletion most often underwent genetic testing because of develop-
mental delay (87%), while those with a PRRT2 sequence variant were
tested because of a movement disorder (55%) or epilepsy (45%)
(Table 1).

Patients with a 16p11.2 deletion less often had a PRRT2-related
phenotype than those with a PRRT2 sequence variant (9% vs. 100%,
p < 0.001) (Table 1). These phenotypes concerned BIE (9% vs. 33%,
p=0.069), PKD (0% vs. 50%, p < 0.001) and PKD/IC (0% vs. 17%,
p=0.067) (See Tables 2 and 3 for epilepsy and movement disorder
phenotypes, respectively). Comparisons between patients with a
16p11.2 deletion in our cohort and those with a PRRT2 sequence var-
iant from the review cohort showed significant differences for all
PRRT2-related phenotypes (Table 1). The presence of other epilepsies,
movement disorders, hemiplegic migraine and migraine as possible
PRRT2-related phenotypes did not significantly differ between the three

groups (Tables 1–3, see Supplementary Table 2 for migraine pheno-
types).

4. Discussion

We found that only a minority of patients with a 16p11.2 deletion in
our cohort suffered from BIE (9%) while none had PKD or PKD/IC. In
comparison, patients with a PRRT2 sequence variant in our cohort
(100%) and a review cohort (95%) had these PRRT2-related pheno-
types significantly more often (Ebrahimi-Fakhari et al., 2015).

It is unlikely that phenotypic differences between the two different
genotype cohorts are due to differences in the underlying PRRT2 dis-
ease mechanism. First, PRRT2-related phenotypes occurred in both
genotype groups in our study and other studies (Lipton and Rivkin,
2009; Dale et al., 2011, 2012; Silveira-Moriyama et al., 2013; Weber
et al., 2013; Termsarasab et al., 2014). Second, both genotypes cause a
loss-of-function of PRRT2. The p.(Arg217Profs*8) variant, found in
most patients of our (83%) and the review (79%) cohort, results in a
PRRT2 loss-of-function without a dominant-negative effect (Ebrahimi-
Fakhari et al., 2015; Lee et al., 2012; Li et al., 2015). Patients with
16p11.2 deletions have a 50% reduced expression of PRRT2 and other
genes within the deletion region that probably explains their additional
problems (Blumenthal et al., 2014). In theory, the deletion of these
other genes might have had a protective effect on the patients' pheno-
types, but no clear evidence for this hypothesis exists so far.

It seems most likely that differences in ascertaining patients un-
derlie the differences in PRRT2-related phenotypes observed in patients
with a 16p11.2 deletion versus a PRRT2 sequence variant. The fre-
quency of phenotypes has probably been overestimated in patients with
a PRRT2 variant, who most often underwent genetic testing because of
a movement disorder or epilepsy. The high frequency of the recurrent
c.649dupC; p.(Arg217fs) PRRT2 variant in individuals included in the
ExAC Database (1.3%, n=401/32,017; Exac version 0.3.1) seems to
support this hypothesis although the frequency in the gnomAD
Database is substantially lower (0.05%, n= 8/14,859; gnomAD version
r2.0.2) (Lek et al., 2016). This difference might be related to the used
data (whole exome versus whole genome data) or whether DNA am-
plification was performed, as previously suggested by the relatively
high frequency of this variant in the Exome Variant Server database
that uses amplification (Huguet et al., 2014). A compatible influence of
ascertainment might be present in the published review cohort. The
inclusion of index cases in calculating penetrance of PRRT2 in other
studies has probably resulted in an overestimated disease penetrance
for PKD (60%) and BIE (60–90%) (Callenbach et al., 2005; Van Vliet
et al., 2012). A lower penetrance (48%) has been found in a single
family with 23 relatives with PRRT2 sequence variants (Family 1, ex-
cluding the index patient) (Callenbach et al., 2005; De Vries et al.,
2012). Reduced penetrance is also known for other clinical features
associated with the 16p11.2 BP4-BP5 deletion (Shinawi et al., 2010;
Steinman et al., 2016; Zufferey et al., 2012).

The low frequency of PRRT2-related phenotypes in our patients
with 16p11.2 deletions is in line with two large previous studies
showing the presence of any seizures in 24% (n= 49/195) and 27%
(n= 22/83), paroxysmal dyskinesia in 5% (n= 12/233) and dystonia
in 1% (n= 1/83), emphasizing the incomplete penetrance of BIE and
PKD (Shinawi et al., 2010; Steinman et al., 2016; Zufferey et al., 2012).
However, in our small cohort, we might have underestimated the pre-
sence of PRRT2-related phenotypes. First, BIE occurred long time ago in
some patients, leading to recall bias, and may have a low seizure-fre-
quency, leading to missed diagnoses. Second, three patients had un-
witnessed incidents, but these occurred too late for a diagnosis of BIE.
Last, some patients were too young to fully exclude PKD. It is thus
possible that the differences in frequencies between the two patient
groups might be partly explained by under-recognition of PRRT2-re-
lated phenotypes in the 16p11.2 microdeletion patients.

The observation that the frequency of PRRT2-related phenotypes

D.R.M. Vlaskamp et al. European Journal of Medical Genetics 62 (2019) 265–269

266



has thus far been overestimated in patients with a PRRT2 loss-of-
function variant is important for counseling, because increasingly used
whole exome sequencing (WES) may detect these variants as secondary
findings. Doctors are tempted to use large cohort studies to counsel
patients with such unexpected findings, but should realize that ascer-
tainment bias is always present in these studies.

5. Conclusion

We conclude that 16p11.2 deletions including PRRT2 and PRRT2
sequence variants both lead to the PRRT2-associated phenotypes BIE,
PKD or PKD/IC, but with incomplete penetrance. PRRT2-related phe-
notypes were more commonly found in patients with PRRT2 sequence
variants, despite the shared underlying PRRT2 loss-of-function disease
mechanism. Ascertainment bias has led to an overestimation of the
penetrance of BIE, PKD and PKD/IC in patients with a PRRT2 sequence
variant. This study is important for the clinical interpretation of PRRT2

sequence variants found by WES in patients without these specific
phenotypes.

6. Web resources

We used the following URLs for data:
Exome Aggregation Consortium (ExAC), http://exac.broadinstitute.

org.
Genome Aggregation Database (gnomAD), http://gnomad.

broadinstitute.org/
Exome Variant Server (EVS), http://evs.gs.washington.edu/EVS/
Expression Atlas for gene expression, http://www.ebi.ac.uk.
Online Mendelian Inheritance in Man (OMIM), https://www.omim.

org.
UCSC Genome Bioinformatics, https://genome.ucsc.edu.
European Cytogeneticists Association Register of Unbalanced

Chromosome Aberrations (ECARUCA), http://ecaruca.radboudumc.

Table 1
Phenotypes of patients with a 16p11.2 deletion or a PRRT2 sequence variant in our cohort and the literature.

Patients with a 16p11.2
deletion (n=33)

Patients with a PRRT2
sequence variant (n= 12)

p-value a Patients with a PRRT2 sequence variant
from the review cohort (n=1423) b

p-value c

Patient characteristics at inclusion in study
Male (%) 19 (57.6) 4 (33) 0.189 NA NA
Median age in years (range) 12.4 (3.8–37.1) 21.5 (4.5–48.7) 0.023 NA NA
PRRT2-related phenotypes
Diagnosis in BIE – PKD – PKD/IC spectrum

(%)
3 (9.1) 12 (100) < 0.001 1352 (95.0) < 0.001

BIE (%) 3 (9.1) 4 (33.3) 0.069 598 (42.0) < 0.001
PKD (%) 0 (−) 6 (50.0) < 0.001 553 (38.9) < 0.001
PKD/IC (%) 0 (−) 2 (16.7) 0.067 201 (14.1) 0.010

Possible PRRT2-related phenotypes
Other epilepsy diagnosis (%) 2 (6.1) 1 (8.3) 1.000 51 (3.6) d 0.340
Other movement disorder diagnosis (%) 1 (3.0) 0 (−) 1.000 19 (1.3) e 0.370
Hemiplegic migraine (%) 1/31 (3.2) 3 (25.0) 0.059 34 (2.4) 0.534
Migraine or probable migraine (%) 4/31 (12.9) 1 (8.3) 1.000 68 (4.8) 0.063
16p11.2 deletion-related phenotypes
Developmental problems (%) 33 (100) 1 (8.3) < 0.001 NA NA
Special education in those > 4 years (%) 29/32 (90.6) 0/11 (−) < 0.001 20 (1.4) f < 0.001
Problems in motor developmental (%) 28 (84.8) 1 (8.3) < 0.001 NA NA
Problems in language development (%) 32 (97.0) 0 (−) < 0.001 NA NA

Median age in months at
sitting (range, known in n) 10.0 (6.0–48.0, 28) 9.0 (7.0–11.0, 7) 0.340 NA NA
walking (range, known in n) 19.8 (12.0–30.0, 30) g 14.5 (11.0–22.0, 8) < 0.001 NA NA
speaking first word (range, known in) 17.5 (9.0–84.0, 24) g 11.5 (9.0–12.0, 6) 0.003 NA NA
speaking comprehensively (range, known
in n)

48.0 (18.0–72.0, 15) g 18.0 (16.0–30.0, 6) 0.001 NA NA

Obesity (%) 5/25 (20.0) 0 (−) 0.152 NA NA
Indications for genetic testing
Epilepsy (%) 3/30 (10.0) 5/11 (45.4) 0.022 NA NA
Movement disorders (%) 0/30 (−) 6/11 (54.5) < 0.001 NA NA
(Hemiplegic) Migraine (%) 0/30 (−) 1/11 (9.1) 0.286 NA NA
Developmental problems (%) 26/30 (86.7) 0/11 (−) < 0.001 NA NA
Obesity (%) 3/30 (10.0) 0/11 (−) 0.551 NA NA
Other (dysmorphisms, behavioral
problems, family history) (%)

15/30 (50.0) 2/11 (18.2) 0.085 NA NA

If patients had missing information, a denominator is given that represents the number of patients with known information on this variable. If no denominator is
given, there was information on all patients. P-values in bold were considered significant (p < 0.05).
Abbreviations: BIE= benign infantile epilepsy, NA=not available, PKD=paroxysmal kinesigenic dyskinesia, PKD/IC=paroxysmal kinesigenic dyskinesia with
infantile convulsions.
a p-values of comparisons between patients with a 16p11.2 deletion and patients in our cohort with a PRRT2 sequence variant. Fisher's exact tests were used for

categorical data and Mann-Whitney U tests for continuous variables.
b All patients with a heterozygous PRRT2 sequence variant included in the review study by Ebrahimi et al. (see also methods section).
c p-values of comparisons between patients with a 16p11.2 deletion and patients from the review cohort with a PRRT2 sequence variant. Fisher's exact tests were

used for categorical data and Mann-Whitney U tests for continuous variables.
d Other epilepsy diagnoses included epilepsy/seizures not otherwise specified, febrile seizures plus, absence seizures, Dravet syndrome, generalized epilepsy with

febrile seizures, West syndrome and benign Rolandic epilepsy.
e Other movement disorder diagnoses included paroxysmal non-kinesigenic dyskinesia, paroxysmal exercise-induced dyskinesia, episodic ataxia, writer's cramp

and paroxysmal torticollis.
f Patients with intellectual disability or learning disabilities.
g Three females aged 6 years, 21 years† and 29 years were not able to walk or talk.
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Table 3
Movement disorders in patients with a 16p11.2 deletion or a PRRT2 sequence variant.

Pt. Sex, age in
years

Movement disorder BIE Age at
onset

Age at remission Motor DD Previous medication (effect) Current medication a

(effect)

16p11.2 deletions (n=1)
3 F, 15 Myoclonic dystonia with cortical

myoclonus
Yes Birth No Yes VPA (+, but side-effects) CZP (+)

PRRT2 sequence variants (n=8)
7 F, 31 PKD No 9y No No CBZ (+) None
8 M, 18 PKD No 14y 16y No None CBZ (+)
17 F, 13 PKD Yes 10y 12y No CZP (−) CBZ (+)
20 F, 20 PKD No 8y 19y No None None
35 F, 22 PKD Yes 14y 14y No None OXC (+)
44 M, 34 PKD No 8y No No L-DOPA (−), CBZ (+, but side-effects) None
49 M, 24 PKD No 10y No No CBZ (+), LEV (−), OXC (side-effects),

GBP (−)
LTG (+)

53 F, 18 PKD No 15y 16y Yes b None CBZ (+)

Treatment effect: + treatment response, - no treatment response.
Abbreviations: BIE= benign infantile epilepsy, CBZ= carbamazepine, CZP= clonazepam, DD=developmental delay, GBP= gabapentin, L-DOPA= levodopa,
LTG= lamotrigine, OXC=oxcarbazepine, PKD=paroxysmal kinesigenic dyskinesia, VPA= valproic acid.
a At last moment of contact with specialist.
b Attributed to perinatal asphyxia.
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