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De Quasi-neutrale Oplossingsfabriek

Een tocht door het land van de ivoren torens, waar de objectieve waarheid wordt gemaakt

De utopische traditie is de afgelopen decennia drastisch uitgedund. Wat ons resteert zijn
technotopia’s, klimaatdystopia’s en nostalgie naar de sixties. Maar als altijd, hebben
wij ook vandaag een baken nodig aan de horizon van tijd, om naartoe te koersen en
gezamenlijk grote beslissingen te kunnen nemen. Eeuwenlang was de wetenschap de plek
bij uitstek waar Utopia ontstond, vooral ten tijde van een intellectuele revolutie. Dus
waarom ontstaan er geen utopieën vandaag? We bezoeken het land van de ivoren torens.

Hoe komen we tot kennis? Uit de wereld om ons heen verzamelen we gegevens die wij
omhoog brengen naar het hart van de wetenschap, de nok van de ivoren toren waar de
waarheid wordt gemaakt. En wanneer een theorie is gemaakt, gaan we checken of het
klopt. Want dat is tenslotte wat wij doen op de universiteit, we construeren waarheden.
Allereerst zal de kennis door de objectieve waarheidstrechter gaan, waar het wordt gestript
van kwalitatieve en subjectieve aspecten en van normen en waarden. Wat er overblijft,
neutrale cijfers, gaat naar de binaire pers, klaar voor de computers van de programmeurs.
Met algoritmes transformeren zij de eentjes en nulletjes in efficiëntie, snelheid en groei,
en schuiven het dan door naar de economen. Zittend op het GNP en maaiend met grote
grijpers plaatsen de economen iedereen netjes ergens in de fabriek van onze maatschappij.

In blinde processie bewegen we voort op het tikken van de klok van de ene cel naar de
volgende, gevangen in de oneindigheid van onze dagelijkse routines. Billboards moedigen
ons aan om geld dat we niet hebben uit te geven aan zooi die we willen, om indruk te
maken op de mensen die we eigenlijk niet uit kunnen staan. Rechts van de kloof vinden
we de kunstenaars, muzikanten, filosofen, én de utopisten - bestempeld als dromers of
extremisten. Voor hen is het te gevaarlijk om over te steken, zij zijn overbodig hier, in
een maatschappij van cijfers, feiten en neutrale waarheden.

Eeuwenlang was de wetenschap bij uitstek de plek waar Utopia ontstond, maar vandaag
is dat veranderd. De universiteit van de 21ste eeuw is eigenlijk niets meer dan een fabriek,
een quasi-neutrale oplossingsfabriek, waar iedereen te druk is met schrijven om nog iets
te lezen, en te druk met publiceren voor een debat. Als wij willen dat er waardevolle
utopieën kunnen ontstaan binnen de universiteit, dan zal het proces van kennis verwerven
en de interpretatie van waarheid misschien wel moeten veranderen...

Illustratie op achterzijde en bijbehorend verhaal door:
Carlijn Kingma | www.carlijnkingma.com
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1

Introduction

1.1 Bayesian Statistics
We all have to make decisions whilst facing uncertainty and incomplete information. To
help us interpret and organize available information we use statistics. One framework
that is often used to plan the optimal course of action is Bayesian statistics.

Bayesian statistics offers a way to describe our state of knowledge in terms of probability
(Jaynes, 1996). Moreover, it can be seen as an extension of logic (Jaynes, 2003). In
addition, Bayesian statistics describes how we ought to learn (Lindley, 2013). We can do
so by using probability distributions to describe our state of knowledge about a parameter.
This can be done both before we observe new data, i.e. by means of a prior distribution
of probability concerning the parameter, or after we have observed new data and we have
updated our state of knowledge, i.e. the posterior distribution of probability concerning
the parameter.

To make this more intuitive I very briefly describe learning via Bayesian statistics. I use
the example describing how we could learn about the unknown proportion of a sequence
of ‘Bernoulli trials’ that result in either 0 or 1, or in case of a coin, tails (T ) for 0 or head
(H) for 1. We say that θ is the proportion of coin flips resulting in heads facing upwards.
It turns out that we can use the Beta distribution in a very convenient way to update
our beliefs, or state of knowledge, concerning θ. That is, we can express which values are
consistent with both our prior state of knowledge and the newly observed data (Jaynes,
1996). The distribution of probability indicates which values are most consistent with
both sources. For mathematical details see for instance Gelman et al. (2013 Chapter 2).
The intuition is as follows: the Beta distribution has two parameters, α and β, which can
be interpreted as follows in our example; there have ‘Bernoulli trials’, and α− 1 of them
have been a success whilst β − 1 of them have been a failure. In other words we have
observed heads α− 1 times and tails β − 1 times.

Now let us start with a prior state of ignorance, we have neither observed head nor tails
before. We then specify a Beta(α = 1, β = 1) prior distribution. It turns out that this
neatly coincides with an initial state of ignorance. Every proportion in the interval from 0
up to 1 is assigned equal probability to be the value for θ based on no initial evidence,
see Figure 1.1 panel A. Now we observe heads four times and tails once (THHHH)
in the first five trials and we learn from this data such that we update to a posterior
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distribution represented by a Beta(α = 5, β = 2), which can be seen in Figure 1.1 panel
B. Before we observe more trials and new data we have an updated state of belief. The
posterior distribution can become our new prior distribution, which we, in turn, update
with new information to obtain a new posterior distribution. This is what happens in
panels C and D of Figure 1.1 where we in turn observe HTHHT and THTTH to come
to a Beta(α = 8, β = 4) as a posterior in panel C and a Beta(α = 10, β = 7) as posterior
in panel D. After 15 trials, and without initial prior knowledge, slightly more heads were
observed than tails, thus values just above a proportion of .5 are assigned the largest
probability. However, given the few trials that we observed, a wide range of possible
values for the proportion of coin flips resulting in heads facing upwards are still assigned
probability. Note too, that nowhere do I state which value for θ I used to simulate these
results, for in practice this is unknown and the best we can do is what we just did, use
the knowledge available to us to assign probabilities to values for θ.

Now, let us suppose that we did not have an initial state of ignorance. The prior need
not be ignorance as we noticed when the previous posterior became our new prior each
time. Would of belief differ if we had more initial information? Figure 1.2 shows learning
from the same data as in the example presented in Figure 1.1 with our initial state of
knowledge expressed by a Beta(α = 51, β = 51) distribution. In other words, before
the new trials we had initial information equivalent to 100 previous coin flips that were
distributed equally between head and tails. The new data is very much in line with our
previous data and we only slightly adjust our beliefs, assigning even more probability to
values near .5.

All of this wonderful nuanced theory is historically summarized by a single equation. The
reason for showing you this formula only after the examples, is not to get distracted by
the mathematics for those readers not working with statistics every day. For those who
do use statistics often, there are many books written in much more detail on this subject
that yield a more complete overview (e.g. Gelman et al., 2013; Jaynes, 2003; Kaplan, 2014;
Lindley, 2013; Lynch, 2007; Ntzoufras, 2011; Press, 2009). Without further ado, Bayes’
Theorem

p(A|BC) = P (A|C)P (B|AC)
P (B|C) (1.1)

where A, B and C are different propositions, p(A|C) describes the prior distribution of
probability concerning A, given that we know C. p(A|BC) is the posterior distribution of
probability concerning A, updated with the new information that is provided to us by
B. Note that C here has the interpretation of what we know about A before learning
about, or obtaining, the information from B. In the previous example, θ took on the role
of A and the new trials took on the role of B. C, in the first example, expressed that we
knew that θ was a proportion which can only take on values in the interval from 0 up to 1.
Equation (1.1) describes how we can learn about A, how we ought to update our beliefs
in the light of new data. It also makes it explicit that this learning effect is dependent on
our prior knowledge, just like in the example of Figures 1.1 and 1.2 Again, the aim here is
not to expand on the mathematics, but merely to provide some initial intuition about the
concept of learning using Bayes’ rule. Next, we turn to the implementation of the concept
of prior knowledge, how can we formalize our prior distribution of probability concerning
A given that we know C.
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Figure 1.1: Example of Bayesian updating. Panel A shows a Beta(α = 1, β = 1)
distribution representing a prior state of knowledge equal to ignorance. Panels B, C and D
show how the state of knowledge updated after new data is observed, each time the previous
panel is the prior belief for the next panel, combined with the information from five new
observations.
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Figure 1.2: Example of Bayesian updating. Panel A shows a Beta(α = 51, β = 51)
distribution. This is updated using the same data as in Figure 1.1, only the initial prior
contains more information.
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1.2 Prior Information
The topic of prior information in Bayesian statistics is a field of study all on it’s own. To
illustrate this, note that Tuyl, Gerlach, & Mengersen (2008) wrote a full paper, discussing
only the choice of prior for extreme cases of our example above. There are heavy discussions
and different schools of thought, roughly divided into “objective” (e.g. Berger, 2006) and
“subjective” (e.g. de Finetti, 1974; Goldstein, 2006) camps. Discussing the differences
within, let alone between, these different approaches is way to much to get into at this
point. Simply listing names of different approaches to objective Bayesian priors takes
up an extensive paragraph (Berger, 2006, pp. 387–388) and for a discussion about the
(dis)advantages of both method I refer the reader to Chapter 5 of Press (2009). For the
reader it suffices to know that in this dissertation we certainly specify priors that would
be considered more in line with the “subjective” school of Bayesian analysis, even if we do
not always use these priors to be updated with new data.

Now let us briefly consider three types of information that could be included in a prior
distribution of probability. First, previous research can inform us about certain parameters
and including this information in future analyses seems in line with our idea of leaning.
In Section 5.4 of Spiegelhalter, Abrams, & Myles (2004) they provide a very nice overview
on how to include results of previous studies based on similarity, exchangability and bias
considerations. It is described not only how you could include information from previous
studies if they are exactly on the same topic, but also how to do so if the research differs
in specific ways. Second, logical considerations can be taken into account, e.g. in the coin
flipping example we know that a proportion lies between 0 and 1 and no values outside
the interval between those two will be assigned any probability. In a similar fashion we
could incorporate information with respect to our measurements, e.g. no negative values
for temperature measured in Kelvin, or when calculating air pollution in a city that we
do live in, the amount of matter in the air cannot be so much that we could not breath
and live there. Third, information gathered from an expert, or as put by the Cambridge
English Dictionary (2019); “a person with a high level of knowledge or skill relating to a
particular subject or activity”. This particular knowledge can be translated, or elicited, to
be expressed in the form of distribution of probability. There are surely more sources of
information to inform our prior probability distributions besides previous research, logical
considerations and expert knowledge, but as this dissertations involves experts quite a bit
I will elaborate on that specific case somewhat more.

1.3 Expert Elicitation
The process of creating a probabilistic representation of an experts’ beliefs is called
elicitation (O’Hagan et al., 2006). There is an extensive history of expert elicitation across
many different disciplines of sciences (Cooke & Goossens, 2008; Gosling, 2018; O’Hagan
et al., 2006, Chapter 10). Expert judgements are for instance used in the case that there
is no actual data available (Hald et al., 2016) or to add information to small sample
data (Kadane, 1994). However, with many examples, covering many disciplines, expert
knowledge still does not seem to be used in the social sciences with van de Schoot, Winter,
Ryan, Zondervan-Zwijnenburg, & Depaoli (2017) finding only two use cases in the past 25
years of Bayesian statistics in Psychology.

One of the reasons for this limited use can perhaps be found in the traditional way of



6 1. INTRODUCTION

eliciting expert judgements. One of the traditional ways is to elicit three quantiles from
an experts concerning the distribution of probability over a specific parameters (O’Hagan
et al., 2006, Chapter 5). These quantiles are then used to determine the distribution that
fits best with these described value, and that distribution is used to represent an experts’
beliefs. The questions to the experts would be for instance the following:

"Q1: Can you determine a value (your median) such that X is equally likely
to be less than or greater than this point?

Q2: Suppose you were told that X is below your assessed median. Can you
now determine a new value (the lower quartile) such that it is equally likely
that X is less than or greater than this value?

Q3: Suppose you were told that X is above your assessed median. Can you
now determine a new value (the lower quartile) such that it is equally likely
that X is less than or greater than this value?"

O’Hagan et al. (2006), p. 101

We believe that this rather abstract thinking in terms of quantiles of distributions might
be hard for some experts, depending on their experience with statistics and mathematical
background. This naturally bring us to the following section and the outline of this
dissertation, how is it that we propose to use expert elicitation in the social sciences and
what do we propose to do with this source of additional information.

1.4 Aims and Outline
In this dissertation it is discussed how one can capture and utilize alternative sources of
(prior) information compared to traditional method in the social sciences such as survey
research. Specific attention is paid to expert knowledge.

In Chapter 2 we propose an elicitation methodology for a single parameter that does not
rely on specifying quantiles of a distribution. The proposed method is evaluated using
a user feasibility study, a partial validation study and an empirical example of the full
elicitation method.

In Chapter 3 it is investigated how experts’ knowledge, as alternative source of information,
can be contrasted with traditional data collection methods. At the same time, we explore
how experts can be assessed and ranked borrowing techniques from information theory. We
use the information theoretical concept of relative entropy or Kullback-Leibler divergence
which assesses a loss of information when approximating one distribution by another. For
those familiar with the concept of model selection, Akaike’s Information Criterion is an
approximation of this (Burnham & Anderson, 2002, Chapter 2).

In Chapter 4 an alternative way of enhancing the amount of information in a model is
proposed. We introduce Bayesian hierarchical modelling to the field of infants’ speech
discrimination analysis. This technique is not new on it’s own but was not applied to this
field. Implementing this type of modelling enables individual analyses within a group
structure. By taking the hierarchical structure of the data into account we can make
the most of the, on individual level, small noisy data sets. The analysis methodology
estimates if individuals are (dis)similar and takes this into account for all individuals in
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one single model. Essentially, the estimated group effects serve as priors for the individual
estimates. Moreover, we do not need to do a single hypothesis test for every child, which
was the most advanced individual analysis in the field up to now, going back to 2007
(Houston, Horn, Qi, Ting, & Gao, 2007).

In Chapter 5 we reflect on issues that come along with the estimation of increasingly
complicated models. Techniques and software for estimating more complex models, such
as proposed in Chapter 4, need to be carefully used and the results of the analyses need to
be carefully checked. But what to do when things actually go awry in your analysis? We
show how even with weakly informative priors, adding the information that is available to
us, sometimes we do not get a solution with our analysis plan. We guide the reader on
what to do when this occurs and where to look for clues and possible causes. We provide
some guidance and a textbook example that for once shows things not working out the
way you would like. We believe this is important as there are few examples of this.

In Chapter 6 we combine the previous chapters. We take more complex models and get
experts to specify beliefs with respect to these models. We extend the method developed
in Chapter 2 to elicit experts’ beliefs with respect to a hierarchical model, which is used
in Chapters 4 and 5. In specific, we concern ourselves with a Latent Growth Curve model
and utilize the information theoretical measures from Chapter 3 to compare the (groups)
of experts to one another and to data collected in a traditional way. We do this in the
context of Posttraumatic Stress Symptoms development in children with burn injuries.

In Chapter 7 I reflect on the work and explanations provided within the chapters of
this dissertation, including this introduction. The discussion is a reflection of my own
personal thoughts, and no other person is responsible for the content, although the
personal discussions and collaborations of the past years have certainly contributed to the
formulation of these opinions.
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2

Proposal for a Five-Step Method to
Elicit Expert Judgment

Abstract
Elicitation is a commonly used tool to extract viable information from experts. The information
that is held by the expert is extracted and a probabilistic representation of this knowledge is
constructed. A promising avenue in psychological research is to incorporated experts’ prior
knowledge in the statistical analysis. Systematic reviews on elicitation literature however suggest
that it might be inappropriate to directly obtain distributional representations from experts. The
literature qualifies experts’ performance on estimating elements of a distribution as unsatisfactory,
thus reliably specifying the essential elements of the parameters of interest in one elicitation step
seems implausible. Providing feedback within the elicitation process can enhance the quality
of the elicitation and interactive software can be used to facilitate the feedback. Therefore, we
propose to decompose the elicitation procedure into smaller steps with adjustable outcomes. We
represent the tacit knowledge of experts as a location parameter and their uncertainty concerning
this knowledge by a scale and shape parameter. Using a feedback procedure, experts can accept
the representation of their beliefs or adjust their input. We propose a Five-Step Method which
consists of (1) Eliciting the location parameter using the trial roulette method. (2) Provide
feedback on the location parameter and ask for confirmation or adjustment. (3) Elicit the
scale and shape parameter. (4) Provide feedback on the scale and shape parameter and ask for
confirmation or adjustment. (5) Use the elicited and calibrated probability distribution in a
statistical analysis and update it with data or to compute a prior-data conflict within a Bayesian
framework. User feasibility and internal validity for the Five-Step Method are investigated using
three elicitation studies.

This chapter is published as Veen, D., Stoel ,D., Zondervan-Zwijnenburg, M. & van de Schoot, R.
(2017). Proposal for a Five-Step Method to Elicit Expert Judgment. Front. Psychol., 8:2110. doi:
10.3389/fpsyg.2017.02110

DV and RvdS mainly contributed to the study design. All authors have been involved in the design of
(part) of the elicitation procedure. DV programmed the elicitation software. All elicitations have been
facilitated by DV and DS. DV wrote and revised the paper with feedback and input of DS, MZ-Z, and
RvdS. RvdS supervised the project.
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2.1 Introduction
“The knowledge held by expert practitioners is too valuable to be ignored.
But only when thorough methods are applied, can the application of expert
knowledge be as valid as the use of empirical data. The responsibility for the
effective and rigorous use of expert knowledge lies with the researchers.”

Drescher et al. (2013, p. 1)

According to O’Hagan et al. (2006) elicitation is the process of extracting and creating
a representation of an expert’s beliefs. It can be used for a variety of reasons, e.g., to
add information to small sample data (Kadane, 1994; van de Schoot, Sijbrandij, et al.,
2018; Zondervan-Zwijnenburg et al., 2017a), when there is no data for certain confounding
parameters in a model (Fischer, Lewandowski, & Janssen, 2013), when no data is available
(Ho & Smith, 1997), as sensitivity analysis to check assumptions about missing data
(Mason et al., 2017), or simply to enrich the available data (Wisniowski, Bijak, & Shang,
2014). Expert knowledge is a valuable source of information, as becomes evident in the
quote of Drescher et al. (2013). (Hadorn, Kvizhinadze, Collinson, & Blakely, 2014) found
that 57% of health economic decision models included at least one expert knowledge
elicitation parameter, showing that in some fields it is even the norm to use expert
elicitation. More examples of elicitation practices in many different fields can be found in
overview studies by O’Hagan et al. (2006, Chapter 10) and Bistline (2014) or the paper
by Cooke & Goossens (2008) in which they describe the data base of over 67,000 experts’
subjective probability distributions.

There are many elicitation procedures available, overviews can be found in for instance
O’Hagan et al. (2006), S. R. Johnson et al. (2010), and Aspinall & Cooke (2013). A
popular elicitation method is the trial roulette method (Gore, 1987), sometimes also called
the chips and bins method or the histogram method, in which experts assign “chips”"
to “bins” of a histogram to ascribe probability. In the procedure, used by for instance
Diamond et al. (2014) and Goldstein & Rothschild (2014), the parameter space for which
experts can assign probability is divided into equal sections or “bins”. The experts receive
20 “chips”, which are to be distributed amongst these “bins”. For each “chip” that is
allocated to one of the “bins”, 5% of the mass of a probability distribution is ascribed.
Based on the input provided by the expert, a probability distribution is fitted. The trial
roulette method has been validated by S. R. Johnson, Tomlinson, et al. (2010) and M.
Zondervan-Zwijnenburg et al. (2017b) in a face-to-face setting.

Software that can be used in the elicitation with the trial roulette method is available
in the MATCH Uncertainty Elicitation Tool (Morris, Oakley, & Crowe, 2014). MATCH
is an online framework for elicitation procedures. It uses the R-package (R Core Team,
2017b) SHELF (Oakley, 2019) to fit appropriate parametric distributions based on input
that is provided by experts.

One of the reasons the trial roulette method is popular is that the procedure provides
immediate visual feedback to experts. Feedback is important in elicitation procedures to
reduce bias and improve the quality of the elicitation (Johnson et al., 2010; O’Hagan et al.,
2006). The “chips”" that are allocated in the trial roulette method by the expert visually
approximate a probability distribution. However, the feedback provided to the expert
is not on the statistical distribution that is actually used by the researcher in the final
analyses. It is important to receive conformation of the expert that the interpretation by
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the researcher matches their beliefs, or as O’Hagan et al. (2006, p. 174) state, “feedback
to the expert is the most natural way of evaluating the distribution – the expert is in the
best position to judge whether something corresponds to her opinion.” Providing instant
feedback on the representation of the experts’ beliefs, based on the input they provide,
and how their beliefs are translated into a statistical distribution can easily be done by
using software.

Feedback is believed to improve the quality of the elicitation procedure by making
experts; reflect and maintain selfconsistency (Fisher, O’Leary, Low-Choy, Mengersen, &
Caley, 2012), by highlighting inconsistencies in judgment and making errors apparent
(Morris et al., 2014; O’Hagan et al., 2006) and by allowing for self-correction by experts
(Johnson et al., 2010). Despite assumed quality improvement by feedback, systematic
reviews on elicitation literature by O’Hagan et al. (2006) and Johnson et al. (2010)
conclude that measurement properties of elicitation methods have not been adequately
evaluated. Moreover, there is no direct research into how accurate experts can assess
properties like the mean, mode, or variance for the distribution of an uncertain parameter.
Research by S. R. Johnson, Tomlinson, et al. (2010) and (Zondervan-Zwijnenburg et
al., 2017b) provide promising results concerning the trial roulette method. Yet, directly
obtaining distributional representations may be inappropriate given experts’ unsatisfactory
performance on specifying elements of this distribution. O’Hagan et al. (2006) refer to
research by Hofstatter (1939), Lathrop (1967) and, Beach & Scopp (1968) to show that
experts are not good at interpreting and assigning numerical values to variances and
relative variability. It might then be unreasonable to assume that experts are able to
reliably specifying a probability distribution in one step.

Therefore, to assist experts in the process of creating a representation of their beliefs in a
statistical distribution we propose to decompose the elicitation task in smaller steps to
encourage and assist in structured reasoning. Decomposing a problem into more tractable
and familiar components is suggested by for instance Fischhoff (1982) to decrease the
mismatch between the judge and the task. By decomposing the elicitation task we aim to
reduce bias and incorporate more feedback to ensure that experts’ opinions are properly
calibrated and represented by the probability distributions that results from the elicitation.
In the current paper, the statistical distribution of interest is the skewed normal (SN)
distribution1 because uncertainty might typically not best be captured by a symmetric
distribution. This (un)certainty is the key feature of Bayesian statistics, uncertainty
reveals the extent of our knowledge and ignorance (de Finetti, 1974).

We propose the Five-Step Method which consists out of the following steps:

1. Elicit the location parameter of the SN using the trial roulette method.
2. Use software to provide instant feedback on the interpretation of the expert’s beliefs

by the researcher so the expert can accept this representation or adjust their input.
3. Elicit the (un)certainty of the expert by determining the scale and shape parameters
1Using the SN distribution we represent the tacit knowledge of experts by eliciting the location

parameter of the distribution, in this case the mean. The uncertainty of the expert about his/her belief
on the location parameter is represented by the scale and shape parameter (i.e., variance and skewness
of the normal distribution). Eliciting the mean of a normal distribution offers the advantage of easily
transformable scale for elicitation procedures. An adjustable scale means that even if one expert reasons
in averages and the other expert in sums they can be transformed to be comparable, i.e., let θ represent
the parameter of interest and θ ∼ N(µ, σ2) and if we transform θ via the following function θ∗ = aθ + b,
then θ∗ ∼ N [aµ+ b, (aσ)2].
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of the SN using expert’s statements on the lower and upper bounds for a plausible
range of the parameter values.

4. Use software to provide instant feedback on the interpretation of the expert’s
(un)certainty about the location parameter by the researcher so expert can accept
this representation or adjust their input.

5. Use the elicited and calibrated probability distribution in a Bayesian analysis to
update it with data or to compute a prior-data conflict.

The remainder of the paper is ordered as follows. We first provide details on the Five-
Step Method. Thereafter we present a user feasibility study in which we elicited beliefs
regarding a trivial sports related question from respondents to investigate visual and
procedural preferences of users for the digitized version of the trial roulette method. A
second study was carried out by asking experts working at a staffing company about
certain key performance indicators which we used to validate the internal validity of steps
1 and 2 of the elicitation procedure. A final study was done with regional directors working
at a large financial institution. They provided actual forecasts concerning average turnover
per professional in the first quarter of the year 2016 with the Five-Step Method. The
participating companies already make predictions concerning the parameters we elicit, yet
they do this in the form of point estimates. The experts are thus already used to thinking
about these data and predicting these data which makes them highly suitable to include
as experts in an elicitation exercise. Yet, it is an extension for them to actively specify and
separate knowledge and uncertainty. Because the companies also provided us with data
on the predicted parameters we were able to compare the forecasts of the experts with
data and thereby get an indication of the internal validity of the elicitation procedure.
The proposition to split the elicitation process results in a procedure differing from the
existing elicitation procedures as, for example, proposed by Oakley (2010), or that can be
carried out through the use of existing software like MATCH. Therefore, we programmed
our own software. All related materials for this study, including code and data, can be
found on the Open Science Framework (OSF) webpage at https://osf.io/wvujz.

2.2 Five-Step Method
In this section we describe the technical details of the Five-Step Method which has been
programmed in R (R Core Team, 2017b) using the shiny package (Chang, Cheng, Allaire,
Xie, & McPherson, 2019).

2.2.1 Step 1
The first step of the Five-Step Method consists of a digitized version of the trial roulette,
which can be seen in Figure 2.1. Instead of vertical “bins” a grid is used and the digital
“chips” can be placed on the grid. Experts provide estimates for the expected minimum
and maximum value of the parameter of interest, represented by the left and rightmost
digital “chips” in the grid, based on which the range of the grid is determined. Thereafter
they place additional “chips” in the grid. In specific, the input grid, denoted by G, is a
matrix size 600 (columns) x 300 (rows) and cells are activated by the placement of a digital
“chips” in the grid. The cells where a sticker is placed obtain a value of one, all other
cells are set to non-available. A second matrix, denoted by R of the same dimensions
is created in which all rows are equal and the columns are a sequence of numbers with

https://osf.io/wvujz
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Figure 2.1: Shiny application for steps 1 and 2. On the left the input fields can be found
for the reasonable lower and upper bound as minimum and maximum values. The input
grid in which ’chips’ can be placed is found on the lower right with the leftmost dot being
the minimum value and the right most dot being the maximum value. Further ’chips’ are
placed by clicking the mouse drawing a maximum of 11 pixels left and right. On the top
right feedback is provided, presenting the fitted distribution based on the input.

equal intervals running from the reasonable lower to upper bound provided as input. We
then create output matrix O which contains values from R activated by the placement of
dots in G and after the deletion of all nonavailable values in O, the remaining values are
stored in a vector.

2.2.2 Step 2
The vector of values that is elicited in step 1 are used to fit a SN distribution. The SN
distribution is defined in this paper as a normal distribution with the additional shape
parameter γ. The shape parameter is based upon a general method for the transformation
of symmetric distributions into skewed distributions as described in Fernández & Steel
(1998). The transformation of the symmetric distribution into a skewed distribution is
done by allocating mass of the distribution to either side of the mode (M ) by controlling
the error term (ε) via the following function, taken from Fernandez and Steel Eq. 1:

p(ε|γ) = 2
γ + 1

γ

f( ε
γ

)I(M,∞)(ε) + f(γε)I(−∞,M)(ε). (2.1)

The effect of the shape parameter on the allocation of mass can be seen in Figure 2.2.
Note that the distributions would be exactly mirrored with respect to the mode if the γ
values would be 1

γ
.

To fit the SN distribution we make use of the snormFit function from the fGarch package
(Wuertz et al., 2019). This function uses an optimization algorithm to determine the
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Figure 2.2: Example of the influence of shape parameter γ on the allocation of mass for a
normal distribution with a variance of 1.

optimal skewness parameter based on log-likelihood values. The mean and standard
deviation are determined based on the vector of elicited values. The mean and standard
deviation remain constant and thus there is only one parameter to optimize over, the
shape parameter γ.

The SN distribution that is fitted based upon the expert’s input is provided as visual
feedback to the expert, see Figure 2.1. The visual feedback indicates how we interpret
the information that is provided by the expert. The expert can accept the representation
of their beliefs or adjust input until the representation matches their beliefs. Once the
expert approves the representation of their beliefs, the mean value is extracted from the
distribution which is to be used in step 3.

2.2.3 Step 3
Step 3 of the Five-Step Method is used to derive the distributional representation of
the expert’s prior beliefs concerning the parameter of interest and can be seen in Figure
2.3. We restricted the priors that represent the experts’ beliefs to be SN distributions so
πd ∼ SN(µ0, σ

2
0, γ0), where subscript d denotes expert d = 1, ..., D, µ0 denotes the prior

mean, σ2
0 denotes the prior variance, and γ0 denotes the prior skewness. The value for

µ0 is assumed to be known, either obtained through steps 1 and 2 or stated directly. In
step 3 the expert is required to provide values for the reasonable lower and upper bounds
they perceive as likely for their estimate of µ0. The value for µ0 is repeated 100 times,
the values for the reasonable lower and upper bounds for the estimate are both repeated
10 times.
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Figure 2.3: Shiny application for steps 3 and 4. On the left the input fields require entering
the estimate for µ0 and the reasonable lower and upper bound for the estimate. On the
right the distribution that is fitted based on the input can be found.

2.2.4 Step 4

Based on the input provided in step 3 we will obtain estimates for the scale parameter σ2
0

and the shape parameter γ0. The 120 values, µ0 repeated 100 times and the values for the
reasonable lower and upper bounds both repeated 10 times, are provided to the snormFit
function by means of which a SN distribution is fitted. The estimates for σ2

0 and γ0 are
obtained and µ0 is constrained to the input value. Visual feedback is provided to the
expert of the resulting SN distribution, which can be seen in Figure 2.3. The expert can
accept the representation of their beliefs or adjust input until the representation matches
their beliefs.

2.2.5 Step 5

Use the elicited distribution that represents the expert’s beliefs.

2.3 Elicitation Studies
In this section we describe the three studies we conducted. During the user feasibility
study R version 3.1.2 was used and R version 3.2.3 was used during the elicitations done
with the staffing company and the large financial institution. We conducted the elicitations
in a semi-structured face-toface setting so that the researcher could provide interpretations
accompanying the visual feedback. An advantage of a face-to-face setting is that it allows
clarification of procedural and elicitation related questions thereby improving the validity
of the responses (O’Hagan et al., 2006).

(Cooke & Goossens, 1999) describe that a panel of four experts can be sufficient for an
elicitation, but they recommend a panel of about eight experts as a rule of thumb. In the
user feasibility study nine respondents participated. In the staffing company only four
experts were available in the entire company, therefore the sample was limited to a size of
four. Regarding the study at the large financial institution four experts participated in
the end.
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2.3.1 User Feasibility Study
2.3.1.1 Design

With the user feasibility study we evaluated the usability of the first two steps of the
Five-Step Method. Procedural and visual preferences were investigated. Four variations of
the shiny application were tested. The respondents (D = 9), obtained through convenience
sampling from a population of university trained adults, were randomly allocated to two
out of the four possible variations of the software.

In the first procedural option, we used the procedure of the trial roulette where 20 digital
“chips”, starting with the expected minimal and maximum value, each representing five
percent of a distribution, were to be placed in a grid following the procedure described by
Zondervan-Zwijnenburg et al. (2017b). After placing 20 “chips” the respondents could
submit their input and they were provided with visual feedback on the distribution that
was fitted based on these 20 “chips”. They could accept the representation or adjust
their input. The second procedural option required the placement of a minimum of seven
“chips”, starting with the expected minimal and maximum value. In this procedural
variation the distribution that was fitted based on the input was constantly shown. The
distribution changed with each placed “chip” and thus instant feedback was provided on
the representation of the input. Respondents could, after placing a minimum of seven
“chips”, at each point accept the representation of their beliefs or add or adjust input.
Next to these two options, we also varied the size of the digital grid in which the “chips”"
were placed: large and small.

The respondents evaluated the two variations they were appointed to with a questionnaire
asking if the fitted distribution was a good reflection of their beliefs and what visual
and procedural preferences were. Additional questions were based on the taxonomy of
Bloom, Engelhart, Furst, Hill, & Krathwohl (1956) to identify weak points of the software
and procedures. These questions investigated; the comprehension of the instructions, the
ability to apply the tool, the understanding of the representation of the “chips”", the
relation between input and fitted distribution, and the relation between belief and fitted
distribution. The full questionnaire can be found in the data archive which is available on
the OSF webpage at https://osf.io/wvujz.

2.3.1.2 Results

All respondents indicated that their beliefs where accurately represented. Five of the
seven respondents allocated to both procedural variants preferred the second variation.
Four of the six respondents allocated to both visual variants preferred the large grid,
one abstained from answering. Three out of the nine respondents indicated for at least
one of the variations that they did not understand the meaning of the “chips”. In the
first procedural option the “chips” each represented 5% of the data whilst in the second
procedural option the meaning depended on the amount of chips that were placed. They
allocated mass for the distribution that was fitted. The meaning of the chips was not
completely understood by one person who used the first procedure and by two persons
who used the second procedure. All three of them used a small grid variation. The three
respondents all indicated that they knew what the distribution representing their opinion
meant in the end and agreed that this accurately described their view. Based on the
results we decided to continue working with the second procedural variation, requiring the

https://osf.io/wvujz
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minimal placement of seven “chips without further restriction on the number of”chips",
and a large grid.

2.3.2 Elicitation Staffing Company
2.3.2.1 Design

The goal of the second study was to test the internal validity of elicitations obtained
with the first two steps of the Five-Step Method. We found a staffing company willing to
participate with experts (D = 4) providing predictions about five sales results concerning
the first quarter of 2016: contract hours, hourly cost buying and selling, turnover and
hourly sales margin. A staffing company is a link between companies that want to hire staff
and staff looking to work at companies. They buy work from individuals and thereafter
place them to work at other companies. The amount of hours they place an individual at
another company in the quarter are the contract hours. The hourly cost buying is what it
will cost them per hour to buy the work from the individuals and the hourly cost selling is
the price which they charge the companies where they stall the individuals. The turnover
is equal to the contract hours multiplied by the hourly cost selling and the hourly sales
margin is equal to the hourly cost selling minus the hourly cost buying.

The experts were asked to predict the distribution of the data. In some sectors staffing
companies staff a lot of individuals at low margins and thus generate a large turnover. In
different sectors they staff few individuals at high margins thereby obtaining the same
profit at lower turnover rates. These are all relevant considerations and the experts should
know which is the case for their company. The company provided us with actual budgets
they made which were indications of carefully constructed predictions. By comparing
the predictions of the experts to the budget we could gain an indication of the internal
validity of predictions made with the first two steps of the Five-Step Method. If the
elicitation results match the budget this indicates that the procedure is able to represent
the underlying construct of carefully constructed predictions.

2.3.2.2 Results

The results can be found in Figure 2.4 in which we plotted the predictions of the four
experts against the actual budgets for the first quarter. To conceal the true values, which
is businesssensitive information, a linear transformation has been done on all variables.
It can be seen, especially for the hourly sales margins and the turnover, that experts
provided very similar predictions to the budgets, for more detailed information see Table
2.1. The resemblance of the predictions to the budget indicates internal validity for the
use of the steps 1 and 2 of the Five-Step Method as the elicited predictions closely match
carefully constructed expectations. Based on these results we decided not to further adjust
the elicitation procedure.
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Contract hours
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Hourly cost buying
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Hourly cost selling
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Expert 1

Expert 2

Expert 3

Expert 4

Figure 2.4: Results for elicitation with the staffing company. Experts’ predictions plotted
with actual budget for contract hours, hourly cost buying and selling, turnover and hourly
sales margin concerning the first quarter of 2016.
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Table 2.1: Results for elicitation with the staffing company. Experts’ predictions with
actual budget for contract hours, hourly cost buying and selling, turnover and hourly sales
margin concerning the first quarter of 2016.

µ σ γ

Contract Hours Expert 1 3.88 0.83 4.01*10-6
Expert 2 3.56 0.61 4.48*10-8
Expert 3 3.85 0.70 0.51
Expert 4 3.34 0.89 0.74
Budget 3.37 0.91 5.52*10-4

Hourly Cost Buying Expert 1 3.21 0.99 1.10
Expert 2 2.74 0.69 1.57
Expert 3 2.91 0.80 1.78
Expert 4 3.45 0.97 7.20
Budget 3.09 1.05 566.00

Hourly Cost Selling Expert 1 3.99 1.14 1.73
Expert 2 3.86 1.04 2.14
Expert 3 3.72 0.81 1.41
Expert 4 4.59 1.43 12.80
Budget 3.87 0.99 1.29

Turnover Expert 1 3.39 0.98 1.48
Expert 2 3.21 0.81 1.53
Expert 3 2.71 0.72 0.93
Expert 4 3.16 1.17 0.98
Budget 2.71 0.99 0.76

Hourly Sales Margin Expert 1 2.18 0.94 1.68
Expert 2 2.46 0.97 1.31
Expert 3 2.25 0.76 1.69
Expert 4 2.18 0.84 1.97
Budget 2.06 0.96 1.51
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2.3.3 Elicitation Large Financial Institution
In the third elicitation study the experts (D = 4) were regional directors working at a
large financial institution. They are considered experts in knowledge concerning market
opportunities, market dynamics and estimating the capabilities of the professionals to
seize opportunities. Based on these skills we expected that they could predict the average
turnover per professional in the entire country in the first quarter of 2016. In this study the
experts did not predict the distribution of the data y, but construct a prior for the mean
denoted by πd(θ). As πd(θ) ∼ SN(µ0, σ

2
0, γ0) the elicitation results in the representation

of each expert’s beliefs expressed in the hyper parameters µ0, σ2
0 and γ0. We compare the

predictions of the experts against actual results, expressed as the posterior distribution
of the average turnover per professional, denoted by π(θ|y). π(θ|y) ∼ SN(µ1, σ

2
1, γ1),

µ1 denotes the posterior mean, σ2
1 denotes the posterior variance and γ1 the posterior

skewness. The prior for π(θ|y) is a N(0, 100) prior which is uninformative given the scale
of the data.

2.3.3.1 Design

The team that participated consisted of 11 experts, 10 regional directors and one director.
All were eligible to be included in the study. To comply with conditions set by the
Ethics Committee, we ensured that experts whom did not wish to participate could do so
without it being known that they refused. Therefore we randomly selected seven out of
the 11 experts and invited them to participate. Out of the seven selected experts that we
approached, three indicated that they did not want to participate in the study and four
indicated that they were willing to participate. All four experts that agreed to participate,
did participate and completed the elicitation. The participating experts first performed a
practice elicitation for their own sales team before moving on to their estimate for the
whole country, enabling them to acquaint themselves with the elicitation applications.
Offering this practice elicitation could improve the quality of the elicitations (Johnson et
al., 2010). Only in the case that the director participated the practice run was be possible.
The study receive ethical approval from our internal Ethics Committee of the Faculty
of Social and Behavioural Sciences of Utrecht University. The letter of approval can be
found in the data archive on the OSF website at https://osf.io/wvujz.

The Five-Step Method was used in this elicitation study and it consists of the following
two parts: the first step is designed to support the expert in the use of reasoned and
structured thoughts to obtain an estimate for the location parameter µ0. In the second
step the estimate for µ0 is used and the expert is asked to provide a reasonable lower
and upper bound for their estimate so the prior distribution for the mean turnover per
professional can be constructed.

The “chips” placed in the first step were intended to represent individual professionals
in the trial run and clusters of similar professionals in the elicitation concerning the
whole country. Visual feedback was provided on the elicited distribution, accompanied
by a description of the value for µ0 by the researcher. The expert could accept the
representation of their beliefs or adjust input until the representation matched their beliefs.
Results concerning country wide performance where discussed in terms of total turnover
for all professionals within the team, therefore the estimate for µ0 was transformed using
the following function

https://osf.io/wvujz
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θ∗ = aθ + b, (2.2)

where θ represents the parameter of interest and θ ∼ N(µ, σ2) so that θ∗ ∼ N [aµ+b, (aσ)2].

The use of the mean as location parameter offered additional options to accommodate
differences in reasoning of experts, e.g., a sales expert might feel comfortable to provide
estimates for the total turnover of a store, represented by θ∗ in Eq. (2.2), but not be
comfortable providing estimates for the mean turnover per product sold in the store,
represented by θ in Eq. (2.2). By knowing the total amount of products that are sold in
the store, entering the amount as value for a and 0 for b in Eq. (2.2), the prior beliefs
regarding the total turnover can be transformed to prior beliefs regarding mean turnover
per product and compared to predictions by other experts. The transformation procedure
ensures no expert is forced to adhere to a certain scale. To illustrate this flexibility let us
imagine that a store sells nine different types of products and in total sells 104 products.
In steps 1 and 2 we wish to elicit and verify the location parameter for the mean turnover.
Two experts feel comfortable supplying estimates for turnover per product whilst two
other experts only feel comfortable supplying estimates for turnover per product type.
They can both adhere to the scale they feel comfortable with as we can use a linear
transformation to get them onto the same scale for steps 3 and 4. In Table 2.2 we supply
a numerical example to show how location parameters, elicited on a different scale, can
be transformed using Eq. (2.2) to be on the same scale for steps three and four of the
elicitation.

In step 3 of the Five-Step Method, we asked the experts to provide a reasonable lower and
upper bound for the total turnover of all professionals: Based on the input a distribution
was fitted and visual feedback was provided. The researcher supported the visual feedback
with a description explaining that more density on places of the axis indicate more
perceived likeliness for that value. The expert could accept the representation of their
beliefs or adjust the input for the reasonable lower and upper bound until the representation
matched their beliefs. The elicited distribution was transformed back to represent the
average turnover per professional using Eq. (2.2).

Table 2.2: Illustration of linear transformations using Eq. (2.2). Experts 1 and 2 choose to
specify turnover per product, resulting in a location parameter on the product scale. Experts
3 and 4 choose to specify turnover per product type, resulting in a location parameter
on the product type scale. In steps 3 and 4 we can use either the location parameter on
the total turnover scale or the mean turnover scale for experts to provide a reasonable
lower and upper bound. All experts’ elicited location parameters can be transformed to
both scales.

Steps 1 and 2
product scale
mean result
(n = 104)

Steps 1 and 2
product type
scale mean

result (n = 9)

Mean turnover
per product

used in steps 3
and 4

Total turnover
used in steps 3

and 4
Expert 1 1.8 - 1.80 187.2
Expert 2 2.1 – 2.10 218.4
Expert 3 - 23 1.99 207
Expert 4 – 24.5 2.12 220.5
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Figure 2.5: Results Five-Step Method elicitation study with large financial institution.
Elicited expert distributions πd(θ) plotted with results π(θ|y).

2.3.3.2 Results

During the elicitation procedures we noticed that not all experts reasoned in the same
way. One expert reasoned for his own region in the expected elements, such that each
“chip” represented a professional, but concerning the elicitation for the whole country
the “chips” represented regional performances not clusters of professionals that are alike.
This deviation did not require an adjustment of procedure just a different value for a
in Eq. (2.2) to obtain the estimate for total turnover used in step 3 of the Five-Step
Method. Another expert directly reasoned in total turnover when considering country
wide performance and directly provided the estimate used in step 3. A third expert
started, especially during the test run concerning the expert’s own team, naming the
professionals aloud whilst placing the “chips”,using the expected representations for the
input. The procedure proved flexible enough so that each expert could use their own
careful reasoning within the same framework and end up with comparable output.

All data were analyzed anonymously and were transformed to avoid revealing business-
sensitive information. The elicited priors πd(θ) can be found in Figure 2.5, together with
the posterior distribution π(θ|y). The values for the hyper parameters for πd(θ) and π(θ|y)
can be found in Table 2.3. We can see, visually in Figure 2.5 and numerically in Table
2.3, that experts one and two provide very similar predictions, however expert 2 is less
uncertain about the prediction. In the same manner we can see that expert four made a
prediction that closely resembles the actual realization.
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Table 2.3: The values of the hyper parameters of π(θ|y) and πd(θ) for the study with the
large financial institution.

µ0 σ0 γ0 µ1 σ1 γ1

Preferred
distribution

– – – 2.29 0.10 0.99

Expert 1 2.15 0.09 0.78 – – –
Expert 2 2.16 0.07 0.82 – – –
Expert 3 1.97 0.11 0.82 – – –
Expert 4 2.35 0.11 0.94 – – –

2.4 Discussion
The Five-Step Method provides a first step for eliciting experts in a flexible manner such
that no expert is forced to reason on a scale they are uncomfortable with, yet ending up
with comparable priors for all experts.

In essence the Five-Step Method resembles the structure for eliciting a distribution as
is proposed by Oakley (2010). Oakley states four steps, (1) the experts makes some
probability judgments about the parameter of interest (2) fit a probability distribution to
these judgments (3) provide feedback (4) either accept and use the distribution or repeat
steps 3 and 4 based on adjusted input. The difference between what Oakley proposes
and the Five-Step Method is that we repeat this cycle twice, once for the elicitation of a
location parameter and once for the elicitation of the scale and shape parameters. By
decomposing the elicitation task we aim to reduce bias and incorporate more feedback.

Johnson et al. (2010) concluded that measurement properties of the elicitation methods
should be evaluated. We first evaluated usability and thereafter the internal validity for
the first two steps of the Five-Step Method. Companies put a lot of effort in carefully
constructing their budgets. The study with the staffing company provided evidence
to show that experts can produce very similar predictions to the budged using steps
1 and 2 of the Five-Step Method. This high resemblance indicates that the elicited
predictions closely reflect predictions made with all available information at hand. Further
indications for desirable measurement properties are found when we look at the study
with the large financial institution. The data in that case are the actual realization of the
average turnover per professional that the experts predicted. Using the Five-Step Method
especially expert 4 provided predictions that highly overlap with the actual results, see
Figure 5. This provides an indication for the internal validity of the method, experts are
able to accurately predict future data using the Five-Step Method. To see if this result
holds in general or only in our sample, and to compare the results with other elicitation
methods, we recommend a larger study in which experts use multiple elicitation ethods
including the Five-Step Method to predict future data.

We acknowledge that asking experts for the reasonable lower and upper bound for their
estimate in step 3 of the Five-Step Method could perhaps be an oversimplified procedure
and other researchers might prefer to replace this step with eliciting quantiles. Goldstein
& Rothschild (2014), however, found that even laypeople’s intuitions about probability
distributions can become quite accurate with the help of graphical elicitation techniques.
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The finding by Goldstein and Rothschild in combination with our own results from the
studies with the staffing company and large financial institution support us in the fact that
providing graphical feedback along with the interpretation of the elicited distribution can
be a key factor in the calibration of the elicitation. Obtaining confirmation from the experts
that the way we represent their beliefs is justified is the crucial element in the proposed
Five-Step Method. We follow the same reasoning concerning any possible anchoring bias
that is introduced by first eliciting the location parameter of the prior distribution of
the expert. We count on the graphical feedback along with the interpretation of the
elicited distribution to ensure proper calibration of the elicited distribution. We provided
some support for the internal validity of the Five-Step Method, yet to verify the external
validity, and reaffirm the internal validity of the Five-Step Method a larger validation
study needs to be carried out comparing the Five-Step Method with other elicitation
methods.

Besides providing graphical feedback it is desirable to stay as close as possible to the
reasoning experts use on a daily basis. The method should be adjusted to fit the expert’s
reasoning and not the other way around if we do not want to introduce unnecessary bias.
As shown in the study with the large financial institution, the Five-Step Method allows
for just that. We can help experts order their thoughts, whether they reason in terms of
individuals, regions or totals. All these ways of reasoning can be used by simply altering
the value for a in Eq. (2.2) and thereafter transforming the values back to be compared
on the same scale.

Using graphical feedback and flexible procedures remains a challenging task in an elicitation
process. In the seminal work by O’Hagan et al. (2006) it is already recommended that user
friendly software should be developed for elicitation purposes, yet each elicitation seems
to require a special approach. Even so, it is a worthwhile effort to try and standardize
procedures and methods as much as possible so we can work toward a situation that
enables applied researchers to use elicitation procedures in their work with ease. We use
the R programming language to utilize parametric fitting whilst presenting a web-based
interface through the use of the shiny package. We thus use the same building blocks as
MATCH. We have taken a first step to show that the Five-Step Method can aid experts
in ordering and structuring their thoughts through a systematic and flexible method,
tailored to each individual expert and we would welcome the adoption of the method by
endeavors such as MATCH.
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Using the Data Agreement Criterion
to Rank Experts’ Beliefs

Abstract
Experts’ beliefs embody a present state of knowledge. It is desirable to take this knowledge into
account when making decisions. However, ranking experts based on the merit of their beliefs is
a difficult task. In this paper, we show how experts can be ranked based on their knowledge and
their level of (un)certainty. By letting experts specify their knowledge in the form of a probability
distribution, we can assess how accurately they can predict new data, and how appropriate their
level of (un)certainty is. The expert’s specified probability distribution can be seen as a prior
in a Bayesian statistical setting. We evaluate these priors by extending an existing prior-data
(dis)agreement measure, the Data Agreement Criterion, and compare this approach to using
Bayes factors to assess prior specification. We compare experts with each other and the data to
evaluate their appropriateness. Using this method, new research questions can be asked and
answered, for instance: Which expert predicts the new data best? Is there agreement between
my experts and the data? Which experts’ representation is more valid or useful? Can we reach
convergence between expert judgement and data? We provided an empirical example ranking
(regional) directors of a large financial institution based on their predictions of turnover.

This chapter is published as Veen, D., Stoel, D., Schalken, N., Mulder, K., & van de Schoot, R. (2018).
Using the Data Agreement Criterion to Rank Experts’ Beliefs. Entropy, 20(8). Doi: 10.3390/e20080592

With correction published as Veen, D., Stoel, D., Schalken, N., Mulder, K., & van de Schoot, R. (2019).
Correction: Veen, D.; Stoel, D.; Schalken, N.; Mulder, K.; van de Schoot, R. Using the Data Agreement
Criterion to Rank Experts’ Beliefs. Entropy 2018, 20, 592. Entropy, 21(3), 307.
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3.1 Introduction
In the process of scientific inference, the knowledge and beliefs of experts can provide vital
information. Experts’ beliefs represent the current state of knowledge. It is desirable to be
able to include this information in analyses or decision-making processes. This can be done
by using the Bayesian statistical framework. In Bayesian statistics, there are two sources
of information: prior knowledge and data (Gelman et al., 2013; Lynch, 2007; Zyphur,
Oswald, & Rupp, 2015). The prior can be composed of expert knowledge (Bolsinova,
Hoijtink, Vermeulen, & Beguin, 2017; O’Hagan et al., 2006; Zondervan-Zwijnenburg et al.,
2017b). However, deciding which expert yields the most appropriate information remains
a critical challenge, for which we present a solution in this paper.

To be able to consider expert knowledge in Bayesian statistics, it must be represented in the
form of a probability distribution. This can be done via a process called expert elicitation.
Elicitation entails the extraction of expert knowledge and translating this knowledge into a
probabilistic representation (O’Hagan et al., 2006). By using a probabilistic representation,
we include both knowledge and (un)certainty of experts. However, experts are forced to
use a representation system that belongs to the statistical realm. Therefore, it is essential
that the elicitation process is carefully constructed so we do not introduce unnecessary
and unjust bias.

The expression of expert knowledge in the form of a probability distribution is not merely
based on statistical considerations. Forecasting without providing uncertainty estimates
does not make sense, for, if we were certain, we would not predict but simply conclude
future events to occur as they are inevitable. This would simply be a form of deductive
logic and no discussion or disagreement based on the facts should be possible. Here, it is
relevant to make the distinction between aleatory and epistemic uncertainty. Aleatory
uncertainty is uncertainty due to randomness or chance, e.g., market volatility, whilst
epistemic uncertainty is uncertainty due to a lack of knowledge. In practice, there is
a blurred line between epistemic and aleatory uncertainty and the two can be seen as
the ends on a spectrum, but, for the sake of argument, we shall make a clear distinction
between the two here. In any case, if we can agree that, based on all the available
information, there are still multiple outcomes possible, we have a situation in which we
should start making forecasts including uncertainty estimates and probability distributions
provide an excellent framework.

By collecting data and modeling the parameter of interest, we are able to gain an indication
of the appropriate amount of uncertainty and the expected parameter value based on
posterior distributions of interest in the model. In the limit, where we would not have
epistemic uncertainty and all of the relevant background characteristics could be controlled
for, any remaining residual variance in the model is the appropriate and correct amount
of aleatory uncertainty. In practice, however, we do not have the perfect model and
not all epistemic uncertainty can be ruled out, that is, we have not yet identified all
relevant background characteristics. What we do have in practice are multiple experts
with divergent beliefs on the relevant background characteristics. If we can evaluate their
forecasts, including uncertainty, we can take more accurate forecasts as an indication
of expertise on relevant aspects of the data generating process and we should let these
experts guide us in identifying the relevant background characteristics. Moreover, if
these knowledgeable experts can be identified and persuaded to share their insights with
each other, they can start to learn from each other, the data and the appropriateness of
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assumptions underlying their forecasts. By expressing expert knowledge and data in the
same framework, a learning process can start that has the potential to reduce uncertainty.

Once expert knowledge is elicited and data is collected, it is desirable to find a measure
that naturally compares two pieces of information. The measure should assess the extent
to which information from the data and expert knowledge resemble and conflict with each
other. As the expert knowledge can be contained within a prior, it seems logical to assess
the discrepancy or similarity of such a prior with respect to the data by means of a prior-
data (dis)agreement measure. A desirable property for such a prior-data (dis)agreement
measure would be to measure how one probability distribution diverges from a second
probability distribution, rather than assessing the distance between two points estimates.
The Data Agreement Criterion (DAC) (Bousquet, 2008) is based on Kullback–Leibler
(KL) divergences (Kullback & Leibler, 1951) and therefore meets this desired property.
KL divergence has previously been used in a related context to assess calibration and
information scores of experts (Cooke, 1991; Quigley, Colson, Aspinall, & Cooke, 2018).

Prior-data (dis)agreement measures are currently used to evaluate, for example, the
suitability of certain priors in the estimation of models or to uncover potential suitability
problems with design, prior or both. Examples can be found in, for instance (Fu, Celeux,
Bousquet, & Couplet, 2015; Fu, Couplet, & Bousquet, 2017; Walley, Smith, Gale, &
Woodward, 2015). We found no previous use of prior-data (dis)agreement measures to rank
experts. However, when we have two experts, some very interesting questions can already
be answered, for instance: Which expert predicts the new data best? Is there agreement
between my experts and the data? Which expert’s representation is more valid or useful?
Can we reach convergence between expert judgement and data? Therefore, the main
contribution of this paper will be to provide an application of prior-data (dis)agreement
measures to expert ranking.

Other measures that answer similar questions on different theoretical basis can be found.
For instance, Cohen’s kappa (Cohen, 1960) could be used to assess inter-rater agreement,
intraclass correlations (Koch, 2004) could be used to asses rater reliability (Shrout &
Fleiss, 1979) and Brier scores (Brier, 1950) can be used to asses discrepancy between
experts’ estimated probability and actual outcomes (Barons, Wright, & Smith, 2018).
These measures, however, do not account for the uncertainty of the experts over their
provided estimates.

An alternative approach could be to use Bayes factors (BF) (Kass & Raftery, 1995) based
on marginal likelihoods. One could imagine different experts’ beliefs to be competing
versions of models. When the differing views are expressed in different prior distributions,
we could assess the likelihood of the data averaged across the prior distribution, which is
what a marginal likelihood is (Liu & Aitkin, 2008). This likelihood depends on the model
structure, such as parametrization, or the set of probability distributions that is used as
the model (Wasserman, 2000). If we keep this set of probability distributions, the model,
equal across the experts and the same data is used, the marginal likelihood provides an
indication of which experts’ prior belief gives most probability to the data, and who is
thus ranked most trustworthy. The BF, being a ratio of marginal likelihoods, could then
provide us odds in favor of one expert’s beliefs over another’s. This approach warrants
further comparison, which is given in Section 3.2.2.
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In the remainder of this paper, we present the following work. We provide a detailed
description of the DAC and explain why this measure is especially suitable to compare
expert judgement and data. As the DAC currently determines the degree of prior-data
(dis)agreement of one prior, we propose a straightforward adjustment of the statistic to
allow the ranking of multiple sources of prior information, i.e., multiple experts’ beliefs. We
discuss how Bayes factors could be used to rank experts based on their prior specifications.
Finally, we provide an empirical example to show that the adapted DAC can be used to
compare and rank several experts based on their beliefs and we compare this to using
Bayes factors. In the empirical example, we rank experts from a large financial institution
based on their predictions of new data concerning turnover. The empirical study in this
article received approval from our internal Ethics Committee of the Faculty of Social
and Behavioural Sciences of Utrecht University. The letter of approval can be found in
the data archive for this study along with all other code and data, as far as contracts
permit us, in order to ensure everything presented in this paper is reproducible. The data
archive can be found on the Open Science Framework (OSF) webpage for this project at
https://osf.io/u57qs.

3.2 Expert-Data (Dis)Agreement
Within this section, we discuss the DAC and the Bayes factor that are used to evaluate
experts’ beliefs.

3.2.1 Data Agreement Criterion
Within this subsection, we provide a detailed and mathematical description of the DAC
before proposing the adaptation that allows the ranking of multiple experts’ beliefs at
the same time. The DAC is based on a ratio of KL divergences; therefore, we will first
describe KL divergence (Kullback & Leibler, 1951).

3.2.1.1 Kullback-Leibler Divergence

The KL divergence describes measurements of informative regret, or, in other words, it
measures the loss of information that occurs if the reference distribution (π1) is approx-
imated by another distribution (π2). This loss of information or informative regret is
expressed in a numerical value and the higher this value is, the more loss of information is
present, i.e., the greater the discrepancy between the two distributions. The KL divergence
is calculated by

KL(π1||π2) =
∫

Θ
π1(θ)logπ1(θ)

π2(θ)dθ, (3.1)

where Θ is the set of all accessible values for the parameter θ, that is, its parameter
space, π1(θ) denotes the reference distribution and π2(θ) denotes the distribution that
approximates the reference distribution. In Figure 3.1, it can be seen what KL divergences
between two normal distributions look like. The value of the KL divergence is equal to the
integral over the parameter space for the function. The greater the discrepancy between
the distributions, the larger the value of the integral. This also follows from Equation (3.1)
because, if the two distributions are equal, then π1(θ)/π2(θ) equals one everywhere. As

https://osf.io/u57qs
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Figure 3.1: KL divergences between two normal distributions. In this example, π1 is a
standard normal distribution and π2 is a normal distribution with a mean of 1 and a
variance of 1. The value of the KL divergence is equal to the integral over the parameter
space for the function. The green shaded area above the x-axis adds to the KL divergence
and the green shaded area below the x-axis subtracts from the KL divergence.

log(1) = 0, the integral, or loss of information, is equal to zero. To support understanding
of the KL divergence, we build a shiny application that provides an interactive variant of
Figure 3.1, which can be found via the OSF webpage at https://osf.io/u57qs.

If we are able to represent both the data and the expert knowledge in a distributional
form, a discrepancy between the two can be expressed by the KL divergence between the
two. As we might have multiple experts but only one source of data, it seems natural that
the data be considered the reference distribution, which is approximated by the experts’
beliefs expressed as probability distributions. We will see in the following, where we
elaborate on the details of this prior-data (dis)agreement measure developed by Bousquet
(Bousquet, 2008), that this is indeed the case in the DAC.

3.2.1.2 DAC

The DAC, as mentioned before, is a ratio of two KL divergences. A KL divergence
provides an indication of the discrepancy between two distributions. KL divergence does
not, however,have a natural cut-off value or threshold that can help us decide when a
certain amount of loss of information would constitute prior-data disagreement. To be
able to objectively conclude when prior-data disagreement exists, the DAC compares
the loss of information that a certain prior has with respect to the data with the loss of
information that a benchmark prior has with respect to the data. The KL divergence
between the chosen prior and the data is the numerator in the ratio whilst the KL
divergence between some benchmark prior and the data is the denominator in the ratio. A
benchmark prior, denoted by πJ(θ), should be chosen such that the posterior distribution
is completely dominated by the observed data y (Bernardo, 1979). We denote such a
posterior distribution by πJ(θ|y) and use this as a representation of the data.

https://osf.io/u57qs
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It is necessary to expand on the choice for the benchmark prior πJ(θ) and in relation to
this the posterior distribution πJ(θ|y). Bousquet (Bousquet, 2008) follows the reasoning
Bernardo provided in discussion with Irony and Singpurwalla (Irony & Singpurwalla,
1997) to see πJ(θ|y) as a non-subjective posterior that is representative of the situation
that one’s prior knowledge was dominated by the data. In other words, πJ(θ|y) can be
considered as a fictitious expert that is perfectly in agreement with the data, having no
prior knowledge and being informed about the observations. πJ(θ|y) can be considered to
be a reference posterior conveying the inferential content of the data (Bernardo, 1979).

If πJ(θ|y) is taken to be a reference posterior, this would implicitly support the choice
of πJ(θ) such that it is a reference prior as originally developed by Bernardo (1979),
further developed by Berger and Bernardo, e.g., (Berger & Bernardo, 1989), described
in Bernardo & Smith (1994) and more formally worked out in Berger, Bernardo, & Sun
(2009). Reference priors are not the only possible choice for priors that convey in some
sense minimal information or affect the information of the likelihood as weakly as possible
(Gelman, Simpson, & Betancourt, 2017). An extensive overview can be found in Kass &
Wasserman (1996) and some notable options are Jeffreys priors (Jeffreys, 1946, 1961) and
maximum entropy priors (Jaynes, 1982) to which the reference priors reduce in specific
cases (Bernardo & Smith, 1994).

One notable problem for using reference priors as a choice for πJ(θ) is that they often
are improper priors (Yang & Berger, 1996) and KL divergences and thus the DAC are
not well defined when one of the distributions is improper. An adaptation of the DAC
could be used, however a choice for a more convenient prior that is proper and leads to
a posterior πJ(θ|y) closely resembling a reference posterior seems reasonable (Bousquet,
2008).

Now taking πJ(θ|y) as the reference posterior, πJ(θ) as the benchmark prior and the data
y, the DAC for a chosen (expert) prior, denoted by π(θ), can be expressed by

DAC = KL[πJ(.|y)||π]
KL[πJ(.|y)||πJ ] , (3.2)

following the notation of Bousquet.

The benchmark, being an uninformative prior, should by definition not be conflicting with
the data and therefore serves as a good reference point to determine if a certain amount of
loss of information can be considered to be relevant. If a prior conflicts less with the data
than the benchmark does, we should consider the prior to be in prior-data agreement. If
a prior conflicts more with the data than the benchmark prior does, we do consider the
prior to be in prior-data disagreement. Hence, if the DAC > 1, we conclude prior-data
disagreement because the KL divergence of the prior is larger than the KL divergence of
the benchmark prior; otherwise, we conclude prior-data agreement.

To illustrate the calculation of the DAC, we provide a numerical example together with a
visual representation that can be found in Figure 3.2. Consider the case in which πJ(θ|y)
is the N(0, 1) density, π(θ) is the N(0.5, 1) density and πJ(θ) is the N(0, 900) density.
The DAC is then calculated by taking the ratio of the following two KL divergences,
Figure 3.2A; KL[πJ(.|y)||π] = 0.125 and Figure 3.2B; KL[πJ(.|y)||πJ ] = 2.902, such that
DAC = 0.125/2.902 = 0.043. The DAC < 1, thus we conclude prior-data agreement, and
π(θ) is a better approximation of πJ(θ|y) than πJ(θ).
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Figure 3.2: Calculating the DAC. In this example, πJ(θ|y) is a standard normal distribution,
π(θ) is a normal distribution with a mean of 0.5 and a variance of 1 and πJ(θ) is a normal
distribution with a mean of 0 and a variance of 900. The DAC < 1, thus prior-data
agreement is concluded.

3.2.1.3 Extension to Multiple Experts

The DAC, as described in the section above, determines the degree of prior-data
(dis)agreement for a single prior that is to be evaluated. However, when we have multiple
experts that each hold their own beliefs and we express each of these in the form of a
probability distribution, we can ask some interesting questions. In Figure 3.3, we see
some examples of situations that we could encounter. In Figure 3.3A, we see a situation
in which experts differ in their predictions and their (un)certainty. The question that
arises from the situation in Figure 3.3A is which of these predictions best approximates
the information that the data provides us? Figure 3.3B shows a scenario in which the
experts are predicting similar to each other but all differ with respect to the data. The
question that arises from the situation in Figure 3.3B is which of the two is correct, the
data or the experts?

To be able to answer these types of questions, we need to extend the DAC to incorporate
multiple experts’ priors, which are to be evaluated against the same posterior distribution,
reflecting the data, and the same benchmark prior. The DAC thus needs to become a
vector of length D resulting in

DACd = KL[πJ(.|y)||πd]
KL[πJ(.|y)||πJ ] , (3.3)

where the subscript d denotes the different input for D experts so DACd =
DAC1, ..., DACD and πd(θ) = π1(θ), ...πD(θ). This extension of the KL divergence in
which not one but a vector of models are entered to be compared with the preferred
model is straightforward and has previously been described in the context of the Akaike
Information Criterion (AIC) (Akaike, 1973; Burnham & Anderson, 2002).
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Figure 3.3: Scenarios in which there are multiple experts and one source of data. (A)
shows experts differing in prediction and (un)certainty, all (dis)agreeing to a certain extent
with the data; (B) shows a scenario in which all experts disagree with the data, which
results in the question of which of the sources of information is correct.

3.2.1.4 Influence of the Benchmark

The choice for a specific benchmark can influence the results of the DACd. Bousquet
(2008) suggests that, in applied studies, the availability of a convenient or intuitive prior
for the benchmark seems reasonable. However, it is important to realize that the choice
for a benchmark prior does influence the results of the analysis in the sense that the
cut-off value for determining prior-data disagreement will shift as the KL divergence
between πJ(θ|y) and πJ(θ) changes. However, as long as the benchmark prior is an
uninformative prior in the sense that the posterior distribution is dominated by the data,
πJ(θ|y) will remain largely unchanged. This ensures that the DACd has the good property
that when multiple experts are compared their ranking does not change dependent on
which uninformative benchmark is chosen. This follows from the stability of πJ(θ|y),
which ensures that the KL divergences between πJ(θ|y) and πJ(θ) are stable. Different
choices for πJ(θ) do change the KL divergence in the denominator and therefore shift the
prior-data disagreement boundary.

Concerning the benchmark, it is useful to note that the benchmark need not be restricted
to an uninformative prior, but using an informative prior changes the interpretation and
behavior of the DAC. When πJ(θ) is informative, πJ(θ|y) is sensitive to the specification
of πJ(θ) and the KL divergence between πJ(θ|y) and πd(θ) need no longer be stable,
potentially influencing the ranking of the experts. To show the above described behavior
visually, we present the results of a simulation study in Figure 3.4. We show four different
conditions, that is, four different choices for benchmark priors, to illustrate the change
in behavior for the DACd. In all four situations, we use the same data, y, which is a
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sample of 100 from a standard normal distribution with a sample mean ȳ. πd(θ) is the
N(µ0, σ

2
0) density and we show the DACd values for µ0 = ȳ−4, ..., ȳ+4 and σ0 = 0.1, ..., 3.

The four panels show different conditions for the benchmarks such that, in Figure 3.4A,
it is the N(0, 10, 000) density, in Figure 3.4B, the N(0, 1) density, in Figure 3.4C, the
U(−50, 50) density and in Figure 3.4D the N(5, 0.5) density. It can be seen that, for the
two uninformative priors in Figure 3.4A,C, the behavior of the DACd is stable. We would
expect to draw the same conclusions and rank experts in the same way independent of the
choice of either benchmark. However, when we specify an informative benchmark such as
in Figure 3.4B,D, we see that both the behavior of the DACd and the determination of
prior-data (dis)agreement shift. In Figure 3.4B, an informative and accurate benchmark
leads almost invariably to concluding prior-data disagreement for πd(θ) In Figure 3.4D,
the informative but inaccurate benchmark leads us to conclude prior-data disagreement
only if πd(θ) is in the wrong location and has a very small variance.

The simulation study presented in Figure 3.4 shows that the choice for a certain benchmark
can influence your results, so, even if a convenient or intuitive prior seems reasonable,
it should be carefully chosen. Researchers should be aware that their ranking is stable
as long as an uninformative prior is chosen, but it might not be if the benchmark prior
contains information.

3.2.2 Comparison to Ranking by the Bayes Factor
In order to develop a good understanding of the behavior of the DAC for expert ranking,
this section will provide a comparison to expert ranking using Bayes factors, that is, by
ranking experts on the marginal likelihood resulting from their prior. First, we provide a
mathematical description of the Bayes Factor (BF), which is a ratio of marginal likelihoods.
Then, the influence of the benchmark prior will be discussed, followed by a comparison of
expert ranking via Bayes Factors to expert ranking through the DAC.

3.2.2.1 Marginal Likelihood

For a model M and observed data y, denote the likelihood f(y|θ) and prior π(θ) such
that the posterior distribution

π(θ|y) = f(y|θ)π(θ)∫
Θ f(y|θ)π(θ)dθ . (3.4)

The denominator on the right-hand side of Equation (3.4) is the marginal likelihood
m(y), sometimes called the evidence. The marginal likelihood can be thought of as the
probability of the data averaged over the prior distribution (Liu & Aitkin, 2008). As
the probability of the data is dependent on the model, which is the set of probability
distributions that is used (Wasserman, 2000), the marginal likelihood is influenced by the
choice of model M , the data y and the prior π(θ). If we have d experts and we keep M
and y equal across experts, the only difference in md(y) arises from the different specified
priors πd(θ). We could thus differentiate between experts by assessing the probability of
the data averaged across their specified prior beliefs.
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Figure 3.4: The effect on the behavior of the DACd for different choices for benchmark
priors. All panels use the same data (N = 100) from a standard normal distribution and
the same variations for πd(θ) which are the normal distribution for which the parameters
for the mean and standard deviation are given on the x-axis and y-axis of the panels. In
(A), the benchmark is the N(0, 10, 000) density; in (B), the N(0, 1) density; in (C), the
U(−50, 50) density and in (D), the N(5, 0.5) density
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3.2.2.2 Bayes Factor

The BF can be used to compare the marginal likelihoods for the different experts, md(y),
such that, for example,

BF1d = m1(y)
md(y) (3.5)

provides the odds in favor of some model M1, versus model Md, the model that has the
prior provided by expert d. As the set of probability distributions that is used and the
data y are the same between experts, this essentially provides the odds in favor of the
prior π1(θ) versus prior πd(θ). Similarly, experts could be compared directly. It is well
known that the BF is sensitive to the specification of different priors via the marginal
likelihoods that are used (Kass & Raftery, 1995; Liu & Aitkin, 2008; Morey, Romeijn, &
Rouder, 2016; Wasserman, 2000). Liu and Aitkin (2008) note that this is not necessarily
undesirable. Moreover, in our case, this property is essential in allowing the evaluation of
the relative merit of the experts’ beliefs that are specified in the form of prior probability
distributions.

3.2.2.3 Benchmark Model

The BF allows us to compare the odds in favor of one expert over another but neither
the individual marginal likelihoods based on expert priors nor the ratios provide us with
an assessment of the inherent appropriateness of the prior in terms of (dis)agreement
between the prior and the data. As with the DAC, we could imagine taking a benchmark
prior πJ(θ) that serves as a reference point such that the marginal likelihood is mJ(y). If
we take

BFJd = mJ(y)
md(y) (3.6)

and if BFJd < 1, we would favor the model using the expert prior and conclude agreement
with the data and, if BFJd > 1, we would favor the model using the benchmark prior and
conclude disagreement with the data.

However, we run into the same issue as with the KL divergences because the marginal
likelihood is ill-defined if improper priors are used (Kass & Raftery, 1995; Liu & Aitkin,
2008; Wasserman, 2000). Thus, again, reference priors (Bernardo, 1979) are not suitable
for use in this context. Raftery (1996) suggests using a reference set of proper priors
and both Kass and Raftery (1995) and Liu and Aitkin (2008) suggest conducting a
sensitivity analysis in any case. To keep the comparison between the BFJd and the DACd
straightforward, we will use the same benchmark prior πJ(θ) in both situations. As both
BFJd and DACd are sensitive to the choice for πJ(θ), a sensitivity analysis will be included
in the empirical part of this paper. Note that this sensitivity is most evident when using
these tools as a prior-data conflict criterion, as the expert rankings will generally remain
unchanged for different uninformative benchmark priors.

3.2.3 DAC Versus BF
Burnham and Anderson state that the BF is analogous to the information-theoretic
evidence ratio (2002), for instance, the DAC. If we directly compare two experts with a
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BF, we would obtain odds favoring one expert over another and if we compare the KL
divergences between two experts, we could state that one expert has a certain amount of
times the loss of information in relation to another. Despite the analogy, they are also
inherently different. This is most clearly seen when we compare the alternative form of
the DAC from Bousquet (2008), which is given in our case by

DACJ
2,d = mJ(y)

md(y) exp{KL[πJ(.|(y))||πd(.|y)]} = BFJdexp{KL[πJ(.|(y))||πd(.|y)]}.

(3.7)

Therefore, the difference between the DAC and BF can clearly be seen to be the fact that
the DAC has an additional term which multiplies the BF by exp{KL[πJ(.|y)||πd(.|y)]},
the KL divergence between the reference posterior and the posterior from expert d. This
additional term is desirable, as it penalizes experts who are overly certain more harshly
than the BF would.

To illustrate this, consider the following limiting case. Imagine an expert who believes
that they are infinitely certain about the future. This expert should then specify their
prior in the form of a Dirac delta function δθ0(θ), also called the degenerate distribution
on the real line, which has density zero everywhere for θ except for θ0 where it has infinite
density (Dirac, 1947). Moreover, the delta function actually integrates to one and in
that sense is a proper prior which can also be viewed as an infinitely narrow Gaussian
δ(θ − θ0) = limσ→0N(θ|θ0, σ

2) (Barber, 2012). Now, if an expert states their prior belief
in the form of a delta function and θ0 coincides with a region of θ where the likelihood
f(y|θ) > 0, both the marginal likelihood and KL[πJ(.|y)||δθ0(.)] will become infinite. The
meaning could, however, not differ any more. The marginal likelihood suggests that this
expert is the best possible expert, whilst the KL divergence suggests that there is no worse
expert. Although this scenario is quite extreme, van de Schoot, Griffioen and Winter
(2018) did encounter such an expert in their elicitation endeavors.

3.3 Empirical Example
To show that the DACd can be used to evaluate and rank several experts based on their
beliefs, we conducted an empirical study. The team that participated consisted of 11
experts, 10 regional directors and one director. All were eligible to be included in the
study. Seven experts were randomly invited to participate in the research; if any of the
selected experts did not want to participate, they were classified as not selected in the
research. In this way, we avoided the possibility of group pressure to participate. In the
end, four out of the seven selected experts participated in an elicitation. The experts
(D = 4) provided forecasts concerning average turnover per professional in the first quarter
of the year 2016. The (regional) directors are considered experts in knowledge concerning
market opportunities, market dynamics and estimating the capabilities of the professionals
to seize opportunities. Based on these skills, we expected that they could predict the
average turnover per professional in the entire country in the first quarter of 2016. All
information related to the empirical study can be found on the OSF webpage for this
paper at https://osf.io/u57qs.

https://osf.io/u57qs
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3.3.1 Elicitation Procedure
To get the experts to express their beliefs in the form of a probability distribution, we
make use of the Five-Step Method (Veen, Stoel, Zondervan-Zwijnenburg, & van de Schoot,
2017). To encapsulate the beliefs of the expert, the Five-Step Method actively separates
two elements of the knowledge of the expert: tacit knowledge of the expert and their
(un)certainty. In step one, a location parameter is elicited from the expert. This location
parameter captures the tacit knowledge of the expert. To verify that the representation of
the beliefs is accurate, step two is the incorporation of feedback implemented through the
use of elicitation software. Experts can accept the representation of their beliefs or adjust
their input. In step three, the (un)certainty of the experts is obtained and represented in
the form of a scale and shape parameter. Step four is to provide feedback using elicitation
software to verify the accurate representation of the expert’s (un)certainty, which they can
either accept or they can adjust their input until the representation is in accordance with
their beliefs. The fifth step is to use the elicited expert’s beliefs, in this case to determine
their DAC score.

The experts first performed a practice elicitation for their own sales team before moving
on to the whole country. The practice run enabled them to acquaint themselves with the
elicitation procedure and software we used. The elicited distributions were restricted to be
skewed normal distributions such that πd(θ) are SN(µ0, σ

2
0, γ0) densities where subscript

d denotes expert d = 1, ..., D, µ0 denotes the prior mean, σ2
0 denotes the prior variance

and γ0 denotes the prior skewness. The shape parameter γ0 is based on a general method
for the transformation of symmetric distributions into skewed distributions as described
by Equation (1) in Fernandez and Steel (1998). Table 3.1 provides an overview of the
elicited distributions for the four experts in this empirical study. The distributions are
based upon transformed data to avoid revealing business-sensitive information.

Table 3.1: The values of the hyper parameters of π(θ|y) for the empirical study.

µ0 σ0 γ0

Expert 1 2.15 0.09 0.78
Expert 2 2.16 0.07 0.82
Expert 3 1.97 0.11 0.82
Expert 4 2.35 0.11 0.94

3.3.2 Ranking the Experts
The predictions of the experts concerned the average turnover per professional (N = 104).
The benchmark is the U(0, 5) density. A uniform distribution was chosen for the normal
model in line with the prior used by Bousquet (2008) in his Example 1 concerning a normal
model. The lower bound of 0 arises out of the natural constraint that negative turnover
will not occur, the upper bound of 5 was considered as a value that could not be attained,
yet this number is to some extent arbitrary and a sensitivity analysis was conducted
to investigate the impact of the choice for πJ(θ). With regard to the desired minimal
influence of πJ(θ) on πJ(θ|y), in our case, the reference posterior can be analytically
calculated (see Yang and Berger (1996)). The KL divergence for approximating the
reference posterior with πJ(θ|y) was 0.00016, which we considered to be negligible.
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Figure 3.5: Visual presentation of all relevant distributions for the empirical study; πd(θ),
πJ(θ) and πJ(θ|y).

We obtained the posterior distribution πJ(θ|y) using the rjags R-package (Plummer, 2018),
such that πJ(θ|y) is the N(µ1, σ

2
1) density where µ1 denotes the posterior mean and σ2

1
denotes the posterior variance. We used four chains of 25,000 samples after a burn-in period
of 1000 samples per chain. Visual inspection and Gelman–Rubin diagnostics (Gelman &
Rubin, 1992) did not point towards problems with convergence of the chains and inspection
of the autocorrelation plots showed no issues concerning autocorrelation. To compute
the marginal likelihoods and BF, we used the R-Package rstan (Stan Development Team,
2018b) with four chains of 1000 samples after burn-in to obtain the posterior distributions
and we used the bridgesampling R-package (Gronau & Singmann, 2017) to obtain the
marginal likelihoods and BF. For more details, see the data archive on the OSF webpage.
Table 3.2 displays KL divergences, DACd scores and ranking, marginal likelihoods and
BFJd scores and ranking. Figure 3.5 visually presents all relevant distributions concerning
the empirical study. Figure 3.6 panels A through E visually present all KL divergences
from Table 3.2. Table 3.3 presents the results for the sensitivity analysis for different
choices for πJ(θ) an and Table 3.4 allows for a comparison between experts without
reference to any benchmark πJ(θ).

The results of Table 3.2 show that expert four provided the best prediction out of the
experts, when using both the DACd and the BFJd. Experts one and two provided similar
predictions concerning their tacit knowledge; they expected almost the same value for the
location parameter; however, expert one was less certain about this prediction (see Table
3.1). As the prediction of the location was not entirely correct, the increased uncertainty
of expert one means that this expert provided more plausibility to the regions of the
parameter space that were also supported by the data. Here we see the difference between
DACd and the BFJd arise as discussed in section 3.2.3. Overconfidence is penalized more
severely by the DACd and as such the conclusion on which expert would be preferred
changes between experts one and two depending on which measure you use. When we look
at the DACd, in the case when πJ(θ) is the U(0, 5) density, the additional penalization of
the overconfidence even causes a different conclusion between experts one and two, namely,
expert one is in prior-data agreement and expert two is in prior-data disagreement. For
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Figure 3.6: All KL divergences for πd(θ) (A–D) and πJ(θ) (E) with πJ(θ|y) as the
distribution that is to be approximated. (A) is for expert one; (B) for expert two; (C) for
expert three and (D) for expert four.

the BFJd both are concluded to be in agreement with the data. Expert three provided
a prediction that, to a large extent, did not support the same parameter space as the
data. In fact, expert three provides a lot of support for regions of the parameter space
that the data did not support. The discrepancy between expert three and the data was of
such proportions that, besides expert two, we also concluded a prior-data disagreement to
exist for expert three. If we had no information beforehand, except knowing the region
within which the average turnover per professional could fall, we would have lost less
information than by considering the predictions of experts two and three. The BFJd
differs from the DACd in the sense that when πJ(θ) is the U(0, 5) density, the benchmark
only outperforms expert 3.
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Table 3.2: KL divergences, DACd scores and ranking, marginal likelihoods and BFJd
scores and ranking, for the experts’ priors and the benchmark prior. Note that marginal
likelihoods are reported and not the log marginal likelihoods.

KL
Divergence DACd

Ranking
DACd

md(y) &
mJ(y) BFJd

Ranking
BFJd

Expert 1 1.43 0.56 2 5.57 x 10−68 0.21 3
Expert 2 2.86 1.12 3 6.82 x 10−68 0.17 2
Expert 3 5.76 2.26 4 2.19 x 10−69 5.31 4
Expert 4 0.19 0.07 1 1.72 x 10−67 0.07 1
Benchmark 2.55 – – 1.16 x 10−68 - -

Table 3.3: Sensitivity analysis for different choices for πJ(θ). Densities are given in the
columns. The KL divergences and marginal likelihood mJ(y) are presented in the rows.
md(y) do not change and are not reported.

U(0, 5) U(−10, 10) N(0, 102) N(0, 103) N(0, 104)
KL[πJ(.|y)||π1] 1.43 1.42 1.37 1.42 1.42
KL[πJ(.|y)||π2] 2.86 2.84 2.75 2.85 2.85
KL[πJ(.|y)||π3] 5.76 5.75 5.67 5.76 5.77
KL[πJ(.|y)||π4] 0.19 0.19 0.20 0.19 0.19
KL[πJ(.|y)||πJ ] 2.55 3.93 4.18 6.46 8.76
mJ(y) 1.16 x

10−68
2.91 x
10−69

5.65 x
10−69

2.26 x
10−69

7.33 x
10−70

Table 3.4: Comparison between experts based on KL divergences and marginal likelihoods.
We report BF in favor of the row over the column and KL ratios for loss of information
of the row over loss of information of the column.

Expert 1 Expert 2 Expert 3 Expert 4
KL

Ratio
BF KL Ratio BF KL Ratio BF KL

Ratio
BF

Expert 1 1 1 0.50 0.82 0.25 25.42 7.63 0.32
Expert 2 2.00 1.22 1 1 0.50 31.13 15.23 0.40
Expert 3 4.03 0.04 2.02 0.03 1 1 30.75 0.01
Expert 4 0.13 3.09 0.07 2.52 0.03 78.54 1 1
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From the sensitivity analyses of Table 3.3 we can find that the reference posterior remains
quite stable and therefore the KL divergences for the experts do not change substantially;
however, the changing KL divergence for the benchmark would shift the prior-data
disagreement boundary. When πJ(θ) was the N(0, 103) or N(0, 104) density, expert three
would no longer be in prior-data conflict, whilst prior-data disagreement for expert two
was only concluded if πJ(θ) was the U(0, 5) density. For the BF changing the benchmark
also shifts the prior-data (dis)agreement boundary arbitrarily. In this case our decisions
on prior-data (dis)agreement would only change for the N(0, 104) prior, where expert
4 would no longer be in prior-data disagreement. The sensitivity analysis showed that
decisions on prior-data (dis)agreement might not be entirely reliable, whilst the ranking
of experts remained stable.

Table 3.4 shows the results when we only compare experts on their KL divergences and
their marginal likelihoods and we omit the benchmarks. We see the difference between the
BF and the KL divergence ratios when we compare experts one and two. The differences
arise from the more severe penalization of overconfidence by KL divergences compared to
BF, as discussed in section 3.2.3. Using KL divergence ratios we concluded that expert
two had twice the amount of loss of information, whilst the BF even favors expert two
over expert one with odds of 1.22

The results of the empirical study show a slight difference in the conclusions with regard
to the ranking of the experts depending on which measure we used, DACd or BFJd. Both
measures select the same expert as being the best. If decisions should be made concerning
average turnover per professional, decision makers would be wise to consult expert four,
as this expert seemed to have the best knowledge of the underlying factors driving these
results.

3.4 Discussion
In this paper, we use both the BF and the DAC to rank experts’ beliefs when they are
specified in the probabilistic form of prior distributions. When comparing the BF and the
DAC, the limiting case example of Section 3.2.3 springs to mind. In the introduction, we
stated that forecasting without specifying uncertainty would not make sense to us and, in
that light, we would prefer to use a measure that would classify doing so as undesirable
behavior and punish this extreme case. An example of this behavior can be seen in the
empirical example where while using the BF we would favor expert two over expert one,
however whilst using KL divergences, we would favor expert one over expert two.

The sensitivity analysis in the empirical example, however, also highlighted some un-
desirable characteristics of the DAC for our context, namely the sensitivity to different
choices for πJ(θ). In the context of ranking experts, it can make sense to drop the
association between πJ(θ) and πJ(θ|y). πJ(θ|y) can remain a reference posterior and
as such represent the characteristics of y. πJ(θ) can either be omitted or be specified
such that it is meaningful. If πJ(θ) is omitted, we do not have a reference point for
(dis)agreement; however, if arbitrarily chosen benchmarks shift this reference point, it
hardly has any meaning. Without a benchmark, experts can still be compared with
each other in terms of ratios of loss of information, as presented in Table 3.4. However,
if πJ(θ) is meaningful, one could imagine, for instance, a gold standard that is used
in a forecasting situation; we can assess experts’ beliefs in relation to this meaningful
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benchmark and see if they outperform this benchmark. If the association between πJ(θ)
and πJ(θ|y) is dropped, we can specify informative benchmarks without the adverse effects
of changing πJ(θ|y) and thereby the divergences between πJ(θ|y) and πd(θ). Moreover,
specifying informative benchmarks requires elaboration of the rationale behind the choice,
thus enhancing trust in the conclusions if a sensitivity analysis shows different priors
representing similar information that leads us to the same conclusions.

One of the reasons for the sensitivity of the DAC to different choices for πJ(θ) can be
seen by comparing the KL divergences of expert one and two of the empirical example.
As a referee pointed out to us, KL divergences are tail sensitive and this can be seen
in this comparison. Expert one is a little more uncertain and as such the tail of π1(θ)
overlaps somewhat more with πJ(θ|y) than the tails of π2(θ). This leads to half the loss
of information. One could deem this tail sensitivity to be undesirable and, with differently
shaped prior distributions, this problem might become more pronounced. If it is deemed
undesirable, one could favor using the BF, which actually favors expert two with odds
of 1.22 over expert 1. Alternatively, an interesting area for future research could be to
investigate the use of alternative divergence measures. A good starting point for finding
alternative measures can be found in the Encyclopedia of Distances by Deza and Deza
(2009).

In the current paper, we followed Bousquet (2008) and used KL divergences and this raises
two important methodological issues; see Burnham and Anderson (2002) for an elaborated
discussion. First, the reference model should be known. Second, the parameters should be
known for the model that is evaluated, i.e., the formalized expert prior. The issues make
the KL divergence a measure that, according to some, for instance Burnham and Anderson
(2002), cannot be used for real world problems and previously led to the development of
the AIC (Akaike, 1973), which uses the relative expected KL divergence. The AIC deals
with the two issues by taking the reference model as a constant in comparing multiple
models and using the maximum likelihood estimates for the parameters of the models to
be evaluated, introducing a penalty term for the bias that this induces.

We conclude that we can use the KL divergence in the context of the DACd and with
the following reasoning. We define πJ(θ|y) to be the reference distribution as it reflects
a fictional expert that is completely informed by the data and thus it is known. In the
case of the empirical example, the data is even the true state of affairs, i.e., the actual
realizations of the turnover for each professional. Concerning the parameter for the models
to be evaluated, πd(θ) should reflect the exact beliefs of the experts. We use the Five-Step
Method (Veen et al., 2017) which incorporates feedback at each stage of the elicitation,
ensuring that experts confirm that their beliefs are accurately represented by the location,
shape and scale parameters. We acknowledge that whether the parameters represent
exactly an expert’s beliefs cannot be known, but we feel confident that the procedure
we use at least aims to obtain very accurate representations. As experts can continue
to adapt their input until they are satisfied with the representation of their beliefs, this
should overcome problems with the second issue.

While we use πJ(θ|y), and thus know the reference distribution, and we firmly believe
that we properly represent the experts’ beliefs, it seems highly implausible that a DAC
score of 0 can be attained. It is unlikely that, in predicting future events, one estimates
precisely the optimal location and exactly the optimal amount of uncertainty.
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Although a priori specification of optimal uncertainty is unlikely, we are able to gain an
indication of the appropriate amount of uncertainty a posteriori. πJ(θ|y) provides an
excellent indication of the appropriate uncertainty. Given that one had no knowledge
beforehand and is rationally guided by the data, following probabilistic reasoning, one
arrives at the posterior belief represented by πJ(θ|y) (Bousquet, 2008; Irony & Singpur-
walla, 1997). The posterior described the range of values that would have been plausible
given this information. This indication is, however, conditional on the fact that the data
provide an accurate representation of the state of affairs.

Given that we can attain information on the expected value for the parameter of interest,
the appropriate amount of uncertainty and the quality of the approximation by each
expert, we can start a learning process. By sharing the reasons behind the choices they
made, experts can learn from one another as evidence shows which reasoning leads to the
most accurate predictions. The data can inform the experts so that they can adjust their
estimates and uncertainty. Through this evaluation, expertise can increase and in the
long run convergence should be reached between both different experts’ predictions and
between the experts and the data. When this convergence is reached, this indicates that at
least part of the epistemic uncertainty is eliminated and we have a better understanding
of the data generating processes and are better able to make an informed decision. Note
that, if we wish to incorporate the relevant factors that are identified by the experts,
these should be included in the model so that part of the posterior uncertainty about our
parameter can be explained. The explained variance can be seen as a reduction of the
epistemic uncertainty or learning effect.

In the empirical example, we can already see some opportunities for learning. For example,
expert three misestimated the location of the parameter, which indicates, at least to some
extent, faulty or missing tacit knowledge. By starting a dialogue with the other experts,
he or she could learn why they all estimated the average turnover per professional to be
higher. Expert one and two had almost identical predictions concerning the location, but
expert one expressed more uncertainty. Perhaps this indicated more acknowledgement of
epistemic uncertainty; a dialogue could shed more light on the differences in choices of
expert one and two. Our empirical example contains just four experts, but the methods
used are easily scalable to include more experts, with only additional elicitation efforts
required. Including more experts can result in more opportunities for learning.

Concerning the appropriateness of the ranking that is obtained using the DACd, we
have the following to add. One could argue that perhaps the sample entails extreme
data. However, even if this is true, the experts should have considered the data to
be plausible, for it did occur. Thus, if an expert exhibits large KL divergence with
πJ(θ|y), this expert simply did not expect that these data were likely or plausible. By
incorporating (un)certainty in the evaluation, the DACd, or KL divergences if a benchmark
is omitted, produces the required behavior to fairly compare experts’ beliefs. Given that
it is appropriate to take uncertainty into account, a prior can be over-specific such that
it does not adhere to the principles underlying the data generating mechanism. KL
divergences reward the specification of an appropriate amount of uncertainty and penalize
overconfidence.
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To conclude this discussion, we state recommendations for researchers facing similar
problems:

• Use DACd instead of BF.
• Specify πJ(θ|y) such that it serves as a reference posterior and drop the association

between πJ(θ|y) and πJ(θ).
• Consider whether a meaningful benchmark can be determined. If not, only use
KL[πJ(.|y)||πd] and compare experts with each other and not with a benchmark.

• Carrying out a sensitivity analysis is always recommendable, even more so if bench-
marks are used.

Ethics Statement
This study was carried out in accordance with the recommendations of the internal Ethics
Committee of the Faculty of Social and Behavioural Sciences of Utrecht University, with
written informed consent from all subjects. All subjects gave written informed consent in
accordance with the Declaration of Helsinki. The protocol was approved by the internal
Ethics Committee of the Faculty of Social and Behavioural Sciences of Utrecht University.

Funding
The project was supported by the Netherlands Organization for Scientific Research grant
number NWO-VIDI-452-14-006. K.M. was supported by the Netherlands Organization
for Scientific Research grant number NWO-452-12-010.

Acknowledgments
We are grateful to all participants of the empirical study for their time, energy and
predictions. In addition, we would like to thank the company for allowing us access to
their resources and information, thereby enabling us to provide empirical support for the
theoretical work. We would also like to thank the anonymous reviewers whose comments
and suggestions greatly improved the manuscript.

Conflicts of Interest Statement
The authors declare that the research was conducted in the absence of any commercial or
financial relationships that could be construed as a potential conflict of interest.



4

A Step Forward: Bayesian
Hierarchical Modelling as a Tool in
Assessment of Individual
Discrimination Performance

Abstract
Individual assessment of infants’ speech discrimination is of great value for studies of language
development that seek to relate early and later skills, as well as for clinical work. The present
study explored the applicability of the hybrid visual fixation paradigm (Houston et al., 2007) and
the associated statistical analysis approach to assess individual discrimination of a native vowel
contrast, /a:/ - /e:/, in Dutch 6 to 10-month-old infants. Houston et al. found that 80% (8/10)
of the 9-month-old infants successfully discriminated the contrast between pseudowords boodup
- seepug. Using the same approach, we found that 12% (14/117) of the infants in our sample
discriminated the highly salient /a:/ - /e:/ contrast. This percentage was reduced to 3% (3/117)
when we corrected for multiple testing. Bayesian hierarchical modeling indicated that 50% of
the infants showed evidence of discrimination. Advantages of Bayesian hierarchical modeling
are that 1) there is no need for a correction for multiple testing and 2) better estimates at the
individual level are obtained. Thus, individual speech discrimination can be more accurately
assessed using state of the art statistical approaches.

This chapter is published as de Klerk, M., Veen, D., Wijnen, F. & de Bree, E. (2019). A Step Forward:
Bayesian Hierarchical Modelling as a Tool in Assessment of Individual Discrimination Performance. Infant
Behavior and Development., 57, 101345. Doi: 10.1016/j.infbeh.2019.101345
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MdK and FW.
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4.1 Introduction
Early speech discrimination is assumed to be vital for children’s language acquisition,
as it is a first step into the formation of speech sound categories. These, in turn, are
necessary for word learning (e.g. Tsao, Liu, & Kuhl, 2004). These past decades have seen
a significant increase in our understanding of the development of speech perception in
infants (see for recent reviews Maurer & Werker, 2014; Tsuji & Cristia, 2014). However,
the majority of studies have based their conclusions on group data. It has thus far turned
out difficult to make claims about individual performance and development, even though
this type of information is critical for understanding individual developmental trajectories
as well as clinical questions. It seems that only one study has addressed this matter
so far (Houston et al., 2007). In the present study, we use a variant of Houston et al.’s
hybrid visual fixation paradigm (HVF), and we describe and evaluate a new approach for
assessing individual infants’ phoneme discrimination.

Infant speech discrimination can only be measured indirectly. A frequently used behavioral
method is a habituation paradigm. In such paradigms, looking time is the preferred
dependent variable. Generally, in habituation paradigms infants are habituated on a
set of stimuli (A), followed by a test phase in which infants are tested on new set of
stimuli (B), i.e., the ‘dishabituation’ or ‘change’ trials. If infants are sensitive to the
difference between A and B, longer listening times are expected to the novel stimuli (B)
(Sokolov, 1963). Studies often employ designs with only 2-4 test trials, see Colombo &
Mitchell (2009) for a review. This can lead to interpretation difficulties, because infant
data is, without exception, noisy. Group results often show large individual variation in
looking times. This reflects substantial interindividual variation, comprising overall long
or short lookers. It also reflects intra-individual variation. This variation may result from
a variety of factors, both infant-internal, such as gas in the digestive system, tiredness,
developmental level, memory capacity, attentiveness, motivation, and external factors,
such as sounds other than the stimuli, stimulus complexity, and task demands. Hence,
the length of a look does not merely reflect the mental processing of the stimulus, and
thus does not unequivocally mirror habituation or dishabituation (Oakes, 2010). In order
to deal with the noise, researchers typically collapse data over individuals. However, the
HVF paradigm (Houston et al., 2007) uses 14 test trials instead of 2-4 test trials, which
in principle allows for individual assessment, as the higher number of test trials will boost
the signal-to-noise ratio.

Recently, there has been a growing interest in explaining individual differences in infants’
early speech perception, i.e. word segmentation and speech sound discrimination skills,
see Cristia, Seidl, Junge, Soderstrom, & Hagoort (2014) for a review. A frequently used
approach to individual differences is to use follow-up data, such as later vocabulary size,
reading scores or other skills to predict (in retrospect) infants’ looking times (e.g. Altvater-
Mackensen & Grossmann, 2015; Cristia, 2011; Junge & Cutler, 2014; Melvin et al., 2017;
Molfese, 2000; Newman, Ratner, Jusczyk, Jusczyk, & Dow, 2006). For instance, Newman
et al. (2006) found that 24-month-old toddlers with larger vocabulary sizes were better at
speech perception tasks in infancy than their peers with smaller vocabularies. Although
the reported correlations between looking time data and later language, cognitive or social
measures, e.g. vocabulary size, social interaction, social economic status (e.g. Altvater-
Mackensen & Grossmann, 2015) are sometimes low to moderate, the meta-analysis of
Cristia et al. (2014) shows that early speech perception skills have a predictive value of
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later language skills.

Even though there is a (weak) positive relation between early looking time data and
later language, cognitive or social measures, this is not the same as being able to assess
an individual child’s ability to discriminate speech sounds or segment words. There are
three reasons why individual data collected with the traditional discrimination paradigms
cannot provide this information. First, individual data is likely to show that some infants
have, on average, longer listening times to the familiarized, than to the new stimuli
(Houston-Price & Nakai, 2004). This could be due to some infants having reached the
habituation criterion without having fully encoded the stimulus (Aslin & Fiser, 2005);
as a consequence they do not look longer to the new stimulus. However, such a looking
pattern does not imply that they cannot discriminate A from B (e.g. Aslin & Fiser,
2005; Houston-Price & Nakai, 2004). This implies that the direction of the difference
in raw looking times cannot be used to infer discrimination. Second, it is not a priori
clear that a larger looking time difference between stimuli A and B is evidence for better
discrimination performance, and a smaller difference reflects poorer discrimination (Aslin
& Fiser, 2005), because there is no clear conceptualization of looking time duration and
discrimination. Third, although Houston found high test-retest reliability (Houston et
al., 2007), this test-retest reliability was found to be extremely variable across different
experiments in a multi-center study by Cristia, Seidl, Singh, & Houston (2016). Across
the three participating labs 12 speech perception experiments were conducted, which
included testing and retesting of 5-12-month-old infants within 18 days. Some of the
labs found significant correlations between performance of the infants tested on two
separate days, whereas others did not. One of the labs used the HVF paradigm to assess
speech sound discrimination skills of a vowel contrast (/i - u/), a consonant contrast
(/sa -

∫
a/) and a word contrast (boodup-seepug). Here too, test-retest reliability was

extremely variable across experiments; there were high test-retest correlations for vowel
and consonant contrasts, but not for the word contrast. In conclusion, it appears highly
challenging, if not impossible, to infer discrimination at the individual level, based on raw
looking time data.

Evidence for discrimination at the individual level might be found if infant data could be
modeled taking into account the individual variances as well as the autoregressive effect,
i.e. the correlations in noise between trials. Houston et al. (2007) attempted to tackle these
issues by using the HVF paradigm and applying statistical analyses on the individual data
and test trials. However, the statistical approach by Houston et al. (2007), testing each
infant individually using a classical frequentist approach, ignores chance findings based on
multiple testing, and misses the opportunity to gain strength in analyses by taking the
hierarchical structure of the data into account. Bayesian hierarchical modelling could be
a solution to overcome the multiple testing impracticality (Gelman, Hill, & Yajima, 2012).
Additionally, adding (hierarchical) information to the individual estimates reduces noise,
and also reduces the number of cases for which estimated effects are found in the wrong
direction, type-S (sign) errors, and inflated estimated effects, type-M (magnitude) errors
(Gelman & Tuerlinckx, 2000).

Houston et al. (2007) developed the HVF paradigm to assess discrimination skills at
the individual level. HVF is a habituation paradigm that includes more test trials (14
trials) than typically used in habituation studies, facilitating individual analysis. In
their study, Houston et al. (2007) tested ten 9-month-olds on the pseudowords boodup
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and seepug. These stimuli could a priori be regarded as highly discriminable for infants
this age. Infants were habituated on one of the words (e.g. boodup) and then tested
on alternating (boodup-seepug) and non-alternating (boodup-boodup) trials. Data was
analyzed using a linear regression model with autoregressive (AR1) error structure. Eight
out of the ten infants were able to discriminate the contrast, as indicated by a significant
difference in looking time between alternating (boodup-seepug) and non-alternating test
trials (boodup-boodup, seepug-seepug). The paradigm has successfully been used by other
researchers assessing speech (sound) discrimination skills of infants at group level (Cristia
et al., 2016; de Klerk, de Bree, Kerkhoff, & Wijnen, 2019; Dijkstra & Fikkert, 2011; Horn,
Houston, & Miyamoto, 2007; Liu & Kager, 2015, 2016). The design and analysis applied
by Houston et al. (2007) might be suitable for assessing individual performance in speech
sound discrimination as well.

In the present study, we applied an adapted variant of Houston et al. (2007)‘s proce-
dure to infants’ speech sound discrimination: we used a Dutch vowel contrast (/a:/-
/e:/).@smits_unfolding_2003 found that when native adults speakers of Dutch were
presented with /a:/ and /e:/ in syllable medial position, vowel /e:/ was classified only once
as /a:/ out of 1548 instances and the opposite error never occurred. This indicates that the
contrast is easy to discriminate by adults. The study by de Klerk et al. (2019) has shown
that groups of Dutch learning 6, 8, and 10-month-old infants can indeed discriminate this
contrast; moreover, performance increased with age (see Results, 3.1). These findings are
in line with theories of speech perception which predict good or agerelated enhancement
of discrimination of highly distinctive native speech sounds contrasts (Maurer & Werker,
2014; Tsuji & Cristia, 2014). The current study investigates outcomes at the individual
level rather than the group level, using the data from the previously-published paper by
de Klerk et al. (2019). The primary research question is whether we can obtain similar
results at the individual level as Houston et al. (2007). We expect that a large percentage
of individual infants will show evidence of discrimination, mirroring the findings reported
by Houston et al. (2007).

In addition, we explore the application of Bayesian Hierarchical modeling to our discrim-
ination data, and compare it to Houston et al. (2007)‘s statistical approach. Bayesian
Hierarchical modeling might provide better estimates of individual infants’ discrimination
performance than classical regression modeling: Using a Bayesian Hierarchical analysis
allows us to obtain estimates for each of the individual and group parameters in one model
without the need to correct for multiple testing (Gelman et al., 2012). If it can be assumed
that infants within the same age group belong to the same population -i.e. infants are
exchangeable within age groups but not between age groups- a hierarchical (multilevel)
structure is thus a more powerful approach.

4.2 Method

4.2.1 Participants
A total of 117 typically developing, monolingual Dutch 6-10-month-old infants participated.
In addition, 53 infants (31% of total recruited) were tested, but their data was not included
for analysis because of behavior during test (crying, extreme restlessness, n = 31), technical
errors (n = 12), failure to meet the habituation criterion (n = 5; see Procedure), parental
interference (n = 3), or ear infection at time of testing (n = 3). An overview of the ages
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and drop-out rates is provided in Table 4.1. Note that none of the infants were excluded
for failing to meet the pre-and posttest criterion (see Procedure). Parents provided active
informed consent before participation.

Table 4.1: Numbers of Participants, Mean Ages and Age Ranges, and Drop-Out Rate per
Age Group.

Age
Group Age Range Age (days)

Infants
tested

Infants
included

Drop-Out
rate

month days M(SD) N = n = n = (%)
6 6.1 - 6.30 203 (8.4) 59 38 21 (35)
8 8.0 - 8.30 259 (6.5) 66 44 22 (33)
10 10.3 - 10.30 320 (12.9) 45 35 10 (22)

Total 170 117 53 (31)

4.2.2 Stimuli
Both auditory as well as visual stimuli were presented in each phase of the procedure.
Similar to Houston et al. (2007)‘s study, the experiment consisted of a habituation phase,
a test phase, and a pre- and posttest to measure participants’ general attentiveness. For
more detailed information about the stimuli we refer to de Klerk et al. (2019).

During the pre-and posttest infants were presented with both auditory (beep sounds, 330
Hz, played at 65 dB(A), duration 250ms, ISI 1000ms, total duration of ~24 seconds) and
visual stimuli. The visual stimuli were three cartoon pictures pseudo-randomly selected
from a set of 25 (e.g. train, car, book), displayed for two seconds on a light blue background.
These pictures appeared in three different, randomly selected positions within an invisible
3 x 3 grid, see Figure 4.1. Every two seconds new pictures appeared at different locations.

In both the habituation and test phase participants heard a speech token repeatedly (with
a maximum of 30 repetitions) while being shown one of six still pictures of smiling female
faces. The faces were displayed in a random order, one face per trial. Houston et al.
(2007) used movies of females producing the words: we could not do the same because of
technical limitations. Between habituation trials a visual attention getter was displayed:
a video of a cute laughing baby. The attention getter shown between test trials was a
video clip of a toddler going down a slide (see Figure 4.1 for the visual stimuli). Auditory
stimuli were native vowels /a:/ and /e:/, embedded in pseudowords faap (/fa:p/) and
feep (/fe:p/). Five tokens of four female Dutch native speakers (aged between 25 and 35
years of age) were obtained. From three speakers one token was selected. From the fourth
speaker two tokens were selected, one of which was used during the habituation and test
phase and the other only during test phase (see Figure 4.3 for an overview). The four
different speakers that were used during the habituation phase were presented per block
of 4 trials, in randomized order. All auditory stimuli were played at ~65 dB(A). Tokens
were spoken in a child-friendly manner.

4.2.3 Procedure
Infants were seated on their caretaker’s lap in a sound-attenuated booth. As soon as
infants looked towards the computer screen in front of them, the experimenter started the
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Figure 4.1: Visual stimuli presented during the pre- and posttest, habituation and test
phase. Picture 1 is an example of the visual stimuli during pre-and posttest; 2 is an
example of a female face used during habitation and test trials; 3 is a still of the attention
getter between habituation trials and 4 is a still of the attention getter between test trials.

first trial. In each trial, the time the participant was looking at the screen was measured.
Whenever the participant looked away for 2 consecutive seconds, the trial was ended; a
new one started when the infant oriented to the screen again. There was no minimum
looking time to the screen. Looking times were coded online using a button box connected
to the computer controlling the experiment and acquiring data.

Pre- and posttest were used to gauge participants’ general attentiveness. If total looking
time to the posttest stimulus was less than 50% of the total looking time to the pretest
stimulus, the participant was considered to be showing a general loss of attention and was
discarded for analysis. This was never the case in our sample (see Participants).

The habituation phase consisted of a maximum of 12 trials, with a maximum of 30 repeti-
tions of a token per trial (ISI of 1 second) resulting in a total duration of approximately 48
seconds. A 65% habituation criterion was used to determine whether the participant had
habituated. To determine whether the habituation criterion was met, a moving window
was used (Figure 4.2). The mean looking times of the first three trials (1-3) was compared
to the subsequent three trials (4-6): if looking time had decreased by (minimally) 35%,
the criterion was met. If not, the mean looking time of trial 1-3 was compared to 5-7, 6-8,
etc., and the same criterion applied, up until the final subset 10-12. Infants who did not
meet the habituation criterion were not included in data analysis (n = 5, see Participants).
The selection of habituation stimuli (faap (/fa:p/) or feep (/fe:p/)) was counterbalanced
between infants. Infants were presented with all four voices, in randomized order: in each
block of four trials the infant heard all four voices but in randomized order within the
blocks (see Figure 4.3).

The test phase included a fixed number of 12 trials, with a maximum number of 30
tokens per trial, resulting in a duration of approximately 48 seconds per trial. Houston
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Figure 4.2: Visual depiction of the assessment of the (65%) habituation criterion

et al. (2007) used 14 test trials (10 non-alternating and 4 alternating). We reduced
the number of test phase trials and thus duration, because we know from experience
that Dutch infants are not always able to sit through experiments that have the same
duration as those conducted with infants in the US. Of these 12 test trials, four were
alternating (e.g. /fe:p/-/fa:p/), and 8 non-alternating (e.g. /fa:p/-/fa:p/). The alternating
and non-alternating trials were presented in a semi-fixed order: the first trial could be
either alternating or non-alternating, which was counterbalanced. Three subsequent
alternating trials occurred at positions: 5, 8 and 12. During the test phase a new token of
one familiar speaker was introduced, either nonalternating or alternating (see Figure 4.3.

4.3 Results

4.3.1 Summary of the group data published in de Klerk et al.
(2019)

The group-based data is presented in Figure 4.4 and Table 4.2. Mixed Modeling using
SPSS (version 23) with Subjects as random factor, Trial Number as a repeated effect
(covariance structure AR1), and Trial type (alternating vs. non-alternating) and Age as the
fixed factors showed that at group level, infants between 6-10 months of age discriminated
/fa:p/ from /fe:p/, at group level (de Klerk et al., 2019). In the current study we focus on
the individual data.

Table 4.2: Listening Times (seconds) to Alternating and Non-Alternating Trials

Age
Group Infants

Alternating
trials

Non-
alternating

Trials Statistics
N M (SD) M (SD) F p Cohen’s d

6 38 10.4 (8.6) 7.9 (6.8) 13.55 < .001 .31
8 44 9.7 (8.6) 7.1 (6.7) 21.74 < .001 .32
10 35 8.1 (5.6) 5.7 (4.5) 29.24 < .001 .45
All 117 9.4 (7.9) 7.0 (6.3) 62.70 < .001 .32
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Figure 4.3: Schematic overview of the experimental procedure with reference to the auditory
stimuli only. In this example, the first test trial is non-alternating and consequently the
second is alternating. The remaining three alternating trials have a fixed number, viz. the
5th, the 8th and 12th trial. Alternating trials are printed in bold. Token is abbreviated as
’T’ and Speakers as ’S’

Figure 4.4: Raw mean looking times (milliseconds) to alternating and non-alternating
trials per age group. Error bars represent Confidence Intervals (95%).
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4.3.2 Data Screening
The raw looking times to alternating and non-alternating trials were not normally dis-
tributed; for this reason, a log transformation (Log10) was performed. After this trans-
formation the skewness (.123, SE = .065) and kurtosis (.150, SE = .131) values were
acceptable. We refer to the supplementary files for histograms of the raw and log trans-
formed data (https://osf.io/ebrxy/).

4.3.3 Analysis 1: Linear Regression Model with Autoregressive
(AR1) Error Structure

To assess individual performance, we used the same regression model with autoregressive
effect as Houston et al. (2007),

yt = b0 + b1Ct + at

at =

φ1at−1 + et, if t ≥ 1
0, otherwise

(4.1)

where subscript t denotes the trial number t = 1, ..., T , y, denotes the looking time of
the trial, C denotes the condition (alternating or non-alternating) of the trial, e denotes
the error term, φ1 denotes the autoregressive factor. In this model b1Ct accounts for the
influence of the condition and b1 is interpreted as the difference in looking time for the
two conditions. the dependence on the looking time of the previous trial is found in the
specification of the error structure φ1at−1. The error in the current time point (at) is
dependent on the error of the previous time point (at−1), except for a1, because a1 is the
first trial. There is no carry-over effect from the previous trial and no autoregressive effect.
Looking times and statistical outcomes per infant are reported in Appendix A. Individual
analyses show that condition effects were significant for 14 participants, implying that
only 12% of the infants were able to discriminate between alternating and non-alternating
trials. When we correct for multiple testing using the Benjamini-Hochberg procedure
(Benjamini & Hochberg, 1995), this number decreases to 3 infants (3/117), a mere 3%.

Our results do not align with the results of the study of Houston et al. (2007), in which
80% (8/10) of the 9-month-old infants successfully discriminated the contrast. Applying
the Benjamini-Hochberg correction for multiple testing to Houston et al. (2007) data did
not make a difference in their outcomes, because of the few participants tested and the
large effect of condition on looking times. Nevertheless, an analysis without having to
correct for multiple testing is desirable and Bayesian modeling could be a solution.

4.3.4 Analysis 2: Hierarchical Bayesian Analysis
The analyses used in the paper by Houston et al. (2007) rely on separate regression analyses
for each individual child. However, if we assume that infants are exchangeable within the
same age group, that is, that they come from the same population, an alternative and more
powerful approach is to model their looking times in a hierarchical (multilevel) structure.
By modeling both the individual and group effects in one analysis instead of doing so
for 117 separate analyses, one for each individual, part of the observed variance could be
explained at the group level instead of trying to explain all variance at the individual

https://osf.io/ebrxy/
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level. As a result, we will have reduced uncertainty in our estimates for the individual
parameters (Gelman, 2006a). Moreover, by using a Bayesian hierarchical analysis, we are
able to obtain estimates for each of the individual and group parameters in one model
without the need to correct for multiple testing (Gelman et al., 2012).

In our Bayesian hierarchical regression, we modelled the individual infant data in three
groups based on their age (6, 8 and 10 months). We used the same model as before,
namely a regression model with an AR1 error structure, with Log10 transformed looking
times as outcomes and condition (alternating or non-alternating trial) as predictor. For
all groups we obtained both group and individual estimates for the intercept (looking
time alternating trials), the condition (difference in looking time between alternating and
non-alternating trials) and the AR1 effect. Details on the priors, estimation, model fit and
sensitivity analyses are given in the supplementary files on the Open Science Framework
webpage for this study at (https://osf.io/ebrxy/) or in Appendix B. In short, we achieve
a good model fit.

The parameter of interest was the condition parameter. This parameter allowed us to
establish whether the looking times differed between the alternating and non-alternating
condition for the individual infants. To keep the decision criterion as similar as possible to
the previously described analyses, we checked how many of the infants included the value
0 in their 95% credibility interval (CI) for the condition parameter. For the 95% CI (the
0.025 and 0.975 quantiles of the posterior sample) we regard this interval as having a 95%
probability of containing the unknown parameter value. In contrast, the 95% Confidence
Interval in frequentist statistics relates to (potential) replications of the experiment and
expresses the expectation that the interval contains the true parameter estimate in 95%
of the experiments. In our study, the percentages of infants whose 95% CI did not include
0 are displayed per age group in Table 4.3. For the 10-months-olds we found that 77%
discriminated between the alternating and non-alternating condition, and 53% of the
6-month-olds did, whilst for the 8-month-old infants this was only 27%.

Table 4.3: Number and Percentage of Infants that Discriminate the Contrast Significantly
per Age Group and of Infants that did not include the Value 0 in Their 95% Credibility
Interval (CI)

Frequentist
(non-

hierarchical)
modeling

Bayesian Hierarchical
modeling

Age
Group

Participants Uncorrected
Successful Dis-
crimination

(%)

Corrected
Successful Dis-
crimination
(%)

Infants without 0 in
their 95% CI (%)

6 38 2 (5) 0 (0) 20 (53)
8 44 4 (9) 2 (5) 12 (27)
10 35 8 (23) 1 (3) 27 (77)
Ttoal 117 14 (12) 3 (3) 59 (50)

https://osf.io/ebrxy/
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Figure 4.5: Results of the hierarchical model for each individual per age group. The black
dots represent the median; the red bars represent the 95% Credibility Intervals.

Figure 4.5 shows the results of the hierarchical model for each individual per age group.
Credibility Intervals for the 8-month-old infants show larger uncertainty for the estimates
than for the other two age groups, especially the 6-month-olds. The group-estimated effect
of condition, depicted in the left panel of Figure 4.6, increases with age. The estimated
random effect for condition is largest in the 8-month-old group, which can be seen from the
variance estimates in the right panel of Figure 4.6. Because the infants of the 8-month-old
group differ more from one another than the infants in the other age groups, less shrinkage
of estimates occurs and we remain more uncertain about their estimated condition effects.
This outcome is visible in the larger credibility intervals for the infants in age group 8
compared to the other two age groups.

As part of the model assessment we conducted posterior predictive checks. These checks
provide insight into the plausibility to the hypothesized and estimated model by drawing
simulations from the posterior model. Figure 4.7 shows how well the model fits the data
of a particular child, in this case child 16 in age group 6. Simulations are based on the
posterior parameter estimates for this specific child at each specific measurement, taking
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Figure 4.6: Group estimates for condition effects and variation per age group. The left
panel shows the group estimates for condition effects. The right panel shows the standard
deviation of the condition effect per age group. The densities, presented in red, represent
the 95% credibility interval.

into account the child-specific estimated looking times for (non-)alternating trials, the
child-specific condition effect and the child-specific autoregressive effect. The posterior
predictive p-value (ppp) indicates the proportion of simulated values for this measurement
that are smaller than the observed value. If ‘ppp’ falls between 0.025 and 0.975 we
conclude that our model provides an accurate prediction for this specific observation. Note
that this specific child 16 is classified as non-discriminator and that all measurements are
accurately captured by the model as shown by the blue bars in each histogram (Figure
4.7). For an example of a child classified as non-discriminator with less accurate model
descriptions for the observed measurement see for instance child 17 from age group 10,
measurements (trials) 5 and 7 (see https://osf.io/ebrxy/).

To evaluate the effects of the hierarchical regression compared to modelling the individual
regressions, we also ran Bayesian regression analyses with AR1 error structure without the
multilevel structure. Figure 4.8 shows the estimates with their uncertainty for the condition
parameter for all infants in age group 6 (only); the other groups show similar patterns.
The figure shows that including the hierarchical structure reduced the uncertainty of the
estimates markedly.

Table 4.4 displays the mean log-transformed looking time differences between the alternat-
ing and non-alternating trials for all individuals that did not include the value 0 in their
95% CI for the condition effect in the hierarchical regression. These raw data show the
direction of the average difference in looking time between alternating and non-alternating
trials, as well as the magnitude of the average difference between trial types. As can
be seen, both looking time difference directions are present, meaning that the data set
includes infants with on average longer looks to alternating trials as well as infants with
on average longer looks to non-alternating trials. In addition, Table 4.4 shows that the
magnitude of looking time differences between alternating and non-alternating trials shows
considerable variation.

https://osf.io/ebrxy/
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Figure 4.7: Posterior predictive simulations for child 16 in age group 6 for all 12 observed
trials. Each histogram contains 6000 simulated values for that particular observation
of that specific child based on the posterior parameter estimates. The blue vertical line
denotes the actually observed value for the specific measurement.
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Figure 4.8: Comparison of results of individual and hierarchical analyses for condition
parameter of each infant in the 6-month-olds group. The Hierarchical model reduces the
uncertainty (95% CI represented by red bar) (median represented by the black dot) for the
parameter estimates.
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Table 4.4: The Mean Looking Time Difference between Alternating and Non-Alternating
Trials for the Infants whose Confidence Interval (95%) did not cross the Value 0. The
mean log-transformed looking time differences are presented.

Subject Group Difference Subject Group Difference
Age alternating -

nonalternating
Age alternating -

nonalternating
child 02 6 -.10 child 41 8 -.27
child 03 6 -.14 child 44 8 -.07
child 05 6 -.03 child 01 10 .12
child 06 6 .03 child 02 10 .13
child 07 6 -.10 child 03 10 -.09
child 08 6 -.01 child 04 10 .25
child 09 6 -.02 child 05 10 .11
child 12 6 -.05 child 06 10 .09
child 13 6 .02 child 07 10 .15
child 14 6 -.16 child 08 10 .26
child 16 6 -.13 child 09 10 .16
child 19 6 -.03 child 10 10 .11
child 20 6 .19 child 12 10 .20
child 23 6 .03 child 13 10 -.02
child 24 6 .09 child 14 10 .15
child 29 6 .11 child 15 10 -.12
child 32 6 .06 child 16 10 -.15
child 33 6 -.07 child 17 10 -.04
child 34 6 -.04 child 18 10 .14
child 36 6 .08 child 19 10 -.23
child 01 8 -.24 child 21 10 .03
child 08 8 -.36 child 23 10 .14
child 13 8 -.15 child 26 10 -.02
child 17 8 .19 child 27 10 .12
child 20 8 .48 child 28 10 .22
child 21 8 .04 child 29 10 -.10
child 30 8 -.10 child 32 10 .16
child 32 8 -.12 child 34 10 .36
child 34 8 -.11 child 35 10 .02
child 37 8 -.08

4.4 Discussion
The primary aim of this study was to determine if speech discrimination performance
can be reliably assessed for individual infants in a habituation design. This is crucial for
understanding individual developmental trajectories and in addressing potential clinical
questions. In order to do so we used the experimental design, hybrid visual fixation (HVF),
and statistical approach, linear regression modeling with autoregressive error structure,
reported in Houston et al. (2007). Houston et al. (2007) found that 80% (8/10) of their
9-month-old participants discriminated the boodup - seepug contrast. Our study assessed
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individual native phoneme (/fa:p - /fe:p/) discrimination in Dutch infants aged 6, 8 and
10 months, using a slightly altered version of the HVF paradigm. When conducting the
regression analysis that Houston et al. (2007) applied, we found that only 12% (14/117)
of the infants discriminated the contrast. We were thus not able to replicate Houston et
al. (2007)’s findings, using the same model as they did.

Houston et al. (2007) did not correct for multiple testing, but when such a correction
is applied (as we did), it did not make a difference for the findings of the Houston
et al. (2007) sample. For our study, however, the correction led to a reduction of the
percentage of infants in whom discrimination could be attested to 3% (from 12%). Bayesian
Hierarchical modeling provides both group and individual estimates using the same model
and therefore has the advantage that it does not require correction for multiple testing.
Using a hierarchical model with both the autoregressive effect (looking time decreases
during test) and the inclusion of group information led to reduced uncertainty of the
estimates of the condition effects (alternating versus non-alternating) at both the group
and the individual level. The analysis returned a higher percentage (50%) of infants
that showed evidence of discrimination. Evidence of discrimination is defined as the
95% credibility interval that does not include value 0 for the condition effect. For the
10-months-olds we found that 77% discriminated between faap and feep, while 53% of
the 6-month-olds and only 27% of the 8-month-olds did. These individual discrimination
outcomes are still lower than expected. We expected that most infants would show
evidence of discrimination, regardless of age and we predicted discrimination percentages
comparable to those obtained by Houston et al. (2007). Seventy-seven percent of the
10-months-old infants discriminated the contrast. This is comparable to findings of 9-
month-olds in the study of Houston et al. (2007). It is conceivable that the design (14
alternating and non-alternating test trials) is more suitable for the older than for the
younger infants.

Two design differences between the study by Houston et al. (2007) and ours could also
account for the diverging results. First, Houston et al. (2007) used a word contrast,
boodup - seepug, which differs markedly from the phonemic contrast /fa:p - fe:p/ we
used. The more conspicuous word contrast may have elicited a larger difference between
alternating and nonalternating trials. Second, Houston et al. (2007) used 14 test trials, two
more non-alternating trials than we did. This might have caused a lower mean looking time
to non-alternating trials, as infants’ internal representation of the old (non-alternating)
stimulus might become stronger during test, which is expected to result in a larger increase
in looking time to new stimuli (Sokolov, 1963). Still, infants of all age groups showed
evidence of discrimination (de Klerk et al., 2019, and Figure 4.6 of this paper) and this
does not seem to align with the lower percentage of infants significantly discriminating
the contrast we observed in the current study. However, age-related enhancement of
discrimination is shown by an increasing percentage of infants discriminating the contrast,
which fits the theory of perceptual attunement (Maurer & Werker, 2014; Tsuji & Cristia,
2014).

Our individual analyses are an exploratory extension of the individual analyses done by
Houston et al. (2007); we used Bayesian hierarchical modelling to assess if an infant
can discriminate the two stimuli. The theoretical advantages of our approach have been
discussed throughout the paper. The approach by Houston et al. (2007) and our approach
lead to different conclusions for many infants in our study. Strictly speaking, our decision
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rule, i.e., discrimination is attested if the 95% CI does not include 0, is not an entirely
proper method for hypothesis testing. Some shortcomings of forcing decision rules on
parameter estimates are discussed in Lee (2018), where Bayes Factors are advocated.
However, the application of Bayes Factors in the current setting would present serious
challenges and there are arguments against them in general (Gelman et al., 2013). On
the other hand, our approach is not unprecedented; Kruschke (2013), for example, used a
similar approach as an alternative to t-tests, and Gelman & Tuerlinckx (2000) show that
this approach reduces the chance of Type S (sign) errors in comparison to the classical
framework. The decision rule we used could be used to infer discrimination.

The Bayesian hierarchical model presents a more reliable statistical approach: If measure-
ments contain (substantial) noise, this negatively affects the reliability of a measurement.
That is, if we measure the same construct multiple times we obtain different results. If we
are able to reduce the noise, our measurement becomes less variable and will measure the
same construct in a more stable manner over multiple times. By including hierarchical
structures in our model we can capture part of the noise in our estimated looking times
(see Figure 4.8). The reduction of the noise leads to less variable representations of the
measurements which can be seen as an improvement of the reliability of the measurements
(Gelman et al., 2012).

The current study aimed at assessing individual outcomes because looking time data is
noisy and often challenging to interpret (Aslin & Fiser, 2005; Oakes, 2010). Nevertheless,
studies do attempt to interpret these individual variations by, for instance, examining
followup data and in retrospect analyze the infant looking time data (e.g. Newman et al.,
2006), which at group level give some insight in the relations between early perception skills
and later language development (Cristia et al., 2014). However, raw looking time data
cannot be used to infer success or failure. In order to classify individuals as discriminators,
data should be modelled and advanced statistical methods need to be applied. The
method presented in this study allows us to classify individual infants as discriminators
or non-discriminators. Moreover, the procedure allows us to investigate how well our
model performs for each trial for each individual child using posterior predictive checks, an
example can be seen in Figure 4.7. However, more research needs to be done to investigate
replicability of the current study. Factors that will influence outcomes are, for example,
sample size, as estimates will be more accurate with increased sample size, and the total
number of data points per subject. Future research should also focus on the question
whether classification as presented in this study is indeed of clinical value: do infants
classified as discriminators have better language performance measured at a later age?

Taken together, assessing individual discrimination performance with an autoregressive
model per individual without correcting for multiple testing is not an approach to be
favored. On the other hand, if multiple testing is corrected for, significant results rely on
sample size, because with each infant that is added another test should be run. Sample
size influences the corrected alpha-level, which is arbitrary. A model in which all these
issues can be tackled is the Bayesian Hierarchical model: we can account for a decrease
in looking time (autoregressive effect); it includes group information in the hierarchical
model; it does not require correction for multiple testing, and it provides more confidence
in classifying infants as being able to discriminate a stimulus contrast or not. Our findings
thus provide a step forward in assessing infants’ speech discrimination.
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Appendix A
Table 4.5: Mean Listening Times per Condition (Alternating and Non-Alternating),
Difference Score and p Value for Condition for each Infant. In the column p_adj the
p-values are reported for condition (alternating vs. nonalternating) in the autoregressive
analyses of each infant. Houston (rows at the bottom) reports on raw looking time data
received from Derek Houston (personal communication) which we were able to replicate
with our model. Numbers in bold are significant (alpha level .05).

Participant Age Condition Difference Statistics

(months) Alternating Non-Alternating Alt minus Non-alt p_adj
Child 10 6 4.05 3.74 0.31 .012
Child 38 6 3.71 3.59 0.12 .022
Child 31 6 3.92 3.69 0.22 .055
Child 4 6 4.26 3.98 0.28 .055
Child 18 6 4.43 4.08 0.35 .062
Child 35 6 3.95 3.67 0.29 .074
Child 15 6 4.22 3.98 0.24 .100
Child 25 6 4.26 3.94 0.32 .113
Child 29 6 4.06 3.95 0.11 .128
Child 37 6 4.24 4.02 0.22 .133
Child 17 6 3.74 3.58 0.16 .134
Child 11 6 4.34 3.99 0.35 .14
Child 26 6 4.2 4.06 0.14 .211
Child 30 6 3.88 3.75 0.13 .23
Child 14 6 3.61 3.76 -0.16 .258
Child 3 6 3.8 3.94 -0.14 .278
Child 28 6 4.16 3.9 0.26 .293
Child 22 6 3.9 3.8 0.1 .295
Child 7 6 3.82 3.91 -0.1 .335
Child 2 6 3.57 3.67 -0.1 .347
Child 33 6 3.87 3.94 -0.07 .406
Child 19 6 4.01 4.04 -0.03 .416
Child 27 6 4.05 3.99 0.06 .46
Child 8 6 3.77 3.78 -0.01 .524
Child 16 6 4.02 4.15 -0.13 .56
Child 1 6 3.97 3.87 0.1 .603
Child 13 6 3.84 3.82 0.02 .665
Child 20 6 3.96 3.78 0.19 .675
Child 21 6 3.55 3.47 0.07 .675
Child 32 6 3.72 3.66 0.06 .723
Child 23 6 3.79 3.76 0.03 .725
Child 6 6 4.09 4.05 0.03 .748
Child 24 6 4.21 4.12 0.09 .773
Child 36 6 3.99 3.91 0.08 .847
Child 5 6 3.7 3.73 -0.03 .85
Child 12 6 4.19 4.23 -0.05 .857
Child 9 6 3.79 3.82 -0.02 .899
Child 34 6 3.88 3.92 -0.04 .905
Child 9 8 4.42 3.7 0.72 .001
Child 7 8 3.76 3.3 0.46 .001
Child 20 8 3.97 3.49 0.48 .022
Child 15 8 3.94 3.55 0.38 .031
Child 38 8 3.43 3.51 -0.08 .051
Child 19 8 3.95 3.74 0.21 .053
Child 10 8 4.01 3.73 0.28 .057
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Participant Age Condition Difference Statistics

Child 27 8 4.2 4 0.2 .062
Child 35 8 4.36 3.96 0.4 .067
Child 17 8 4.3 4.11 0.19 .092
Child 40 8 4.15 3.78 0.37 .098
Child 29 8 4.24 4.02 0.22 .142
Child 5 8 4.13 4 0.13 .144
Child 11 8 3.82 3.47 0.35 .153
Child 25 8 3.88 3.72 0.16 .160
Child 6 8 3.72 3.54 0.18 .160
Child 12 8 3.85 3.7 0.15 .202
Child 13 8 3.82 3.97 -0.15 .242
Child 41 8 3.68 3.95 -0.27 .254
Child 8 8 3.68 4.04 -0.36 .294
Child 16 8 4.25 4 0.25 .319
Child 36 8 4.06 3.94 0.12 .332
Child 3 8 3.92 3.8 0.12 .354
Child 18 8 3.9 3.69 0.21 .387
Child 23 8 4.04 3.85 0.19 .397
Child 26 8 3.84 3.69 0.15 .420
Child 39 8 3.79 3.59 0.2 .440
Child 31 8 4.18 4.03 0.15 .483
Child 4 8 4.12 3.98 0.13 .499
Child 1 8 3.8 4.04 -0.24 .592
Child 33 8 3.88 3.71 0.17 .612
Child 21 8 4.23 4.19 0.04 .672
Child 2 8 3.7 3.7 0.01 .692
Child 14 8 3.53 3.6 -0.07 .712
Child 22 8 3.87 3.87 0 .716
Child 32 8 3.89 4.01 -0.12 .728
Child 44 8 3.81 3.88 -0.07 .745
Child 30 8 3.7 3.8 -0.1 .768
Child 43 8 3.48 3.54 -0.05 .786
Child 28 8 3.81 3.78 0.03 .904
Child 37 8 4.13 4.22 -0.08 .909
Child 34 8 3.55 3.66 -0.11 .925
Child 42 8 3.74 3.75 -0.01 .937
Child 24 8 4.12 3.87 0.25 .947
Child 20 10 4.14 3.52 0.62 .001
Child 34 10 4.23 3.88 0.36 .003
Child 22 10 4.15 3.66 0.49 .005
Child 24 10 3.96 3.67 0.29 .014
Child 30 10 3.85 3.53 0.32 .016
Child 32 10 4.01 3.85 0.16 .018
Child 31 10 4.04 3.54 0.5 .020
Child 8 10 4.03 3.76 0.26 .043
Child 9 10 3.7 3.54 0.16 .076
Child 25 10 3.98 3.66 0.32 .096
Child 14 10 3.67 3.52 0.15 .129
Child 28 10 3.97 3.75 0.22 .155
Child 11 10 3.57 3.45 0.12 .195
Child 10 10 3.93 3.82 0.11 .197
Child 12 10 4.04 3.83 0.2 .219
Child 19 10 3.57 3.81 -0.23 .262
Child 2 10 3.99 3.86 0.13 .266
Child 4 10 4.03 3.79 0.25 .29
Child 7 10 3.97 3.82 0.15 .306
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Participant Age Condition Difference Statistics

Child 16 10 3.81 3.97 -0.15 .327
Child 5 10 3.93 3.81 0.11 .344
Child 3 10 3.84 3.93 -0.09 .395
Child 18 10 3.51 3.37 0.14 .420
Child 35 10 4.15 4.13 0.02 .520
Child 15 10 3.6 3.72 -0.12 .592
Child 27 10 3.65 3.52 0.12 .599
Child 29 10 3.67 3.77 -0.1 .601
Child 21 10 3.87 3.84 0.03 .641
Child 23 10 3.99 3.85 0.14 .734
Child 1 10 3.83 3.71 0.12 .832
Child 17 10 3.9 3.93 -0.03 .891
Child 6 10 3.9 3.81 0.09 .899
Child 33 10 3.73 3.61 0.12 .902
Child 13 10 3.44 3.46 -0.02 .955
Child 26 10 3.59 3.61 -0.02 .996
768 9 (Houston) 25800 8380 17420 .000
929 9 (Houston) 11614 7843 3771 .056
668 9 (Houston) 12425 13060 -635 .336
762 9 (Houston) 8671 6743 1928 .529



68 4. A STEP FORWARD

Appendix B

4.4.1 Software
We used R version 3.4.3 (R Core Team, 2017b) and rstan version 2.17.3 (Stan Development
Team, 2018b) to estimate the models. We used shinystan version 2.4.0 (Gabry, 2018) to
asses model convergence. The packages ggplot2 version 2.2.1 (Wickham et al., 2019) and
gridExtra version 2.3 (Auguie, 2017) were used in creating our figures and the package
foreign version 0.8-69 (R Core Team, 2017a) was used to load the data into R.

4.4.2 Priors
We specified half-cauchy priors with location of 0 and scale 2.5 on the variance parameters
in accordance with recommendations by Gelman (2006b). All other parameters are
modelled with uninformative priors given the scale of the data, namely normal priors with
a mean of 0 and a standard deviation of 100.

4.4.3 Estimation and Convergence
We ran 4 chains using 1000 warmup samples and 2500 iterations each. We looked at
several indicators to check if our model had converged and if the model was appropriate.
The R̂ (< 1.01), Monte Carlo standard error (< 5%) and effective sample size (>10%) did
not display problematic signs for any of the parameters. No divergent transitions were
found and the energy diagnostic for the Hamiltonian Monte Carlo looked fine (Betancourt,
2017).

4.4.4 Posterior predictive check
To see if the model was appropriate for the data we performed posterior predictive checks
for each observation for each child. That is, we simulated data using the estimated
model and looked if the original data would be surprising given the model. If there were
few discrepancies between the model generated data and the original data the model
was assumed to be appropriate. An example of such posterior predictive checks can be
seen in Figure 4.9. For a pdf including all posterior predictive checks see the document
“Posterior_Predictives.pdf” in the data Archive on the Open Science Framework (OSF)
webpage for this study at https://osf.io/ebrxy/. Only 3.3% of the observations did not
pass this check and there did not seem to be a pattern in which observations did not pass
the check. We therefore conclude that the model described the data well.

4.4.5 Sensitivity Analysis
Figure 4.10 shows the effects for the condition parameter estimates if we change the priors
on the group SD parameters. We compare a uniform (0, Inf), a half Cauchy (0, 2.5) an
inverse gamma (0.1, 0.1) and an inverse gamma (0.5, 0.5) prior. We see that the variation
for the individuals stays about the same for the uniform and Cauchy prior but increases
a bit if we use the inverse gamma (0.1, 0.1) and somewhat more if we use the inverse
gamma (0.5, 0.5) prior. This is due to a prior data conflict for the inverse gamma priors
and the data. The data are on the log10 scale and thus we obtain small values with small
SD estimates. The estimates are so small that their values are extremely unlikely given

https://osf.io/ebrxy/
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the inverse gamma prior specifications. (smaller than 1% chance for inverse gamma (0.1,
0.1) and smaller than 0.001% for inverse gamma (0.5, 0.5)). These priors thus artificially
increase variance between individuals as you see in the figure and are not uninformative
for this data set. A visual representation of the priors and the lack of support of the
inverse gamma priors on parameter space with very small values can be seen in Figures
4.11. The Cauchy and uniform prior are uninformative given the scale of the data but are
not in disagreement with the data. They cause stable results over different choices thus
encouraging us to trust the results from the analyses with the half Cauchy(0, 2.5) prior.

Figure 4.9: Example of posterior predictive check. 1500 Samples are generated based on
the model estimates for each measurement for each individual. The original observation is
marked with a blue line if it falls within the 95% interval of the observations and with red
if it falls outside. If the model is a good model the observed data should not be surprising
given the model. As such, if the model is good we should expect few observations that we
cannot explain and thus few ’red’ lines in the histograms.
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Figure 4.10: Results of the sensitivity analyses regarding the effects of the choice of the
prior on the group standard deviation parameters on the condition parameter in which we
a interested for this study.

Figure 4.11: Visualization of the priors used in the sensitivity analysis, also zoomed at
the posterior parameter space that is relevant and we also present the resulting posterior
distributions if these priors are used.
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The importance of collaboration in
Bayesian analyses with small
samples

Abstract
This chapter addresses Bayesian estimation with (weakly) informative priors as a solution for
small sample size issues. Special attention is paid to the problems that may arise in the analysis
process, showing that Bayesian estimation should not be considered a quick solution for small
sample size problems in complex models. The analysis steps are described and illustrated with
an empirical example for which the planned analysis goes awry. Several solutions are presented
for the problems that arise, and the chapter shows that different solutions can result in different
posterior summaries and substantive conclusions. Therefore, statistical solutions should always
be evaluated in the context of the substantive research question. This emphasizes the need for a
constant interaction and collaboration between applied researchers and statisticians.

This chapter is accepted as Veen, D. & Egberts, M. R. (2020). The importance of collaboration in
Bayesian analyses with small samples. In R. Van de Schoot & M. Miočević (Eds.), Small sample size
solutions: A guide for applied researchers and practitioners: Routledge.

DV and ME wrote and revised this chapter together. DV conducted the statistical analyses. DV and
ME interpreted the results together.
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5.1 Introduction
Complex statistical models, such as Structural Equation Models (SEMs), generally require
large sample sizes (Tabachnick, Fidell, & Ullman, 2007; Wang & Wang, 2012). In practice,
a large enough sample cannot always be easily obtained. Still, some research questions
can only be answered with complex statistical models. Fortunately, solutions exist to
overcome estimation issues with small sample sizes for complex models, see Smid, McNeish,
Miočević, & van de Schoot (2020) for a systematic review comparing frequentist and
Bayesian approaches . The current chapter addresses one of these solutions, namely
Bayesian estimation with informative priors. In the process of Bayesian estimation, the
WAMBS-checklist (When-to-Worry-and-How-to-Avoid-the-Misuse-of-Bayesian-Statistics;
Depaoli & van de Schoot, 2017) is a helpful tool; see also van de Schoot, Veen, Smeets,
Winter, & Depaoli (2020). However, problems may arise in Bayesian analyses with
informative priors, and whereas these problems are generally recognized in the field, they
are not always described or solved in existing tutorials, statistical handbooks or example
papers. This chapter offers an example of issues arising in the estimation of a Latent
Growth Model (LGM) with a distal outcome using Bayesian methods with informative
priors and a small data set of young children with burn injuries and their mothers.
Moreover, we introduce two additional tools for diagnosing estimation issues: divergent
transitions and the effective sample size of the posterior parameter samples, available
in Stan (Stan Development Team, 2018b) which makes use of an advanced Hamiltonian
Monte Carlo (HMC) algorithm called the No-U-Turn-Sampler (NUTS: Hoffman & Gelman,
2014). These diagnostics can be used in addition to the checks described in the WAMBS
checklist.

In the following sections, we briefly introduce LGMs and address the role of sample
size, followed by an empirical example for which we present an analysis plan. Next, we
show the process of adjusting the analysis in response to estimation problems. We show
that different solutions can differentially impact the posterior summaries and substantive
conclusions. This chapter highlights the importance of collaboration between substantive
experts and statisticians when an initial analysis plan goes awry.

5.2 Latent Growth Models with small sample sizes
Latent Growth Models (LGMs) include repeated measurements of observed variables,
and allow researchers to examine change over time in the construct of interest. LGMs
can be extended to include distal outcomes and covariates (see Figure 5.1). One of the
benefits of specifying an LGM as a structural equation model (SEM), as opposed to a
multilevel model as discussed in Hox & McNeish (2020), is that growth can be specified
as a non-monotonic or even non-linear function. For instance, we can specify an LGM in
which part of the growth process is fixed and another part is estimated from the data. In
Figure 5.1, two constraints on the relationships between the latent slope and measurement
occasions are freed for two waves, thereby estimating λ22 and λ23 from the data. As a
result, we allow individuals to differ in the way their manifest variables change from the
first to the last measurement.

One drawback of LGMs, however, is that such models generally require large sample sizes.
The more restrictions we place on a model, the fewer parameters there are to estimate,
and the smaller the required sample size. The restrictions placed should, however, be in
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Figure 5.1: The Latent Growth Model as used in the empirical example. The parameters
of interest are the intercept of the latent factor f1 (β0), f1 regressed on the latent intercept
(β1), the latent slope (β2) and x5 (β3) and the residual variance of the latent factor f1
(σ2

ε ). The two blue factor loadings indicate freely estimated relationships for λ22 and λ23
(respectively). The red residual variance parameter (θ77) is highlighted throughout the
empirical example.
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line with theory and research questions. Small sample sizes can cause problems such as
high bias and low coverage (Hox & Maas, 2001), nonconvergence or improper solutions
such as negative variance estimates (Wang & Wang, 2012, Chapter 7), and the question
is how large should the sample size be to avoid these issues. Several simulation studies
using maximum likelihood estimation have provided information on required sample
sizes for SEM in general, and LGM specifically. To get an indication of the required
sample size, we can use some rather arbitrary rules of thumb. Anderson & Gerbing
(1988) recommend N = 100-150 for SEM in general. Hertzog, Oertzen, Ghisletta, &
Lindenberger (2008) investigated the power of LGM to detect individual differences in
rate of change (i.e., the variance of the latent slope in LGMs). This is relevant for the
model in Figure 5.1 because the detection of these differences is needed if the individual
rate of change over time (individual parameter estimates for the latent slope) is suitable
to be used as a predictor in a regression analysis. In favorable simulation conditions
(high Growth Curve Reliability, high correlation between intercept and slope, and many
measurement occasions), maximum likelihood estimation has sufficient power to detect
individual differences in change with N = 100. However, in unfavorable conditions even a
sample size of 500 did not result in enough power to detect individual differences in change.
Additionally, the model in the simulation studies by Hertzog and colleagues contained
fewer parameters when compared to the LGM model used in the current chapter, thus
suggesting that running the model in this chapter would require even larger sample sizes
than those recommended by Hertzog and colleagues.

Bayesian estimation is often suggested as a solution for problems encountered in SEM with
small sample sizes because it does not rely on the central limit theorem. A recent review
examined the performance of Bayesian estimation in comparison to frequentist estimation
methods for SEM in small samples on the basis of previously published simulation studies
(Smid et al., 2020). It was concluded that Bayesian estimation could be regarded as a valid
solution for small sample problems in terms of reducing bias and increasing coverage only
when thoughtful priors were specified. In general, naive (i.e., flat or uninformative) priors
resulted in high levels of bias. These findings highlight the importance of thoughtfully
including prior information when using Bayesian estimation in the context of small
samples. Specific simulation studies for LGMs can be found in papers by (McNeish,
2016a, 2016b; Smid, Depaoli, & van de Schoot, 2019; van de Schoot, Broere, Perryck,
Zondervan-Zwijnenburg, & van Loey, 2015; Zondervan-Zwijnenburg, Depaoli, Peeters, &
van de Schoot, 2018).

In general, it is difficult to label a sample size as small or large, and this can only be done
with respect to the complexity of the model. In the remainder of this chapter we use the
example of the extensive and quite complex LGM that can be seen in Figure 5.1. We show
that with a sample that is small with respect to the complexity of this model, issues arise
in the estimation process even with Bayesian estimation with thoughtful priors. Moreover,
we provide details on diagnostics, debugging of the analysis and the search for appropriate
solutions. We show the need for both statistical and content expertise to make the most
of a complicated situation.
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5.3 Empirical example: Analysis plan
In practice, there are instances in which only small sample data are available, for example
in the case of specific and naturally small or difficult to access populations. In these cases,
collecting more data is not an option, and simplifying research questions and statistical
models is also undesirable because this will not lead to an appropriate answer to the
intended research questions. In this section we introduce an empirical example for which
only a small data set was available, and at the same time the research question required
the complicated model in Figure 5.1.

5.3.1 Research question, model specification and an overview
of data

The empirical example comprises a longitudinal study of child and parental adjustment
after a pediatric burn event. Pediatric burn injuries can have long-term consequences
for the child’s health-related quality of life (HRQL), in terms of physical, psychological
and social functioning. In addition, a pediatric burn injury is a potentially traumatic
event for parents, and parents may experience posttraumatic stress symptoms (PTSS; i.e.,
symptoms of re-experiencing, avoidance and arousal) as a result. Parents’ PTSS could
also impact the child’s long-term HRQL. It is important to know whether the initial level
of parental PTSS after the event or the development of symptoms is a better predictor of
long-term child HRQL, since this may provide information about the appropriate timing
of potential interventions. Therefore, the research question of interest was how the initial
level and the development of mothers’ posttraumatic stress symptoms (PTSS) over time
predict the child’s long-term health-related quality of life (HRQL).

In terms of statistical modelling, the research question required an LGM to model PTSS
development and a measurement model for the distal outcome, namely, the child’s HRQL.
The full hypothesized model and the main parameters of interest, i.e. the regression
coefficients of the predictors for the child’s HRQL, β0 for the intercept, β1 for HRQL
regressed on the latent intercept, β2 for HRQL regressed on the latent slope, β3 for HRQL
regressed on the covariate, percentage of Total Body Surface Area (TBSA) burned, and
the residual variance σ2

ε , are displayed in Figure 5.1.

Mothers reported on PTSS at four time points (up to 18 months) after the burn injury
by filling out the Impact of Event Scale (IES; Horowitz, Wilner, & Alvarez, 1979). The
total IES score from each of the four time points was used in the LGM. Eighteen months
postburn, mothers completed the Health Outcomes Burn Questionnaire (HOBQ; Kazis et
al., 2002), which consists of 10 subscales. Based on a confirmatory factor analysis, these
subscales were divided into three factors, i.e., Development, Behavior and Concern factors.
For illustrative reasons, we only focus on the Behavior factor in the current chapter which
was measured by just two manifest variables. TBSA was used to indicate burn severity;
this is the proportion of the body that is affected by second- or third-degree burns and it
was used as a covariate. For more detailed information about participant recruitment,
procedures, and measurements see (Bakker, van der Heijden, Van Son, & van Loey, 2013).

Data from only 107 families was available. Even though data were collected in multiple
burn centers across the Netherlands and Belgium over a prolonged period of time (namely
3 years), obtaining this sample size was already a challenge because of two main reasons.
Firstly, the incidence of pediatric burns is relatively low. Yearly, around 160 children



76 5. THE IMPORTANCE OF COLLABORATION

between the ages of 0 and 4 years old require hospitalization in a specialized Dutch burn
center (van Baar, Vloemans, Beerthuizen, Middelkoop, & Nederlandse Brandwonden
Registratie R3, 2015). Secondly, the acute hospitalization period in which families were
recruited to participate is extremely stressful. Participating in research in this demanding
and emotional phase may be perceived as an additional burden by parents.

Still, we aimed to answer a research question that required the complex statistical model
displayed in Figure 5.1. Therefore, we used Bayesian estimation with weakly informative
priors to overcome the issues of small sample size estimation with ML-estimation, for
which the model shown in Figure 5.1 resulted in negative variance estimates.

5.3.2 Specifying and understanding priors
The specification of the priors is one of the essential elements of Bayesian analysis,
especially when the sample size is small. Given the complexity of the LGM model relative
to the sample size, prior information was incorporated to facilitate the estimation of the
model (i.e., step 1 of the WAMBS-checklist). In addition to careful consideration of the
plausible parameter space, we used previous results to inform the priors in our current
model (Egberts, van de Schoot, Geenen, & van Loey, 2017).

The prior for the mean of the latent intercept (α1) could be regarded as informative with
respect to the location specification. The location parameter, or mean of the normally
distributed prior N(µ0, σ

2
0), was based on the results of a previous study (Egberts et

al., 2017, Table 1) and set at 26. If priors are based on information from previously
published studies, it is important to reflect on the exchangeability of the prior and current
study, see for instance Miočević, Levy, & Savord (2020). Exchangeability would indicate
that the samples are drawn from the same population and a higher prior certainty can
be used. To evaluate exchangeability, the characteristics of the sample and the data
collection procedure were evaluated. Both studies used identical questionnaires and
measurement intervals, and the data were collected in exactly the same burn centers. The
main difference between the samples was the age of the children (i.e., age range in the
current sample: 8 months-4 years; age range in the previous sample: 8-18 years), and
related to that, the age of the mothers also differed (i.e., mean age in the current sample:
32 years; mean age in the previous sample: 42 years). Although generally, child age has
not been associated with parents’ PTSS after medical trauma (e.g., Landolt, Vollrath,
Ribi, Gnehm, & Sennhauser, 2003), the two studies are not completely exchangeable as
a results of the age difference. Therefore, additional uncertainty about the value of the
parameter was specified by selecting a relatively high prior variance (see Table 5.1).

The priors for the regression coefficients are related to the expected scale of their associated
parameters. For β1 a N(0, 4) prior was specified, thereby allocating the most density mass
on the plausible parameter space. Therefore, given the scale of the instruments used, and
the parametrization of the factor score model, the latent factor scores can take on values
between zero and 100. A regression coefficient of -4 or 4 would be extremely implausible.
If our expected value of 26 is accurate for the intercept, this would change our predicted
factor score by -104 or 104, respectively. This would constitute a change larger than
the range of the construct. For β2 in contrast, a N(0, 2500) prior was specified because
small latent slope values, near the prior group mean of the latent slope of zero, should
be allowed to have large impacts on the latent factor scores. For instance, a slope value
of 0.1 could be associated with a drop of 50 in HRQL, resulting in a coefficient of -500.
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Figure 5.2 shows what would have happened to the prior predictive distributions for the
latent factor scores if a N(0,2500) prior was specified for β1 instead of the N(0, 4) prior,
keeping all other priors constant. The prior predictive densities for the factor scores in
panel B of Figure 5.2 place far too much support on parts of the parameter space that are
impossible. The factor scores can only take on values between zero and 100 in our model
specification. For more information on prior predictive distributions, see for instance van
de Schoot et al. (2020).

Figure 5.2: The effect of changing a single prior in the model specification on the prior
predictive distributions of the Latent Factor Scores. The prior for β1 is changed from
weakly informative (panel A; N(0, 4)) to uninformative (panel B; N(0, 2500)).
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Table 5.1: Priors and justification for all priors that are used in the analysis. N(., .)
is normal distribution with mean and variance N(µ0, σ

2
0), HN(µ0, σ

2
0) is half-normal

distribution encompassing only the positive part of the parameter space, U(., .) is uniform
distribution with a lower bound and an upper bound. In Stan code the normal distribution
is specified using a mean and standard deviation Nµ0, σ0), not a mean and variance
N(µ0, σ

2
0). This is what causes the differences between the code in the data archive and

this table.

Parameter Prior Justification

group mean of the latent
intercept (α1)

N(26, 400) Previous article on different cohort (Egberts et
al., 2017, Table 1)

group standard deviation of
the latent intercept (σInt)

HN(0, 400) Allows values to cover entire parameter space
for IES

group mean of the latent slope
(α2)

N(0, 4) Allows values to cover entire parameter space
for IES

group standard deviation of
the latent slope (σslope)

HN(0, 1) Allows values to cover entire parameter space
for IES

x1− x4 regressed on x5 (βies) N(0, 4) Allows values to cover entire parameter space
for IES

group mean relation IES 3
months (x2) regressed on

slope (µλ22)

N(3, 25) Centered at 3 which would be the constraint in
a linear LGM. Allowed to vary between
individuals to allow for between-person
differences in the way manifest variables

change from the first to the last measurement
group mean relation IES 12
months (x3) regressed on

slope (µλ23)

N(12, 25) Centered at 12 which would be the constraint
in a linear LGM. Allowed to vary between
individuals to allow for between-person
differences in the way manifest variables

change from the first to the last measurement.
group standard deviation
relation IES 3 months (x2)
regressed on slope (σλ22)

HN(0, 6.25) Allows for large and small between-person
differences in the way manifest variables

change from the first to the last measurement.
group standard deviation

relation IES 12 months (x3)
regressed on slope (σλ23)

HN(0, 6.25) Allows for large and small between-person
differences in the way manifest variables

change from the first to the last measurement.
All residual standard

deviations x1− x4 (σεies
)

HN(0, 100) Allows values to cover entire parameter space
for the observed variables

Intercepts factor regressions
(β0)

N(50, 2500) Covers full factor score parameter space
centered at middle

Factors regressed on Level
(β1)

N(0, 4) Allows values to cover entire parameter space
for the factor scores

Factors regressed on Shape
(β2)

N(0, 2500) Allows values to cover entire parameter space
for the factor scores

Factors regressed on TBSA
(β3)

N(0, 4) Allows values to cover entire parameter space
for the factor scores

Residual standard deviation
factors (σε)

HN(0, 100) Allows values to cover entire parameter space
for the residuals
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5.4 Empirical example: Conducting the analysis
Based on theoretical considerations, we specified the model as shown in Figure 5.1 using
the priors as specified in Table 5.1. We used Stan (Carpenter et al., 2017) via RStan
(Stan Development Team, 2018b) to estimate the model and we used the advanced version
of the Hamiltonian Monte Carlo (HMC) algorithm called the No-U-Turn sampler (NUTS;
Hoffman & Gelman, 2014). To run the model, we used the following code which by default
ran the model using four chains with 2000 MCMC iterations of which 1000 are warmup
samples:
fit_default <- sampling(model, data = list(X = X, I, K,

run_estimation = 1),
seed = 11, show_messages = TRUE)

For reproducibility purposes, the OSF webpage (https://osf.io/am7pr/) includes all
annotated Rstan code and the data.

Upon completion of the estimation, we received the following warnings from Rstan
indicating severe issues with the estimation procedure:

Warning messages:
1: There were 676 divergent transitions after warmup.
Increasing adapt_delta above 0.8 may help. See:
http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
2: There were 16 transitions after warmup that exceeded the
maximum treedepth. Increase max_treedepth above 10. See
http://mc-stan.org/misc/warnings.html#maximum-treedepth-exceeded
3: There were 4 chains where the estimated
Bayesian Fraction of Missing Information was low.
See http://mc-stan.org/misc/warnings.html#bfmi-low
4: Examine the pairs() plot to diagnose sampling problems

Fortunately, the warning messages also pointed to online resources with more detailed
information about the problems. In what follows, we describe two diagnostics to detect
issues in the estimation procedure: divergent transitions (this section) and the effective
sample size of the MCMC algorithm (next section).

The most important warning message is about divergent transitions (warning message 1).
The appearance of divergent transitions is a strong indicator that the posterior results
as shown in column 1 of Table 5.3 cannot be trusted (Stan Development Team, 2019,
Chapter 14). For detailed, highly technical information on this diagnostic, see Betancourt
(2016). Very loosely formulated, the occurrence of many divergent transitions indicates
that there is something going wrong in drawing MCMC samples from the posterior. When
the estimator moves from one iteration to the next, it does so using a particular step
size. The larger steps the estimator can take between iterations, the more effectively it
can explore the parameter space of the posterior distribution (compare Figure 5.3A with
5.3B). When a divergent transition occurs, the step size is too large to efficiently explore
part of the posterior distribution and the sampler runs into problems when transitioning
from one iteration to the next, (see Figure 5.3C). The Stan Development Team uses the
following analogy to provide some intuition for the problem:

https://osf.io/am7pr/
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“For some intuition, imagine walking down a steep mountain. If you take too
big of a step you will fall, but if you can take very tiny steps you might be
able to make your way down the mountain, albeit very slowly. Similarly, we
can tell Stan to take smaller steps around the posterior distribution, which (in
some but not all cases) can help avoid these divergences.”

Stan Development Team (2018a)

The posterior results for the parameters of interest (β0, β1, β2, β3, σε) are shown in Table
5.3, column 1. Note that these results cannot be trusted and should not be interpreted
because of the many divergent transitions. Divergent transitions can sometimes be resolved
by simply taking smaller steps (see next section), which increases computational time.

5.5 Debugging
The occurrence of divergent transitions can also be an indication of more serious issues
with the model or with a specific parameter. One of the ways to find out which parameter
might be problematic is to inspect how efficiently the sampler sampled from the posterior
of each parameter. The efficiency of the sampling process can be expressed as the Effective
Sample Size (ESS) for each parameter, where sample size does not refer to the data but
to the samples taken from the posterior. In the default setting we saved 1000 of these
samples per chain, so in total we obtained 4000 MCMC samples for each parameter.
However, these MCMC samples are related to each other, which can be expressed by the
degree of autocorrelation (point 5 on the WAMBS checklist in Chapter 3). ESS expresses
how many independent MCMC samples are equivalent to the autocorrelated MCMC
samples that were drawn. If a small ESS for a certain parameter is obtained, there is little
information available to construct the posterior distribution of that parameter. This will
also manifest itself in the form of autocorrelation and non-smooth histograms of posteriors.
For more details on ESS and how RStan calculates it, see the Stan Reference Manual
(Stan Development Team, 2019).

In Table 5.2 we provide the ESS for α1, β1, θ77 and the factor score of mother and child
pair no. 33 (denoted by fs33).fs33 was estimated efficiently and the ESS was 60% of the
number of MCMC samples, followed by α1 (14%) and β1 (11%). θ77, in contrast, had an
ESS of only 0.5% of the number of MCMC samples indicating an equivalence of only 20
MCMC samples had been used to construct the posterior distribution. There is no clear
cut-off value for the ESS, although it is obvious that higher values are better and that 20
is very low. The default diagnostic threshold used in the R package shinystan (Gabry,
2018), used for interactive visual and numerical diagnostics, is set to 10%.

The effects of ESS on the histograms of these four parameters can be seen in Figure 5.4
which shows a smooth distribution for fs33 but not for θ77. Based on the ESS and the
inspection of Figure 5.4, the residual variance parameter θ77 was estimated with the lowest
efficiency and probably exhibited the most issues in model estimation.
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Figure 5.3: Effect of decreasing the step size of the HMC on the efficiency of the exploration
of the posterior distribution (Panel A and B). The green arrow shows the step between
two consecutive iterations. Panel A uses a large step size and swiftly samples from both
posterior distributions, one of which is a normal distribution and one of which a common
distributional form for variance parameters. Panel B, in contrast, needs more time to
sample from both distributions and describe them accurately because the steps are a lot
smaller in between iterations. Panel C shows an example of a divergent transition, which
is indicative of problems with the sampling algorithm. These screenshots come from an
application developed by Feng (2016) that provides insight into different Bayesian sampling
algorithms and their behavior for different shapes of posterior distributions.
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Table 5.2: Examples of Effective Sample Size (ESS) per parameter for the different model
and estimation settings we used. Each column represents a different model, and each row
represents a different variable. We report ESS with the corresponding percentage of the
total number of iterations that was used to estimate that particular model in brackets. Note
that with the highly efficient NUTS sampling algorithm a higher efficiency can be obtained
compared to independent MC samples (Stan Development Team, 2019, Chapter 15).

Parameter

Model with
default estimation

settings

Model with small
step size in

estimation setting

Alternative I:
Remove
perfect

HRQL scores

Alternative II:
IG(0.5, 0.5)
prior for θ77

Alternative III:
Replace factor
score with x7

Alternative IV:
Possible increase
of variance in
latent factor

fs33 2390 (60%) 9843 (123%) 2219 (55%) 1307 (33%) - 2485 (62%)
α1 575 (14%) 1000 (13%) 655 (16%) 145 (4%) 227 (6%) 611 (15%)
β1 424 (11%) 1966 (25%) 487 (12%) 647 (16%) 58 (1%) 1004 (25%)
θ77 20 (0.5%) 12 (0.2%) 9 (0.2%) 33 (0.8%) - 46 (1.2%)
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To investigate if there were systematic patterns in the divergences, we plotted the samples
of the parameters fs33 and θ77 against the log posterior (denoted by lp) (see Figure 5.5).
lp is, very loosely formulated, an indication of the likelihood of the data given all posterior
parameters. lp is sampled for each MCMC iteration as just another parameter. Note
that, in contrast to log-likelihoods, lp cannot be used for model comparison. Plots such as
those in Figure 5.5 can point us to systematic patterns for the divergent transitions, which
would indicate that a particular part of the parameter space is hard to explore. In Figure
5.5A it can be seen that for fs33, which did not exhibit problems in terms of ESS, the
divergent transitions are more or less randomly distributed across the posterior parameter
space. Also, the traceplot and histogram for fs33 would pass the WAMBS-checklist on
initial inspection. There is one hotspot around the value of -1700 for the lp where a cluster
of divergent transitions occurs. This is also visible in the traceplot, where it can be seen
that one of the chains is stuck and fails to efficiently explore the parameter space shown
as an almost horizontal line for many iterations. On closer inspection, a similar behavior
in one of the chains could be seen for fs33 as well.

In Figure 5.5B it can be seen that for θ77, which exhibited problems in terms of ESS, the
divergent transitions occur mainly in a very specific part of the posterior parameter space,
i.e., many divergent transitions occur close to zero. This also shows up in the traceplot,
where for several iterations the sampler could not move away from zero. This indicates
that our sampling algorithm ran into problems when exploring the possibility that θ77
might be near zero. Note that a similar issue arises in one chain around the value of 2.5
for many iterations, resulting in a hot spot which corresponds to the deviant chain for lp.
Perhaps an additional parameter could be found which explains the issues concerning this
systematic pattern of divergent transitions. For now, we continued with a focus on θ77.

The first solution, also offered in the warning message provided by Stan, was to force Stan
to use a smaller step size by increasing the adapt_delta setting of the estimator. We also
deal with the second warning by increasing max_treedepth, although this is related to
efficiency and not an indication of model error and validity issues. To make sure we could
still explore the entire posterior parameter space, we extended the number of iterations
post warmup to 2000 for each chain (iter – warmup in the code below). We used the
following R code:
fit_small_step <- sampling(model,

data=list(X = X, I, K, run_estimation = 1),
control=list(adapt_delta = .995,

max_treedepth = 16),
warmup = 3000, iter = 5000, seed = 11235813)

We inspected the ESS for the same parameters again, which can be seen in Table 5.2. The
problems seem to occur for the θ77 parameter again, and it has even decreased in efficiency.
We compared the posterior for θ77 and lp between the default estimation settings and the
estimation settings forcing a smaller step size in Figure 5.6. The smaller step sizes have
decreased the number of divergent transitions to almost zero. Also, they enabled more
exploration of posterior parameter values near zero. However, the posterior distribution
still showed signs of problematic exploration given the strange pattern of MCMC samples
close to 0.5 (see step 6 of the WAMBS checklist; do posterior estimates make substantive
sense?). Apparently, the solution offered by the Rstan warning message to decrease the
step size, which often solves the issue of obtaining divergent transitions, failed to provide
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Figure 5.4: Histograms of MCMC samples for α1, β1, θ77 and fs33. θ77 has a non-smooth
histogram, which indicates low ESS while the smooth histogram for fs33 is indicative of
higher ESS.

an efficient result in this case. Thus the posterior estimates in Table 5.3, column 2 still
cannot be trusted. In the next section, we briefly explore different solutions that might
help us to obtain trustworthy results.
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Figure 5.5: Plot of the posterior samples of lp (y-axis) against fs33 (x-axis, panel A)
and θ77 (x-axis, panel B) with divergent transitions marked by red dots. Additionally,
the histograms and trace plots of the corresponding parameters have been placed on the
margins.
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Figure 5.6: Plots of the posterior samples of lp against θ77 for the default estimation
settings (panel A) and the estimation settings that have been forced to take smaller step
sizes (panel B). Divergent transitions are indicated by red dots.

5.6 Moving forward: Alternative Models

At this stage in the analysis process we continue to face difficulties with obtaining
trustworthy posterior estimates due to divergent transitions. After exploring a smaller
step size in the previous section, there are multiple options that can be considered and
these can be based on statistical arguments, substantive theoretical arguments or, ideally,
on both. Some statistical options can be sought in terms of the reparameterization of the
model (Gelman, 2004), that is, the reformulation of the same model in an alternative form,
for instance by using non-centered parametrizations in hierarchical models (Betancourt &
Girolami, 2015). This needs to be done carefully and with consideration of the effects
on prior implications and posterior estimates. The optimal course of action will differ
from one situation to another, and we show five arbitrary ways of moving forward, but all
require adjustments to the original analysis plan. We considered the following options:
1. Subgroup removal: We removed 32 cases that scored perfectly, i.e. a score of 100, on
the manifest variable x7. This would potentially solve issues with the residual variance
of x7 (θ77). 2. Changing one of the priors: We specified a different prior on θ77, namely,
an Inverse Gamma (IG(0.5, 0.5)) instead of a Half-Normal (HN(0, 100)) (see: van de
Schoot et al., 2015). The IG prior forced the posterior distribution away from zero. If
θ77 was zero, this implies that x7 is a perfect indicator of the latent variable. Since a
perfect indicator is unlikely, we specified a prior that excludes this possibility. 3. Changing
the distal outcome: We replaced the latent distal outcome with the manifest variable
x7. θ77 estimates contained values of zero, which would indicate that x7 is a good or
perfect indicator and could serve as a proxy for the latent variable. Replacing the latent
factor with a single manifest indicator reduces the complexity of the model. 4. A possible
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increase of variance in the distal latent factor score: we removed cases that exhibited little
variation between the scores on x6 and x7.

We ran the model using these four adjustments (see the OSF webpage for details). Table
5.3 presents the posterior results of these additional analyses and an assessment of the
extent to which the alternatives required adjustments to the original research question.
The first three alternative solutions still contained divergent transitions and consequently
the results could not be trusted. The fourth alternative solution did not result in divergent
transitions. The ESS of the fourth alternative solution was still low, both in terms of the
percentage of iterations and in absolute value (see Table 5.2). Although the low ESS in
terms of percentage may not be resolved, the absolute ESS can be raised by increasing
the total number of iterations. Even though we could draw conclusions using results
from the fourth alternative solution, the rather arbitrary removal of cases changed the
original research question. We investigated, and thus generalized to, a different population
compared to the original analysis plan. Using an alternative model or a subset of the data
could provide a solution to estimation issues. However, this could impact our substantive
conclusions, e.g., see β1 in Table 5.3, for which the 95% credibility interval in the fourth
alternative contained zero, in contrast to credibility intervals for this parameter obtained
using other alternative solutions. As substantive conclusions can be impacted by the
choices we make, the transparency of the research process is crucial.
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Table 5.3: Results for the parameters of interest in the different models that we estimated.
The mean parameter values are reported with the 95% credibility intervals in brackets.
The extent to which we need to adjust analytic strategy is assessed by the authors, DV for
statistical input, and ME as the content specialist on this research area. Note that alterna-
tive III changes the actual model such that Figure 5.1 is not an accurate representation
anymore.

Parameter
Model with default
estimation settings

Model with small
step size in

estimation setting

Alternative I:
Remove perfect
HRQL scores

Alternative II:
IG(0.5, 0.5) prior

for θ77

Alternative III:
Replace factor
score with x7

Alternative IV:
Possible increase of
variance in latent

factor

β0 66.28 [39.58, 83.68] 66.83 [38.89, 84.12] 65.56 [48,78,
75.83]

62.10 [30.95,
83.52]

69.76 [39.04,
93.51]

64.46 [47.21, 78.71]

β1 -0.32 [-0.55, -0.10] -0.31 [-0.53, -0.09] -0.23 [-0.44, -0.01] -0.32 [-0.53, -0.10] -0.40 [-0.67, -0.11] -0.22 [-0.51, 0.10]
β2 -31.87 [-74.80,

-7.63]
-31.46 [-76.41, -7.42] -19.39 [-44.93,

-7.47]
-39.16

[-92,18,-7.81
-47.06 ] [-96.94,

-12
-35.66 .19] [-64.16,

-15.30]
β3 -0.61 [-0.92, -0.31] -0.62 [-0.93, -0.31] -0.40 [-0.67, -0.14] -0,61 [-0,93, -0,30] -0.78 [-1.16, -0.41] -0.53 [-1.02, -0.06]
σε 8.36 [3.77, 10.88] 7.93 [2.92, 10.77] 4.76 [0.54, 8.29] 7.40 [1.98, 10.87] 10.06 [3.73, 13.74] 6.63 [2.07, 10.63]

Divergent
transitions
present

YES YES YES YES YES NO

To what extent
do we need to
adjust analytic

strategy?

Not at all Not at all Substantially; we
generalize to a

different (known)
population.

Negligible; theory
behind research
question remains

the same.

Substantially;
data-driven

change of model
(replacing

measurement
model with a
single manifest

variable).

Substantially; we
generalize to a

different (unknown)
population.
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5.7 Conclusion
Bayesian estimation with (weakly) informative priors is suggested as a solution to deal
with small sample size issues. The current chapter illustrated the process of conducting
Bayesian estimation with (weakly) informative priors along with the potential problems
that can arise. The WAMBS-checklist was a helpful tool in this process, and we propose
supplementing the checklist steps with an inspection of the effective number of samples
taken using MCMC. As we have shown, a low ESS can point toward specific parameters
to investigate, which is especially useful for complex models with many parameters, as
investigating each parameter individually would be time-consuming. We recommend using
advanced statistical software (such as stan) because the implemented algorithms (e.g.,
HMC or NUTS) can have a positive impact on the ESS, and estimates of ESS are readily
available. Moreover, the use of advanced algorithms such as HMC or NUTS provides
additional diagnostic information about the estimation in the form of divergent transitions,
which can be used in addition to the WAMBS-checklist.

The empirical example showed that even Bayesian estimation with informative priors
has limits in terms of its performance for complex models with small sample sizes. Thus,
using a Bayesian analysis should not be considered a ‘quick fix’. Careful consideration
of the analysis steps and the intermediate results is imperative. Different solutions
can differentially impact the posterior parameter estimates and thereby the substantive
conclusions, and there is a need for constant interaction and collaboration between applied
researchers, who formulate the research questions, and the statisticians, who possess the
statistical and methodological knowledge.
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Expert Elicitation in the Social
Sciences: The case of Posttraumatic
Stress Symptoms Development in
Children with Burn Injuries

Abstract
Experts provide an alternative source of information to classical data collection methods such
as surveys. They can provide additional insight into problems, supplement existing data or
provide insights when classical data collection is troublesome. In this paper we explore the
(dis)similarities between expert judgements and data collected by traditional data collection
methods regarding the development of Posttraumatic Stress Symptoms (PTSS) in children
with burn injuries. By means of an elicitation procedure the experts’ domain expertise are
formalized and represented in the form of probability distributions. The method is used to obtain
beliefs from 14 experts, including nurses and psychologists, and those beliefs are contrasted with
questionnaire data collected by Egberts, van de Schoot, Geenen, & van Loey (2018) on the same
issue. The individual and aggregated expert judgements are contrasted with the questionnaire
data by means of Kullback-Leibler divergences. The aggregated judgements of the group that
mainly includes psychologists resembles the questionnaire data more than almost all individual
experts.

This chapter is submitted for publication as Veen, D., Egberts, M. R., van Loey, N. E. E. & van
de Schoot, R. Expert Elicitation in the Social Sciences: The case of Posttraumatic Stress Symptoms
Development in Children with Burn Injuries

All authors have been involved in the design of the study and the elicitation procedure. DV programmed
the elicitation software. ME arranged the elicitation meetings with the experts. DV and ME conducted
all elicitation procedures together. DV wrote and revised the paper with contributions and feedback
provided by ME, NvL and RvdS.
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6.1 Introduction
Expert elicitation entails the extraction of information from experts and the translation
of this information into a probabilistic representation and there are many reasons to elicit
expert knowledge. For instance to supplement existing data using priors that are informed
by expert knowledge (van de Schoot, Sijbrandij, et al., 2018). Alternatively, some data
have information gaps that can be filled by means of expert judgements (Dodd, Yuen,
Sismanidis, Seddon, & Jenkins, 2017; Fischer et al., 2013) or when data are present expert
judgements can serve as a quality control for the data (Veen, Stoel, Schalken, Mulder,
& van de Schoot, 2018). Elicitation can also be used for forecasting purposes (Murphy
& Winkler, 1974, 1984) or when there is no data available at all (Hald et al., 2016; Ho
& Smith, 1997). The use of expert knowledge is widespread across many disciplines. To
give some examples, Dodd et al. (2017) elicited expert based estimates for case-fatality
ratios in HIV-positive children with tuberculosis who did not receive treatment. Barons et
al. (2018) describe the use of expert judgements to create decision support systems with
an example in food security and Dewispelare, Herren, & Clemen (1995) describe expert
elicitation in relation to the long-term behavior of high-level nuclear waste repositories. For
numerous other examples on elicitation practices see for instance Chapter 10 of O’Hagan
et al. (2006) listing applications in sales, medicine, nuclear industry, veterinary science
and many more. Alternatively, examples using a specific elicitation tool are given in
Gosling (2018), or see Cooke & Goossens (2008) who describe a data base of over 67,000
elicited judgements.

Recently, there is a growing interest in the use of expert elicitation in the social sciences.
Where van de Schoot et al. (2017) only found two cases that reported the use of expert
opinions to inform priors in 25 years of Bayesian statistics in psychology, this trend might
slowly be changing. Gronau, Ly, & Wagenmakers (2019) elicited expert judgements on
effects sizes such that these could be used in informed Bayesian t-tests, in their example
related to a replication study in the field of psychology. Lek & van de Schoot (2018)
elicited prior distribution from teachers concerning the math abilities of their students.
Zondervan-Zwijnenburg et al. (2017b) elicited expert judgements on the correlation
between cognitive potential and academic performance. Moreover, methods are being
developed to facilitate expert elicitation in a flexible manner such that experts are guided
in the elicitation process (Veen et al., 2017).

Whatever the reasons of the elicitation, the goal is to get an accurate representation of the
experts’ beliefs and associated (un)certainty and enable the representation of the experts’
domain knowledge in terms of a probability distribution. Overconfidence of experts is
one of the crucial issues in expert elicitation (O’Hagan et al., 2006), resulting in elicited
probability distributions with little uncertainty. In the seminal work of O’Hagan et al.
(2006) feedback is named as the most natural way to improve the accuracy of elicited
beliefs and interactive software as almost essential for the effective use of feedback. This
is corroborated by Goldstein & Rothschild (2014) who found that visual feedback can
increase even laypeople’s intuitions about probability distributions. Over a decade has
passed since the advice by O’Hagan et al. (2006) and many have followed the advice.
Elicitation software can be split into more general and more custom variations. Some
more general frameworks are, for instance, ElicitN which was developed by Fisher et al.
(2012) for the elicitation of count data. Truong, Heuvelink, & Gosling (2013) made a
web-based tool for the elicitation of variogram estimates which describe a degree of spacial
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dependence. The elicitator was developed for indirect elicitation, creating a scenario based
elicitation (James, Choy, & Mengersen, 2010; Low-Choy, James, Murray, & Mengersen,
2012). Morris et al. (2014) developed MATCH which is based on the R package SHELF
(Oakley, 2019) and which is a very general elicitation tool that allows multiple elicitation
methods to be used interactively to elicit single parameters. Garthwaite, Al-Awadhi,
Elfadaly, & Jenkinson (2013) developed an elicitation procedure for generalized linear and
piecewise-linear models, Runge, Scherbaum, Curtis, & Riggelsen (2013) for seismic-hazard
analysis and Elfadaly & Garthwaite (2017) for eliciting Dirichlet and Gaussian copula prior
distributions. Sometimes more customized software is developed for specific elicitation
settings (e.g. Bojke et al., 2010; Haakma, Steuten, Bojke, & IJzerman, 2014; Hampson,
Whitehead, Eleftheriou, & Brogan, 2014; Hampson et al., 2015). The use of software,
customized or not, to increase the accuracy of the elicited beliefs is now common practice.

In this paper we present an elicitation methodology especially designed for eliciting
parameters of a Latent Growth Curve Model (LGM) regarding the development of
Posttraumatic Stress Symptoms (PTSS) in children with burn injuries. LGMs are
commonly used to analyze longitudinal data, especially in the social sciences (e.g. Buist,
Dekovic, Meeus, & van Aken, 2002; Catts, Bridges, Little, & Tomblin, 2008; Orth, Robins,
& Widaman, 2012). These models include repeated measurements of observed variables,
and allow researchers to examine change or development over time in the construct of
interest. For extensive explanations of LGMs see Duncan & Duncan (2004), Little (2013),
and Little, Bovaird, & Slegers (2006). Because the incidence of severe burn injuries in
school-aged children and adolescents is relatively low, obtaining a sufficient sample to
estimate LGMs is challenging. Nevertheless, to gain knowledge on the development of
posttraumatic stress symptoms in this group of children, these types of models are favored
over simpler models. Expert elicitation might provide and alternative, or supplement, to
data collection for cases like our motivating example where traditional data is sparse.

The main aim of this paper is to compare domain expertise, expressed by experts in
an elicitation setting, to data on the same topic collected by means of traditional data
collection methods. Comparing experts’ domain knowledge to traditional data collection
methods can provide unique insights into the topic of interest and the perception thereof.
In the remainder of this paper we first describe the methodology that is used to elicit the
expert judgements. The methodology is an extension of the Five-Step Method (Veen et
al., 2017), adapted to elicited multiple parameters. We elicit expert judgements from 14
experts, including nurses and psychologists. Thereafter, we compare individual expert
judgements, aggregated group level expert judgements, and data collected by mean of
traditional methods with one another and reflect on the elicitation procedure. Finally,
we conclude the paper with a discussion section including recommendations for future
research. All related materials for this study, including code and data, can be found on
the Open Science Framework (OSF) webpage for this project at https://osf.io/y5evf/.

6.2 Methods
In the first section we describe the motivating example for this study. In the next section
we elaborate on the elicitation procedure and software that has been developed. Finally,
we describe the sample of experts (N = 14) participating in the elicitation study. The
study receive ethical approval from our internal Ethics Committee of the Faculty of Social

https://osf.io/y5evf/
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and Behavioural Sciences of Utrecht University. The letter of approval can be found in
the data archive on the OSF website for this project.

6.2.1 Motivating Example
The motivating example for this paper is the development of Posttraumatic Stress Symp-
toms (PTSS) in children after a burn event. In a prospective study on child and parent
adjustment after pediatric burns, data on these symptoms were collected in three Dutch
and four Belgian burn centers. Children aged 8-18 years old were eligible to participate
in the study if they had been hospitalized for more than 24 hours and if the percentage
total body surface area (TBSA) burned was at least 1%. In Egberts et al. (2018), a
more detailed description of the overall study and sample can be found here. This sample
consists of 100 children that reported on their symptoms of traumatic stress within the
first month after the burn event (T1), and subsequently at 3 (T2) months post-burn.
For the purpose of the current study, we also included the measures obtained 12 months
(T3) post-burn. Children filled out the Children’s Responses to Trauma Inventory (CRTI,
revised version; Alisic, Eland, & Kleber (2006)). This measure assesses four symptom
clusters of posttraumatic stress, including intrusion (e.g., repetitive, intrusive recollections
of the trauma), avoidance (e.g., avoiding conversations of the event), arousal (e.g., difficulty
concentrating), and other child-specific responses (e.g., feelings of guilt). Further details
on this measure can be found in Alisic, Eland, Huijbregts, & Kleber (2011).

As the current study includes three measurements of PTSS at different time points a
straightforward model to analyse the development of PTSS symptoms is an LGM. Figure
6.1 provides a visual representation of an LGM for this motivating example. The model is
parameterized such that the latent intercept provides an estimate for PTSS in the first
month after the burn event. The latent slope describes the change in PTSS one year
post-burn. Parameterizing the slope by year instead of per month is done to ease the
reasoning in the elicitation procedure. Furthermore, the scale of the PTSS scores has
been standardized for the data of the prospective study and for the elicitation study. The
scores can fall between 0-100. A zero score means that none of the symptoms of any of
the clusters of posttraumatic stress are present. A score of 100 means that all symptoms
from all clusters are present to their maximum extent. A standardized cut-off value of 42
was used to indicate clinical relevance of symptoms and corresponds to the cut-off value
provided in the CRTI manual.

6.2.2 Expert Elicitation
To optimally prepare the experts within the limited time that was allocated for each
elicitation a short introduction was presented by the researchers conducting the elicitation
(DV & ME), hereafter named the facilitators. The facilitators presented the experts
with a brief overview of what expert elicitation is, what it can be used for and how to
interpret the probability distributions that are used to represent their beliefs. Thereafter,
to familiarize the experts with the elicitation procedure itself, an example elicitation for
an unrelated topic was presented to the experts using the same elicitation tool. After
the example elicitation the facilitators introduced the specifics related to the motivating
example and the actual elicitation. The population, measurement scale, CRTI with the
relevant symptom clusturs, and research question were introduced and experts were invited
to ask questions to clarify any part of the procedure. Once the experts stated that they

https://osf.io/y5evf/
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Figure 6.1: Visual representation of a Latent Growth Curve Model with three observed
time points for PTSS.

were ready to continue with the elicitation they were requested to sign the informed
consent letter, which they received prior to the elicitation. If they agreed, they also agreed
to the recording of the elicitation procedure. The experts were requested to reason aloud
during the elicitation. The recordings were transcribed to provide additional insights in
the elicitation procedure and possible differences between experts. The experts carried
out the elicitation procedure using the software that is described next.

The software and procedure in this study was based on the Five-Step Method, developed
by Veen et al. (2017), with a slight adaptation to elicit multiple parameters instead of a
single parameter. The Five-Step Method decomposes the elicitation process in multiple
smaller steps, providing visual feedback at each stage of the elicitation procedure. By
decomposing the elicitation task and providing visual feedback the procedures aims to
reduce bias, for instance from overconfidence. The software has been developed in the
form of a shiny web application (Chang et al., 2019). Using shiny to develop elicitation
tools is not uncommon, see for instance Hampson et al. (2014), Hampson et al. (2015)
and the original Five-Step Method by Veen et al. (2017). In what follows we describe the
Five-Step Method as implemented for this specific study, note that steps 3 and 4 were
repeated for each parameter.

Step 1. Ten individual PTSS trajectories were elicited for an LGM. These individual
trajectories should be representative for the population. From these individual trajectories
we could deduce information on the point estimates for the average intercept and average
slope parameters. This first step is called indirect elicitation because no statement is
required directly concerning the parameters of interest. Figure 6.2 provides a visual
representation of step one.

Step 2. Feedback was provided on the average trajectory that was based upon the
ten individual trajectories that the expert provided. The expert could accept this as
the average trajectory, and thereby accept point estimate for the average intercept and
slope, or the expert could adjust their input in step one. Figure 6.3 provides a visual
representation of step two.

Step 3. The experts provided a reasonable lowerbound and upperbound for the point
estimates of the group mean intercept and the group mean slope that were obtained using
steps one and two. The lowerbound and upperbound were used to determine the scale
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and shape of the probability distribution that was used to represent the experts’ beliefs.
This is called direct elicitation because the experts provided information directly related
to the parameters of interest.

Step 4. Feedback was provided on the probability distribution that was used to represent
the experts’ beliefs. Figure 6.4 provides a visual representation of steps 3 and 4 with
respect to the average intercept, top panel, and the average slope, bottom panel. Both
single parameter feedback was provided, in the form of a probability distribution, as well
as the effect on the implied average trajectory. The experts could accept the representation
of their beliefs or adjust their input in step three.

Step 5. The experts were shown a summary page on the elicitation, see Figure 6.5. If
the experts accepted the representation of their beliefs the probability distributions were
now ready to be saved and used in the analyses.

6.2.3 Sample of Experts
Fourteen experts participated in the elicitation study. Experts from all three Dutch
burn centers were included. These experts had different professions, including (child)
psychologists, pediatric nurses, specialized nurses for burn injuries, and nurses with an
additional masters degree (MSc). During the process of obtaining this degree, these nurses
worked together closely with psychologist and observed their work. Because reporting
the individual expert professions would remove almost all anonymity, we ensured that no
elicited probability distributions can be associated with individual experts and therefore
categorized the experts into two groups. The first group consisted of experts who have
obtained an MSc degree (N = 7) and the second group consisted of experts who have
not (N = 7). As the former group mostly consisted of psychologists or experts who
have undergone at least some education in psychology we shall refer to this group as the
psychologists. The later group consisted mostly of nurses with a variety of additional
specializations and we shall refer to this group as the nurses. The groups we elicited
judgements from are considered large enough for elicitation studies. Cooke & Goossens
(1999) recommend to use the largest possible number of experts, but at least four. We
were able to include seven experts in both groups of experts.
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Figure 6.2: Step one of the elicitation procedure. Trajectories of PTSS development
were elicited for 10 individuals that are representatitve for the population. From these
trajectories point estiamtes for the average intercept and the average slope were obtained.

Figure 6.3: Step two in the elicitation procedure, providing visual feedback on the extracted
average trajectory based upon the experts’ provided individual trajectories.
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Figure 6.4: Steps three and four of elicitation procedure for the average intercept, top panel,
and the average slope, bottom panel. The input that was required for step three was provided
in the fields on the top left of the tab in the elicitation software. The single parameter
feedback was provided on the bottom left of the tab, displaying the fitted distribution with
respect to that parameter. The effect on the implied average trajectory was displayed on
the right hand side of the tab. The average trajectory that was accepted in step two is
diplayed and a gray band has been added around this average trajectory that represents
the 95% Credibility Interval (CI) for the average trajectory. In the top panel only the
uncerainty with respect to the intercept was added to the average trajectory, in the bottom
panel the uncertainty with respect to both the interecept and the slope was added.
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Figure 6.5: Summary page of the elicitation procedure. The top left plot within the page
displayed all individual trajectories that the expert specified. The top right plot displayed the
average trajectory that was obtained based on those individual trajectories. The bottom left
plot displayed the average trajectory with uncertainty (95% CI) concerning the intercept
value taken into account. The bottom right plot displayed the average trajectory with
uncertainty (95% CI) concerning both the intercept value and the slope value taken into
account.

6.3 Results
This section first covers a descriptive part on the expert judgements. We report the
priors that the experts provided, the mixture priors that can be made from these expert
judgements on an aggregated and group distinct level. Thereafter we report prior-data
(dis)agreement measures for all individual expert judgements and the mixture distributions.
These prior-data (dis)agreements are based upon the data that was collected in the
prospective study by Egberts et al. (2018). Finally, we report notable results from
the audio recordings. Note that the quantitative results, analyses and an overview of
individual expert judgements can be found via the OSF webpage for this project at
https://osf.io/y5evf/. The transcripts of the audio recordings include many identifying
characteristics with respect to both the experts and patients they described during the
elicitation and to preserve privacy these are not available. This is in accordance with the
ethical approval agreement.

6.3.1 Individual and Group Expert Judgements
All 14 expert judgement had been elicited allowing them to specify a skewed normal
distribution parameterized according to Burkner (2019). In Figure 6.6 all the elicited
individual expert distributions can be found as well as the mixture distributions1 for all

1Note that the mixtures are based on normal approximations of the elicited skewed normal distributions
due to computational instability of the mixture distributions when skewed normal expert priors where
used.

https://osf.io/y5evf/
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experts, the psychologists group and the nurses group regarding both the mean intercept
and the mean slope of PTSS development. From Figure 6.6 it can be seen that the experts
judgements differed quite substantially. Especially concerning the development of PTSS
as expressed by the slope parameter we can see that actually expert disagreed on the
direction of the effect and with a lot of confidence. When we look at the groups of experts
an interesting pattern emerges. If we combine the expert judgements of the psychologists
and the nurses into their respective groups the nurses turn out to have a substantially
different view from the psychologists. Not only did the nurses’ judgements express a
higher initial amount of PTSS to be present in the population on average, their combined
view also expressed that these initial PTSS scores are quite likely to increase on average
over time. The psychologists in contrast assigned almost no probability to an increase in
the average PTSS score over the time period of a year, see Figure 6.7 for a closer look.

6.3.2 Prior-Data (dis)Agreement
To assess the (dis)agreement of experts’ judgements with the data from the prospective
study by Egberts et al. (2018) we used Kullback-Leibler (KL) divergences (Kullback &
Leibler, 1951) between the posterior distribution that is based upon the data and an
uninformative benchmark prior and the individual and aggregated expert judgements.
Using information theoretical distance measures to asses prior-data (dis)agreement in this
manner has previously been discussed by for instance Bousquet (2008), Lek & van de
Schoot (2019), and Veen et al. (2018). KL-divergences provide us with an indication of
how much information is lost is we approximate distribution π1 by another distribution
π2. A higher divergence indicates a higher loss of information. In this case π1 will be the
posterior distribution based upon the data and an uninformative benchmark prior, to
which we refer as the reference posterior. We approximate the reference posterior with
the elicited prior distributions and report the loss of information. For an overview of the
priors that are used to compute the reference posterior see Figure 6.8 and in Figure 6.9
the reference posteriors for the group mean latent intercept and slope are visualized.

In addition to comparing the expert priors to the benchmark posterior we added two
other comparisons to create a frame of reference. Two benchmark situations are added
and their loss of information is calculated. In the situation of benchmark 1 we would
take some information regarding the measurement instrument into account. The scale of
the measurement instrument was standardized such that values are between 0 and 100,
therefore a U(0, 100) prior on the group mean intercept would cover all possible parameter
values. With the parameterization such that the final time measurement implies a change
of one times the individuals latent slope parameter, taking the standardized scale into
account a U(−100, 100) prior on the latent slope covers all possible parameter values
and declares them equally possible. For benchmark 2 we take an extremely conservative
approach and take two N(0, 108) priors on the latent group mean intercept and slope.

The KL-divergences are reported in 6.1 and are the numerical representation of the loss
of information that occurs by approximating the reference posteriors distributions from
Figure 6.9 by the distributions that can be seen in Figure 6.7 for the experts priors. It
seems that there are quite some experts that are in disagreement with the collected data
from Egberts et al. (2018). There are some individuals, notably experts 9 and 13, that
provide a very similar view to the collected data, whilst some experts provide a similar
view with respect to one of the two parameters, e.g. experts 3 and 6. It is notable that
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the group of psychologists in particular and the group of experts as a whole show less
loss of information with respect than the data than most experts on both parameters.
Finally, what is noteworthy is that benchmark 1, which has no preference for any part of
the parameter space covered by the measurement instrument, resembles the data more
than most experts and more than the nurses as a group.

6.3.3 Audio Recordings
The following observations were noteworthy in the transcripts of the audio recordings.
All psychologists referred back to the concept of PTSS specifically during the elicitation
procedure. In the group of nurses we found a lot of mentioning of stress, but only two
nurses actually referred back to PTSS specifically. Three psychologists reflected on the
linearity assumption of the model and noted that non-linear trajectories often occur. Five
of the nurses expressed sentiments that the more severe cases came to mind more easily
and therefore might be over represented in their beliefs. Only one psychologists expressed
a similar statement. Thee experts, one psychologist and two nurses, actively reflected on
the visual feedback and adjusted their input in the elicitation tool based on this. One
experts, a nurse, stated that although they were sure about the direction of the trajectory
they felt unsure about the associated numerical representation. Finally, one expert, a
nurse, repeatedly mentioned that they found the task hard to do.

Figure 6.6: Elicited prior distributions from all experts and the associated mixture priors
for all experts, the psychologists group and the nurses group regarding both the mean
intercept and the mean slope of PTSS development.
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Figure 6.7: Elicited prior distributions from all experts and the associated mixture priors
for all experts, the psychologists group and the nurses group regarding the mean slope
of PTSS development. There was a notable difference in expert judgements between the
psychologists and the nurses groups.

Figure 6.8: Visual representation of the prior distributions that are used to obtain the
reference posterior. The prior distributions are α1 ∼ N(0, 108), α2 ∼ N(0, 108), ψ11 ∼
half − t(3, 0, 196), ψ22 ∼ half − t(3, 0, 196), ψ21 ∼ U(−1, 1), and θ ∼ half − t(3, 0, 196).
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Table 6.1: Kullback-Leibler divergences for all individual and mixture priors to the reference
posterior.

Intercept Slope
Benchmark 1 3.04 3.56
Benchmark 2 8.56 8.39
Nurses 8.19 5.88
Psychologists 1.99 2.18
All 2.72 2.63
Expert 1 42.87 59.18
Expert 2 45.16 25.87
Expert 3 6.71 1.23
Expert 4 72.86 55.38
Expert 5 5.66 98.32
Expert 6 2.10 22.17
Expert 7 79.20 59.61
Expert 8 46.97 4.37
Expert 9 2.48 1.28
Expert 10 43.74 67.55
Expert 11 12.78 64.56
Expert 12 99.94 4.88
Expert 13 0.35 3.62
Expert 14 75.00 74.11

Figure 6.9: Visual representation of the reference posterior distributions for the group mean
of latent intercept and slope with the group expert priors for the parameters. The reference
posteriors are approximately distributed α1 ∼ N(22.7, 1.3), and α2 ∼ N(−14.6, 1.9).
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6.4 Discussion
We were able to elicit expert judgements with respect to the development of PTSS in
young burn victims from 14 experts and contrasted this with data collected in a traditional
way by means of a questionnaire. This study demonstrated differences in views between
experts. On an individual basis the experts were particularly in disagreement with regards
to the change of PTSS one year post-burn. Many experts do not overlap with each other in
their beliefs when we look at the elicited probability distributions for the slope parameter.
The expert judgements not only differed from one individual to the next, but it may be
that there is a relationship between the experts’ role in the post-burn treatment process
and their view on the childrens’ development of PTSS. The two groups of experts notably
differed in the aggregated elicited judgements. Moreover, the aggregated judgements of
the psychologists seemed to align with the data collected by Egberts et al. (2018) whilst
the nurses judgements seemed to differ.

With respect to the differences between the two groups of experts the most remarkable
difference was found with respect to the slope parameter. The aggregated views of the
groups of experts result in distributions with more uncertainty compared to the individual
experts’ beliefs. The dispersed views of the experts put together ensure coverage of a larger
part of the parameters space than the individual expert judgements do. Interestingly, the
more uncertain distributions still clearly present a separation of the views regarding the
development of PTSS in young burn victims between the nurses expert group on the one
hand and the psychologists expert group and the data collected by Egberts et al. (2018)
on the other hand. The aggregated judgements from the psychologists assigned almost no
probability to the group average PTSS increasing one year post-burn. The aggregated
judgements from the nurses, in contrast, assigned a lot of probability to an increase of
the group average PTSS one year post-burn. As there is no grounded truth that we
cannot conclude which views are a better or worse representation. However, the results
do indicate that the nurses and the psychologists are not in agreement on what happens
with respect to the development of PTSS in young burn victims. The audio recordings of
the elicitation settings provided a possible explanation for this important distinction. All
psychologists at some point during the elicitation referred to, or specifically mentioned,
the construct of PTSS. The group of nurses mentioned several sources of distress but
only two nurses actually referred back to PTSS, one of which also judged the one year
post-burn PTSS to decrease. As burn victims indeed can experience other sources of
distress, e.g. related to the development of scar tissue or operations they have to undergo,
nurses might have convoluted PTSS symptoms with other patient symptoms. This could
also explain why the aggregated nurses’ view judged the initial PTSS level to be higher
for the group average than the aggregated psychologists’ view. Overall, the differences
might reflect the fact that psychologists are trained to diagnose and treat PTSS, whereas
nurses are primarily concerned with procedural and physical care for the patient, and are
not responsible for diagnosing and treating PTSS.

Besides differences between the nurses and the psychologists we also found a substantial
difference between the reference posteriors, that provided a representation of the data from
Egberts et al. (2018), and the aggregated nurses prior. In Figure 6.9 it can be seen that the
psychologists’ views overlapped with the reference posteriors. The nurses’ views however
did almost not overlap with reference posteriors. This could also numerically be assessed,
as was done with the KL-divergences in Table 6.1. Because the aggregated nurses prior
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had little overlap with the reference posteriors the Benchmark 1 priors, uniform priors
that takes the information of the measurement instrument into account, outperformed
this group in terms of loss of information. This implies the data collected by Egberts
et al. (2018) was better approximated by an uninformed expression of the measurement
properties of the questionnaire than by the nurses’ group prior. The children in the
study by Egberts et al. (2018) expressed a lower quantity of PTSS in their self-reported
questionnaires compared to the nurses’ expert judgements on PTSS symptoms for this
populations. There can be several explanations for this discrepancy, first the questionnaire
might have resulted in underreporting of symptoms, a view also expressed by one of
the experts. In line with this, Egberts et al. (2018) found that mothers gave higher
ratings of their child’s PTSS compared to the children themselves, although mothers’
ratings also appeared to be influenced by their own symptoms of PTSS. Also, fathers
did not report higher ratings of PTSS compared to their children. Alternatively, the
discrepancy could be explained by the elicitation of the expert judgements. Especially the
nurses group reported higher PTSS levels compared to the self-reports and the previously
mentioned convolution of symptoms and lack of specific knowledge about PTSS might be
a cause for this observation. In the recordings of the elicitation settings we found another
possible cause. Five of the nurses expressed sentiments that the more severe cases came to
mind more easily and therefore might be overrepresented in their beliefs. This is a clear
expression of the well known availability heuristic (Tversky & Kahneman, 1973) that can
cause biases in elicitation studies (O’Hagan et al., 2006). In the psychologists group only
a single expert expressed a similar remark. The availability heuristic, if not remedied,
might cause the discrepancy between the reference posteriors and the expert judgements.

The study showed that providing visual feedback on the representation of the experts’
beliefs can lead to adjustments by the experts to their input such that obvious incorrect
representations of the experts’ beliefs are remedied. Unfortunately it is not possible to
validate that the representation of the experts’ beliefs is actually the “true” beliefs of the
expert (Colson & Cooke, 2018; O’Hagan et al., 2006). However, one of the main reasons
to use elicitation software is to ameliorate the effects of heuristics and biases by getting
experts to actively reflect on the probability distribution that will be used to represent
their beliefs. In the recordings three experts actively reflect on their distributions and
adjust them based on the visual feedback and for this the purpose the elicitation software
seems to have worked well. Nevertheless, it seems from our current study that even with
the graphical feedback, some experts might still suffer from overconfidence, see Figure
6.6. Expert 11, for instance, stated “. . . of course, I have a lot of uncertainty anyway.”.
However, this does not seem reflected in the elicited distribution which has a 99% CI
for the latent intercept [27.2, 41.7] and the latent slope [1.2, 5.9]. As the experts were
only available to us for a limited time we did not provide a specialized training aimed at
elicitation and overcoming heuristics associated with elicitation tasks which might be a
limitation for the current study, and the associated (individual level) results.

This study indicated that aggregating expert judgements could potentially mitigate the
severity of the individual biases, as one thereby relies less on single, possibly overconfident,
experts. The aggregation of all experts’ judgements, or only the psychologists’ judgements,
lead to less discrepancy between the traditionally collected data and the elicited beliefs
than mostly any individual expert and the benchmarks. Aggregating or pooling of expert
judgements into a single distribution is common in elicitation studies and can be done
in several manners. In our current study we used opinion pooling with equal weights
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(O’Hagan et al., 2006, Chapter 9). Alternatively, there is much literature on how expert
judgements could be weighted in the aggregation of views. The classical model (Cooke,
1991, Chapter 12) is one of the foremost examples of this. In the classical approach
calibration questions are used to assess the experts. Based on the calibration questions
experts’ judgements on the target question, or question of interest, are weighted to together
form the groups weighted prior beliefs. The calibration questions should be related to the
question of interest and their answers should be known but not to the experts (Colson
& Cooke, 2018). It is recommended to have at least eight to ten calibration questions if
dealing with continuous variables (Cooke, 1991, Chapter 12). The experts are elicited
concerning the question of interest and the calibration questions. Their answers on the
calibration questions are evaluated against the known true values and the experts are
rated on their informativeness and accuracy (Colson & Cooke, 2018; Cooke, 1991). The
ratings of the weighting components is based upon the idea of KL-divergences (O’Hagan
et al., 2006, Chapter 9) such as we used to compare the experts’ judgements against the
collected data on the question of interest directly. As far as we know there have not
been any studies using the classical approach in the social sciences. Finding calibration
questions turns out to be a hard problem, as knowing the true answer to these questions
is required. We described the KL-divergence between the target question and the experts’
judgements, but calibrating experts based on these weight would be putting emphasis on
the traditionally collected data twice. As the traditionally collected data might suffer from
biases too, consider for instance the total survey error framework (Groves et al., 2011,
Chapter 2) including nonresponse error and measurement error, this double emphasis
might not be desirable. Instead, our equal weights aggregation approach relied on the
inclusion of experts with balance in views and diversity in backgrounds (Cooke & Goossens,
1999).

In conclusion, it is possible to express the experts’ domain knowledge as prior distributions
using the described methodology and compare these elicited distributions to traditionally
collected data. The individual expert judgements in general show quite some discrepancy
in comparison to traditionally collected data, although there are notable exceptions to
this. When taking the mixtures of the groups of experts the discrepancy becomes less
pronounced, very much so for the psychologists group. The psychologists mixture prior
has less KL-divergence than mostly any individual expert and notably less KL-divergence
than benchmark 1, the uniform prior that takes the information of the measurement
instrument into account. The expert judgements add information to the research area and
exploring (dis)similarities between expert judgements and traditional data open up two
exciting avenues for future research. First, the collection of data on the experts that might
be predictive for the amount of KL-divergence they exhibit with respect to traditionally
collected data. Second, the organisation of a Delphi like setting with all experts after the
individual judgements are collected and compared with traditional data. The group setting
can provide insights into the reasons behind the discrepancies between traditional collected
data, individual experts and groups of experts. Predicting and explaining (dis)similarities
between experts judgements and traditional data such as results of questionnaires can be
a potential new line of research for the social sciences.
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7

Discussion

The introduction of this thesis started by explaining Bayesian statistics as a way of
updating information. I start this discussion by reflecting on the example that I used in
Chapter 1, discussing the importance of (hidden) assumptions, and I relate this to possible
differences between experts and data. I consider different roles that expert knowledge
can play in research, and under what conditions I think those roles could be appropriate.
Finally, I give consideration to what seems a natural future direction for (my) research;
decision making.

7.1 Hidden assumptions
In Chapter 1 the example of coin tosses is used to introduce the concept of Bayesian
statistics, even though in the remainder of this thesis the normal distribution is used in
the analyses. Why then, not explain Bayesian statistics using the normal distribution?
The main reason is that the coin tossing example requires a single parameter θ, resulting
in a straight-forward single-parameter model. Two parameters should be considered
with respect to the normal distribution: the mean (µ) and variance (σ2). This makes
explanations more complex and the interactions between the two parameter might not
make for an intuitive initial framework. Many text books decide to first explain the
situation in which either µ or σ2 is fixed (e.g. Albert, 2009; Gelman et al., 2013; Kaplan,
2014; Kruschke, 2010; Lynch, 2007; Ntzoufras, 2011; Press, 2009). This decision is taken
consciously, which is illustrated by the following comments.

“For the purpose of mathematical derivation, we make the unrealistic as-
sumption that the prior distribution is either a spike on σ or a spike on
µ.”

Kruschke (2010) p. 322

“Perhaps a more realistic situation that arises in practice is when the mean
and variance of the normal distribution are unknown”

Kaplan (2014) p. 28
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“In reality, we typically do not know σ2 any more than we know µ, and
thus we have two quantities of interest that we should be updating with new
information”

Lynch (2007) p. 65

There is nothing wrong with explaining a simplistic version first. One reason not to
do so is because an explanation with this ‘unrealistic’ or ‘hidden’ assumption might
not make for proper intuition. In general, the more complex models become, the more
complex specifying prior information becomes. Almost never is the specification of prior
information as easy as in the examples in Chapter 1 concerning the coin flips and the Beta
distribution that has a natural interpretation in that case. Moreover, in multiparameter
models the priors interact with one another to say something about the data that you
might expect. Priors on certain parameters by themselves might look reasonable, but
together they can sometimes imply very implausible situations about reality. Simulating
fake data, or looking at implied predictive distributions as done in Chapter 5, can help
identify these problems (Gabry, Simpson, Vehtari, Betancourt, & Gelman, 2019; van
de Schoot et al., 2020). Moreover, recent work points to interpretation challenges for
the prior if context of the likelihood is not taken into account (Gelman et al., 2017), or
information about an experiment is ignored (Kennedy, Simpson, & Gelman, 2019). Note
in relation to this, how in the hierarchical model of Chapter 4, priors on the individual
level are essentially based on the estimated group level effects, which includes information
from both the prior and the likelihood. All this reflection on assumptions is not to criticize
explanations in textbooks or articles. The point is made to highlight that the choices
that are made with respect to the models and priors are highly influential for results and
interpretations, and being explicit about them is a minimal requirement.

7.2 Expert Knowledge
Being transparent about models, priors and choices is related to the issue of eliciting expert
knowledge. As mentioned in the introduction of Chapter 3, when conducting an elicitation
experts are forced to use a representation system that belongs to the statistical realm.
They are forced to use the same parametric representation as the statistical model. For
non-trivial problems, statistical models can become complex quickly. If expert knowledge
is elicited with the purpose of being used as a prior distribution in a statistical model, the
implicit assumption is made that the expert adheres to the same model as statistically
specified. This can be a rather strict assumption, in which confidence will decrease when
models become more complex.

In this dissertation in Chapters 3 and 6 we focus on the comparison of experts’ elicited
distributions among one another and their contrast with respect to what traditional data
implies given our statistical model. If discrepancies occur between the two this can be
highly informative and it need not be that one or the other is at fault and wrong. The
discrepancies are so interesting because the differences can occur due to different implied
models. When discussing with experts why their beliefs diverge from one another, or from
the traditional data, we can learn subtle differences in the implied models that experts
use. The information obtained using experts-data (dis)agreements methodology might
inform us to specify slightly different statistical models or include other variables in our
statistical models. In the long run, if the experts learn from the data, and the model is
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refined based on expert knowledge, we can expect both sources of information to converge.

Note that I reflect here on cases where we do have data, not on cases where expert
knowledge is used when no data is available. Obviously in those cases we do not have the
luxury of comparing multiple sources of information. It is often more desirable to have
any information, for instance provided by experts, than no information. In this scenario
it is even more essential to have quality checks available to evaluate experts’ expertise.
As discussed in Chapter 6, the classical method is a much used procedure in this instance
(Cooke, 1991, Chapter 12). The lack of suitable calibration questions for many social
scientific research topics makes this method, at least for now, unfeasible in those settings.
Moreover, the work presented in this dissertation is not a substitute for asking calibration
questions, but should be viewed as an additional area of research.

In cases where calibration is possible, updating the elicited experts’ beliefs with new data
in a full Bayesian framework can certainly be considered. In cases where calibration
is not an option, I would rather contrast expert knowledge as an alternative source of
information than update it with traditionally collected data. The two alternative ways of
incorporating information in prior distributions that were discussed in Chapter 1, using
previous research and logical constraints, seem more defensible than elicited expert priors
without calibration. Especially the use of priors describing plausible parameter space
seems no more than logical. In Chapters 3 and 6 we use uniform priors as benchmarks
that could be considered in line with Laplace’s (1749-1827) principle of insufficient reason.
It seems that these might be more in line with the data in the proposed statistical model
than some experts’ beliefs. Whatever the reason, and whichever source of information is
right, when using Kullback-Leibler divergences that assign truth status to the traditional
data, the ‘ignorant’ benchmarks examples resonate the following idea:

“Ignorance is preferable to error and he is less remote from the truth who
beliefs noting than he who believes what is wrong.”

Thomas Jefferson (1781)

7.3 Taking a decision
I began this thesis by stating that all of us have to make decisions whilst facing uncertainty
and incomplete information. In addition, I stated that Bayesian statistics offers a way
to describe our state of knowledge in terms of probability. In this thesis we have indeed
concerned ourselves mainly with obtaining prior, and estimating posterior, distributions
of probability. We have contrasted sources of information, seeing this as an opportunity
to learn and improve our knowledge and models. In short, we have concerned ourselves in
this thesis with ways to systematically organize uncertainty and incomplete information,
but not yet with the decision making process that should naturally follow from this.

Two approaches that are often used in science to make a decision, or come to a conclusion,
are model selection and hypothesis testing. Model selection is a very useful concept to
refine our theory and models. However, it does not always lead to a decision. Hypothesis
testing is more naturally focused at making decisions, e.g. can we reject the hypothesis
that there is no effect? It seems, however, to be a rather unhelpful restriction to single
out one value and contemplate the issue with respect to that value. Indeed, Bayesian
estimation can be seen as a case in which we test an infinite number of hypotheses
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concerning which values are most likely for parameters (Jaynes, 2003, Chapter 4). Moving
beyond simple one dimensional questions to decisions that determine a course of action, it
seems straightforward that we need to consider more than just an existence of an effect
or not. Consider such questions as; do we implement a certain intervention in schools or
not? Or should I get a certain type of insurance? To determine a course of action we need
to be able to assess which choice seems most preferable out the options that are open to
us. This cannot be assessed unless we assign value judgement to certain outcomes and
take costs into account. Is raising the IQ of children by 1 point on average worth the
investment if that means that we have to cut funding to hospitals by the same amount?
Does the good outweigh the bad? That is the relevant question, not: should we change the
way we teach at schools because an experiment provided us with p < .05 for a hypothesis
stating that both methods of teaching were exactly equal? The following words express
this sentiment in a delightful way:

“You cannot decide what to do today until you have decided what to do with
the tomorrows that today’s decisions might bring.”

Lindley (2013), p. 249

To extend the framework of Bayesian estimation into the field of decision making seems
natural via the concepts of utility and loss. Given that a model has been found that
seems reasonable, e.g. via model selection, the inference solutions obtained by applying
probability theory only provide us with a state of knowledge concerning parameters, it
does not tell us what to do with that information (Jaynes, 2003, Chapter 13). Utility
or loss functions can be defined and maximized to determine which decision is optimal
(Goldstein, 2006; Jaynes, 2003, Chapter 13). Moreover, if sequential decisions should be
taken, a decision tree should be made taking all information up to each point into account
(Gelman et al., 2013, Chapter 9; Lindley, 2013, Chapter 10). Utility can be defined very
transparently, but it is not free of subjective value judgement (Jaynes, 2003, Chapter
13). For a wonderful example that illustrates this, see Jaynes (2003), p. 400 - 402 on
the differences in rationale and utility of insurance, viewed from the standpoints of the
insurance agency, a poor person, a rich person, and a rich person with an aversion to risk.
For a full decision analysis of different strategies in the context of risk reduction of lung
cancer in relation to household environmental risk of exposure to radon gas, see Gelman
et al. (2013) p. 246-256.

In no way am I saying that assigning utility and loss functions are easy concepts. Moreover,
I will not claim to have the wisdom at this point to undertake such an elaborate evaluation
and ensure wise decisions. However, if I had to take a decision on what to peruse next
academically, using what I have learned from working on this dissertation, I would peruse
decision making. But only after I reflected on what tomorrows today’s decision would
bring, given the uncertain and incomplete information that I have.
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Iedereen moet beslissingen maken op basis van incomplete en onzekere informatie. Om
ons te helpen de beschikbare informatie te organiseren en interpreteren maken we gebruik
van statistiek. Bayesiaanse statistiek is een veelgebruikt conceptueel raamwerk dat kan
helpen om de geschikte stappen te bepalen voor de toekomst. Dit statistische raamwerk
is een kernonderdeel van deze dissertatie en wordt in alle hoofdstukken gebruikt.

Bayesiaanse statistiek bied de mogelijkheid om de huidige staat van kennis te beschrijven
in termen van waarschijnlijkheid (Jaynes, 1996). Meer dan dat, het kan worden gezien
als een extensie van logica (Jaynes, 2003). Het beschrijft bovendien hoe we zouden
moeten leren van nieuwe informatie (Lindley, 2013). Bayesiaanse statistiek stelt dat we
kansverdelingen kunnen gebruiken om onze huidige staat van kennis over een parameter
te beschrijven. Dit kunnen we doen voordat we nieuwe data observeren, dan heet dit
een a priori kansverdeling, ofwel voorkennis. Nadat we nieuwe data hebben geobserveerd
werken we onze beschrijving van de staat van kennis bij tot een zogeheten a posteriori
kansverdeling.

Doordat voorkennis wordt uitgedrukt in termen van kansverdelingen bied dit de mogeli-
jkheid om hier op verschillende manieren invulling aan te geven. Zo kan vorig onderzoek
worden meegenomen waarbij rekening gehouden kan worden met systematische verschillen
tussen beide onderzoeken als dat nodig is (Spiegelhalter et al., 2004, Hoofdstuk 4). Ook
logische kennis kan worden mee genomen. Bijvoorbeeld dat er geen negatieve waarden
kunnen zijn als temperatuur in Kelvin wordt gemeten of dat de het aantal deeltjes in
de lucht, gemeten bij luchtvervuiling onderzoek in een stad, niet zoveel kan zijn dat er
helemaal niet gewoond kan worden. Daarnaast kan worden gedacht aan het uitdrukken
van expert kennis in termen van kansverdelingen, dit vraagt echter een vertalingsproces
wat wel elicitatie wordt genoemd.

In deze dissertatie wordt besproken hoe verschillende bronnen van voorkennis gebruikt
kunnen worden en afgezet zouden kunnen worden tegen traditionele informatie bronnen
in de sociale wetenschappen zoals survey onderzoek. In het specifiek gaat aandacht uit
naar de elicitatie van expert kennis.

In Hoofdstuk 1 staat een uitgebreide versie van de uitleg die hierboven gegeven wordt
aangaande Bayesiaanse statistiek, voorkennis en expert elicitatie. Daarnaast is een Engelse
beschrijving te vinden van de inhoud van de hoofdstukken van deze dissertatie zoals deze
ook hieronder in het Nederlands volgt.

In Hoofdstuk 2 stellen we een elicitatie methodologie voor om over een enkele parameter
kennis uit te drukken. Traditioneel wordt dit gedaan door experts te vragen kun kennis
uit te drukken in kwantielen van kansverdelingen waarna op basis van die informatie een
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passende kansverdeling wordt bepaald. Niet alle experts hebben evenveel statistische
training gehad of voelen zich even comfortabel bij het uitdrukken van hun kennis in termen
van kwantielen. Daarom stellen wij een methode voor die hier niet op gebaseerd is en
experts in meerdere stappen helpt bij het uitdrukken van hun kennis in een kansverdeling.
Bij elke stap wordt visuele feedback gegeven doormiddel van speciaal ontwikkelde software.
We evalueren de voorgestelde methode doormiddel van een haalbaarheidsstudie, een
validatie studie voor de eerste stappen in de methode en een voorbeeld van een volledige
elicitatie studie.

In Hoofdstuk 3 bekijken we hoe expert kennis, als alternatieve bron van informatie,
gecontrasteerd kan worden met traditionele data. De methode biedt gelijktijdig een manier
om expert te rangschikken op basis van technieken die geleend zijn uit de informatie
theorie. Wij gebruiken het concept relatieve entropie, of Kullback-Leibler afstand, wat de
hoeveelheid verlies van informatie uitdrukt als een bepaalde verdeling wordt benaderd
door een andere verdeling. Voor diegene die bekend zijn met model selectie, Akaike’s
Information Criterion is een benadering van deze afstand (Burnham & Anderson, 2002,
Hoofdstuk 2).

In Hoofdstuk 4 wordt een andere manier uitgelicht om informatie aan een model toe
te voegen. We introduceren Bayesiaanse hiërarchische modellen in het veld van spraak
discriminatie analyse bij zuigelingen. Deze techniek is niet nieuw van zichzelf maar is
tot op heden niet gebruikt in dit veld. Met deze modellen kunnen individuele analyses
worden verzorgt binnen de context van een groepsstructuur. Door de groepsstructuur in
acht te nemen kunnen we het meeste halen uit de, op individuele basis, kleine data sets
met veel ruis. De methode schat of individuen veel op elkaar lijken, of niet, en neemt dit
mee in de schatting van de individuele effecten. In essentie wordt de groepsinformatie
gebruikt als voorkennis voor de individuele analyses waarbij deze voorkennis sterker is, en
meer invloed heeft, als individuen meer op elkaar lijken.

In Hoofdstuk 5 reflecteren we op problemen die voor kunnen komen bij het schatten van
steeds gecompliceerdere modellen. We laten zien dat geavanceerde software voorzichtig
gebruikt moet worden en de resultaten van de analyses nauwkeurig geïnspecteerd dienen
te worden. We geven een voorbeeld van een analyse waarin niet alles volgens plan
verloopt. Er wordt geïllustreerd welke waarschuwingen en signalen de software en de a-
posteriori kansverdelingen afgeven als er problemen ontstaan. Daarnaast worden mogelijke
oplossingen aangedragen en wordt beschreven hoe de pijnpunten in de combinatie van het
model, de data en de voorkennis gevonden kunnen worden.

In Hoofdstuk 6 combineren we de vorige hoofdstukken. We nemen een complexer model
en vragen experts naar hun kennis betreffende dit model. De elicitatie methode uit
Hoofdstuk 2 wordt aangepast om parameters van een hiërarchische model (zoals gebruik in
Hoofdstukken 4 en 5) te kunnen uitvragen. In het specifiek gaat het in dit hoofdstuk om een
Latente Groei Curve model dat de ontwikkeling van Posttraumatische stress symptomen
beschrijft bij kinderen met brandwonden. De informatie theoretische constructen uit
hoofdstuk 3 worden gebruikt om (groepen) experts te vergelijken met elkaar en met
traditioneel verzamelde data.

In Hoofdstuk 7 reflecteer ik op het werk en de uitleg die gegeven is in de hoofdstukken
van deze dissertatie, inclusief de introductie.
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10.1016/j.infbeh.2019.101345
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Entropy, 21(3), 307.

• Veen, D., Stoel, D., Schalken, N., Mulder, K., & van de Schoot, R. (2018). Using
the Data Agreement Criterion to Rank Experts’ Beliefs. Entropy, 20(8). Doi:
10.3390/e20080592



120 CURRICULUM VITAE

• Fox, J-P, Veen, D., & Klotzke, K. (2018). Generalized Linear Mixed Models
for Randomized Responses. Methodology. http://dx.doi.org/10.1027/1614-2241/
a000153

• Veen, D., Stoel ,D., Zondervan-Zwijnenburg, M. & van de Schoot, R. (2017)
Proposal for a Five-Step Method to Elicit Expert Judgment. Frontiers in Psychology
8:2110. doi: 10.3389/fpsyg.2017.02110

Book Chapters
• Veen, D., & Egberts, M. R. (2020). The importance of collaboration in Bayesian

analyses with small samples. In R. Van de Schoot & M. Miočević (Eds.), Small
sample size solutions: A guide for applied researchers and practitioners. Routledge.

• van de Schoot, R., Veen, D., Smeets, L., Winter, S. D., & Depaoli, S. (2020). A
tutorial on using the WAMBS-checklist to avoid the misuse of Bayesian statistics.
In R. Van de Schoot & M. Miočević (Eds.), Small sample size solutions: A guide
for applied researchers and practitioners. Routledge.

Technical Reports
• Luyten, H., Veen, D. & Meelissen, M.R.M. (2015). De relatie tussen leerling- en

schoolkenmerken en digitale geletterdheid van 14-jarigen: secundaire analyses op de
data van ICILS-2013. Enschede: Universiteit Twente.

Manuscripts under review
• Veen, D., Egberts, M. R., van Loey, N. E. E., & van de Schoot, R. (2019) Expert

Elicitation in the Social Sciences: The case of Posttraumatic Stress Symptoms
Development in Children with Burn Injuries.

• van de Schoot, R., Winter, S., Griffioen, E., Grimmelikhuijsen, S., Arts, I., Veen,
D., & Tummers, L. (2019). Using Questionable Research Practices to Survive in
Academia.

Grants
• Education Incentive Funds - €14,300. (2017). evelopment of Shiny applications for

educational purposes. Miocevic, M., Aarts, E., Klaassen, F., Lek, K.M., Mulder,
K.T., Namesnik, K.T., Veen, D., Zondervan-Zwijnenburg, M.A.J.

Awards
• The EADP/ERU Best Poster Award. (2017). Received for the poster presented at the

18th European Conference on Developmental Psychology, Utrecht, the Netherlands.

http://dx.doi.org/10.1027/1614-2241/a000153
http://dx.doi.org/10.1027/1614-2241/a000153


References

Akaike, H. (1973). Information theory as an extension of the maximum likelihood
principle. In Second international symposium on information theory (pp. 267–281).
Budapest, Hungary: Akademiai Kaido.

Albert, J. (2009). Bayesian computation with R. Springer Science & Business Media.

Alisic, E., Eland, J., Huijbregts, R., & Kleber, R. (2011). Manual of the children’s responses
to trauma inventory - revised edition.[Handleiding bij de schokverwerkingslijst voor
kinderen-herziene versie]. Diemen/Utrecht, the Netherlands: Institute for Psychotrauma
in Collaboration with Utrecht University and University Medical Center Utrecht.

Alisic, E., Eland, J., & Kleber, R. (2006). Children’s Responses to Trauma
Inventory-Revised Version [Schokverwerkingslijst Voor Kinderen-Herziene Versie].
Zaltbommel/Utrecht, the Netherlands: Institute for Psychotrauma in Collaboration with
Utrecht University and University Medical Center Utrecht.

Altvater-Mackensen, N., & Grossmann, T. (2015). Learning to match auditory and visual
speech cues: Social influences on acquisition of phonological categories. Child Development,
86 (2), 362–378.

Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A
review and recommended two-step approach. Psychological Bulletin, 103 (3), 411.

Aslin, R. N., & Fiser, J. (2005). Methodological challenges for understanding cognitive
development in infants. Trends in Cognitive Sciences, 9 (3), 92–98.

Aspinall, W. P., & Cooke, R. M. (2013). Quantifying scientific uncertainty from expert
judgement elicitation. In Risk and uncertainty assessment for natural hazards (p. 64).
Cambridge University Press Cambridge, UK.

Auguie, B. (2017). GridExtra: Miscellaneous functions for "grid" graphics. Retrieved from
https://CRAN.R-project.org/package=gridExtra

Bakker, A., van der Heijden, P. G., Van Son, M. J., & van Loey, N. E. (2013). Course
of traumatic stress reactions in couples after a burn event to their young child. Health
Psychology, 32 (10), 1076.

Barber, D. (2012). Bayesian reasoning and machine learning. Cambridge University
Press.

Barons, M. J., Wright, S. K., & Smith, J. Q. (2018). Eliciting probabilistic judgements
for integrating decision support systems. In L. C. Dias, A. Morton, & J. Quigley (Eds.),
Elicitation (pp. 445–478). Springer.

https://CRAN.R-project.org/package=gridExtra


122 REFERENCES

Beach, L. R., & Scopp, T. S. (1968). Intuitive statistical inferences about variances.
Organ. Behav. Hum. Perform, 3, 109–123. doi:10.1016/0030-5073(68)90001-9

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical
and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series
B (Methodological), 57 (1), 289–300.

Berger, J. O. (2006). The case for objective Bayesian analysis. Bayesian Analysis, 1 (3),
385–402.

Berger, J. O., & Bernardo, J. M. (1989). Estimating a product of means: Bayesian
analysis with reference priors. Journal of the American Statistical Association, 84 (405),
200–207.

Berger, J. O., Bernardo, J. M., & Sun, D. (2009). The formal definition of reference priors.
The Annals of Statistics, 37 (2), 905–938.

Bernardo, J. M. (1979). Reference posterior distributions for Bayesian inference. Journal
of the Royal Statistical Society. Series B (Methodological), 113–147.

Bernardo, J. M., & Smith, A. F. (1994). Bayesian theory. New York, NY: John Wiley &
Sons, LTD.

Betancourt, M. (2016). Diagnosing Suboptimal Cotangent Disintegrations in Hamiltonian
Monte Carlo. arXiv Preprint arXiv:1604.00695.

Betancourt, M. (2017). A conceptual introduction to Hamiltonian Monte Carlo. arXiv
Preprint arXiv:1701.02434.

Betancourt, M., & Girolami, M. (2015). Hamiltonian Monte Carlo for hierarchical models.
Current Trends in Bayesian Methodology with Applications, 79, 30.

Bistline, J. E. (2014). Energy technology expert elicitations: An application to natural
gas turbine efficiencies. Technological Forecasting and Social Change, 86, 177–187.

Bloom, B. S., Engelhart, M. D., Furst, E. J., Hill, W. H., & Krathwohl, D. R. (1956).
Taxonomy of educational objectives: Handbook 1: Cognitive domain. New York, NY: David
McKay Co Inc.

Bojke, L., Claxton, K., Bravo-Vergel, Y., Sculpher, M., Palmer, S., & Abrams, K. (2010).
Eliciting distributions to populate decision analytic models. Value in Health, 13 (5),
557–564.

Bolsinova, M., Hoijtink, H., Vermeulen, J. A., & Beguin, A. (2017). Using expert
knowledge for test linking. Psychological Methods, 22 (4), 705.

Bousquet, N. (2008). Diagnostics of prior-data agreement in applied Bayesian analysis.
Journal of Applied Statistics, 35 (9), 1011–1029.

Brier, G. W. (1950). Verification of forecasts expressed in terms of probability. Monthey
Weather Review, 78 (1), 1–3.

Buist, K. L., Dekovic, M., Meeus, W., & van Aken, M. A. (2002). Developmental patterns
in adolescent attachment to mother, father and sibling. Journal of Youth and Adolescence,
31 (3), 167–176.

https://doi.org/10.1016/0030-5073(68)90001-9


REFERENCES 123

Burkner, P.-C. (2019). Parameterization of Response Distributions in brms. Retrieved
from https://cran.r-project.org/web/packages/brms/vignettes/brms_families.html

Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: A
practical information-theoretic approach. Springer Science & Business Media.

Cambridge English Dictionary. (2019). Expert meaning in the Cambridge English
Dictionary. Retrieved from https://dictionary.cambridge.org/dictionary/english/expert

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., . . .
Riddell, A. (2017). Stan: A probabilistic programming language. Journal of Statistical
Software, 76 (1).

Catts, H. W., Bridges, M. S., Little, T. D., & Tomblin, J. B. (2008). Reading achievement
growth in children with language impairments. Journal of Speech, Language, and Hearing
Research.

Chang, W., Cheng, J., Allaire, J., Xie, Y., & McPherson, J. (2019). Shiny: Web application
framework for r. Retrieved from https://CRAN.R-project.org/package=shiny

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psycho-
logical Measurement, 20 (1), 37–46.

Colombo, J., & Mitchell, D. W. (2009). Infant visual habituation. Neurobiology of
Learning and Memory, 92 (2), 225–234.

Colson, A. R., & Cooke, R. M. (2018). Expert elicitation: Using the classical model
to validate experts‘ judgments. Review of Environmental Economics and Policy, 12 (1),
113–132.

Cooke, R. M. (1991). Experts in uncertainty: Opinion and subjective probability in science.
Oxford University Press on Demand.

Cooke, R. M., & Goossens, L. H. J. (2008). TU Delft expert judgment data base.
Reliability Engineering & System Safety, 93 (5), 657–674.

Cooke, R. M., & Goossens, L. J. H. (1999). Procedures guide for structured expert judgment.
Brussels: Commission of the European Communities.

Cristia, A. (2011). Fine-grained variation in caregivers’/s/predicts their infants’/s/category.
The Journal of the Acoustical Society of America, 129 (5), 3271–3280.

Cristia, A., Seidl, A., Junge, C., Soderstrom, M., & Hagoort, P. (2014). Predicting indi-
vidual variation in language from infant speech perception measures. Child Development,
85 (4), 1330–1345.

Cristia, A., Seidl, A., Singh, L., & Houston, D. (2016). Test-retest reliability in infant
speech perception tasks. Infancy, 21 (5), 648–667.

de Finetti, B. (1974). Theory of Probability (Vol. 1 and 2). New York, NY: Wiley.

de Klerk, M., de Bree, E., Kerkhoff, A., & Wijnen, F. (2019). Lost and Found: Decline
and Reemergence of Non-Native Vowel Discrimination in the First Year of Life. Language
Learning and Development, 15 (1), 14–31.

https://cran.r-project.org/web/packages/brms/vignettes/brms_families.html
https://dictionary.cambridge.org/dictionary/english/expert
https://CRAN.R-project.org/package=shiny


124 REFERENCES

Depaoli, S., & van de Schoot, R. (2017). Improving transparency and replication in
Bayesian statistics: The WAMBS-Checklist. Psychological Methods, 22 (2), 240.

Dewispelare, A. R., Herren, L. T., & Clemen, R. T. (1995). The use of probability
elicitation in the high-level nuclear waste regulation program. International Journal of
Forecasting, 11 (1), 5–24.

Deza, M. M., & Deza, E. (2009). Encyclopedia of distances. In Encyclopedia of Distances
(pp. 1–583). Springer.

Diamond, I. R., Grant, R. C., Feldman, B. M., Tomlinson, G. A., Pencharz, P. B., Ling, S.
C., . . . Wales, P. W. (2014). Expert Beliefs Regarding Novel Lipid-Based Approaches to
Pediatric Intestinal Failure-Associated Liver Disease. Journal of Parenteral and Enteral
Nutrition, 38 (6), 702–710.

Dijkstra, C., & Fikkert, J. (2011). Universal Constraints on the Discrimination of Place
of Articulation? Asymmetries in the Discrimination of ’paan’and ’taan’ by 6-month-old
Dutch Infants.

Dirac, P. A. M. (1947). The principles of quantum mechanics. Oxford: Clarendon Press.

Dodd, P. J., Yuen, C. M., Sismanidis, C., Seddon, J. A., & Jenkins, H. E. (2017). The
global burden of tuberculosis mortality in children: A mathematical modelling study. The
Lancet Global Health, 5 (9), e898–e906.

Drescher, M., Perera, A. H., Johnson, C. J., Buse, L., Drew, C., & Burgman, M. (2013).
Toward rigorous use of expert knowledge in ecological research. Ecosphere, 4 (7), 1–26.

Duncan, T. E., & Duncan, S. C. (2004). An introduction to latent growth curve modeling.
Behavior Therapy, 35 (2), 333–363.

Egberts, M. R., van de Schoot, R., Geenen, R., & van Loey, N. E. (2017). Parents’
posttraumatic stress after burns in their school-aged child: A prospective study. Health
Psychology, 36 (5), 419.

Egberts, M. R., van de Schoot, R., Geenen, R., & van Loey, N. E. (2018). Mother, father
and child traumatic stress reactions after paediatric burn: Within-family co-occurrence
and parent-child discrepancies in appraisals of child stress. Burns, 44 (4), 861–869.

Elfadaly, F. G., & Garthwaite, P. H. (2017). Eliciting Dirichlet and Gaussian copula prior
distributions for multinomial models. Statistics and Computing, 27 (2), 449–467.

Feng, C. (2016). The Markov-chain Monte Carlo Interactive Gallery. Retrieved from
https://chi-feng.github.io/mcmc-demo/

Fernández, C., & Steel, M. F. J. (1998). On Bayesian modeling of fat tails and skewness.
Journal of the American Statistical Association, 93 (441), 359–371.

Fischer, K., Lewandowski, D., & Janssen, M. (2013). Estimating unknown parameters in
haemophilia using expert judgement elicitation. Haemophilia, 19 (5), e282–e288.

Fischhoff, B. (1982). Debiasing. In Judgment under Uncertainty: Heuristics and Biases
(pp. 422–444). Cambridge: Cambridge University Press.

Fisher, R., O’Leary, R. A., Low-Choy, S., Mengersen, K., & Caley, M. J. (2012). A
software tool for elicitation of expert knowledge about species richness or similar counts.

https://chi-feng.github.io/mcmc-demo/


REFERENCES 125

Environmental Modelling & Software, 30, 1–14.

Fu, S., Celeux, G., Bousquet, N., & Couplet, M. (2015). Bayesian inference for in-
verse problems occurring in uncertainty analysis. International Journal for Uncertainty
Quantification, 5 (1).

Fu, S., Couplet, M., & Bousquet, N. (2017). An adaptive kriging method for solving
nonlinear inverse statistical problems. Environmetrics, 28 (4).

Gabry, J. (2018). Shinystan: Interactive Visual and Numerical Diagnostics and Posterior
Analysis for Bayesian Models. Retrieved from https://CRAN.R-project.org/package=
shinystan

Gabry, J., Simpson, D., Vehtari, A., Betancourt, M., & Gelman, A. (2019). Visualization
in Bayesian workflow. Journal of the Royal Statistical Society: Series A (Statistics in
Society), 182 (2), 389–402.

Garthwaite, P. H., Al-Awadhi, S. A., Elfadaly, F. G., & Jenkinson, D. J. (2013). Prior
distribution elicitation for generalized linear and piecewise-linear models. Journal of
Applied Statistics, 40 (1), 59–75.

Gelman, A. (2004). Parameterization and Bayesian modeling. Journal of the American
Statistical Association, 99 (466), 537–545.

Gelman, A. (2006a). Multilevel (hierarchical) modeling: What it can and cannot do.
Technometrics, 48 (3), 432–435.

Gelman, A. (2006b). Prior distributions for variance parameters in hierarchical models
(comment on article by Browne and Draper). Bayesian Analysis, 1 (3), 515–534.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013).
Bayesian data analysis. CRC press.

Gelman, A., Hill, J., & Yajima, M. (2012). Why we (usually) don’t have to worry about
multiple comparisons. Journal of Research on Educational Effectiveness, 5 (2), 189–211.

Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple
sequences. Statistical Science, 457–472.

Gelman, A., Simpson, D., & Betancourt, M. (2017). The prior can often only be understood
in the context of the likelihood. Entropy, 19 (10), 555.

Gelman, A., & Tuerlinckx, F. (2000). Type S error rates for classical and Bayesian single
and multiple comparison procedures. Computational Statistics, 15 (3), 373–390.

Goldstein, D. G., & Rothschild, D. (2014). Lay understanding of probability distributions.
Judgment & Decision Making, 9 (1).

Goldstein, M. (2006). Subjective Bayesian analysis: Principles and practice. Bayesian
Analysis, 1 (3), 403–420.

Gore, S. (1987). Biostatistics and the medical research council. Med. Res. Council News,
35, 19–20.

Gosling, J. P. (2018). SHELF: The Sheffield elicitation framework. In Elicitation (pp.
61–93). Springer.

https://CRAN.R-project.org/package=shinystan
https://CRAN.R-project.org/package=shinystan


126 REFERENCES

Gronau, Q. F., Ly, A., & Wagenmakers, E.-J. (2019). Informed Bayesian t-tests. The
American Statistician, 1–14.

Gronau, Q. F., & Singmann, H. (2017). Bridgesampling: Bridge Sampling for Marginal
Likelihoods and Bayes Factors. Retrieved from https://CRAN.R-project.org/package=
bridgesampling

Groves, R. M., Fowler Jr, F. J., Couper, M. P., Lepkowski, J. M., Singer, E., & Tourangeau,
R. (2011). Survey methodology (Vol. 561). John Wiley & Sons.

Haakma, W., Steuten, L. M., Bojke, L., & IJzerman, M. J. (2014). Belief elicitation to
populate health economic models of medical diagnostic devices in development. Applied
Health Economics and Health Policy, 12 (3), 327–334.

Hadorn, D., Kvizhinadze, G., Collinson, L., & Blakely, T. (2014). Useof expert knowledge
elicitation to estimate parameters in health economic decision models. International
Journal of Technology Assessment in Health Care, 30 (4), 461–468.

Hald, T., Aspinall, W., Devleesschauwer, B., Cooke, R., Corrigan, T., Havelaar, A. H., . . .
Angulo, F. J. (2016). World Health Organization estimates of the relative contributions
of food to the burden of disease due to selected foodborne hazards: A structured expert
elicitation. PloS One, 11 (1), e0145839.

Hampson, L. V., Whitehead, J., Eleftheriou, D., & Brogan, P. (2014). Bayesian methods
for the design and interpretation of clinical trials in very rare diseases. Statistics in
Medicine, 33 (24), 4186–4201.

Hampson, L. V., Whitehead, J., Eleftheriou, D., Tudur-Smith, C., Jones, R., Jayne, D.,
. . . Caldas, A. (2015). Elicitation of expert prior opinion: Application to the MYPAN
trial in childhood polyarteritis nodosa. PLoS One, 10 (3), e0120981.

Hertzog, C., Oertzen, T. von, Ghisletta, P., & Lindenberger, U. (2008). Evaluating the
power of latent growth curve models to detect individual differences in change. Structural
Equation Modeling: A Multidisciplinary Journal, 15 (4), 541–563.

Ho, C.-H., & Smith, E. I. (1997). Volcanic hazard assessment incorporating expert
knowledge: Application to the Yucca Mountain region, Nevada, USA. Mathematical
Geology, 29 (5), 615–627.

Hoffman, M. D., & Gelman, A. (2014). The No-U-Turn sampler: Adaptively setting
path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15 (1),
1593–1623.

Hofstatter, P. R. (1939). Uber die schatzung von gruppeneigenschaften. Z. Psychol., 145,
1–44.

Horn, D. L., Houston, D. M., & Miyamoto, R. T. (2007). Speech discrimination skills in
deaf infants before and after cochlear implantation. Audiological Medicine, 5 (4), 232–241.

Horowitz, M., Wilner, N., & Alvarez, W. (1979). Impact of Event Scale: A measure of
subjective stress. Psychosomatic Medicine, 41 (3), 209–218.

Houston, D. M., Horn, D. L., Qi, R., Ting, J. Y., & Gao, S. (2007). Assessing speech
discrimination in individual infants. Infancy, 12 (2), 119–145.

https://CRAN.R-project.org/package=bridgesampling
https://CRAN.R-project.org/package=bridgesampling


REFERENCES 127

Houston-Price, C., & Nakai, S. (2004). Distinguishing novelty and familiarity effects in
infant preference procedures. Infant and Child Development: An International Journal of
Research and Practice, 13 (4), 341–348.

Hox, J. J., & Maas, C. J. (2001). The accuracy of multilevel structural equation modeling
with pseudobalanced groups and small samples. Structural Equation Modeling, 8 (2),
157–174.

Hox, J. J., & McNeish, D. (2020). Small samples in multilevel modeling. In Small sample
size solutions: A guide for applied researchers and practitioners. Routledge.

Irony, T., & Singpurwalla, N. (1997). Noninformative priors do not exist: A discussion
with jose m. Bernardo. Journal of Statistical Inference and Planning, 65 (1), 159–189.

James, A., Choy, S. L., & Mengersen, K. (2010). Elicitator: An expert elicitation tool for
regression in ecology. Environmental Modelling & Software, 25 (1), 129–145.

Jaynes, E. T. (1982). On the rationale of maximum-entropy methods. Proceedings of the
IEEE, 70 (9), 939–952.

Jaynes, E. T. (1996). Bayesian Methods: General Background. In (pp. 1–25). University
of Calgary: Cambridge University Press. Retrieved from http://web.archive.org/web/
20160110215954/http://bayes.wustl.edu/etj/articles/general.background.pdf

Jaynes, E. T. (2003). Probability theory: The logic of science. Cambridge university press.

Jeffreys, H. (1946). An invariant form for the prior probability in estimation problems.
Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences,
453–461.

Jeffreys, H. (1961). Theory of probability. London, UK: Oxford University Press.

Johnson, S. R., Tomlinson, G. A., Hawker, G. A., Granton, J. T., & Feldman, B. M.
(2010). Methods to elicit beliefs for Bayesian priors: A systematic review. Journal of
Clinical Epidemiology, 63 (4), 355–369.

Johnson, S. R., Tomlinson, G. A., Hawker, G. A., Granton, J. T., Grosbein, H. A., &
Feldman, B. M. (2010). A valid and reliable belief elicitation method for Bayesian priors.
Journal of Clinical Epidemiology, 63 (4), 370–383.

Junge, C., & Cutler, A. (2014). Early word recognition and later language skills. Brain
Sciences, 4 (4), 532–559.

Kadane, J. (1994). An application of robust Bayesian analysis to a medical experiment.
Journal of Statistical Planning and Inference, 40 (2-3), 221–232.

Kaplan, D. (2014). Bayesian statistics for the social sciences. Guilford Publications.

Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical
Association, 90 (430), 773–795.

Kass, R. E., & Wasserman, L. (1996). The selection of prior distributions by formal rules.
Journal of the American Statistical Association, 91 (435), 1343–1370.

Kazis, L. E., Liang, M. H., Lee, A., Ren, X. S., Phillips, C. B., Hinson, M., . . . Goodwin,
C. W. (2002). The development, validation, and testing of a health outcomes burn

http://web.archive.org/web/20160110215954/http://bayes.wustl.edu/etj/articles/general.background.pdf
http://web.archive.org/web/20160110215954/http://bayes.wustl.edu/etj/articles/general.background.pdf


128 REFERENCES

questionnaire for infants and children 5 years of age and younger: American Burn
Association/Shriners Hospitals for Children. The Journal of Burn Care & Rehabilitation,
23 (3), 196–207.

Kennedy, L., Simpson, D., & Gelman, A. (2019). The experiment is just as important as
the likelihood in understanding the prior: A cautionary note on robust cognitive modelling.
arXiv Preprint arXiv:1905.10341.

Koch, G. G. (2004). Intraclass correlation coefficient. Encyclopedia of Statistical Sciences,
6.

Kruschke, J. K. (2010). Doing Bayesian data analysis: A tutorial with R and BUGS.
Academic Press.

Kruschke, J. K. (2013). Bayesian estimation supersedes the t test. Journal of Experimental
Psychology: General, 142 (2), 573.

Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. The Annals of
Mathematical Statistics, 22 (1), 79–86.

Landolt, M. A., Vollrath, M., Ribi, K., Gnehm, H. E., & Sennhauser, F. H. (2003).
Incidence and associations of parental and child posttraumatic stress symptoms in pediatric
patients. Journal of Child Psychology and Psychiatry, 44 (8), 1199–1207.

Lathrop, R. G. (1967). Perceived variability. Journal of Experimental Psychology, 73,
498–502. doi:10.1037/h0024344

Lee, M. D. (2018). Bayesian methods in cognitive modeling. Stevens’ Handbook of
Experimental Psychology and Cognitive Neuroscience, 5, 1–48.

Lek, K., & van de Schoot, R. (2018). Development and evaluation of a digital expert
elicitation method aimed at fostering elementary school teachers’ diagnostic competence.
In (Vol. 3, p. 82). Frontiers.

Lek, K., & van de Schoot, R. (2019). How the Choice of Distance Measure Influences the
Detection of Prior-Data Conflict. Entropy, 21 (5), 446.

Lindley, D. V. (2013). Understanding uncertainty. John Wiley & Sons.

Little, T. D. (2013). Longitudinal structural equation modeling. Guilford press.

Little, T. D., Bovaird, J. A., & Slegers, D. W. (2006). Methods for the analysis of change.
Handbook of Personality Development, 181–211.

Liu, C. C., & Aitkin, M. (2008). Bayes factors: Prior sensitivity and model generalizability.
Journal of Mathematical Psychology, 52 (6), 362–375.

Liu, L., & Kager, R. (2015). Bilingual exposure influences infant VOT perception. Infant
Behavior and Development, 38, 27–36.

Liu, L., & Kager, R. (2016). Perception of a native vowel contrast by Dutch monolingual
and bilingual infants: A bilingual perceptual lead. International Journal of Bilingualism,
20 (3), 335–345.

Low-Choy, S., James, A., Murray, J., & Mengersen, K. (2012). Elicitator: A user-friendly,
interactive tool to support scenario-based elicitation of expert knowledge. In Expert

https://doi.org/10.1037/h0024344


REFERENCES 129

knowledge and its application in landscape ecology (pp. 39–67). Springer.

Lynch, S. M. (2007). Introduction to applied Bayesian statistics and estimation for social
scientists. Springer Science & Business Media.

Mason, A. J., Gomes, M., Grieve, R., Ulug, P., Powell, J. T., & Carpenter, J. (2017).
Development of a practical approach to expert elicitation for randomised controlled trials
with missing health outcomes: Application to the IMPROVE trial. Clinical Trials, 14 (4),
357–367.

Maurer, D., & Werker, J. F. (2014). Perceptual narrowing during infancy: A comparison
of language and faces. Developmental Psychobiology, 56 (2), 154–178.

McNeish, D. (2016a). On using Bayesian methods to address small sample problems.
Structural Equation Modeling: A Multidisciplinary Journal, 23 (5), 750–773.

McNeish, D. (2016b). Using data-dependent priors to mitigate small sample bias in latent
growth models: A discussion and illustration using M plus. Journal of Educational and
Behavioral Statistics, 41 (1), 27–56.

Melvin, S. A., Brito, N. H., Mack, L. J., Engelhardt, L. E., Fifer, W. P., Elliott, A. J.,
& Noble, K. G. (2017). Home environment, but not socioeconomic status, is linked to
differences in early phonetic perception ability. Infancy, 22 (1), 42–55.

Miočević, M., Levy, R., & Savord, A. (2020). The Role of Exchangeability in Sequential
Updating of Findings from Small Sample Studies. In Small sample size solutions: A guide
for applied researchers and practitioners. Routledge.

Molfese, D. L. (2000). Predicting dyslexia at 8 years of age using neonatal brain responses.
Brain and Language, 72 (3), 238–245.

Morey, R. D., Romeijn, J.-W., & Rouder, J. N. (2016). The philosophy of Bayes factors
and the quantification of statistical evidence. Journal of Mathematical Psychology, 72,
6–18.

Morris, D. E., Oakley, J. E., & Crowe, J. A. (2014). A web-based tool for eliciting
probability distributions from experts. Environmental Modelling & Software, 52, 1–4.

Murphy, A. H., & Winkler, R. L. (1974). Subjective probability forecasting experiments in
meteorology: Some preliminary results. Bulletin of the American Meteorological Society,
55 (10), 1206–1216.

Murphy, A. H., & Winkler, R. L. (1984). Probability forecasting in meteorology. Journal
of the American Statistical Association, 79 (387), 489–500.

Newman, R., Ratner, N. B., Jusczyk, A. M., Jusczyk, P. W., & Dow, K. A. (2006).
Infants’ early ability to segment the conversational speech signal predicts later language
development: A retrospective analysis. Developmental Psychology, 42 (4), 643.

Ntzoufras, I. (2011). Bayesian modeling using WinBUGS (Vol. 698). John Wiley & Sons.

Oakes, L. M. (2010). Using habituation of looking time to assess mental processes in
infancy. Journal of Cognition and Development, 11 (3), 255–268.

Oakley, J. (2010). Eliciting univariate probability distributions. In Rethinking Risk
Measurement and Reporting (Vol. 1). London: Risk Books.



130 REFERENCES

Oakley, J. (2019). SHELF: Tools to support the sheffield elicitation framework. Retrieved
from https://CRAN.R-project.org/package=SHELF

O’Hagan, A., Buck, C. E., Daneshkhah, A., Eiser, J. R., Garthwaite, P. H., Jenkinson, D.
J., . . . Rakow, T. (2006). Uncertain judgements: Eliciting experts’ probabilities. John
Wiley & Sons.

Orth, U., Robins, R. W., & Widaman, K. F. (2012). Life-span development of self-esteem
and its effects on important life outcomes. Journal of Personality and Social Psychology,
102 (6), 1271.

Plummer, M. (2018). Rjags: Bayesian Graphical Models using MCMC. Retrieved from
https://CRAN.R-project.org/package=rjags

Press, S. J. (2009). Subjective and objective Bayesian statistics: Principles, models, and
applications (Vol. 590). John Wiley & Sons.

Quigley, J., Colson, A., Aspinall, W., & Cooke, R. M. (2018). Elicitation in the classical
model. In L. C. Dias, A. Morton, & J. Quigley (Eds.), Elicitation (pp. 15–36). Springer.

Raftery, A. E. (1996). Approximate Bayes factors and accounting for model uncertainty
in generalised linear models. Biometrika, 83 (2), 251–266.

R Core Team. (2017a). Foreign: Read Data Stored by ’Minitab’, ’S’, ’SAS’, ’SPSS’, ’Stata’,
’Systat’, ’Weka’, ’dBase’, ... Retrieved from https://CRAN.R-project.org/package=foreign

R Core Team. (2017b). R: A Language and Environment for Statistical Computing.
Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.
R-project.org/

Runge, A. K., Scherbaum, F., Curtis, A., & Riggelsen, C. (2013). An interactive tool for
the elicitation of subjective probabilities in probabilistic seismic-hazard analysis. Bulletin
of the Seismological Society of America, 103 (5), 2862–2874.

Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: Uses in assessing rater
reliability. Psychological Bulletin, 86 (2), 420.

Smid, S. C., Depaoli, S., & van de Schoot, R. (2019). Predicting a distal outcome variable
from a latent growth model: ML versus bayesian estimation. Structural Equation Modeling:
A Multidisciplinary Journal, 1–23. doi:https://doi.org/10.1080/10705511.2019.1604140

Smid, S. C., McNeish, D., Miočević, M., & van de Schoot, R. (2020). Bayesian versus
frequentist estimation for structural equation models in small sample contexts: A system-
atic review. Structural Equation Modeling: A Multidisciplinary Journal, 27 (1), 131–161.
doi:10.1080/10705511.2019.1577140

Sokolov, E. N. (1963). Perception and the conditioned reflex. New York, NY: Macmillan.

Spiegelhalter, D. J., Abrams, K. R., & Myles, J. P. (2004). Bayesian approaches to clinical
trials and health-care evaluation (Vol. 13). John Wiley & Sons.

Stan Development Team. (2018a). Brief Guide to Stan’s Warnings. Retrieved from
https://mc-stan.org/misc/warnings.html

Stan Development Team. (2018b). RStan: The R interface to Stan. Retrieved from
http://mc-stan.org/

https://CRAN.R-project.org/package=SHELF
https://CRAN.R-project.org/package=rjags
https://CRAN.R-project.org/package=foreign
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/https://doi.org/10.1080/10705511.2019.1604140
https://doi.org/10.1080/10705511.2019.1577140
https://mc-stan.org/misc/warnings.html
http://mc-stan.org/


REFERENCES 131

Stan Development Team. (2019). Stan Reference Manual. Retrieved from https://
mc-stan.org/docs/2_19/reference-manual/

Tabachnick, B. G., Fidell, L. S., & Ullman, J. B. (2007). Using multivariate statistics
(Vol. 5). Pearson Boston, MA.

Truong, P. N., Heuvelink, G. B., & Gosling, J. P. (2013). Web-based tool for expert
elicitation of the variogram. Computers & Geosciences, 51, 390–399.

Tsao, F., Liu, H., & Kuhl, P. K. (2004). Speech perception in infancy predicts language
development in the second year of life: A longitudinal study. Child Development, 75 (4),
1067–1084.

Tsuji, S., & Cristia, A. (2014). Perceptual attunement in vowels: A meta-analysis.
Developmental Psychobiology, 56 (2), 179–191.

Tuyl, F., Gerlach, R., & Mengersen, K. (2008). A comparison of Bayes-Laplace, Jeffreys,
and other priors: The case of zero events. The American Statistician, 62 (1), 40–44.

Tversky, A., & Kahneman, D. (1973). Availability: A heuristic for judging frequency and
probability. Cognitive Psychology, 5 (2), 207–232.

van Baar, Vloemans, Beerthuizen, Middelkoop, & Nederlandse Brandwonden Registratie
R3. (2015). Epidemiologie.

van de Schoot, R., Broere, J. J., Perryck, K. H., Zondervan-Zwijnenburg, M., & van
Loey, N. E. (2015). Analyzing small data sets using Bayesian estimation: The case
of posttraumatic stress symptoms following mechanical ventilation in burn survivors.
European Journal of Psychotraumatology, 6 (1), 25216.

van de Schoot, R., Griffioen, E., & Winter, S. (2018). Dealing with imperfect elicitation
results. In T. Bedford, S. French, A. M. Hanea, & G. F. Nane (Eds.), Expert judgement
in risk and decision analysis.

van de Schoot, R., Sijbrandij, M., Depaoli, S., Winter, S. D., Olff, M., & van Loey, N. E.
(2018). Bayesian PTSD-trajectory analysis with informed priors based on a systematic
literature search and expert elicitation. Multivariate Behavioral Research, 53 (2), 267–291.

van de Schoot, R., Veen, D., Smeets, L., Winter, S., & Depaoli, S. (2020). A tutorial on
using the WAMBS-checklist to avoid the misuse Bayesian Statistics. In Small sample size
solutions: A guide for applied researchers and practitioners. Routledge.

van de Schoot, R., Winter, S. D., Ryan, O., Zondervan-Zwijnenburg, M., & Depaoli,
S. (2017). A systematic review of Bayesian articles in psychology: The last 25 years.
Psychological Methods, 22 (2), 217.

Veen, D., Stoel, D., Schalken, N., Mulder, K., & van de Schoot, R. (2018). Using the
Data Agreement Criterion to Rank Experts’ Beliefs. Entropy, 20 (8), 592.

Veen, D., Stoel, D., Zondervan-Zwijnenburg, M., & van de Schoot, R. (2017). Proposal
for a Five-Step Method to Elicit Expert Judgement. Frontiers in Psychology, 8, 2110.

Walley, R. J., Smith, C. L., Gale, J. D., & Woodward, P. (2015). Advantages of a
wholly Bayesian approach to assessing efficacy in early drug development: A case study.
Pharmaceutical Statistics, 14 (3), 205–215.

https://mc-stan.org/docs/2_19/reference-manual/
https://mc-stan.org/docs/2_19/reference-manual/


132 REFERENCES

Wang, J., & Wang, X. (2012). Structural equation modeling: Applications using Mplus.
John Wiley & Sons.

Wasserman, L. (2000). Bayesian model selection and model averaging. Journal of
Mathematical Psychology, 44 (1), 92–107.

Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi, K., Wilke, C., . . .
Yutani, H. (2019). Ggplot2: Create elegant data visualisations using the grammar of
graphics. Retrieved from https://CRAN.R-project.org/package=ggplot2

Wisniowski, A., Bijak, J., & Shang, H. L. (2014). Forecasting Scottish migration in
the context of the 2014 constitutional change debate. Popul. Space Place, 20, 455–464.
doi:10.1002/psp.1856

Wuertz, D., Setz, T., Chalabi, Y., Boudt, C., Chausse, P., & Miklovac, M. (2019).
FGarch: Rmetrics - autoregressive conditional heteroskedastic modelling. Retrieved from
https://CRAN.R-project.org/package=fGarch

Yang, R., & Berger, J. O. (1996). A catalog of noninformative priors. Institute of
Statistics; Decision Sciences, Duke University.

Zondervan-Zwijnenburg, M., Depaoli, S., Peeters, M., & van de Schoot, R. (2018). Pushing
the Limits: The Performance of Maximum Likelihood and Bayesian Estimation With
Small and Unbalanced Samples in a Latent Growth Model. Methodology, 1 (1), 1–13.

Zondervan-Zwijnenburg, M., Peeters, M., Depaoli, S., & van de Schoot, R. (2017a). Where
do priors come from? Applying guidelines to construct informative priors in small sample
research. Res. Hum. Dev., 14, 305–320. doi:10.1080/15427609.2017.1370966

Zondervan-Zwijnenburg, M., van de Schoot-Hubeek, W., Lek, K., Hoijtink, H., & van
de Schoot, R. (2017b). Application and evaluation of an expert judgment elicitation
procedure for correlations. Frontiers in Psychology, 8, 90.

Zyphur, M. J., Oswald, F. L., & Rupp, D. E. (2015). Bayesian probability and statistics
in management research [special issue]. Journal of Management, 41 (2).

https://CRAN.R-project.org/package=ggplot2
https://doi.org/10.1002/psp.1856
https://CRAN.R-project.org/package=fGarch
https://doi.org/10.1080/15427609.2017.1370966

	Introduction
	Bayesian Statistics
	Prior Information
	Expert Elicitation
	Aims and Outline

	Proposal for a Five-Step Method to Elicit Expert Judgment
	Abstract
	Introduction
	Five-Step Method
	Elicitation Studies
	Discussion
	Ethics Statement
	Funding
	Acknowledgments
	Conflict of Interest Statement

	Using the Data Agreement Criterion to Rank Experts' Beliefs
	Abstract
	Introduction
	Expert-Data (Dis)Agreement
	Empirical Example
	Discussion
	Ethics Statement
	Funding
	Acknowledgments
	Conflicts of Interest Statement

	A Step Forward: Bayesian Hierarchical Modelling as a Tool in Assessment of Individual Discrimination Performance
	Abstract
	Introduction
	Method
	Results
	Discussion
	Ethics Statement
	Acknowledgments
	Appendix A
	Appendix B

	The importance of collaboration in Bayesian analyses with small samples
	Abstract
	Introduction
	Latent Growth Models with small sample sizes
	Empirical example: Analysis plan
	Empirical example: Conducting the analysis
	Debugging
	Moving forward: Alternative Models
	Conclusion
	Acknowledgements

	Expert Elicitation in the Social Sciences: The case of Posttraumatic Stress Symptoms Development in Children with Burn Injuries
	Abstract
	Introduction
	Methods
	Results
	Discussion
	Conflicts of Interest
	Ethics Statement
	Acknowledgements
	Funding

	Discussion
	Hidden assumptions
	Expert Knowledge
	Taking a decision

	Nederlandse Samenvatting
	Dankwoord
	Curriculum Vitae
	Academic Publications
	Book Chapters
	Technical Reports
	Manuscripts under review
	Grants
	Awards

	References

