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Origins of Computational Structural Biology 

The field of computational structural biology as we know it today traces its origins to the mid-

to-late 1960s and early 1970s when the first computer simulations of small organic and 

inorganic systems became available. At the same time, another branch of the biomolecular 

simulation community was developing crude simulations of small proteins which, while 

inaccurate, paved the way for more accurate forcefields and simulation algorithms over the 

years that followed. The reasons behind these developments were simple enough: The first 

scientists – who at the time were working in a field made up of diverse disciplines and which 

later came to be formally known as Structural Biology – had been determining structural 

models of biomolecules for years, starting with the double helix model of DNA and the protein 

structures of myoglobin and haemoglobin. In order to create the 3D structure, parameters such 

as bond lengths or angles between consecutively bonded atoms were manually adjusted and 

combined with the primary experimental information, which, for most early biomolecular 

structures, was derived from X-ray crystallography diffraction data. This process was slow, 

painstaking and error prone, slowing down structure determination after the already arduous 

process of growing crystals and obtaining diffraction patterns. It was, therefore, in the best 

interest of the community to develop ways in which this process could be automated and sped 

up. At the same time, computers were becoming more powerful and common enough that 

chemical information such as known lengths of bonds between specific atom types, or angles, 

torsions between consecutive atoms and interactions between non-bonded atoms could be 

encoded into computer programs which could then be used in combination with the 

experimental data to arrive at the 3D structure. 

 

Emergence of Biomolecular Docking 

The field saw further advances in the years that followed with the development of the first 

docking programs in the late 1970s, early 1980s. These programs differed from the modelling 

software previously developed because they were intended to be used to study the interactions 

between biomolecules rather than single structures. Advances in docking algorithms and 

computer hardware and architecture increased the applicability of these programs and of 

biomolecular simulation in general, allowing for increasing levels of chemical correctness to 

be incorporated in the simulation process. By the late 1990s/early 2000s several publicly 

available docking programs existed. The most significant development of that era was the 

CAPRI initiative. CAPRI stands for Critical Assessment of PRediction of Interactions and was 

 

 
 

modelled on CASP (Critical Assessment of Structure Prediction). CASP had been launched a 

few years earlier with the aim to assess the state-of-the-art in protein structure prediction 

algorithms. It ran every other year. In early iterations the emphasis was on predicting protein 

tertiary (and in some cases quaternary) structure from the residue sequence alone. Unlike CASP 

which runs every second year, CAPRI targets are announced on an irregular basis, mostly 

depending on their availability. The emphasis – for the most part – has been on assessing the 

accuracy with which human teams and docking servers can predict the structure of a complex 

of interacting biomolecules with a main focus on protein-protein complexes. CAPRI has been 

instrumental in pushing the boundaries of what was considered possible in computational 

modelling at the time, while also fostering communication and scientific exchange between 

members of the docking community. 

 

The Advent of Integrative Modelling 

Another hallmark for the field in the early 2000s was the publication of HADDOCK (High 

Ambiguity Driven DOCKing), the first docking program which could incorporate 

experimental information in the simulations in order to guide those toward conformations that 

would satisfy those data. This was a radical departure from most docking codes published until 

that point, which, at that time, focused on exhaustively sampling the orientational landscape of 

the interacting biomolecules and relied on the use of scoring functions to discriminate between 

good – native-like – and bad – non-native-like – models. These two concepts of sampling (the 

process by which docking poses are generated) and scoring (the process by which good models 

are identified from a large pool of models) lie at the core of every discussion around docking 

and computational modelling in general. The use of experimental information enabled 

HADDOCK to effectively focus the sampling to the parts of the interaction landscape close to 

the native complex when using data that represented that native state. However, when those 

data are not reliable or even incorrect, using them might result in the generation of models 

which do not get close to the native state at all. The fact that input data have a significant impact 

on the outcome of the docking is one of the major challenges associated with the field of 

integrative modelling. For the first few years, HADDOCK could only make use of distance or 

residue-based information regarding the residues located at the putative interface of a given 

complex. Later versions of the software gained the capability to include additional information 

such as the relative orientation of two complexes biomolecules or shape-based information. 

Additionally, support was extended to biomolecules other than proteins such as nucleic acids 
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Overview of thesis 
This thesis mainly deals with three subjects which, in order of appearance, are: (1) data sources 

which can be used by integrative modelling frameworks (Chapter 1), (2) modelling of 

membrane protein complexes (Chapters 2 and 3) and (3) small molecule docking (Chapters 

4 through 6). All these are examined through the prism of integrative modelling and 

biomolecular docking. 

Chapter 1 provides an overview over some of the data sources most frequently used in 

integrative modelling frameworks. The experimental methods are grouped according to the 

nature of the information they yield in three sets: Interface-mapping methods, distance-based 

methods and shape-based ones. Their relative advantages and disadvantages are discussed and 

their future potential in the field of Integrative modelling is discussed. Recent advances in 

computational methods like coevolution and coarse-grained forcefields are also discussed. 

Chapter 2 describes a recently published docking benchmark consisting entirely of membrane 

protein-protein complexes. This is the first benchmark of its kind and features ready-to-dock 

structures of varying difficulties (ranging from bound cases to challenging cases with 

significant conformational rearrangements at the binding interface). The benchmark has been 

used to establish the baseline performance of HADDOCK in membrane protein complexes. 

Chapter 3 details a method for the docking of transmembrane protein-protein complexes. This 

protocol is based on the use of restraints to drive the transmembrane part of the system toward 

shape beads which implicitly represent the lipid bilayer. I also compare the results with runs in 

which only centre-of-mass restraints were used and discuss possible future avenues worth 

exploring. 

Chapter 4 is the first chapter which deals with small molecule docking. In it, I describe the 

protocols we developed for dealing with protein-small molecule docking for the participation 

of the HADDOCK group in the 2016 iteration of the blind docking challenge organised by the 

D3R consortium. In Chapter 5 I describe an improved version of the protocol described in 

chapter 4, which makes use of ligand and compound shape similarities to identify the best 

receptor template and the best generated ligand conformations prior to docking. In Chapter 6 

I describe a recently developed protocol for which shape information is extracted from suitable 

templates and represented as shape beads. The generated ligand conformers are driven to this 

shape within the protein via the use of ambiguous distance restraints. This protocol outperforms 

all our previous efforts. 

 

 
 

and small molecules. These developments mirrored the rise of a new field centred around the 

integration of data into biomolecular simulations: Integrative Modelling. Integration of diverse 

data sources in a cohesive and probabilistically sound way represents another challenge unique 

to this field. HADDOCK is only one such Integrative Modelling software. Examples of codes 

which can also include data in the simulation in order to drive the sampling toward specific 

conformations are ROSETTA, IMP (Integrative Modelling Platform), ISD (Inferential 

Structure Determination) and ATTRACT. Additionally, even programs that cannot directly 

incorporate experimental data in the simulation to bias the sampling, can usually take 

advantage of those in the form of post-processing filters during the scoring of the generated 

poses. 

 

Modelling of membrane protein complexes and small molecule 
docking 

Integrative modelling approaches, docking in particular, have been applied to the study of 

many diverse systems. Support for the docking of transmembrane protein complexes has 

however been underwhelming so far as very few codes have implemented protocols tailored to 

the membrane environment. On one side, the very nature of the membrane bilayer restricts the 

translational and rotational landscape of the complex, on the other side the fact that the 

complexes are not surrounded – at least entirely – by water requires adaptations in energetics 

parameters such as empirical desolvation potentials, which have been in most cases optimised 

under the assumption that the complex is surrounded only by water. This apparent lack of 

membrane-specific optimisations is surprising, given the significance of membrane proteins in 

general and membrane protein interactions specifically, for the enduring survival of the cell, a 

significance which is also reflected in the number of drugs which target membrane proteins. 

One of the limiting factors has been the scarce number of membrane proteins for which 3D 

structures are available in the Protein Data Bank (PDB), the public repository for 

experimentally determined biomolecular structures. The recent explosion in the number of 

available membrane protein structures in the PDB, mostly as a result of the revolution the cryo-

EM field has been undergoing in recent years, but also due to X-ray crystallography, has been 

largely responsible for a slew of related developments such as the proliferation of membrane 

protein-specific databases. While small molecule docking does not suffer from the same lack 

of attention that membrane modelling does, integrative protocols which take advantage of 

existing experimental information and integrate it in the simulation are still few. 
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available membrane protein structures in the PDB, mostly as a result of the revolution the cryo-

EM field has been undergoing in recent years, but also due to X-ray crystallography, has been 

largely responsible for a slew of related developments such as the proliferation of membrane 

protein-specific databases. While small molecule docking does not suffer from the same lack 

of attention that membrane modelling does, integrative protocols which take advantage of 

existing experimental information and integrate it in the simulation are still few. 
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of the state of the field of integrative modelling and discuss future directions which I believe 

to be of high importance. 
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Chapter 1 
Integrative modelling of biomolecular complexes 

 

P. I. Koukos, A. M. J. J. Bonvin 

In press, 2019, Journal of Molecular Biology 

 

Abstract 
In recent years the use of integrative, information-driven computational approaches for 

modelling the structure of biomolecules has been increasing in popularity. These are now 

recognised as a crucial complement to experimental structural biology techniques such as X-

ray crystallography, Nuclear Magnetic Resonance (NMR) spectroscopy and cryo-electron 

microscopy (cryo-EM). This trend can be credited to a few reasons such as the increased 

prominence of structures solved by cryo-EM, the improvements in proteomics approaches such 

as Crosslinking Mass Spectrometry (XL-MS), the drive to study systems of higher complexity 

in their native state and the maturation of many computational techniques combined with the 

wide-spread availability of information-driven integrative modelling platforms. 

In this review we highlight recent works that exemplify how the use of integrative and/or 

information-driven approaches and platforms can produce highly accurate structural models. 

These examples include systems which present many challenges when studied with traditional 

structural biology techniques such as flexible and dynamic macromolecular assemblies and 

membrane associated complexes. 

We also identify some key areas of interest for information-driven, integrative modelling and 

discuss how they relate to ongoing challenges in the fields of computational structural biology. 

These include the use of coarse-grained forcefields for biomolecular simulations – allowing 

for simulations across longer (time-) and bigger (size-dimension) scales –, the use of 

bioinformatics predictions to drive sampling and/or scoring in docking such as those derived 

from coevolution analysis, and finally the study of membrane and membrane-associated 

protein complexes.  
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understand molecular mechanisms in depth, as can be seen from the recent statistics of the 

Electron Microscopy Data Resource (EMDataResource - 

https://www.emdataresource.org/statistics.html) and those of the European Bioinformatics 

Institute (EBI - https://www.ebi.ac.uk/pdbe/emdb/statistics_num_res.html/). The field is still 

undergoing rapid transformations reflecting its nascent state, with the absence of well-defined 

standard practices and ongoing instrumentation and software optimisations being highlighted 

as potential points of improvement that should lead to higher quality structures being made 

available through cryo-EM in the coming years 26. The Electron Microscopy Data Bank 

(EMDB) 27 has recently sponsored two blind challenges whose stated goals were to emphasise 

the need for map and model validation standards and engage with the cryo-EM community 

towards the shared development of assessment benchmarks and best practices 28.  

A careful reading of the relative strengths and weaknesses of the three techniques mentioned 

in the previous paragraph reveals an ideal use case for computational structural modelling 

which relies on the use of high-quality structural models solved with X-ray crystallography or 

NMR spectroscopy, for determining the finer structural details of interacting biomolecules, 

combined with the use of cryo-EM density maps for determining the overall topology and 

stoichiometry of the wider context of the complex. Indeed, we believe that the revolution cryo-

EM ushered in the field of structural biology a few years ago is only going to lead to an 

increased demand for computational techniques that, not only can make use of the data that are 

being made available through cryo-EM studies, but also combine those with other types of data 

available through other techniques, in order to generate structural models that would normally 

be beyond the reach of any of those techniques taken on their own. 

An additional reason necessitating the use of integrative approaches is the need to study 

biological systems in their proper context, not only as single-structures but as macromolecular 

assemblies and high-order complexes as this is seen as a stepping-stone towards realising a 

structural model of the cell in atomic or near atomic detail 29,30. A complicating factor is that, 

in order to achieve this goal, experimental data measured under as close as possible 

physiological conditions needs to be captured, once again requiring robust integrative 

modelling frameworks and protocols to unify the various sources of experimental information 

in cohesive structural models. 

In addition to the three aforementioned structure determination techniques a plethora of 

complimentary techniques is available that can provide some pieces of the puzzle for the 

biological systems under study. Prime examples are Cross Linking Mass Spectrometry (XL-

MS) and Small Angle X-ray Scattering (SAXS). XL-MS can be used to determine distances 

 

 
 

Introduction 

Biological macromolecules such as proteins and nucleic acids make up the majority of the 

machinery of life since they are responsible for performing most cellular functions. While a lot 

of meaningful insights about these functions can be deduced by experimental work that falls 

under the umbrella of functional assays, these kinds of experiments (e.g. yeast two-hybrid 

assays) usually fail to reveal any direct information regarding the structure of the biomolecules 

involved in a given process. True understanding of the mechanism of action that underlies any 

cellular function can however only be gained by resolving at atomic detail the molecular 

structures of the components and assemblies involved, allowing us a glimpse at the molecular 

mechanisms at play 1. 

Historically, the two main techniques used for experimental structure determination of 

biomolecules have been X-ray crystallography and Nuclear Magnetic Resonance (NMR) 

spectroscopy 2. More recently, cryo-Electron Microscopy (cryo-EM) has been added to the 

arsenal of structural biologists and has now overtaken NMR as the second most popular 

technique for obtaining molecular structures with 846 vs 395 models deposited in the PDB 

during 2018 for cryo-EM and NMR, respectively, although both are still lagging far behind X-

ray crystallography (>10000 models deposited in 2018). 

All three techniques have unique advantages and disadvantages that make them suitable for 

specific applications, with X-ray crystallography still being the method of choice for systems 

which do not contain flexible or disordered regions. On the opposite end, NMR can still capture 

valuable information about flexible systems as well as characterize dynamics under conditions 

that can be considered native-like. Solution-state NMR has, however, size limitations which 

only make it applicable for rather small systems when it comes to solving 3D structures. It does 

however allow to answer specific questions, in particular related to the dynamics of large 

systems like nucleosomes 3–7, proteasomes 8–12, mRNA signalling machinery 13–16 as well as 

systems with high clinical significance such as kinase and chaperone complexes 17–19, for which 

NMR has a long and well-documented history of serving as the primary data source driving 

the simulations 20. While solid-state NMR 21,22 does not suffer from size limitations, it still has 

difficulty in yielding atomic resolution quality spatial information, especially 3D structures, 

despite recent methodological advancements in specific fields 23–25. Cryo-EM is increasingly 

becoming one of the most popular ways of determining the structure of biomolecules and most 

importantly large complexes and macromolecular assemblies. However, it cannot yet routinely 

produce structural models of atomic resolution, the level of detail which is required to 
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modelling a larger number of subunits. Integrative modelling refers thus to the use of some 

docking protocol that combines multiple sources of information (e.g. cryo-EM density map 

and XL-MS derived distance restraints) in order to generate a 3D model of the assembly under 

study 32,33.  

Docking has existed as a standalone field for close to 40 years 34,35 and is one of the main two 

computational methods which allows us to study the 3D structure of interacting biomolecules, 

the other being atomistic binding simulations based, for example, on Molecular Dynamics 

(MD) simulations 36,37. Docking has seen a wide range of applications from structure-based 

drug design 38 to protein-protein interaction studies 39,40 and network biology 41,42. Unlike 

atomistic simulations, the computational requirements of docking can be met quite easily 36, 

which allows us to generate models at a fraction of the time of what would be required by MD. 

Similar to MD and other biomolecular simulation approaches though, two factors govern its 

performance: Sampling and scoring. Simply put, sampling refers to the process that is used to 

generate the binding poses from the unbound conformations. Scoring, on the other hand, is the 

process which allows us to discriminate between good – or native-like – and bad – or non-

native-like – models. In the context of integrative modelling, the information at hand can be 

used to guide the simulation towards specific conformations, thus affecting the way the 

sampling is performed, as a filter to select or discard models based on their agreement with the 

experimental data, thus affecting the way the scoring is performed, or both. 

A detailed overview of the challenges of the various types of docking depending on the nature 

of the interacting biomolecules such as protein-protein 1,43, protein-nucleic acid 44–46, protein-

small molecule 47,48 and protein-peptide 49 is beyond the scope of this mini review as are the 

intricate details of the algorithms used by various docking programs to achieve good sampling 

and scoring performance. The latter is something that has been continuously evaluated over a 

period spanning almost 20 years in CAPRI (Critical Assessment of Protein Interactions) 50 – 

the blind docking experiment 51–55. Recent CAPRI evaluations clearly demonstrate that the best 

strategy to model complexes is to follow a template-based approach when homologous 

complexes or interfaces can be identified from the PDB database 56,57. Among the various 

docking software, several are supporting the use of data directly during sampling, like 

HADDOCK (High Ambiguity Driven DOCKing) 58,59, the pioneer of information-driven 

docking, together with other widely used codes like ATTRACT 60–63, Hex 64,65, IMP 66,67, 

LightDock 68,69 and ROSETTA 70,71. In general, most docking codes under active development 

have added support for the use of information either to drive the simulation or, more commonly, 

as a way to filter the generated models 1. 

 

 
 

between specific residues of biomolecular complexes that can then be used in modelling since 

they allow for an upper distance bound between the residues they are targeting. Variations of 

the technique also enable the study of dynamics of complex populations in native-like 

conditions or even within living cells. SAXS on the other hand, is the solution equivalent of 

X-ray crystallography and can provide low-resolution shape information about complexes in 

solution and similarly to XL-MS, can also yield information regarding dynamic populations. 

Both of these techniques, along with the previously mentioned ones, will be discussed in detail 

in the next section. 

Next to experimental methods, computational and bioinformatics approaches such as 

coevolution analyses can be used to identify residues at protein interfaces which evolve in 

tandem, allowing to use those residue pairs in integrative modelling directly in the simulation 

or during the scoring stage. Additional developments, such as the availability of coarse-grained 

force fields, allow for simulations across longer (time) and bigger (size) scales, enabling 

multiscale studies from the quantum to various levels of coarse-grained representations. These 

pave the way for continuous and mesoscale studies of biomolecular systems. Some docking 

codes now also support modelling of membrane complexes with specially adapted implicit 

potentials. All these developments mean that systems of increasing complexity and high 

relevance can now be studied within reasonable computational costs. 

 

Integrative and Information-driven modelling 

We have so far mentioned integrative and information-driven modelling without explicitly 

defining what constitutes such a modelling approach and distinguishes it from de novo or first-

principles modelling. The main emphasis of this mini-review is on the use of biomolecular 

docking for modelling the 3D structure of biomolecular protein-protein complexes with a 

special focus at the end on membrane protein complexes.  

Molecular docking refers to a set of techniques that allows us to predict the 3D structure of a 

biomolecular complex via simulation when starting from the 3D structures of its unbound (free) 

components 31. Unlike de-novo modelling, information-driven modelling centres on the 

concept of using experimentally determined (or predicted) data to guide the modelling process 

in the hope of sampling or selecting only the meaningful part of the conformational, interaction 

landscape of the complex. It thus bypasses the need to exhaustively sample the vast 

conformational space, which would cover a 6D space for a binary complex consisting of rigid 

molecules. Its complexity will, however, greatly increase when considering flexibility and/or 
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(MD) simulations 36,37. Docking has seen a wide range of applications from structure-based 

drug design 38 to protein-protein interaction studies 39,40 and network biology 41,42. Unlike 

atomistic simulations, the computational requirements of docking can be met quite easily 36, 

which allows us to generate models at a fraction of the time of what would be required by MD. 

Similar to MD and other biomolecular simulation approaches though, two factors govern its 

performance: Sampling and scoring. Simply put, sampling refers to the process that is used to 

generate the binding poses from the unbound conformations. Scoring, on the other hand, is the 
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between specific residues of biomolecular complexes that can then be used in modelling since 

they allow for an upper distance bound between the residues they are targeting. Variations of 
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landscape of the complex. It thus bypasses the need to exhaustively sample the vast 

conformational space, which would cover a 6D space for a binary complex consisting of rigid 

molecules. Its complexity will, however, greatly increase when considering flexibility and/or 
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allow quick screening of hundreds of mutations 79,80. Despite these advancements and the 

benefits conveyed in targeted mutagenesis as demonstrated for example in the CRISPR/CAS9 

system 81,82, we do not expect mutagenesis data to become a dominant part of integrative 

modelling protocols. It will however remain a valuable source of information, even more these 

days where next generation sequencing has boosted the amount of genomic information 

available, including the identification of disease-related mutations. 

  

 

 
 

The next section is going to focus on the various types of experimental information that can be 

used by integrative modelling frameworks. 

 

Information sources for integrative modelling 

Of course, integrative modelling entirely depends on the availability of data to drive the 

simulation. In this section we will expand on some of the most widely used types of information 

that can be used in an integrative capacity starting from simple experimental setups which do 

not require extensive expertise or instrumentation before proceeding to more complicated ones. 

The most commonly used approaches are those that yield residue level information. This kind 

of data can be obtained from mutagenesis, crosslinking – providing upper limits to the distance 

between the crosslinked residues, hydrogen-deuterium exchange and NMR spectroscopy 

experiments. The next set of techniques can yield anything from low-resolution information to 

high-resolution structural models of macromolecular assemblies; Cryo-EM and Small angle X-

ray Scattering belong in this category. Finally, computational techniques such as multiple 

sequence alignments, coevolution analysis and metagenomics sequencing can yield high-

quality information and interfacial and interacting residues. 

 

Mutagenesis 
Mutagenesis experiments 72–75 rest on the hypothesis that mutation of residues that are 

functionally important for complex formation will prevent the biomolecules (proteins 

specifically in this case) from interacting with each other and thus the complex from being 

formed (Fig 1, panel A.1). It has been used to map the interfaces or binding sites of interacting 

proteins 76–78. The benefits of mutagenesis experiments are the relative ease with which the 

experiment can be performed, with a large variety of detection methods possible, and the fact 

that it provides residue level information which constitutes high-quality data that can 

significantly aid the modelling process compared to assays which can only provide qualitative 

information with regards to whether two biomolecules are interacting or not. The main 

downside is that, due to the indirect nature of the experiment, it needs to be combined with 

functional and folding assays to ensure that lack of complex formation is a result of the 

mutation that was introduced and not of the incorrect folding of one of the partners. Another 

complicating factor are allosteric effects, which can be very challenging to detect. Recent 

improvements to existing high-throughput mutagenesis pipelines which minimise 

experimental errors should enable the rapid creation of mutant libraries, which, in turn, will 
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Hydrogen-Deuterium Exchange 
Hydrogen-Deuterium Exchange (HDX) is based on the principle of constant exchange of 

protons between biomolecules and water in which they are dissolved. In a typical HDX 

experiment (Fig. 1, panel A.2) the solvent (H2O) is exchanged for D2O, which means that the 

exchangeable protons of the protein (e.g. the backbone amide protons) will – at some point – 

exchange their proton for deuterium. The rate at which this exchange event takes place is 

determined by the stability of the hydrogen bond network the proton is part of, its solvent 

accessibility and the chemical characteristics of the residue it belongs to as well as those in its 

immediate vicinity 85. Time-resolved measurements of these exchange events allow us to 

calculate the so-called protection factors for every exchanging amide 86, which in turn can be 

used to map protein-protein interfaces. These protection factors need to be determined 

separately for the unbound monomers and the complex. Due to the properties of deuterium, 

detection can be performed with either NMR or – much more commonly – Mass Spectrometry 

(MS). An important point regarding the mapped regions when MS is the detection method is 

that, due to the nature of the technique, it is not individual residues that are identified but 

peptide fragments whose length usually ranges between 5 to 10 residues complicating 

somewhat the way they can be used during computational modelling. Benefiting from 

methodological improvements in Liquid Chromatography (LC) and MS, along with major 

progress in analysis software, HDX is increasing in popularity, also aided by the relatively 

simple experimental setup it requires 87. The nature of HDX experiments means these can be 

applied broadly for the study of any biomolecule with exchangeable protons. While HDX data 

are not used as often in integrative modelling of complexes we expect that situation to change 

in the coming years. Of particular note is the fact that the HDX community, in anticipation of 

this increased interest in the field, has taken steps to codify practices ranging from sample 

preparation, measurement and data analysis to publication and dissemination of data in 

standardised formats 87. These efforts are of particular importance as they allow easier 

integration in modelling paradigms which combine multiple experimental sources of 

information 88. 

 

Chemical cross-linking 
Chemical cross linking, most often combined with Mass Spectrometry for detection purposes 

– Cross Linking Mass Spectrometry (XL-MS) – refers to the chemical linking of residues (most 

often lysine or cysteine) which are located on the surface of proteins using compounds which 

 

 
 

Fig 1: Schematic representation of 
some of the experimental methods 
which can be used in integrative 
modelling. Panel A shows methods 
which can be used to map interfaces of 
interacting biomolecules. Panel A.1 
shows the experimental setup for a 
mutagenesis experiment combined 
with a binding assay. Mutations of 
residues which lie at the interface of 
the two proteins prevent complex 
formation. Mutated sites are shown as 
purple stars. Panel A.2 shows the 
experimental setup for an HDX 
experiment during which the exchange 
rates for both the free forms of the 
proteins and their complex are 
compared in order to detect the 
regions which are occluded at the 
interface of the complex due to slower 
exchanging protons. Panel B shows 
methods which can be used to 
calculate residue-based distances. 
Panel B.1 shows a complex which has 
undergone crosslinking with the 
intermolecular crosslinks shown as 
continuous black lines and the 
intramolecular ones as dotted grey 
lines. Panel B.2 shows a complex to 
which fluorophore dyes have been 
attached at specific residues allowing 
us to calculate the distance between 
the target residues with FRET. The 
donor and acceptor fluorophores are 
shown as purple and green circles 
respectively. Panel B.3 shows a 
complex to which spin labels have 
been attached enabling calculation of 
intermolecular distances with DEER 
spectroscopy. The labels are as shown 
as purple radicals. Panel C shows 
shape-based methods. The free 
structures of the complex are 
combined with shape-based 
information about the complex 
structure which can be derived from 
cryo-EM densities or SAXS shapes. 
The surface representation of the 
complex was generated with PyMOL 
83. All molecular graphics structures 
were created with ChimeraX 84. The 
complex shown is the Ubiquituin-UBA 
domain from Cbl-b ubiquitin ligase 
(PDB entry 2oob). Ubiquitin is 
coloured orange and UBA light blue. 
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determine different structural models for the different states more closely reflecting the 

behaviour of the system under study in solution. The DisVis standalone program and webserver 
106,107 can already perform the task of identifying potential false positives through enumeration 

of violations of distance restraints after exhaustive rotational and translational sampling and 

developments to allow clustering of distinct distances into conformational states are already 

under way. 

 

NMR spectroscopy 
Until fairly recently, NMR spectroscopy was one of two ways (the other way of course being 

X-ray crystallography) of obtaining high resolution structures of biomolecules. Its application 

to complexes was limited as solution-state NMR cannot routinely deal with complexes whose 

size is greater than 40kDa 108. The most easily obtainable measurements for macromolecular 

complexes are Chemical Shift Perturbations (CSPs) which allows for the mapping of the 

interacting regions of biomolecules 109 at the residue/atomic level. In addition to CSPs 

additional restraints can be recorded from NMR experiments such as for example 

intermolecular NOEs, Residual Dipolar Couplings (RDCs) and relaxation anisotropy 110,111 

which reveal details regarding the relative orientation of two interacting biomolecules. 

Paramagnetic probes 112 can be used to provide additional information to standard NMR 

experiments in the form of long-distance atomic information 113, to probe interacting surfaces 

of biomolecules 114,115 and study dynamics 116. Unlike solution-NMR, solid-state NMR 

(ssNMR) 117,118 has no theoretical limitations on the size of the systems which can be studied, 

however, obtaining atomic-resolution structures can be complicated due to the spectral 

complexity 119,120. More recently, ssNMR has been applied successfully for the study of 

transmembrane systems ranging from the Kcsa ion channel 25,121 to small peptide-based 

antibiotics which interfere with the lipid-II cycle 24. Of course, the application of NMR – 

whether in solid- or solution state – to small and flexible systems such as peptides is not new 

even when considering membrane embedded peptides 122,123. One of the recent developments 

in the field of NMR has been the ability to study molecules in cells allowing for qualitative 

comparisons between native and non-native species or analysis of conformational 

heterogeneity across different cell types 124–127. A limiting factor of NMR is the often-costly 

procedure of preparing samples for NMR as well as the relative difficulty in analysing and 

interpreting the experimental measurements. In light of these observations, we expect NMR to 

continue to factor significantly in integrative modelling over the coming years mainly owing 

 

 
 

consist of two reactive heads and a (flexible) spacer of known maximal length  89,90. After the 

crosslinking reagent has been added to the protein/cell sample and the sample has been washed, 

it is subjected to trypsination (or treatment with another protease) and the peptide fragments 

are detected via Mass Spectrometry 91 (Fig. 2, panel B.1). The benefit of XL-MS when 

compared to mutagenesis or HDX experiments is that the residue information is not ambiguous 

as it always comes in pairs (unless there are two lysines within the detected peptide fragment) 

and, in addition to the residues themselves, it provides information regarding their distance as 

the maximal spacer distance is known a priori. Recent improvements in crosslinking protocols 

and reagents along with widespread availability of proteomics facilities as well as the high-

throughput nature of modern MS should also be counted among the benefits of XL-MS. All 

these allow for rapid and semi-automated retrieval of the distance profiles after sample 

preparation is complete 92. Additional advancements have been made in spectral analysis and 

database search algorithms 93–95 generating high quality, quantitative XL-MS data which can 

be used to monitor the structure and dynamics of macromolecules and their assemblies in 

solution 96–98. The wide variety of residues and chemical types which can be targeted for 

crosslinking ensures the wide applicability of the technique. Additionally, the combination of 

spacers of different lengths can provide distance information across varying scales, allowing 

us to capture data about both short and longer distances all of which can be used during the 

modelling process. Impressively, these experiments can be performed in intact cells or intact 

cell compartments, allowing us to extract information about the native state of the system under 

study 99–101. Two major challenges of using crosslink data in docking are the fact that the 

crosslinks captured might reflect multiple conformational states of the complex or assembly 

under study, the inherent difficulty of distinguishing between intra- and inter-molecular 

crosslinks – or crosslinks between two residues of the same protein and residues of different 

proteins when dealing with symmetrical systems, and the high reactivity of the reagents which 

can capture non-native, encounter complexes. Despite these, we expect XL-MS to further 

develop in the coming years and XL-MS derived distance restraints to become increasingly 

prevalent in integrative modelling as integrative modelling software also develops ways of 

dealing with these shortcomings in a consistent way. Similar to the HDX community, multiple 

leading MS groups have decided to establish community guidelines regarding best practises in 

sample preparation, measurement, data analysis, model validation and result reporting 102–105. 

Development of software which can automatically group crosslinks into the conformational 

states to which they correspond and identify potential false positives, would be a valuable 

addition. This would allow docking software which can make use of distance restraints to 
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which reveal details regarding the relative orientation of two interacting biomolecules. 

Paramagnetic probes 112 can be used to provide additional information to standard NMR 

experiments in the form of long-distance atomic information 113, to probe interacting surfaces 

of biomolecules 114,115 and study dynamics 116. Unlike solution-NMR, solid-state NMR 

(ssNMR) 117,118 has no theoretical limitations on the size of the systems which can be studied, 

however, obtaining atomic-resolution structures can be complicated due to the spectral 

complexity 119,120. More recently, ssNMR has been applied successfully for the study of 

transmembrane systems ranging from the Kcsa ion channel 25,121 to small peptide-based 

antibiotics which interfere with the lipid-II cycle 24. Of course, the application of NMR – 

whether in solid- or solution state – to small and flexible systems such as peptides is not new 

even when considering membrane embedded peptides 122,123. One of the recent developments 

in the field of NMR has been the ability to study molecules in cells allowing for qualitative 

comparisons between native and non-native species or analysis of conformational 

heterogeneity across different cell types 124–127. A limiting factor of NMR is the often-costly 

procedure of preparing samples for NMR as well as the relative difficulty in analysing and 

interpreting the experimental measurements. In light of these observations, we expect NMR to 

continue to factor significantly in integrative modelling over the coming years mainly owing 

 

 
 

consist of two reactive heads and a (flexible) spacer of known maximal length  89,90. After the 

crosslinking reagent has been added to the protein/cell sample and the sample has been washed, 

it is subjected to trypsination (or treatment with another protease) and the peptide fragments 

are detected via Mass Spectrometry 91 (Fig. 2, panel B.1). The benefit of XL-MS when 

compared to mutagenesis or HDX experiments is that the residue information is not ambiguous 

as it always comes in pairs (unless there are two lysines within the detected peptide fragment) 

and, in addition to the residues themselves, it provides information regarding their distance as 

the maximal spacer distance is known a priori. Recent improvements in crosslinking protocols 

and reagents along with widespread availability of proteomics facilities as well as the high-

throughput nature of modern MS should also be counted among the benefits of XL-MS. All 

these allow for rapid and semi-automated retrieval of the distance profiles after sample 

preparation is complete 92. Additional advancements have been made in spectral analysis and 

database search algorithms 93–95 generating high quality, quantitative XL-MS data which can 

be used to monitor the structure and dynamics of macromolecules and their assemblies in 

solution 96–98. The wide variety of residues and chemical types which can be targeted for 

crosslinking ensures the wide applicability of the technique. Additionally, the combination of 

spacers of different lengths can provide distance information across varying scales, allowing 

us to capture data about both short and longer distances all of which can be used during the 

modelling process. Impressively, these experiments can be performed in intact cells or intact 

cell compartments, allowing us to extract information about the native state of the system under 

study 99–101. Two major challenges of using crosslink data in docking are the fact that the 

crosslinks captured might reflect multiple conformational states of the complex or assembly 

under study, the inherent difficulty of distinguishing between intra- and inter-molecular 

crosslinks – or crosslinks between two residues of the same protein and residues of different 

proteins when dealing with symmetrical systems, and the high reactivity of the reagents which 

can capture non-native, encounter complexes. Despite these, we expect XL-MS to further 

develop in the coming years and XL-MS derived distance restraints to become increasingly 

prevalent in integrative modelling as integrative modelling software also develops ways of 

dealing with these shortcomings in a consistent way. Similar to the HDX community, multiple 

leading MS groups have decided to establish community guidelines regarding best practises in 

sample preparation, measurement, data analysis, model validation and result reporting 102–105. 

Development of software which can automatically group crosslinks into the conformational 

states to which they correspond and identify potential false positives, would be a valuable 

addition. This would allow docking software which can make use of distance restraints to 
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methodological limitations make it difficult to study small and/or flexible systems with cryo-

EM. Some recently solved structures show however promising results in that direction 142,143 

even potentially allowing us to study interactions between drugs and proteins 144. Secondly, 

even in the cases where a high-resolution model has been obtained the resolution distribution 

might not be uniform with some parts of the molecule having lower resolution than others. This 

non-uniformity can arise as a result of structural heterogeneity, non-isotropic distribution of 

sampled orientations or even processing artefacts. Some groups have already suggested 

alternative ways of measuring resolution that take into account significant local variations from 

the reported mean value 145,146. Sample structural heterogeneity is usually considered a limiting 

factor for cryo-EM as it makes the averaging of aligned images more difficult and results in 

lower-resolution models. Whereas most cryo-EM sample preparation protocols emphasise the 

importance of structural homogeneity in order to be able to generate high resolution models, 

some recently described approaches embrace the importance of structural heterogeneity as an 

inherent property of dynamic systems such as biological samples, allowing for identification 

of distinct conformational states 147–149. It is expected that identification of these distinct states 

will allow to simultaneously estimate the conformational landscape and thermodynamic 

behaviour of the system. Such results would be very desirable when attempting to describe the 

intermediate states of a cellular process or when studying systems for which high structural 

variability is expected 150. 

We conclude that despite the impressive advances made recently in the field of cryo-EM, we 

expect the importance of integrative approaches in the context of cryo-EM to increase. 

Integrative modelling might be used either as a way to validate the structural models, as a way 

to aid the modelling process for systems which are difficult to study with cryo-EM alone, or to 

model parts of the cryo-EM maps that might not reach sufficient resolution for de novo 

structure determination. The modelling of such systems from cryo-EM data can significantly 

benefit from the inclusion of additional data (e.g. from XL-MS or NMR 151,152). The importance 

of integrative approaches can also be seen by recent studies which favourably compare 

integrative models with high-resolution structures of the same complexes made available years 

later by cryo-EM 33. In light of these observations, we expect cryo-EM to play a prominent – 

if not dominant – role in many aspects of integrative modelling in the forthcoming years. 

 

 

 

 

 
 

to the undeniable benefit and unique ability of NMR of being able to study dynamics at atomic 

resolution in real time across different time scales. This is particularly attractive when 

compared to techniques like XL-MS which can only estimate dynamics as a result of 

conformational heterogeneity observed in the distance profiles. 

 

Cryo-EM 
The techniques which fall under the umbrella of cryo-EM have been revolutionising structural 

and integrative biology for a few years now. This is for the most part due to advancements in 

detector technology, automation and software 128,129. Cryo-EM derived structures can now 

match or even surpass structures of the same system obtained with X-ray crystallography 130. 

This is also reflected in the number of near atomic-resolution structures deposited in the 

Electron Microscopy Data Bank (EMDB) 131 with a third of the structures deposited in 2018 

having a resolution of 4Å or better (https://www.emdataresource.org) – a trend which further 

improved in 2019. Single particle analysis (SPA) constitutes the overwhelming majority of 

cryo-EM experiments undertaken in recent years 130. The typical cryo-EM SPA experiment 

constitutes of loading an aqueous solution containing the biological sample on a grid mesh, 

blotting to remove excess solution and to form a thin layer and covering it with a thin carbon 

film after which the sample-loaded grid is plunge frozen. The particles are then imaged with 

an electron beam using sufficiently low doses to prevent radiation damage. Many 2D images 

are collected, aligned and then used to computationally reconstruct the molecule in 3D 132,133. 

When the resolution is not sufficient to determine the molecular structure at atomic or near 

atomic resolution, various rigid or flexible fitting protocols can be used to fit existing structural 

models of the components of the assembly into the EM-derived map 134–137. In the time period 

preceding the resolution revolution these inherently integrative protocols were the most 

common way of generating structural models with cryo-EM (Fig. 1, panel C). More recently, 

popular codes such as ATTRACT, IMP (which supported cryo-EM data from day 1), 

HADDOCK and ROSETTA have added support for cryo-EM derived density maps during the 

modelling process 61,67,107,138–141. 

However, the ever-increasing performance gains in terms of resolution for structures solved 

with cryo-EM pose some interesting questions for the field of integrative modelling, 

specifically is there a place for integrative approaches in an era where atomic resolution models 

for a wide variety of systems and molecular weights can routinely be obtained with cryo-EM 

data alone? We believe the answer is yes, for multiple reasons. First and most importantly 
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Other experimental sources of information 
In addition to the experimental methods that have already been mentioned, structural biologists 

have access to a plethora of other methods giving various levels of experimental information 

about the interacting biomolecules. Covering all of these techniques as well as the ways in 

which the data that can be derived from them for use in integrative modelling is beyond the 

scope of this review. We will mention though two techniques standing out due to their high 

importance for the field of modelling, both of which can provide distance information between 

residues of the interacting biomolecules. The first is Förster Energy Resonance Transfer 

(FRET). It allows to detect the energy transfer between donor and acceptor fluorophores 

allowing for the calculation of long-range distances between those parts 167 (Fig. 1, panel B.2). 

It does however require covalent attachment of dyes to specific parts of the molecules. FRET 

data have been used successfully in integrative modelling efforts either alone or in combination 

with data from other sources to determine the structure of biomolecular complexes and study 

their dynamics 168–172. Similarly to FRET, the Double Electron-Electron Resonance technique 

(DEER) is a spectroscopic approach which enables the calculation of long-distances between 

interacting spin labels that have been attached to specific residues (most commonly cysteines) 
173,174 (Fig. 1, panel B.3). It has been applied widely to study systems of varying sizes and 

composition including small protein-protein complexes to large molecular machines and RNA-

containing complexes 175–178.  

 

Bioinformatics and Computational Approaches 
Perhaps some of the most interesting advancements in the field of integrative modelling in 

recent years originate from bioinformatics and computational techniques which, on their own, 

cannot be classified as integrative, but whose output can be combined in integrative modelling 

frameworks just like experimental data. In this section we are only going to provide a succinct 

overview of recent developments in the field, emphasising three areas: The coming of age of 

coevolution, the appearance of membrane-specific modelling tools and the use of coarse 

graining approaches. 

 

Coevolution 
Coevolution rests on the observation that sometimes mutations at specific positions in a protein 

sequence correlate with mutations at other positions of the same or interacting proteins, the 

hypothesis being that if such residues “coevolve”, they might be in spatial proximity. When a 

mutation is introduced in one of the interacting pair a compensatory mutation arises in the other 

 

 
 

Small Angle X-ray Scattering 
Biological Small Angle X-ray Scattering (SAXS) is the solution equivalent to X-ray 

crystallography. It is another field which has been undergoing a renaissance in recent years 

with more improvements expected in the next few years 153. In a basic SAXS experiment a 

macromolecular solution is bombarded with X-ray beams and the scattering pattern is recorded 

by a detector placed in close proximity to the sample. The most basic information that can be 

extracted from the measurement is the scattering curve which is extracted from the distance 

profile between all sample atoms which can in turn be used to construct a low-resolution shape 

or envelope of the system under study 154. The potential for SAXS data to be useful in 

integrative studies was realised early 155 with protocols resembling those that are used for fitting 

X-ray- or NMR-derived structural models into medium- to low-resolution EM density maps 

where the unbound structures of the components of the complex were docked against each 

other and the shape of the resulting complex was scored against the SAXS-calculated shape 
156,157 or directly against the scattering curve 153,158–164. More recently, protocols that can make 

use of the shape information to guide the docking towards conformations that agree with the 

SAXS shape have been described 165 (Fig. 1, panel C). The maturity of SAXS protocols, the 

standardisation of guidelines for publishing SAXS data, the relative ease with which samples 

can be prepared, the automated manner of data acquisition and analysis as well as the high-

throughput nature of BIO SAXS are some of the factors which make SAXS a very attractive 

option for probing macromolecular interactions under solution conditions without a size 

limitation, but sample purity and homogeneity are important aspects in order to be able to 

derive reliable structural data 166. In addition to calculating low-resolution shapes of 

macromolecular complexes, SAXS can be used to qualitatively and quantitatively compare 

samples, probe conformational differences, assembly states, folding status and in some cases 

even refine flexible, low resolution regions of structures determined with X-ray crystallography 
154. All these factors combine to paint a very favourable picture of SAXS in its current and 

future states. The ability to probe dynamics in solution without size limitations while at the 

same time deriving shape-based restraints which can either be used to restrain the sampling of 

docking simulations or filter out non-native-like solutions when scoring generated models are 

counted among its greatest strengths. We only expect the contribution of SAXS in the field of 

integrative modelling to further proliferate. 
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even refine flexible, low resolution regions of structures determined with X-ray crystallography 
154. All these factors combine to paint a very favourable picture of SAXS in its current and 

future states. The ability to probe dynamics in solution without size limitations while at the 

same time deriving shape-based restraints which can either be used to restrain the sampling of 

docking simulations or filter out non-native-like solutions when scoring generated models are 

counted among its greatest strengths. We only expect the contribution of SAXS in the field of 

integrative modelling to further proliferate. 
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Small Angle X-ray Scattering 
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Styrene-Maleic Acid (SMA) copolymers which can be used in combination with synthetic 

liposomes or native membranes to solubilise patches of protein-containing lipid bilayers 

without the adverse effects of detergents 194. These, so called, SMALPs (SMA-lipid particles) 

have already been used together with MS to determine the stoichiometry 195, acquire atomic 

resolution structures of membrane protein complexes using X-ray crystallography and cryo-

EM 196,197 as well as study their dynamics with solid-state NMR 198,199. Computational methods 

therefore remain an attractive alternative for the study of membrane bound or membrane 

associated proteins and their complexes 200. The simplest – yet most effective – way in which 

membrane protein modelling has been made easier in the recent years comes from a higher 

availability of representative 3D structures in the PDB thanks, in no small part, to advances in 

cryo-EM 201. This, in combination with the availability of membrane specific homology 

modelling tools like MEDELLER 202 and Memoir 203, which implement protocols similar to 

and inspired by one of the most popular homology modelling tools – MODELLER 204 – enables 

the creation of structural models that strongly approximate native ones 205. These can be used 

to confidently model structures which have not yet been determined experimentally. These 

models can act as the starting point for further investigation, which usually involves some 

degree of integrative modelling, for example rigid/flexible fitting in low-medium resolution 

cryo-EM maps or embedding into membranes and studying the system by MD. This wider 

availability of transmembrane (TM) protein structures is also reflected in the enrichment of 

entries in databases that deal with membrane proteins exclusively 201, such as the manually 

curated mpstruc (membrane proteins of known 3D structure - 

https://blanco.biomol.uci.edu/mpstruc/), which annotates all non-redundant proteins in the 

PDB. The latter also serves as the starting point for the classification system the PDB uses for 

identifying entries as TM, for OPM (orientations of proteins in membranes - 

https://opm.phar.umich.edu/) 206, which computes the membrane insertion angle, tilt and width 

for transmembrane and membrane associated proteins, and for MemProtMD 

(http://memprotmd.bioch.ox.ac.uk/) which inserts proteins in lipid bilayers via self-assembly 

with coarse-grained MD simulations and also makes available the pre-equilibrated membrane 

bilayer-protein structures 207,208. The plethora of G-protein coupled receptor (GPCR) structures 

which have been solved recently is of major importance not only to the structural biology 

community but to areas of pharmaceutical research as well owing to the importance of GPCRs 

in many diseases 209. These structures, along with important details regarding the method that 

was used to determine them, the conditions under which the experiments were performed and 

various aggregated statistics and analyses are collected in GPCRdb (GPCR database - 

 

 
 

due to evolutionary pressure relating to functional or conformational importance of that residue 

pair 179. This information can be used in the structure determination of proteins 180 but most 

importantly for integrative modelling purposes. The concept can be quite easily extended to 

protein residues which belong to different proteins forming a complex or being part of a larger 

molecular assembly 181. Methods such as EVcomplex, GREMLIN 182,183 and InterEvDock 184 

have been applied successfully in docking simulations 185–187. Of particular note is the recent 

development of InterEvDock2, a free and fully automated webserver which allows the user to 

input sequences instead of structures, submit multimeric next to monomeric components and 

automatically derive coevolution-based restraints to use for scoring the models generated 

during the simulation 188. The utility of coevolution-based data does not stop with protein 

folding and determination of soluble protein-protein interfaces though. More recently, it has 

been used to determine transmembrane protein interaction sites 189,190, identify new protein-

protein interaction networks 191 and novel protein contact maps making use metagenomics data 
192. The robust state of the coevolution community in combination with the intuitive nature of 

the output data makes us confident that the use of coevolution-derived spatial restraints is only 

going to become more prevalent in the near future. One potential limiting factor for the use of 

coevolution-based restraints for docking is the need for extensive and diverse sequencing data 

in order to get deep enough alignments, although deep learning methods are becoming more 

robust with respect to the alignment depth 193. This limitation can, for example, limit their 

applicability for the study of mammalian systems, for which sequencing data are not as 

exhaustive compared to bacteria and yeast. 

 

Membrane modelling 
Another field which has attracted attention recently and has seen many developments is 

membrane protein modelling. It is traditionally considered as one of the most difficult kinds of 

systems to study with experimental structural biology methods due to the nature of the lipid 

bilayer which requires that, either it is dissolved with detergents and reconstituted, or that 

native or native-like membrane mimetics are used. The former is easier and has been used with 

success for X-ray and NMR but raises questions about the effect the detergent has on the 3D 

structure. The use of native or native-like membrane mimetics is much closer to physiological 

conditions, which means that any structure determined this way should be closer to its 

counterpart in the cellular environment, but this introduces many challenges in sample 

preparation and measurements. A relatively recent advancement enabling studies of membrane 

proteins and their complexes in native-like and even native environments is the advent of 
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Fig 2: Structural models determined with integrative approaches. Panel A shows a rendering of the nucleosome complex 
bound to UbcH5c and RNF168-RING domain. The model was determined with HADDOCK using NMR-derived spatial 
restraints (CSPs) in combination with mutagenesis and XL-MS data (PDB-dev entry 29). The DNA is shown in grey, the 
histones in blue and the UbcH5c and RNF168-RING domain in orange. Panel B shows a rendering of the ghrelin peptide 
bound to its G-protein coupled receptor (GHSR) (PDB-dev entry 24). The model was determined with ROSETTA using NMR-
derived spatial restraints (CSPs) and mutagenesis data. GHSR is coloured orange with the peptide in light blue with some 
clipping to enable visualisation of the binding pocket. Both models are illustrated with the program `illustrate` by David 
Goodsell. Only the top model from each submission is shown. 

 

Perspectives 
We have highlighted some key areas of experimental and computational structural biology and 

identified the ones which, we believe, will factor significantly in the coming years for the field 

of integrative modelling in general and molecular docking specifically. Despite these advances, 

there are however also some areas for which we believe developments have been lacking. Chief 

among these is the fact that many docking codes can still not make use information during the 

simulation, instead only in the scoring stage, and therefore cannot be considered integrative 

approaches, with some exceptions existing, e.g. ATTRACT, HADDOCK, IMP, PyRy3D and 

RosettaDock to cite the most known ones. Another limiting factor is the fact that the number 

of distinct subunits which can be included in the simulation is still limited, with most codes, 

except a few, supporting only one receptor and one ligand 1,188,227,i.e. binary complexes.  

 

 
 

https://gpcrdb.org/) 210. Coarse-grained MD forcefields such as MARTINI 211–214, which was 

originally developed for membrane , have also been extended to include proteins and nucleic 

acids. These allow to simulate larger systems and/or reach longer time scales. The MARTINI 

force field has recently been implemented into HADDOCK for the modelling of proteins and 

nucleic acids complexes 215,216. Other docking codes such as ATTRACT 61, CABS-dock 217,218, 

the Integrative Modeling Platform (IMP) 66,67 and PyRy3D (http://pyry3d.icm.edu.pl/) also 

support coarse-graining. Despite these significant advances the only docking codes which 

currently offer the ability to dock TM proteins with specific implicit membrane potentials are 

(to the best of our knowledge) ROSETTA 219,220, DOCK/PIERR 221,222 and Memdock 223. More 

recently a generic, ready-to-dock benchmark of membrane protein complexes accompanied by 

docking decoys for the purpose of training membrane-specific scoring functions was made 

available 224,225. The lack of widely available explicit support for the docking of membrane 

proteins has resulted in some creative integrative modelling with, for example, researchers 

using HADDOCK to probe the interaction between the K-RAS4B oncogenic protein when 

complexed with the Cmpd2 inhibitor and lipid nanodisks making use of NMR-derived 

restraints to drive the simulation 226. In summary, we believe it’s high time the field of 

membrane complexes modelling is given the attention it deserves by the docking community 

as all the ingredients for successful integrative modelling are in place, with experimental 

methods providing good template structures for modelling as well as experimental restraints, 

computational tools like coevolution providing additional data to drive the docking and 

plentiful implicit or explicit implementations of membrane bilayers allowing for studies at 

different representation levels. 
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process. We conclude that the future for integrative modelling software is bright as the 

availability and quality of data is only going to increase as will the ability of algorithms and 

hardware to handle that data efficiently and meaningfully. There still remain, however, long-

standing challenges, such as accurate binding affinity prediction and accurately modelling large 

conformational changes. These have been challenges in the biomolecular simulation world 

since the very first days of the field 1,227. Our ability to model the structure of biomolecules as 

well as biomolecular complexes has been continuously evaluated over a period spanning more 

than 20 years in the CASP (Critical Assessment of Structure Prediction) 240 and CAPRI 

(Critical Assessment of PRediction of Interactions) 241 experiments, with the first focusing on 

single protein structure prediction (with a multimer component) and the latter on protein 

complexes. In recent iterations of the challenge, CASP has featured a data-assisted category 

for which some information about the target system is disseminated to the participating groups 

thus evaluating the ability of software to incorporate information in the prediction and its 

outcome. In CAPRI so far, only once was a SAXS scattering profile provided. The field would 

clearly benefit from truly integrative blind modelling challenges as such blind challenges have 

been, and will remain important catalysts for further development and advances. 

  

 

 
 

Another aspect of integrative modelling is that being able to combine multiple sources of 

information into a single docking run does not necessarily mean that the resulting models 

benefit from the included information. The reason for this is that information needs to be 

combined in a probabilistically sound way, that is in a way that reflects the uncertainty of the 

original measurements and properly propagates it 66,228. Perhaps the most well-known example 

of software which properly accounts for this and weights the multiple data sources used in the 

modelling through a Bayesian framework are IMP 66,67 and the Inferential Structure 

Determination Software (ISD) 229. IMP has most famously been used for the determination of 

an integrative model for the nuclear pore complex 230, which was validated last year when the 

cryo-EM structure for the entire complex was solved with a final resolution of 28Å 231. ISD 229, 

originally developed for NMR 232, has recently been extended and applied to challenging 

systems like membrane proteins, bacterial pili and chromosomes 233–235, and also large 

macromolecular assemblies using shape-based (SAXS or cryo-EM) data 236. 

Another alternative to one-stop integrative modelling software is the combination of multiple 

codes in easy-to-use and cohesive workflows which hide the technical details away from the 

end users and allow for seamless flow of information between different packages. Some 

encouraging work in this direction has already started with CROSS-ID 105, a package for the 

analysis and visualisation of XL-MS data which is part of XlinkX 100,104 and makes uses of 

DisVis for the visualisation and validation of crosslink data. Another interesting initiative is 

the BioExcel consortium since one of their stated goals is to promote integration among several 

flagship computational biology/chemistry packages such as HADDOCK and GROMACS 
237,238. 

Finally, next to development in integrative software, proper description and archival of 

integrative models is an important area which is benefiting from the advent of PDB-dev 32,239 

a portal developed by wwPDB in collaboration and consultation with experts in the field of 

integrative modelling. Its aim is to act as a hub to collect structural models, and all their 

associated data, that have been determined by integrative approaches. Two examples of 

integrative models deposited into PDB-dev obtained with various software and data types are 

shown in Fig. 2. 
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In this review we have discussed aspects of integrative modelling and in particular recent 

developments related to the various types of information that can be used to aid the modelling 
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Abstract 
We report the first membrane protein-protein docking benchmark consisting of 37 targets of 

diverse functions and folds. The structures were chosen based on a set of parameters such as 

the availability of unbound structures, the modelling difficulty and their uniqueness. They have 

been cleaned and consistently numbered to facilitate their use in docking. Using this 

benchmark, we establish the baseline performance of HADDOCK, without any specific 

optimization for membrane proteins, for two scenarios: True interface-driven docking and ab-

initio docking. Despite the fact that HADDOCK has been developed for soluble complexes, it 

shows promising docking performance for membrane systems, but there is clearly room for 

further optimisation. The resulting set of docking decoys, together with analysis scripts are 

made freely available. These can serve as a basis for the optimisation of membrane complex-

specific scoring functions. 
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benchmark to allow a realistic evaluation of docking performance. We have however reached 

a point where enough structures of membrane proteins have been deposited in the PDB to 

create a docking benchmark. This allows us here to introduce a new membrane protein-protein 

complex benchmark, establish the baseline performance of HADDOCK in two docking 

scenarios and provide a decoy dataset that will allow further optimisation of scoring functions 

for this specific class of complexes. This new benchmark is freely available for download. The 

structures have been renumbered and cleaned to facilitate immediate docking and analysis. In 

addition to the benchmark itself we are also providing code that can be used for the analysis of 

docking results as well as the decoy datasets. The content of this benchmark is more diverse 

than any of the datasets used in previous studies since it contains both non-helical proteins and 

helical proteins, and complexes that are larger than GPCRs, as well as small helices. 

 

Materials and Methods 

Data sources 
The primary data source for this benchmark was the Membrane Proteins of Known Structure 

(MPSTRUC) database (http://blanco.biomol.uci.edu/mpstruc/). MPSTRUC is a manually 

curated database of membrane proteins. Its entries are classified into three categories: 

1. Monotopic membrane proteins 
2. Beta-barrel transmembrane proteins 
3. Alpha-helix transmembrane proteins 

We disregarded the monotopic membrane protein category since it is made up of proteins 

which are not embedded in the lipid bilayer but instead are only anchored to one side of it. We 

considered all remaining unique entries and processed them using the procedure outlined in 

Fig. 1. 

 
Fig 1: Flowchart of the structure identification procedure. 

 

 
 

Introduction 

The docking community makes extensive use of benchmarks for evaluating the performance 

of docking algorithms and constantly improving them. Such benchmarks are also critical to 

allow a fair comparison between various algorithms, next to blind docking experiments such 

as CAPRI 50 for protein-protein and protein-peptide docking and Drug Design Data Resource 

grand challenges (D3R) 242,243 for small molecule docking. Some of the most cited benchmarks 

are the protein-protein 244, protein-peptide 245,246, protein-DNA 247 and protein-ligand 248 ones. 

Several recent publications have made use of membrane protein-related benchmarks for testing 

and validating their software. RosettaMP 219, a recently updated addition to Rosetta’s toolbox, 

supports a general membrane representation and can be used in combination with many of 

Rosetta’s existing sampling and scoring protocols. The MPdock protocol is a combination of 

the RosettaMP and RosettaDock protocols 71 and supports docking of membrane proteins. The 

same publication also presents the MPsymdock protocol which can be used to assemble 

homomeric membrane protein complexes from their monomeric constituents using known 

symmetry information. The authors also tested the newly-minted protocols on membrane 

protein complexes, however since they intended those demonstrations as a proof-of-concept 

they only tested on 5 and 4 complexes for the MPdock and MPsymdock protocols respectively. 

Other researchers have made use of more extensive datasets for their work, such as the 

Memdock 223 software and the modification to the scoring schemes employed by 

DOCK/PIERR 221,222. In the case of the former their training and testing sets consisted of 43 

and 21 complexes (for a total of 64) obtained from the OPM database 249, however all entries 

are helical proteins. The same is true for DOCK/PIERR as well. Their dataset makes use of the 

MPSTRUC database as the primary source of data and contains 22 biological complexes as 

well 8 artificial complexes which have been created by separating GPCR proteins into separate 

parts after cutting them at one of the cytosolic/extracellular loops. This dataset mostly consists 

of GPCRs and small helical complexes. None of the aforementioned works make the structures 

they used available and therefore their datasets cannot be used as a docking benchmark. 

Another GPCR dataset has been recently published 250. To the best of our knowledge, however, 

there is no general and non-redundant docking benchmark for membrane protein-protein 

complexes. This is understandable since membrane proteins are notoriously difficult to 

characterize experimentally 251, which limits their number in the Protein Data Bank (PDB) 252 

and also decreases the probability of obtaining both bound and unbound conformations of the 

structures that make up the complex. The latter is one of the requirements of any docking 
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addition to the MPSTRUC classifications we also made use of a sequence identity cut-off of 

30% for identifying homologous structures to ensure we only included non-redundant entries. 

Accordingly, no chain of any complex of the dataset has a sequence identity larger than 30% 

to any other. For calculating the sequence identities, we used the Needleman-Wunsch 

algorithm 254 with the BLOSUM62 255 matrix, and a gap open and extend penalty of 10 and 0.5 

respectively. 

The entries of the benchmark have been modified to facilitate comparisons between the 

unbound and reference structures. The numbering and chains ids of the unbound structures 

have been modified to match those of the reference structures. Disordered regions were 

removed when near the interface or when they introduced challenging conformational 

rearrangements that would prevent the unbound structures from adopting a conformation close 

to the reference one. We have made our best efforts to include all biologically relevant ions 

and cofactors when they were present in both unbound and reference structures. In some cases, 

we have joined two or more unbound chains in a single body. Reasons for doing so are reducing 

the number of docking partners to two or three, since most docking codes do not support multi-

body docking, the availability of unbound structures, and the topology of the complex – an 

example would be joining two homomeric TM subunits in a single subunit and docking that 

against a cytosolic partner. These cases are indicated by the presence of multiple chain ids at 

the end of the unbound structure id in Table 1. We consider different subunits of the complex 

for the four complexes (2r6g, 2zxe, 4huq, 5a63) which appear more than once (see Table 1). 

We only used the renamed and renumbered unbound and homology structures for docking in 

all cases where such structures were available. In all other cases, we used the renamed and 

renumbered bound structures. 

 

Docking 
The HADDOCK webserver (v2.2) (https://haddock.science.uu.nl/services/HADDOCK2.2)  59 

was used for all docking runs. HADDOCK is an integrative modelling biomolecular docking 

platform which makes use of experimental data (mostly derived from biophysical/biochemical 

experiments) or bioinformatics predictions to drive the docking process. This information is 

typically  translated into distance restraints used to drive the docking 256. The docking consists 

of three stages: 

i. Rigid-body energy minimisation – it0 
ii. Semi-flexible refinement by simulated annealing in torsional space – it1 

iii. Refinement in explicit solvent – itw 

 

 
 

After identifying a complex, we searched the related structures in MPSTRUC as well as the 

homologous structures of that complex in the PDB to identify potential unbound structures of 

its components. The related MPSTRUC entries correspond to the same protein structure solved 

under different conditions (e.g. acidic vs basic pH), with different techniques (NMR vs X-RAY 

crystallography) or complexed with other biomolecules (e.g. small-molecule ligands or 

peptides). For the complexes where we could not identify a suitable unbound structure via 

MPSTRUC we turned to the PDB and made use of its precalculated sequence similarity 

clustering analysis results. Optimally, the structure of the complex and that of its components 

should have been determined independently of each other and be complete, i.e. have no missing 

parts or mutations close to the interface. If that is not the case, but highly homologous structures 

are available, those are included instead. In this case, highly homologous refers to 100% 

sequence identity (without gaps) of the interface region and very similar (if not identical) 

sequence for the remainder of the protein. In these cases, the remainder of the protein was not 

modelled since the overall similarity is quite high. SI table 1 lists the backbone RMSD (after 

optimal superimposition using backbone atoms) of all components for all entries that are not 

classified as “Bound” (see Table 1). The mean RMSD is 1.45 ± 0.86Å. If the homologous 

structures differ at the interface – due to mutations or gaps – they were modelled with modeller 
204, using the loopmodel protocol for the cases with significant interface gaps and the automodel 

protocol for all remaining ones. We made use of homology models for 5 complexes (see Table 

1) for which the sequence similarity and identity ranged between 71-96% and 56-96%, 

respectively. 100 models were generated and ranked according to their objective function score 

and the best-scoring structure that was within modelling difficulty of the complex structure 

was selected after visual inspection. We manually inspected the models to ensure no unnatural 

segments were introduced during the modelling of the gaps.  

We applied additional selection criteria: we only selected heteromeric interfaces, therefore 

homomeric complexes that function as multi-chain proteins such as trimeric transmembrane 

porins (for example PDB entry 1OSM 253), although technically transmembrane protein 

complexes, were not included. X-ray structures were given priority over structures determined 

by NMR, and higher quality structures (resolution, clashscore, R-free, Ramachandran outliers) 

were preferred over lower quality structures. The availability of high-quality unbound 

structures also influenced the inclusion of one complex over another for which no unbound 

structures were available or, if there were, they were of low quality (low resolution, mutations, 

gaps). The resulting dataset is also non-redundant in the sense that we have only included what 

we determined as the best complex based on the above criteria for any given protein family. In 
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unbound and reference structures. The numbering and chains ids of the unbound structures 

have been modified to match those of the reference structures. Disordered regions were 

removed when near the interface or when they introduced challenging conformational 

rearrangements that would prevent the unbound structures from adopting a conformation close 

to the reference one. We have made our best efforts to include all biologically relevant ions 

and cofactors when they were present in both unbound and reference structures. In some cases, 

we have joined two or more unbound chains in a single body. Reasons for doing so are reducing 

the number of docking partners to two or three, since most docking codes do not support multi-

body docking, the availability of unbound structures, and the topology of the complex – an 

example would be joining two homomeric TM subunits in a single subunit and docking that 

against a cytosolic partner. These cases are indicated by the presence of multiple chain ids at 

the end of the unbound structure id in Table 1. We consider different subunits of the complex 

for the four complexes (2r6g, 2zxe, 4huq, 5a63) which appear more than once (see Table 1). 

We only used the renamed and renumbered unbound and homology structures for docking in 

all cases where such structures were available. In all other cases, we used the renamed and 

renumbered bound structures. 

 

Docking 
The HADDOCK webserver (v2.2) (https://haddock.science.uu.nl/services/HADDOCK2.2)  59 

was used for all docking runs. HADDOCK is an integrative modelling biomolecular docking 

platform which makes use of experimental data (mostly derived from biophysical/biochemical 

experiments) or bioinformatics predictions to drive the docking process. This information is 

typically  translated into distance restraints used to drive the docking 256. The docking consists 

of three stages: 

i. Rigid-body energy minimisation – it0 
ii. Semi-flexible refinement by simulated annealing in torsional space – it1 

iii. Refinement in explicit solvent – itw 

 

 
 

After identifying a complex, we searched the related structures in MPSTRUC as well as the 

homologous structures of that complex in the PDB to identify potential unbound structures of 

its components. The related MPSTRUC entries correspond to the same protein structure solved 

under different conditions (e.g. acidic vs basic pH), with different techniques (NMR vs X-RAY 

crystallography) or complexed with other biomolecules (e.g. small-molecule ligands or 

peptides). For the complexes where we could not identify a suitable unbound structure via 

MPSTRUC we turned to the PDB and made use of its precalculated sequence similarity 

clustering analysis results. Optimally, the structure of the complex and that of its components 

should have been determined independently of each other and be complete, i.e. have no missing 

parts or mutations close to the interface. If that is not the case, but highly homologous structures 

are available, those are included instead. In this case, highly homologous refers to 100% 

sequence identity (without gaps) of the interface region and very similar (if not identical) 

sequence for the remainder of the protein. In these cases, the remainder of the protein was not 

modelled since the overall similarity is quite high. SI table 1 lists the backbone RMSD (after 

optimal superimposition using backbone atoms) of all components for all entries that are not 

classified as “Bound” (see Table 1). The mean RMSD is 1.45 ± 0.86Å. If the homologous 

structures differ at the interface – due to mutations or gaps – they were modelled with modeller 
204, using the loopmodel protocol for the cases with significant interface gaps and the automodel 

protocol for all remaining ones. We made use of homology models for 5 complexes (see Table 

1) for which the sequence similarity and identity ranged between 71-96% and 56-96%, 

respectively. 100 models were generated and ranked according to their objective function score 

and the best-scoring structure that was within modelling difficulty of the complex structure 

was selected after visual inspection. We manually inspected the models to ensure no unnatural 

segments were introduced during the modelling of the gaps.  

We applied additional selection criteria: we only selected heteromeric interfaces, therefore 

homomeric complexes that function as multi-chain proteins such as trimeric transmembrane 

porins (for example PDB entry 1OSM 253), although technically transmembrane protein 

complexes, were not included. X-ray structures were given priority over structures determined 

by NMR, and higher quality structures (resolution, clashscore, R-free, Ramachandran outliers) 

were preferred over lower quality structures. The availability of high-quality unbound 

structures also influenced the inclusion of one complex over another for which no unbound 

structures were available or, if there were, they were of low quality (low resolution, mutations, 

gaps). The resulting dataset is also non-redundant in the sense that we have only included what 

we determined as the best complex based on the above criteria for any given protein family. In 
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addition to the MPSTRUC classifications we also made use of a sequence identity cut-off of 

30% for identifying homologous structures to ensure we only included non-redundant entries. 

Accordingly, no chain of any complex of the dataset has a sequence identity larger than 30% 

to any other. For calculating the sequence identities, we used the Needleman-Wunsch 

algorithm 254 with the BLOSUM62 255 matrix, and a gap open and extend penalty of 10 and 0.5 

respectively. 
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peptides). For the complexes where we could not identify a suitable unbound structure via 

MPSTRUC we turned to the PDB and made use of its precalculated sequence similarity 

clustering analysis results. Optimally, the structure of the complex and that of its components 

should have been determined independently of each other and be complete, i.e. have no missing 

parts or mutations close to the interface. If that is not the case, but highly homologous structures 

are available, those are included instead. In this case, highly homologous refers to 100% 

sequence identity (without gaps) of the interface region and very similar (if not identical) 

sequence for the remainder of the protein. In these cases, the remainder of the protein was not 

modelled since the overall similarity is quite high. SI table 1 lists the backbone RMSD (after 

optimal superimposition using backbone atoms) of all components for all entries that are not 

classified as “Bound” (see Table 1). The mean RMSD is 1.45 ± 0.86Å. If the homologous 

structures differ at the interface – due to mutations or gaps – they were modelled with modeller 
204, using the loopmodel protocol for the cases with significant interface gaps and the automodel 

protocol for all remaining ones. We made use of homology models for 5 complexes (see Table 

1) for which the sequence similarity and identity ranged between 71-96% and 56-96%, 

respectively. 100 models were generated and ranked according to their objective function score 

and the best-scoring structure that was within modelling difficulty of the complex structure 

was selected after visual inspection. We manually inspected the models to ensure no unnatural 

segments were introduced during the modelling of the gaps.  

We applied additional selection criteria: we only selected heteromeric interfaces, therefore 

homomeric complexes that function as multi-chain proteins such as trimeric transmembrane 

porins (for example PDB entry 1OSM 253), although technically transmembrane protein 

complexes, were not included. X-ray structures were given priority over structures determined 

by NMR, and higher quality structures (resolution, clashscore, R-free, Ramachandran outliers) 

were preferred over lower quality structures. The availability of high-quality unbound 

structures also influenced the inclusion of one complex over another for which no unbound 

structures were available or, if there were, they were of low quality (low resolution, mutations, 

gaps). The resulting dataset is also non-redundant in the sense that we have only included what 

we determined as the best complex based on the above criteria for any given protein family. In 
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parameters that have been optimised for soluble proteins. These are thus the default scoring 

settings for soluble complexes. 

 

Analysis 
We report both the interface and ligand RMSD values (I/L-RMSD respectively) as used in 

CAPRI. For the I-RMSD, we superimpose and calculate the RMSD of the backbone atoms of 

the interface residues (defined at a 10Å cut-off). For the L-RMSD we superimpose on the 

backbone atoms of the receptor (defined as the largest of the partners) and calculate the RMSD 

of the backbone atoms of the ligand (defined as the smallest of the partners). For the 2 trimers 

(see Table 2 below), I-RMSD is calculated as described above and L-RMSD is calculated by 

selecting the first chain as the receptor and averaging the L-RMSD of the second and third 

chains. Fitting and RMSD calculations were performed using the McLachlan algorithm 261 as 

implemented in the program ProFit (http://www.bioinf.org.uk/software/profit/) from the 

SBGrid distribution 262. All scripts used for analysis are provided together with the docking 

benchmark at https://github.com/haddocking/MemCplxDB. 

 

Results and Discussion 

Benchmark 
Following the protocol that is outlined in the Methods section we identified 37 complexes of 

interest. These complexes are listed in Tables 1 and 2 (dimers and trimers respectively). An 

annotated version of this table, detailing the modifications that were made to the structures can 

be found in the SI (SI Tables 2 and 3). The tables detail the PDB id of the structure of the 

complex and those of the corresponding unbound entries. In the cases where all the components 

have been extracted from the complex, that entry is a defined as a “Bound” case. If at least one 

of the partners is not extracted from the complex, then that case is classified as “Unbound” 

and, depending on the I-RMSD of the unbound structures after optimal superposition on the 

reference, is classified as “Easy”, “Intermediate” or “Hard” difficulty based on I-RMSD values 

of less than 1 Å, between 1 and 2 Å and over 2 Å, respectively. Both trimeric entries of the 

benchmark (Table 2), are classified as “Unbound” because the “unbound” components 

originate from a different PDB entry of the same complex crystalized under different 

conditions (3w9h and 2qts for 2j8s and 4fz0 respectively). Those differ significantly enough in 

their i-RMSD (0.65 and 1.18 Å for 2j8s and 4fz0 respectively) and overall backbone RMSDs 

of each subunit (see Table S1) from what we define as the reference bound conformation, 

 

 
 

For the first stage (it0), the partners are randomly oriented and translated away from each other 

followed by rigid-body energy minimisation (EM). For it1, flexibility is introduced in the 

interface residues of the complex (defined as the set of residues whose atoms are within 5Å of 

any atom of any partner), first along the side-chains only and, in the final stage, including the 

backbone atoms as well. The last stage (itw) consists of a short molecular dynamics run in 

Cartesian space and explicit solvent (the docking runs were performed with the default TIP3P 

water model 257). 

We used two types of restraints to drive the docking: random and true interface restraints. In 

the case of random restraints, for each docking trial, a surface-exposed patch of residues is 

randomly defined on both partners of a dimeric complex and used to drive the docking by 

defining those patches as active residues in the HADDOCK formalism. Since this option is not 

supported for higher order complexes, for the three trimeric complexes in the benchmark (see 

Results) centre-of-mass (CM), C3 symmetry and non-crystallographic symmetry (NCS) 

restraints were used instead 258. In the case of true interface restraints, we extracted the interface 

residues of the bound complex (at a distance cut-off of 5Å) and defined those as active in 

HADDOCK for the docking run. 

The number of docking decoys generated was set for it0/it1/itw to 50000/400/400 and 

10000/400/400, for ab-initio (random restraints) and true interface-driven docking, 

respectively. Additionally, since the scoring function of HADDOCK has not been optimised 

yet for membrane complexes, we set the number of trials in it0 to 1 and disabled the systematic 

sampling of 180o rotations during it0 to 1 to disable the internal scoring scheme of HADDOCK. 

For the cases categorised as “Buried” (see Table 1 below) we have also lowered the 

intermolecular energy scaling to 0.01 to allow interpenetration of chains during it0. We further 

kept the original scoring function of HADDOCK, defined as: 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖0 = 0.01 ∗ 𝐸𝐸𝐸𝐸𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + 1.0 ∗ 𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 1.0 ∗ 𝐸𝐸𝐸𝐸𝑣𝑣𝑣𝑣𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑣𝑣𝑣𝑣 + 0.01 ∗ 𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − 0.01 ∗ 𝐵𝐵𝐵𝐵𝐻𝐻𝐻𝐻𝑆𝑆𝑆𝑆 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1 = 1.0 ∗ 𝐸𝐸𝐸𝐸𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + 1.0 ∗ 𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 1.0 ∗ 𝐸𝐸𝐸𝐸𝑣𝑣𝑣𝑣𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑣𝑣𝑣𝑣 + 0.1 ∗ 𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − 0.01 ∗ 𝐵𝐵𝐵𝐵𝐻𝐻𝐻𝐻𝑆𝑆𝑆𝑆 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1.0 ∗ 𝐸𝐸𝐸𝐸𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + 0.2 ∗ 𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 1.0 ∗ 𝐸𝐸𝐸𝐸𝑣𝑣𝑣𝑣𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑣𝑣𝑣𝑣 + 0.1 ∗ 𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  

Where Evdw, Eelec, Edesolv and EAIR stand for van der Waals, electrostatic, desolvation and 

restraint energies. The non-bonded terms are calculated with the OPLS force field 259 with a 

cutoff of 8.5Å, the desolvation parameters are described in 260 and the restraint energy in 58. 

BSA stands for buried surface area. It is worth noting that the desolvation potential depends on 
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parameters that have been optimised for soluble proteins. These are thus the default scoring 

settings for soluble complexes. 

 

Analysis 
We report both the interface and ligand RMSD values (I/L-RMSD respectively) as used in 

CAPRI. For the I-RMSD, we superimpose and calculate the RMSD of the backbone atoms of 

the interface residues (defined at a 10Å cut-off). For the L-RMSD we superimpose on the 

backbone atoms of the receptor (defined as the largest of the partners) and calculate the RMSD 

of the backbone atoms of the ligand (defined as the smallest of the partners). For the 2 trimers 

(see Table 2 below), I-RMSD is calculated as described above and L-RMSD is calculated by 

selecting the first chain as the receptor and averaging the L-RMSD of the second and third 
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SBGrid distribution 262. All scripts used for analysis are provided together with the docking 
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have been extracted from the complex, that entry is a defined as a “Bound” case. If at least one 
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benchmark (Table 2), are classified as “Unbound” because the “unbound” components 

originate from a different PDB entry of the same complex crystalized under different 

conditions (3w9h and 2qts for 2j8s and 4fz0 respectively). Those differ significantly enough in 

their i-RMSD (0.65 and 1.18 Å for 2j8s and 4fz0 respectively) and overall backbone RMSDs 
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interface residues of the complex (defined as the set of residues whose atoms are within 5Å of 
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Where Evdw, Eelec, Edesolv and EAIR stand for van der Waals, electrostatic, desolvation and 

restraint energies. The non-bonded terms are calculated with the OPLS force field 259 with a 

cutoff of 8.5Å, the desolvation parameters are described in 260 and the restraint energy in 58. 

BSA stands for buried surface area. It is worth noting that the desolvation potential depends on 
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parameters that have been optimised for soluble proteins. These are thus the default scoring 

settings for soluble complexes. 

 

Analysis 
We report both the interface and ligand RMSD values (I/L-RMSD respectively) as used in 

CAPRI. For the I-RMSD, we superimpose and calculate the RMSD of the backbone atoms of 

the interface residues (defined at a 10Å cut-off). For the L-RMSD we superimpose on the 

backbone atoms of the receptor (defined as the largest of the partners) and calculate the RMSD 

of the backbone atoms of the ligand (defined as the smallest of the partners). For the 2 trimers 

(see Table 2 below), I-RMSD is calculated as described above and L-RMSD is calculated by 

selecting the first chain as the receptor and averaging the L-RMSD of the second and third 

chains. Fitting and RMSD calculations were performed using the McLachlan algorithm 261 as 

implemented in the program ProFit (http://www.bioinf.org.uk/software/profit/) from the 

SBGrid distribution 262. All scripts used for analysis are provided together with the docking 

benchmark at https://github.com/haddocking/MemCplxDB. 

 

Results and Discussion 

Benchmark 
Following the protocol that is outlined in the Methods section we identified 37 complexes of 

interest. These complexes are listed in Tables 1 and 2 (dimers and trimers respectively). An 

annotated version of this table, detailing the modifications that were made to the structures can 

be found in the SI (SI Tables 2 and 3). The tables detail the PDB id of the structure of the 

complex and those of the corresponding unbound entries. In the cases where all the components 

have been extracted from the complex, that entry is a defined as a “Bound” case. If at least one 

of the partners is not extracted from the complex, then that case is classified as “Unbound” 

and, depending on the I-RMSD of the unbound structures after optimal superposition on the 

reference, is classified as “Easy”, “Intermediate” or “Hard” difficulty based on I-RMSD values 

of less than 1 Å, between 1 and 2 Å and over 2 Å, respectively. Both trimeric entries of the 

benchmark (Table 2), are classified as “Unbound” because the “unbound” components 

originate from a different PDB entry of the same complex crystalized under different 

conditions (3w9h and 2qts for 2j8s and 4fz0 respectively). Those differ significantly enough in 

their i-RMSD (0.65 and 1.18 Å for 2j8s and 4fz0 respectively) and overall backbone RMSDs 

of each subunit (see Table S1) from what we define as the reference bound conformation, 

 

 
 

For the first stage (it0), the partners are randomly oriented and translated away from each other 

followed by rigid-body energy minimisation (EM). For it1, flexibility is introduced in the 

interface residues of the complex (defined as the set of residues whose atoms are within 5Å of 

any atom of any partner), first along the side-chains only and, in the final stage, including the 

backbone atoms as well. The last stage (itw) consists of a short molecular dynamics run in 

Cartesian space and explicit solvent (the docking runs were performed with the default TIP3P 

water model 257). 

We used two types of restraints to drive the docking: random and true interface restraints. In 

the case of random restraints, for each docking trial, a surface-exposed patch of residues is 

randomly defined on both partners of a dimeric complex and used to drive the docking by 

defining those patches as active residues in the HADDOCK formalism. Since this option is not 

supported for higher order complexes, for the three trimeric complexes in the benchmark (see 

Results) centre-of-mass (CM), C3 symmetry and non-crystallographic symmetry (NCS) 

restraints were used instead 258. In the case of true interface restraints, we extracted the interface 

residues of the bound complex (at a distance cut-off of 5Å) and defined those as active in 

HADDOCK for the docking run. 

The number of docking decoys generated was set for it0/it1/itw to 50000/400/400 and 

10000/400/400, for ab-initio (random restraints) and true interface-driven docking, 

respectively. Additionally, since the scoring function of HADDOCK has not been optimised 

yet for membrane complexes, we set the number of trials in it0 to 1 and disabled the systematic 

sampling of 180o rotations during it0 to 1 to disable the internal scoring scheme of HADDOCK. 

For the cases categorised as “Buried” (see Table 1 below) we have also lowered the 

intermolecular energy scaling to 0.01 to allow interpenetration of chains during it0. We further 

kept the original scoring function of HADDOCK, defined as: 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖0 = 0.01 ∗ 𝐸𝐸𝐸𝐸𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + 1.0 ∗ 𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 1.0 ∗ 𝐸𝐸𝐸𝐸𝑣𝑣𝑣𝑣𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑣𝑣𝑣𝑣 + 0.01 ∗ 𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − 0.01 ∗ 𝐵𝐵𝐵𝐵𝐻𝐻𝐻𝐻𝑆𝑆𝑆𝑆 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1 = 1.0 ∗ 𝐸𝐸𝐸𝐸𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + 1.0 ∗ 𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 1.0 ∗ 𝐸𝐸𝐸𝐸𝑣𝑣𝑣𝑣𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑣𝑣𝑣𝑣 + 0.1 ∗ 𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − 0.01 ∗ 𝐵𝐵𝐵𝐵𝐻𝐻𝐻𝐻𝑆𝑆𝑆𝑆 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1.0 ∗ 𝐸𝐸𝐸𝐸𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + 0.2 ∗ 𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 1.0 ∗ 𝐸𝐸𝐸𝐸𝑣𝑣𝑣𝑣𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑣𝑣𝑣𝑣 + 0.1 ∗ 𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  

Where Evdw, Eelec, Edesolv and EAIR stand for van der Waals, electrostatic, desolvation and 

restraint energies. The non-bonded terms are calculated with the OPLS force field 259 with a 

cutoff of 8.5Å, the desolvation parameters are described in 260 and the restraint energy in 58. 

BSA stands for buried surface area. It is worth noting that the desolvation potential depends on 
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which justifies their inclusion in this benchmark. We have also categorized the complexes 

based on the nature of the interaction. Complexes whose interface is contained within the 

membrane are labelled “TM” for transmembrane, complexes whose interface lies between the 

membrane and the cytosolic/periplasmic/extracellular environment are labelled “MS” for 

membrane-soluble. Complexes whose interface lies in the membrane but also extends past it 

are labelled “Both” for both transmembrane and membrane-soluble. Complexes where one of 

the partners is embedded in a TM beta-barrel are labelled “Buried” and are by nature TM 

complexes, and complexes that involve antibodies, antibody fragments, monobodies or 

nanobodies are labelled “AB” and are by nature MS complexes. For details regarding the 

benchmark assembly refer to the “Methods” section and SI Tables 2 and 3. 

 

Docking 
To establish the baseline performance of HADDOCK on this membrane protein complex 

docking benchmark and generate a docking decoy dataset that can serve for further 

optimisation of membrane-specific scoring functions, we performed the docking using two 

different scenarios. 

 

 
Fig 2: I-RMSD values of the docking decoys of the membrane protein complex docking benchmark for the random-restraint 
driven runs. The complexes are grouped by difficulty. Each complex is represented by three boxplots, corresponding to the 
rigid-body (grey), semi-flexible refinement (orange) and final water refinement (blue) stages of HADDOCK. The black line 
represents the acceptability cut-off of 4 Å I-RMSD. The boxes of the boxplots range from the 1st to the 3rd quartile, the upper 
whisker extends from the hinge to the maximum value or 1.5 * Inter Quantile Range (IQR), the lower whisker extends from 
the hinge to the minimum value or 1.5 * IQR, outliers are shown as black points. 

  



39

 

 
 Ta

bl
e 1

: T
he

 d
im

er
ic

 en
tr

ie
s o

f t
he

 m
em

br
an

e p
ro

te
in

 co
m

pl
ex

 d
oc

ki
ng

 b
en

ch
m

ar
k.

 T
he

 fi
rs

t c
ol

um
n 

is 
th

e P
D

B 
id

 o
f t

he
 co

m
pl

ex
 st

ru
ct

ur
e,

 co
lu

m
ns

 2
 a

nd
 3

 th
e P

D
B 

id
s o

f t
he

 u
nb

ou
nd

 st
ru

ct
ur

es
, 

ca
te

go
ry

 re
fe

rs
 to

 th
e 

co
m

pl
ex

 ty
pe

, c
om

po
si

tio
n 

re
fe

rs
 to

 th
e 

or
ig

in
 o

f e
ve

ry
 c

om
po

ne
nt

 o
f t

he
 c

om
pl

ex
, d

iff
ic

ul
ty

 a
nd

 I-
RM

SD
 re

fle
ct

 th
e 

di
ffi

cu
lty

 o
f t

he
 ta

rg
et

, s
ec

on
da

ry
 st

ru
ct

ur
e 

cl
as

si
fie

s t
he

 
co

m
pl

ex
 in

to
 o

ne
 o

f t
w

o 
ca

te
go

ri
es

 (B
et

a 
an

d 
H

el
ic

al
) d

ep
en

di
ng

 o
n 

th
e 

se
co

nd
ar

y 
st

ru
ct

ur
e 

ch
ar

ac
te

ri
st

ic
s 

of
 it

s 
tr

an
sm

em
br

an
e 

do
m

ai
n,

 a
nd

 B
ur

ie
d 

Su
rf

ac
e 

Ar
ea

 re
fe

rs
 to

 th
e 

bu
ri

ed
 s

ur
fa

ce
 

ar
ea

 a
t t

he
 i

nt
er

fa
ce

 o
f e

ve
ry

 c
om

pl
ex

. T
he

 c
at

eg
or

ie
s 

ar
e 

Bu
ri

ed
, M

S,
 T

M
, B

ot
h 

an
d 

AB
 a

nd
 t

he
y 

co
rr

es
po

nd
 to

 c
om

pl
ex

es
 w

ho
se

 in
te

rfa
ce

 li
es

 in
si

de
 a

 β
-b

ar
re

l, 
be

tw
ee

n 
cy

to
so

lic
 a

nd
 

tr
an

sm
em

br
an

e 
do

m
ai

ns
, b

et
w

ee
n 

tr
an

sm
em

br
an

e 
do

m
ai

ns
, b

et
we

en
 tr

an
sm

em
br

an
e–

cy
to

so
lic

 a
nd

 tr
an

sm
em

br
an

e–
tr

an
sm

em
br

an
e 

do
m

ai
ns

, a
nd

 a
 c

om
pl

ex
 o

f a
n 

an
tib

od
y-

lik
e 

do
m

ai
n 

th
at

 
st

ab
ili

ze
s 

a 
tra

ns
m

em
br

an
e 

do
m

ai
n,

 r
es

pe
ct

iv
el

y.
 T

he
 c

om
po

si
tio

n 
ty

pe
s 

ca
n 

be
 B

B,
 U

B,
 H

B,
 H

U
 a

nd
 U

U
 a

nd
 th

ey
 s

ta
nd

 fo
r 

Bo
un

d-
Bo

un
d,

 U
nb

ou
nd

-B
ou

nd
, H

om
ol

og
y-

Bo
un

d,
 H

om
ol

og
y-

U
nb

ou
nd

, a
nd

 U
nb

ou
nd

-U
nb

ou
nd

, r
es

pe
ct

iv
el

y.
 B

B 
m

ea
ns

 th
at

 b
ot

h 
ch

ai
ns

 o
ri

gi
na

te
 in

 th
e 

bo
un

d 
co

m
pl

ex
, U

B 
m

ea
ns

 th
at

 o
ne

 o
f t

he
 c

ha
in

s 
or

ig
in

at
es

 in
 th

e 
bo

un
d 

co
m

pl
ex

 a
nd

 th
e 

ot
he

r 
in

 
an

ot
he

r 
st

ru
ct

ur
e,

 H
B 

m
ea

ns
 o

ne
 c

ha
in

 is
 a

 h
om

ol
og

y 
m

od
el

 b
as

ed
 o

n 
an

ot
he

r 
st

ru
ct

ur
e/

co
m

pl
ex

 a
nd

 th
e 

ot
he

r 
or

ig
in

at
es

 fr
om

 th
e 

bo
un

d 
co

m
pl

ex
, H

U
 m

ea
ns

 o
ne

 c
ha

in
 is

 a
 h

om
ol

og
y 

m
od

el
 

ba
se

d 
on

 a
no

th
er

 st
ru

ct
ur

e/
co

m
pl

ex
 a

nd
 th

e 
ot

he
r o

rig
in

at
es

 fr
om

 a
no

th
er

 c
om

pl
ex

 o
r f

re
e 

st
ru

ct
ur

e,
 a

nd
 U

U
 m

ea
ns

 th
at

 b
ot

h 
ch

ai
ns

 o
ri

gi
na

te
 fr

om
 a

no
th

er
 st

ru
ct

ur
e.

 

co
m

pl
ex

 
U

nb
ou

nd
 P

D
B

 
id

 1
 

U
nb

ou
nd

 P
D

B
 

id
 2

 
C

at
eg

or
y 

C
om

po
si

tio
n 

D
iff

ic
ul

ty
 

i-R
M

SD
 [Å

] 
B

ur
ie

d 
Su

rf
ac

e 
A

re
a 

[Å
2 ] 

Se
co

nd
ar

y 
St

ru
ct

ur
e 

2b
g9

 
2b

g9
_A

D
E 

2b
g9

_B
C

 
B

ot
h 

B
B

 
B

ou
nd

 
0 

54
52

.5
 

H
el

ic
al

 
2b

s2
 

2b
s2

_A
B

 
2b

s2
_C

D
 

M
S 

B
B

 
 

0 
41

73
.9

 
H

el
ic

al
 

2r
6g

-T
M

 
2r

6g
_F

 
2r

6g
_G

 
TM

 
B

B
 

 
0 

80
73

.3
 

H
el

ic
al

 

2v
pz

 
2v

pz
_A

B 
2v

pz
_C

D
 

M
S 

B
B

 
 

0 
20

64
.7

 
H

el
ic

al
 

4h
g6

 
4h

g6
_A

 
4h

g6
_B

 
TM

 
B

B
 

 
0 

47
04

.2
 

H
el

ic
al

 

4h
uq

-T
M

 
4h

uq
_S

 
4h

uq
_T

 
TM

 
B

B
 

 
0 

52
02

.9
 

H
el

ic
al

 

4h
uq

-T
M

-A
 

4h
uq

_S
T 

4h
uq

_A
 

M
S 

B
B

 
 

0 
17

71
.8

 
H

el
ic

al
 

4h
uq

-T
M

-B
 

4h
uq

_S
T 

4h
uq

_B
 

M
S 

B
B

 
 

0 
26

82
.6

 
H

el
ic

al
 

5a
63

-B
C

 
5a

63
_B

 
5a

63
_C

 
TM

 
B

B
 

 
0 

34
30

.2
 

H
el

ic
al

 

2h
di

 
2h

di
_A

 
1c

ii_
A

 
B

ur
ie

d 
U

B
 

Ea
sy

 
0.

36
1 

19
25

.7
 

B
et

a 
4j

3o
 

4j
3o

_D
 

3b
fq

_F
G

 
B

ur
ie

d 
U

B
 

 
0.

39
2 

46
81

.2
 

B
et

a 

1m
56

 
2g

sm
_A

B
 

1m
56

_C
D

 
TM

 
U

B
 

 
0.

57
2 

49
61

.5
 

H
el

ic
al

 

1k
4c

 
1k

4c
_A

 
1j

95
_A

B
C

D
 

M
S 

U
U

 
 

0.
63

8 
17

66
.9

 
H

el
ic

al
 

3x
29

 
3x

29
_A

 
2q

uo
_A

 
M

S 
U

B
 

 
0.

67
3 

21
43

.3
 

H
el

ic
al

 

2k
9j

 
2r

m
z_

A
 

2k
1a

_A
 

TM
 

U
U

 
 

0.
67

8 
98

2.
0 

H
el

ic
al

 

2r
6g

-T
M

-p
er

i 
2r

6g
_F

G
 

1j
w

4_
A

 
M

S 
U

B
 

 
0.

71
6 

38
07

.0
 

H
el

ic
al

 

2g
sk

 
2g

uf
_A

 
1u

07
_A

 
M

S 
U

U
 

 
0.

86
 

16
36

.2
 

B
et

a 

5a
w

w
 

5a
w

w
_Y

G
 

5a
w

w
_E

 
TM

 
U

B
 

 
0.

86
8 

26
36

.5
 

H
el

ic
al

 

2z
xe

-A
G

 
2z

xe
_A

 
2z

xe
_G

 
TM

 
U

B
 

 
0.

91
9 

15
28

.0
 

H
el

ic
al

 

2z
xe

-A
B

 
2z

xe
_A

 
2z

xe
_B

 
TM

 
U

B
 

 
0.

94
 

15
03

.5
 

H
el

ic
al

 

 

 
 

which justifies their inclusion in this benchmark. We have also categorized the complexes 

based on the nature of the interaction. Complexes whose interface is contained within the 

membrane are labelled “TM” for transmembrane, complexes whose interface lies between the 

membrane and the cytosolic/periplasmic/extracellular environment are labelled “MS” for 

membrane-soluble. Complexes whose interface lies in the membrane but also extends past it 

are labelled “Both” for both transmembrane and membrane-soluble. Complexes where one of 

the partners is embedded in a TM beta-barrel are labelled “Buried” and are by nature TM 

complexes, and complexes that involve antibodies, antibody fragments, monobodies or 

nanobodies are labelled “AB” and are by nature MS complexes. For details regarding the 

benchmark assembly refer to the “Methods” section and SI Tables 2 and 3. 

 

Docking 
To establish the baseline performance of HADDOCK on this membrane protein complex 

docking benchmark and generate a docking decoy dataset that can serve for further 

optimisation of membrane-specific scoring functions, we performed the docking using two 

different scenarios. 

 

 
Fig 2: I-RMSD values of the docking decoys of the membrane protein complex docking benchmark for the random-restraint 
driven runs. The complexes are grouped by difficulty. Each complex is represented by three boxplots, corresponding to the 
rigid-body (grey), semi-flexible refinement (orange) and final water refinement (blue) stages of HADDOCK. The black line 
represents the acceptability cut-off of 4 Å I-RMSD. The boxes of the boxplots range from the 1st to the 3rd quartile, the upper 
whisker extends from the hinge to the maximum value or 1.5 * Inter Quantile Range (IQR), the lower whisker extends from 
the hinge to the minimum value or 1.5 * IQR, outliers are shown as black points. 

  

C
ha

pt
er

 2

 

 
 Ta

bl
e 1

: T
he

 d
im

er
ic

 en
tr

ie
s o

f t
he

 m
em

br
an

e p
ro

te
in

 co
m

pl
ex

 d
oc

ki
ng

 b
en

ch
m

ar
k.

 T
he

 fi
rs

t c
ol

um
n 

is 
th

e P
D

B 
id

 o
f t

he
 co

m
pl

ex
 st

ru
ct

ur
e,

 co
lu

m
ns

 2
 a

nd
 3

 th
e P

D
B 

id
s o

f t
he

 u
nb

ou
nd

 st
ru

ct
ur

es
, 

ca
te

go
ry

 re
fe

rs
 to

 th
e 

co
m

pl
ex

 ty
pe

, c
om

po
si

tio
n 

re
fe

rs
 to

 th
e 

or
ig

in
 o

f e
ve

ry
 c

om
po

ne
nt

 o
f t

he
 c

om
pl

ex
, d

iff
ic

ul
ty

 a
nd

 I-
RM

SD
 re

fle
ct

 th
e 

di
ffi

cu
lty

 o
f t

he
 ta

rg
et

, s
ec

on
da

ry
 st

ru
ct

ur
e 

cl
as

si
fie

s t
he

 
co

m
pl

ex
 in

to
 o

ne
 o

f t
w

o 
ca

te
go

ri
es

 (B
et

a 
an

d 
H

el
ic

al
) d

ep
en

di
ng

 o
n 

th
e 

se
co

nd
ar

y 
st

ru
ct

ur
e 

ch
ar

ac
te

ri
st

ic
s 

of
 it

s 
tr

an
sm

em
br

an
e 

do
m

ai
n,

 a
nd

 B
ur

ie
d 

Su
rf

ac
e 

Ar
ea

 re
fe

rs
 to

 th
e 

bu
ri

ed
 s

ur
fa

ce
 

ar
ea

 a
t t

he
 i

nt
er

fa
ce

 o
f e

ve
ry

 c
om

pl
ex

. T
he

 c
at

eg
or

ie
s 

ar
e 

Bu
ri

ed
, M

S,
 T

M
, B

ot
h 

an
d 

AB
 a

nd
 t

he
y 

co
rr

es
po

nd
 to

 c
om

pl
ex

es
 w

ho
se

 in
te

rfa
ce

 li
es

 in
si

de
 a

 β
-b

ar
re

l, 
be

tw
ee

n 
cy

to
so

lic
 a

nd
 

tr
an

sm
em

br
an

e 
do

m
ai

ns
, b

et
w

ee
n 

tr
an

sm
em

br
an

e 
do

m
ai

ns
, b

et
we

en
 tr

an
sm

em
br

an
e–

cy
to

so
lic

 a
nd

 tr
an

sm
em

br
an

e–
tr

an
sm

em
br

an
e 

do
m

ai
ns

, a
nd

 a
 c

om
pl

ex
 o

f a
n 

an
tib

od
y-

lik
e 

do
m

ai
n 

th
at

 
st

ab
ili

ze
s 

a 
tra

ns
m

em
br

an
e 

do
m

ai
n,

 r
es

pe
ct

iv
el

y.
 T

he
 c

om
po

si
tio

n 
ty

pe
s 

ca
n 

be
 B

B,
 U

B,
 H

B,
 H

U
 a

nd
 U

U
 a

nd
 th

ey
 s

ta
nd

 fo
r 

Bo
un

d-
Bo

un
d,

 U
nb

ou
nd

-B
ou

nd
, H

om
ol

og
y-

Bo
un

d,
 H

om
ol

og
y-

U
nb

ou
nd

, a
nd

 U
nb

ou
nd

-U
nb

ou
nd

, r
es

pe
ct

iv
el

y.
 B

B 
m

ea
ns

 th
at

 b
ot

h 
ch

ai
ns

 o
ri

gi
na

te
 in

 th
e 

bo
un

d 
co

m
pl

ex
, U

B 
m

ea
ns

 th
at

 o
ne

 o
f t

he
 c

ha
in

s 
or

ig
in

at
es

 in
 th

e 
bo

un
d 

co
m

pl
ex

 a
nd

 th
e 

ot
he

r 
in

 
an

ot
he

r 
st

ru
ct

ur
e,

 H
B 

m
ea

ns
 o

ne
 c

ha
in

 is
 a

 h
om

ol
og

y 
m

od
el

 b
as

ed
 o

n 
an

ot
he

r 
st

ru
ct

ur
e/

co
m

pl
ex

 a
nd

 th
e 

ot
he

r 
or

ig
in

at
es

 fr
om

 th
e 

bo
un

d 
co

m
pl

ex
, H

U
 m

ea
ns

 o
ne

 c
ha

in
 is

 a
 h

om
ol

og
y 

m
od

el
 

ba
se

d 
on

 a
no

th
er

 st
ru

ct
ur

e/
co

m
pl

ex
 a

nd
 th

e 
ot

he
r o

rig
in

at
es

 fr
om

 a
no

th
er

 c
om

pl
ex

 o
r f

re
e 

st
ru

ct
ur

e,
 a

nd
 U

U
 m

ea
ns

 th
at

 b
ot

h 
ch

ai
ns

 o
ri

gi
na

te
 fr

om
 a

no
th

er
 st

ru
ct

ur
e.

 

co
m

pl
ex

 
U

nb
ou

nd
 P

D
B

 
id

 1
 

U
nb

ou
nd

 P
D

B
 

id
 2

 
C

at
eg

or
y 

C
om

po
si

tio
n 

D
iff

ic
ul

ty
 

i-R
M

SD
 [Å

] 
B

ur
ie

d 
Su

rf
ac

e 
A

re
a 

[Å
2 ] 

Se
co

nd
ar

y 
St

ru
ct

ur
e 

2b
g9

 
2b

g9
_A

D
E 

2b
g9

_B
C

 
B

ot
h 

B
B

 
B

ou
nd

 
0 

54
52

.5
 

H
el

ic
al

 
2b

s2
 

2b
s2

_A
B

 
2b

s2
_C

D
 

M
S 

B
B

 
 

0 
41

73
.9

 
H

el
ic

al
 

2r
6g

-T
M

 
2r

6g
_F

 
2r

6g
_G

 
TM

 
B

B
 

 
0 

80
73

.3
 

H
el

ic
al

 

2v
pz

 
2v

pz
_A

B 
2v

pz
_C

D
 

M
S 

B
B

 
 

0 
20

64
.7

 
H

el
ic

al
 

4h
g6

 
4h

g6
_A

 
4h

g6
_B

 
TM

 
B

B
 

 
0 

47
04

.2
 

H
el

ic
al

 

4h
uq

-T
M

 
4h

uq
_S

 
4h

uq
_T

 
TM

 
B

B
 

 
0 

52
02

.9
 

H
el

ic
al

 

4h
uq

-T
M

-A
 

4h
uq

_S
T 

4h
uq

_A
 

M
S 

B
B

 
 

0 
17

71
.8

 
H

el
ic

al
 

4h
uq

-T
M

-B
 

4h
uq

_S
T 

4h
uq

_B
 

M
S 

B
B

 
 

0 
26

82
.6

 
H

el
ic

al
 

5a
63

-B
C

 
5a

63
_B

 
5a

63
_C

 
TM

 
B

B
 

 
0 

34
30

.2
 

H
el

ic
al

 

2h
di

 
2h

di
_A

 
1c

ii_
A

 
B

ur
ie

d 
U

B
 

Ea
sy

 
0.

36
1 

19
25

.7
 

B
et

a 
4j

3o
 

4j
3o

_D
 

3b
fq

_F
G

 
B

ur
ie

d 
U

B
 

 
0.

39
2 

46
81

.2
 

B
et

a 

1m
56

 
2g

sm
_A

B
 

1m
56

_C
D

 
TM

 
U

B
 

 
0.

57
2 

49
61

.5
 

H
el

ic
al

 

1k
4c

 
1k

4c
_A

 
1j

95
_A

B
C

D
 

M
S 

U
U

 
 

0.
63

8 
17

66
.9

 
H

el
ic

al
 

3x
29

 
3x

29
_A

 
2q

uo
_A

 
M

S 
U

B
 

 
0.

67
3 

21
43

.3
 

H
el

ic
al

 

2k
9j

 
2r

m
z_

A
 

2k
1a

_A
 

TM
 

U
U

 
 

0.
67

8 
98

2.
0 

H
el

ic
al

 

2r
6g

-T
M

-p
er

i 
2r

6g
_F

G
 

1j
w

4_
A

 
M

S 
U

B
 

 
0.

71
6 

38
07

.0
 

H
el

ic
al

 

2g
sk

 
2g

uf
_A

 
1u

07
_A

 
M

S 
U

U
 

 
0.

86
 

16
36

.2
 

B
et

a 

5a
w

w
 

5a
w

w
_Y

G
 

5a
w

w
_E

 
TM

 
U

B
 

 
0.

86
8 

26
36

.5
 

H
el

ic
al

 

2z
xe

-A
G

 
2z

xe
_A

 
2z

xe
_G

 
TM

 
U

B
 

 
0.

91
9 

15
28

.0
 

H
el

ic
al

 

2z
xe

-A
B

 
2z

xe
_A

 
2z

xe
_B

 
TM

 
U

B
 

 
0.

94
 

15
03

.5
 

H
el

ic
al

 

 

 
 

which justifies their inclusion in this benchmark. We have also categorized the complexes 

based on the nature of the interaction. Complexes whose interface is contained within the 

membrane are labelled “TM” for transmembrane, complexes whose interface lies between the 

membrane and the cytosolic/periplasmic/extracellular environment are labelled “MS” for 

membrane-soluble. Complexes whose interface lies in the membrane but also extends past it 

are labelled “Both” for both transmembrane and membrane-soluble. Complexes where one of 

the partners is embedded in a TM beta-barrel are labelled “Buried” and are by nature TM 

complexes, and complexes that involve antibodies, antibody fragments, monobodies or 

nanobodies are labelled “AB” and are by nature MS complexes. For details regarding the 

benchmark assembly refer to the “Methods” section and SI Tables 2 and 3. 

 

Docking 
To establish the baseline performance of HADDOCK on this membrane protein complex 

docking benchmark and generate a docking decoy dataset that can serve for further 

optimisation of membrane-specific scoring functions, we performed the docking using two 

different scenarios. 

 

 
Fig 2: I-RMSD values of the docking decoys of the membrane protein complex docking benchmark for the random-restraint 
driven runs. The complexes are grouped by difficulty. Each complex is represented by three boxplots, corresponding to the 
rigid-body (grey), semi-flexible refinement (orange) and final water refinement (blue) stages of HADDOCK. The black line 
represents the acceptability cut-off of 4 Å I-RMSD. The boxes of the boxplots range from the 1st to the 3rd quartile, the upper 
whisker extends from the hinge to the maximum value or 1.5 * Inter Quantile Range (IQR), the lower whisker extends from 
the hinge to the minimum value or 1.5 * IQR, outliers are shown as black points. 
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Random Restraints 
In the first scenario HADDOCK was used in its ab-initio mode with random restraints. Fig. 2 

shows the distribution of I-RMSD values for all three stages of the docking runs (SI-Fig.1 

shows the same plot but for L-RMSD). The RMSD values have been calculated according to 

CAPRI criteria as specified in the “Methods” section. The boxplots coloured grey, orange and 

cyan correspond to the I-RMSD values of it0, it1 and itw respectively. The horizontal black 

line represents the acceptability cut-off of 4 Å. Fig. 3 shows the same information but instead 

of displaying the raw I-RMSD values the models are classified by their quality. The figure is 

separated into 12 sub-graphs, each of which corresponds to one of the three docking stages (it0, 

it1, and itw) in one of the four difficulty groups (Bound, Easy, Intermediate, and Hard). Every 

sub-graph groups the performance for all complexes that have been classified into the same 

difficulty category for one of the three docking stages. The Y axis corresponds to the ranking 

of every model according to its HADDOCK score as calculated by the appropriate scoring 

function for every stage (see “Methods”), with models ranked near the bottom having a better 

score. Every model is represented by a single horizontal bar, with the colour of the bar 

representing the quality of the model. There is a limited number of acceptable models since we 

only used random restraints (ab initio docking mode) to drive the docking. Despite that, 

HADDOCK was able to generate at least one acceptable model in 27 of 37 (~73%) cases during 

it0 when considering all 50000 generated models. In 13 of those cases at least one acceptable 

model was also selected in the top 400 which are selected for further refinement in it1 and itw. 

This means that our scoring function could identify at least one acceptable model in ~48% of 

the cases where at least one model of acceptable quality was generated during it0. The success 

rate of 48% might sound less than ideal, but it becomes more impressive when one considers 

the number of acceptable models generated against the size of the sampling pool: In most cases 

only a few (<= 10) acceptable models were generated in it0 and they were correctly identified 

as near-native among 50000 models. SI Table 4 lists the number of acceptable structures 

generated during it0 for all complexes as well as the number of acceptable complexes ranked 

in the top 400. No more than these few acceptable models were sampled for the majority of 

complexes, however near-native structures were identified even when there were less than 5 of 

those in a pool of 50000 (1m56, 2bs2), including one case where the single near-native complex 

generated was selected (3v8x). The overall success rate of HADDOCK at the water stage using 

random restraints is ~35%, when considering all water models, as models of acceptable quality 

were generated in 13 of 37 cases. The difficulty or category of a complex seems to have no 

effect on the performance of HADDOCK with all difficulties and categories proportionately  
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Random Restraints 
In the first scenario HADDOCK was used in its ab-initio mode with random restraints. Fig. 2 

shows the distribution of I-RMSD values for all three stages of the docking runs (SI-Fig.1 

shows the same plot but for L-RMSD). The RMSD values have been calculated according to 

CAPRI criteria as specified in the “Methods” section. The boxplots coloured grey, orange and 

cyan correspond to the I-RMSD values of it0, it1 and itw respectively. The horizontal black 

line represents the acceptability cut-off of 4 Å. Fig. 3 shows the same information but instead 

of displaying the raw I-RMSD values the models are classified by their quality. The figure is 

separated into 12 sub-graphs, each of which corresponds to one of the three docking stages (it0, 

it1, and itw) in one of the four difficulty groups (Bound, Easy, Intermediate, and Hard). Every 

sub-graph groups the performance for all complexes that have been classified into the same 

difficulty category for one of the three docking stages. The Y axis corresponds to the ranking 

of every model according to its HADDOCK score as calculated by the appropriate scoring 

function for every stage (see “Methods”), with models ranked near the bottom having a better 

score. Every model is represented by a single horizontal bar, with the colour of the bar 

representing the quality of the model. There is a limited number of acceptable models since we 

only used random restraints (ab initio docking mode) to drive the docking. Despite that, 

HADDOCK was able to generate at least one acceptable model in 27 of 37 (~73%) cases during 

it0 when considering all 50000 generated models. In 13 of those cases at least one acceptable 

model was also selected in the top 400 which are selected for further refinement in it1 and itw. 

This means that our scoring function could identify at least one acceptable model in ~48% of 

the cases where at least one model of acceptable quality was generated during it0. The success 

rate of 48% might sound less than ideal, but it becomes more impressive when one considers 

the number of acceptable models generated against the size of the sampling pool: In most cases 

only a few (<= 10) acceptable models were generated in it0 and they were correctly identified 

as near-native among 50000 models. SI Table 4 lists the number of acceptable structures 

generated during it0 for all complexes as well as the number of acceptable complexes ranked 

in the top 400. No more than these few acceptable models were sampled for the majority of 

complexes, however near-native structures were identified even when there were less than 5 of 

those in a pool of 50000 (1m56, 2bs2), including one case where the single near-native complex 

generated was selected (3v8x). The overall success rate of HADDOCK at the water stage using 

random restraints is ~35%, when considering all water models, as models of acceptable quality 

were generated in 13 of 37 cases. The difficulty or category of a complex seems to have no 

effect on the performance of HADDOCK with all difficulties and categories proportionately  
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Random Restraints 
In the first scenario HADDOCK was used in its ab-initio mode with random restraints. Fig. 2 

shows the distribution of I-RMSD values for all three stages of the docking runs (SI-Fig.1 

shows the same plot but for L-RMSD). The RMSD values have been calculated according to 

CAPRI criteria as specified in the “Methods” section. The boxplots coloured grey, orange and 

cyan correspond to the I-RMSD values of it0, it1 and itw respectively. The horizontal black 

line represents the acceptability cut-off of 4 Å. Fig. 3 shows the same information but instead 

of displaying the raw I-RMSD values the models are classified by their quality. The figure is 

separated into 12 sub-graphs, each of which corresponds to one of the three docking stages (it0, 

it1, and itw) in one of the four difficulty groups (Bound, Easy, Intermediate, and Hard). Every 

sub-graph groups the performance for all complexes that have been classified into the same 

difficulty category for one of the three docking stages. The Y axis corresponds to the ranking 

of every model according to its HADDOCK score as calculated by the appropriate scoring 

function for every stage (see “Methods”), with models ranked near the bottom having a better 

score. Every model is represented by a single horizontal bar, with the colour of the bar 

representing the quality of the model. There is a limited number of acceptable models since we 

only used random restraints (ab initio docking mode) to drive the docking. Despite that, 

HADDOCK was able to generate at least one acceptable model in 27 of 37 (~73%) cases during 

it0 when considering all 50000 generated models. In 13 of those cases at least one acceptable 

model was also selected in the top 400 which are selected for further refinement in it1 and itw. 

This means that our scoring function could identify at least one acceptable model in ~48% of 

the cases where at least one model of acceptable quality was generated during it0. The success 

rate of 48% might sound less than ideal, but it becomes more impressive when one considers 

the number of acceptable models generated against the size of the sampling pool: In most cases 

only a few (<= 10) acceptable models were generated in it0 and they were correctly identified 

as near-native among 50000 models. SI Table 4 lists the number of acceptable structures 

generated during it0 for all complexes as well as the number of acceptable complexes ranked 

in the top 400. No more than these few acceptable models were sampled for the majority of 

complexes, however near-native structures were identified even when there were less than 5 of 

those in a pool of 50000 (1m56, 2bs2), including one case where the single near-native complex 

generated was selected (3v8x). The overall success rate of HADDOCK at the water stage using 

random restraints is ~35%, when considering all water models, as models of acceptable quality 

were generated in 13 of 37 cases. The difficulty or category of a complex seems to have no 

effect on the performance of HADDOCK with all difficulties and categories proportionately  
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Fig 4: Evaluation of the success rate as a function of the number of models considered. Every set of horizontal cells 
corresponds to the performance of HADDOCK on a given complex, with the performance for random restraints being shown 
in panels a and c, and the performance for true interface restraints in panels b and d. For the top panels, every cell corresponds 
to the quality of the best model (in terms of I-RMSD) when considering the N best models (N having the values 1, 5, 10, 20, 
50, 100 and 400) for all three docking stages, with the colouring of the cell representing high-, medium-, acceptable- and near 
acceptable-quality models (I-RMSD values of less than 1Å (dark green), between 1 and 2Å (light green), between 2 and 4Å 
(light blue), between 4 and 6Å (light grey) and over 6Å (white) respectively). Cells that correspond to cut-offs where only low-
quality models were generated are coloured white. In the bottom panels, the success rate percentage for all complexes is 
shown as a function of the number of models considered. The colouring is the same as for the top panel. 

 

True Interface Restraints 
Fig. 5 shows the performance of HADDOCK when using true interface information from the 

native complex to drive the docking, which thus represents an ideal scenario (SI-Fig2 shows 

 

 
 

represented in the list of complexes for which no acceptable model was generated. The 

distribution of success rates when considering different cut-offs, for the random-restraint 

driven runs, can be seen in the left panel of Fig. 4. Every cell of that plot corresponds to the 

quality of the best model (minimum I-RMSD) when considering the top N structures (with N 

being 1, 5, 10, 20, 50, 100 and 400). The colour of the plot represents the quality of the 

minimum I-RMSD model. Even though the number of complexes for which at least one 

acceptable model was generated in the top400 did not change between the rigid body and 

refinement stages, refinement did improve the ranking of those acceptable models as well as 

their quality. This trend is also reflected in the mean rank of the first acceptable model which 

is ~110, ~22 and ~33 for it0, it1 and itw respectively. The mean I-RMSD of all acceptable 

models is 3.38 ± 0.5Å, 3.15 ± 0.77Å and 3.13 ± 0.76Å for it0, it1 and itw respectively. 

 

 
Fig 3: Quality assessment of the generated models of the random-restraint driven runs based on I-RMSD values. The 
complexes are grouped by difficulty. For each, results of the rigid-body docking (it0 – top panel), semi-flexible refinement (it1 
– middle panel) and water refinement (itw – bottom panel) are shown. The Y axis for all subgraphs correspond to the ranking 
of the models according to the default HADDOCK scoring function with models ranked near 0 having the best scores. Every 
model has been coloured according to its quality with high, medium, acceptable, near acceptable and low-quality models 
having I-RMSD values of less than 1Å (dark green), between 1 and 2Å (light green), between 2 and 4Å (light blue), between 4 
and 6Å (light grey) and over 6Å (white) respectively). 
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Benchmark availability 
The bound and unbound structures, including the renumbered models used for docking of the 

membrane protein complex docking benchmark version1, along with ProFit analysis scripts 

can be freely downloaded at https://github.com/haddocking/MemCplxDB. The HADDOCK 

docking decoys are made available through the SBGrid Data Bank 263 and can be downloaded 

at https://data.sbgrid.com/618 225.  

 

Conclusion 

We have assembled a membrane protein-protein docking benchmark which, to the best of our 

knowledge, is the first of its kind. The benchmark is freely available for download from GitHub 

and, in addition to the reference and unbound structures, includes renumbered, docking-ready 

structures, reference structures and analysis scripts for the calculation of the RMSD metrics 

that we are reporting in this paper. We have established the docking performance baseline of 

HADDOCK for two extreme scenarios. Despite the fact that HADDOCK has not been 

optimized for membrane proteins, it demonstrates excellent performance in the case where 

high-quality interface data are available, with a 92% overall success rate when considering all 

400 itw models. In its ab-inito docking mode, however, the performance drops to 35% for itw 

models. In particular the sampling performance in the rigid body docking stage is affected, 

where we generate at least one acceptable model in 73% of the cases but only select at least 

one for further refinement in 48% of them with many near native models not being selected for 

the semi-flexible refinement stage as a result. This leaves room for optimization. All docking 

decoys for the various stages and scenarios can be freely downloaded from the SBGrid data 

bank. This new docking benchmark and its associated docking decoys should be a valuable 

resource for the community to foster the development of docking and scoring approaches for 

membrane protein complexes. 
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the same plot but for L-RMSD). Unlike for the random restrains runs, the difficulty of the 

complex is now important and is the main limiting factor for the performance of these runs. 

This is particularly apparent when comparing the bound and hard targets. In the bound 

complexes both sampling and scoring are better since a greater number of high-quality 

structures are generated during it0 and are scored near the top, meaning they proceed to the 

refinement stages. In general, the performance of HADDOCK is excellent with 36 of 37 

complexes having at least one acceptable (I-RMSD <= 4Å) or near acceptable (I-RMSD <= 

6Å) model in the rigid-body stage. The inclusion of near-acceptable models can be justified by 

the fact that when using a well-defined set of restraints, a rigid-body model in the near 

acceptable range might become acceptable after semi-flexible refinement, as is the case for 

example for complex 2r6g-TM. For that complex, no acceptable models were generated during 

it0, but the scoring function successfully identified the best models and, after refinement, more 

than half of the it1 and itw models became acceptable. Acceptable models are generated for 34 

of 37 complexes during the refinement stages corresponding to an overall success rate of 92%, 

when considering all water models. The right panel of Fig. 4 shows the distribution of success 

rates for different cut-offs (see “Random Restraints” above for more details). Except for three 

cases (2r6g-TM-cyto, 3wxw and 5fxb), for which acceptable models were generated in it0 but 

not scored in the top 400 that are selected for semi-flexible refinement, our scoring function 

works well, ranking most near-native models higher than the non-native ones. 

 

 
Fig 5: Quality assessment of the generated models of the true-interface restraint driven runs based on I-RMSD values. For 
details refer to the caption of Fig. 3. 
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Table S1: Overall backbone RMSD values for all entries not classified as “Bound”. The RMSD values have been calculated 
after optimal superimposition of the unbound chains on the respective reference chains using all backbone atoms for the 
fitting. 

complex_pdb_id chain_identifier(s) RMSD [Å] 

1k4c A 0.272 

1k4c* C 0.753 

1m56 AB 0.560 

1ots AB 0.873 

1ots CD 2.990 

2gsk* A 2.250 

2gsk B 0.753 

2hdi* B 0.655 

2hi7 A 1.446 

2hi7 B 3.296 

2j8s A 0.811 

2j8s B 0.820 

2j8s C 0.722 

2k9j A 0.751 

2k9j B 0.611 

2ks1 A 1.381 

2ks1 B 0.810 

2r6g-TM-cyto* AB 1.149 

2r6g-TM-peri E 0.891 

2zxe-AB B 1.689 

2zxe-AG G 1.631 

3csl C 1.316 

3hd7 A 1.388 

3hd7 B 1.095 

3o0r C 2.326 

3p0g A 0.994 

3p0g B 0.867 

3v8x B 3.202 

3wxw HL 1.302 

3x29* B 0.879 

4fz0 A 1.406 

4fz0 B 1.341 

4fz0 C 1.217 

4j3o G 0.667 

4m48 HL 3.305 

4q35 B 3.762 
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5a63-AC A 2.275 

5aww E 1.749 

5d0o D 1.530 

5fxb F 2.267 

* For the cases marked with an asterisk the sequence identity between the unbound and reference chains is not 

100% due to differences between the reference and unbound structures. For chains 1k4c_C and 2gsk_A the 

sequence identity is 95.1 and 92.5% due to the presence of gaps in the alignment. For 2hdi_B, 2r6g-TM-

cyto_AB and 3x29_B the sequence identity is 99.0, 99.7 and 99.1% due to mutations. 
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5a63-AC A 2.275 

5aww E 1.749 

5d0o D 1.530 

5fxb F 2.267 

* For the cases marked with an asterisk the sequence identity between the unbound and reference chains is not 

100% due to differences between the reference and unbound structures. For chains 1k4c_C and 2gsk_A the 

sequence identity is 95.1 and 92.5% due to the presence of gaps in the alignment. For 2hdi_B, 2r6g-TM-

cyto_AB and 3x29_B the sequence identity is 99.0, 99.7 and 99.1% due to mutations. 



50

 

 
 

8 
4h

uq
-T

M
-B

 26
9  

4h
uq

_S
T 

4h
uq

_B
 

M
S 

B
B

 
B

ou
nd

 
0 

C
ha

in
s S

 a
nd

 T
 h

av
e 

be
en

 jo
in

ed
 in

to
 c

ha
in

 

S 
w

ith
 c

ha
in

 T
 re

nu
m

be
re

d 
fr

om
 1

00
0.

 

9 
5a

63
-B

C
 27

0  
5a

63
_B

 
5a

63
_C

 
TM

 
B

B
 

B
ou

nd
 

0 
- 

10
 

2h
di

 27
1  

2h
di

_A
 

1c
ii_

A
 27

2  
B

ur
ie

d 
U

B
 

Ea
sy

 
0.

36
1 

R
es

id
ue

s 2
82

-3
85

 o
f 1

ci
i_

A
. 

11
 

4j
3o

 27
3  

4j
3o

_D
 

3b
fq

_F
G

 27
4  

B
ur

ie
d 

U
B

 
Ea

sy
 

0.
39

2 
C

ha
in

s F
 a

nd
 G

 h
av

e 
be

en
 jo

in
ed

 in
to

 c
ha

in
 

F 
w

ith
 c

ha
in

 G
 re

nu
m

be
re

d 
fr

om
 1

00
0.

 

12
 

1m
56

 27
5  

2g
sm

_A
B

 27
6  

1m
56

_C
D

 
TM

 
U

B
 

Ea
sy

 
0.

57
2 

C
ha

in
s A

 a
nd

 B
 h

av
e 

be
en

 jo
in

ed
 in

to
 c

ha
in

 

A
 w

ith
 c

ha
in

 B
 r

en
um

be
re

d 
fr

om
 1

00
0.

 

C
ha

in
s C

 a
nd

 D
 h

av
e 

be
en

 jo
in

ed
 in

to
 c

ha
in

 

B
 w

ith
 c

ha
in

 D
 re

nu
m

be
re

d 
fr

om
 1

00
0.

 

13
 

1k
4c

 27
7  

1k
4c

_A
B

 
1j

95
_A

B
C

D
 

27
8  

M
S 

U
U

 
Ea

sy
 

0.
63

8 
C

ha
in

s 
A

, 
B

, 
C

 a
nd

 D
 o

f 
1j

95
 h

av
e 

be
en

 

jo
in

ed
 in

to
 c

ha
in

 C
 w

ith
 c

ha
in

s 
B

, C
 a

nd
 D

 

re
nu

m
be

re
d 

fr
om

 1
00

0,
 2

00
0,

 a
nd

 3
00

0 

re
sp

ec
tiv

el
y.

 C
ha

in
s 

A
 a

nd
 B

 o
f 

1k
4c

 h
av

e 

be
en

 j
oi

ne
d 

in
to

 c
ha

in
 A

 w
ith

 c
ha

in
 B

 

re
nu

m
be

re
d 

fr
om

 1
00

0.
 

14
 

3x
29

 27
9  

3x
29

_A
 

2q
uo

_A
 28

0  
M

S 
U

B
 

Ea
sy

 
0.

67
3 

- 

15
 

2k
9j

 28
1  

2r
m

z_
A

 28
2  

2k
1a

_A
 28

3  
TM

 
U

U
 

Ea
sy

 
0.

67
8 

O
nl

y 
th

e 
fir

st
 c

on
fo

rm
er

 h
as

 b
ee

n 
ke

pt
 f

or
 

bo
th

 b
ou

nd
 a

nd
 fr

ee
 st

ru
ct

ur
es

. 

16
 

2r
6g

-T
M

-p
er

i 26
6  

2r
6g

_F
G

 
1j

w
4_

A
 28

4  
M

S 
U

B
 

Ea
sy

 
0.

71
6 

C
ha

in
s F

 a
nd

 G
 h

av
e 

be
en

 jo
in

ed
 in

to
 c

ha
in

 

F 
w

ith
 c

ha
in

 G
 re

nu
m

be
re

d 
fr

om
 1

00
0.

 

17
 

2g
sk

 28
5  

2g
uf

_A
 28

6  
1u

07
_A

 28
7  

M
S 

U
U

 
Ea

sy
 

0.
86

 
R

es
id

ue
s 

15
3-

23
3 

of
 1

u0
7 

an
d 

re
si

du
es

 5
-

59
4 

of
 2

gu
f. 

18
 

5a
w

w
 28

8  
5a

w
w

_Y
G

 
5a

w
w

_E
 

TM
 

U
B

 
Ea

sy
 

0.
86

8 
Jo

in
ed

 c
ha

in
s 

Y
 a

nd
 G

 i
nt

o 
ch

ai
n 

Y
 w

ith
 

ch
ai

n 
G

 r
en

um
be

re
d 

fr
om

 1
00

0.
 R

es
id

ue
s 



51

 

 
 

8 
4h

uq
-T

M
-B

 26
9  

4h
uq

_S
T 

4h
uq

_B
 

M
S 

B
B

 
B

ou
nd

 
0 

C
ha

in
s S

 a
nd

 T
 h

av
e 

be
en

 jo
in

ed
 in

to
 c

ha
in

 

S 
w

ith
 c

ha
in

 T
 re

nu
m

be
re

d 
fr

om
 1

00
0.

 

9 
5a

63
-B

C
 27

0  
5a

63
_B

 
5a

63
_C

 
TM

 
B

B
 

B
ou

nd
 

0 
- 

10
 

2h
di

 27
1  

2h
di

_A
 

1c
ii_

A
 27

2  
B

ur
ie

d 
U

B
 

Ea
sy

 
0.

36
1 

R
es

id
ue

s 2
82

-3
85

 o
f 1

ci
i_

A
. 

11
 

4j
3o

 27
3  

4j
3o

_D
 

3b
fq

_F
G

 27
4  

B
ur

ie
d 

U
B

 
Ea

sy
 

0.
39

2 
C

ha
in

s F
 a

nd
 G

 h
av

e 
be

en
 jo

in
ed

 in
to

 c
ha

in
 

F 
w

ith
 c

ha
in

 G
 re

nu
m

be
re

d 
fr

om
 1

00
0.

 

12
 

1m
56

 27
5  

2g
sm

_A
B

 27
6  

1m
56

_C
D

 
TM

 
U

B
 

Ea
sy

 
0.

57
2 

C
ha

in
s A

 a
nd

 B
 h

av
e 

be
en

 jo
in

ed
 in

to
 c

ha
in

 

A
 w

ith
 c

ha
in

 B
 r

en
um

be
re

d 
fr

om
 1

00
0.

 

C
ha

in
s C

 a
nd

 D
 h

av
e 

be
en

 jo
in

ed
 in

to
 c

ha
in

 

B
 w

ith
 c

ha
in

 D
 re

nu
m

be
re

d 
fr

om
 1

00
0.

 

13
 

1k
4c

 27
7  

1k
4c

_A
B

 
1j

95
_A

B
C

D
 

27
8  

M
S 

U
U

 
Ea

sy
 

0.
63

8 
C

ha
in

s 
A

, 
B

, 
C

 a
nd

 D
 o

f 
1j

95
 h

av
e 

be
en

 

jo
in

ed
 in

to
 c

ha
in

 C
 w

ith
 c

ha
in

s 
B

, C
 a

nd
 D

 

re
nu

m
be

re
d 

fr
om

 1
00

0,
 2

00
0,

 a
nd

 3
00

0 

re
sp

ec
tiv

el
y.

 C
ha

in
s 

A
 a

nd
 B

 o
f 

1k
4c

 h
av

e 

be
en

 j
oi

ne
d 

in
to

 c
ha

in
 A

 w
ith

 c
ha

in
 B

 

re
nu

m
be

re
d 

fr
om

 1
00

0.
 

14
 

3x
29

 27
9  

3x
29

_A
 

2q
uo

_A
 28

0  
M

S 
U

B
 

Ea
sy

 
0.

67
3 

- 

15
 

2k
9j

 28
1  

2r
m

z_
A

 28
2  

2k
1a

_A
 28

3  
TM

 
U

U
 

Ea
sy

 
0.

67
8 

O
nl

y 
th

e 
fir

st
 c

on
fo

rm
er

 h
as

 b
ee

n 
ke

pt
 f

or
 

bo
th

 b
ou

nd
 a

nd
 fr

ee
 st

ru
ct

ur
es

. 

16
 

2r
6g

-T
M

-p
er

i 26
6  

2r
6g

_F
G

 
1j

w
4_

A
 28

4  
M

S 
U

B
 

Ea
sy

 
0.

71
6 

C
ha

in
s F

 a
nd

 G
 h

av
e 

be
en

 jo
in

ed
 in

to
 c

ha
in

 

F 
w

ith
 c

ha
in

 G
 re

nu
m

be
re

d 
fr

om
 1

00
0.

 

17
 

2g
sk

 28
5  

2g
uf

_A
 28

6  
1u

07
_A

 28
7  

M
S 

U
U

 
Ea

sy
 

0.
86

 
R

es
id

ue
s 

15
3-

23
3 

of
 1

u0
7 

an
d 

re
si

du
es

 5
-

59
4 

of
 2

gu
f. 

18
 

5a
w

w
 28

8  
5a

w
w

_Y
G

 
5a

w
w

_E
 

TM
 

U
B

 
Ea

sy
 

0.
86

8 
Jo

in
ed

 c
ha

in
s 

Y
 a

nd
 G

 i
nt

o 
ch

ai
n 

Y
 w

ith
 

ch
ai

n 
G

 r
en

um
be

re
d 

fr
om

 1
00

0.
 R

es
id

ue
s 

C
ha

pt
er

 2

 

 
 

24
-6

0 
of

 c
ha

in
 E

 h
av

e 
be

en
 m

od
el

le
d 

us
in

g 

id
ea

l h
el

ic
al

 b
ac

kb
on

e 
an

gl
es

. 

19
 

2z
xe

-A
G

 28
9  

2z
xe

_A
 

2z
xe

_G
 

TM
 

U
B

 
Ea

sy
 

0.
91

9 
Th

e 
fir

st
 1

5 
re

si
du

es
 o

f 
ch

ai
n 

G
 h

av
e 

be
en

 

m
od

el
le

d 
us

in
g 

id
ea

l 
ba

ck
bo

ne
 

he
lic

al
 

an
gl

es
. 

20
 

2z
xe

-A
B

 28
9  

2z
xe

_A
 

2z
xe

_B
 

TM
 

U
B

 
Ea

sy
 

0.
94

 
R

es
id

ue
s 

31
-6

1 
of

 
ch

ai
n 

B
 

ha
ve

 
be

en
 

m
od

el
le

d 
us

in
g 

id
ea

l 
ba

ck
bo

ne
 

he
lic

al
 

an
gl

es
. 

21
 

3w
xw

 29
0  

3w
xw

_A
 

1v
fa

_H
L 

29
1  

A
B

 
H

B
 

Ea
sy

 
0.

98
2 

C
ha

in
s H

 a
nd

 L
 h

av
e 

be
en

 jo
in

ed
 in

to
 c

ha
in

 

B
 w

ith
 c

ha
in

 L
 re

nu
m

be
re

d 
fr

om
 1

00
0.

 

22
 

3h
d7

 29
2  

3h
d7

_A
 

3h
d7

_B
 

TM
 

U
U

 
In

te
rm

ed
ia

te
 

1.
02

4 
C

ha
in

 
A

 
re

si
du

es
 

95
-1

16
 

an
d 

ch
ai

n 
B 

re
si

du
es

 2
86

 h
av

e b
ee

n 
m

od
el

le
d 

us
in

g 
id

ea
l 

he
lic

al
 b

ac
kb

on
e 

an
gl

es
. 

23
 

3c
sl

 29
3  

3c
sl

_A
 

1b
2v

_A
 29

4  
M

S 
U

B
 

In
te

rm
ed

ia
te

 
1.

06
5 

- 

24
 

2k
s1

 29
5  

2n
2a

_A
 29

6  
2m

0b
_A

 
TM

 
U

U
 

In
te

rm
ed

ia
te

 
1.

15
8 

- 

25
 

5d
0o

 29
7  

5d
0o

_A
 

2y
hc

_A
 29

8  
M

S 
U

B
 

In
te

rm
ed

ia
te

 
1.

18
2 

- 

26
 

5a
63

-A
C

 27
0  

5a
63

_A
 

5a
63

_C
 

TM
 

U
B

 
In

te
rm

ed
ia

te
 

1.
21

8 
R

es
id

ue
s 

66
6-

69
8 

of
 c

ha
in

 A
 h

av
e 

be
en

 

m
od

el
le

d 
us

in
g 

id
ea

l 
he

lic
al

 
ba

ck
bo

ne
 

an
gl

es
. 

27
 

3p
0g

 29
9  

2r
h1

_A
 30

0  
4u

nu
_A

 30
1  

A
B

 
U

U
 

In
te

rm
ed

ia
te

 
1.

26
 

O
nl

y 
th

e 
fir

st
 c

on
fo

rm
er

 h
as

 b
ee

n 
ke

pt
 f

or
 

bo
th

 b
ou

nd
 a

nd
 fr

ee
 st

ru
ct

ur
es

. 

28
 

2r
6g

-T
M

-c
yt

o 
26

6  
2r

6g
_F

G
 

1q
12

_A
B

 30
2  

M
S 

U
B

 
In

te
rm

ed
ia

te
 

1.
36

3 
C

ha
in

s F
+G

 &
 c

ha
in

s A
+B

. C
ha

in
s F

+G
 a

re
 

jo
in

ed
 

in
to

 
ch

ai
n 

F 
an

d 
ch

ai
n 

G
 

is 

re
nu

m
be

re
d 

fr
om

 1
00

0.
 C

ha
in

s 
A

+B
 a

re
 

 

 
 

8 
4h

uq
-T

M
-B

 26
9  

4h
uq

_S
T 

4h
uq

_B
 

M
S 

B
B

 
B

ou
nd

 
0 

C
ha

in
s S

 a
nd

 T
 h

av
e 

be
en

 jo
in

ed
 in

to
 c

ha
in

 

S 
w

ith
 c

ha
in

 T
 re

nu
m

be
re

d 
fr

om
 1

00
0.

 

9 
5a

63
-B

C
 27

0  
5a

63
_B

 
5a

63
_C

 
TM

 
B

B
 

B
ou

nd
 

0 
- 

10
 

2h
di

 27
1  

2h
di

_A
 

1c
ii_

A
 27

2  
B

ur
ie

d 
U

B
 

Ea
sy

 
0.

36
1 

R
es

id
ue

s 2
82

-3
85

 o
f 1

ci
i_

A
. 

11
 

4j
3o

 27
3  

4j
3o

_D
 

3b
fq

_F
G

 27
4  

B
ur

ie
d 

U
B

 
Ea

sy
 

0.
39

2 
C

ha
in

s F
 a

nd
 G

 h
av

e 
be

en
 jo

in
ed

 in
to

 c
ha

in
 

F 
w

ith
 c

ha
in

 G
 re

nu
m

be
re

d 
fr

om
 1

00
0.

 

12
 

1m
56

 27
5  

2g
sm

_A
B

 27
6  

1m
56

_C
D

 
TM

 
U

B
 

Ea
sy

 
0.

57
2 

C
ha

in
s A

 a
nd

 B
 h

av
e 

be
en

 jo
in

ed
 in

to
 c

ha
in

 

A
 w

ith
 c

ha
in

 B
 r

en
um

be
re

d 
fr

om
 1

00
0.

 

C
ha

in
s C

 a
nd

 D
 h

av
e 

be
en

 jo
in

ed
 in

to
 c

ha
in

 

B
 w

ith
 c

ha
in

 D
 re

nu
m

be
re

d 
fr

om
 1

00
0.

 

13
 

1k
4c

 27
7  

1k
4c

_A
B

 
1j

95
_A

B
C

D
 

27
8  

M
S 

U
U

 
Ea

sy
 

0.
63

8 
C

ha
in

s 
A

, 
B

, 
C

 a
nd

 D
 o

f 
1j

95
 h

av
e 

be
en

 

jo
in

ed
 in

to
 c

ha
in

 C
 w

ith
 c

ha
in

s 
B

, C
 a

nd
 D

 

re
nu

m
be

re
d 

fr
om

 1
00

0,
 2

00
0,

 a
nd

 3
00

0 

re
sp

ec
tiv

el
y.

 C
ha

in
s 

A
 a

nd
 B

 o
f 

1k
4c

 h
av

e 

be
en

 j
oi

ne
d 

in
to

 c
ha

in
 A

 w
ith

 c
ha

in
 B

 

re
nu

m
be

re
d 

fr
om

 1
00

0.
 

14
 

3x
29

 27
9  

3x
29

_A
 

2q
uo

_A
 28

0  
M

S 
U

B
 

Ea
sy

 
0.

67
3 

- 

15
 

2k
9j

 28
1  

2r
m

z_
A

 28
2  

2k
1a

_A
 28

3  
TM

 
U

U
 

Ea
sy

 
0.

67
8 

O
nl

y 
th

e 
fir

st
 c

on
fo

rm
er

 h
as

 b
ee

n 
ke

pt
 f

or
 

bo
th

 b
ou

nd
 a

nd
 fr

ee
 st

ru
ct

ur
es

. 

16
 

2r
6g

-T
M

-p
er

i 26
6  

2r
6g

_F
G

 
1j

w
4_

A
 28

4  
M

S 
U

B
 

Ea
sy

 
0.

71
6 

C
ha

in
s F

 a
nd

 G
 h

av
e 

be
en

 jo
in

ed
 in

to
 c

ha
in

 

F 
w

ith
 c

ha
in

 G
 re

nu
m

be
re

d 
fr

om
 1

00
0.

 

17
 

2g
sk

 28
5  

2g
uf

_A
 28

6  
1u

07
_A

 28
7  

M
S 

U
U

 
Ea

sy
 

0.
86

 
R

es
id

ue
s 

15
3-

23
3 

of
 1

u0
7 

an
d 

re
si

du
es

 5
-

59
4 

of
 2

gu
f. 

18
 

5a
w

w
 28

8  
5a

w
w

_Y
G

 
5a

w
w

_E
 

TM
 

U
B

 
Ea

sy
 

0.
86

8 
Jo

in
ed

 c
ha

in
s 

Y
 a

nd
 G

 i
nt

o 
ch

ai
n 

Y
 w

ith
 

ch
ai

n 
G

 r
en

um
be

re
d 

fr
om

 1
00

0.
 R

es
id

ue
s 



52

 

 
 

 

 
Fig S1: Distributions of L-RMSD values for the various models of the benchmark complexes obtained using random restraints 
(see Methods). The complexes have been grouped by difficulty. Every complex is represented by three boxplots. The grey, 
orange and blue boxplots correspond to the RMSD values of all generated models for the first, second and third stage of the 
docking run (it0, it1, itw). The black line represents the acceptability cut-off of 10 Å. The boxes of the boxplots range from the 
1st to the 3rd quartile, the upper whisker extends from the hinge to the maximum value or 1.5 * Inter Quantile Range (IQR), 
the lower whisker extends from the hinge to the minimum value or 1.5 * IQR, outliers are shown as black points. 

 

 
Fig S2: Assessment of the quality (L-RMSD) and ranking (y-axis) of generated models of the true interface-driven runs. 
Complexes are grouped by difficulty. Results are shown for the docking stages of HADDOCK: rigid body docking (it0) – top 
panels; semi-flexible refinement (it1) – middle panels; final water refinement (itw) – bottom panels. The Y axis for all subgraphs 
correspond to the ranking of the models according to the default HADDOCK scoring function, with models ranked near 0 
having the best scores. Every model has been coloured according to its quality with high, medium, acceptable, near acceptable, 
and low-quality models having L-RMSD values of less than 1 Å, between 1 and 5 Å, between 5 and 10 Å, between 10 and 12 
Å, and more than 12 Å respectively. The high-quality models have been coloured dark green, the medium-quality ones light 
green, the acceptable-quality ones light blue and the near acceptable ones light grey. 
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Fig S1: Distributions of L-RMSD values for the various models of the benchmark complexes obtained using random restraints 
(see Methods). The complexes have been grouped by difficulty. Every complex is represented by three boxplots. The grey, 
orange and blue boxplots correspond to the RMSD values of all generated models for the first, second and third stage of the 
docking run (it0, it1, itw). The black line represents the acceptability cut-off of 10 Å. The boxes of the boxplots range from the 
1st to the 3rd quartile, the upper whisker extends from the hinge to the maximum value or 1.5 * Inter Quantile Range (IQR), 
the lower whisker extends from the hinge to the minimum value or 1.5 * IQR, outliers are shown as black points. 

 

 
Fig S2: Assessment of the quality (L-RMSD) and ranking (y-axis) of generated models of the true interface-driven runs. 
Complexes are grouped by difficulty. Results are shown for the docking stages of HADDOCK: rigid body docking (it0) – top 
panels; semi-flexible refinement (it1) – middle panels; final water refinement (itw) – bottom panels. The Y axis for all subgraphs 
correspond to the ranking of the models according to the default HADDOCK scoring function, with models ranked near 0 
having the best scores. Every model has been coloured according to its quality with high, medium, acceptable, near acceptable, 
and low-quality models having L-RMSD values of less than 1 Å, between 1 and 5 Å, between 5 and 10 Å, between 10 and 12 
Å, and more than 12 Å respectively. The high-quality models have been coloured dark green, the medium-quality ones light 
green, the acceptable-quality ones light blue and the near acceptable ones light grey. 
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Fig S1: Distributions of L-RMSD values for the various models of the benchmark complexes obtained using random restraints 
(see Methods). The complexes have been grouped by difficulty. Every complex is represented by three boxplots. The grey, 
orange and blue boxplots correspond to the RMSD values of all generated models for the first, second and third stage of the 
docking run (it0, it1, itw). The black line represents the acceptability cut-off of 10 Å. The boxes of the boxplots range from the 
1st to the 3rd quartile, the upper whisker extends from the hinge to the maximum value or 1.5 * Inter Quantile Range (IQR), 
the lower whisker extends from the hinge to the minimum value or 1.5 * IQR, outliers are shown as black points. 

 

 
Fig S2: Assessment of the quality (L-RMSD) and ranking (y-axis) of generated models of the true interface-driven runs. 
Complexes are grouped by difficulty. Results are shown for the docking stages of HADDOCK: rigid body docking (it0) – top 
panels; semi-flexible refinement (it1) – middle panels; final water refinement (itw) – bottom panels. The Y axis for all subgraphs 
correspond to the ranking of the models according to the default HADDOCK scoring function, with models ranked near 0 
having the best scores. Every model has been coloured according to its quality with high, medium, acceptable, near acceptable, 
and low-quality models having L-RMSD values of less than 1 Å, between 1 and 5 Å, between 5 and 10 Å, between 10 and 12 
Å, and more than 12 Å respectively. The high-quality models have been coloured dark green, the medium-quality ones light 
green, the acceptable-quality ones light blue and the near acceptable ones light grey. 
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Table S4: Number of generated (column 3) and selected models (column 4) during the rigid-body stage (it0) of the random 
restraints-driven runs for all entries of the benchmark. 

complex pdb_id acceptable models in it0 acceptable models in top400 of it0 

1 1k4c 17 0 

2 1m56 4 4 

3 1ots 0 0 

4 2bg9 5 1 

5 2bs2 4 1 

6 2gsk 4 0 

7 2hdi 14 0 

8 2hi7 6 0 

9 2j8s 0 0 

10 2k9j 749 49 

11 2ks1 107 1 

12 2r6g-TM-cyto 1 0 

13 2r6g-TM 0 0 

14 2r6g-TM-peri 5 1 

15 2vpz 5 0 

16 2zxe-AB 6 1 

17 2zxe-AG 58 3 

18 3csl 2 0 

19 3hd7 290 3 

20 3o0r 16 0 

21 3p0g 6 1 

22 3v8x 1 1 

23 3wxw 0 0 

24 3x29 6 0 

25 4fz0 0 0 

26 4hg6 0 0 

27 4huq-TM-A 4 0 

28 4huq-TM-B 0 0 

29 4huq-TM 0 0 

30 4j3o 0 0 

31 4m48 2 0 

32 4q35-cut 0 0 

33 5a63-AC 24 5 

34 5a63-BC 1 0 

35 5aww 35 10 

36 5d0o 3 0 

37 5fxb 15 0 
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Table S4: Number of generated (column 3) and selected models (column 4) during the rigid-body stage (it0) of the random 
restraints-driven runs for all entries of the benchmark. 

complex pdb_id acceptable models in it0 acceptable models in top400 of it0 
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25 4fz0 0 0 

26 4hg6 0 0 

27 4huq-TM-A 4 0 

28 4huq-TM-B 0 0 

29 4huq-TM 0 0 

30 4j3o 0 0 

31 4m48 2 0 

32 4q35-cut 0 0 

33 5a63-AC 24 5 

34 5a63-BC 1 0 

35 5aww 35 10 

36 5d0o 3 0 

37 5fxb 15 0 
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Abstract 
Despite the significant role membrane proteins and their complexes play in many cellular 

processes like for example signal transduction and transport of nutrients, and the well-

established difficulty in their experimental characterisation, most docking codes still do not 

support modelling of membrane protein complexes with specific adaptations tailored to the 

membrane environment. Here we present ongoing work, related to the development of an 

implicit membrane representation for use in HADDOCK. The bilayer is represented by a shape 

consisting of layer(s) of beads - dummy atoms - which are used as anchors to restrain the 

transmembrane parts of integral membrane protein complexes into the bilayer. The 

performance of this new protocol is compared with a simple protocol in which only one centre-

of-mass restraint is defined between the core transmembrane regions of the docking partners, a 

minimal-data scenario, and another one in which information extracted from the interface of 

the native complex is used to drive the docking, a perfect-case scenario.  
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Fig 1: Schematic representations of the three classes of membrane protein complexes. Panel A shows a protein-protein complex 
whose one subunit is anchored to the membrane (grey), whereas the other (purple) is entirely in solution. Panel B shows one 
whose one subunit is embedded in the membrane (grey) and the other (purple) lies at the membrane-soluble interface which is 
also where the protein-protein interface for this complex lies. Panel C shows a transmembrane protein-protein complex with 
both subunits entirely embedded in the membrane. 

Illustrations of these categories are shown in Fig. 1. The first two do not require in principle 

specific adaptations to any docking protocols as the interface of those complexes lies in the 

soluble region. For the second, membrane-soluble category the membrane proteins are 

embedded in the lipid bilayer, which constrains their rotation and translation. Also, the presence 

of membrane does put restraints on the area of the surface that should be sampled, an 

information that might benefit sampling strategies. This holds true for the complexes of the 

third category whose subunits are entirely or partially embedded in the membrane and whose 

interface lies entirely within the membrane bilayer as well (membrane-membrane). Complexes 

like GPCRs, ion channels and transporters all belong to this category which is going to be the 

focus of this chapter. The energetics for all cases might need to be revisited especially in the 

case of empirical desolvation potentials which have been parametrised with the assumption that 

the complexes are surrounded by water. 

 

Materials and Methods 
HADDOCK is an information-driven docking method which can make use of many types of 

data to drive the simulation. These data can be derived experimentally or computationally. 

These are usually translated into ambiguous distance restraints which are used to guide the 

simulation as well as for the scoring of the generated models (see Chapter 2 for an extended 

description of the method). 

 

 

 

 

Introduction 

Cells are the fundamental units of life. From the simplest single-cell organisms to the most 

complex multicellular ones, all living creatures are comprised of cells. A cell is a collection of 

organelles in a concentrated aqueous solution bound by a double layer of amphipathic 

molecules, for the most part phospholipids. It is this lipid bilayer, or plasma membrane, that 

allows the cell to maintain the concentration of the various substances it needs to preserve its 

homeostatic status, grow, divide and in the case of multicellular organisms differentiate 322. 

Membranes also surround some of the organelles and compartments of the cell like the nucleus 

and mitochondria. In addition to the lipids, the plasma membrane is made up of proteins with 

multiple functions, most prominently, cellular communication via signalling cascades and 

transfer of substances in and out of the cell or cellular compartment 200. The importance of 

membrane proteins is such that, depending on the organism, membrane proteins might make 

up anywhere from 20 to 30% of that organism’s proteome 200,323. They are also important for 

the pharmaceutical industry since, for example, G-Protein Coupled Receptors (GPCRs) alone 

constitute more than half of all prescription drug targets 324 and ~35% of all drug targets on the 

market with even more compounds targeting proteins of this family under development or in 

clinical testing 209. 

Given the eminent difficulty of structurally charactering membrane proteins with experimental 

methods (see Chapters 1 and 2), computational approaches provide an attractive alternative to 

methods like X-ray crystallography, NMR and cryo Electron Microscopy (cryo-EM). However, 

despite many advances in areas like membrane protein-specific databases and recent 

developments in all atom and coarse-grained protein and lipid forcefields, the docking field has 

lagged behind with only a handful of codes having published new or adapted protocols for the 

docking of membrane protein complexes (see Chapter 1). In this chapter we describe ongoing 

work revolving around adding support for docking membrane proteins in HADDOCK 59,256. 

Membrane protein complexes can be categorised in one of three groups based on the topology 

of the interaction: 

A. Complexes which are not embedded in the membrane and only one or more of their 
components are (transiently) anchored to it. 

B. Complexes whose interface lies at the membrane-soluble interface, and finally 
C. Complexes which have at least two subunits that are entirely or partially embedded in 

the membrane. 
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the membrane normal, with the same 10 Å spacing between beads. For the first representation, 

ambiguous distance restraints are defined between every Cα carbon of the protein subunits 

within 10Å of the geometric centre along the Z axis (the core of the transmembrane region of 

the protein) and all beads, whereas for the second one, restraints are restricted to the Cα carbons 

within 5Å of the geometric centre along the Z axis. The target distance for these restraints was 

equal to half the spacing i.e. 5Å. In addition to the restraints driving the subunits to the beads 

we are also defining a centre of mass restraint between the geometric centre of the core 

transmembrane regions. This transmembrane (TM) centre of mass (CM) restraint is meant to 

bring the two subunits together in a way which only depends on knowing which are the 

transmembrane regions of each. We evaluate the performance of the two sets of simulations 

with the bead layers (bead-multiple and bead-single) and compare it with docking runs in which 

only the TM-CM restraint is active (TM-CM) and one in which we use the true interface 

information to drive the docking (True Interface – TI), which represents a best case scenario. 

The settings which differ compared to the default behaviour of HADDOCK are the number of 

models that are generated during the rigid body and refinement stages which is set to 10000 and 

400 respectively, the number of rigid body energy minimisation trials which is set to 1 and the 

systematic sampling of 180o symmetrical solutions during the rigid body stage which is 

disabled. The TM-CM, Single-Layer and Multi-Layers runs were performed with the latest 

version of HADDOCK (v2.4) whereas the TI have been previously performed on the 

HADDOCK webserver (v2.2) (see Chapter 2). 

 

Dataset 
We assembled our dataset by extracting the cases classified as TM from the benchmark that 

was described in Chapter 2 after excluding targets with ids 2r6g-TM and 4hg6. Target 2r6g-

TM was excluded because the two subunits intertwine around each other, making this an 

impossible target to model without the use of highly specific restraints; target 4hg6 was 

excluded because of the topology of the interacting surface. This resulted in a set of ten targets, 

details of which are shown in Table 1. 
  

 

 

Membrane representation. 
This concept of distance restraints is also central to the way we chose to represent the membrane 

in HADDOCK. As a first representation we chose an implicit model with the bilayer 

represented as a network of regularly spaced beads (see Fig. 2). These beads do not interact 

with the remaining of the system in any way. They are placed in such a way that the geometric 

centre of the transmembrane region of the protein and that of all the beads overlap and the 

primary axis of the protein is parallel to the membrane normal. 

After generating a network of beads at the desired spacing, we place all subunits of the complex 

of interest in the “bilayer” after specifying three parameters: 

1. Insertion angle, 
2. Rotation angle around the membrane normal, and 
3. Translation distance along the membrane normal 

For those, we take the values from the OPM database 206 for the protein of interest or its closest 

homolog.  

 
Fig 2: Subunits I and II of the cytochrome c oxidase (PDB entry 1m56) embedded in the “bilayer” which is 30Å wide and the 
spacing of the beads is 10Å in all three dimensions. The protein is shown as grey cartoons and the beads as orange spheres. 
Panel A shows the view from the side and panel B from the top of the “bilayer”. All molecular graphics were generated with 
PyMOL 83. 

 

Docking protocols 
After insertion, ambiguous distance restraints are specified between the core transmembrane 

regions of every subunit and the shape beads. The way those regions are defined depends on 

the number of layers used to represent the membrane. We have selected to test the performance 

of our implementation using two representations: The first is identical to the one shown in Fig. 

2 with the membrane width set to 30Å and a 10 Å spacing between the beads. For the second 

representation we have chosen a single layer whose Z coordinates are the same as those of the 

geometric centre of the transmembrane part of the protein i.e. a single plane perpendicular to 
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Fig 3: Evaluation of the success rate as a function of the number of models considered. Every set of horizontal cells corresponds 
to the performance of HADDOCK on a given complex, with the performance for Transmembrane centre-of-mass (TM-CM, 
Single bead layer (Single), Multiple bead layers (Multi) and True Interface (TI) runs being shown from left to right in panel a. 
For panel a, every cell corresponds to the quality of the best model (in terms of I-RMSD) when considering the N best models 
(N having the values 1, 5, 10, 20, 50, 100, 400 and 10000 [all models generated]) for the rigid body stage (it0), with the 
colouring of the cell representing high-, medium-, acceptable- and near acceptable-quality models (I-RMSD values of less than 
1Å (dark green), between 1 and 2Å (light green), between 2 and 4Å (light blue), between 4 and 6Å (light grey) and over 6Å 
(white) respectively). Cells that correspond to cut-offs where only low-quality models were generated are coloured white. In 
panel b, the success rate percentage for all complexes is shown as a function of the number of models considered. The colouring 
is the same as for the top panel. 

 

The success rate – defined as the number of complexes for which at least one model of 

acceptable- (or better) quality was generated and ranked within a given number of top ranked 

models – is level between the TM-CM and Multi runs when considering the top 1 to top 10 

models, according to the HADDOCK Score. However, beyond that cut-off the TM-CM runs 

clearly perform better and we have to consider the top 400 models before the performance 

between the two is comparable. While the low performance of the bead layer runs is surprising, 

 

 

Table 1: The entries of the dataset used in this study. The first column is the PDB id of the complex structure, columns 2 and 3 
the PDB ids of the unbound structures, composition refers to the origin of every component of the complex, difficulty and I-
RMSD reflect the difficulty of the target, secondary structure classifies the complex into one of two categories (Beta and 
Helical) depending on the secondary structure characteristics of its transmembrane domain, and Buried Surface Area refers 
to the buried surface area at the interface of every complex. The composition types can be BB, UB and UU and they stand for 
Bound-Bound and Unbound-Unbound, respectively. BB means that both chains originate in the bound complex, UB means 
that one of the chains originates in the bound complex and the other in another structure and UU means that both chains 
originate from another structure. 

complex Unbound 
PDB id 1 

Unbound 
PDB id 2 Composition Difficulty i-RMSD 

[Å] 

Buried 
Surface 

Area [Å2] 

Secondary 
Structure 

4huq-TM 4huq_S 4huq_T BB Bound 0 5202.9 Helical 
5a63-BC 5a63_B 5a63_C BB  0 3430.2 Helical 
1m56 2gsm_AB 1m56_CD UB Easy 0.572 4961.5 Helical 
2k9j 2rmz_A 2k1a_A UU  0.678 982.0 Helical 
5aww 5aww_YG 5aww_E UB  0.868 2636.5 Helical 
2zxe-AG 2zxe_A 2zxe_G UB  0.919 1528.0 Helical 
2zxe-AB 2zxe_A 2zxe_B UB  0.94 1503.5 Helical 
3hd7 3hd7_A 3hd7_B UU Intermediate 1.024 663.2 Helical 
2ks1 2n2a_A 2m0b_A UU  1.158 662.2 Helical 
5a63-AC 5a63_A 5a63_C UB 

 
1.218 1953.1 Helical 

 
 

Results and Discussion 

We only present and discuss here results related to the first stage of the docking – the rigid body 

stage (it0) of HADDOCK in order to focus on the impact of the bead layer representation and 

restraints on the sampling performance of our protocol. The rigid body stage, and the scoring 

happening at this stage, are the main limiting factor in terms of achieving an overall higher 
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Fig 3: Evaluation of the success rate as a function of the number of models considered. Every set of horizontal cells corresponds 
to the performance of HADDOCK on a given complex, with the performance for Transmembrane centre-of-mass (TM-CM, 
Single bead layer (Single), Multiple bead layers (Multi) and True Interface (TI) runs being shown from left to right in panel a. 
For panel a, every cell corresponds to the quality of the best model (in terms of I-RMSD) when considering the N best models 
(N having the values 1, 5, 10, 20, 50, 100, 400 and 10000 [all models generated]) for the rigid body stage (it0), with the 
colouring of the cell representing high-, medium-, acceptable- and near acceptable-quality models (I-RMSD values of less than 
1Å (dark green), between 1 and 2Å (light green), between 2 and 4Å (light blue), between 4 and 6Å (light grey) and over 6Å 
(white) respectively). Cells that correspond to cut-offs where only low-quality models were generated are coloured white. In 
panel b, the success rate percentage for all complexes is shown as a function of the number of models considered. The colouring 
is the same as for the top panel. 

 

The success rate – defined as the number of complexes for which at least one model of 

acceptable- (or better) quality was generated and ranked within a given number of top ranked 

models – is level between the TM-CM and Multi runs when considering the top 1 to top 10 

models, according to the HADDOCK Score. However, beyond that cut-off the TM-CM runs 

clearly perform better and we have to consider the top 400 models before the performance 

between the two is comparable. While the low performance of the bead layer runs is surprising, 

 

 

Table 1: The entries of the dataset used in this study. The first column is the PDB id of the complex structure, columns 2 and 3 
the PDB ids of the unbound structures, composition refers to the origin of every component of the complex, difficulty and I-
RMSD reflect the difficulty of the target, secondary structure classifies the complex into one of two categories (Beta and 
Helical) depending on the secondary structure characteristics of its transmembrane domain, and Buried Surface Area refers 
to the buried surface area at the interface of every complex. The composition types can be BB, UB and UU and they stand for 
Bound-Bound and Unbound-Unbound, respectively. BB means that both chains originate in the bound complex, UB means 
that one of the chains originates in the bound complex and the other in another structure and UU means that both chains 
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3hd7 3hd7_A 3hd7_B UU Intermediate 1.024 663.2 Helical 
2ks1 2n2a_A 2m0b_A UU  1.158 662.2 Helical 
5a63-AC 5a63_A 5a63_C UB 
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Fig 4: Quality assessment of the generated models of all runs based on I-RMSD values. The complexes are grouped by run. 
The Y axis for all subgraphs corresponds to the ranking of the models according to the default HADDOCK scoring function 
with models ranked near 0 having the best scores. Every model has been coloured according to its quality with high, medium, 
acceptable, near acceptable and low-quality models having I-RMSD values of less than 1Å (dark green), between 1 and 2Å 
(light green), between 2 and 4Å (light blue), between 4 and 6Å (light grey) and over 6Å (white) respectively). The dotted line 
corresponds to the top 400 models according to HADDOCK score. 

 

 

that of the TM-CM runs is probably the point which stands out the most: HADDOCK can 

generate acceptable- or better-quality models for 7 out of 10 complexes when considering the 

top 400 models. This is a significant value for the number of models to consider as in a typical 

docking scenario with no or very limited information regarding the interacting surface of the 

proteins (such as here) we would be generating 10000 models in the rigid body stage and 

selecting the top 400 of them for subsequent flexible refinement. Even more impressive, the 

success rate for the rigid body stage when considering only the top model is 30% – similar to 

that of the Multi runs, while the TI ones reach 40%, with high-quality models being generated 

for 3 of those 4 complexes. 

Fig. 4 shows the distribution of the quality of the generated models over the entire ranked pool 

of 10000 it0 models. Those distributions highlight the fact that, in addition to the low sampling 

performance, scoring is also a challenge, in particular for the Single runs, which show the 

broadest distribution of acceptable- or better-quality models. Considering solely the sampling 

performance, irrespective of scoring, between the two bead layer runs the Multi protocol comes 

out on top with an overall success rate of 80% vs 70% for the Single protocol. For scoring we 

used the default rigid body scoring function of HADDOCK as described in Chapter 2, including 

the empirical desolvation term that uses parameters optimised for water. That particular term 

accounts for the displacement of surface water molecules into the bulk solvent (water). This is 

clearly not happening in a membrane protein – membrane protein interface as the majority of 

their environment is made up of the lipid bilayer. Desolvation parameters tailored to membrane 

protein complexes do exist 325 and can be used in  the future to optimise our scoring function 

for the lipid environment, which might improve the scoring of these complexes. 
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3. Small helix-small helix complexes; Complexes for which both partners are small TM 
helices – Complexes 2k9j, 2ks1, 3hd7. 

Performance for the TM-CM and the layer runs is almost identical for the three small helical 

complexes. However, the layer runs have a significant advantage over the TM-CM runs when 

comparing the performance of the protein-small helix complexes for which only a handful (if 

any) acceptable models are generated during the TM-CM runs. The limiting factor in terms of 

performance for the layer protocols is the protein-protein group as only one acceptable-quality 

model is generated for complexes 1m56, 4huq-TM and 5a63-BC with the Multi protocol (see 

Figures 3 and 5), whereas the TM-CM protocol samples acceptable-quality models for all three 

of them when considering all models generated. The largest difference between them though is 

a result of the poor performance of the bead layer runs for the protein-protein complexes for 

which a single acceptable model is generated. This is the most significant factor preventing the 

bead layer runs from performing better than the TM-CM ones. The reason the bead layer 

protocols do not perform better on the larger complexes is not immediatelly apparent. One 

potential explanation would be the very large number of restraints that are defined between the 

beads and the Cα carbons of the TM residues, which might be preventing the models from 

converging. However, if this was the case, we would expect some small improvements in the 

Single vs the Multi layer protocol: The former only defines restraints between one layer and a 

smaller part of the TM region of the protein rather than four layers and the majority of the TM 

region. The lack of differences could indicate that the number of restraints is already too high 

in the Single runs. This could cause imbalances between energy terms (intermolecular van der 

Waals and electrostatic energies vs bead restraint energy) during the rigid-body docking stage, 

resulting in a poor convergence of the minimisation process. 

 

Conclusion and Perspectives 
In this Chapter, we have presented ongoing work related to the development of a protocol for 

the docking of TM proteins in HADDOCK. Two implementations of the suggested protocol 

were benchmarked on a small dataset comprised entirely of TM protein-protein complexes of 

different sizes. The results were compared with the performance of a protocol making use of 

only centre of mass restraints to drive the docking (TM-CM) and one making use of information 

derived from the interface of the native complex (TI), an ideal case scenario. Although the bead 

layer protocol was found to perform on par or favourably when compared with the TM-CM 

protocol for small- and medium-size complexes, it entirely failed to generate acceptable models 

 

 

An additional counterintuitive observation regarding the bead layer runs is the fact that the 

difficulty (defined in terms of conformational changes upon binding) of the various complexes 

of the dataset seems to have no effect on the outcome of the docking, especially when compared 

with the TI runs (see also Chapter 2). Rather, it seems that the size of the system and the number 

of restraints used during the simulation do affect the outcome to the largest degree. 

 

 
Fig 5: Number of acceptable- or higher quality models generated against the BSA (panel A) and number of restraints (panel 
B) of a given complex. Panel A: The X axis for every subplot shows the Buried Surface Area (BSA) and the Y axis the log of the 
number of acceptable models generated during the rigid body stage. For the complexes for which 0 acceptable models were 
generated, the number was set to 0.01 (log10(0.01)≈-100), to simplify the visualisation. Complexes are grouped according to 
complex type: Complexes where both partners are small helices (2k9j, 2ks1, 3hd7) are coloured grey, complexes where one 
partner is a small helix and the other a large TM receptor (2zxe-AB, 2zxe-AG, 5a63-AC, 5aww) are coloured orange and 
complexes where both partners are full-size proteins are coloured blue. Panel B shares the Y axis of panel A but the X axis 
shows the number of restraints used during the docking. 

 

Fig. 5 shows the relationship between the number of acceptable models generated and the size 

of the interface of the complexes (panel A) and the number of restraints used during the docking 

(panel B). The Buried Surface Area (BSA) has been used as a proxy for the size of the system 

(see Table 1 for the values). Our dataset is comprised of three types of complexes: 

1. Protein-protein complexes; Complexes for which both partners are full size proteins – 
Complexes 1m56, 4huq-TM, 5a63-BC. 

2. Protein-Small helix complexes; Complexes for which one partner is a full-size protein 
and the other a small TM helix – Complexes 2zxe-AB, 2zxe-AG, 5a63-AC, 5aww. 
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for larger complexes. The reasons behind this are still being investigated with early indications 

that the number of restraints imposed on the system might be preventing the energy 

minimisation process from converging. 

An alternative to using the aforementioned bead representations of the membrane and a simpler 

approach that does not require distance restraints between Cα carbons and any bead atoms, 

would be to use a simple harmonic potential defined along the Z-axis (parallel to the membrane 

normal) which would prevent TM atoms from leaving a predefined zone. 

While the performance of the bead layer runs was rather disappointing, the performance of the 

TM-CM runs was all the more impressive, with success rates of 30 and 70% when considering 

the top 1 and 400 models, respectively. We are currently expanding this simple and robust 

protocol to define two additional distance restraints targeting pairs of Cα carbons in the top and 

bottom half of the proteins (along the Z-axis). This would allow to limit the orientational space 

available to the system when the relative orientation of the membrane proteins is approximately 

known (parallel or anti-parallel). 
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Abstract 
We present the performance of HADDOCK, our information-driven docking software, in the 

second edition of the D3R Grand Challenge. In this blind experiment, participants were 

requested to predict the structures and binding affinities of complexes between the Farnesoid X 

nuclear receptor and 102 different ligands. The models obtained in Stage1 with HADDOCK 

and ligand-specific protocol show an average ligand RMSD of 5.1Å from the crystal structure. 

Only 6/35 targets were within 2.5Å RMSD from the reference, which prompted us to investigate 

the limiting factors and revise our protocol for Stage2. The choice of the receptor conformation 

appeared to have the strongest influence on the results. Our Stage2 models were of higher 

quality (13 out of 35 were within 2.5Å), with an average RMSD of 4.1Å. The docking protocol 

was applied to all 102 ligands to generate poses for binding affinity prediction. We developed 

a modified version of our contact-based binding affinity predictor PRODIGY, using the number 

of interatomic contacts classified by their type and the intermolecular electrostatic energy. This 

simple structure-based binding affinity predictor shows a Kendall’s Tau correlation of 0.37 in 

ranking the ligands (7th best out of 77 methods, 5th/25 groups). Those results were obtained from 

the average prediction over the top10 poses, irrespective of their similarity/correctness, 

underscoring the robustness of our simple predictor. This results in an enrichment factor of 2.5 

compared to a random predictor for ranking ligands within the top 25%, making it a promising 

approach to identify lead compounds in virtual screening. 
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In the D3R Grand Challenge 2, the FXR dataset consists of 36 crystal structures with a 

resolution below 2.6Å and binding data (IC50s) for 102 compounds, including the 36 for which 

a crystal structure is available (these were only made available in Stage2). These data have been 

provided by Roche and curated by D3R. The challenge consists of two stages, which are 

described below: 

Stage1: The goal is to predict the poses of 35 ligands (one target is cancelled), and the affinities 

or rankings of all 102 compounds. The input files provided by organizers are the apo crystal 

structure of FXR and 2D ligands in SMILES and SD file formats. 

Stage2: The participants are expected to predict the affinities or rankings of all 102 ligands with 

the 36 crystal structures of FXR-ligand complexes provided as additional input compared to 

Stage1. 

 

Ligand preparation 
SMILES strings of FXR-ligands were converted into 3D structures using OpenEye Omega 

Toolkit 2.6.4 342. Conformers were directly generated from SMILES by Omega torsional 

sampling, where the maximum number of conformers per ligand was set to 100. After this step, 

the conformers were clustered to select representative models to be used in the docking stage. 

We used for this the jclust hierarchical clustering of the MMTSB tools 343, with the maximum 

number of clusters set to 10 and the minimum number of structures per cluster to 4. For each 

ligand in Stage1, an ensemble of conformations was created by selecting a representative 

structure from each cluster.  

 

Protein preparation 
Docking simulations in Stage1 were run using an ensemble of 4 structures as input for the 

receptor. This final set of 4 receptors was selected as follows: 

1. 28 homologue structures were found in the RCSB/PDB database 252 using the 
“Sequence” search feature with the sequence of the apo form of FXR provided by D3R 
and a lower limit of 80% sequence identity. All other parameters were kept as default 
(Search algorithm: BLAST, Expectation value: 10, Mask low complexity: yes). We also 
specified that structures must contain a ligand. 

2. Interface residues were extracted from all homologous structures using a 5Å cutoff. All 
residues containing an atom located at 5Å or less from the ligand were then considered 
as interface. The union of all these residues was taken and matched to the target 
sequence. The list of residues was manually curated to remove residues on the outer 
surface of the receptor. We then refined the residues based on their surface accessibility 
(SA) in the FXR apo structure (<40% backbone or sidechain SA) using NACCESS 344. 

 

 

Introduction 

Molecular docking is a widely-used tool in computer-aided drug design to model the three-

dimensional (3D) structure of protein-ligand complexes, study their interactions and predict 

their binding affinities 326. Integrated with data from the experimental techniques like X-ray 

crystallography and Nuclear Magnetic Resonance, docking has become a powerful tool in 

designing novel therapeutics 327. Docking consists of two main steps: (i) exploration of protein-

ligand binding poses (sampling) and (ii) identification of biologically relevant models (scoring). 

Both steps have their own challenges such as the flexibility of entities and the accuracy of the 

scoring functions. These have been reviewed elsewhere 327–329. 

Our integrative, information-driven, flexible docking approach HADDOCK 58,59 addresses this 

structural modeling problem by using the available experimental and bioinformatics data to 

drive the docking process in combination with a simple but robust scoring function for ranking. 

The success of HADDOCK in modeling protein-protein, protein-nucleic acid and protein-

peptide complexes has been demonstrated numerous times (for a review, see 330). HADDOCK 

is also consistently among the top scorers and predictors 331 in The Critical Assessment of 

Predicted Interactions (CAPRI) experiment 50, where participants are expected to predict the 

3D structure of an unknown biomolecular complex, given the sequence or the structure of the 

unbound partners. 

While HADDOCK has also been used in several protein-ligand docking studies 329,332–338, no 

systematic benchmarking has been reported so far, making the D3R Grand Challenge 2 a perfect 

opportunity to assess its performance for this type of problem for which it was not originally 

developed. In this manuscript, we describe our strategy for predicting the binding poses of FXR 

ligands (Stage1), and assessing their binding affinities (Stage2), while discussing the main 

lessons learned from the challenge. 

 

Materials and Methods 

Data 
The target of the D3R Grand Challenge 2 is the Farnesoid X nuclear receptor (FXR), which is 

a nuclear hormone receptor activated by bile acids 339. FXR is highly expressed in liver, 

intestines and kidneys, playing an important role in the regulation of bile acid homeostasis and 

cholesterol, lipid and glucose metabolisms 339–341. Due to its involvement in various diseases 

including inflammatory bowel disease, colorectal cancer and type 2 diabetes, FXR agonists 

have emerged as potential therapeutics 339–341. 
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Access to the experimental structures of the ligands allowed us to examine the accuracy of the 

OMEGA generated conformers. The top panel of Fig. S1 in Online Resource provides an 

overview of the RMSDs of the ligand poses. The median RMSD of the generated poses for all 

targets was 1.9Å, the median RMSD of the poses selected for docking for stage 1 was 2.2Å and 

the median RMSD of the poses selected for stage 2 was 1.8Å. Overall, OMEGA generated 

accurate – if not quite near-native – models. 

 

Docking 
Docking was performed with the HADDOCK2.2 web server 59. The docking protocol of 

HADDOCK consists of three stages: i) rigid-body docking by energy minimization from 

random orientations of the starting conformations – “it0” stage, ii) semi-flexible refinement of 

the interface by simulated annealing in torsion angle space – “it1” stage and iii) short molecular 

dynamics refinement in explicit solvent – “water” stage. In the semi-flexible stage (it1), protein 

interface residues (all those within 5Å of the ligand) and the ligand are treated as flexible. The 

calculations are guided by the ambiguous interaction restraints defined based on the binding 

pocket of the receptor (Point 2 under protein preparation above). For the D3R competition we 

used the buried settings of the small ligand protocol which had been benchmarked on the 

ASTEX dataset 353 [unpublished data]. Compared to the HADDOCK default settings, the buried 

binding site protocol scales the intermolecular energy terms (van der Waals and electrostatic) 

by a factor of 0.001 to allow penetration of the ligand into the protein binding site. This is 

required since the starting configurations for docking are randomly rotated and separated 

molecules. Accordingly, because models can contain clashes due to the scaling down of 

intermolecular interactions, the weight of the van der Waals energy term for scoring the initial 

rigid-body docking poses (it0) was set to 0.  

Additionally, we fine-tuned the docking settings for Stage1 by testing on various structures of 

the FXR receptor bound to a plethora of ligands (namely 1osv, 1ot7, 3dct, 3hc5 354, 3olf, 3omm 
350). Using the SMILES strings of those ligands we created ensembles of conformers as 

described in the ‘Ligand Preparation’ section, which we proceeded to dock against the ensemble 

of receptors generated during ‘Protein Preparation’ stage. The models were then compared with 

the bound complexes to determine the final docking settings. Based on those results, and 

considering the buried and rather hydrophobic nature of the binding pocket, we decided to base 

our selection of poses on the models obtained after the semi-flexible refinement stage (it1) of 

HADDOCK instead of the final, water-refined models. We increased the sampling to 10,000 

and 400 poses for it0 and it1, respectively. All docking settings were left at default values except 

 

 

Finally, some residues with a SA below 40% were reintroduced manually (mainly 
residues in loops). The identified interface residues were subsequently used for 
clustering the receptor (see point 3 below). 

3. Any structure with one or more gaps at the interface was discarded (11) leaving 18 
structures (17 homologues + 1 apo) for the calculation of a pairwise backbone-RMSD 
after a fitting step on the interface residues using ProFit 345. HADDOCK’s default 
clustering method 346 was applied on the RMSD matrix and generated 4 clusters when 
used with 0.5Å threshold and a minimum cluster size of 2. It is worth noting that the 
apo structure was not clustered with these criteria. Two other structures (1ot7_B 347 and 
3p88 348) were not clustered as well. Cluster representatives with the best resolution and 
1ot7_B were chosen as templates. 3p88 was discarded because it was too close from a 
representative of cluster #2. 

4. Based on 4 templates (1osv 347, 1ot7_B, 3dct 349, 3olf 350), a new set of interface residues 
were computed using a 4Å cutoff to define if a residue was interacting with the ligand 
or not. These residues were used as active residues in the docking runs (see Table S1 in 
Online Resource for the list). 

5. For ensemble docking with HADDOCK, we mutated all residues diverging from the 
reference structure (apo form) to the respective residue with PyMOL 83. Ensemble 
docking refers to the use of multiple starting conformations for one or more of the 
binding partners within the same docking run. All combinations of the various 
conformations are selected as starting point for the docking. How many times each 
conformation is sampled will thus depend on the number of conformation in the 
ensemble and the number of generated models at the rigid-body docking stage (see 
Docking below). 

 

Revised protocol for Ligand and Protein Preparation in Stage2 
In Stage2, 36 crystal structures for FXR1-36 protein-ligand complexes were provided by the 

organizers. We used those structures to revisit our docking protocol and identify the major 

limiting factor for our docking performance in Stage1. By docking with either bound ligand or 

receptor, we found that it is mainly the receptor conformation that limits our accuracy in 

generating near-native poses (see Results section). Accordingly, we identified the ligand that is 

most similar to FXR1-36 for targets FXR37-102 based on the Tanimoto distance calculated 

using fmcsR 351 and ChemmineR packages 352. The corresponding receptor conformation was 

used as the protein input for all docking runs in Stage2. 

As for input ligand ensemble, we followed the Stage1 protocol with an additional criterion 

enriching the major cluster: For the cases where less than 10 clusters were identified, remaining 

elements of the major cluster were additionally included in the docking ensemble, until the 

ensemble size reached the maximum of 10.  
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clustering method 346 was applied on the RMSD matrix and generated 4 clusters when 
used with 0.5Å threshold and a minimum cluster size of 2. It is worth noting that the 
apo structure was not clustered with these criteria. Two other structures (1ot7_B 347 and 
3p88 348) were not clustered as well. Cluster representatives with the best resolution and 
1ot7_B were chosen as templates. 3p88 was discarded because it was too close from a 
representative of cluster #2. 

4. Based on 4 templates (1osv 347, 1ot7_B, 3dct 349, 3olf 350), a new set of interface residues 
were computed using a 4Å cutoff to define if a residue was interacting with the ligand 
or not. These residues were used as active residues in the docking runs (see Table S1 in 
Online Resource for the list). 

5. For ensemble docking with HADDOCK, we mutated all residues diverging from the 
reference structure (apo form) to the respective residue with PyMOL 83. Ensemble 
docking refers to the use of multiple starting conformations for one or more of the 
binding partners within the same docking run. All combinations of the various 
conformations are selected as starting point for the docking. How many times each 
conformation is sampled will thus depend on the number of conformation in the 
ensemble and the number of generated models at the rigid-body docking stage (see 
Docking below). 

 

Revised protocol for Ligand and Protein Preparation in Stage2 
In Stage2, 36 crystal structures for FXR1-36 protein-ligand complexes were provided by the 

organizers. We used those structures to revisit our docking protocol and identify the major 

limiting factor for our docking performance in Stage1. By docking with either bound ligand or 

receptor, we found that it is mainly the receptor conformation that limits our accuracy in 

generating near-native poses (see Results section). Accordingly, we identified the ligand that is 

most similar to FXR1-36 for targets FXR37-102 based on the Tanimoto distance calculated 

using fmcsR 351 and ChemmineR packages 352. The corresponding receptor conformation was 

used as the protein input for all docking runs in Stage2. 

As for input ligand ensemble, we followed the Stage1 protocol with an additional criterion 

enriching the major cluster: For the cases where less than 10 clusters were identified, remaining 

elements of the major cluster were additionally included in the docking ensemble, until the 

ensemble size reached the maximum of 10.  
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Access to the experimental structures of the ligands allowed us to examine the accuracy of the 
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3p88 348) were not clustered as well. Cluster representatives with the best resolution and 
1ot7_B were chosen as templates. 3p88 was discarded because it was too close from a 
representative of cluster #2. 
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were computed using a 4Å cutoff to define if a residue was interacting with the ligand 
or not. These residues were used as active residues in the docking runs (see Table S1 in 
Online Resource for the list). 

5. For ensemble docking with HADDOCK, we mutated all residues diverging from the 
reference structure (apo form) to the respective residue with PyMOL 83. Ensemble 
docking refers to the use of multiple starting conformations for one or more of the 
binding partners within the same docking run. All combinations of the various 
conformations are selected as starting point for the docking. How many times each 
conformation is sampled will thus depend on the number of conformation in the 
ensemble and the number of generated models at the rigid-body docking stage (see 
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limiting factor for our docking performance in Stage1. By docking with either bound ligand or 

receptor, we found that it is mainly the receptor conformation that limits our accuracy in 

generating near-native poses (see Results section). Accordingly, we identified the ligand that is 

most similar to FXR1-36 for targets FXR37-102 based on the Tanimoto distance calculated 

using fmcsR 351 and ChemmineR packages 352. The corresponding receptor conformation was 

used as the protein input for all docking runs in Stage2. 
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model using LibSVM software (version 3.21) 357. During the training process, we transformed 

IC50 data into ln(IC50). We evaluated the SVR predictor on the training data using 10 repeats 

of 5-fold cross-validation. The AP metric outperformed the MCS metric (Table 1). We, 

therefore, in the subsequent analysis used AP to train our predictor. The binding affinity of the 

D3R ligands was then calculated using our predictor with the similarity matrix between the 102 

D3R ligands and the training data (the 229 ligands from BindingDB). 

 
Table 1. Comparison of the prediction performance of Atom-Pair and Maximum Common Substructure predictors on the 
training dataset using 10 repeats of 5-fold cross-validation. 

 Atom-Pair Maximum Common 
Substructure 

Kendall’s Tau 0.52 ± 0.01 0.50 ± 0.01 

Pearson’s correlation coefficient 0.70 ± 0.01 0.68 ± 0.02 

 

Structure-based binding affinity predictor 
Recently, we have introduced a residue-residue contact-based method for the prediction of the 

binding affinity in protein-protein complexes 358, implemented in the webserver PRODIGY 

(PROtein binDIng enerGY prediction) 359,360. This simple structural-based approach has led to 

one of the best performing predictors so far reported on a large and heterogeneous set of data 
244,361, with Pearson’s Correlation of 0.73 between the predicted and the experimental values 

and a root mean-squared error of 1.89 kcal mol-1.  

For Stage2 of this D3R challenge we designed an adapted version of our contact-based 

prediction for protein-ligand complexes. From the 2P2I database 338, we retrieved 200 protein-

ligand complexes with experimentally measured Ki (inhibition constant) and available crystal 

structure. Ki values were converted to free energy (G) by applying the equation G=RTln(Ki), 

in which R is the gas constant and T the temperature. For each entry, we ran the HADDOCK 

refinement protocol in order to collect the intermolecular energy terms reported in Eq. 1. This 

consists of the final refinement stage of HADDOCK without any initial perturbation of the 

starting structures. We then calculated the number of atomic contacts (ACs) within the distance 

threshold of 10.5Å (this cutoff was optimized to obtain the best correlation). We further 

classified the ACs according to the atom involved in the interaction (C=Carbon, O=Oxygen, 

N=Nitrogen, X=Aall other atoms). We used this combination of structural- and energy-based 

terms to train a multiple linear regression model with R 362 performing 4-fold cross validation. 

We applied Akaike’s Information Criterion (AIC) stepwise selection method implemented in R 

 

 

for the ones listed in Table S1 in Online Resource. The parameters and topologies for the ligands 

were obtained automatically by the HADDOCK server using a local version of PRODRG 355, 

which discards non-polar hydrogen atoms.  

In both stages, two sets of restraints were provided to the server to guide the docking: 1) 

ambiguous interactions restraints in which the ligand and all residues in the binding pocket were 

defined as active to draw the ligand inside it - this was only used in it0 (50% of those restraints 

were randomly deleted for each docking trial); 2) unambiguous interaction restraints in which 

only the ligand was defined as active and the protein binding pocket as passive were used for 

the subsequent flexible refinement stage (it1). In this refinement phase, no energy penalty is 

generated if a binding pocket residue does not contact the ligand, which allows the ligand to 

explore the binding site. The top 5 poses from it1 stage were selected for submission.  

The scoring function used for ranking the poses is the standard HADDOCK score for the 

flexible refinement (it1) which is defined as:  

HADDOCKscore =  1.0 ∗ EvdW + 1.0 ∗ Eelec + 1.0 ∗ Edesol − 0.01 ∗ BSA 

where BSA is the buried surface area in Å2, Edesol an empirical desolvation energy term 260. The 

intermolecular energies are calculated using the OPLS united atom force field parameters 259 

for non-bonded atoms, using a 8.5Å cut-off with a shifting function for the electrostatic energy 

and switching function between 6.5 and 8.5Å for the van der Waals energy. For the 

electrostatics energy, a dielectric constant of 10 is used. 

 

Binding Affinity Prediction 
For Stage1 of the challenge, we used the HADDOCK score to rank the affinities of 102 

compounds. For Stage2, we developed both a ligand-based and a structure-based binding 

affinity predictor, which are described below. 

 

Ligand-based binding affinity predictor 
We designed a target-specific ligand based binding affinity predictor, based on the assumption 

that similar ligands binding to the same protein should have similar binding affinities. From the 

database BindingDB 356, we retrieved 229 ligands that bind to the FXR protein with reported 

experimental IC50 data. We calculated the ligand similarity using Atom Pair (AP) and 

Maximum Common Substructure (MCS) measurements, as implemented in ChemmineR and 

fmcsR packages 351,352. For this, we computed the pairwise similarity matrix among the training 

data (i.e., the 229 ligands). This matrix was used to train a Support Vector Regression (SVR) 
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model using LibSVM software (version 3.21) 357. During the training process, we transformed 

IC50 data into ln(IC50). We evaluated the SVR predictor on the training data using 10 repeats 

of 5-fold cross-validation. The AP metric outperformed the MCS metric (Table 1). We, 

therefore, in the subsequent analysis used AP to train our predictor. The binding affinity of the 

D3R ligands was then calculated using our predictor with the similarity matrix between the 102 

D3R ligands and the training data (the 229 ligands from BindingDB). 
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244,361, with Pearson’s Correlation of 0.73 between the predicted and the experimental values 

and a root mean-squared error of 1.89 kcal mol-1.  
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prediction for protein-ligand complexes. From the 2P2I database 338, we retrieved 200 protein-

ligand complexes with experimentally measured Ki (inhibition constant) and available crystal 

structure. Ki values were converted to free energy (G) by applying the equation G=RTln(Ki), 

in which R is the gas constant and T the temperature. For each entry, we ran the HADDOCK 

refinement protocol in order to collect the intermolecular energy terms reported in Eq. 1. This 

consists of the final refinement stage of HADDOCK without any initial perturbation of the 

starting structures. We then calculated the number of atomic contacts (ACs) within the distance 

threshold of 10.5Å (this cutoff was optimized to obtain the best correlation). We further 

classified the ACs according to the atom involved in the interaction (C=Carbon, O=Oxygen, 

N=Nitrogen, X=Aall other atoms). We used this combination of structural- and energy-based 

terms to train a multiple linear regression model with R 362 performing 4-fold cross validation. 

We applied Akaike’s Information Criterion (AIC) stepwise selection method implemented in R 

 

 

for the ones listed in Table S1 in Online Resource. The parameters and topologies for the ligands 

were obtained automatically by the HADDOCK server using a local version of PRODRG 355, 

which discards non-polar hydrogen atoms.  

In both stages, two sets of restraints were provided to the server to guide the docking: 1) 

ambiguous interactions restraints in which the ligand and all residues in the binding pocket were 

defined as active to draw the ligand inside it - this was only used in it0 (50% of those restraints 

were randomly deleted for each docking trial); 2) unambiguous interaction restraints in which 

only the ligand was defined as active and the protein binding pocket as passive were used for 

the subsequent flexible refinement stage (it1). In this refinement phase, no energy penalty is 

generated if a binding pocket residue does not contact the ligand, which allows the ligand to 

explore the binding site. The top 5 poses from it1 stage were selected for submission.  

The scoring function used for ranking the poses is the standard HADDOCK score for the 

flexible refinement (it1) which is defined as:  

HADDOCKscore =  1.0 ∗ EvdW + 1.0 ∗ Eelec + 1.0 ∗ Edesol − 0.01 ∗ BSA 

where BSA is the buried surface area in Å2, Edesol an empirical desolvation energy term 260. The 

intermolecular energies are calculated using the OPLS united atom force field parameters 259 

for non-bonded atoms, using a 8.5Å cut-off with a shifting function for the electrostatic energy 

and switching function between 6.5 and 8.5Å for the van der Waals energy. For the 

electrostatics energy, a dielectric constant of 10 is used. 

 

Binding Affinity Prediction 
For Stage1 of the challenge, we used the HADDOCK score to rank the affinities of 102 

compounds. For Stage2, we developed both a ligand-based and a structure-based binding 

affinity predictor, which are described below. 

 

Ligand-based binding affinity predictor 
We designed a target-specific ligand based binding affinity predictor, based on the assumption 

that similar ligands binding to the same protein should have similar binding affinities. From the 

database BindingDB 356, we retrieved 229 ligands that bind to the FXR protein with reported 

experimental IC50 data. We calculated the ligand similarity using Atom Pair (AP) and 

Maximum Common Substructure (MCS) measurements, as implemented in ChemmineR and 

fmcsR packages 351,352. For this, we computed the pairwise similarity matrix among the training 

data (i.e., the 229 ligands). This matrix was used to train a Support Vector Regression (SVR) 
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model using LibSVM software (version 3.21) 357. During the training process, we transformed 

IC50 data into ln(IC50). We evaluated the SVR predictor on the training data using 10 repeats 

of 5-fold cross-validation. The AP metric outperformed the MCS metric (Table 1). We, 

therefore, in the subsequent analysis used AP to train our predictor. The binding affinity of the 

D3R ligands was then calculated using our predictor with the similarity matrix between the 102 

D3R ligands and the training data (the 229 ligands from BindingDB). 

 
Table 1. Comparison of the prediction performance of Atom-Pair and Maximum Common Substructure predictors on the 
training dataset using 10 repeats of 5-fold cross-validation. 
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Structure-based binding affinity predictor 
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(PROtein binDIng enerGY prediction) 359,360. This simple structural-based approach has led to 

one of the best performing predictors so far reported on a large and heterogeneous set of data 
244,361, with Pearson’s Correlation of 0.73 between the predicted and the experimental values 

and a root mean-squared error of 1.89 kcal mol-1.  

For Stage2 of this D3R challenge we designed an adapted version of our contact-based 

prediction for protein-ligand complexes. From the 2P2I database 338, we retrieved 200 protein-

ligand complexes with experimentally measured Ki (inhibition constant) and available crystal 

structure. Ki values were converted to free energy (G) by applying the equation G=RTln(Ki), 

in which R is the gas constant and T the temperature. For each entry, we ran the HADDOCK 

refinement protocol in order to collect the intermolecular energy terms reported in Eq. 1. This 

consists of the final refinement stage of HADDOCK without any initial perturbation of the 

starting structures. We then calculated the number of atomic contacts (ACs) within the distance 

threshold of 10.5Å (this cutoff was optimized to obtain the best correlation). We further 

classified the ACs according to the atom involved in the interaction (C=Carbon, O=Oxygen, 

N=Nitrogen, X=Aall other atoms). We used this combination of structural- and energy-based 

terms to train a multiple linear regression model with R 362 performing 4-fold cross validation. 

We applied Akaike’s Information Criterion (AIC) stepwise selection method implemented in R 

 

 

for the ones listed in Table S1 in Online Resource. The parameters and topologies for the ligands 

were obtained automatically by the HADDOCK server using a local version of PRODRG 355, 

which discards non-polar hydrogen atoms.  

In both stages, two sets of restraints were provided to the server to guide the docking: 1) 

ambiguous interactions restraints in which the ligand and all residues in the binding pocket were 

defined as active to draw the ligand inside it - this was only used in it0 (50% of those restraints 

were randomly deleted for each docking trial); 2) unambiguous interaction restraints in which 

only the ligand was defined as active and the protein binding pocket as passive were used for 

the subsequent flexible refinement stage (it1). In this refinement phase, no energy penalty is 

generated if a binding pocket residue does not contact the ligand, which allows the ligand to 

explore the binding site. The top 5 poses from it1 stage were selected for submission.  

The scoring function used for ranking the poses is the standard HADDOCK score for the 

flexible refinement (it1) which is defined as:  

HADDOCKscore =  1.0 ∗ EvdW + 1.0 ∗ Eelec + 1.0 ∗ Edesol − 0.01 ∗ BSA 

where BSA is the buried surface area in Å2, Edesol an empirical desolvation energy term 260. The 

intermolecular energies are calculated using the OPLS united atom force field parameters 259 

for non-bonded atoms, using a 8.5Å cut-off with a shifting function for the electrostatic energy 

and switching function between 6.5 and 8.5Å for the van der Waals energy. For the 

electrostatics energy, a dielectric constant of 10 is used. 

 

Binding Affinity Prediction 
For Stage1 of the challenge, we used the HADDOCK score to rank the affinities of 102 

compounds. For Stage2, we developed both a ligand-based and a structure-based binding 

affinity predictor, which are described below. 

 

Ligand-based binding affinity predictor 
We designed a target-specific ligand based binding affinity predictor, based on the assumption 

that similar ligands binding to the same protein should have similar binding affinities. From the 

database BindingDB 356, we retrieved 229 ligands that bind to the FXR protein with reported 

experimental IC50 data. We calculated the ligand similarity using Atom Pair (AP) and 

Maximum Common Substructure (MCS) measurements, as implemented in ChemmineR and 

fmcsR packages 351,352. For this, we computed the pairwise similarity matrix among the training 

data (i.e., the 229 ligands). This matrix was used to train a Support Vector Regression (SVR) 
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function since in most cases we did generate reasonably good predictions (shown as circles) in 

the pool of 400 refined models, but these did not make it in the top5. 

 
Fig 1: Examples of successfully predicted ligand poses in Stage1 for 
(A) FXR-27 (B) FXR-34 with a l-RMSD of 1.27 and 1.94Å, 
respectively. The receptor conformations are shown as cartoon and the 
ligands as stick representation. The reference crystal structure is 
colored grey and the model as slate. 

 

Additionally, we investigated whether the revised 

protocol improves the sampling. Fig. 4 compares 

Stage1 and Stage2 binding poses, where the y-axis 

reflects the ranking of the top 100 structures at the 

end of it1 for each target, with higher ranked 

structures being close to zero. The coloring of the 

bars depends on the l-RMSD of the model to the 

bound complex, with darker shades corresponding to 

lower l-RMSD values. As is evident from Fig. 4, the 

revised protocol dramatically improves the sampling 

as low l-RMSD structures are identified and tend to 

be ranked higher. 

We should also note that the ligand parameters were 

obtained automatically by the HADDOCK server 

using PRODRG – the only currently supported option on the server – with its known limitations. 

Especially the accuracy of the charge assignment by PRODRG can be questioned 363. In a 

previous study on the prediction of the binding affinity of protein-protein interaction inhibitors 
338, we have compared PRODRG and ACPYPE 364 for ligand parameter generation showing 

that the HADDOCK score calculated with the two parametrizations scheme are correlated 

(R2=0.73). While the van der Waals and desolvation energies are essentially identical, the 

electrostatic energies differ substantially (R2=0.33), which might well affect the quality of our 

docking poses. 

 

 

to avoid overfitting and identify the significant features. The resulting binding affinity predictor 

Gscore model for ranking the targets based is shown in Eq. 2:  

Gscore = 0.343794 ∗ Eelec − 0.037597 ∗ ACCC + 0.138738 ∗ ACNN + 0.160043 ∗ ACOO

− 3.088861 ∗ ACXX + 187.011384 

where ACCC, ACNN, ACOO and ACXX are the ACs between Carbon-Carbon, Nitrogen-Nitrogen, 

Oxygen-Oxygen and between all other atoms and polar hydrogens, respectively. Eelec is the 

electrostatic energy calculated through the HADDOCK refinement protocol. 

For each of the top 10 it1 poses from the docking runs we calculated the Gscore and took the 

average. We finally ranked the ligands according to the predicted values of our averaged 

ranking-score. 

 

Results and discussion 

Binding Pose Predictions 
Following the protocol described in Methods, we submitted 5 binding poses per target in Stage1. 

Two of the successfully predicted cases are shown in Fig. 1, where the ligand RMSD (l-RMSD, 

defined as the RMSD of the ligand heavy atoms after fitting on receptor backbone) is less than 

2.5Å. The performance per target in the prediction phase is indicated in Fig. 2 (dark grey box 

plots) for our submitted five poses.  We have at least one model within 2.5Å of the bound state 

in 6 out of 35 targets with an average l-RMSD of 5.1Å for all targets. This rather low 

performance encouraged us to revisit the ligand and protein preparation protocols, as described 

in ‘Revised protocol’ section. In particular, we investigated whether conformational 

changes/sampling is the limiting factor (Fig. 3). Our docking performance in Stage1 is 

compared to that using either the bound ligand, bound receptor or both. Our performance 

reaches 83% success rate for bound-bound docking. The largest improvement compared to 

Stage1 is obtained if the bound conformation of the receptor is used. Moreover, revisiting the 

ligand sampling also increased the docking success from 14% to 20% for top5 (data not shown). 

This prompted us to select for Stage2 the receptor conformation containing the most similar 

ligand to the ligand to be docked (see Material and Methods) and a resampled ensemble of 

ligand conformations. The resulting improvement can be easily observed in Fig. 2 (light grey 

box plots), where the average l-RMSD is reduced to 4.1Å and 13 out of 35 targets are within 

the 2.5Å cut-off. We can also clearly see that there is plenty of room for optimizing our scoring 
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the pool of 400 refined models, but these did not make it in the top5. 
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that the HADDOCK score calculated with the two parametrizations scheme are correlated 
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For each of the top 10 it1 poses from the docking runs we calculated the Gscore and took the 
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Two of the successfully predicted cases are shown in Fig. 1, where the ligand RMSD (l-RMSD, 

defined as the RMSD of the ligand heavy atoms after fitting on receptor backbone) is less than 

2.5Å. The performance per target in the prediction phase is indicated in Fig. 2 (dark grey box 

plots) for our submitted five poses.  We have at least one model within 2.5Å of the bound state 

in 6 out of 35 targets with an average l-RMSD of 5.1Å for all targets. This rather low 

performance encouraged us to revisit the ligand and protein preparation protocols, as described 
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changes/sampling is the limiting factor (Fig. 3). Our docking performance in Stage1 is 

compared to that using either the bound ligand, bound receptor or both. Our performance 

reaches 83% success rate for bound-bound docking. The largest improvement compared to 

Stage1 is obtained if the bound conformation of the receptor is used. Moreover, revisiting the 

ligand sampling also increased the docking success from 14% to 20% for top5 (data not shown). 

This prompted us to select for Stage2 the receptor conformation containing the most similar 

ligand to the ligand to be docked (see Material and Methods) and a resampled ensemble of 

ligand conformations. The resulting improvement can be easily observed in Fig. 2 (light grey 

box plots), where the average l-RMSD is reduced to 4.1Å and 13 out of 35 targets are within 
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Fig 1: Examples of successfully predicted ligand poses in Stage1 for 
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colored grey and the model as slate. 
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Fig 4: Comparison of the top100 models for the 
protocols used for stages 1 and 2. Each bar 
corresponds to structures belonging to runs for the 
indicated target. The coloring of the bars separates 
the structures in 3 classes. Structures colored black 
have a l-RMSD smaller than 2.5Å, structures 
colored dark gray have a l-RMSD between 2.5 and 
3.5Å and structures with a l-RMSD of greater than 
3.5Å are colored light gray. The top-ranked 
structures are the ones close to zero on the y-axis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Fig 5: Comparison of predicted ln(IC50) with 
experimental ln(IC50) using our ligand-based 
binding affinity predictor. 

  

 

 

 
Fig 2: Comparison of the l-RMSDs of the top 5 scoring poses between stages 1 and 2. l-RMSD values of the top 5 poses are 
drawn as boxplots with the values of Stage1 colored dark gray and those of Stage2 light gray. The black line in the middle of 
the boxes corresponds to the median, the lower and upper hinges correspond to the 25th and 75th percentile respectively, the 
whiskers extend to no longer than 1.5 times the IQR from the hinge. Any point beyond that range is considered an outlier and 
drawn as a filled black point. The circles correspond to the overall minimum l-RMSD obtained in it1 for that target. In the 
cases where the circle overlaps with an outlier or a boxplot, the minimum l-RMSD structure is part of the top 5 scoring poses. 
The dotted line represents the l-RMSD cutoff of 2.5Å. The number of successful predictions increases from 6/35 in Stage1 to 
13/35 in Stage2. 

 
Fig 3: Successful prediction (l-RMSD<2.5Å) rates for top1, top5 and top10 in different docking runs for 35 targets. Bound-
ligand docking refers to runs with bound ligand conformer and the ensemble of receptors used in Stage1. Bound-receptor is 
the one with bound receptor and the ensemble of ligands used in Stage1. Finally, bound-bound is the bound receptor-bound 
ligand docking runs. 
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Gscore over the top 10 models resulted in a correlation of 0.37 while using only the top scoring 

model yielded 0.28. Considering that our top 10 poses are rather heterogeneous in their 

conformations, our binding affinity predictor seems rather robust and not too sensitive to the 

exact conformation of the ligand. Further investigations are needed to further dissect those 

results and investigate the impact of energetics and the quality of the models on the ranking 

performance.  

We also investigated the potential of our ranking predictor for identification of lead compounds. 

We defined as true positive the targets which are within the top N ranked compounds of both 

the predicted and experimental binding affinity rankings (N: 1,2…,102). Then, we calculated 

the positive predictive value (PPV), which is equal to the number of true positives divided by 

the number of predicted positives (top N ranked targets according to BA predictor). We plotted 

PPV as a function of N 

together with the diagonal 

which represents a random 

prediction (RP) (Fig.7). 

We also report the 

enrichment factor 

(PPV/RP) on the top of 

Fig.7. This analysis 

indicates that our predictor 

reaches a 2.5-fold 

improvement in correct 

identification of effective 

ligands in the top 20-25% 

compared to random. 

 
Fig 7: Positive predictive value 
(bottom) and enrichment factor 
(top) for 102 targets, using 
structure-based binding affinity 
predictor. Taking top 20-25% is 
associated with 2.5 enrichment 
factor. 

 

 

 

 

 

Binding Affinity 
Ligand-Based Binding Affinity Prediction 
A Support Vector Regression model based on ligand similarity using Atom Pair (see Material 

and Methods) was used for ligand-based prediction of the binding affinities. The Kendall’s Tau 

between the ranking of the experimental and our predicted binding affinities is 0.27, which is 

the third best performance out of five participants. The correlation between the two sets can be 

visualized in Fig. 5. 

Although this method does not perform as well as our structure-based predictor (see below) it 

has as major advantage that it does not require a structural model and is therefore extremely 

fast. 

 
Fig 6: Ranking of binding affinity correlation per group for stages 1 and 2. The top panel reports the results of Stage1 and the 
bottom one of Stage2. Bars colored light gray correspond to groups which did not provide submissions for all targets. The bars 
colored dark gray correspond to the HADDOCK group submission. 

 

Structure-Based Binding Affinity Prediction 
The correlation scores (Kendall’s Tau) of the binding affinity rankings calculated for stages 1 

and 2, for all groups are summarized in Fig. 6. We clearly performed better in Stage2 with a 

correlation of 0.37 against 0.27 in Stage1, where we used only HADDOCK scores for ranking. 

In terms of Pearson’s Correlation coefficient between the predicted scores and the experimental 

binding affinity, our prediction performance improved from 0.40 in Stage 1 to 0.51 in Stage 2 

with the structure-based predictor (see Online Resource – Fig. S2). Interestingly, averaging the 
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Conclusions 
Our participation in the D3R Grand Challenge 2 was an opportunity to evaluate and revisit our 

docking and ranking protocols. Our pose prediction performance in Stage1 was far from 

optimum, which led us to investigate the effect of ligand/protein conformer selection on the 

docked model quality. We identified the conformation of the receptor as main limiting factor, 

which led us to select receptor conformers for Stage2 based on ligand similarity, which 

significantly improved our pose prediction performance. This, together with a biasing of the 

major cluster for ligand conformers as explained in ‘Revised protocol’ increased our overall 

prediction success. 

As for ranking in Stage2, we developed two different BA predictors: A ligand-based one and 

structure-based one. Our ligand-based predictor is computationally efficient since it does not 

require any 3D structural model for training. However, it does not perform as well as our 

structure-based predictor (Kendall’s tau is 0.27 and 0.37 for ligand and structure-based, 

respectively). Using the structure-based predictor, which considers the number and type of 

interatomic contacts, for affinity ranking dramatically improved our overall performance for 

binding affinity prediction, with our ranking compared to the other submitted methods 

improving from 32nd/57 for Stage1 to 7th/77 for Stage2 (and if only considering a single 

submission per group per category, from 18th/27 (Stage 1) to 5th/25 (Stage 2) among all groups 

participating to the challenge). 

As final observation, it is worth noting that our ranking was based on the average score 

calculated over the top 10 poses (which are heterogeneous in most cases, particularly with 

respect to the ligand orientation in the binding pocket – see Fig. 2). This averaging yielded 

better predictions than only using the top1 (Kendall’s tau 0.37 and 0.28 for top10 and top1, 

respectively). This simple contact-based predictor seems to show promise as virtual screening 

tool to select a fraction of effective ligands, yielding an enrichment factor of about 2.5 for the 

top 25% of compounds compared to a random selection. 
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Table S1. HADDOCK parameters used for dockings 

Parameter Setting 

It0 sampling (rigid body docking) 10,000 

It1 sampling (semi-flexible simulated 

annealing) 

400 

Delenph False 

Inter_rigid 0.001 

Tadinit2_t 500 

Tadfinal2_t 50 

Tadinit3_t 500 

Tadfinal3_t 50 

Initiosteps 0 

Cool1_steps 0 

W_vdw_0 0 

Protein interface residue list 269,273,274,277,287,288,291,292,294, 

295,298,332,333,335,336,339,340,346,347, 

352,356,359,361,365,369,370,373,451,454,458,469,473 

amb = ExtStageConstants (firstit = 0,  lastit = 0,) 
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Figure S2: Scatter plot between the HADDOCK score for Stage 1 (top panel) and Gscore for Stage 2 (bottom panel) versus 
the experimental binding affinities reported as ln(IC50). The corresponding Pearson’s correlation coefficients are 0.40 and 
0.51 for Stage 1 and Stage 2, respectively. The G_scores have been calculated with our structure-based binding affinity 
predictor (see Eq. 2 in the main text), averaged over the top10 best models refined with the refinement interface of the 
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Figure S1: RMSD values of the OMEGA generated ligand conformers against the reference structures. The boxplots are 
colored according to the chain ID of the reference chain used for the calculations. Circles indicate the RMSD values of the 
poses that were selected for docking. The top panel corresponds to the conformer selection for stage 1 and the bottom one to 
the conformer selection for stage 2. 
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Figure S2: Scatter plot between the HADDOCK score for Stage 1 (top panel) and Gscore for Stage 2 (bottom panel) versus 
the experimental binding affinities reported as ln(IC50). The corresponding Pearson’s correlation coefficients are 0.40 and 
0.51 for Stage 1 and Stage 2, respectively. The G_scores have been calculated with our structure-based binding affinity 
predictor (see Eq. 2 in the main text), averaged over the top10 best models refined with the refinement interface of the 
HADDOCK2.2 web server. 
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Figure S1: RMSD values of the OMEGA generated ligand conformers against the reference structures. The boxplots are 
colored according to the chain ID of the reference chain used for the calculations. Circles indicate the RMSD values of the 
poses that were selected for docking. The top panel corresponds to the conformer selection for stage 1 and the bottom one to 
the conformer selection for stage 2. 
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Figure S1: RMSD values of the OMEGA generated ligand conformers against the reference structures. The boxplots are 
colored according to the chain ID of the reference chain used for the calculations. Circles indicate the RMSD values of the 
poses that were selected for docking. The top panel corresponds to the conformer selection for stage 1 and the bottom one to 
the conformer selection for stage 2. 
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Abstract 
We report the performance of HADDOCK in the 2018 iteration of the Grand Challenge 

organised by the D3R consortium. Building on the findings of our participation in last year’s 

challenge, we significantly improved our pose prediction protocol which resulted in a mean 

RMSD for the top scoring pose of 3.04 and 2.67Å for the cross-docking and self-docking 

experiments respectively, which corresponds to an overall success rate of 63% and 71% when 

considering the top1 and top5 models respectively. This performance ranks HADDOCK as the 

6th and 3rd best performing group (excluding multiple submissions from a same group) out of a 

total of 44 and 47 submissions respectively. 

Our ligand-based binding affinity predictor is the 3rd best predictor overall, behind only the two 

leading structure-based implementations, and the best ligand-based one with a Kendall’s Tau 

correlation of 0.36 for the Cathepsin challenge. It also performed well in the classification part 

of the Kinase challenges, with Matthews Correlation Coefficients of 0.49 (ranked 1st), 0.39 

(ranked 4th) and 0.21 (ranked 4th) for the JAK2, vEGFR2 and p38a targets respectively. Through 

our participation in last year’s competition we came to the conclusion that template selection is 

of critical importance for the successful outcome of the docking. This year we have made 

improvements in two additional areas of importance: Ligand conformer selection and initial 

positioning, which have been key to our excellent pose prediction performance this year. 
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selection is of crucial importance for the successful outcome of the docking. We used the 

protocol we came up with last year to select protein templates for this year’s competition as 

well. We made improvements to the ligand conformer selection and placement protocols. 

Similar to last year, all new and untested parts of the protocol were benchmarked on existing 

protein-ligand complexes extracted from the PDB. 

In a departure from previous years, this year’s competition is further divided in 5 subchallenges. 

Subchallenge 1 is the equivalent of the GC of previous competitions and has a pose and binding 

affinity prediction component. Subchallenges 2 – 5 only have a binding affinity component. We 

participated in subchallenges 1 and 2. 

 

Subchallenge 1 
This challenge focused on Cathepsin S. For the first part of the challenge – pose prediction – 

we had to predict the binding pose of Cathepsin S against a set of 24 small molecules that were 

known to bind to it. There is a cross-docking stage, during which the structures of the target 

proteins are not known and a self-docking stage for which the bound protein structures – but 

not those of the compounds – are known. The organisers provided us initially with SMILES 

strings for the small molecules and the FASTA sequence of the protein, and for the self-docking 

stage with the coordinates of the bound receptor for each ligand. Additionally, two publicly 

available structures of the protein with a dimethylsulfoxide (DMSO) molecule and a sulfate ion 

(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆4) placed in the binding pocket were circulated to the participants because the 

aforementioned molecules were detected in some of the crystal structures. For the binding 

affinity prediction component of the challenge we had to rank the binding affinities of 136 

compounds against the protein. 

 

Protein template selection 
This part of the protocol, as well as the reasoning behind it, are described in greater detail in 

our previous work and so will only be covered briefly. Using the provided FASTA sequence, 

we identified structures of Cathepsin S that had been deposited in the PDB. We filtered the 

results and kept only those structures where the protein was complexed with a non-covalently 

bound ligand, thus identifying 36 templates. We then proceeded to compare the crystallographic 

ligands to the target compounds using as a similarity measure the Tanimoto distance, as 

implemented in the fmcsR and chemmineR packages 351,352. In this way, we selected one protein 

template for each of the 24 target compounds, by identifying the template with the highest 

 

 

Introduction 

The D3R (Drug Design Data Resource) Grand Challenge of 2018 is the third iteration of the 

major docking competition organised by the D3R consortium 242,243 and similarly to previous 

years, it has two goals. The first, is the assessment of the ability of docking algorithms to 

accurately predict the binding poses of a protein against a diverse set of small molecules, and 

the second, the evaluation of the performance of binding affinity prediction algorithms. 

The protein which is the focus of the pose prediction assessment is Cathepsin S – a member of 

the Cathepsin family. Cathepsins are proteases that are classified in three groups depending on 

the makeup of their catalytic site, with Cathepsin S being a member of the most populated group 

– cysteine proteases 365. Its involvement in MHC class II antigen presentation is well 

established. Given that role, it should come as no surprise that it has been implicated in many 

pathological conditions such as cancer and diabetes. More recently it has been investigated for 

its role in pain perception 366 and cardiovascular and kidney 367 disease. It has long held an 

interest for the pharmaceutical industry 368 as evidenced by the plethora (more than 50 at time 

of writing) of human Cathepsin S structures with a bound ligand, that have been deposited in 

the Protein Data Bank (PDB) 252 over a time period that spans 15 years. 

In addition to the Cathepsin S-centric assessment, which also includes a binding affinity 

prediction component, binding affinity prediction approaches are evaluated in 4 subchallenges 

that focus on kinases. Kinases catalyse the process of phosphorylation through which a 

phosphate group is covalently bound to a protein substrate. Their role in cell signalling has been 

well understood for decades and they are involved in many aspects of cell differentiation and 

growth 369. They are a primary target for cancer-related drug development 370. 

Through our participation in last year’s GC 371 we came to the conclusion that template selection 

is of critical importance for the successful outcome of the docking. This year we have made 

improvements in two additional areas of importance: Ligand conformer selection and initial 

positioning. The impact of this is reflected in our improved performance in GC3, the results of 

which are presented and discussed here. 

 

Materials and Methods 
HADDOCK (High Ambiguity Driven DOCKing) is our information-driven docking platform 
59,256. For an introduction to HADDOCK and small molecule docking please review the 

contribution we made to last year’s special issue on the D3R Grand Challenge (GC) 371. The 

main conclusion from our participation in last year’s competition was that protein template 
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was performed. Instead the initial poses were only subjected to a short energy minimization in 

which only interface residues were treated as flexible, followed by the explicit water refinement 

stage of HADDOCK. For this the system is solvated using an 8Å shell of TIP3P 257 water 

molecules. The water refinement protocol consists of a first heating phase (100 MD integration 

steps at 100, 200, and 300K) with weak position restraints on all atoms except those which 

belong to the side-chain of residues at the interface. The interface is defined as the set of residues 

whose atoms are within 5 Å of any atom of any binding partner. The second MD phase consists 

of 2500 integration steps at 300K with positional restraints on all non-Hydrogen atoms 

excluding the interface residues. The number of MD steps was doubled compared to 

HADDOCK’s default value (1250) because this yielded higher quality structures during our 

benchmarking with the four PDB structures described in “Ligand Preparation”. The last cooling 

phase, consists of 500 integration steps at 300, 200 and 100 K, respectively, during which 

positional restraints are only used for the backbone atoms of the non-interface residues. A 2fs 

time-step is used throughout the protocol for the integration of equation of motions. The number 

of water refined models was set to 200. We also modified the default HADDOCK scoring 

function for the refinement stage by halving the weight of the electrostatic energy term: 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 1.0 × 𝐸𝐸𝐸𝐸𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + 0.1 × 𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 1.0 × 𝐸𝐸𝐸𝐸𝑣𝑣𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑣𝑣𝑣𝑣 + 0.1 × 𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 

This adjustment was motivated by internal benchmarking our group has performed on small 

molecule-protein complexes (data not shown). This scoring function is used to rank the 

generated models. The various terms are the intermolecular van der Waals (Evdw) and 

electrostatic (Eelec) energies calculated with the OPLS force field and an 8.5Å non-bonded 

cutoff 259, an empirical desolvation potential (Edesolv) 260 and the ambiguous interaction restraints 

energy (EAIR) 256. Note that in this case, since only refinement was performed without any 

restraints to drive the docking, EAIR is effectively 0. 

For the self-docking challenge, we follow the same protocol as for the cross-docking one, 

keeping all crystallographic waters and fixing the conformation of the protein, with the 

additional change of instructing HADDOCK to write PDB files containing the solvent 

molecules (water) present during the refinement stage. 

 

Binding affinity 
The binding affinity predictions are evaluated in two stages. The first stage takes place before 

the structures of the complexes (protein and ligand) are released by the organisers, which means 

that either only ligand information is used, or models of the complexes, and the second after, 

which allows participants to make use of the newly available structural information. 

 

 

similarity ligand. The similarities of the crystallographic ligands to the prediction set 

compounds are shown in S.I. Fig. 1. 

For the self-docking challenge, we used the provided crystallographic structures retaining 

crystallographic waters and DMSO (target 14) or sulphate (targets 2, 17, 20, 22, 24 and 24) 

molecules. 

 

Ligand preparation 
Three-dimensional (3D) conformations of the ligands were generated with OpenEye OMEGA 

(v20170613) 342 using the SMILES strings as input. For every molecule, we sampled up to 500 

conformers. We used the TanimotoCombo metric, as implemented in OpenEye ROCS 372, to 

compare the generated conformers to their respective crystallographic ligand in the identified 

templates (see “Protein template selection”). The TanimotoCombo metric combines shape and 

chemical similarity and allows us to select the conformers whose shape and chemical features 

resemble that of the crystallographic ligands. The top 10 scoring conformers were selected for 

ensemble docking. Each conformer was superimposed onto the crystallographic ligand in the 

template using the shape toolkit of the OpenEye suite. 

This protocol was benchmarked with existing Cathepsin S-ligand structures identified in the 

PDB. This allowed us to evaluate the impact our choices had on the quality of our poses. We 

used four Cathepsin S structures (PDBids: 3IEJ, 3KWN, 3MPE, 3MPF) 373–375 and their 

respective ligands. After selecting the protein template based on the protocol described in 

“Protein template selection”, we selected the ligand conformers by their TanimotoCombo score 

and after superimposing them to the site of the crystallographic ligand, proceeded to refine them 

(see “Docking” below). 

For the self-docking challenge, we superimposed the protein template identified during the 

cross-docking challenge on the prediction set crystallographic structure. That allows us to 

superpose the generated conformers on the crystallographic ligand which is situated in the 

active site of the prediction set crystallographic structure because of the first superposition. 

 

Docking 
We refined the ensemble of ligand conformations superimposed on their respective protein 

templates using the water refinement protocol of HADDOCK. All hydrogen atoms were kept 

(by default HADDOCK removes the non-polar hydrogens to save computing time). Since the 

ligand conformations were selected based on their similarity to the closest identified template 

(see above) and superimposed onto the ligand in the selected template, no exhaustive search 
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was performed. Instead the initial poses were only subjected to a short energy minimization in 

which only interface residues were treated as flexible, followed by the explicit water refinement 

stage of HADDOCK. For this the system is solvated using an 8Å shell of TIP3P 257 water 

molecules. The water refinement protocol consists of a first heating phase (100 MD integration 
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HADDOCK’s default value (1250) because this yielded higher quality structures during our 

benchmarking with the four PDB structures described in “Ligand Preparation”. The last cooling 

phase, consists of 500 integration steps at 300, 200 and 100 K, respectively, during which 

positional restraints are only used for the backbone atoms of the non-interface residues. A 2fs 

time-step is used throughout the protocol for the integration of equation of motions. The number 

of water refined models was set to 200. We also modified the default HADDOCK scoring 

function for the refinement stage by halving the weight of the electrostatic energy term: 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 1.0 × 𝐸𝐸𝐸𝐸𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + 0.1 × 𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 1.0 × 𝐸𝐸𝐸𝐸𝑣𝑣𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑣𝑣𝑣𝑣 + 0.1 × 𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 

This adjustment was motivated by internal benchmarking our group has performed on small 

molecule-protein complexes (data not shown). This scoring function is used to rank the 

generated models. The various terms are the intermolecular van der Waals (Evdw) and 

electrostatic (Eelec) energies calculated with the OPLS force field and an 8.5Å non-bonded 

cutoff 259, an empirical desolvation potential (Edesolv) 260 and the ambiguous interaction restraints 

energy (EAIR) 256. Note that in this case, since only refinement was performed without any 

restraints to drive the docking, EAIR is effectively 0. 

For the self-docking challenge, we follow the same protocol as for the cross-docking one, 

keeping all crystallographic waters and fixing the conformation of the protein, with the 

additional change of instructing HADDOCK to write PDB files containing the solvent 

molecules (water) present during the refinement stage. 

 

Binding affinity 
The binding affinity predictions are evaluated in two stages. The first stage takes place before 

the structures of the complexes (protein and ligand) are released by the organisers, which means 

that either only ligand information is used, or models of the complexes, and the second after, 

which allows participants to make use of the newly available structural information. 

 

 

similarity ligand. The similarities of the crystallographic ligands to the prediction set 

compounds are shown in S.I. Fig. 1. 

For the self-docking challenge, we used the provided crystallographic structures retaining 

crystallographic waters and DMSO (target 14) or sulphate (targets 2, 17, 20, 22, 24 and 24) 

molecules. 

 

Ligand preparation 
Three-dimensional (3D) conformations of the ligands were generated with OpenEye OMEGA 

(v20170613) 342 using the SMILES strings as input. For every molecule, we sampled up to 500 

conformers. We used the TanimotoCombo metric, as implemented in OpenEye ROCS 372, to 

compare the generated conformers to their respective crystallographic ligand in the identified 

templates (see “Protein template selection”). The TanimotoCombo metric combines shape and 

chemical similarity and allows us to select the conformers whose shape and chemical features 

resemble that of the crystallographic ligands. The top 10 scoring conformers were selected for 

ensemble docking. Each conformer was superimposed onto the crystallographic ligand in the 

template using the shape toolkit of the OpenEye suite. 

This protocol was benchmarked with existing Cathepsin S-ligand structures identified in the 

PDB. This allowed us to evaluate the impact our choices had on the quality of our poses. We 

used four Cathepsin S structures (PDBids: 3IEJ, 3KWN, 3MPE, 3MPF) 373–375 and their 

respective ligands. After selecting the protein template based on the protocol described in 

“Protein template selection”, we selected the ligand conformers by their TanimotoCombo score 

and after superimposing them to the site of the crystallographic ligand, proceeded to refine them 

(see “Docking” below). 

For the self-docking challenge, we superimposed the protein template identified during the 

cross-docking challenge on the prediction set crystallographic structure. That allows us to 

superpose the generated conformers on the crystallographic ligand which is situated in the 

active site of the prediction set crystallographic structure because of the first superposition. 

 

Docking 
We refined the ensemble of ligand conformations superimposed on their respective protein 

templates using the water refinement protocol of HADDOCK. All hydrogen atoms were kept 

(by default HADDOCK removes the non-polar hydrogens to save computing time). Since the 

ligand conformations were selected based on their similarity to the closest identified template 

(see above) and superimposed onto the ligand in the selected template, no exhaustive search 
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electrostatic (Eelec) energies calculated with the OPLS force field and an 8.5Å non-bonded 
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energy (EAIR) 256. Note that in this case, since only refinement was performed without any 

restraints to drive the docking, EAIR is effectively 0. 

For the self-docking challenge, we follow the same protocol as for the cross-docking one, 

keeping all crystallographic waters and fixing the conformation of the protein, with the 

additional change of instructing HADDOCK to write PDB files containing the solvent 

molecules (water) present during the refinement stage. 

 

Binding affinity 
The binding affinity predictions are evaluated in two stages. The first stage takes place before 

the structures of the complexes (protein and ligand) are released by the organisers, which means 

that either only ligand information is used, or models of the complexes, and the second after, 

which allows participants to make use of the newly available structural information. 
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crystallographic waters and DMSO (target 14) or sulphate (targets 2, 17, 20, 22, 24 and 24) 
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Three-dimensional (3D) conformations of the ligands were generated with OpenEye OMEGA 

(v20170613) 342 using the SMILES strings as input. For every molecule, we sampled up to 500 

conformers. We used the TanimotoCombo metric, as implemented in OpenEye ROCS 372, to 

compare the generated conformers to their respective crystallographic ligand in the identified 

templates (see “Protein template selection”). The TanimotoCombo metric combines shape and 

chemical similarity and allows us to select the conformers whose shape and chemical features 

resemble that of the crystallographic ligands. The top 10 scoring conformers were selected for 

ensemble docking. Each conformer was superimposed onto the crystallographic ligand in the 

template using the shape toolkit of the OpenEye suite. 

This protocol was benchmarked with existing Cathepsin S-ligand structures identified in the 

PDB. This allowed us to evaluate the impact our choices had on the quality of our poses. We 

used four Cathepsin S structures (PDBids: 3IEJ, 3KWN, 3MPE, 3MPF) 373–375 and their 

respective ligands. After selecting the protein template based on the protocol described in 

“Protein template selection”, we selected the ligand conformers by their TanimotoCombo score 

and after superimposing them to the site of the crystallographic ligand, proceeded to refine them 

(see “Docking” below). 

For the self-docking challenge, we superimposed the protein template identified during the 

cross-docking challenge on the prediction set crystallographic structure. That allows us to 

superpose the generated conformers on the crystallographic ligand which is situated in the 

active site of the prediction set crystallographic structure because of the first superposition. 

 

Docking 
We refined the ensemble of ligand conformations superimposed on their respective protein 

templates using the water refinement protocol of HADDOCK. All hydrogen atoms were kept 

(by default HADDOCK removes the non-polar hydrogens to save computing time). Since the 

ligand conformations were selected based on their similarity to the closest identified template 

(see above) and superimposed onto the ligand in the selected template, no exhaustive search 
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difference was the training data availability. Using BindingDB we identified 7049, 4582 and 

4563 compounds with IC50 binding affinity measurements for the vEGFR2, JAK2-SC2 and 

p38a kinases respectively. 

After the binding affinity rankings were released by the organisers, it quickly became apparent 

that for all three targets, the compounds could be classified into binding and non-binding sets 

since most compounds had the maximum detectable binding affinity of 10μM. This prompted 

the organisers to alter the way the challenge would be evaluated into a classification and 

regression problem, where the identification of the binding set (compounds with a Kd < 10μM) 

would be treated as a classification problem and the ranking of the binding compounds by 

binding affinity as a regression problem. 

 

Results and Discussion 

Subchallenge 1 
Pose prediction 
The binding pose prediction was evaluated for the cross- and self-docking experiments. Our 

performance in the cross-docking experiment in terms of RMSD of the five submitted poses is 

shown in Fig. 1. 

 
Fig 1: Heavy-atom RMSD values of the cross-docking models from the reference structures. Every point corresponds to one 
model with 5 models per target. The models are ranked by HADDOCK score with the highest scoring ones being on the left of 
every block. 

 

This analysis was carried out by superposing the interface areas of the models and their 

respective reference structures and calculating the Heavy-atom RMSD (excluding any halogen 

atoms) of the compounds. The mean RMSD values across all models and targets for this 

experiment are 3.04 ± 2.03 Å, whereas for the self-docking experiment, the values improved to 

2.67 ± 1.63 Å. Fig. 2 highlights some of our top predictions. 

 

 

 

For the first stage, we submitted both ligand-based and structure-based rankings and for the 

second only a structure-based one. Both approaches are described in detail in our previous D3R 

paper 371. In short, the structure-based approach consists of the PRODIGY 360 method adapted 

for small molecules and trained on the 2P2I dataset 338 which makes use of the following 

function to score protein-ligand complexes by binding affinity: 
Gscore = 0.343794 ∗ Eelec − 0.037597 ∗ ACCC + 0.138738 ∗ ACNN + 0.160043 ∗ ACOO − 3.088861 ∗ ACXX

+ 187.011384 

Where 𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is the intermolecular electrostatic energy calculated by the water refinement 

protocol of HADDOCK (see “Docking”) and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 are the counts of 

atomic contacts between Carbon-Carbon, Nitrogen-Nitrogen, Oxygen-Oxygen and all other 

atoms and polar Hydrogens between the protein and the ligand, within a distance cut-off of 

10.5Å. We used the mean Gscore of the top 10 models of the water refinement (see “Docking”) 

to rank the compounds. 

The ligand-based approach rests on the hypothesis that similar ligands complexed to our 

proteins of interest should have similar binding affinities. Using the BindingDB database 356 we 

identified 1839 compounds bound to Cathepsin S with IC50 values. We calculated the similarity 

of the prediction set to the training set using the Atom Pair (AP) measurement as a similarity 

measure. The similarity matrices of the BindingDB set were used to train a Support Vector 

Regression (SVR) model with the libSVM library for MatLab 357 that was, in turn, used to 

predict the binding affinities of the prediction set. 

 

Analysis 
Fitting and RMSD calculations for generating the figures were performed using the McLachlan 

algorithm 345 as implemented in the program ProFit (http://www.bioinf.org.uk/software/profit/) 

from the SBGrid distribution 262.  

 

Subchallenge 2 
Subchallenge 2 only had a binding affinity component. The participants had to predict binding 

affinities for three protein targets – the kinases vEGFR2, JAK2-SC2 and p38-α – and sets of 

85, 89 and 72 compounds respectively. Some of the compounds were shared between the three 

targets. The organisers provided SMILES strings for all compounds along with FASTA 

sequences of the proteins. 

For this challenge, we only submitted ligand-based binding affinity rankings. The method is the 

same as the one described in the “Binding affinity” section for Subchallenge 1. The only 
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difference was the training data availability. Using BindingDB we identified 7049, 4582 and 

4563 compounds with IC50 binding affinity measurements for the vEGFR2, JAK2-SC2 and 

p38a kinases respectively. 

After the binding affinity rankings were released by the organisers, it quickly became apparent 

that for all three targets, the compounds could be classified into binding and non-binding sets 

since most compounds had the maximum detectable binding affinity of 10μM. This prompted 

the organisers to alter the way the challenge would be evaluated into a classification and 

regression problem, where the identification of the binding set (compounds with a Kd < 10μM) 

would be treated as a classification problem and the ranking of the binding compounds by 

binding affinity as a regression problem. 

 

Results and Discussion 

Subchallenge 1 
Pose prediction 
The binding pose prediction was evaluated for the cross- and self-docking experiments. Our 

performance in the cross-docking experiment in terms of RMSD of the five submitted poses is 

shown in Fig. 1. 

 
Fig 1: Heavy-atom RMSD values of the cross-docking models from the reference structures. Every point corresponds to one 
model with 5 models per target. The models are ranked by HADDOCK score with the highest scoring ones being on the left of 
every block. 

 

This analysis was carried out by superposing the interface areas of the models and their 

respective reference structures and calculating the Heavy-atom RMSD (excluding any halogen 

atoms) of the compounds. The mean RMSD values across all models and targets for this 

experiment are 3.04 ± 2.03 Å, whereas for the self-docking experiment, the values improved to 

2.67 ± 1.63 Å. Fig. 2 highlights some of our top predictions. 

 

 

 

For the first stage, we submitted both ligand-based and structure-based rankings and for the 

second only a structure-based one. Both approaches are described in detail in our previous D3R 

paper 371. In short, the structure-based approach consists of the PRODIGY 360 method adapted 

for small molecules and trained on the 2P2I dataset 338 which makes use of the following 

function to score protein-ligand complexes by binding affinity: 
Gscore = 0.343794 ∗ Eelec − 0.037597 ∗ ACCC + 0.138738 ∗ ACNN + 0.160043 ∗ ACOO − 3.088861 ∗ ACXX

+ 187.011384 

Where 𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is the intermolecular electrostatic energy calculated by the water refinement 
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atomic contacts between Carbon-Carbon, Nitrogen-Nitrogen, Oxygen-Oxygen and all other 

atoms and polar Hydrogens between the protein and the ligand, within a distance cut-off of 

10.5Å. We used the mean Gscore of the top 10 models of the water refinement (see “Docking”) 

to rank the compounds. 

The ligand-based approach rests on the hypothesis that similar ligands complexed to our 

proteins of interest should have similar binding affinities. Using the BindingDB database 356 we 

identified 1839 compounds bound to Cathepsin S with IC50 values. We calculated the similarity 

of the prediction set to the training set using the Atom Pair (AP) measurement as a similarity 

measure. The similarity matrices of the BindingDB set were used to train a Support Vector 

Regression (SVR) model with the libSVM library for MatLab 357 that was, in turn, used to 

predict the binding affinities of the prediction set. 

 

Analysis 
Fitting and RMSD calculations for generating the figures were performed using the McLachlan 

algorithm 345 as implemented in the program ProFit (http://www.bioinf.org.uk/software/profit/) 

from the SBGrid distribution 262.  

 

Subchallenge 2 
Subchallenge 2 only had a binding affinity component. The participants had to predict binding 

affinities for three protein targets – the kinases vEGFR2, JAK2-SC2 and p38-α – and sets of 

85, 89 and 72 compounds respectively. Some of the compounds were shared between the three 

targets. The organisers provided SMILES strings for all compounds along with FASTA 

sequences of the proteins. 

For this challenge, we only submitted ligand-based binding affinity rankings. The method is the 

same as the one described in the “Binding affinity” section for Subchallenge 1. The only 
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difference was the training data availability. Using BindingDB we identified 7049, 4582 and 

4563 compounds with IC50 binding affinity measurements for the vEGFR2, JAK2-SC2 and 

p38a kinases respectively. 

After the binding affinity rankings were released by the organisers, it quickly became apparent 

that for all three targets, the compounds could be classified into binding and non-binding sets 

since most compounds had the maximum detectable binding affinity of 10μM. This prompted 

the organisers to alter the way the challenge would be evaluated into a classification and 

regression problem, where the identification of the binding set (compounds with a Kd < 10μM) 

would be treated as a classification problem and the ranking of the binding compounds by 

binding affinity as a regression problem. 

 

Results and Discussion 

Subchallenge 1 
Pose prediction 
The binding pose prediction was evaluated for the cross- and self-docking experiments. Our 

performance in the cross-docking experiment in terms of RMSD of the five submitted poses is 

shown in Fig. 1. 

 
Fig 1: Heavy-atom RMSD values of the cross-docking models from the reference structures. Every point corresponds to one 
model with 5 models per target. The models are ranked by HADDOCK score with the highest scoring ones being on the left of 
every block. 
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respective reference structures and calculating the Heavy-atom RMSD (excluding any halogen 

atoms) of the compounds. The mean RMSD values across all models and targets for this 

experiment are 3.04 ± 2.03 Å, whereas for the self-docking experiment, the values improved to 

2.67 ± 1.63 Å. Fig. 2 highlights some of our top predictions. 
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atomic contacts between Carbon-Carbon, Nitrogen-Nitrogen, Oxygen-Oxygen and all other 

atoms and polar Hydrogens between the protein and the ligand, within a distance cut-off of 

10.5Å. We used the mean Gscore of the top 10 models of the water refinement (see “Docking”) 

to rank the compounds. 

The ligand-based approach rests on the hypothesis that similar ligands complexed to our 

proteins of interest should have similar binding affinities. Using the BindingDB database 356 we 

identified 1839 compounds bound to Cathepsin S with IC50 values. We calculated the similarity 

of the prediction set to the training set using the Atom Pair (AP) measurement as a similarity 

measure. The similarity matrices of the BindingDB set were used to train a Support Vector 

Regression (SVR) model with the libSVM library for MatLab 357 that was, in turn, used to 

predict the binding affinities of the prediction set. 

 

Analysis 
Fitting and RMSD calculations for generating the figures were performed using the McLachlan 

algorithm 345 as implemented in the program ProFit (http://www.bioinf.org.uk/software/profit/) 

from the SBGrid distribution 262.  

 

Subchallenge 2 
Subchallenge 2 only had a binding affinity component. The participants had to predict binding 

affinities for three protein targets – the kinases vEGFR2, JAK2-SC2 and p38-α – and sets of 

85, 89 and 72 compounds respectively. Some of the compounds were shared between the three 

targets. The organisers provided SMILES strings for all compounds along with FASTA 

sequences of the proteins. 

For this challenge, we only submitted ligand-based binding affinity rankings. The method is the 

same as the one described in the “Binding affinity” section for Subchallenge 1. The only 
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Fig 3: Superpositions of HADDOCK models on reference structures. Left: Model 1 from target 7 (1.85Å). Right: Model 5 from 
same target (9.31Å). Our scoring function can distinguish the near native model from the wrong one. The difference between 
the two molecules is a single torsional angle that has been rotated ~180o. Figure created with PyMOL. 

 

The performance of HADDOCK relative to the other participants for both experiments can be 

seen in Fig. 4. Note that if we would only consider one submission (the best) per group our rank 

would be 6th for the cross-docking experiment (top panel in Fig. 4). Our performance in the two 

experiments (cross- vs self-docking) is broken down by target in Fig. 5, revealing that our 

protocol is not very sensitive to the starting template. In most cases only rather small 

improvements in terms of RMSD are obtained when starting from the bound receptor including 

water. The single target for which we observe a significant deviation in the self-docking results 

compared to the cross-docking ones is the first one (see Fig. 5). The average RMSD for that 

target is 2.54 ± 1.29Å and 4.13 ± 3.46Å for cross- and self-docking experiments respectively. 

Model 5 of the self-docking experiment submission is mostly responsible for this significant 

change, since its RMSD is greater than 10. This is a repetition of what is shown in Fig. 3, with 

one of the models (model 5 in both cases) which has a torsional angle that is rotated by 180 

degrees compared to the rest of the submitted models and the reference structure. 

 

 

 

 
Fig 2: Superpositions of HADDOCK models on reference structures. Left: Model 5 from target 1 (1.1Å). Right: Model 1 from 
target 8 (1.5Å). The reference protein structure is shown in cartoon representation in white. The compounds are shown in stick 
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At least one of the 5 models submitted was of acceptable quality (RMSD <= 2.5Å) in 17 of the 

24 targets (71% success rate top5). Our scoring function is thus able to correctly rank the near-

native solutions near the top as can be seen in S.I. Fig. 2. If one considers only the top-ranked 

pose, the performance remains impressive with 15 out of 24 targets with an acceptable quality 

model (63% success rate top1). Fig 3 shows the difference between the top and bottom ranked 

models for target 7. Despite these excellent results, there is still room for improvement, 

especially in scoring: If we only consider the targets for which we generated at least one 

acceptable model (17 out of 24), the top-scoring pose corresponds to the best pose in 5 of the 

17 targets (29%). For the remaining 12 targets, the average difference between the top scoring 

and best poses is 0.55 ± 0.71Å and 0.45 ± 0.61Å for the cross- and self-docking experiments 

respectively. 
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Fig 5: Comparison between the performance of HADDOCK in the cross-docking and self-docking stages. Every set of bars 
corresponds to the average heavy-atom RMSD of all 5 models for a target, with the light- and dark-grey coloured bars 
corresponding to the cross- and self-docking experiments respectively. The error bars indicate the standard deviation of the 
mean RMSD. 

 

Binding affinity prediction 
Binding affinity predictions were performed in two stages – one before the organisers released 

the poses to the participants and one after. We participated in stage 1 with both ligand-based 

and structure-based approaches, while for stage 2 we only submitted a structure-based ranking. 

Fig. 6 shows our performance compared to all participants. 

These results were rather surprising: The structure-based approach which was one of the top 

performers in last year’s competition failed to produce an accurate ranking of the compounds, 

while our ligand-based predictor now performs as one of the best (even if the quality of the 

prediction is still limited). There was also no improvement for the structure-based ranking 

between stages 1 and 2 in contrast to GC2 where we noticed a significant improvement when 

using the crystallographic poses for ranking the compounds. One explanation for this could be 

that, compared to last year, we already had better quality poses for most of the targets for stage 

1. On the other hand, our simple machine learning-based ligand-based approach is not only the 

most accurate ligand-based approach with a Kendall’s Tau of 0.36 but the third most accurate 

method for both stages, behind only the top performing structure-based approaches. 

 

 

 

 
Fig 4: Heavy-atom RMSD values averaged over all models and all targets. Top: Cross-docking experiment. Bottom: Self-
docking experiment. Every bar corresponds to a single submission. The error bars indicate the standard deviation of the mean 
RMSD. HADDOCK submission is represented by the dark-grey bar in both panels.  
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by the difference in training set size, since we identified roughly the same number of compounds 

for JAK2-SC2 and p38a. Additionally, vEGFR2 had the biggest training set size but that is not 

translated into better performance for the classification or the regression. 

 

 
Fig 7: Binding affinity prediction correlation coefficients. Top: JAK2-SC2. Middle: vEGFR2. Bottom: p38a. The bars and the 
corresponding error bars represent the Kendall’s Tau correlation between the binding affinity predictions and the binding set 
for every target. The black circles correspond to the Matthews Correlation Coefficient which was used to assess the accuracy 
of the classification of the compounds into binding and non-binding. The dark grey bars and their corresponding circles 
represent our submissions. 

 

 

 

 

 

 

 
Fig 6: Ranking of the binding affinity predictions for Cathepsin S by correlation. Top: Stage 1. Bottom: Stage 2. Every bar 
corresponds to one submission with our ligand-based submission having a medium and the structure-based one a dark grey 
colour in both panels. 

 

Subchallenge 2 
This challenge revolved around kinase binding affinity prediction. As was mentioned in the 

Methods section, this is a regression-classification problem. The overall results can be seen in 

Fig. 7. 

Despite the fact that our approach wasn’t trained with classification in mind, the classification 

performance is better than that of the regression. Specifically, the Matthews Correlation 

Coefficient (MCC) values are 0.49, 0.39 and 0.21 respectively for JAK2-SC2, vEGFR2 and 

p38a (see S.I. fig. 3 for the classification rankings). The respective Kendall’s Tau correlations 

are 0.15, 0.38 and 0.07. As is evident from the plot the two correlation metrics are not correlated. 

This means that an algorithm that accurately identifies the binders and non-binders does not 

necessarily rank the binders accurately. The performance differences cannot be accounted for 
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Additional Information 

The data and code used to train the ligand-based binding affinity predictor and rank the 

compounds are freely available on GitHub, together with our in-house scripts developed during 

our participation in the last two Grand Challenge competitions. These can be accessed at 

following URL: https://github.com/haddocking/D3R-tools.  

  

 

 

Conclusions 
GC3 has allowed to implement the lessons that we learned by participating in GC2 and further 

experiment with additional optimisations. The conclusions that we can draw with regards to the 

pose prediction challenges are the following: 

1. Selecting the protein templates accurately has the biggest effect on the outcome of the 
docking. By identifying templates that already have a ligand bound to them and selecting 
the one that is most similar to the prediction compounds, we are ensuring a protein 
binding interface that is highly compatible with the prediction compound. This removes 
the need for extensive sampling of the protein interface or ensemble docking. Moreover, 
this approach seems to be robust to low similarity (see S.I. Fig. 1) compounds. The 
majority of template ligands identified have a Tanimoto similarity of less than 0.6. 

2. Selecting the ligand conformations. Identifying structures with existing compounds has 
the additional benefit that they can be used to select the compound structures to be used 
during docking. Generating 3D models of compounds from 2D information entails 
generating hundreds of conformers. By comparing the shape and chemical similarity of 
the conformers to existing compound structures we can reduce the number of 
conformers needed during docking and ensure the starting conformations are closer to 
the experimental structures. 

3. Making use of the template information by positioning the conformers in the binding 
interface. This last observation is only relevant for molecular simulation codes that, like 
HADDOCK, randomise the relative orientation and position of the partners prior to 
docking. We can use shape similarity to position the ensemble of conformers at the 
binding site and bypass the first two stages of HADDOCK (rigid-body energy 
minimisation and flexible refinement by simulated annealing in torsion angle space) and 
directly refine the complexes using a longer version of our water-refinement protocol. 

The applicability of our approach was demonstrated by its performance, with mean RMSD 

values of 3.04Å and 2.67Å for the cross-docking and self-docking experiments respectively. 

Our overall success rate when considering the top1 and top5 poses is 63% and 71%, 

respectively. These results place us as the 6th and 3rd best performers for the two challenges 

respectively. 

The binding affinity experiments present a greater challenge to the community as whole. 

Despite our competitive rankings in the classification as well as the regression challenges, it 

appears that reliable binding affinity predictors are still not within grasp. This holds true for 

both ligand and structure-based approaches. However, the surprisingly good classification 

results (especially given that the algorithm was optimised for regression rather than 

classification problems) make us optimistic that this can be improved in the future. 
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Fig S1: Tanimoto Similarity of the prediction set compounds to the most similar crystallographic ligand of the ones identified 
in the PDB. A value of 1 indicates perfect similarity and a value of 0 perfect dissimilarity. 

 

 
Fig S2: Heavy-atom RMSD values grouped by ranking. The models in group 1 were the ones that were ranked at the top by 
HADDOCK and the ones in group 5 the ones ranked at the bottom. 
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Fig S3: Binding affinity prediction classification performance. Top: JAK2-SC2. Middle: vEGFR2. Bottom: p38a. The bars 
indicate the Matthews Correlation Coefficient for every submission. The dark grey bars correspond to our submissions. 
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Chapter 6 
Shape-based modelling of protein-small molecule 

complexes with HADDOCK 
 

 

 

 

 

 

 

 

 

 

Abstract 
Small molecule docking remains one of the most valuable techniques for the computational 

study of protein-small molecule complexes. It allows us to study the interactions between 

compounds and the protein receptors they target at atomic detail, in a timely and efficient 

manner. Here we present a new protocol in HADDOCK, our integrative modelling platform, 

which incorporates homology information for both receptor and compounds. It makes use of 

HADDOCK’s unique ability to integrate information in the simulation to drive it toward 

conformations which agree with the provided data. The focal point is the use of shape restraints 

derived from homologous compounds bound to the target receptors. This shape is composed of 

fake atom beads based on the position of the heavy atoms of the template compound. 

Ambiguous distance restraints are subsequently defined between those beads and the heavy 

atoms of the ligand to be docked. We have benchmarked this protocol against another protocol 

developed in our group which was validated as one of the best performers in the D3R blind 

docking experiment. The use of shape restraints leads to an improved overall performance, 

being able to induce significant conformational changes on the ligand and alleviating the 

requirements to select a priori relevant ligand conformations for docking.  
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Small molecule docking remains one of the most valuable techniques for the computational 

study of protein-small molecule complexes. It allows us to study the interactions between 

compounds and the protein receptors they target at atomic detail, in a timely and efficient 

manner. Here we present a new protocol in HADDOCK, our integrative modelling platform, 

which incorporates homology information for both receptor and compounds. It makes use of 

HADDOCK’s unique ability to integrate information in the simulation to drive it toward 

conformations which agree with the provided data. The focal point is the use of shape restraints 

derived from homologous compounds bound to the target receptors. This shape is composed of 

fake atom beads based on the position of the heavy atoms of the template compound. 

Ambiguous distance restraints are subsequently defined between those beads and the heavy 

atoms of the ligand to be docked. We have benchmarked this protocol against another protocol 

developed in our group which was validated as one of the best performers in the D3R blind 

docking experiment. The use of shape restraints leads to an improved overall performance, 

being able to induce significant conformational changes on the ligand and alleviating the 

requirements to select a priori relevant ligand conformations for docking.  
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that the template-based protocol described in the previous chapter could never be integrated in 

the publicly accessible HADDOCK webserver. 

Shape information was central to the protocol described in Chapter 5. Briefly, after identifying 

highly homologous receptors with a compound bound to them, we compare the similarity of all 

crystallographic compounds to all target compounds and select the receptor conformation 

whose compound has the highest similarity to the compound to dock. Prior to docking, we filter 

the generated conformers by comparing their 3D shape with that of the most similar 

crystallographic compound and select the 10 closest conformers in terms of shape similarity. 

Finally, these 10 conformers are placed into the binding pocket by superimposing their shape 

onto the shape of the crystallographic compound and the model was refined in HADDOCK (i.e. 

no docking is performed).  

In the new, shape-restrained protocol presented here, the template identification and conformer 

generation procedures are the same as the ones described previously. After identifying a suitable 

receptor template for each target, its bound compound is transformed into a shape consisting of 

fake beads. Ambiguous distance restraints are then defined between those beads and the heavy 

atoms of the compound. There is no selection of conformers prior to docking, but instead all 

500 conformers are docked into the receptor template. The most suited conformations are 

automatically selected during the docking by HADDOCK based on the shape restraints. 

 

Materials and Methods 
To validate our new approach, we compare the results obtained for GC4 using the protocol 

established for GC3 (see Chapter 5), with those of the shape-restrained protocol described in 

this Chapter. The dataset is the one provided to the GC4 participants. It consists of 20 

compounds, most of which contain macrocyclic elements, to be docked against the BACE-1 

receptor. 

As for the previous protocols, the identification of suitable receptors is the first step. For this 

we use the sequence of the receptor as input and search the PDB for highly homologous 

structures co-crystallised with small molecules. We then match every target compound to the 

ones in the set of identified receptors using the Tanimoto coefficient as similarity measure. The 

ligand modelling begins with generating conformers for all compounds. To this end we are 

using OMEGA 342,380, generating up to 500 conformers per compound. 

 

 

Introduction 

The importance of reliable methods for the docking of small molecule compounds to receptors 

of pharmaceutical interest cannot be understated. The nature of modern drug development 

practices dictates the gradual filtering of millions (perhaps even hundreds of millions) of 

compounds contained in virtual libraries of large pharmaceutical corporations to, ultimately, a 

few dozen lead compounds that can be further optimised before their clinical potential is 

investigated in animal and human trials 376,377. This set of practices – collectively known as 

Computer-Aided Drug Design (CADD) – encompasses a variety of methods such as virtual 

screening of compounds, molecular docking with recent developments making use of machine 

learning-based approaches 378,379 and binding affinity prediction. The two preceding chapters 

have detailed our recent efforts in developing approaches for the docking of protein-small 

molecule complexes with HADDOCK, our data-driven docking platform, spurred by our 

participation in the challenges organised by the D3R consortium (see Chapters 4 & 5). 

Chapters 4 and 5 summarise our participation in the second and third iteration of the D3R Grand 

Challenge (GC), respectively. Whereas our protocol of choice for D3R GC2 did not earn us a 

spot among the top performing groups of that round, it did allow us to better understand the 

problems specific to protein-small molecule docking. The main takeaway point was that making 

use of the most closely related receptor for every target compound significantly improved the 

success of the modelling. In this case, the best receptor was identified after comparing the 

crystallographic compound with the target compound and selecting the receptor conformation 

with the most similar ligand. With that knowledge we optimised additional aspects of our 

approach for D3R GC3 – always prioritising the use of high-quality experimental information 

for every step of the process. That revised protocol resulted in HADDOCK submitting one of 

the most accurate predictions for the pose prediction component of the challenge. We applied 

the same protocol in D3R GC4 with equally good results. 

Here, we present a new protocol which incorporates all the lessons that we have learned over 

three years of participating in the D3R blind docking experiment into a protocol tailored for 

HADDOCK, bypassing one of the main limitations of the previous protocols – their reliance on 

external software for significant parts of the ligand-based modelling process. This limitation 

did not allow us to use the integrative modelling capabilities of HADDOCK as the rigid-body 

and semi-flexible refinement stages were bypassed and only flexible refinement was performed. 

Also, the reliance on commercial software for shape comparison and superimposition means 
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that the template-based protocol described in the previous chapter could never be integrated in 
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the generated conformers by comparing their 3D shape with that of the most similar 

crystallographic compound and select the 10 closest conformers in terms of shape similarity. 

Finally, these 10 conformers are placed into the binding pocket by superimposing their shape 

onto the shape of the crystallographic compound and the model was refined in HADDOCK (i.e. 

no docking is performed).  

In the new, shape-restrained protocol presented here, the template identification and conformer 

generation procedures are the same as the ones described previously. After identifying a suitable 

receptor template for each target, its bound compound is transformed into a shape consisting of 

fake beads. Ambiguous distance restraints are then defined between those beads and the heavy 

atoms of the compound. There is no selection of conformers prior to docking, but instead all 

500 conformers are docked into the receptor template. The most suited conformations are 

automatically selected during the docking by HADDOCK based on the shape restraints. 
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this Chapter. The dataset is the one provided to the GC4 participants. It consists of 20 

compounds, most of which contain macrocyclic elements, to be docked against the BACE-1 
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ones in the set of identified receptors using the Tanimoto coefficient as similarity measure. The 

ligand modelling begins with generating conformers for all compounds. To this end we are 
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compounds contained in virtual libraries of large pharmaceutical corporations to, ultimately, a 

few dozen lead compounds that can be further optimised before their clinical potential is 

investigated in animal and human trials 376,377. This set of practices – collectively known as 
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problems specific to protein-small molecule docking. The main takeaway point was that making 

use of the most closely related receptor for every target compound significantly improved the 

success of the modelling. In this case, the best receptor was identified after comparing the 

crystallographic compound with the target compound and selecting the receptor conformation 

with the most similar ligand. With that knowledge we optimised additional aspects of our 

approach for D3R GC3 – always prioritising the use of high-quality experimental information 

for every step of the process. That revised protocol resulted in HADDOCK submitting one of 

the most accurate predictions for the pose prediction component of the challenge. We applied 

the same protocol in D3R GC4 with equally good results. 

Here, we present a new protocol which incorporates all the lessons that we have learned over 

three years of participating in the D3R blind docking experiment into a protocol tailored for 

HADDOCK, bypassing one of the main limitations of the previous protocols – their reliance on 

external software for significant parts of the ligand-based modelling process. This limitation 

did not allow us to use the integrative modelling capabilities of HADDOCK as the rigid-body 

and semi-flexible refinement stages were bypassed and only flexible refinement was performed. 
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that the template-based protocol described in the previous chapter could never be integrated in 

the publicly accessible HADDOCK webserver. 

Shape information was central to the protocol described in Chapter 5. Briefly, after identifying 
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whose compound has the highest similarity to the compound to dock. Prior to docking, we filter 

the generated conformers by comparing their 3D shape with that of the most similar 

crystallographic compound and select the 10 closest conformers in terms of shape similarity. 

Finally, these 10 conformers are placed into the binding pocket by superimposing their shape 

onto the shape of the crystallographic compound and the model was refined in HADDOCK (i.e. 

no docking is performed).  

In the new, shape-restrained protocol presented here, the template identification and conformer 

generation procedures are the same as the ones described previously. After identifying a suitable 

receptor template for each target, its bound compound is transformed into a shape consisting of 

fake beads. Ambiguous distance restraints are then defined between those beads and the heavy 

atoms of the compound. There is no selection of conformers prior to docking, but instead all 
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automatically selected during the docking by HADDOCK based on the shape restraints. 
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structures co-crystallised with small molecules. We then match every target compound to the 

ones in the set of identified receptors using the Tanimoto coefficient as similarity measure. The 

ligand modelling begins with generating conformers for all compounds. To this end we are 
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Computer-Aided Drug Design (CADD) – encompasses a variety of methods such as virtual 

screening of compounds, molecular docking with recent developments making use of machine 
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have detailed our recent efforts in developing approaches for the docking of protein-small 

molecule complexes with HADDOCK, our data-driven docking platform, spurred by our 

participation in the challenges organised by the D3R consortium (see Chapters 4 & 5). 

Chapters 4 and 5 summarise our participation in the second and third iteration of the D3R Grand 

Challenge (GC), respectively. Whereas our protocol of choice for D3R GC2 did not earn us a 

spot among the top performing groups of that round, it did allow us to better understand the 

problems specific to protein-small molecule docking. The main takeaway point was that making 

use of the most closely related receptor for every target compound significantly improved the 

success of the modelling. In this case, the best receptor was identified after comparing the 

crystallographic compound with the target compound and selecting the receptor conformation 

with the most similar ligand. With that knowledge we optimised additional aspects of our 

approach for D3R GC3 – always prioritising the use of high-quality experimental information 

for every step of the process. That revised protocol resulted in HADDOCK submitting one of 

the most accurate predictions for the pose prediction component of the challenge. We applied 

the same protocol in D3R GC4 with equally good results. 

Here, we present a new protocol which incorporates all the lessons that we have learned over 

three years of participating in the D3R blind docking experiment into a protocol tailored for 

HADDOCK, bypassing one of the main limitations of the previous protocols – their reliance on 

external software for significant parts of the ligand-based modelling process. This limitation 

did not allow us to use the integrative modelling capabilities of HADDOCK as the rigid-body 

and semi-flexible refinement stages were bypassed and only flexible refinement was performed. 

Also, the reliance on commercial software for shape comparison and superimposition means 
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instead of the full water refinement. The positions of both the receptor and its associated shape 

are fixed in their original orientations. The shape is kept rigid throughout the protocol while the 

receptor interface becomes flexible during the refinement stage. We also scale down the 

intermolecular interactions during the rigid body stage to facilitate the insertion of the ligand 

into the binding pocket and accordingly exclude the vdW energy term during the scoring of the 

rigid-body models. As recommended for small ligand docking (the result of protocol 

optimisation during our D3R participation), we also reduce the weight of the intermolecular 

electrostatic energy term to 0.1 (instead of the default 0.2) in the final scoring function and use 

a RMSD-based clustering method with a cut-off of 1.5A. 

Other than the above defined modifications, the scoring function used is the default scoring 

function of HADDOCK which has already been described in Chapter 2. Its functional form, 

specific for protein-ligand docking for the three stages is: 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖0 = 0.0 ∗ 𝐸𝐸𝐸𝐸𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + 1.0 ∗ 𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 1.0 ∗ 𝐸𝐸𝐸𝐸𝑣𝑣𝑣𝑣𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑣𝑣𝑣𝑣 + 0.01 ∗ 𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − 0.01 ∗ 𝐵𝐵𝐵𝐵𝐻𝐻𝐻𝐻𝐵𝐵𝐵𝐵 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1 = 1.0 ∗ 𝐸𝐸𝐸𝐸𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + 1.0 ∗ 𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 1.0 ∗ 𝐸𝐸𝐸𝐸𝑣𝑣𝑣𝑣𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑣𝑣𝑣𝑣 + 0.1 ∗ 𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − 0.01 ∗ 𝐵𝐵𝐵𝐵𝐻𝐻𝐻𝐻𝐵𝐵𝐵𝐵 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1.0 ∗ 𝐸𝐸𝐸𝐸𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + 0.1 ∗ 𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 1.0 ∗ 𝐸𝐸𝐸𝐸𝑣𝑣𝑣𝑣𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑣𝑣𝑣𝑣 + 0.1 ∗ 𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  

Similarly to previous chapters, we evaluate the quality of the generated models according to 

their structural deviation from the reference structures. For this we use the interface-ligand 

RMSD (IL-RMSD), which is the RMSD calculated over all heavy atoms of the ligand after 

superimposing on all backbone atoms of the interface of the receptor. Models with an IL-RMSD 

of less than 0.5 Å, between 0.5 and 1 Å, between 1 and 2 Å and over 2 Å are classified as high-

, medium-, acceptable-quality and incorrect, respectively. 

 

Results and Discussion 

We compare the results of the new shape-restrained docking protocol with those obtained 

applying the protocol described in Chapter 5 for the GC4 experiment. Figure 2 shows the IL-

RMSD of the top 5 poses (as ranked by HADDOCK score) for the two protocols and for docking 

with the native (the bound crystal structure) (in the self pane) and the selected template (in the 

cross pane) receptors. Both protocols perform very well with overall mean IL-RMSD values of 

1.57 ± 0.75 Å and 2.00 ± 1.13 Å for the new and old protocol, respectively, when docking with 

the template, and 1.59 ± 1.16 Å and 1.80 ± 1.12 Å when using the native receptor (i.e. no 

conformational changes required in the receptor) (see Table 1). 

 

 

 

 
Fig 1: Illustration of the shape-restrained docking protocol. Panel A shows a suitable receptor template identified. Panel B 
shows the heavy atoms of the crystallographic compound transformed into shape beads. The crystallographic compound is 
then removed from the pocket and restraints are defined between the shape and the conformers (Panel C). Panel D shows a 
docked model superimposed onto the template structure. The protein receptor is shown as slate cartoon, the crystallographic 
compound as white sticks, the generated and docked compounds as orange sticks and the shape beads as transparent orange 
spheres. All molecular graphics were generated with PyMOL. 

 

Fig. 1 illustrates this shape-based docking protocol. After identifying one receptor template per 

target, we transform all heavy atoms of its compound into dummy beads (those do not interact 

with the remaining of the system), much in the same way as the beads described in Chapter 3. 

We then define ambiguous distance restraints with an upper limit of 1Å from each bead to any 

heavy atom of the compound to be docked. This effectively enforces that the ligand atoms must 

overlap with a bead. None of the restraints are discarded during the simulation (noecv = false). 

The nature of the restraints creates an additional consideration, specifically what should be the 

“origin” and “target” of the restraints? In this protocol we have defined the shape as the origin 

and the compound as the target, meaning that all shape beads should at the end be close to a 

ligand atom. However, in the case of a compound which would be smaller than the template 

shape, the optimal way of defining the restraints would be the opposite (i.e. from the compound 

to the shape). 

For the docking we use the command-line version of HADDOCK 2.4. We sample 10000 and 

400 it0 and it1 models, respectively and only perform a short energy minimisation at the end 
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instead of the full water refinement. The positions of both the receptor and its associated shape 

are fixed in their original orientations. The shape is kept rigid throughout the protocol while the 

receptor interface becomes flexible during the refinement stage. We also scale down the 

intermolecular interactions during the rigid body stage to facilitate the insertion of the ligand 

into the binding pocket and accordingly exclude the vdW energy term during the scoring of the 

rigid-body models. As recommended for small ligand docking (the result of protocol 

optimisation during our D3R participation), we also reduce the weight of the intermolecular 

electrostatic energy term to 0.1 (instead of the default 0.2) in the final scoring function and use 

a RMSD-based clustering method with a cut-off of 1.5A. 
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Similarly to previous chapters, we evaluate the quality of the generated models according to 

their structural deviation from the reference structures. For this we use the interface-ligand 

RMSD (IL-RMSD), which is the RMSD calculated over all heavy atoms of the ligand after 

superimposing on all backbone atoms of the interface of the receptor. Models with an IL-RMSD 

of less than 0.5 Å, between 0.5 and 1 Å, between 1 and 2 Å and over 2 Å are classified as high-

, medium-, acceptable-quality and incorrect, respectively. 

 

Results and Discussion 

We compare the results of the new shape-restrained docking protocol with those obtained 

applying the protocol described in Chapter 5 for the GC4 experiment. Figure 2 shows the IL-

RMSD of the top 5 poses (as ranked by HADDOCK score) for the two protocols and for docking 

with the native (the bound crystal structure) (in the self pane) and the selected template (in the 

cross pane) receptors. Both protocols perform very well with overall mean IL-RMSD values of 

1.57 ± 0.75 Å and 2.00 ± 1.13 Å for the new and old protocol, respectively, when docking with 

the template, and 1.59 ± 1.16 Å and 1.80 ± 1.12 Å when using the native receptor (i.e. no 

conformational changes required in the receptor) (see Table 1). 

 

 

 

 
Fig 1: Illustration of the shape-restrained docking protocol. Panel A shows a suitable receptor template identified. Panel B 
shows the heavy atoms of the crystallographic compound transformed into shape beads. The crystallographic compound is 
then removed from the pocket and restraints are defined between the shape and the conformers (Panel C). Panel D shows a 
docked model superimposed onto the template structure. The protein receptor is shown as slate cartoon, the crystallographic 
compound as white sticks, the generated and docked compounds as orange sticks and the shape beads as transparent orange 
spheres. All molecular graphics were generated with PyMOL. 

 

Fig. 1 illustrates this shape-based docking protocol. After identifying one receptor template per 

target, we transform all heavy atoms of its compound into dummy beads (those do not interact 

with the remaining of the system), much in the same way as the beads described in Chapter 3. 

We then define ambiguous distance restraints with an upper limit of 1Å from each bead to any 

heavy atom of the compound to be docked. This effectively enforces that the ligand atoms must 

overlap with a bead. None of the restraints are discarded during the simulation (noecv = false). 

The nature of the restraints creates an additional consideration, specifically what should be the 

“origin” and “target” of the restraints? In this protocol we have defined the shape as the origin 

and the compound as the target, meaning that all shape beads should at the end be close to a 

ligand atom. However, in the case of a compound which would be smaller than the template 

shape, the optimal way of defining the restraints would be the opposite (i.e. from the compound 

to the shape). 

For the docking we use the command-line version of HADDOCK 2.4. We sample 10000 and 

400 it0 and it1 models, respectively and only perform a short energy minimisation at the end 
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superimposing on all backbone atoms of the interface of the receptor. Models with an IL-RMSD 

of less than 0.5 Å, between 0.5 and 1 Å, between 1 and 2 Å and over 2 Å are classified as high-
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Fig 1: Illustration of the shape-restrained docking protocol. Panel A shows a suitable receptor template identified. Panel B 
shows the heavy atoms of the crystallographic compound transformed into shape beads. The crystallographic compound is 
then removed from the pocket and restraints are defined between the shape and the conformers (Panel C). Panel D shows a 
docked model superimposed onto the template structure. The protein receptor is shown as slate cartoon, the crystallographic 
compound as white sticks, the generated and docked compounds as orange sticks and the shape beads as transparent orange 
spheres. All molecular graphics were generated with PyMOL. 

 

Fig. 1 illustrates this shape-based docking protocol. After identifying one receptor template per 

target, we transform all heavy atoms of its compound into dummy beads (those do not interact 

with the remaining of the system), much in the same way as the beads described in Chapter 3. 

We then define ambiguous distance restraints with an upper limit of 1Å from each bead to any 

heavy atom of the compound to be docked. This effectively enforces that the ligand atoms must 

overlap with a bead. None of the restraints are discarded during the simulation (noecv = false). 

The nature of the restraints creates an additional consideration, specifically what should be the 

“origin” and “target” of the restraints? In this protocol we have defined the shape as the origin 

and the compound as the target, meaning that all shape beads should at the end be close to a 

ligand atom. However, in the case of a compound which would be smaller than the template 

shape, the optimal way of defining the restraints would be the opposite (i.e. from the compound 

to the shape). 

For the docking we use the command-line version of HADDOCK 2.4. We sample 10000 and 

400 it0 and it1 models, respectively and only perform a short energy minimisation at the end 
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Table 1: Median and average IL-RMSD values for both protocols when considering top5, top1 and the best poses and docking 
with the native or a template receptor. “new” refers to the protocol described in this Chapter and “old” to the application of 
the protocol described in Chapter 5 on the dataset of the GC4 blind docking experiment. 

 

 

  

Receptor Protocol 
Median 

RMSD [Å] 
Mean 

RMSD [Å] Cut-off 

N
at

iv
e 

New 1.22 1.59±1.16 
Top5 Old 1.31 1.80±1.21 

New 1.17 1.35±0.58 
Top1 

Old 1.26 1.58±0.80 
New 0.91 1.02±0.38 

Best 
Old 1.09 1.25±0.54 

T
em

pl
at

e 

New 1.35 1.57±0.75 
Top5 

Old 1.69 2.00±1.13 
New 1.20 1.45±0.62 

Top1 
Old 1.53 1.71±0.81 
New 1.07 1.20±0.49 

Best Old 1.20 1.46±0.75 
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protocol – the old one is a simple refinement. As such it cannot induce any significant 

conformational changes in the ligand and therefore pretty much reflects the heterogeneity of 

the starting conformations. The new protocol imposes restraints on the conformations that the 

ligands can adopt during docking due to the forces acting on them that effectively cause them 

to morph to the shape. This effect can clearly be seen in Fig. 5 which shows the distributions 

of differences in RMSDs between the rigid-body and refined models calculated over the top 

200 models of all ligands. Positive differences indicate that the ligand conformation is moving 

toward its native bound form. The template-based protocol distributions are narrower and more 

symmetrical. In contrast, the shape-restrained distributions are asymmetrical and extend toward 

positive values. In some cases, improvements of more than 4Å RMSD are observed between 

the rigid-body and refined models. 

 

 
Fig 4: Violin plots of the IL-RMSD values for the new and old protocols grouped by model rank. The distributions 
corresponding to the old protocol are coloured blue, and those to the new red. 

 

 

When considering the top 5 models generated in the cross-docking runs, the success rate is 

90% (18/20) and 80% (16/20) for the new and old protocols, respectively, and 100% (20/20) 

and 95% (19/20) for the self-docking runs. When considering only the top model, the success 

rates drop to – the still impressive – 85% (17/20) and 75% (15/20), and 85% (17/20) and 80% 

(16/20) for the new and old protocols and for cross- and self-docking runs respectively. 

Fig. 3 shows the comparison between the top 5 models for the old and new protocols, with the 

new protocol outperforming the old one in almost every target. 

 

 
Fig 3: Comparison of the performance of the old and new protocols by target. The IL-RMSD values have been averaged 
over the top 5 models and for both cross- and self-docking runs. The old protocol is shown in grey bars and the new in 
orange. 

 

Our new shape-restrained docking protocol also performs better in terms of scoring as is shown 

in the violin plots of Fig. 4. For example, the distribution of RMSD values for the models 

ranked as the third best according to HADDOK score for the old protocol clearly indicates they 

are of higher quality than the ones ranked as the best (they reach lower RMSD values). 

Excluding a handful of outliers, the new protocol performs much more consistently: Even 

models ranked at the fifth position are distributed in a similar fashion as the ones ranked as the 

top. These also sample more high-quality models as indicated by the broader distributions at 

lower RMSD values. These differences most likely result from the fact that – unlike the new 
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Fig 6: Comparison of the performance between cross- (grey bars) and self-docking (orange bars) for the shape-restrained 
protocol. The RMSD values have been averaged over the top 5 models for each target. 

 

Conclusion and Perspectives 
In this Chapter we have presented an original protocol for shape-restrained docking of small 

molecules to protein receptors. We compared its performance with the established templated-

based protocol developed in our group on targets of the blind docking experiment described in 

the previous Chapter. This new protocol makes use of the shape of an existing compound 

cocrystallised with ideally the same receptor or a highly homologous one. The restraints 

defined between the template shape and the ligand force the ligand to adopt a conformation in 

the binding pocket that best matches the shape. This new protocol outperforms our old 

template-based refinement protocol both in terms of sampling and scoring as it produces more 

accurate models while at the same time ranking them better. This new protocol achieves an 

impressive 85% success rate when docking from a template receptor considering only the top 

model. 

While the concept of shape is one that has already been used in the field of docking, even dating 

as far back as 1982 when the first docking program was published 381, we believe that the 

formulation put forth in this chapter, based on the use of ambiguous distance restraints to the 

shape, has never been used before for ligand docking. Most importantly, it allows us to combine 

 

 

 
Fig 5: Distribution of RMSD differences between the rigid body and semi-flexible refined models calculated over the top200 
models of all ligands. The left and right panels show the distribution corresponding to the cross- and self-docking experiment 
respectively. The distribution of values corresponding to the template-based and shape-restrained protocols are coloured grey 
and orange, respectively. A positive RMSD difference indicate that the refinement is moving the ligand toward its native, 
bound conformation. 

 

Another remarkable point of the shape-restrained protocol is that it is much less sensitive to the 

quality of the starting receptor conformation: Rather minor differences are observed between 

the cross- and self-docking runs. As shown in Fig. 6, only slight improvements in RMSD values 

are observed when docking with the native receptor. This is in contrast with the old protocol, 

which shows clear improvement when using the native receptor for docking. Two targets 

(BACE 17 and 20) stand out with the performance for the self-docking runs being significantly 

worse than that of the cross-docking. We believe that the reason behind this are minor steric 

disagreements between the shape of the template and the bound receptor, forcing the binding 

pocket to distort during the flexible refinement stages. Self-docking in any case remains an 

artificial exercise only valuable to assess and compare the performance of protocols. 
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(BACE 17 and 20) stand out with the performance for the self-docking runs being significantly 

worse than that of the cross-docking. We believe that the reason behind this are minor steric 

disagreements between the shape of the template and the bound receptor, forcing the binding 
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Fig 6: Comparison of the performance between cross- (grey bars) and self-docking (orange bars) for the shape-restrained 
protocol. The RMSD values have been averaged over the top 5 models for each target. 
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the template information in the form of compound shape with information that might be known 

about the system. For example, the chemistry of enzymatic catalysis might dictate that specific 

atoms of a small molecule must be in close proximity to residues that are part of the catalytic 

triad for that enzyme to perform its function. This can be encoded as additional distance 

restraints acting as the same time as the shape ones. This concept becomes particularly 

powerful when utilised in the concept of integrative modelling frameworks like HADDOCK, 

which can combine information from many sources in a single simulation. 

There are further avenues worth exploring to further improve the performance of this protocol. 

In the current implementation, the shape beads have no properties and only act as placeholders 

for the defined restraints. We could however define various types of beads to represent a 

pseudo-pharmacophore model and define custom restraints towards specific atom types of the 

ligand to match this pharmacophore model. This might allow to place specific atom types in 

an energetically favourable environment, improving thereby the docking results. 
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A common denominator between the membrane protein work and the small ligand docking 

discussed in this thesis is the use of shape information. Indeed, chapters 3 and 6 both describe 

applications of shape information represented as beads to drive the modelling process. In 

Chapter 3 one or more layers of beads are used to implicitly represent the membrane and in 

Chapter 6 ligand docking is restrained to a shape based on the structure of a homologous 

compound. Despite the commonalities between the two protocols, the outcome of the docking 

is very different between the two, with the small molecule protocol achieving high-quality 

results and improving upon our previous efforts in this area, whereas the membrane one 

achieves results which are only marginally better than defining centre-of-mass restraints 

between the transmembrane segments of the two partners for the docking. A main limiting 

factor in the case of membrane protein complexes seems to be the size of the complex, which 

defines the number of restraints defined between shape and molecules and negatively impacts 

the performance of the docking. 

 

Challenges and future directions 
Although integrative approaches have been present in the field of (computational) structural 

biology for a long time, it wasn’t until relatively recently that they coalesced into the field of 

integrative modelling. Like all young disciplines, integrative modelling suffers from the 

growing pains associated with its nascent state. Specifically, there is a lack of interoperability 

and unified workflows between popular packages for molecular simulations. This is 

exacerbated by the lack of a common framework or format for the data that are produced by 

the various experimental and computational techniques which can be used in molecular 

modelling. As a consequence, data must be manually manipulated and transformed before they 

can be used in modelling workflows. This lack of appropriate data formats also extends into 

modelling software as most of them still need and produce – outdated and inadequate for the 

task – PDB-formatted files, despite the advent of the mmCIF format 

(https://github.com/ihmwg/IHM-dictionary) which allows for an arbitrarily high number of 

metadata to be associated with a single or multiple structural models in a single file. The 

mmCIF format has been the default format of the PDB since 2014 and some modelling software 

already support input and output in this format even though they might use different formats 

internally (HADDOCK among them). In recent years, wwPDB (http://www.wwpdb.org/), 

together with industrial and academic partners, has been responsible for many developments 

related to standardisation efforts such as the advent of PDB-dev (https://pdb-dev.wwpdb.org/) 

 

 

Summary 

The preceding chapters of this thesis have covered three main areas of research that fall under 

the purview of Computational Structural Biology; Specifically: 

(1) The types of data – experimental or computational – that can be used in Integrative 
Modelling approaches 

(2) Recent advances in the modelling of membrane protein complexes and 
(3) Protocols for the docking of small molecules to protein receptors. 

Chapter 1 provided a detailed and comprehensive review on the types of data than can be used 

by Integrative Modelling software like HADDOCK, ROSETTA and IMP, with a particular 

emphasis on the experimental techniques which can be used to map interfaces, derive distance 

restraints or shape-based approaches. Another focal point of the chapter is how recent 

advancements have affected the field of membrane protein modelling. Chapters 2 and 3 also 

relate to membrane protein modelling with the former describing a recently available docking 

benchmark comprised entirely of ready-to-dock membrane protein complexes as well as the 

baseline performance of HADDOCK for the entries of the benchmark, and the latter, ongoing 

work regarding development of a protocol for HADDOCK for the docking of transmembrane 

protein complexes. 

The remaining of the thesis focused on small molecule modelling with Chapters 4 through 6 

detailing three separate protocols for the docking of small molecules and protein receptors, 

with every protocol and chapter reflecting methodological improvements over the previous 

one. In Chapter 4, I described the participation of the HADDOCK group in the 2016 iteration 

of the Grand Challenge – the blind docking experiment organised by the D3R consortium. 

While, despite some successes, our performance in the pose prediction component was not 

impressive, we could identify the main factor limiting HADDOCK’s performance, namely the 

selection of appropriate templates for the receptor and came up with an improved way of 

selecting receptors. Chapter 5 described additional improvements in our protocol related to 

the way the compound conformers are selected prior to docking which led to our participation 

in the 2017 iteration of the Grand Challenge being evaluated as one of the best in that round. 

Chapter 6 detailed the development of a new protocol for protein-small molecule docking in 

HADDOCK, by combining the lessons and conclusions from Chapters 4 and 5 and 

formalising their approaches in a method that relies on HADDOCK’s main strength, its ability 

to incorporate information to guide the simulation. This new, shape-restrained docking protocol 

outperformed all our previous efforts while at the same time not relying on any external 

software for the docking. 
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very well, the same cannot be said for the membrane one, for which we define a number of 

restraints similar to what we would define if we wanted to make use of a SAXS- or cryo-EM-

derived shape represented as beads. This indicates that, for such a protocol, a reweighting of 

the restraint energy term against the nonbonded ones might be warranted. 

Challenges related to the way the data are represented and integrated in a simulation are not 

the only issue though: A challenge of equal – if not greater – importance is the determination 

of which data should be integrated in the simulation at all. In other words, how can we 

determine the quality of the data that goes into a simulation to ensure the best possible outcome. 

This challenge is particularly important for integrative modelling software like HADDOCK 

which drives the sampling based on the provided data. This is highly beneficial in the case of 

high-quality data which represents the native state as the code will explore the part of the 

conformational landscape around that native state. But this can also be detrimental in cases 

where the data are not accurate or represent multiple states or conformations. Docking might 

not be the best-suited modelling approach for such cases. Some developments are already 

happening in this direction with the advent of software like DISVIS, which calculates the 

information content of XL-MS derived distance information in the context of a binary complex 

and aims at identifying false positive restraints. Additionally, most experimental methods now 

have ways of assigning confidence scores to their measurements, mainly by repeating 

experiments and identifying the results which are consistent between the various replicates (see 

Chapter 1). 

Of course, the development of protocols such as those described in Chapters 3 and 6, is 

meaningless if not applied to challenging areas of structural biology like the modelling of 

membrane protein complexes. All primary experimental structure determination techniques – 

X-ray crystallography, NMR spectroscopy and cryo-EM – have contributed significantly to the 

recent wealth of high-quality structural models of membrane proteins. Computational 

approaches like molecular dynamics, membrane protein-specific databases and coarse grained 

forcefields have also kept up and are expanding our understanding of membrane proteins. 

Docking codes like ROSETTA also support the docking of transmembrane proteins with tailor-

made potentials that take into account the membrane environment. The protocol that was 

described in Chapter 3 is the first attempt toward providing support for the docking of 

transmembrane proteins in HADDOCK, however, the results indicate that significant 

methodological improvements are required before it can be widely applied for the study of 

membrane systems. However, the application of a similar, shape bead-based concept was 

shown to work very well when docking small molecules to protein receptors as described in 

 

 

239, a publicly accessible repository comprised entirely of structural models obtained with 

integrative approaches. The primary force pushing these developments forward is the 

Hybrid/Integrative Methods task force assembled in 2014 to address the issues arising from the 

need to develop standards around integrative modelling 382. The inaugural meeting of that task 

force identified five recommendations as important moving forward. (1) Archival of all the 

data that went into the simulation as well as the resulting models, (2) a flexible data format 

allowing for multi-state, multi-level and other complicated representations, (3) protocols for 

the estimation of uncertainty of the resulting models, (4) a system for the deposition and 

dissemination of the data produced and (5) publication standards for integrative models. The 

mmCIF format with the necessary dictionaries for integrative modelling has solved challenges 

(1) and (2), but it remains to be adopted by the community at large, while the advent of PDB-

dev – eventually to be absorbed into the PDB itself – already serves as a repository for structural 

models determined with integrative methods. The development of protocols for the estimation 

of uncertainty in the models produced by integrative modelling is probably the point on which 

advances have lagged the most. Publication standards for integrative models is another active 

research area with more results expected soon with the publication of the outcome of the second 

meeting of the task force. 

Another issue in most molecular modelling software is the inconsistent way in which 

uncertainties in the experimental data obtained by methods like, for example, SAXS or XL-

MS are propagated in the simulation – if they are propagated at all. A related matter is the 

proper weighting of the various restraints used when modelling and using data from different 

sources, for example when using shape data from SAXS and residue distance information from 

XL-MS. Some software, like IMP and ISD already account for this, by using a Bayesian 

framework to weight the various terms used during docking and pave the way for the 

widespread development and adoption of probabilistically sound modelling protocols. This 

issue affects all integrative modelling software and HADDOCK is no exception. However, in 

HADDOCK, most experimental information is integrated in the simulation if the form of 

distance restraints which are then used to drive the sampling but are also part of the scoring 

function in the form of a restraint energy term. This applies to all interface-mapping and 

residue-based approaches such as mutagenesis and HDX, and NMR, XL-MS, FRET and 

DEER, respectively. The distance restraining function used in HADDOCK has a functional 

form that makes it less sensitive and more robust for large deviations. In Chapters 3 and 6, I 

presented two protocols which make use of shape information for the modelling of membrane 

protein and protein-small molecule complexes and while the small molecule protocol worked 
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high-quality data which represents the native state as the code will explore the part of the 

conformational landscape around that native state. But this can also be detrimental in cases 

where the data are not accurate or represent multiple states or conformations. Docking might 

not be the best-suited modelling approach for such cases. Some developments are already 

happening in this direction with the advent of software like DISVIS, which calculates the 

information content of XL-MS derived distance information in the context of a binary complex 

and aims at identifying false positive restraints. Additionally, most experimental methods now 

have ways of assigning confidence scores to their measurements, mainly by repeating 

experiments and identifying the results which are consistent between the various replicates (see 

Chapter 1). 

Of course, the development of protocols such as those described in Chapters 3 and 6, is 

meaningless if not applied to challenging areas of structural biology like the modelling of 

membrane protein complexes. All primary experimental structure determination techniques – 

X-ray crystallography, NMR spectroscopy and cryo-EM – have contributed significantly to the 

recent wealth of high-quality structural models of membrane proteins. Computational 

approaches like molecular dynamics, membrane protein-specific databases and coarse grained 

forcefields have also kept up and are expanding our understanding of membrane proteins. 

Docking codes like ROSETTA also support the docking of transmembrane proteins with tailor-

made potentials that take into account the membrane environment. The protocol that was 

described in Chapter 3 is the first attempt toward providing support for the docking of 

transmembrane proteins in HADDOCK, however, the results indicate that significant 

methodological improvements are required before it can be widely applied for the study of 

membrane systems. However, the application of a similar, shape bead-based concept was 

shown to work very well when docking small molecules to protein receptors as described in 

 

 

239, a publicly accessible repository comprised entirely of structural models obtained with 

integrative approaches. The primary force pushing these developments forward is the 

Hybrid/Integrative Methods task force assembled in 2014 to address the issues arising from the 

need to develop standards around integrative modelling 382. The inaugural meeting of that task 

force identified five recommendations as important moving forward. (1) Archival of all the 

data that went into the simulation as well as the resulting models, (2) a flexible data format 

allowing for multi-state, multi-level and other complicated representations, (3) protocols for 

the estimation of uncertainty of the resulting models, (4) a system for the deposition and 

dissemination of the data produced and (5) publication standards for integrative models. The 

mmCIF format with the necessary dictionaries for integrative modelling has solved challenges 

(1) and (2), but it remains to be adopted by the community at large, while the advent of PDB-

dev – eventually to be absorbed into the PDB itself – already serves as a repository for structural 

models determined with integrative methods. The development of protocols for the estimation 

of uncertainty in the models produced by integrative modelling is probably the point on which 

advances have lagged the most. Publication standards for integrative models is another active 

research area with more results expected soon with the publication of the outcome of the second 

meeting of the task force. 

Another issue in most molecular modelling software is the inconsistent way in which 

uncertainties in the experimental data obtained by methods like, for example, SAXS or XL-

MS are propagated in the simulation – if they are propagated at all. A related matter is the 

proper weighting of the various restraints used when modelling and using data from different 

sources, for example when using shape data from SAXS and residue distance information from 

XL-MS. Some software, like IMP and ISD already account for this, by using a Bayesian 

framework to weight the various terms used during docking and pave the way for the 

widespread development and adoption of probabilistically sound modelling protocols. This 

issue affects all integrative modelling software and HADDOCK is no exception. However, in 

HADDOCK, most experimental information is integrated in the simulation if the form of 

distance restraints which are then used to drive the sampling but are also part of the scoring 

function in the form of a restraint energy term. This applies to all interface-mapping and 

residue-based approaches such as mutagenesis and HDX, and NMR, XL-MS, FRET and 

DEER, respectively. The distance restraining function used in HADDOCK has a functional 

form that makes it less sensitive and more robust for large deviations. In Chapters 3 and 6, I 

presented two protocols which make use of shape information for the modelling of membrane 

protein and protein-small molecule complexes and while the small molecule protocol worked 
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Chapter 6. The protocol still needs to be extensively benchmarked but preliminary results 

indicate that it can consistently yield models of high-quality. Combined with HADDOCK’s 

innate ability to integrate diverse types of experimental data in the simulation, it opens 

interesting avenues for further exploration. 

One development which could push the integrative modelling community forward in what the 

CASP and CAPRI experiments did for the protein structure prediction and protein interaction 

prediction communities in the early to mid-90s and early-00s, respectively. There is thus a need 

for a new blind challenge which would assess the state-of-the-art in integrative modelling 

approaches. This would galvanise the community and help create assessment criteria which 

would formalise the way integrative models are evaluated and disseminated, and create a 

stronger sense of community around the field of integrative modelling. Some steps in this 

direction are already taking place with the data-assisted category of CASP with one recent 

example being CAPRI targets T149-T151 (CASP targets T099, S099, X099) of the joint 

CASP-CAPRI experiment held over the summer of 2018 which featured SAXS and XL-MS 

data. 

Finally, I would be amiss to not mention challenges that continue to affect integrative 

modelling and computational biology in general even if this thesis did not explicitly deal with 

those. Issues like the difficulty of modelling large conformational rearrangements, and 

predicting when those are needed for binding, and the challenge of obtaining accurate binding 

affinities have been present since the very first days of the field. Despite steady progress in 

many areas like biomolecular docking and alchemical free energy simulations, these are still 

open challenges in field. 
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protein-small molecule docking. Both areas are of great interest, both for academic and 

pharmaceutical research, as TM receptors constitute most drug targets and the majority of drugs 

on the market today are small compounds. The first half of this thesis pertains to membrane 

protein modelling, whereas the second half focuses on the modelling of protein-small molecule 

complexes. In the introductory Chapter, I provide an overview of the state of the integrative 

modelling field, of the ways in which data from diverse experimental sources can be used by 

modelling frameworks, and of recent advances in specific areas of interest. 

The thesis begins with the General Introduction which gently introduces some of the core 

concepts that are later expanded upon in the following chapters. It also briefly introduces the 

subject of each chapter. The main part of the thesis consists of Chapters 1 through 6. 

In Chapter 1, I provide an overview of the state of the field of integrative modelling with a 

particular emphasis on the types of data that can be used by integrative modelling frameworks 

such as HADDOCK (High Ambiguity Driven DOCKing), ROSETTA or IMP (Integrative 

Modelling Platform). The experimental methods that are discussed fall into one of three broad 

categories depending on the type of data that can be obtained from them: Interface-mapping 

techniques, techniques providing some kind of distance information between residues and 

shape-based techniques. Mutagenesis, HDX and NMR (when deriving chemical shift 

perturbations from titration experiments) are the interface-mapping techniques that are 

discussed, crosslinking, FRET and DEER the distance-based ones and cryo-EM and SAXS the 

shape-based techniques. For all these, I evaluate their relevance for the field of integrative 

modelling and provide examples of their application in modelling interesting and challenging 

targets. An additional focal point of this chapter is the evaluation of some computational 

methods in which significant progress has been made recently, namely the use of evolutionary 

information in the form of coevolution data in docking, advances related to the modelling of 

membrane proteins and applications of coarse-grained forcefields. 

In Chapter 2, I describe a recently published benchmark of membrane protein complexes. It 

is the first, and to the best of my knowledge, the only one of its kind, thus addressing a key 

missing element for further development of membrane protein docking algorithms. This non-

redundant dataset consists entirely of transmembrane α-helical and β-barrel complexes, 

covering varying difficulty ranges from bound complexes (cases in which both bound 

components were extracted from the reference complex) to difficult, unbound cases with 

significant conformational rearrangements at the interface. Using this dataset, we define the 

baseline performance of HADDOCK for this type of complexes. In addition to the dataset itself 

 

 

All cells, whether prokaryotic or eukaryotic, are finely tuned biochemical machines. In broad 

terms, genetic information is encoded in the nucleic acid sequence and is translated in 

functionally active biomolecules (proteins or other nucleic acids). These biomolecules then 

perform the multitude of functions the cell needs in order to maintain its homeostatic status. 

Biomolecules do not exist or perform their functions in isolation: They always act on – or 

together with – other molecules whether that is an enzyme catalysing a reaction involving a 

substrate, an activator protein acting on its target or a large collection of biomolecules coming 

together to create a large macromolecular machine such as the ribosome. Understanding 

cellular mechanisms in depth, therefore, requires understanding the makeup and function of 

these biomolecular complexes. For most types of complexes, truly understanding their function 

relies upon being able to obtain high-quality structures or models of the complex. 

Traditional structure determination techniques such as X-ray crystallography, Nuclear 

Magnetic Resonance (NMR) spectroscopy and cryo-Electron Microscopy (cryo-EM) have 

been used to determine the structure of thousands of biomolecules and biomolecular 

complexes. As of October 2019, the Protein Data Bank (PDB), the public repository of solved 

structures, counts more than 156000 entries. However, if one were to determine the unique 

entries in the database and then further focus on protein-protein complexes rather than free 

structures, the resulting number would only be a fraction of that (around 6000-7000 non-

redundant biologically relevant complexes). With the protein-protein interactions in the cell 

estimated to be in the hundreds of thousands it quickly becomes clear that there is a significant 

gap between the number of biomolecular complexes with solved structures and the total 

number of complexes identified from interactome high-throughput studies. Next to the 

experimental methods mentioned above, another way of obtaining structural models for these 

complexes, the necessary step to understand the molecular mechanisms at play, is 

computational modelling. 

The field of computational modelling that deals with biomolecular complexes, which is the 

subject of this thesis, is integrative modelling, and in particular, biomolecular docking. These, 

like all subfields of computational simulation, share some of the same challenges, specifically 

sampling – or how to generate poses which resemble those of native complexes – and scoring 

– or how to identify good (or near-native) from wrong models in a large pool of models. 

Another challenge is about the way in which data are integrated into the simulations, or the 

need to weight those data in a way that allows for multiple data sources to be efficiently used 

in the same simulation while also reflecting the experimental uncertainties. This thesis focuses 

on two additional areas of interest: Docking of transmembrane TM protein complexes and 
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on two additional areas of interest: Docking of transmembrane TM protein complexes and 



156

 

 

 

Chapter 6 represents the logical conclusion of the small molecule docking part of the thesis. 

In that Chapter I describe a new HADDOCK protocol that makes use of the shape information 

which was identified as highly relevant in the preceding chapter. The innovative aspect of this 

protocol is the way the ligand shape is represented with the heavy atoms of the template 

compound being transformed into shape beads as used for the representation of the membrane 

described in Chapter 3. Similar to that protocol, restraints are then defined between the shape 

beads and the atoms of the generated ligand conformers. With the use of those shape restraints 

we don’t need to pre-select conformations, but instead use all 500 generated ones, increase the 

sampling and let HADDOCK select the near-native ones. This protocol outperforms the one 

described in the preceding chapter. The shape restraints allow to induce rather large 

conformational changes in the ligand toward its bound form. In addition, since we are now 

performing a full docking run, we can integrate any additional information in the simulation – 

something which was not possible in the previous protocol as it was a simple refinement. 

In the last Chapter – Chapter 7 – I summarise the main findings of this thesis and offer critical 

perspectives for the challenges the field is facing as well as some potential avenues worth 

exploring in the future. 

  

 

 

we also make available a decoy set consisting of HADDOCK models produced during the 

benchmarking process. 

Chapter 3 is the last chapter which focuses on membrane protein modelling. In that Chapter I 

describe a protocol for HADDOCK, still under development, that implicitly represents the 

membrane bilayer by a shape consisting of layers of beads. Restraints are defined between 

these beads and Cα carbons of the subunits of the complex to drive them to the “membrane”. I 

compare the performance of these shape-restrained runs with one where a single centre-of-

mass restraint is defined between the transmembrane segments of the two subunits. The 

performance of the shape runs is lower than expected compared to the simple transmembrane 

centre-of-mass restraint ones. Further work will be required to optimise this new approach. 

Chapters 4 through 6 constitute the second half of the thesis and revolve around protein-small 

molecule docking. In Chapter 4, I discuss our participation in a blind docking experiment – 

the 2016 iteration of the Grand Challenge experiment organised by the D3R consortium in 

which we had to model 36 protein-ligand complexes for the pharmaceutically relevant 

Farnesoid X receptor. Our small molecule docking protocol consists of the following steps: i) 

Identification of relevant protein receptor templates in the PDB and creation of an ensemble 

after clustering and selecting representative structures, ii) creation of a ligand ensemble after 

conformer generation and clustering of the resulting conformers and iii) docking using residues 

identified from the receptor templates. Despite excellent results for some cases, our overall 

performance was not so good compared to the other participants. We could identify the main 

limiting factor affecting the performance – namely the selection of the receptor template related 

to conformational changes taking place upon binding. Replacing the ensemble part of the 

protocol with the selection of a single template based on the similarity of its bound ligand with 

the target compound to dock does indeed leads to better results. 

In the following Chapter – Chapter 5 – I describe our participation in the following years’ 

Grand Challenge. In addition to selecting a single receptor template based on compound 

similarity we also revisit the conformer selection procedure: Ligand conformations for docking 

are selected based on their 3D shape similarity with the bound ligand present in the selected 

template. We also use the shape similarity to superimpose the selected conformers in the 

binding pocket of the receptor, bypass the initial stage of the docking protocol and directly 

proceed to refine the models using the water refinement stage of HADDOCK. The 

incorporation of shape information in our protocol has a significant impact on our success rate: 

Our submission (24 protein-ligand complexes predicted) was evaluated as one of the best 

within standard deviation of the top performing participant. 
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concentreert zich op twee verdere onderwerpen: het docken van transmembraan (TM) 

proteïnecomplexen en eiwit-kleine molecuul docking. Beide onderwerpen zijn van groot 

belang, zowel voor academisch- als voor farmaceutisch onderzoek, omdat TM-receptoren het 

merendeel van de targets van medicijnen uitmaken en de meerderheid van de medicijnen die 

momenteel op de markt zijn kleine moleculen zijn. De eerste helft van het proefschrift heeft 

betrekking op het modelleren van membraanproteïnen, terwijl de tweede helft focust op het 

modelleren van eiwit-kleine molecuul complexen. In het introductiehoofdstuk geef ik een 

overzicht van de huidige staat van het gebied van modelleren, van de manieren waarop data uit 

diverse experimentele bronnen kunnen worden gebruikt door modellering-frameworks, en van 

recente ontwikkelingen op specifieke vlakken. 

Het proefschrift begint met een Algemene Introductie (General Introduction) die een aantal 

centrale concepten introduceert die in latere hoofdstukken verder worden toegelicht. Ook wordt 

kort het onderwerp van elk hoofdstuk beschreven. Het centrale gedeelte van het proefschrift 

bestaat uit hoofdstukken 1 t/m 6. 

In Hoofdstuk 1 geef ik een overzicht van de huidige staat van het integratief modelleren, met 

speciale aandacht voor de soorten data die gebruikt kunnen worden door integratieve 

modellering-frameworks zoals HADDOCK (High Ambiguity Driven DOCKing), ROSETTA, 

of IMP (Integrative Modeling Platform). De experimentele methodes die hier besproken 

worden kunnen ingedeeld worden in drie categorieën op basis van het type data die ze 

verschaffen: interface-mapping technieken, technieken die informatie geven over de afstand 

tussen bepaalde residuen, en vorm-gerelateerde technieken. Mutagenese, HDX en NMR (in het 

geval van verandering van chemische verschuiving in titratie-experimenten) zijn de interface-

mapping technieken die hier worden besproken; crosslinking, FRET en DEER geven 

informatie over afstanden; cryo-EM en SAXS over vorm. Van al deze technieken beschrijf ik 

het belang voor integratief modelleren en geef voorbeelden van hun toepassing in het 

modelleren van interessante en gecompliceerde targets. Een verdere focus in dit hoofdstuk is 

de evaluatie van een aantal computationele methodes waarin recent vooruitgang is geboekt, 

namelijk het gebruik van evolutionaire informatie in de vorm van co-evolutie data in docking, 

ontwikkelingen op het gebied van het modelleren van membraanproteïnen, en toepassingen 

van coarse-grained representaties. 

In Hoofdstuk 2 beschrijf ik een recent gepubliceerde benchmark van 

membraanproteïnecomplexen. Het is de eerste en, naar mijn weten, de enige in zijn soort en 

dus het antwoord op een tot dusver ontbrekend element voor het verder ontwikkelen van 

algoritmes voor het docken van membraanproteïnes. Deze niet-redundante dataset bestaat 

 

 

Alle cellen, zowel prokaryoot als eukaryoot, zijn voorzichtig afgestelde biochemische 

machines. Kort samengevat ligt genetische informatie vast in DNA-sequenties die vertaald 

worden naar functionele biomoleculen (proteïnen of andere nucleotiden). Deze biomoleculen 

vervullen een groot aantal verschillende functies die nodig zijn om de homeostase van de cel 

te handhaven. Biomoleculen bestaan, noch vervullen ze hun taken, in isolatie: ze werken altijd 

aan – of samen met – andere moleculen, of het nou een enzym is dat een reactie met een 

substraat katalyseert, een activator die invloed uitoefent op zijn target, of een grote groep 

biomoleculen die samen een grote macromoleculaire machine zoals een ribosoom vormen. 

Diepgaand inzicht in cellulaire mechanismen vergt daarom kennis van de samenstelling en 

functie van deze biomoleculaire complexen. Om de functie van de meeste complexen volledig 

te kunnen begrijpen is het nodig structuren of modellen van hoge kwaliteit van het complex te 

construeren. 

Traditionele technieken voor het bepalen van structuren, zoals röntgenkristallografie, 

kernspinresonantie (NMR-spectroscopie), en cryo-elektronenmicroscopie (cryo-EM), zijn 

gebruikt om de structuur van duizenden biomoleculen en biomoleculaire complexen te bepalen. 

In oktober 2019 telde de Protein Data Bank (PDB), de openbare database van opgeloste 

structuren, meer dan 156.000 structuren. Als men echter kijkt welke vermeldingen uniek zijn 

en zich verder concentreert op eiwit-eiwit complexen in plaats van losse structuren, wordt het 

aantal vele malen kleiner (ongeveer 6.000-7.000 unieke, biologisch-relevante complexen). 

Aangezien het geschatte aantal eiwit-eiwit interacties in de cel in de honderdduizenden ligt, is 

het duidelijk dat er een grote kloof zit tussen het aantal biomoleculaire complexen waarvoor 

een structuur beschikbaar is en het totale aantal complexen dat is geïdentificeerd door middel 

van high-throughput studies. Naast de bovengenoemde experimentele methodes om 

structuurmodellen van deze complexen te creëren is een andere benadering nodig om de 

relevante moleculaire mechanismen te begrijpen, door middel van computationeel modelleren. 

Het vakgebied binnen computationeel modelleren dat zich bezighoudt met biomoleculaire 

complexen, het onderwerp van dit proefschrift, is integratief modelleren en, specifieker, 

biomoleculair docking. Deze gebieden, zoals alle vakgebieden die zich bezighouden met 

computersimulaties, hebben bepaalde uitdagingen gemeen: sampling – of hoe poses te 

genereren die lijken op die van de natieve staat (native state) – en scoring – of hoe de goede 

(near-native) van de foute modellen te onderscheiden in een grote verzameling modellen. Een 

andere uitdaging ligt in de integratie van data in de simulaties, of hoe deze data zo mee te 

wegen dat data uit meerdere bronnen efficiënt gebruikt kunnen worden in dezelfde simulatie 

en tegelijkertijd rekening te houden met experimentele onzekerheden. Dit proefschrift 



161

 

 
 

 

concentreert zich op twee verdere onderwerpen: het docken van transmembraan (TM) 

proteïnecomplexen en eiwit-kleine molecuul docking. Beide onderwerpen zijn van groot 

belang, zowel voor academisch- als voor farmaceutisch onderzoek, omdat TM-receptoren het 

merendeel van de targets van medicijnen uitmaken en de meerderheid van de medicijnen die 

momenteel op de markt zijn kleine moleculen zijn. De eerste helft van het proefschrift heeft 

betrekking op het modelleren van membraanproteïnen, terwijl de tweede helft focust op het 

modelleren van eiwit-kleine molecuul complexen. In het introductiehoofdstuk geef ik een 

overzicht van de huidige staat van het gebied van modelleren, van de manieren waarop data uit 

diverse experimentele bronnen kunnen worden gebruikt door modellering-frameworks, en van 

recente ontwikkelingen op specifieke vlakken. 

Het proefschrift begint met een Algemene Introductie (General Introduction) die een aantal 

centrale concepten introduceert die in latere hoofdstukken verder worden toegelicht. Ook wordt 

kort het onderwerp van elk hoofdstuk beschreven. Het centrale gedeelte van het proefschrift 

bestaat uit hoofdstukken 1 t/m 6. 

In Hoofdstuk 1 geef ik een overzicht van de huidige staat van het integratief modelleren, met 

speciale aandacht voor de soorten data die gebruikt kunnen worden door integratieve 

modellering-frameworks zoals HADDOCK (High Ambiguity Driven DOCKing), ROSETTA, 

of IMP (Integrative Modeling Platform). De experimentele methodes die hier besproken 

worden kunnen ingedeeld worden in drie categorieën op basis van het type data die ze 

verschaffen: interface-mapping technieken, technieken die informatie geven over de afstand 

tussen bepaalde residuen, en vorm-gerelateerde technieken. Mutagenese, HDX en NMR (in het 

geval van verandering van chemische verschuiving in titratie-experimenten) zijn de interface-

mapping technieken die hier worden besproken; crosslinking, FRET en DEER geven 

informatie over afstanden; cryo-EM en SAXS over vorm. Van al deze technieken beschrijf ik 

het belang voor integratief modelleren en geef voorbeelden van hun toepassing in het 

modelleren van interessante en gecompliceerde targets. Een verdere focus in dit hoofdstuk is 

de evaluatie van een aantal computationele methodes waarin recent vooruitgang is geboekt, 

namelijk het gebruik van evolutionaire informatie in de vorm van co-evolutie data in docking, 

ontwikkelingen op het gebied van het modelleren van membraanproteïnen, en toepassingen 

van coarse-grained representaties. 

In Hoofdstuk 2 beschrijf ik een recent gepubliceerde benchmark van 

membraanproteïnecomplexen. Het is de eerste en, naar mijn weten, de enige in zijn soort en 

dus het antwoord op een tot dusver ontbrekend element voor het verder ontwikkelen van 

algoritmes voor het docken van membraanproteïnes. Deze niet-redundante dataset bestaat 

 

 

Alle cellen, zowel prokaryoot als eukaryoot, zijn voorzichtig afgestelde biochemische 

machines. Kort samengevat ligt genetische informatie vast in DNA-sequenties die vertaald 

worden naar functionele biomoleculen (proteïnen of andere nucleotiden). Deze biomoleculen 

vervullen een groot aantal verschillende functies die nodig zijn om de homeostase van de cel 

te handhaven. Biomoleculen bestaan, noch vervullen ze hun taken, in isolatie: ze werken altijd 

aan – of samen met – andere moleculen, of het nou een enzym is dat een reactie met een 

substraat katalyseert, een activator die invloed uitoefent op zijn target, of een grote groep 

biomoleculen die samen een grote macromoleculaire machine zoals een ribosoom vormen. 

Diepgaand inzicht in cellulaire mechanismen vergt daarom kennis van de samenstelling en 

functie van deze biomoleculaire complexen. Om de functie van de meeste complexen volledig 

te kunnen begrijpen is het nodig structuren of modellen van hoge kwaliteit van het complex te 

construeren. 

Traditionele technieken voor het bepalen van structuren, zoals röntgenkristallografie, 

kernspinresonantie (NMR-spectroscopie), en cryo-elektronenmicroscopie (cryo-EM), zijn 

gebruikt om de structuur van duizenden biomoleculen en biomoleculaire complexen te bepalen. 

In oktober 2019 telde de Protein Data Bank (PDB), de openbare database van opgeloste 

structuren, meer dan 156.000 structuren. Als men echter kijkt welke vermeldingen uniek zijn 

en zich verder concentreert op eiwit-eiwit complexen in plaats van losse structuren, wordt het 

aantal vele malen kleiner (ongeveer 6.000-7.000 unieke, biologisch-relevante complexen). 

Aangezien het geschatte aantal eiwit-eiwit interacties in de cel in de honderdduizenden ligt, is 

het duidelijk dat er een grote kloof zit tussen het aantal biomoleculaire complexen waarvoor 

een structuur beschikbaar is en het totale aantal complexen dat is geïdentificeerd door middel 

van high-throughput studies. Naast de bovengenoemde experimentele methodes om 

structuurmodellen van deze complexen te creëren is een andere benadering nodig om de 

relevante moleculaire mechanismen te begrijpen, door middel van computationeel modelleren. 

Het vakgebied binnen computationeel modelleren dat zich bezighoudt met biomoleculaire 

complexen, het onderwerp van dit proefschrift, is integratief modelleren en, specifieker, 

biomoleculair docking. Deze gebieden, zoals alle vakgebieden die zich bezighouden met 

computersimulaties, hebben bepaalde uitdagingen gemeen: sampling – of hoe poses te 

genereren die lijken op die van de natieve staat (native state) – en scoring – of hoe de goede 

(near-native) van de foute modellen te onderscheiden in een grote verzameling modellen. Een 

andere uitdaging ligt in de integratie van data in de simulaties, of hoe deze data zo mee te 

wegen dat data uit meerdere bronnen efficiënt gebruikt kunnen worden in dezelfde simulatie 

en tegelijkertijd rekening te houden met experimentele onzekerheden. Dit proefschrift 

Sa
m

m
en

va
tti

ng

 

 
 

 

concentreert zich op twee verdere onderwerpen: het docken van transmembraan (TM) 

proteïnecomplexen en eiwit-kleine molecuul docking. Beide onderwerpen zijn van groot 

belang, zowel voor academisch- als voor farmaceutisch onderzoek, omdat TM-receptoren het 

merendeel van de targets van medicijnen uitmaken en de meerderheid van de medicijnen die 

momenteel op de markt zijn kleine moleculen zijn. De eerste helft van het proefschrift heeft 

betrekking op het modelleren van membraanproteïnen, terwijl de tweede helft focust op het 

modelleren van eiwit-kleine molecuul complexen. In het introductiehoofdstuk geef ik een 

overzicht van de huidige staat van het gebied van modelleren, van de manieren waarop data uit 

diverse experimentele bronnen kunnen worden gebruikt door modellering-frameworks, en van 

recente ontwikkelingen op specifieke vlakken. 

Het proefschrift begint met een Algemene Introductie (General Introduction) die een aantal 

centrale concepten introduceert die in latere hoofdstukken verder worden toegelicht. Ook wordt 

kort het onderwerp van elk hoofdstuk beschreven. Het centrale gedeelte van het proefschrift 

bestaat uit hoofdstukken 1 t/m 6. 

In Hoofdstuk 1 geef ik een overzicht van de huidige staat van het integratief modelleren, met 

speciale aandacht voor de soorten data die gebruikt kunnen worden door integratieve 

modellering-frameworks zoals HADDOCK (High Ambiguity Driven DOCKing), ROSETTA, 

of IMP (Integrative Modeling Platform). De experimentele methodes die hier besproken 

worden kunnen ingedeeld worden in drie categorieën op basis van het type data die ze 

verschaffen: interface-mapping technieken, technieken die informatie geven over de afstand 

tussen bepaalde residuen, en vorm-gerelateerde technieken. Mutagenese, HDX en NMR (in het 

geval van verandering van chemische verschuiving in titratie-experimenten) zijn de interface-

mapping technieken die hier worden besproken; crosslinking, FRET en DEER geven 

informatie over afstanden; cryo-EM en SAXS over vorm. Van al deze technieken beschrijf ik 

het belang voor integratief modelleren en geef voorbeelden van hun toepassing in het 

modelleren van interessante en gecompliceerde targets. Een verdere focus in dit hoofdstuk is 

de evaluatie van een aantal computationele methodes waarin recent vooruitgang is geboekt, 

namelijk het gebruik van evolutionaire informatie in de vorm van co-evolutie data in docking, 

ontwikkelingen op het gebied van het modelleren van membraanproteïnen, en toepassingen 

van coarse-grained representaties. 

In Hoofdstuk 2 beschrijf ik een recent gepubliceerde benchmark van 

membraanproteïnecomplexen. Het is de eerste en, naar mijn weten, de enige in zijn soort en 

dus het antwoord op een tot dusver ontbrekend element voor het verder ontwikkelen van 

algoritmes voor het docken van membraanproteïnes. Deze niet-redundante dataset bestaat 

 

 

Alle cellen, zowel prokaryoot als eukaryoot, zijn voorzichtig afgestelde biochemische 

machines. Kort samengevat ligt genetische informatie vast in DNA-sequenties die vertaald 

worden naar functionele biomoleculen (proteïnen of andere nucleotiden). Deze biomoleculen 

vervullen een groot aantal verschillende functies die nodig zijn om de homeostase van de cel 

te handhaven. Biomoleculen bestaan, noch vervullen ze hun taken, in isolatie: ze werken altijd 

aan – of samen met – andere moleculen, of het nou een enzym is dat een reactie met een 

substraat katalyseert, een activator die invloed uitoefent op zijn target, of een grote groep 

biomoleculen die samen een grote macromoleculaire machine zoals een ribosoom vormen. 

Diepgaand inzicht in cellulaire mechanismen vergt daarom kennis van de samenstelling en 

functie van deze biomoleculaire complexen. Om de functie van de meeste complexen volledig 

te kunnen begrijpen is het nodig structuren of modellen van hoge kwaliteit van het complex te 

construeren. 

Traditionele technieken voor het bepalen van structuren, zoals röntgenkristallografie, 

kernspinresonantie (NMR-spectroscopie), en cryo-elektronenmicroscopie (cryo-EM), zijn 

gebruikt om de structuur van duizenden biomoleculen en biomoleculaire complexen te bepalen. 

In oktober 2019 telde de Protein Data Bank (PDB), de openbare database van opgeloste 

structuren, meer dan 156.000 structuren. Als men echter kijkt welke vermeldingen uniek zijn 

en zich verder concentreert op eiwit-eiwit complexen in plaats van losse structuren, wordt het 

aantal vele malen kleiner (ongeveer 6.000-7.000 unieke, biologisch-relevante complexen). 

Aangezien het geschatte aantal eiwit-eiwit interacties in de cel in de honderdduizenden ligt, is 

het duidelijk dat er een grote kloof zit tussen het aantal biomoleculaire complexen waarvoor 

een structuur beschikbaar is en het totale aantal complexen dat is geïdentificeerd door middel 

van high-throughput studies. Naast de bovengenoemde experimentele methodes om 

structuurmodellen van deze complexen te creëren is een andere benadering nodig om de 

relevante moleculaire mechanismen te begrijpen, door middel van computationeel modelleren. 

Het vakgebied binnen computationeel modelleren dat zich bezighoudt met biomoleculaire 

complexen, het onderwerp van dit proefschrift, is integratief modelleren en, specifieker, 

biomoleculair docking. Deze gebieden, zoals alle vakgebieden die zich bezighouden met 

computersimulaties, hebben bepaalde uitdagingen gemeen: sampling – of hoe poses te 

genereren die lijken op die van de natieve staat (native state) – en scoring – of hoe de goede 

(near-native) van de foute modellen te onderscheiden in een grote verzameling modellen. Een 

andere uitdaging ligt in de integratie van data in de simulaties, of hoe deze data zo mee te 

wegen dat data uit meerdere bronnen efficiënt gebruikt kunnen worden in dezelfde simulatie 

en tegelijkertijd rekening te houden met experimentele onzekerheden. Dit proefschrift 
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conformeer: conformaties worden geselecteerd op basis van de overeenkomst van hun 3D-

vorm met die van de gebonden ligand in het template. Ook gebruiken we de 

vormovereenkomsten om de geselecteerde conformeer in de binding pocket van de receptor te 

superimposeren, slaan de eerste fase van het dockingprotocol over en gaan direct over tot het 

verfijnen van de modellen door middel van het waterverfijning gedeelte van HADDOCK. Het 

gebruik van vorminformatie in ons protocol heeft een significante impact op het 

succespercentage: onze inzending (24 voorspelde eiwit-ligand complexen) kwam als een van 

de besten uit de evaluatie, binnen standaarddeviatie van de best-presterende deelnemer. 

Hoofdstuk 6 is de logische conclusie van het kleine-molecuul docking gedeelte van dit 

proefschrift. In dat hoofdstuk beschrijf ik een nieuw HADDOCK-protocol dat de 

vorminformatie gebruikt die in het voorgaande hoofdstuk als zeer relevant werd 

geïdentificeerd. Het innovatieve aspect van dit protocol is de manier waarop de vorm van de 

ligand wordt gerepresenteerd: door de zware atomen van het template te veranderen in bollen, 

zoals eerder beschreven voor de vertegenwoordiging van het membraan in Hoofdstuk 3. Net 

zoals in dat protocol worden hier restraints gedefinieerd tussen de bollen en de atomen van de 

ligand conformeren. Door dit soort vorm-restraints te gebruiken hoeven we niet van tevoren 

conformaties te selecteren, maar kunnen we alle 500 gebruiken en met verhoogde sampling 

HADDOCK de near-native conformaties laten selecteren. Dit protocol presteert beter dan dat 

beschreven in het voorgaande hoofdstuk. De vorm-restraints maken relatief grote 

conformatieveranderingen in de ligand mogelijk, om dichter bij de gebonden vorm te kunnen 

komen. Daarnaast, omdat we nu een volledige docking run uitvoeren, kunnen we aanvullende 

informatie in de simulatie integreren – iets dat niet mogelijk was met het vorige protocol dat 

slechts uit een verfijning bestond. 

In het laatste hoofdstuk, Hoofdstuk 7, vat ik de belangrijkste bevindingen van het proefschrift 

samen en geef ik kritisch commentaar op de uitdagingen waar het vakgebied voor staat, 

alsmede enkele mogelijke richtingen die de moeite waard zijn in de toekomst te exploreren. 

 

  

 

 

geheel uit α-helix en β-barrel transmembraancomplexen van verschillende 

moeilijkheidsgraden, variërend van gebonden complexen (gevallen waarin beide componenten 

uit de gebonden vorm van het complex komen) tot moeilijke, ongebonden gevallen met 

significante conformatieveranderingen in het interactieoppervlak. Met gebruik van deze dataset 

leggen we vast hoe HADDOCK presteert met dit type complexen. Naast de dataset zelf is ook 

een set decoys beschikbaar, bestaande uit HADDOCK-modellen die voortkomen uit het 

benchmarkingproces. 

Hoofdstuk 3 is het laatste hoofdstuk met betrekking tot het modelleren van 

membraanproteïnecomplexen. In dat hoofdstuk beschrijf ik een protocol voor HADDOCK, 

nog in ontwikkeling, waarin de lipide dubbellaag wordt vertegenwoordigd door lagen van 

bollen (dummy atoms). Om de subeenheden van het complex naar het “membraan” te brengen 

worden maximumafstanden (restraints) gebruikt tussen deze bollen en Cα atomen van de 

eiwitsubeenheden van het complex. Ik vergelijk de resultaten van deze runs, met vorm-

restraints, met runs waarbij een enkel massamiddelpunt-restraint tussen het 

transmembraangedeelte van de twee subeenheden is gebruikt. Verder werk zal nodig zijn om 

deze nieuwe aanpak te optimaliseren. 

Hoofdstukken 4 t/m 6 vormen de tweede helft van het proefschrift en gaan over eiwit-kleine 

molecuul docking. In Hoofdstuk 4 bespreek ik onze deelname aan een blind docking 

experiment – de 2016 editie van de Grand Challenge georganiseerd door het D3R consortium 

– waarvoor we 36 eiwit-ligand complexen moesten modelleren van de farmaceutisch-relevante 

Farnesoid X receptor. Ons kleine-molecuul dockingprotocol bestaat uit de volgende stappen: 

i) Identificatie van relevante eiwitreceptor templates in de PDB en het creëren van een 

ensemble van representatieve structuren na het clusteren van de templates, ii) creatie van een 

ligand ensemble na verschillende conformeren te hebben gegenereerd en geclusterd en iii) 

docking met gebruik van residuen geïdentificeerd in de receptor templates. Ondanks zeer goede 

resultaten in sommige gevallen was onze prestatie in het algemeen niet zo goed als die van 

andere deelnemers. We waren in staat de belangrijkste beperkende factor te identificeren, de 

selectie van receptor templates had namelijk te maken met conformatieveranderingen na het 

binden van de ligand. Door het ensemble-gedeelte van het protocol te vervangen met de selectie 

van een enkel template gebaseerd op de overeenkomst van de gebonden ligand met de te 

docken target-verbinding verbeterden de resultaten inderdaad. 

In het volgende hoofdstuk, Hoofdstuk 5, beschrijf ik onze deelname aan de Grand Challenge 

van het daaropvolgende jaar. Behalve dit keer één enkel receptor template te selecteren 

gebaseerd op ligand-overeenkomst herzien we ook de procedure voor selectie van de ligand 
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conformeer: conformaties worden geselecteerd op basis van de overeenkomst van hun 3D-

vorm met die van de gebonden ligand in het template. Ook gebruiken we de 

vormovereenkomsten om de geselecteerde conformeer in de binding pocket van de receptor te 

superimposeren, slaan de eerste fase van het dockingprotocol over en gaan direct over tot het 

verfijnen van de modellen door middel van het waterverfijning gedeelte van HADDOCK. Het 

gebruik van vorminformatie in ons protocol heeft een significante impact op het 

succespercentage: onze inzending (24 voorspelde eiwit-ligand complexen) kwam als een van 

de besten uit de evaluatie, binnen standaarddeviatie van de best-presterende deelnemer. 

Hoofdstuk 6 is de logische conclusie van het kleine-molecuul docking gedeelte van dit 

proefschrift. In dat hoofdstuk beschrijf ik een nieuw HADDOCK-protocol dat de 

vorminformatie gebruikt die in het voorgaande hoofdstuk als zeer relevant werd 

geïdentificeerd. Het innovatieve aspect van dit protocol is de manier waarop de vorm van de 

ligand wordt gerepresenteerd: door de zware atomen van het template te veranderen in bollen, 

zoals eerder beschreven voor de vertegenwoordiging van het membraan in Hoofdstuk 3. Net 

zoals in dat protocol worden hier restraints gedefinieerd tussen de bollen en de atomen van de 

ligand conformeren. Door dit soort vorm-restraints te gebruiken hoeven we niet van tevoren 

conformaties te selecteren, maar kunnen we alle 500 gebruiken en met verhoogde sampling 

HADDOCK de near-native conformaties laten selecteren. Dit protocol presteert beter dan dat 

beschreven in het voorgaande hoofdstuk. De vorm-restraints maken relatief grote 

conformatieveranderingen in de ligand mogelijk, om dichter bij de gebonden vorm te kunnen 

komen. Daarnaast, omdat we nu een volledige docking run uitvoeren, kunnen we aanvullende 

informatie in de simulatie integreren – iets dat niet mogelijk was met het vorige protocol dat 

slechts uit een verfijning bestond. 

In het laatste hoofdstuk, Hoofdstuk 7, vat ik de belangrijkste bevindingen van het proefschrift 

samen en geef ik kritisch commentaar op de uitdagingen waar het vakgebied voor staat, 

alsmede enkele mogelijke richtingen die de moeite waard zijn in de toekomst te exploreren. 

 

  

 

 

geheel uit α-helix en β-barrel transmembraancomplexen van verschillende 

moeilijkheidsgraden, variërend van gebonden complexen (gevallen waarin beide componenten 

uit de gebonden vorm van het complex komen) tot moeilijke, ongebonden gevallen met 

significante conformatieveranderingen in het interactieoppervlak. Met gebruik van deze dataset 

leggen we vast hoe HADDOCK presteert met dit type complexen. Naast de dataset zelf is ook 

een set decoys beschikbaar, bestaande uit HADDOCK-modellen die voortkomen uit het 

benchmarkingproces. 

Hoofdstuk 3 is het laatste hoofdstuk met betrekking tot het modelleren van 

membraanproteïnecomplexen. In dat hoofdstuk beschrijf ik een protocol voor HADDOCK, 

nog in ontwikkeling, waarin de lipide dubbellaag wordt vertegenwoordigd door lagen van 

bollen (dummy atoms). Om de subeenheden van het complex naar het “membraan” te brengen 

worden maximumafstanden (restraints) gebruikt tussen deze bollen en Cα atomen van de 

eiwitsubeenheden van het complex. Ik vergelijk de resultaten van deze runs, met vorm-

restraints, met runs waarbij een enkel massamiddelpunt-restraint tussen het 

transmembraangedeelte van de twee subeenheden is gebruikt. Verder werk zal nodig zijn om 

deze nieuwe aanpak te optimaliseren. 

Hoofdstukken 4 t/m 6 vormen de tweede helft van het proefschrift en gaan over eiwit-kleine 

molecuul docking. In Hoofdstuk 4 bespreek ik onze deelname aan een blind docking 

experiment – de 2016 editie van de Grand Challenge georganiseerd door het D3R consortium 

– waarvoor we 36 eiwit-ligand complexen moesten modelleren van de farmaceutisch-relevante 

Farnesoid X receptor. Ons kleine-molecuul dockingprotocol bestaat uit de volgende stappen: 

i) Identificatie van relevante eiwitreceptor templates in de PDB en het creëren van een 

ensemble van representatieve structuren na het clusteren van de templates, ii) creatie van een 

ligand ensemble na verschillende conformeren te hebben gegenereerd en geclusterd en iii) 

docking met gebruik van residuen geïdentificeerd in de receptor templates. Ondanks zeer goede 

resultaten in sommige gevallen was onze prestatie in het algemeen niet zo goed als die van 

andere deelnemers. We waren in staat de belangrijkste beperkende factor te identificeren, de 

selectie van receptor templates had namelijk te maken met conformatieveranderingen na het 

binden van de ligand. Door het ensemble-gedeelte van het protocol te vervangen met de selectie 

van een enkel template gebaseerd op de overeenkomst van de gebonden ligand met de te 

docken target-verbinding verbeterden de resultaten inderdaad. 

In het volgende hoofdstuk, Hoofdstuk 5, beschrijf ik onze deelname aan de Grand Challenge 

van het daaropvolgende jaar. Behalve dit keer één enkel receptor template te selecteren 

gebaseerd op ligand-overeenkomst herzien we ook de procedure voor selectie van de ligand 
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conformeer: conformaties worden geselecteerd op basis van de overeenkomst van hun 3D-

vorm met die van de gebonden ligand in het template. Ook gebruiken we de 

vormovereenkomsten om de geselecteerde conformeer in de binding pocket van de receptor te 

superimposeren, slaan de eerste fase van het dockingprotocol over en gaan direct over tot het 

verfijnen van de modellen door middel van het waterverfijning gedeelte van HADDOCK. Het 

gebruik van vorminformatie in ons protocol heeft een significante impact op het 

succespercentage: onze inzending (24 voorspelde eiwit-ligand complexen) kwam als een van 

de besten uit de evaluatie, binnen standaarddeviatie van de best-presterende deelnemer. 

Hoofdstuk 6 is de logische conclusie van het kleine-molecuul docking gedeelte van dit 

proefschrift. In dat hoofdstuk beschrijf ik een nieuw HADDOCK-protocol dat de 

vorminformatie gebruikt die in het voorgaande hoofdstuk als zeer relevant werd 

geïdentificeerd. Het innovatieve aspect van dit protocol is de manier waarop de vorm van de 

ligand wordt gerepresenteerd: door de zware atomen van het template te veranderen in bollen, 

zoals eerder beschreven voor de vertegenwoordiging van het membraan in Hoofdstuk 3. Net 

zoals in dat protocol worden hier restraints gedefinieerd tussen de bollen en de atomen van de 

ligand conformeren. Door dit soort vorm-restraints te gebruiken hoeven we niet van tevoren 

conformaties te selecteren, maar kunnen we alle 500 gebruiken en met verhoogde sampling 

HADDOCK de near-native conformaties laten selecteren. Dit protocol presteert beter dan dat 

beschreven in het voorgaande hoofdstuk. De vorm-restraints maken relatief grote 

conformatieveranderingen in de ligand mogelijk, om dichter bij de gebonden vorm te kunnen 

komen. Daarnaast, omdat we nu een volledige docking run uitvoeren, kunnen we aanvullende 

informatie in de simulatie integreren – iets dat niet mogelijk was met het vorige protocol dat 

slechts uit een verfijning bestond. 

In het laatste hoofdstuk, Hoofdstuk 7, vat ik de belangrijkste bevindingen van het proefschrift 

samen en geef ik kritisch commentaar op de uitdagingen waar het vakgebied voor staat, 

alsmede enkele mogelijke richtingen die de moeite waard zijn in de toekomst te exploreren. 

 

  

 

 

geheel uit α-helix en β-barrel transmembraancomplexen van verschillende 

moeilijkheidsgraden, variërend van gebonden complexen (gevallen waarin beide componenten 

uit de gebonden vorm van het complex komen) tot moeilijke, ongebonden gevallen met 

significante conformatieveranderingen in het interactieoppervlak. Met gebruik van deze dataset 

leggen we vast hoe HADDOCK presteert met dit type complexen. Naast de dataset zelf is ook 

een set decoys beschikbaar, bestaande uit HADDOCK-modellen die voortkomen uit het 

benchmarkingproces. 

Hoofdstuk 3 is het laatste hoofdstuk met betrekking tot het modelleren van 

membraanproteïnecomplexen. In dat hoofdstuk beschrijf ik een protocol voor HADDOCK, 

nog in ontwikkeling, waarin de lipide dubbellaag wordt vertegenwoordigd door lagen van 

bollen (dummy atoms). Om de subeenheden van het complex naar het “membraan” te brengen 

worden maximumafstanden (restraints) gebruikt tussen deze bollen en Cα atomen van de 

eiwitsubeenheden van het complex. Ik vergelijk de resultaten van deze runs, met vorm-

restraints, met runs waarbij een enkel massamiddelpunt-restraint tussen het 

transmembraangedeelte van de twee subeenheden is gebruikt. Verder werk zal nodig zijn om 

deze nieuwe aanpak te optimaliseren. 

Hoofdstukken 4 t/m 6 vormen de tweede helft van het proefschrift en gaan over eiwit-kleine 

molecuul docking. In Hoofdstuk 4 bespreek ik onze deelname aan een blind docking 

experiment – de 2016 editie van de Grand Challenge georganiseerd door het D3R consortium 

– waarvoor we 36 eiwit-ligand complexen moesten modelleren van de farmaceutisch-relevante 

Farnesoid X receptor. Ons kleine-molecuul dockingprotocol bestaat uit de volgende stappen: 

i) Identificatie van relevante eiwitreceptor templates in de PDB en het creëren van een 

ensemble van representatieve structuren na het clusteren van de templates, ii) creatie van een 

ligand ensemble na verschillende conformeren te hebben gegenereerd en geclusterd en iii) 

docking met gebruik van residuen geïdentificeerd in de receptor templates. Ondanks zeer goede 

resultaten in sommige gevallen was onze prestatie in het algemeen niet zo goed als die van 

andere deelnemers. We waren in staat de belangrijkste beperkende factor te identificeren, de 

selectie van receptor templates had namelijk te maken met conformatieveranderingen na het 

binden van de ligand. Door het ensemble-gedeelte van het protocol te vervangen met de selectie 

van een enkel template gebaseerd op de overeenkomst van de gebonden ligand met de te 

docken target-verbinding verbeterden de resultaten inderdaad. 

In het volgende hoofdstuk, Hoofdstuk 5, beschrijf ik onze deelname aan de Grand Challenge 

van het daaropvolgende jaar. Behalve dit keer één enkel receptor template te selecteren 

gebaseerd op ligand-overeenkomst herzien we ook de procedure voor selectie van de ligand 
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δυσκολίες, και συγκεκριμένα την δημιουργία μοριακών δομών οι οποίες να προσεγγίζουν τις 

φυσικές (sampling) καθώς και την αναγνώριση καλών (ή δομές οι οποίες να προσεγγίζουν τις 

φυσικές) και κακών μοντέλων (scoring). Μία άλλη δυσκολία είναι ο τρόπος με τον οποίο 

δεδομένα ενσωματώνονται στις προσομοιώσεις, ή η ανάγκη εξισορρόπησης αυτών των 

δεδομένων με τέτοιο τρόπο ώστε πολλαπλές πηγές δεδομένων να μπορούν να 

χρησιμοποιηθούν αποτελεσματικά στην ίδια προσομοίωση ενώ οι αρχικές πειραματικές 

αβεβαιότητες τηρούνται. Η παρούσα διατριβή εστιάζει σε δύο επιπλέον περιοχές 

ενδιαφέροντος: Την αγκυροβόληση διαμεμβρανικών πρωτεϊνικών συμπλεγμάτων και 

αγκυροβόληση πρωτεϊνών και μικρών μορίων. Και οι δύο παρουσιάζουν μεγάλο ενδιαφέρον, 

τόσο για ακαδημαϊκή όσο και φαρμακευτική έρευνα, καθώς οι διαμεμβρανικοί υποδοχείς 

αποτελούν τους περισσότερους φαρμακευτικούς στόχους και η πλειοψηφία των φαρμάκων τα 

οποία είναι σήμερα διαθέσιμα στην αγορά είναι μικρά μόρια. Στο πρώτο μισό της διατριβής η 

έμφαση είναι στην μοντελοποίηση διαμεμβρανικών πρωτεϊνών, ενώ στο δεύτερο στην 

μοντελοποίηση συμπλεγμάτων πρωτεϊνών και μικρών μορίων. Στο εισαγωγικό κεφάλαιο, 

παρέχω μία επισκόπηση της τρέχουσας κατάστασης του πεδίου της ολοκληρωτικής 

μοντελοποίησης, των τρόπων με τους οποίους δεδομένα από ποικίλες πειραματικές πηγές 

μπορούν να ενσωματωθούν σε υπολογιστικές μελέτες και πρόσφατων εξελίξεων σε 

συγκεκριμένες περιοχές ενδιαφέροντος. 

Η διατριβή ξεκινά με την Γενική Εισαγωγή η οποία εισαγάγει με ήπιο τρόπο μερικές από τις 

θεμελιώδεις ιδέες οι οποίες εξερευνώνται περαιτέρω στα υπόλοιπα κεφάλαια. Επίσης, 

εισαγάγει το θεματικό αντικείμενο του κάθε κεφαλαίου. Τα Κεφάλαια 1 έως και 6 απαρτίζουν 

το κύριο κομμάτι της διατριβής. 

Στο Κεφάλαιο 1, παρέχω μια επισκόπηση της τρέχουσας κατάστασης του πεδίου της 

ολοκληρωτικής μοντελοποίησης με ιδιαίτερη έμφαση στους τύπους δεδομένων που μπορούν 

να χρησιμοποιηθούν από υπολογιστικές μεθόδους όπως τα HADDOCK (High Ambiguity 

Driven DOCKing), ROSETTA ή IMP (Integrative Modelling Platform). Οι πειραματικές 

μέθοδοι οι οποίες αναλύονται ανήκουν σε μία από τρεις ευρείες κατηγορίες: Τεχνικές οι οποίες 

μας επιτρέπουν να προσδιορίσουμε την επιφάνεια αλληλεπίδρασης ανάμεσα σε βιομόρια, 

τεχνικές οι οποίες παρέχουν κάποιου είδους πληροφορία σχετικά με την απόσταση 

συγκεκριμένων αμινοξικών καταλοίπων και τεχνικές οι οποίες προσδιορίζουν το σχήμα των 

βιομορίων. Η μεταλλαξιγένεση (mutagenesis), η ανταλλαγή υδρογόνου-δευτέριου (Hydrogen-

deuterium exchange – HDX) και ο πυρηνικός μαγνητικός συντονισμός (όταν υπολογίζονται 

χημικές μετατοπίσεις [chemical shift perturbations] μετά από ογκομετρική ανάλυση [titration]) 

είναι οι τεχνικές οι οποίες μας επιτρέπουν να εντοπίσουμε την αλληλεπιδρούσα επιφάνεια 

 

 

Όλα τα κύτταρα, είτε είναι προκαρυωτικά είτε ευκαρυωτικά, αποτελούν καλά συντονισμένες 

βιοχημικές μηχανές. Με ευρείς όρους, η γενετική πληροφορία είναι κωδικοποιημένη στην 

νουκλεϊκή αλληλουχία και μεταφράζεται σε λειτουργικά ενεργά βιομόρια (πρωτεΐνες η άλλα 

νουκλεϊκά οξέα). Αυτά τα βιομόρια με την σειρά τους πραγματοποιούν την πληθώρα των 

λειτουργειών το κύτταρο χρειάζεται προκειμένου να διατηρήσει την ομοιοστατική του 

ισορροπία. Τα βιομόρια δεν υπάρχουν ούτε πραγματοποιούν τις λειτουργίες τους σε 

απομόνωση: Πάντα επιδρούν σε – η μαζί – με άλλα μόρια ανεξάρτητα από το αν είναι ένζυμα 

που καταλύουν κάποια χημική αντίδραση η οποία περιλαμβάνει το υπόστρωμα τους, κάποια 

πρωτεΐνη η οποία ενεργοποιεί άλλες πρωτεΐνες η μία μεγάλη ομάδα βιομορίων τα οποία 

συσχετίζονται προκειμένου να δημιουργήσουν μια μεγάλη μακρομοριακή μηχανή όπως το 

ριβόσωμα. Η κατανόηση των μοριακών μηχανισμών απαιτεί κατανόηση της σύστασης και 

λειτουργίας αυτών των βιομοριακών συμπλόκων. Για τους περισσότερους τύπους συμπλόκων, 

η πλήρης κατανόηση της λειτουργίας τους απαιτεί υψηλής ποιότητας δομές η μοντέλα του 

συμπλόκου. 

Παραδοσιακές τεχνικές δομικής βιολογίας όπως η κρυσταλλογραφία ακτίνων Χ (X-ray 

crystallography), ο πυρηνικός μαγνητικός συντονισμός (NMR) και η κρυο-ηλεκτρονική 

μικροσκοπία (cryo-EM) έχουν χρησιμοποιηθεί για τον προσδιορισμό των δομών χιλιάδων 

βιομορίων και βιομοριακών συμπλόκων. Μέχρι τον Οκτώβριο του 2019, η πρωτεϊνική βάση 

δεδομένων (PDB – Protein Data Bank), η δημόσια βάση δεδομένων μοριακών δομών, 

αριθμούσε περισσότερες από 156.000 καταχωρήσεις. Ωστόσο, ο αριθμός των μοναδικών 

καταχωρήσεων και ο αριθμός των δομών που αντιπροσωπεύουν μοριακά σύμπλοκα αποτελούν 

ένα κλάσμα του συνολικού αριθμού (περίπου 6.000-7.000 μοναδικά, βιολογικά ενεργά 

σύμπλοκα). Με τις εκτιμήσεις για τον αριθμό των αλληλεπιδράσεων ανάμεσα σε πρωτεΐνες 

στο κυτταρικό περιβάλλον να αγγίζουν τις εκατοντάδες χιλιάδες, εύκολα προκύπτει η μεγάλη 

ανακολουθία ανάμεσα στον αριθμό των βιομοριακών συμπλόκων με διαθέσιμες μοριακές 

δομές και τον συνολικό αριθμό συμπλόκων που έχουν διαπιστωθεί σε υψηλής διακίνησης 

(high-throughput) μελέτες του «αλληλεπιδρώματος» (interactome). Πέρα από τις πειραματικές 

τεχνικές που αναφέρθηκαν παραπάνω, ένας εναλλακτικός τρόπος προσδιορισμού μοριακών 

δομών, βήμα απαραίτητο για την κατανόηση των μοριακών μηχανισμών, είναι ο υπολογιστικές 

προσεγγίσεις (computational modelling). 

Το πεδίο των υπολογιστικών προσεγγίσεων το οποίο ασχολείται με βιομοριακά συμπλέγματα, 

το οποίο είναι το αντικείμενο αυτής της διατριβής, είναι η ολοκληρωτική μοντελοποίηση 

(integrative modelling) και συγκεκριμένα η μοριακή αγκυροβόληση (biomolecular docking). 

Όπως και όλα τα πεδία της υπολογιστικής προσομοίωσης, μοιράζονται μερικές από τις ίδιες 
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δυσκολίες, και συγκεκριμένα την δημιουργία μοριακών δομών οι οποίες να προσεγγίζουν τις 

φυσικές (sampling) καθώς και την αναγνώριση καλών (ή δομές οι οποίες να προσεγγίζουν τις 

φυσικές) και κακών μοντέλων (scoring). Μία άλλη δυσκολία είναι ο τρόπος με τον οποίο 

δεδομένα ενσωματώνονται στις προσομοιώσεις, ή η ανάγκη εξισορρόπησης αυτών των 

δεδομένων με τέτοιο τρόπο ώστε πολλαπλές πηγές δεδομένων να μπορούν να 

χρησιμοποιηθούν αποτελεσματικά στην ίδια προσομοίωση ενώ οι αρχικές πειραματικές 

αβεβαιότητες τηρούνται. Η παρούσα διατριβή εστιάζει σε δύο επιπλέον περιοχές 

ενδιαφέροντος: Την αγκυροβόληση διαμεμβρανικών πρωτεϊνικών συμπλεγμάτων και 

αγκυροβόληση πρωτεϊνών και μικρών μορίων. Και οι δύο παρουσιάζουν μεγάλο ενδιαφέρον, 

τόσο για ακαδημαϊκή όσο και φαρμακευτική έρευνα, καθώς οι διαμεμβρανικοί υποδοχείς 

αποτελούν τους περισσότερους φαρμακευτικούς στόχους και η πλειοψηφία των φαρμάκων τα 

οποία είναι σήμερα διαθέσιμα στην αγορά είναι μικρά μόρια. Στο πρώτο μισό της διατριβής η 

έμφαση είναι στην μοντελοποίηση διαμεμβρανικών πρωτεϊνών, ενώ στο δεύτερο στην 

μοντελοποίηση συμπλεγμάτων πρωτεϊνών και μικρών μορίων. Στο εισαγωγικό κεφάλαιο, 

παρέχω μία επισκόπηση της τρέχουσας κατάστασης του πεδίου της ολοκληρωτικής 

μοντελοποίησης, των τρόπων με τους οποίους δεδομένα από ποικίλες πειραματικές πηγές 

μπορούν να ενσωματωθούν σε υπολογιστικές μελέτες και πρόσφατων εξελίξεων σε 

συγκεκριμένες περιοχές ενδιαφέροντος. 

Η διατριβή ξεκινά με την Γενική Εισαγωγή η οποία εισαγάγει με ήπιο τρόπο μερικές από τις 

θεμελιώδεις ιδέες οι οποίες εξερευνώνται περαιτέρω στα υπόλοιπα κεφάλαια. Επίσης, 

εισαγάγει το θεματικό αντικείμενο του κάθε κεφαλαίου. Τα Κεφάλαια 1 έως και 6 απαρτίζουν 

το κύριο κομμάτι της διατριβής. 

Στο Κεφάλαιο 1, παρέχω μια επισκόπηση της τρέχουσας κατάστασης του πεδίου της 

ολοκληρωτικής μοντελοποίησης με ιδιαίτερη έμφαση στους τύπους δεδομένων που μπορούν 

να χρησιμοποιηθούν από υπολογιστικές μεθόδους όπως τα HADDOCK (High Ambiguity 

Driven DOCKing), ROSETTA ή IMP (Integrative Modelling Platform). Οι πειραματικές 

μέθοδοι οι οποίες αναλύονται ανήκουν σε μία από τρεις ευρείες κατηγορίες: Τεχνικές οι οποίες 

μας επιτρέπουν να προσδιορίσουμε την επιφάνεια αλληλεπίδρασης ανάμεσα σε βιομόρια, 

τεχνικές οι οποίες παρέχουν κάποιου είδους πληροφορία σχετικά με την απόσταση 

συγκεκριμένων αμινοξικών καταλοίπων και τεχνικές οι οποίες προσδιορίζουν το σχήμα των 

βιομορίων. Η μεταλλαξιγένεση (mutagenesis), η ανταλλαγή υδρογόνου-δευτέριου (Hydrogen-

deuterium exchange – HDX) και ο πυρηνικός μαγνητικός συντονισμός (όταν υπολογίζονται 

χημικές μετατοπίσεις [chemical shift perturbations] μετά από ογκομετρική ανάλυση [titration]) 

είναι οι τεχνικές οι οποίες μας επιτρέπουν να εντοπίσουμε την αλληλεπιδρούσα επιφάνεια 

 

 

Όλα τα κύτταρα, είτε είναι προκαρυωτικά είτε ευκαρυωτικά, αποτελούν καλά συντονισμένες 

βιοχημικές μηχανές. Με ευρείς όρους, η γενετική πληροφορία είναι κωδικοποιημένη στην 

νουκλεϊκή αλληλουχία και μεταφράζεται σε λειτουργικά ενεργά βιομόρια (πρωτεΐνες η άλλα 

νουκλεϊκά οξέα). Αυτά τα βιομόρια με την σειρά τους πραγματοποιούν την πληθώρα των 

λειτουργειών το κύτταρο χρειάζεται προκειμένου να διατηρήσει την ομοιοστατική του 

ισορροπία. Τα βιομόρια δεν υπάρχουν ούτε πραγματοποιούν τις λειτουργίες τους σε 

απομόνωση: Πάντα επιδρούν σε – η μαζί – με άλλα μόρια ανεξάρτητα από το αν είναι ένζυμα 

που καταλύουν κάποια χημική αντίδραση η οποία περιλαμβάνει το υπόστρωμα τους, κάποια 

πρωτεΐνη η οποία ενεργοποιεί άλλες πρωτεΐνες η μία μεγάλη ομάδα βιομορίων τα οποία 

συσχετίζονται προκειμένου να δημιουργήσουν μια μεγάλη μακρομοριακή μηχανή όπως το 

ριβόσωμα. Η κατανόηση των μοριακών μηχανισμών απαιτεί κατανόηση της σύστασης και 

λειτουργίας αυτών των βιομοριακών συμπλόκων. Για τους περισσότερους τύπους συμπλόκων, 

η πλήρης κατανόηση της λειτουργίας τους απαιτεί υψηλής ποιότητας δομές η μοντέλα του 

συμπλόκου. 

Παραδοσιακές τεχνικές δομικής βιολογίας όπως η κρυσταλλογραφία ακτίνων Χ (X-ray 

crystallography), ο πυρηνικός μαγνητικός συντονισμός (NMR) και η κρυο-ηλεκτρονική 

μικροσκοπία (cryo-EM) έχουν χρησιμοποιηθεί για τον προσδιορισμό των δομών χιλιάδων 

βιομορίων και βιομοριακών συμπλόκων. Μέχρι τον Οκτώβριο του 2019, η πρωτεϊνική βάση 

δεδομένων (PDB – Protein Data Bank), η δημόσια βάση δεδομένων μοριακών δομών, 

αριθμούσε περισσότερες από 156.000 καταχωρήσεις. Ωστόσο, ο αριθμός των μοναδικών 

καταχωρήσεων και ο αριθμός των δομών που αντιπροσωπεύουν μοριακά σύμπλοκα αποτελούν 

ένα κλάσμα του συνολικού αριθμού (περίπου 6.000-7.000 μοναδικά, βιολογικά ενεργά 

σύμπλοκα). Με τις εκτιμήσεις για τον αριθμό των αλληλεπιδράσεων ανάμεσα σε πρωτεΐνες 

στο κυτταρικό περιβάλλον να αγγίζουν τις εκατοντάδες χιλιάδες, εύκολα προκύπτει η μεγάλη 

ανακολουθία ανάμεσα στον αριθμό των βιομοριακών συμπλόκων με διαθέσιμες μοριακές 

δομές και τον συνολικό αριθμό συμπλόκων που έχουν διαπιστωθεί σε υψηλής διακίνησης 

(high-throughput) μελέτες του «αλληλεπιδρώματος» (interactome). Πέρα από τις πειραματικές 

τεχνικές που αναφέρθηκαν παραπάνω, ένας εναλλακτικός τρόπος προσδιορισμού μοριακών 

δομών, βήμα απαραίτητο για την κατανόηση των μοριακών μηχανισμών, είναι ο υπολογιστικές 

προσεγγίσεις (computational modelling). 

Το πεδίο των υπολογιστικών προσεγγίσεων το οποίο ασχολείται με βιομοριακά συμπλέγματα, 

το οποίο είναι το αντικείμενο αυτής της διατριβής, είναι η ολοκληρωτική μοντελοποίηση 

(integrative modelling) και συγκεκριμένα η μοριακή αγκυροβόληση (biomolecular docking). 

Όπως και όλα τα πεδία της υπολογιστικής προσομοίωσης, μοιράζονται μερικές από τις ίδιες 
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δυσκολίες, και συγκεκριμένα την δημιουργία μοριακών δομών οι οποίες να προσεγγίζουν τις 

φυσικές (sampling) καθώς και την αναγνώριση καλών (ή δομές οι οποίες να προσεγγίζουν τις 

φυσικές) και κακών μοντέλων (scoring). Μία άλλη δυσκολία είναι ο τρόπος με τον οποίο 

δεδομένα ενσωματώνονται στις προσομοιώσεις, ή η ανάγκη εξισορρόπησης αυτών των 

δεδομένων με τέτοιο τρόπο ώστε πολλαπλές πηγές δεδομένων να μπορούν να 

χρησιμοποιηθούν αποτελεσματικά στην ίδια προσομοίωση ενώ οι αρχικές πειραματικές 

αβεβαιότητες τηρούνται. Η παρούσα διατριβή εστιάζει σε δύο επιπλέον περιοχές 

ενδιαφέροντος: Την αγκυροβόληση διαμεμβρανικών πρωτεϊνικών συμπλεγμάτων και 

αγκυροβόληση πρωτεϊνών και μικρών μορίων. Και οι δύο παρουσιάζουν μεγάλο ενδιαφέρον, 

τόσο για ακαδημαϊκή όσο και φαρμακευτική έρευνα, καθώς οι διαμεμβρανικοί υποδοχείς 

αποτελούν τους περισσότερους φαρμακευτικούς στόχους και η πλειοψηφία των φαρμάκων τα 

οποία είναι σήμερα διαθέσιμα στην αγορά είναι μικρά μόρια. Στο πρώτο μισό της διατριβής η 

έμφαση είναι στην μοντελοποίηση διαμεμβρανικών πρωτεϊνών, ενώ στο δεύτερο στην 

μοντελοποίηση συμπλεγμάτων πρωτεϊνών και μικρών μορίων. Στο εισαγωγικό κεφάλαιο, 

παρέχω μία επισκόπηση της τρέχουσας κατάστασης του πεδίου της ολοκληρωτικής 

μοντελοποίησης, των τρόπων με τους οποίους δεδομένα από ποικίλες πειραματικές πηγές 

μπορούν να ενσωματωθούν σε υπολογιστικές μελέτες και πρόσφατων εξελίξεων σε 

συγκεκριμένες περιοχές ενδιαφέροντος. 

Η διατριβή ξεκινά με την Γενική Εισαγωγή η οποία εισαγάγει με ήπιο τρόπο μερικές από τις 

θεμελιώδεις ιδέες οι οποίες εξερευνώνται περαιτέρω στα υπόλοιπα κεφάλαια. Επίσης, 

εισαγάγει το θεματικό αντικείμενο του κάθε κεφαλαίου. Τα Κεφάλαια 1 έως και 6 απαρτίζουν 

το κύριο κομμάτι της διατριβής. 

Στο Κεφάλαιο 1, παρέχω μια επισκόπηση της τρέχουσας κατάστασης του πεδίου της 

ολοκληρωτικής μοντελοποίησης με ιδιαίτερη έμφαση στους τύπους δεδομένων που μπορούν 

να χρησιμοποιηθούν από υπολογιστικές μεθόδους όπως τα HADDOCK (High Ambiguity 

Driven DOCKing), ROSETTA ή IMP (Integrative Modelling Platform). Οι πειραματικές 

μέθοδοι οι οποίες αναλύονται ανήκουν σε μία από τρεις ευρείες κατηγορίες: Τεχνικές οι οποίες 

μας επιτρέπουν να προσδιορίσουμε την επιφάνεια αλληλεπίδρασης ανάμεσα σε βιομόρια, 

τεχνικές οι οποίες παρέχουν κάποιου είδους πληροφορία σχετικά με την απόσταση 

συγκεκριμένων αμινοξικών καταλοίπων και τεχνικές οι οποίες προσδιορίζουν το σχήμα των 

βιομορίων. Η μεταλλαξιγένεση (mutagenesis), η ανταλλαγή υδρογόνου-δευτέριου (Hydrogen-

deuterium exchange – HDX) και ο πυρηνικός μαγνητικός συντονισμός (όταν υπολογίζονται 

χημικές μετατοπίσεις [chemical shift perturbations] μετά από ογκομετρική ανάλυση [titration]) 

είναι οι τεχνικές οι οποίες μας επιτρέπουν να εντοπίσουμε την αλληλεπιδρούσα επιφάνεια 

 

 

Όλα τα κύτταρα, είτε είναι προκαρυωτικά είτε ευκαρυωτικά, αποτελούν καλά συντονισμένες 

βιοχημικές μηχανές. Με ευρείς όρους, η γενετική πληροφορία είναι κωδικοποιημένη στην 

νουκλεϊκή αλληλουχία και μεταφράζεται σε λειτουργικά ενεργά βιομόρια (πρωτεΐνες η άλλα 

νουκλεϊκά οξέα). Αυτά τα βιομόρια με την σειρά τους πραγματοποιούν την πληθώρα των 

λειτουργειών το κύτταρο χρειάζεται προκειμένου να διατηρήσει την ομοιοστατική του 

ισορροπία. Τα βιομόρια δεν υπάρχουν ούτε πραγματοποιούν τις λειτουργίες τους σε 

απομόνωση: Πάντα επιδρούν σε – η μαζί – με άλλα μόρια ανεξάρτητα από το αν είναι ένζυμα 

που καταλύουν κάποια χημική αντίδραση η οποία περιλαμβάνει το υπόστρωμα τους, κάποια 

πρωτεΐνη η οποία ενεργοποιεί άλλες πρωτεΐνες η μία μεγάλη ομάδα βιομορίων τα οποία 

συσχετίζονται προκειμένου να δημιουργήσουν μια μεγάλη μακρομοριακή μηχανή όπως το 

ριβόσωμα. Η κατανόηση των μοριακών μηχανισμών απαιτεί κατανόηση της σύστασης και 

λειτουργίας αυτών των βιομοριακών συμπλόκων. Για τους περισσότερους τύπους συμπλόκων, 

η πλήρης κατανόηση της λειτουργίας τους απαιτεί υψηλής ποιότητας δομές η μοντέλα του 

συμπλόκου. 

Παραδοσιακές τεχνικές δομικής βιολογίας όπως η κρυσταλλογραφία ακτίνων Χ (X-ray 

crystallography), ο πυρηνικός μαγνητικός συντονισμός (NMR) και η κρυο-ηλεκτρονική 

μικροσκοπία (cryo-EM) έχουν χρησιμοποιηθεί για τον προσδιορισμό των δομών χιλιάδων 

βιομορίων και βιομοριακών συμπλόκων. Μέχρι τον Οκτώβριο του 2019, η πρωτεϊνική βάση 

δεδομένων (PDB – Protein Data Bank), η δημόσια βάση δεδομένων μοριακών δομών, 

αριθμούσε περισσότερες από 156.000 καταχωρήσεις. Ωστόσο, ο αριθμός των μοναδικών 

καταχωρήσεων και ο αριθμός των δομών που αντιπροσωπεύουν μοριακά σύμπλοκα αποτελούν 

ένα κλάσμα του συνολικού αριθμού (περίπου 6.000-7.000 μοναδικά, βιολογικά ενεργά 

σύμπλοκα). Με τις εκτιμήσεις για τον αριθμό των αλληλεπιδράσεων ανάμεσα σε πρωτεΐνες 

στο κυτταρικό περιβάλλον να αγγίζουν τις εκατοντάδες χιλιάδες, εύκολα προκύπτει η μεγάλη 

ανακολουθία ανάμεσα στον αριθμό των βιομοριακών συμπλόκων με διαθέσιμες μοριακές 

δομές και τον συνολικό αριθμό συμπλόκων που έχουν διαπιστωθεί σε υψηλής διακίνησης 

(high-throughput) μελέτες του «αλληλεπιδρώματος» (interactome). Πέρα από τις πειραματικές 

τεχνικές που αναφέρθηκαν παραπάνω, ένας εναλλακτικός τρόπος προσδιορισμού μοριακών 

δομών, βήμα απαραίτητο για την κατανόηση των μοριακών μηχανισμών, είναι ο υπολογιστικές 

προσεγγίσεις (computational modelling). 

Το πεδίο των υπολογιστικών προσεγγίσεων το οποίο ασχολείται με βιομοριακά συμπλέγματα, 

το οποίο είναι το αντικείμενο αυτής της διατριβής, είναι η ολοκληρωτική μοντελοποίηση 

(integrative modelling) και συγκεκριμένα η μοριακή αγκυροβόληση (biomolecular docking). 

Όπως και όλα τα πεδία της υπολογιστικής προσομοίωσης, μοιράζονται μερικές από τις ίδιες 
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προσδοκιών συγκριτικά με την απλή μέθοδο η οποία χρησιμοποιεί μόνο τον ένα απλό 

περιορισμό ανάμεσα στις δύο υπομονάδες και θα χρειαστούν επιπλέον δοκιμές προκειμένου 

να οριστικοποιηθεί. 

Τα Κεφάλαια 4 ως και 6 αποτελούν το δεύτερο μισό της διατριβής και περιστρέφονται γύρω 

από την μοριακή αγκυροβόληση πρωτεϊνών και μικρών μορίων. Στο Κεφάλαιο 4, συζητώ την 

συμμετοχή μας σε ένα τυφλό πείραμα – το Grand Challenge που οργανώθηκε το 2016 από την 

ομάδα D3R ( Drug Design Data Resource) και στο οποίο ο στόχος ήταν η πρόβλεψη της δομής 

36 συμπλόκων πρωτεϊνών-μικρών μορίων για τον φαρμακευτικού ενδιαφέροντος υποδοχέα 

Farnesoid X. Το πρωτόκολλο μας απαρτιζόταν από τα ακόλουθα στάδια: i) Εντοπισμός 

σχετικών πρωτεϊνικών δομών στην PDB και δημιουργία ενός σετ αντιπροσωπευτικών δομών 

μετά από ανάλυση, ii) δημιουργία ενός σετ για τα μικρά μόρια ακολουθώντας παρόμοια 

ανάλυση και iii) μοριακή αγκυροβόληση χρησιμοποιώντας κατάλοιπα τα οποία 

αναγνωρίστηκαν στο στάδιο (i). Παρά τα εξαιρετικά αποτελέσματα για μερικές περιπτώσεις, 

η συνολική μας απόδοση δεν ήταν ιδιαίτερα καλή σε σχέση με τους υπόλοιπους 

συμμετέχοντες. Ο κύριος παράγοντας ο οποίος επηρέασε αρνητικά την απόδοση μας ήταν το 

πρωτόκολλο επιλογής πρωτεϊνικών υποδοχέων πριν την μοριακή αγκυροβόληση. 

Αντικαθιστώντας αυτό το κομμάτι του πρωτοκόλλου με την επιλογή ενός υποδοχέα με βάση 

την ομοιότητα ανάμεσα στο προσδεδεμένο του μικρό μόριο και τα μικρά μόρια ενδιαφέροντος 

η διαδικασία της μοριακής αγκυροβόλησης οδήγησε σε καλύτερα αποτελέσματα. 

Στο ακόλουθο κεφάλαιο – το Κεφάλαιο 5 – περιγράφω την συμμετοχή μας στο τυφλό πείραμα 

το οποίο διοργανώθηκε για την χρονιά 2017. Πέρα από την επιλογή ενός μόνο υποδοχέα με 

βάση την ομοιότητα των μικρών μορίων, βελτιώσαμε την διαδικασία επιλογής δομών μικρών 

μορίων πριν την μοριακή αγκυροβόληση: Οι δομές μικρών μορίων επιλέχθηκαν με βάση την 

ομοιότητα του σχήματος του με το σχήμα του προσδεδεμένου μικρού μορίου σε κάθε 

υποδοχέα. Επίσης χρησιμοποιήσαμε την σχηματική ομοιότητα για να τοποθετήσουμε τις 

επιλεγμένες δομές στην περιοχή πρόσδεσης του υποδοχέα, υπερπηδώντας το πρώτο στάδιο της 

μοριακής αγκυροβόλησης και χρησιμοποιώντας το τελευταίο στάδιο του HADDOCK το οποίο 

απλά βελτιώνει τις δομές. Η ενσωμάτωση των σχηματικών δεδομένων στο πρωτόκολλο μας 

έχει ξεκάθαρη επιρροή στην απόδοσή του: Η πρόβλεψη μας (24 σύμπλοκα πρωτεϊνών-μικρών 

μορίων) αξιολογήθηκε ως μία από τις καλύτερες και εντός τυπικής απόκλισης από την 

κορυφαία. 

Το Κεφάλαιο 6 αντιπροσωπεύει την λογική κατάληξη του κομματιού της διατριβής το οποίο 

ασχολείται με την μοριακή αγκυροβόληση μικρών μορίων. Σε αυτό το κεφάλαιο περιγράφω 

ένα καινούριο πρωτόκολλο για το HADDOCK το οποίο χρησιμοποιεί σχηματικά δεδομένα, τα 

 

 

βιομορίων, η χημική διασύνδεση (chemical crosslinking), η μεταβίβαση ενεργειακού 

συντονισμού Förster (FRET) και ο διπλός συντονισμός ηλεκτρονίων-ηλεκτρονίων (DEER) 

μας επιτρέπουν να υπολογίσουμε αποστάσεις ανάμεσα σε αμινοξικά κατάλοιπα και τέλος η 

κρυο-ηλεκτρονική μικροσκοπία και η σκέδαση ακτίνων Χ μικρών γωνιών (SAXS) είναι οι 

τεχνικές μέσω των οποίων μπορούμε να αποκτήσουμε πληροφορίες για το σχήμα βιομορίων. 

Αναλύω την σχετικότητα όλων των προαναφερθέντων τεχνικών για το πεδίο της 

ολοκληρωτικής μοντελοποίησης και παραθέτω παραδείγματα εφαρμογών τους σε περιπτώσεις 

μοντελοποίησης ενδιαφέροντών ή προκλητικών συστημάτων. Ένα επιπλέον εστιακό σημείο 

αυτού του κεφαλαίου είναι η επισκόπηση κάποιων υπολογιστικών μεθόδων οι οποίες έχουν 

σημειώσει σημαντική πρόοδο πρόσφατα, και συγκεκριμένα γύρω από την χρήση εξελικτικών 

δεδομένων με τη μορφή πληροφοριών συνεξέλιξης (coevolution), εξελίξεις οι οποίες 

σχετίζονται με την μοντελοποίηση μεμβρανικών πρωτεϊνών και εφαρμογές αδρών (coarse-

grained) πεδίων ισχύος (force fields). 

Στο Κεφάλαιο 2, περιγράφω ένα πρόσφατα δημοσιευμένο σετ δεδομένων το οποίο 

απαρτίζεται εξ ολοκλήρου από σύμπλοκα μεμβρανικών πρωτεϊνών. Είναι το πρώτο, και από 

όσο γνωρίζω, μοναδικό του είδους του και με αυτόν τον τρόπο παρέχει ένα στοιχείο κομβικής 

σημασίας για περαιτέρω εξέλιξη αλγορίθμων μοριακής αγκυροβόλησης μεμβρανικών 

πρωτεϊνών. Αυτό το σετ το οποίο απαρτίζεται από μοναδικά (μη επαναλαμβανόμενα) 

σύμπλοκα αποτελείται εξ ολοκλήρου από διαμεμβρανικά σύμπλοκα α-ελίκων και β-βαρελιών, 

και καλύπτει μία ευρεία γκάμα δυσκολίας, από σύμπλοκα στην προσδεδεμένη τους κατάσταση 

(περιπτώσεις στις οποίες και τα δύο αλληλεπιδρώντα μόρια έχουν απομονωθεί από το 

σύμπλοκο αναφοράς) μέχρι σύμπλοκα υψηλής δυσκολίας, μη προσδεδεμένες περιπτώσεις με 

σημαντικές αλλαγές στην αλληλεπιδρώσα επιφάνεια. Με βάση αυτό το σετ, προσδιορίσαμε 

την απόδοση του HADDOCK για σύμπλοκα τέτοιου τύπου. Πέρα από το σετ, προσφέρουμε 

επίσης όλα τα μοντέλα τα οποία δημιουργήθηκαν με το HADDOCK κατά την διάρκεια της 

διαδικασίας αυτής. 

Το Κεφάλαιο 3 είναι το τελευταίο το οποίο αφορά μοντελοποίηση μεμβρανικών πρωτεϊνών. 

Σε αυτό το κεφάλαιο περιγράφω ένα πρωτόκολλο για το HADDOCK, το οποίο είναι ακόμα 

υπό βελτίωση, το οποίο αναπαριστά την κυτταρική μεμβράνη με ένα σχήμα το οποίο 

αποτελείται από στρώματα από σφαίρες. Ορίζουμε περιορισμούς ανάμεσα στις σφαίρες αυτές 

και τους Cα άνθρακες των υπομονάδων του συμπλόκου ώστε να τις οδηγήσουμε στην 

«μεμβράνη». Συγκρίνω την απόδοση αυτού του πρωτοκόλλου με ένα στο οποίο 

χρησιμοποιούμε μόνο έναν περιορισμό ανάμεσα στο κέντρο βάρους των διαμεμβρανικών 

τμημάτων των δύο υπομονάδων. Η απόδοση του πρωτοκόλλου είναι χαμηλότερη των 
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προσδοκιών συγκριτικά με την απλή μέθοδο η οποία χρησιμοποιεί μόνο τον ένα απλό 

περιορισμό ανάμεσα στις δύο υπομονάδες και θα χρειαστούν επιπλέον δοκιμές προκειμένου 

να οριστικοποιηθεί. 

Τα Κεφάλαια 4 ως και 6 αποτελούν το δεύτερο μισό της διατριβής και περιστρέφονται γύρω 

από την μοριακή αγκυροβόληση πρωτεϊνών και μικρών μορίων. Στο Κεφάλαιο 4, συζητώ την 

συμμετοχή μας σε ένα τυφλό πείραμα – το Grand Challenge που οργανώθηκε το 2016 από την 

ομάδα D3R ( Drug Design Data Resource) και στο οποίο ο στόχος ήταν η πρόβλεψη της δομής 

36 συμπλόκων πρωτεϊνών-μικρών μορίων για τον φαρμακευτικού ενδιαφέροντος υποδοχέα 

Farnesoid X. Το πρωτόκολλο μας απαρτιζόταν από τα ακόλουθα στάδια: i) Εντοπισμός 

σχετικών πρωτεϊνικών δομών στην PDB και δημιουργία ενός σετ αντιπροσωπευτικών δομών 

μετά από ανάλυση, ii) δημιουργία ενός σετ για τα μικρά μόρια ακολουθώντας παρόμοια 

ανάλυση και iii) μοριακή αγκυροβόληση χρησιμοποιώντας κατάλοιπα τα οποία 

αναγνωρίστηκαν στο στάδιο (i). Παρά τα εξαιρετικά αποτελέσματα για μερικές περιπτώσεις, 

η συνολική μας απόδοση δεν ήταν ιδιαίτερα καλή σε σχέση με τους υπόλοιπους 

συμμετέχοντες. Ο κύριος παράγοντας ο οποίος επηρέασε αρνητικά την απόδοση μας ήταν το 

πρωτόκολλο επιλογής πρωτεϊνικών υποδοχέων πριν την μοριακή αγκυροβόληση. 

Αντικαθιστώντας αυτό το κομμάτι του πρωτοκόλλου με την επιλογή ενός υποδοχέα με βάση 

την ομοιότητα ανάμεσα στο προσδεδεμένο του μικρό μόριο και τα μικρά μόρια ενδιαφέροντος 

η διαδικασία της μοριακής αγκυροβόλησης οδήγησε σε καλύτερα αποτελέσματα. 

Στο ακόλουθο κεφάλαιο – το Κεφάλαιο 5 – περιγράφω την συμμετοχή μας στο τυφλό πείραμα 

το οποίο διοργανώθηκε για την χρονιά 2017. Πέρα από την επιλογή ενός μόνο υποδοχέα με 

βάση την ομοιότητα των μικρών μορίων, βελτιώσαμε την διαδικασία επιλογής δομών μικρών 

μορίων πριν την μοριακή αγκυροβόληση: Οι δομές μικρών μορίων επιλέχθηκαν με βάση την 

ομοιότητα του σχήματος του με το σχήμα του προσδεδεμένου μικρού μορίου σε κάθε 

υποδοχέα. Επίσης χρησιμοποιήσαμε την σχηματική ομοιότητα για να τοποθετήσουμε τις 

επιλεγμένες δομές στην περιοχή πρόσδεσης του υποδοχέα, υπερπηδώντας το πρώτο στάδιο της 

μοριακής αγκυροβόλησης και χρησιμοποιώντας το τελευταίο στάδιο του HADDOCK το οποίο 

απλά βελτιώνει τις δομές. Η ενσωμάτωση των σχηματικών δεδομένων στο πρωτόκολλο μας 

έχει ξεκάθαρη επιρροή στην απόδοσή του: Η πρόβλεψη μας (24 σύμπλοκα πρωτεϊνών-μικρών 

μορίων) αξιολογήθηκε ως μία από τις καλύτερες και εντός τυπικής απόκλισης από την 

κορυφαία. 

Το Κεφάλαιο 6 αντιπροσωπεύει την λογική κατάληξη του κομματιού της διατριβής το οποίο 

ασχολείται με την μοριακή αγκυροβόληση μικρών μορίων. Σε αυτό το κεφάλαιο περιγράφω 

ένα καινούριο πρωτόκολλο για το HADDOCK το οποίο χρησιμοποιεί σχηματικά δεδομένα, τα 

 

 

βιομορίων, η χημική διασύνδεση (chemical crosslinking), η μεταβίβαση ενεργειακού 

συντονισμού Förster (FRET) και ο διπλός συντονισμός ηλεκτρονίων-ηλεκτρονίων (DEER) 

μας επιτρέπουν να υπολογίσουμε αποστάσεις ανάμεσα σε αμινοξικά κατάλοιπα και τέλος η 

κρυο-ηλεκτρονική μικροσκοπία και η σκέδαση ακτίνων Χ μικρών γωνιών (SAXS) είναι οι 

τεχνικές μέσω των οποίων μπορούμε να αποκτήσουμε πληροφορίες για το σχήμα βιομορίων. 

Αναλύω την σχετικότητα όλων των προαναφερθέντων τεχνικών για το πεδίο της 

ολοκληρωτικής μοντελοποίησης και παραθέτω παραδείγματα εφαρμογών τους σε περιπτώσεις 

μοντελοποίησης ενδιαφέροντών ή προκλητικών συστημάτων. Ένα επιπλέον εστιακό σημείο 

αυτού του κεφαλαίου είναι η επισκόπηση κάποιων υπολογιστικών μεθόδων οι οποίες έχουν 

σημειώσει σημαντική πρόοδο πρόσφατα, και συγκεκριμένα γύρω από την χρήση εξελικτικών 

δεδομένων με τη μορφή πληροφοριών συνεξέλιξης (coevolution), εξελίξεις οι οποίες 

σχετίζονται με την μοντελοποίηση μεμβρανικών πρωτεϊνών και εφαρμογές αδρών (coarse-

grained) πεδίων ισχύος (force fields). 

Στο Κεφάλαιο 2, περιγράφω ένα πρόσφατα δημοσιευμένο σετ δεδομένων το οποίο 

απαρτίζεται εξ ολοκλήρου από σύμπλοκα μεμβρανικών πρωτεϊνών. Είναι το πρώτο, και από 

όσο γνωρίζω, μοναδικό του είδους του και με αυτόν τον τρόπο παρέχει ένα στοιχείο κομβικής 

σημασίας για περαιτέρω εξέλιξη αλγορίθμων μοριακής αγκυροβόλησης μεμβρανικών 

πρωτεϊνών. Αυτό το σετ το οποίο απαρτίζεται από μοναδικά (μη επαναλαμβανόμενα) 

σύμπλοκα αποτελείται εξ ολοκλήρου από διαμεμβρανικά σύμπλοκα α-ελίκων και β-βαρελιών, 

και καλύπτει μία ευρεία γκάμα δυσκολίας, από σύμπλοκα στην προσδεδεμένη τους κατάσταση 

(περιπτώσεις στις οποίες και τα δύο αλληλεπιδρώντα μόρια έχουν απομονωθεί από το 

σύμπλοκο αναφοράς) μέχρι σύμπλοκα υψηλής δυσκολίας, μη προσδεδεμένες περιπτώσεις με 

σημαντικές αλλαγές στην αλληλεπιδρώσα επιφάνεια. Με βάση αυτό το σετ, προσδιορίσαμε 

την απόδοση του HADDOCK για σύμπλοκα τέτοιου τύπου. Πέρα από το σετ, προσφέρουμε 

επίσης όλα τα μοντέλα τα οποία δημιουργήθηκαν με το HADDOCK κατά την διάρκεια της 

διαδικασίας αυτής. 

Το Κεφάλαιο 3 είναι το τελευταίο το οποίο αφορά μοντελοποίηση μεμβρανικών πρωτεϊνών. 

Σε αυτό το κεφάλαιο περιγράφω ένα πρωτόκολλο για το HADDOCK, το οποίο είναι ακόμα 

υπό βελτίωση, το οποίο αναπαριστά την κυτταρική μεμβράνη με ένα σχήμα το οποίο 

αποτελείται από στρώματα από σφαίρες. Ορίζουμε περιορισμούς ανάμεσα στις σφαίρες αυτές 

και τους Cα άνθρακες των υπομονάδων του συμπλόκου ώστε να τις οδηγήσουμε στην 

«μεμβράνη». Συγκρίνω την απόδοση αυτού του πρωτοκόλλου με ένα στο οποίο 

χρησιμοποιούμε μόνο έναν περιορισμό ανάμεσα στο κέντρο βάρους των διαμεμβρανικών 

τμημάτων των δύο υπομονάδων. Η απόδοση του πρωτοκόλλου είναι χαμηλότερη των 
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προσδοκιών συγκριτικά με την απλή μέθοδο η οποία χρησιμοποιεί μόνο τον ένα απλό 

περιορισμό ανάμεσα στις δύο υπομονάδες και θα χρειαστούν επιπλέον δοκιμές προκειμένου 

να οριστικοποιηθεί. 

Τα Κεφάλαια 4 ως και 6 αποτελούν το δεύτερο μισό της διατριβής και περιστρέφονται γύρω 

από την μοριακή αγκυροβόληση πρωτεϊνών και μικρών μορίων. Στο Κεφάλαιο 4, συζητώ την 

συμμετοχή μας σε ένα τυφλό πείραμα – το Grand Challenge που οργανώθηκε το 2016 από την 

ομάδα D3R ( Drug Design Data Resource) και στο οποίο ο στόχος ήταν η πρόβλεψη της δομής 

36 συμπλόκων πρωτεϊνών-μικρών μορίων για τον φαρμακευτικού ενδιαφέροντος υποδοχέα 

Farnesoid X. Το πρωτόκολλο μας απαρτιζόταν από τα ακόλουθα στάδια: i) Εντοπισμός 

σχετικών πρωτεϊνικών δομών στην PDB και δημιουργία ενός σετ αντιπροσωπευτικών δομών 

μετά από ανάλυση, ii) δημιουργία ενός σετ για τα μικρά μόρια ακολουθώντας παρόμοια 

ανάλυση και iii) μοριακή αγκυροβόληση χρησιμοποιώντας κατάλοιπα τα οποία 

αναγνωρίστηκαν στο στάδιο (i). Παρά τα εξαιρετικά αποτελέσματα για μερικές περιπτώσεις, 

η συνολική μας απόδοση δεν ήταν ιδιαίτερα καλή σε σχέση με τους υπόλοιπους 

συμμετέχοντες. Ο κύριος παράγοντας ο οποίος επηρέασε αρνητικά την απόδοση μας ήταν το 

πρωτόκολλο επιλογής πρωτεϊνικών υποδοχέων πριν την μοριακή αγκυροβόληση. 

Αντικαθιστώντας αυτό το κομμάτι του πρωτοκόλλου με την επιλογή ενός υποδοχέα με βάση 

την ομοιότητα ανάμεσα στο προσδεδεμένο του μικρό μόριο και τα μικρά μόρια ενδιαφέροντος 

η διαδικασία της μοριακής αγκυροβόλησης οδήγησε σε καλύτερα αποτελέσματα. 

Στο ακόλουθο κεφάλαιο – το Κεφάλαιο 5 – περιγράφω την συμμετοχή μας στο τυφλό πείραμα 

το οποίο διοργανώθηκε για την χρονιά 2017. Πέρα από την επιλογή ενός μόνο υποδοχέα με 

βάση την ομοιότητα των μικρών μορίων, βελτιώσαμε την διαδικασία επιλογής δομών μικρών 

μορίων πριν την μοριακή αγκυροβόληση: Οι δομές μικρών μορίων επιλέχθηκαν με βάση την 

ομοιότητα του σχήματος του με το σχήμα του προσδεδεμένου μικρού μορίου σε κάθε 

υποδοχέα. Επίσης χρησιμοποιήσαμε την σχηματική ομοιότητα για να τοποθετήσουμε τις 

επιλεγμένες δομές στην περιοχή πρόσδεσης του υποδοχέα, υπερπηδώντας το πρώτο στάδιο της 

μοριακής αγκυροβόλησης και χρησιμοποιώντας το τελευταίο στάδιο του HADDOCK το οποίο 

απλά βελτιώνει τις δομές. Η ενσωμάτωση των σχηματικών δεδομένων στο πρωτόκολλο μας 

έχει ξεκάθαρη επιρροή στην απόδοσή του: Η πρόβλεψη μας (24 σύμπλοκα πρωτεϊνών-μικρών 

μορίων) αξιολογήθηκε ως μία από τις καλύτερες και εντός τυπικής απόκλισης από την 

κορυφαία. 

Το Κεφάλαιο 6 αντιπροσωπεύει την λογική κατάληξη του κομματιού της διατριβής το οποίο 

ασχολείται με την μοριακή αγκυροβόληση μικρών μορίων. Σε αυτό το κεφάλαιο περιγράφω 

ένα καινούριο πρωτόκολλο για το HADDOCK το οποίο χρησιμοποιεί σχηματικά δεδομένα, τα 

 

 

βιομορίων, η χημική διασύνδεση (chemical crosslinking), η μεταβίβαση ενεργειακού 

συντονισμού Förster (FRET) και ο διπλός συντονισμός ηλεκτρονίων-ηλεκτρονίων (DEER) 

μας επιτρέπουν να υπολογίσουμε αποστάσεις ανάμεσα σε αμινοξικά κατάλοιπα και τέλος η 

κρυο-ηλεκτρονική μικροσκοπία και η σκέδαση ακτίνων Χ μικρών γωνιών (SAXS) είναι οι 

τεχνικές μέσω των οποίων μπορούμε να αποκτήσουμε πληροφορίες για το σχήμα βιομορίων. 

Αναλύω την σχετικότητα όλων των προαναφερθέντων τεχνικών για το πεδίο της 

ολοκληρωτικής μοντελοποίησης και παραθέτω παραδείγματα εφαρμογών τους σε περιπτώσεις 

μοντελοποίησης ενδιαφέροντών ή προκλητικών συστημάτων. Ένα επιπλέον εστιακό σημείο 

αυτού του κεφαλαίου είναι η επισκόπηση κάποιων υπολογιστικών μεθόδων οι οποίες έχουν 

σημειώσει σημαντική πρόοδο πρόσφατα, και συγκεκριμένα γύρω από την χρήση εξελικτικών 

δεδομένων με τη μορφή πληροφοριών συνεξέλιξης (coevolution), εξελίξεις οι οποίες 

σχετίζονται με την μοντελοποίηση μεμβρανικών πρωτεϊνών και εφαρμογές αδρών (coarse-

grained) πεδίων ισχύος (force fields). 

Στο Κεφάλαιο 2, περιγράφω ένα πρόσφατα δημοσιευμένο σετ δεδομένων το οποίο 

απαρτίζεται εξ ολοκλήρου από σύμπλοκα μεμβρανικών πρωτεϊνών. Είναι το πρώτο, και από 

όσο γνωρίζω, μοναδικό του είδους του και με αυτόν τον τρόπο παρέχει ένα στοιχείο κομβικής 
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οποία αναγνωρίστηκαν ως πολύ σημαντικά στο προηγούμενο κεφάλαιο. Το ριζοσπαστικό 

στοιχείο αυτού του πρωτοκόλλου είναι ο τρόπος με τον οποίο το σχήμα των μικρών μορίων 

αναπαρίσταται, με τα βαρέα άτομα (όλα πλην του υδρογόνου) του προσδεδεμένου μικρού 

μορίου να μεταμορφώνονται σε σφαίρες όπως αυτές που χρησιμοποιούνται για την 

αναπαράσταση της κυτταρικής μεμβράνης στο Κεφάλαιο 3. Όπως και σε εκείνο το 

πρωτόκολλο, δημιουργούνται περιορισμοί ανάμεσα στα άτομα των μικρών μορίων και τις 

σφαίρες του σχήματος. Με την χρήση αυτών των περιορισμών δεν χρειάζεται να επιλέξουμε 

δομές μικρών μορίων πριν την μοριακή αγκυροβόληση, αλλά χρησιμοποιούμε όλες τις δομές 

που δημιουργήθηκαν, αυξάνουμε τον αριθμό των μοντέλων που το HADDOCK θα 

δημιουργήσει και το αφήνουμε να επιλέξει αυτές που μοιάζουν περισσότερο με τις φυσικές. 

Αυτό το πρωτόκολλο λειτουργεί καλύτερα από αυτό το οποίο περιεγράφηκε στο προηγούμενο 

κεφάλαιο. Οι σχηματικοί περιορισμοί μας επιτρέπουν να επιβάλλουμε σημαντικές αλλαγές 

στην δομή των μικρών μορίων προς την κατεύθυνση των φυσικών δομών. Καθώς τώρα 

πραγματοποιούμε ολόκληρη την διαδικασία της μοριακής αγκυροβόλησης μπορούμε να 

ενσωματώσουμε επιπλέον πληροφορίες στην προσομοίωση – κάτι το οποίο δεν ήταν δυνατόν 

με το πρωτόκολλο που περιγράφεται στο προηγούμενο κεφάλαιο καθώς ήταν μία απλή 

βελτίωση των δομών. 

Στο τελευταίο κεφάλαιο – το Κεφάλαιο 7 – πραγματοποιώ μία ανασκόπηση των κύριων 

συμπερασμάτων της παρούσας διατριβής και προσφέρω μερικές κριτικές απόψεις για τις 

δυσκολίες τις οποίες αντιμετωπίζει το πεδίο και προτείνω ερευνητικές προοπτικές οι οποίες 

θεωρώ ότι χρήζουν προσοχής στο μέλλον. 
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learned from the most then that person would be you. Hands down. Your uncanny ability to 

balance family life, an impressive array of sports-related activities, teaching and research while 

at the same time maintaining genuine interest, curiosity and inquisitiveness about the world 

around you is something I can only hope to one day match. 

Of course, over time the group changed, and new people took the place of those who had since 

moved on to bigger and better things. The Mediterranean element of the group was 

reinvigorated with the arrival of Jorge and Francesco who joined the group as PhD candidates 

in a desperate attempt to contain the French contingent. Perhaps surprisingly, your drinks of 

choice would feature prominently in various aspects and on multiple occasions over the coming 

years. In the case of Francesco that was Caffè Borbone; In the case of Jorge that drink was Pint 

of Science, and that wasn’t the end of the social activities you organised in your time in Utrecht. 

Had it not been for you, the group outing that we coorganised with Miranda would have been 

a disaster. Building on the Mediterranean connections, Brian joined the group as the resident 

software engineer and metalhead. The number of fires that you are putting out on a daily basis 

so that our services keep running smoothly while at the same time maintaining and expanding 

LightDock, is a testament to your skills and tenacity. However, there is no creative process 

(and regardless of commonly held beliefs software development is such a process) that cannot 

benefit from a dash of madness and that – in addition to a zen attitude, genuine enthusiasm and 

skills – is exactly what Rodrigo is infusing the next generation of HADDOCK with. Rodrigo, 

you’re a long way from home but you liked us well enough the first time, that you decided to 

take the plunge and move to cold and rainy Utrecht. It’s a bold move and I hope everything 

goes well here for both you and Gabi (and the cat). In addition to Brian and Rodrigo, Zuzana 

is the third occupant of – present day – office 1.16 and one of the most recent additions to our 

group. The CSB group made an excellent first impression on her when we first met during 

BIOMOS just over two years ago when she thought both me and Jorge were depressed and 

possibly non-verbal. Despite that, she chose to join the group and brings some much-needed 

expertise in Free Energy simulations and interpretive dance as a means of communication. It’s 

not as interesting when you’re not around Zuzana; Never change. Rounding out the recent 

arrivals, is Siri who chose to come back to the Netherlands all the way from sunny California 

– a choice which I guess you might be questioning during the Dutch winter – and is developing 

new ways of making use of crosslink data in simulations. You have integrated into the group 

very quickly and even introduced boardgame nights, which is already something that plenty of 

us are looking forward to and regularly participating in. Our group has, at times, also hosted 

plenty of MSc students and I’ve been lucky enough to supervise a few of them, namely 

 

 

I am not sure where one begins when there are so many people to acknowledge and things to 

be thankful for, but I might as well start at the beginning. None of this would have been 

remotely possible without the love and support of my family and in particular my parents. Their 

unwavering support and belief in my scientific undertakings have been the backbone of all my 

endeavours. 

Science, however, does not happen in vacuo, but is a group effort instead, and one couldn’t ask 

for a better group than the one I found myself to be a part of in March 2016, when I joined the 

Computational Structural Biology group. The group – at the time – was very different to its 

current line-up as I am the one that, as of December 2019, has been around the longest. I 

immediately felt very welcome (although most people that were around back then would 

probably agree it didn’t necessarily look that way) and the person that bears most of the 

responsibility for that is Anna. You patiently introduced me to all kinds of modelling I had no 

experience with before coming to Utrecht and also to the sheer joy that is CAPRI, all done in 

your unique Neapolitan way. Both you and Li, created a very warm environment (not only 

figuratively) in which I very quickly felt at ease. Some of my happiest work-related memories 

from that time come from working side with side with Zeynep trying (and initially failing) to 

figure out small-molecule docking. Something unusual about the group at the time was its 

composition, with seven post-docs and just two PhD candidates – me and Liang (aka Dr Geng) 

who has since become a scientific software developer, a role that suits him well. Irina joined 

the group around the same time I did and has since been in the running for busiest person of 

the year with running her group in Portugal, visiting our group as a post-doc, applying for 

grants and tenure-track positions, studying for her second PhD, raising two children, etc… 

Despite our differences of opinion (which include my future work prospects) I have nothing 

but respect for you and consider myself lucky I got to know you both professionally and 

personally. Rounding out the group in terms of gender balance were, of course, the occupants 

of office 1.16. Jörg, you show nothing but professionalism and characteristic German 

efficiency in everything you do: coding, science, house repairs, beer drinking and, most 

importantly, tolerating and even thriving in an office dominated by the inimitable French Duo. 

Mikael and Adrien also (re)joined the group within a couple of weeks of me and strongly 

imbued it with French flair and double entendres. Mikael, your time in Utrecht (your second 

time that is) was marked by profound changes in your personal life as you became a father 

(twice!). Despite all the associated challenges that go hand in hand with such a big change both 

you and Sophie handle it beautifully and throughout all three years you remained filled with 

positivity and energy. Adrien, if I had to choose one person who wasn’t my boss and I’ve 
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personally. Rounding out the group in terms of gender balance were, of course, the occupants 

of office 1.16. Jörg, you show nothing but professionalism and characteristic German 

efficiency in everything you do: coding, science, house repairs, beer drinking and, most 

importantly, tolerating and even thriving in an office dominated by the inimitable French Duo. 

Mikael and Adrien also (re)joined the group within a couple of weeks of me and strongly 

imbued it with French flair and double entendres. Mikael, your time in Utrecht (your second 

time that is) was marked by profound changes in your personal life as you became a father 

(twice!). Despite all the associated challenges that go hand in hand with such a big change both 

you and Sophie handle it beautifully and throughout all three years you remained filled with 

positivity and energy. Adrien, if I had to choose one person who wasn’t my boss and I’ve 
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As I already mentioned though, more important than the exchange of information and expertise 

facilitated by the fact we share our building with our NMR colleagues (or rather, them sharing 

their building with us) are the very people themselves; People that I’ve grown to befriend over 

the past four years. 

Starting with the solution group, Ulric the great, explainer in chief, pointer extraordinaire and 

purveyor of encyclopaedic knowledge on obscure and archaic topics such as the reproductive 

system of hyenas or medieval folklore involving unicorns. We share an interest in the noble 

pastime of getting lost in Wikipedia articles and for that alone I consider you a kindred spirit. 

Heyi the indomitable, always shouting at people for touching you and effortlessly swag-ing 

your way through life, Klara, possibly the most patient person I know and Vincenzo, your 

name and Dutch sandwiches you have during lunch always at odds. Reinier, a man with a plan 

(weekly, monthly, possibly yearly?) and always in control, and the most recent additions to the 

solid-state group David and Agnes, you both only just started but I’m sure you’ll do great. 

Rhythm, same goes for you. You have some big shoes to fill but I’m sure you’ll rise to the 

challenge. Also, I really am sorry you thought I was scary when you first met me. It’s an 

occupational hazard when one engages in competitive frowning. Of course, all the people that 

have since moved on to new things, Klaartje, Cecilia, Jon, Deni, Velten. 

Moving downstairs, to the part of the building that some people might have (affectionately) 

referred to as a dungeon, one will find possibly the happiest office in the entire building. 

Alessandra, your name, although beautiful, is nowhere near as representative of your true self 

as your nickname so I think you should stick to that from now on. You are beaming happiness 

in all directions around you and your excitedness towards small everyday things is infectious 

to the point where I can even forgive your subpar taste in pizza. Miranda, I’ll do you the favour 

of refraining from using your nickname to refer to you here. I will say though that it is 

representative of many things which I like about you but most importantly your ability to 

prioritise the things which are important to you and compromise on less significant aspects of 

your life. However, the things I like the most about you, by far, are your steadfastness and 

impressive capacity for joy and laughter even when things were not going great. You’ll never 

know how much of a relief it was when things were not great with me either. Never lose that. 

Leona, not only is your second name infinitely cooler than your first one, lions are traditionally 

used to represent courage and it takes a lot of it to go through with the changes that you have 

identified are required for your wellbeing. Same goes for you Barend. 

Last, but certainly not least, of the Weingarth group, João and also last but equally not least of 

the Baldus group, Sid. It’s fair to say that without you two my time in the Netherlands would 

 

 

Zhengyue, Charlotte and presently Sam and in the immediate future Etjen. In addition to the 

material help on the various projects that you’ve all worked on, the thing I’ve grown to 

appreciate the most about supervising and teaching is that it’s a process in which both parties 

have things to teach each other. Charlotte, in particular, I guess you enjoyed your time in our 

group during your research project so much – despite me never introducing you to the members 

of the group – that you decided to come back for your PhD which is now almost a year in the 

making and already showing promising results. Not only that, but we are currently sharing an 

office – which to the untrained eye might appear dark and silent but is, in reality, energy-

efficient and conducive to contemplation – and you were also kind enough to translate my 

summary in Dutch. Thanks for all the help. 

Finally, Alexandre. I’ve been going over the acknowledgements sections of old group 

members theses’ and one thing becomes immediately clear. Your PhD students are all very 

happy to have had you as their supervisor and I am no exception. As I am writing this, I am 

flying over the mountains of the Alps that I have so often heard you use as examples when 

lecturing about energy minimisation and it occurs to me, that although you’ve never formally 

taught me, the things I’ve learned just by being around you over the last four years are profound. 

You conduct science in a way that is filled with integrity, curiosity and finesse. I can’t recall 

an occasion on which you lost your patience or even your cool including unfair reviews, 

rejections and even PhD students choosing to ignore the project for which they were hired for 

two years and even after the PhD student who was previously supposed to work on said project 

chose to also ignore it. By far your most impressive quality – next to your surreal multitasking 

skills – is your talent or skill (or both?) when it comes to picking people for your group that 

can stand on their own but also be part of a team rather than individuals. My only regret about 

joining your group is one I imagine many of your PhDs and former PhDs share, namely that, 

in terms of future bosses, it’s probably downhill from this point on. 

Our group, however, is but one of a few occupying the building and groups come with group 

leaders: Marc, Hugo and Markus. We haven’t interacted much over my time in Utrecht but 

at the very least I am thankful to you for always keeping us in touch with the experimental side 

of Structural Biology but more importantly for your people. Gert, you keep everyone in line 

with the biological questions and are always happy to join us for a beer during Friday borrel 

(unless it’s ping pong night of course). Geeske, doing the impossible task of keeping all of our 

paperwork in order and doing so gracefully, having taken over from Barbara close to two 

years ago; Everything would grind to a halt without you. Johan, the unsung hero of all my 

NMR colleagues making sure every machine in the building is running smoothly. 
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have been significantly worse. I think you both know how I feel so I’ll keep it short. João, you 

are one of the most gentle and kind people I know, despite your best efforts to conceal those 

aspects and by far the most hard-working one, especially considering your survival does not 

depend on it. As a matter of fact, you are so kind you could see flowers around my head. 

Although that could have been the Ginjinha too, not sure. You deserve every great thing that’s 

coming your way – professionally and personally – and make no mistake, good things are 

coming your way. Just give it a bit of time. Sid, you are a testament to my constant amazement 

that people want to get to know me and are also patient enough for me to relax enough to 

actually let it happen. Even more importantly, when I moved to the Netherlands, I never 

expected I would meet someone who was interested in many of the same nerdy things I am. I 

have witnessed you undergoing some fairly impressive transformations, both physically and 

mentally, and I think you are all the better for them and look forward to the changes yet to 

come. 

 

Panos 
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