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Tissue engineering aims to grow artificial tissues in vitro to replace those in the body that have been
damaged through age, trauma or disease. A recent approach to engineer artificial cartilage involves
seeding cells within a scaffold consisting of an interconnected 3D-printed lattice of polymer fibres
combined with a cast or printed hydrogel, and subjecting the construct (cell-seeded scaffold) to an
applied load in a bioreactor. A key question is to understand how the applied load is distributed
throughout the construct. To address this, we employ homogenisation theory to derive equations
governing the effective macroscale material properties of a periodic, elastic–poroelastic composite.
We treat the fibres as a linear elastic material and the hydrogel as a poroelastic material, and exploit
the disparate length scales (small inter-fibre spacing compared with construct dimensions) to derive
macroscale equations governing the response of the composite to an applied load. This homogenised
description reflects the orthotropic nature of the composite. To validate the model, solutions from
finite element simulations of the macroscale, homogenised equations are compared to experimental
data describing the unconfined compression of the fibre-reinforced hydrogels. The model is used to
derive the bulk mechanical properties of a cylindrical construct of the composite material for a range
of fibre spacings and to determine the local mechanical environment experienced by cells embedded
within the construct.
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144 M. J. Chen et al.

1 Introduction

Tissue engineering is a rapidly developing field where one of the main goals is to generate arti-
ficial biological tissues in vitro (e.g. cartilage, bone or blood vessels) [21]. These tissues may
then be implanted to replace natural tissues that have degenerated, been damaged, or removed
during surgery. A particularly active area of this field is the development of articular cartilage
implants as mature cartilage tissue has limited intrinsic capacity to heal. Cartilage damage can
occur through injury or diseases such as osteoarthritis, and in the United Kingdom a third of peo-
ple aged 45 or older have sought treatment for osteoarthritis [1]. Implants must be biocompatible
with native cartilage and also able to withstand the mechanically demanding environment of a
loaded joint.

A promising direction in cartilage tissue engineering [25] involves seeding cells (mesenchy-
mal stem cells and/or chondrocytes) on a scaffold consisting of an interconnected, 3D-printed
lattice of polymer fibres combined with a cast or printed hydrogel; the seeded scaffold is then
cultured in a bioreactor with biochemical and mechanical stimulation. Reinforced hydrogel com-
posites are an ideal material for this purpose, since they are biocompatible with cartilage cells and
the elastic fibres of the lattice endow the scaffold with greater structural integrity than a scaffold
made only of hydrogel [42]. The principle challenge in this approach lies in developing practical
strategies that generate artificial cartilage that mimics the form and function of the natural tissue.
Mathematical modelling is a valuable tool for quickly and robustly assessing the efficacy of vari-
ous combinations of cell-seeding strategies, biochemical and mechanical stimuli. The models can
thereby guide experimental design; this is of value since these experiments are expensive, time-
consuming and cannot easily be sampled at multiple time points. An important modelling ques-
tion is to predict the mechanical environment and stress distribution throughout the scaffold as a
first step in developing appropriate strategies to seed the scaffold with mechanosensitive cells.

The scaffold of interest in this work comprises a soft gelatin methacrylate (GelMA) hydrogel
cast around a 3D-printed, ε-polycapralactone (PCL) fibre lattice, for details see [11, 42]. The fibre
lattice is created by melt electrospinning writing (MEW); a layer of parallel fibres at constant
spacing is printed and then the next layer of parallel fibres at constant spacing is printed on top
of the first layer, so that fibres in neighbouring layers meet at 90◦, see Figure 1. The vertical
distance between fibres is set by the extent to which each layer of fibres melts into the previous
layer. When tested in unconfined compression, these fibre-reinforced scaffolds were shown to be
up to 54 times stiffer (i.e. have a 54-fold increase in Young’s modulus) than the hydrogel alone
[42]. The cells that are ultimately seeded within the construct are mechanosensitive and will
therefore undergo phenotypic changes due to the local stress [28, 40]. Consequently, in order to
understand the response of these cells to mechanical loading, it is first necessary to understand
the stress induced within the fibre-reinforced hydrogel.

The fibre-reinforced hydrogel scaffold described above is an example of a composite material,
combining constituent materials with known characteristics to create a new material with prop-
erties desirous for a certain application. Composite materials are prevalent in engineering and
becoming more widespread in biological applications [16, 19, 43]. A natural approach to model
composite materials is via mathematical homogenisation [24], which allows the macroscale
response to mechanical loading of a composite material to be determined from the properties
of its constituent materials and knowledge of the microstructure.

In the context of modelling the composite material of this paper, mathematical homogenisation
involves writing down governing equations for the constituent materials and then exploiting the
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FIGURE 1. (a) Optical microscope image of a fibre-reinforced hydrogel with a square fibre lattice of
800 µm. Note that the overall dimensions of the construct shown here are slightly different to those used in
later experimental comparison. (b) Scanning electron microscopy (SEM) image of the fibre scaffold prior to
it being cast in the hydrogel. (c) SEM image showing a detail of fibre buildup at the interconnection between
printed vertical layers. (d) Schematic diagram of the idealised scaffold used in the homogenised model of
this paper. (e) Schematic diagram of the microscale repeating cell, showing the microscale hydrogel region
�̂g, and the microscale fibre region �̂f. The characteristic length scale at the microscale is the horizon-
tal fibre spacing l, and the characteristic macroscale length is the overall diameter of the scaffold L. It is
assumed that the scaffold diameter is much greater than the fibre spacing and that their ratio ε= l/L � 1,
which permits a separation of length scales as described in Section 2.3.

separation of length scales to decompose the full model into macroscale and periodic microscale
components. This, in turn, allows the bulk effective material properties at the macroscale to
be derived from the solution to a periodic microscale ‘cell’ problem. Having determined the
effective macroscale properties of the material it is possible to predict, for instance, the response
of the composite material to an applied mechanical load (which is the focus of this paper). A gen-
eral introduction to homogenisation theory for composite materials can be found in [24], which
systematically describes approaches for treating materials with periodic microstructure for one-,
two- and three-dimensional problems. Formal asymptotic and volume averaging approaches to
treating the cell problem are compared in [14].

Throughout this work we treat the GelMA hydrogel as a poroelastic material. Porous, fluid-
saturated media of this type were originally modelled via a phenomenological description by
Biot [7, 8], where deformations of the porous (typically elastic) material are coupled to the flow
of the interstitial fluid. This formulation may also be derived rigorously via a formal asymp-
totic homogenisation procedure [3, 33, 29]. The main advantage of such an approach is that it
accounts for interactions between the solid and fluid components at the microscale (for a known
microstructure) and therefore obviates the need to fit the material parameters in the Biot model
from experimental data. A focus of recent work on poroelasticity has been to improve the compu-
tational efficiency of both the upscaling procedure for specific microstructures and the numerical
solution of the resulting macroscale equations [4, 10].
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146 M. J. Chen et al.

Homogenisation is a particularly useful tool in biological contexts, where small-scale struc-
tures and multiple spatial scales are ubiquitous. In such conditions it allows tissue-level models
to be derived that include cell-level properties. For example, in [39] effective transport coeffi-
cients were determined for the delivery of drugs in tumours by homogenising the microscale
flow in the small-scale blood vessels within the tumour. A similar approach was used to define
criteria for the design of cartilage tissue engineering scaffolds in [38] by tuning the microscale
properties of the scaffold to optimise the flow of nutrients. This is different to the homogenisation
procedure of this paper since the goal here is to determine bulk effective mechanical properties
of the scaffold.

A key aspect of describing natural or engineered tissues is to incorporate the effect of growth.
Several recent approaches have addressed this question via homogenisation and poroelastic-
ity. For example, the effective properties of a poroelastic medium with growth due to surface
accretion of the solid phase were derived by [34] and lead to a new macroscale constitutive
relationship describing this effect. A recent description of an active poroelastic medium [13]
incorporated morphoelastic growth and derived effective governing equations under the assump-
tion that growth occurs on a slower timescale than transport processes within the medium, as
is typical in biological tissues. Also of interest are recent approaches that extend traditional
homogenisation theory to incorporate the novel microstructure that arises in tissue engineering.
For instance, one recent study derives an effective description of diffusion for porous media with
spatially varying microstructure [9]; another details the homogenisation of reaction–diffusion
processes in situations where the microstructure changes with time [35].

Homogenisation approaches have also been used to theoretically study the biomechanics and
deformation of plant tissues. In one recent study [37] a macroscale description of the elastic
properties and deformation of a plant cell wall was derived by considering the orientation of
cellulose microfibrils (i.e. the microstructure) within individual plant cells. Another recent study
[36] involves upscaling a coupled description of the microscale biochemical reaction–diffusion
processes within plant cells and the mechanical properties of the cells, under the assumption
that the elastic deformation of the cells and the dynamics of their internal biochemistry are
interdependent.

An alternate approach to modelling fibre-reinforced hydrogels might involve adapting an
existing multiphase model of cartilage; see [26] for a comprehensive review of such models.
Fibre-reinforced hydrogels have similar mechanical properties to cartilage [42], so it might be
argued that we should employ an existing multiphase model. However, the advantage of our
homogenisation approach is that it explicitly incorporates the mechanical role of the printed
fibres and directly relates the properties of the constituent materials to those of the composite
material. This then facilitates the tunable design of scaffolds with the properties required via
alterations in the number, spacing and properties of the fibres. Multiphase models have also
previously been used to investigate the ways in which the local mechanical environment experi-
enced by mechanosensitive cells in tissue engineering scaffolds influences their behaviour. Such
issues were considered in a multiphase porous mixture model by [27] which focussed on var-
ious aspects of tissue growth. A key result of that study was to demonstrate that multiphase
models can replicate experimentally observed cell aggregation. Another study extends this mod-
elling approach to examine tissue construct growth in a perfusion bioreactor [32] and reveals that
mechanotransduction effects induced during the culture period can indeed affect the composition
of the resulting engineered tissue.
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A recent study on reinforced hydrogel composites with application to cardiac tissue engi-
neering demonstrated that MEW can reproducibly generate fibre lattices and that when cast in
hydrogel the resulting scaffolds are biocompatible with cardiac progenitor cells [11]. Another
recent study focused on the mechanical characterisation of fibre-reinforced hydrogel scaffolds,
measuring the properties of both the overall scaffold and individual PCL fibres; this is of great
interest since knowledge of both is required to parameterise the homogenised model of this paper.
While finite element modelling of fibre-reinforced hydrogel scaffolds has previously been used
to predict their overall mechanical properties [6], the homogenisation approach adopted here is
more computationally efficient since it obviates the need to model each individual, repeating cell
of the printed fibre lattice and the hydrogel contained within.

As stated above, we aim to understand how an applied load is distributed throughout a
fibre-reinforced hydrogel construct to the embedded, mechanosensitive cells. We previously
investigated the mechanics of the composite scaffold with a phenomenological model that
described the stiffness of the composite [42]. This simple model considered the fibres as
stretched, linearly elastic strings, and neglected any rate-dependent features of the material.

Here, we develop a more detailed model that yields greater understanding of the mechanical
properties of the composite, including its time-dependent response to loading. By developing
governing equations for the stress and deformation of the composite, we develop a framework
that may be used to predict the stresses that cells embedded in the scaffold experience. In sys-
tematically deriving this macroscale description we incorporate detail of the microstructure (in
particular the geometry and spacing of the printed fibres) and the properties of the constituent
materials of the composite thus giving a mechanistic description of the effective behaviour of
the composite, with a view to revealing properties of this material that would not be known prior
to homogenisation. The resulting framework is sufficiently general that it could be adapted to
predict the macroscale properties of periodic elastic–poroelastic composites in other applications.

1.1 Paper outline

We formulate a model for the composite material in Section 2, where the fibres are treated as
a linear elastic material, and the hydrogel is treated as a poroelastic material. This permits a
separation of length scales, since the size of the repeating fibre lattice is much smaller than the
size of the overall scaffold. The associated microscale cell problem is described in Section 3.
Homogenisation theory is employed in Section 4 to derive macroscale equations which feature
effective material parameters determined from the solution to the microscale cell problem, thus
determining the nature of the bulk material. This model is validated in Section 5, where numer-
ical solutions of the homogenised equations are compared to unconfined compression tests on
reinforced hydrogels. We discuss our results in Section 6, where we also suggest possible future
directions to continue this work.

2 Scaffold description and model derivation

We aim to model the response of a fibre-reinforced hydrogel scaffold to an applied load or
displacement, as discussed in Section 1, and shown schematically in Figure 1. These scaffolds
are typically a few millimetres in height and a comparable dimension in width; our model will
later be compared to experimental results where cylindrical scaffolds of height H ≈ 2 mm and
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148 M. J. Chen et al.

diameter L ≈ 5.5 mm are held at a strain of 6%, for instance. Interest lies in the stress and
displacement fields induced in this composite material when mechanically loaded.

The material properties of the fibre-reinforced hydrogel, and hence its response to an applied
load, will depend on the material properties of the unreinforced hydrogel, as well as the diameter
and spacing of the 3D-printed fibres. These diameters and spacings are typically much smaller
than the size of the overall construct; for instance, in the experiments of [42] the fibres are of
radius 20 µm and printed at fibre spacings between 200 µm and 1 mm. The vertical fibre spacing
is difficult to determine since there is an unknown degree of melting between adjacent printed
layers. In later simulations we estimate that melting results in significant overlap between the
layers so that the gap between parallel fibres is 60% of the fibre radius.

The following section details a homogenisation procedure to derive effective macroscale mate-
rial properties of the reinforced construct, allowing us to calculate the stress and displacement
within this composite material due to an applied load. We begin by developing sub-models for
the two constituents of the composite viewing the hydrogel as a poroelastic material, occupying
a region denoted �g, and the PCL fibres as linearly elastic, occupying a region denoted �f. The
difference between the overall size of the construct and the spacing between the fibres permits a
separation of length-scales. We exploit this property together with the periodicity of the geome-
try of the fibre scaffold to homogenise over one ‘cell’ of the scaffold (see Figure 1) and obtain
the desired description of this composite material.

2.1 Sub-models for the hydrogel and the elastic fibres

Following Detournay and Cheng [15], we describe the hydrogel as a poroelastic material com-
prised of incompressible fluid and elastic phases. In the hydrogel region�g we have conservation
of mass and assume that the flow of the fluid phase is governed by Darcy’s law. Thus, we write

φ∇ · v′ + (1 − φ)
∂

∂t

(∇ · u′
g

)= 0, (2.1)

φ

(
v′ − ∂u′

g

∂t′

)
= − k′

μ′ ∇p′, (2.2)

where u′
g is the displacement of the solid phase, v′ is the velocity of the fluid phase and p′ is

the fluid pressure. Equations (2.1) and (2.2) contain several (constant) parameters, namely the
volume fraction of the fluid phase, φ (sometimes called the porosity), the intrinsic permeability
of the solid phase, k′, and the viscosity of the fluid phase, μ′; the ratio of these last two param-
eters, k′/μ′, represents the effective permeability of the poroelastic material. Typical values for
these parameters for the hydrogel of interest, GelMA, are given in Table 1 where these were
obtained by fitting data from experimental relaxation tests on unreinforced GelMA to a model
of a poroelastic material. A full description of this fitting procedure is given in Appendix A. We
also require conservation of momentum in the hydrogel and introduce a constitutive relationship
between the displacement and the stress. Following [24], these relationships are represented by

∇ · σ ′
g = 0, (2.3)

σ ′
g = −p′I +D

′ : ∇u′
g, (2.4)

D
′ : ∇u′

g =μ′
g

(
∇u′

g + (∇u′
g

)T
)

+ λ′
g

(∇ · u′
g

)
I, (2.5)
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Table 1. Summary of dimensional parameters that appear in equations (2.1)–(2.11), along with
the parameters used in the non-dimensionalisation procedure in Section 2.2

Quantity Description Representative value

φ Porosity (GelMA) (Later eliminated from model)
k′/μ′ Effective permeability (GelMA) 2.382 × 10−4 kPa−1 min−1 (Appendix A)
μ′

g Lamé’s first parameter (GelMA) 19.97 kPa (Appendix A)
λ′

g Lamé’s second parameter (GelMA) 17.01 kPa (Appendix A)
μ′

f Lamé’s first parameter (PCL) 1.27 × 105 kPa [12]
λ′

f Lamé’s second parameter (PCL) 7.80 × 105 kPa [12]
L Overall diameter of scaffold 5.54–5.98 mm
H Overall height of scaffold 1.80–2.04 mm
d Fibre diameter 20 µm
l Horizontal fibre spacing 300–800 µm
h Vertical fibre spacing 32 µm
ε = l/L Small parameter 5.0 × 10−2–1.4 × 10−1

T Typical test time 1 min
P Typical stress in hydrogel 1.67 × 104 kPa

where σ ′
g is the stress tensor (rank 2) in the hydrogel and D

′ is the elasticity tensor (rank 4) for the
solid phase of the hydrogel. Throughout this paper we follow the conventions for tensor prod-
ucts and derivatives given in [23, Chapter 1], which also defines these conventions in Einstein
notation. In the constitutive relationship (2.4)–(2.5) we assume that the solid phase is linearly
elastic, where μ′

g and λ′
g are the bulk Lamé parameters of the poroelastic material (which are both

assumed to be constant). The fitted values of these parameters for GelMA derived in Appendix A
are given in Table 1; the corresponding values for the Young’s modulus E′

g and Poisson’s ratio
νg of the elastic phase of the hydrogel, which relate to the Lamé parameters in the standard way,
are also given in Appendix A.

We model the PCL fibres as a linear elastic material. It is therefore straightforward to relate
the stress and displacement in the fibre region �f by requiring conservation of momentum and
introducing an appropriate constitutive law. Following [24], for instance, we assume

∇ · σ ′
f = 0, (2.6)

σ ′
f =C

′ : ∇u′
f, (2.7)

C
′ : ∇u′

f =μ′
f

(
∇u′

f + (∇u′
f

)T
)

+ λ′
f

(∇ · u′
f

)
I, (2.8)

where σ ′
f is the stress tensor (rank 2) in the fibres, u′

f is the displacement in the fibre region and C
′

is the elasticity tensor (rank 4). In the constitutive relationship (2.7)–(2.8) μ′
f and λ′

f are the (con-
stant) Lamé parameters of this material. The values for PCL in Table 1 are taken from [12], and
converted from the Young’s modulus E′

f = 363 MPa and Poisson’s ratio νf = 0.3 given in that
study to Lamé parameters via equation (A1). As noted in Appendix A, published values for the
Young’s modulus Ef vary between 53 and 363 MPa [5, 42, 41, 12] and published values of the
Poisson’s ratio νf vary between 0.3 and 0.49 [17, 18, 12]. Thus, the values for the Lamé param-
eters of PCL given in Table 1 reflect the order of magnitude of these parameters; during later
experimental comparison we will explore the parameter space defined by these published values.
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150 M. J. Chen et al.

We further assume that the fibres are perfectly bonded to the hydrogel, so that there are no
voids between the fibre and gel regions. On the interface between the fibre and gel regions
(denoted ∂�f = ∂�g) we impose continuity of stress and displacement, as well as a kinematic
condition on the fluid velocity. These boundary conditions are

σ ′
g · n = σ ′

f · n, (2.9)

u′
g = u′

f, (2.10)(
v′ − ∂u′

g

∂t′

)
· n = 0, (2.11)

on ∂�f = ∂�g, where n is the outward pointing unit normal vector to�f. Note that the kinematic
condition (2.11) has the usual interpretation here, namely that at the interface between the poroe-
lastic and elastic materials there is no fluid flow, relative to the gel, in the direction normal to this
interface and, therefore, no fluid transport across this material boundary.

To summarise, the equations governing the constituent parts of this composite material consist
of (2.1)–(2.5) to be solved in the poroelastic hydrogel region �g, and (2.6)–(2.8) to be solved in
the elastic PCL fibre region �f, subject to the boundary conditions (2.9)–(2.11) on the interface
between these regions ∂�f = ∂�g. We note that it is possible to reduce (2.1)–(2.5) to the more
standard form of the Biot model for poroelastic media [8] by combining (2.1) and (2.2) to elim-
inate v, and substituting (2.4) into (2.3). The slightly longer form of the governing equations is
retained here since it will (in Section 4) permit the explicit derivation of the effective macroscale
fluid velocity and stress. Both of these quantities are of practical interest in tissue engineering
to quantify the flow of nutrients through the scaffold and the local stress experienced by seeded
cells.

2.2 Non-dimensionalisation

We define L to be the typical diameter of a sample of the fibre-reinforced composite and l to
be the horizontal spacing between the printed fibres. In situations of practical interest the fibre
spacing is small compared to the overall size of the composite and so we introduce the small
parameter ε as

ε= l

L
� 1. (2.12)

We non-dimensionalise equations (2.1)–(2.11), scaling lengths with the typical diameter of the
fibre-reinforced scaffold, L, time with a typical timescale for mechanical testing the composite,
T , and stresses with a typical pressure in the fluid phase of the hydrogel, P =μ′L2/(k′T). The
dimensional variables (indicated by dashes) are replaced by dimensionless versions as follows:

u′
g = Lug, u′

f = Luf, p′ = Pp, t′ = Tt,

σ ′
g = Pσ g, σ ′

f = Pσf, x′ = Lx, v′ = (L/T)v, (2.13)

and the dimensional parameters are rescaled as follows:

D
′ = PD, μ′

g = Pμg, λ′
g = Pλg, (2.14)

C
′ = PC, μ′

f = Pμf, λ′
f = Pλf. (2.15)

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792518000657
Downloaded from https://www.cambridge.org/core. Universiteitsbibliotheek Utrecht, on 18 Feb 2020 at 13:08:58, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792518000657
https://www.cambridge.org/core
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Under these scalings the dimensionless versions of equations (2.1)–(2.2), which represent
conservation of mass and Darcy’s law in the hydrogel region �g, are

φ∇ · v + (1 − φ)
∂

∂t

(∇ · ug
)= 0, (2.16)

φ

(
v − ∂ug

∂t

)
= −∇p, (2.17)

while equations (2.3)–(2.5), which govern conservation of momentum and the constitutive
relationship, transform to give (2.18)–(2.20):

∇ · σ g = 0, (2.18)

σ g = −pI +D : ∇ug, (2.19)

D : ∇ug =μg

(
∇ug + (∇ug

)T
)

+ λg
(∇ · ug

)
I. (2.20)

In the elastic fibre region �f the dimensionless versions of conservation of momentum and the
constitutive relationship (2.6)–(2.8) are

∇ · σ f = 0, (2.21)

σ f =C : ∇uf, (2.22)

C : ∇uf =μf
(∇uf + (∇uf)

T
)+ λf (∇ · uf) I. (2.23)

Finally boundary conditions (2.9)–(2.11) transform to give

σ g · n = σ f · n, (2.24)

ug = uf, (2.25)(
v − ∂ug

∂t

)
· n = 0, (2.26)

on ∂�f = ∂�g.

2.3 Description of the microscale cell and separation of length scales

Having established the dimensionless governing equations and boundary conditions (2.16)–
(2.26) we could, given sufficient computing resources, solve these equations numerically in the
complex interpenetrating geometry defined by �f and �g. Instead we exploit the periodic geom-
etry and the small size of the repeating ‘cell’ compared to that of the composite (i.e. 0< ε� 1).
After non-dimensionalisation, typical lengths of the composite scaffold are x =O(1); we hence-
forth term this the macroscale variable. We introduce the microscale variable X = x/ε, so that
X =O(1) is the length scale associated with the repeating cell. The presence of these disparate
length scales suggests that it is appropriate to attempt an asymptotic separation of length scales.

The geometry of the microscale repeating cell is shown in Figure 1(e), with the orientation
of the three components of X = (X , Y , Z) also indicated in this schematic diagram. The domain
of a single cell is, in microscale variables, 0 � X � 1, 0 � Y � 1, 0 � Z � θ , where θ = h/l is
the dimensionless microscale height of the cell. Within this cell there is a central cylinder of
non-dimensional radius ρ, with its axis along (X = 0.5, Z = θ/2), representing a single printed
PCL fibre. The fibres printed in the adjacent layers are perpendicular to this direction and,
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in order to maintain periodicity in the Z direction, are represented in the microscale cell as
two half cylinders, each with non-dimensional radius ρ = d/(2l). The axis of one of the half-
cylinders lies along the bottom of the cell at (Y = 0.5, Z = 0), while the axis of the other lies
along the top of the cell at (Y = 0.5, Z = θ ). The printed fibres overlap in the centre of the rep-
resentative cell, where the adjacent layers have melted into each other and bonded. From the
arrangement shown in Figure 1(e), it follows that θ/(4ρ) is a measure of the overlap between
the fibres; this quantity is equal to 1 if adjacent fibre layers are just touching, and equal to 1/2 if
they completely overlap. The union of the cylinder and the two overlapping half cylinders forms
the microscale elastic fibre region �̂f. The complement of �̂f in this representative cell is the
microscale hydrogel region �̂g.

Following [34], we consider that all dependent variables are functions of x and X, so that
e.g. uf = uf(x, X, t), and treat x and X as independent variables, in which case ∇ → ∇x + 1

ε
∇X .

We also introduce regular perturbation series expansions in ε for each dependent variable, so
that uf = u(0)

f + εu(1)
f +O(ε2) and similarly for ug and p. Substitution of these series expan-

sions into (2.19) and (2.22) implies that the leading order term for the stresses must be at
O (

1
ε

)
, so that σ f = 1

ε
σ

(−1)
f + σ

(0)
f + εσ

(1)
f +O(ε2) and similarly for σ g. Under these assumptions

(2.18) and (2.21) supply at O
(

1
ε2

)
the following equations:

∇X · σ (−1)
g = ∇X · (D : ∇X u(0)

g

)= 0, in �g, (2.27)

∇X · σ (−1)
f = ∇X ·

(
C : ∇X u(0)

f

)
= 0, in �f, (2.28)

where we have substituted the O (
1
ε

)
components of stress from (2.19) and (2.22) into (2.27) and

(2.28), respectively. On the interface ∂�f the boundary conditions (2.24) at O (
1
ε

)
and (2.25) at

O(1) supply

(
D : ∇X u(0)

g

) · n =
(
C : ∇X u(0)

f

)
· n, (2.29)

u(0)
g = u(0)

f , (2.30)

where we have used the expressions for the O (
1
ε

)
stresses in (2.29). We note that (2.27) and

(2.28) define linear homogeneous problems for u(0)
f and u(0)

g and that there is no external forcing
from the boundary conditions (2.29)–(2.30). It follows that ∇X u(0)

g = ∇X u(0)
f = 0 and so both

u(0)
g and u(0)

f are independent of X, and therefore σ
(−1)
g = σ

(−1)
f = 0. Continuity of displacement

on the cell-scale interface ∂�̂f at leading order (2.30) implies that u(0)
g (x, t) = u(0)

f (x, t).
In the hydrogel region �g, we see that (2.16)–(2.19) supply at O (

1
ε

)
the following equations:

φ
(∇X · v(0)

)= 0, (2.31)

∇X p(0) = 0, =⇒ p(0) ≡ p(0)(x, t), (2.32)

∇X · σ (0)
g = 0, (2.33)

where, as noted above, equation (2.32) implies that p(0) is independent of X. In the fibre region
�f, equation (2.21) at O (

1
ε

)
supplies

∇X · σ (0)
f = 0, (2.34)
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while on ∂�f boundary conditions (2.24) and (2.26) at O(1) supply

σ (0)
g · n = σ

(0)
f · n, (2.35)(

v(0) − ∂u(0)
g

∂t

)
· n = 0. (2.36)

In the hydrogel region �g, at O(1) equations (2.16)–(2.19) supply

(1 − φ)
∂

∂t

(∇x · u(0)
g

)+ φ∇x · v(0) = −(1 − φ)
∂

∂t

(∇X · u(1)
g

)− φ∇X · v(1), (2.37)

φ

(
v(0) − ∂u(0)

g

∂t

)
= −∇xp(0) − ∇X p(1), (2.38)

∇x · σ (0)
g + ∇X · σ (1)

g = 0, (2.39)

σ (0)
g = −p(0)I +D :

(∇xu(0)
g + ∇X u(1)

g

)
. (2.40)

In the fibre region �f, at O(1) equation (2.22) supplies

∇x · σ (0)
f + ∇X · σ (1)

f = 0, (2.41)

σ
(0)
f =C :

(
∇xu(0)

f + ∇X u(1)
f

)
, (2.42)

while on ∂�f the boundary conditions (2.24)–(2.26) supply at O(ε)

σ (1)
g · n = σ

(1)
f · n, (2.43)

u(1)
g = u(1)

f , (2.44)(
v(1) − ∂u(1)

g

∂t

)
· n = 0. (2.45)

3 Definition of cell problems

Having established that the leading order displacements u(0)
f and u(0)

g are independent of the
microscale, we now obtain the equations that govern the microscale variation at O(ε) in the
displacements. Periodicity enables us to understand the microscale behaviour by considering a
single repeating cell. We identify the restriction of �f to the single repeating cell by �̂f and
likewise �̂g is the restriction of �g to the single repeating cell. To be clear, ∂�̂f identifies
the interface between �f and �g found within a single repeating cell. An example of this cell
geometry is shown in Figure 1(d).

Substituting (2.40) into (2.33) and (2.42) into (2.34), and recalling that the leading order
displacements and pressure are independent of X, we obtain

∇X · (D : ∇X u(1)
g

)= 0, in �̂g, (3.1)

∇X ·
(
C : ∇X u(1)

f

)
= 0, in �̂f, (3.2)
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subject to the continuity of stress and displacement conditions given by equations (2.35) and
(2.44) on the cell-scale interface ∂�̂f(

C : ∇X u(1)
f −D : ∇X u(1)

g

)
· n = −p(0)n −

(
C : ∇xu(0)

f −D : ∇xu(0)
f

)
· n, (3.3)

u(1)
f = u(1)

g . (3.4)

Boundary conditions on the surface of the repeating cell are provided by requiring u(1)
f and u(1)

g to
be periodic, with one additional boundary condition required to remove the translational freedom
which is later set by requiring that various components of the microscale solution have zero mean
on the microscale.

We note that equations (3.1) and (3.2) define linear homogeneous problems, subject only to
linear forcing by the leading order displacement, u(0)

f , and the leading order pressure, p(0), via the
Neumann boundary condition (3.3). Hence, their solutions are of the form

u(1)
g = r(X)p(0) +B(X) : ∇xu(0)

f , (3.5)

u(1)
f = q(X)p(0) +A(X) : ∇xu(0)

f , (3.6)

where r and q are vectors and B and A are rank 3 tensors. The solutions (3.5) and (3.6) are
substituted into (3.1) and (3.2), respectively, and it follows from the linearity of (3.1) and (3.2)
that

(λg +μg)∇X (∇X · r)+μg∇2r = 0, in �̂g, (3.7)

(λf +μf)∇X (∇X · q)+μf∇2q = 0, in �̂f, (3.8)

where we have exploited the constitutive (linearly elastic) assumptions for D and C, specified
by equations (2.20) and (2.23), respectively. On the interface between the component materials
equations (3.7)–(3.8) for r and q are subject to the boundary conditions

(C : ∇X q −D : ∇X r) · n = −n, on ∂�̂f, (3.9)

q = r, on ∂�̂f. (3.10)

We additionally require that r and q are periodic in X, and that∫∫∫
�̂g

r dV +
∫∫∫

�̂f

q dV = 0, (3.11)

where dV is the volume element with respect to the microscale variables, so that the solution
has zero mean on the microscale. We note that equations (3.7)–(3.11) for r and q define a linear
elasticity problem on the repeating cell in which deformations in the gel region �̂g and the fibre
region �̂f are coupled and caused by a jump in stress at the interface between �̂g and �̂f.

A similar procedure is applied to obtain governing equations for B and A. We first rewrite the
components of each rank 3 tensor in a vectorised form as

b(mn) =Bimnei, and a(mn) =Aimnei, (3.12)

where ei are the Cartesian basis vectors, m, n = 1, 2, 3, and we sum over the repeated index i.
Substituting these vectorised forms into (3.1) and (3.2), and exploiting the linearity of these
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problems, we obtain

(λg +μg)∇X

(∇X · b(mn)
)+μg∇2b(mn) = 0, in �̂g, (3.13)

(λf +μf)∇X

(∇X · a(mn)
)+μf∇2a(mn) = 0, in �̂f, (3.14)

where we have again made use of the constitutive assumptions (2.20) and (2.23). On the interface
between the component materials, these problems for b(mn) and a(mn) are subject to the boundary
conditions(

C : ∇X a(mn) −D : ∇X b(mn)
) · n = −(C : I(mn) −D : I(mn)) · n, on ∂�̂f, (3.15)

b(mn) = a(mn), on ∂�̂f, (3.16)

where I(mn) is an indicator matrix whose (m, n)-th entry is 1, otherwise zero. We additionally
require that b(mn) and a(mn) are periodic in X, and that∫∫∫

�̂g

b(mn) dV +
∫∫∫

�̂f

a(mn) dV = 0, (3.17)

so that the microscale solution has zero mean. Thus, equations (3.13)–(3.17) represent a further
nine linear elasticity problems on the repeating cell in which deformations in the gel region �̂g

and the fibre region �̂f are coupled, and caused by a jump in stress at the interface between �̂g

and �̂f.
A similar procedure is applied to determine p(1), the O(ε) pressure of the fluid phase in the

hydrogel region. We note that as u(0)
f = u(0)

g is independent of X, equation (2.31) implies that the
divergence of the fluid phase velocity in the poroelastic region is zero at leading order. We then
take the divergence of (2.38) on the microscale to find that

∇2
X p(1) = 0, in �̂g. (3.18)

Next we take the scalar product of (2.38) with n and, exploiting equations (2.44) and (2.45),
obtain the following boundary condition for p(1) on the hydrogel-fibre interface:

∇X p(1) · n = −∇xp(0) · n, on ∂�̂f. (3.19)

Thus, equations (3.18)–(3.19) comprise a linear homogeneous cell problem for p(1) subject to
forcing by the leading order pressure p(0) via the Neumann boundary condition. As above, we
formulate a solution to this problem as

p(1) = f · ∇xp(0), (3.20)

where f = f(X) is a vector. Upon substitution of (3.20) into (3.18) we obtain

∇2
X f = 0, in �̂g. (3.21)

Similarly, substitution of (3.20) into (3.19) provides the boundary condition

∇X f · n = −n, on ∂�̂f. (3.22)

Finally, we require that f is periodic in x, and that∫∫∫
�̂g

f dV = 0, (3.23)
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so that the microscale solution has zero mean. Thus, equations (3.21)–(3.23) define linear, scalar
problems for the three components of f.

4 Macroscale equations and effective parameters

To complete the homogenisation procedure we now average across the microscale solutions from
Section 3 to obtain governing equations and effective material parameters for the composite
material at the macroscale.

We integrate the O(1) continuity of mass equation (2.37) over the microscale repeating unit
cell and divide by the cell volume. It follows from the divergence theorem, and application of
the continuity of displacement condition (2.44) and the kinematic condition (2.45) that

φ∇x · veff + (1 − φ)
|�̂g|
|�̂|

∂

∂t

(
∇x · u(0)

f

)
= 1

|�̂|
∂

∂t

∫∫∫
�̂f

∇X · u(1)
f dV , (4.1)

where |�̂| is the volume of a microscale repeating unit cell, |�̂g| is the volume within this cell
occupied by the hydrogel, dV is the volume element with respect to the microscale variables and
veff is the effective velocity of the fluid phase of the hydrogel, namely

veff(x, t) = 1

|�̂|
∫∫∫

�̂g

v(0)(x, X, t) dV . (4.2)

We now substitute the solution for u(1)
f given by (3.6) into the averaged continuity of mass

equation (4.1) to obtain

φ∇x · veff + (1 − φ)
|�̂g|
|�̂|

∂

∂t

(
∇x · u(0)

f

)
= Seff :

∂

∂t
∇xu(0)

f + �eff ∂p(0)

∂t
, (4.3)

where Seff is an effective compressibility tensor (rank 2) and �eff is a parameter related to the
compressibility of the composite material; this accounts for both the compressibility of the linear
elastic materials in the composite (namely the PCL fibres and the solid phase of the hydrogel)
and the effect associated with the flow of the incompressible fluid phase within the hydrogel due
to the deformation of the solid phase (where water will be lost from the composite). These are
defined as

Seff = 1

|�̂|
∫∫∫

�̂f

∇X ·A dV , (4.4)

�eff = 1

|�̂|
∫∫∫

�̂f

∇X · q dV , (4.5)

where dV is the volume element with respect to the microscale variables. To determine these
effective parameters we first solve equations (3.7)–(3.11) and (3.13)–(3.17) to obtain A and q
for a particular geometry and then use these solutions in (4.4) and (4.5) above.

Continuing, we integrate the O(1) version of Darcy’s law (2.38) over the microscale repeating
cell and divide by total cell volume to obtain

φ

(
veff − |�̂g|

|�̂|
∂u(0)

f

∂t

)
= −|�̂g|

|�̂| ∇xp(0) − 1

|�̂|
∫∫∫

�̂g

∇X p(1)dV . (4.6)
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We then use equation (3.20) to substitute for p(1) in equation (4.6). Rewriting the right-hand side
of that equation in a more compact form, we obtain

φ

(
veff − |�̂g|

|�̂|
∂u(0)

f

∂t

)
= −Keff∇xp(0), (4.7)

where Keff is an effective permeability tensor (rank 2) for the composite material; this is defined
as

Keff = 1

|�̂|

(
|�̂g|I +

∫∫∫
�̂g

∇X f dV

)
. (4.8)

Thus, to determine the effective permeability Keff we first solve (3.21)–(3.23) to obtain f for a
particular microscale geometry and then use that solution in (4.8). In later numerical simulations
it is convenient to eliminate veff by substituting (4.7) into (4.3) to give

−Keff∇2
x p(0) + |�̂g|

|�̂|
∂

∂t

(
∇x · u(0)

f

)
= Seff :

∂

∂t
∇xu(0)

f + �eff ∂p(0)

∂t
. (4.9)

We remark that writing the equation in this form eliminates the porosity φ, obviating the need to
know that quantity.

Finally, we integrate the O(1) conservation of momentum equations, (2.39) and (2.41), over
the microscale repeating unit cell and divide by the total cell volume; we then apply continu-
ity of stress at the hydrogel–fibre interface (2.43) to obtain a volume averaged conservation of
momentum equation:

∇x · σ eff = 1

|�̂|

(
∇x ·

∫∫∫
�̂f

σ
(0)
f dV + ∇x ·

∫∫∫
�̂g

σ (0)
g dV

)
= 0, (4.10)

where σ eff is an effective stress tensor (rank 2) representing the macroscale stress of the compos-
ite material. To develop an explicit expression for σ eff we substitute the first order displacements,
(3.5) and (3.6), into the definitions of leading-order stress, (2.40) and (2.42), to obtain

σ (0)
g = −p(0)I +D :

(
∇xu(0)

f + (∇X r) p(0) + (∇XB) : ∇xu(0)
f

)
, (4.11)

σ
(0)
f =C :

(
∇xu(0)

f + (∇X q) p(0) + (∇XA) : ∇xu(0)
f

)
. (4.12)

On substituting these expressions into (4.10) we deduce that the appropriate form of the effective
stress tensor is

σ eff =C
eff : ∇xu(0)

f + Geffp(0), (4.13)

where C
eff is an effective elasticity tensor (rank 4), and Geff is a rank 2 tensor describing the

hydrostatic component of the effective stress; these are defined as

C
eff = 1

|�̂|

(
|�̂f|C+ |�̂g|D+C :

∫∫∫
�̂f

∇XA dV +D :
∫∫∫

�̂g

∇XB dV

)
, (4.14)

Geff = 1

|�̂|

(
−|�̂g|I +C :

∫∫∫
�̂f

∇X q dV +D :
∫∫∫

�̂g

∇X r dV

)
, (4.15)
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where |�̂f| is the volume occupied by the fibres. Thus, to find the effective stress tensor σ eff

of the macroscale composite material for a particular (microscale) hydrogel–fibre geometry we
first solve equations (3.7)–(3.11) and (3.13)–(3.17) to obtain the solution components of the
microscale cell problem, namely r, q, B and A, and then use these solutions in expressions
(4.14) and (4.15) above.

To summarise, we have now derived a system of four macroscale equations for continuity of
mass (4.3), Darcy’s law (4.7), conservation of momentum (4.10) and the effective stress tensor
(4.13) which, subject to appropriate boundary and initial conditions, govern the macroscale vari-
ables for displacement u(0)

f , pressure in the hydrogel p(0) and the effective velocity of the fluid
phase of the hydrogel veff. Calculating these effective parameters involves evaluating 189 vol-
ume integrals; by exploiting the symmetry of the microscale cell geometry and the assumption
that the fibres and the solid phase of the hydrogel are linear elastic only 39 of these integrals need
to be evaluated, as described in detail in Appendix B.

5 Solution procedure and comparison with experiments

We now validate the model presented in Sections 3 and 4 against a series of experiments that were
performed to establish how fibre spacing affects the mechanical properties of reinforced hydrogel
scaffolds. These experiments involved scaffolds reinforced with PCL fibres 20 µm in diameter
and 3D-printed at spacings of either 300 or 800 µm (with three replicates for each choice of
fibre spacing). The fibre lattices are then cast in GelMA to produce cylindrical scaffolds with
diameters between 5.54 and 5.98 mm and heights 1.80–1.98 mm. These composite samples were
held in unconfined compression at a fixed strain between two parallel plates while the applied
stress required to maintain this displacement was recorded; after an initial ramping phase the
required stress decreases slowly due to the poroelastic relaxation of the composite.

Details of the numerical solution procedure for the microscale cell problem of Section 3 and
the homogenised macroscale problem of Section 4 are given in Sections 5.1 and 5.2, respectively.
The experimental relaxation tests are compared to our theoretical simulation results in Sections
5.3, with a focus on replicating the poroelastic relaxation phase of these experiments in the
simulations.

5.1 Microscale solution procedure

The microscale cell problem requires the solution of the linear elasticity problems (3.7)–(3.11)
and (3.13)–(3.17) to obtain r, q, b(mn) and a(mn), and the solution to Laplace’s equation (and
boundary conditions) (3.21)–(3.23) to obtain f. These sub-problems are solved using the multi-
physics package COMSOL, which can perform finite element simulations on the interpenetrating
geometry of the fibres and hydrogel regions to a high degree of accuracy. The cell geometry was
meshed with an internal routine that accounts for the shape of the two materials and generates
a fine (non-adaptive) mesh with 12,990 vertices and 307,890 degrees of freedom. COMSOL
implements period boundary conditions automatically and the solutions to these finite element
simulations converge with a typical relative error of O(10−11). These simulations are repeated to
give values of the volume integrals in Section 4 for two cell geometries, described by the dimen-
sionless parameter values given in Table 2, and for several values of the material parameters of
PCL within the published range (as later described in Section 5.3).
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Table 2. Dimensionless parameters characterising the repeating cell for the two
repeating cell geometries used in the simulations. The fibre radius is ρ, the dimen-
sionless microscale height of the cell is θ = h/l and θ/4ρ is a measure of the
vertical overlap between adjacent fibre layers, where a larger value indicates less
overlap and θ/(4ρ) = 1 represents the case where the fibres are just touching.

Dimensional fibre spacing (µm) ρ θ θ/4ρ

300 0.0333 0.1066 0.8
800 0.0125 0.04 0.8

For each of the cell geometries in Table 2 and each choice of the material parameters of PCL
we use the COMSOL simulation results to calculate C

eff, G, Keff, Seff and �eff. As described in
Section B, this requires the computation of only the volume integrals of the derivatives of the
solution components given in Table B1. The form of the effective elasticity tensor Ceff in (4.14)
reveals that the composite material can best be described as an orthotropic material in which
two of the defined directions X and Y of the effective material properties of the composite are
the same. This is not the same as a transversely isotropic material which has one distinguishable
axis and is isotropic in any plane which lies perpendicular to that axis. In our material X and Y
are interchangeable, but the two directions which are parallel to the directions of the fibres are
both ‘special’ directions. This is intuitively simple to reconcile with the square grid pattern of the
printed fibres. From these calculations we observe that Ceff

1111 =C
eff
2222 are an order of magnitude

larger than C
eff
3333, indicating that the composite material is much stronger along the fibre direc-

tions than perpendicular to the fibres. The other non-zero components of Ceff are much smaller,
which suggests that the composite material would be weaker in shearing.

5.2 Macroscale solution procedure

Having obtained the effective material parameters from the microscale problem, we proceed
to solve the macroscale equations (4.3), (4.7), (4.10) and (4.13) with a finite element scheme.
We aim to compare this with experiments on a cylindrical scaffold and the dimensions of the
scaffolds from these experiments determine the choice of length scale L. For example, for the
experiments with 300 µm fibre spacing we take this length scale to be L = 5.76 mm, the mean
diameter of the three scaffolds, and the corresponding mean dimensionless scaffold height is
η= H/L = 0.34. The solution domain is then

x2 + y2 � (1/2)2, 0 � z � η. (5.1)

The scaffold is held between two plates, so no-slip conditions are appropriate at both the upper
and lower surfaces of the cylinder. Additionally, we prescribe a time-dependent displacement in z
on the upper surface as a means of implementing the loading strategy. The appropriate boundary
conditions are then

u(0)
f = 0,

∂p(0)

∂z
= 0, on z = 0, (5.2)

u(0)
f1 = u(0)

f2 = 0, u(0)
f3 = d(t),

∂p(0)

∂z
= 0, on z = η, (5.3)
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where u(0)
f1 , u(0)

f2 and u(0)
f3 are, respectively, the x, y and z components of u(0)

f . Different choices
of the displacement function d(t) are required to simulate the relaxation tests, and these will be
defined in the following section. We impose no stress boundary conditions on the curved surfaces
of the cylinder:

p(0) = 0, σ eff · eR = 0, on x2 + y2 = (1/2)2, (5.4)

where eR is the outward-pointing unit normal to the cylinder surface. In all simulations the initial
conditions are

u(0)
f (x, 0) = 0, (5.5)

p(x, 0) = 0, (5.6)

so that the scaffold is initially in an undeformed and unstressed reference state.
We use a finite element method to calculate numerical solutions of (4.9) and (4.10), subject

to the boundary conditions (5.2)–(5.4) and the initial conditions (5.5) and (5.6). The effective
stress σ eff used in (4.10) and (5.4) is defined in terms of p(0) and u(0)

f in (4.13). The domain x2 +
y2 � (1/2)2, 0 � z � η is partitioned into tetrahedral elements using the mesh generation package
TetGen [22]. A finite element solution is then calculated, using an implicit approximation to
all time derivatives, that uses a quadratic approximation to u(0)

f on each element and a linear
approximation to p(0) on each element. This finite element method has been shown to be stable
for poroelasticity [31] and is therefore suitable here since the homogenised governing equations
are of a similar form to those that describe small deformation poroelasticity.

5.3 Comparison with relaxation test experiments

The relaxation test involves applying a 6% strain at the top of the scaffold and recording the
stress required to maintain this displacement over the course of 15 min, that is, for 0 � t � 15.
In line with the experiments, the time-dependent displacement d(t) of the top-loading plate used
in the simulations was chosen so that a strain of 6% was attained after an initial period of linear
displacement over 0 � t< δ, where δ is a short initiation time. The form of the loading function
for the relaxation test is then

d(t) = ξη

(
1

δ
tH(δ − t) + H(t − δ)

)
, (5.7)

where ξ = 0.06 is the maximum applied strain, H(t) is the Heaviside step function, and δ takes a
slightly different value for each choice of fibre spacing to match the initial transient strain applied
in the experiments; these values are δ = 0.14 for the 300 µm fibre spacing and δ = 0.11 for the
800 µm fibre spacing.

The results of the macroscale simulations of this relaxation test for 300 µm spacing are
shown in Figure 2, along with experimental data based on three replicates of this test. The
model exhibits qualitatively similar behaviour to the experiments, with an initial ramp-up phase
followed by a relaxation phase. These results are all displayed in terms of ‘average stress’,
defined as the total force applied at the top of the scaffold divided by the cross-sectional area.
During the initial fast-loading phase the response of the scaffold is dominated by the fibres,
and so the average stress is essentially linearly elastic. During the relaxation phase the scaffold
exhibits poroelastic behaviour due to the flow induced in the fluid phase of the hydrogel.
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FIGURE 2. Numerical simulations of the relaxation text for 300 µm fibre spacing held at 6% strain (solid
line), shown as the time-dependent stress response of the scaffold to the imposed displacement given in
(5.7). Also shown is the mean time-dependent stress from three replicates of the experimental relaxation
test (dashed line) and a 95% confidence interval on these data (dotted lines).

There are marked quantitative differences between the experiments and the simulations. The
model overestimates the maximum stress attained after the initial loading by two orders of
magnitude and displays a more rapid relaxation, reaching a steady state after approximately
2 min, whereas the measured experimental stress is still decreasing at 15 min.

As noted previously, the published values for the Young’s modulus E′
f of PCL fibres vary

between 53 and 363 MPa [5, 12, 41, 42] and published values of the associated Poisson’s ratio νf

vary between 0.3 and 0.49 [12, 17, 18]. In light of this we now embark on a sparse exploration of
this parameter space, with a view to fitting appropriate material parameters for the batch of PCL
used in these experiments.

Close inspection of the scaffolds used in the experiments suggests some possible explana-
tions for these discrepancies. The printed fibre lattices do not exactly correspond to our idealised
model, with the fibres in the uppermost layers sagging and adopting a curved shape, as shown
in Figure 1(b) and (c). We hypothesise that when the scaffold is loaded these fibres do not come
under tension as readily as the fibres in the lower layers. Additionally, as a result of casting the
printed fibres in the hydrogel, there is a thin layer of pure (unreinforced) hydrogel at the top
of the scaffold. We hypothesise that this thin layer will yield more readily to loading than the
reinforced gel below it, and that the reinforced gel, therefore, experiences a lower strain than that
applied to the scaffold as a whole. For instance, if the depth of the pure hydrogel layer is 5–10%
of the height of the entire construct, then we estimate, based on the relative Young’s moduli of
the PCL and the solid phase of the GelMA, that the strain applied to the reinforced hydrogel
will be less than 1%. In this hypothetical situation the pure hydrogel layer would significantly
deform during the initial loading. We propose this to account for both these effects by adjusting
the applied strain in the model, via the parameter ξ in (5.7).

We now consider the effect of varying the three parameters described above, namely ξ , Ef

and νf, on the time-dependent average stress predicted by the model. The role of changing the
applied strain is shown in Figure 3(a), for four values of ξ ranging from the recorded value of
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FIGURE 3. Examples of the sensitivity of the stress response to the key parameters of the model. (a)
Varying the displacement ξ , with the fibre parameters fixed at Ef = 363.3 MPa and νf = 0.43. (b) Varying
the Young’s modulus of the fibres Ef, with an applied strain of 6% and νf = 0.43. (c) Varying the Poisson’s
ratio of the fibres νf, with an applied strain of 6% and Ef = 2.65 MPa.
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6% to a much smaller strain of 0.15%. The peak stress value at the end of the loading phase
for the smallest of these applied strains is approximately two orders of magnitude smaller than
the original 6% strain and of the same order of magnitude as the experimentally recorded stress.
The shape of the relaxation profile is, however, uneffected by varying the strain; it still decays
more rapidly than the experimentally observed profile.

The effect of lowering the Young’s modulus of the fibres Ef is shown in Figure 3(b) for three
choices of this parameter, with the original 6% strain. To achieve a peak stress which is similar
in magnitude to the experimentally observed value, Ef must be set to a value which is an order
or magnitude smaller than the lowest published value of this parameter. At the lowest published
value (of Ef = 53 MPa) the model overpredicts the peak value of stress, but the relaxation profile
is similar to that seen experimentally. The effect of varying νf is shown in Figure 3(c); this has
a relatively small effect on both the peak stress at the end of the loading phase and the rate at
which the composite relaxes.

The sensitivity of the stress response to ξ and Ef shown in Figure 3(a) and (b) suggests that the
model will come close to the observed stress if both parameters are lowered in combination. We
have performed a sparse parameter sweep through these parameters to determine values which
produce reasonable agreement with the observed data. The stress given by these parameters is
shown in Figure 4(a). Here, the parameters ξ =0.45%, Ef = 90.8 MPa and νf = 0.49 produce a
stress through the loading phase which closely follows the experiment and a relaxation phase
which is in good agreement up to time of about t = 1, after which the model predicts a faster
decay in stress.

Further relaxation tests were performed for reinforced hydrogel scaffolds with fibres printed at
a wider spacing of 800 µm, and data from three replicates of this experiment are compared to the
homogenised model in Figure 4(b). Applying the model naively as in Figure 2 over-predicts the
observed average stress by two orders of magnitude. The model solution shown in Figure 4(b) is
for ξ =0.525%, Ef = 45.4 MPa and νf = 0.49; these parameters were obtained through a sparse
parameter sweep, as described earlier. As before, the model follows the observations closely
through the loading phase and remains in agreement with the stress in the relaxation phase for
a longer time than in the 300 µm case. This agreement was obtained using a value of Ef which
was half that of the 300 µm case, suggesting that the sagging of the fibres is more pronounced
for this larger fibre spacing.

6 Discussion

We have used mathematical homogenisation theory to develop a new model to describe the
deformation of a composite elastic–poroelastic material. This was motivated by a desire to
determine the macroscale mechanical properties of fibre-reinforced hydrogels used in the tis-
sue engineering of articular cartilage. Our model enables us to calculate the effective material
properties of the composite given knowledge of the material parameters of the constituent mate-
rials (namely the GelMA hydrogel and the PCL fibres) and the geometrical arrangement of the
fibres and hydrogel within a single repeating cell of the composite. By incorporating these details
in a coherent, systematically derived description of the composite, we are able to gain mechanis-
tic insight into its behaviour. Our initial application of the model, shown in Figure 2, predicted
much stronger fibre-reinforced composites than those we tested experimentally, but exhibited
good qualitative agreement with both the initial linear elastic loading phase and a poroelastic
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FIGURE 4. Numerical simulations of the relaxation text compared with the experimental data. (a) 300 µm
fibre spacing with adjusted modelling parameters of ξ = 0.45%, Ef = 90.8 MPa and νf = 0.49 (solid line).
(b) 800 µm fibre spacing with adjusted modelling parameters of ξ = 0.525%, Ef = 45.4 MPa and νf = 0.49
(solid line). Both (a) and (b) show the mean time-dependent stress from three replications of the experi-
mental relaxation test (dashed line) and a 95% confidence interval on these data (dotted lines). Note that
300 µm fibre spacing data is the same as that shown in Figure 2 with a log scale on the vertical axis.

relaxation phase. Further numerical solutions, shown in Figure 3, demonstrate that the predicted
stiffness of the composite is very sensitive to the Young’s modulus of the PCL fibres and the
strain applied to the composite.

There are several possible explanations for why our model over-predicts the strength of the
fibre-reinforced composites. In Section 5.3 we discussed two of these in detail, namely the sag-
ging of the printed fibres, which effectively lowers the Young’s modulus of the fibres, and the
presence of a layer of unreinforced hydrogel at the top of the scaffold, which means that an
applied strain is not directly passed on to the reinforced composite material. Accounting for
these effects, we obtained good agreement between the observed relaxation behaviour of the
composite and our model, as shown in Figure 4. We postpone formally including these effects

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792518000657
Downloaded from https://www.cambridge.org/core. Universiteitsbibliotheek Utrecht, on 18 Feb 2020 at 13:08:58, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792518000657
https://www.cambridge.org/core


Multiscale modelling and homogenisation of fibre-reinforced hydrogels 165

in the model for future work. Adding the extra thin layer of hydrogel would be a relatively
straightforward extension of the current model. Accounting for the effect of sagging fibres would
be more involved; in this case the cell geometry is no longer symmetric in z and therefore some
of the computational advantages that this symmetry confers would be lost.

There are other possible sources of discrepancy between the model and the experiments. For
instance, the vertical spacing between the fibres was estimated with knowledge of the total num-
ber of printed layers and the overall scaffold height. If the vertical overlap between the fibres in
the definition of the cell geometry is further reduced, then the model predictions may be brought
closer to the experimental data. Another possible source of the discrepancy is the boundary con-
ditions imposed between the fibres and the hydrogel. We have assumed continuity of stress and
displacement at the interface between the fibres and the hydrogel. In practice, a boundary condi-
tion that allows for some slip between the hydrogel and the fibres may be more appropriate and
would probably lead to the model predicting a weaker fibre-reinforced composite. Modifying the
homogenisation procedure to account for such effects is an interesting direction for future work.

Finally, the hydrogel may not be perfectly poroelastic. Some of the observed relaxation
behaviour may be due to viscous relaxation, and incorporating these effects by using a differ-
ent model for the hydrogel would require altering the homogenisation process. Such a model
would introduce history dependence of the material and could potentially make it far less numer-
ically efficient if a new set of cell problems had to be solved at each time step; see, for example,
the discussion in [34].

The elastic material in our composite is much stronger than the poroelastic hydrogel; μf and
λf are five orders of magnitude larger than μg and λg, which might suggest that it is possible
to neglect entirely the contribution of the poroelastic region and model only the elastic fibre
scaffold. This approach would not, however, capture the time-dependent response of the com-
posite. Accounting for both the elastic and the dynamic poroelastic nature of these composites,
as we do here, is important to understand their mechanical properties. An interesting direction
for study might be to formally incorporate the difference in the material properties of the hydro-
gel and the fibres in the model by exploiting the small parameter associated with the ratio of the
Young’s moduli of the elastic phase of the hydrogel and that of the fibres, and then repeating the
homogenisation procedure.

Our model captures the key features of the fibre-reinforced hydrogel, in particular its
orthotropic nature, and directly relates the material properties of the constituent hydrogel and
fibres to those of the composite material. Modelling the mechanical properties of these scaffolds
is an important step to inform tissue engineers about the stress experienced by cells when the
scaffold is mechanically loaded, thus allowing future modelling work to consider the response
of the cells to this stimulation. A key point of interest here is to understand how the scaffold is
remodelled as the seeded cells deposit extracellular matrix components in response to loading, a
process which eventually leads to implants which resemble natural articular cartilage. This might
involve replacing the hydrogel phase with a cartilage-like phase that can explicitly describe the
mechanical role of the extracellular matrix components; see [26] for a review of such models of
cartilage. Candidate models for this replacement phase include the model of [30], which treats
cartilage as a poroelastic material, or the detailed cartilage model of [2], which includes the
mechanical effects of ions interacting with the extracellular matrix. Since the cells embedded in
the scaffold are actively remodelling their surrounding mechanical environment, this approach
should also account for the growth of the cartilage, and a natural framework to do this would be
via the theory of morphoelasticity [20].
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To conclude, this homogenised model successfully captures the orthotropic nature of the
fibre-reinforced hydrogel scaffold, can (when suitably adjusted) predict the behaviour seen in
experimental relaxation tests and provides a basis for future study of the mechanical stimulation
of cell-loaded scaffolds.
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Appendix A Calculation of Lamé parameters for PCL and GelMA

We assume that the PCL fibres are an isotropic linear elastic material, with Young’s modulus
E′

f and Poisson’s ratio νf. The published values of Young’s modulus for printed PCL fibres vary
with the method of printing and radius of the fibre, and so we will assume that E′

f is between 53
and 363 MPa (for details see [5, 12, 41, 42]) and that the Poisson’s ratio νf is between 0.3 and
0.49 (see [12, 17, 18]). The dimensional Lamé parameters μ′

f and λ′
f in Table 1 are calculated

from the values given in [12], namely E′
f = 363 MPa and ν ′

f = 0.3, as follows:

μ′
f = E′

f

2(1 + νf)
, λ′

f = E′
fνf

(1 + νf)(1 − 2νf)
. (A1)

We have performed unconfined compression tests on GelMA to establish the Lamé parameters
for the hydrogel. These tests were identical to the ‘relaxation’ test performed on the reinforced
composite (see Section 5.3). Here, a pure GelMA cylinder of radius 2.5 mm and height 2 mm is
held at 6% strain between two parallel plates, with the stress required to maintain this displace-
ment recorded over 15 min. Three replications of this test were performed and the results are
shown in Figure A1(a).

To obtain the Lamé parameters and the effective permeability k′/μ′, these data are calibrated
against finite element simulations of a poroelastic cylinder held at 6% strain between parallel
plates. Here, we solve (2.1)–(2.5) for a cylinder of hydrogel (with no reinforcement), assuming
that there is no slip between the hydrogel and the plates and thus obtain the average stress as
a function of time. This simulation was repeated for a range of Poisson’s ratio νg = 0.2–0.3
in intervals of 0.05 and a range of dimensionless Young’s modulus Eg = 1 × 10−3–5 × 10−3

in intervals of 10−4, where each choice of parameters has a characteristic relaxation profile.
A fitted value of effective permeability k′/μ′ is then used to dimensionalise these solutions to
minimise the mean square error between each individual simulation and the three replications of
the experiment. The combination of material parameters which minimise the mean-squared error
is (once dimensionalised) E′

g = 49.1 kPa, νg = 0.23 and k′/μ′ = 2.382 × 10−4 mm2 kPa−1 min−1.
The corresponding Lamé parameters μ′

g and λ′
g are given in Table 1. The simulated relaxation

test for these parameters is shown as a dashed line in Figure A1(a) and is in agreement with
the experimental data which demonstrates that it is both reasonable and accurate to consider the
hydrogel as a poroelastic material.
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FIGURE A1. The time-dependent stress response of three replications of an experimental relaxation test
on unreinforced GelMA (mean as a black dashed line, 95% confidence interval in black dotted lines) is
shown against the numerical solution of the poroelastic equations for this relaxation test with the fitted
parameters of E′

g = 49.12 kPa, νg = 0.23 and k′/μ′ = 2.382 × 10−4 mm2 kPa−1 min−1 (black solid line). In
the experiments a cylinder of the hydrogel is held in unconfined compression between two parallel plates at
6% displacement for 15 min.

Appendix B Simplifications due to cell symmetry and linear elasticity

Many entries in the tensors defining the macroscale properties derived in Section 4 can be shown
to vanish either by arguments due to the symmetry of the cell geometry and/or by exploiting our
assumptions that the fibres and the solid phase of hydrogel are linearly elastic.

The domain of the microscale repeating cell is 0 � X � 1, 0 � Y � 1, 0 � Z � θ , where θ = h/l
is the dimensionless microscale height of the cell. Within this cell the fibres are arranged so
that there are two half cylinders, with non-dimensional radius ρ = d/(2l), with mid-lines along
(Y = 0.5, Z = 0) and (Y = 0.5, Z = θ ), respectively. There is a cylinder, with non-dimensional
radius ρ, with its mid-line along (X = 0.5, Z = θ/2). The union of the cylinder and the two
half cylinders form the elastic fibre region �̂f. The complement of �̂f in the repeating box is
the hydrogel region �̂g. A measure of the overlap between the fibres is then θ/(4ρ), where this
quantity is equal to 1 if adjacent fibre layers are just touching, and equal to 1/2 if they completely
overlap. A schematic diagram of the cell geometry showing both the hydrogel and fibre regions
is shown in Figure 1(e).

The arrangement of the fibres is such that the cell geometry is symmetric about all three mid-
planes and it is therefore only necessary to consider an eighth of the cell volume. The symmetries
in the components of the surface normal vector n = niei are as follows:

n1, odd in X , even in Y , Z, (B1)

n2, odd in Y , even in X , Z, (B2)

n3, odd in Z, even in X , Y . (B3)
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Table B1. List of derivatives of the components of the microscale solution from Section 3 which
are even in all spatial dimensions, and so make a non-zero contribution to the volume integrals
used to calculate the effective parameters in Section 4.

Variable Derivatives even in all dimensions No. of non-zero (total)

f
∂f1

∂X
,
∂f2

∂Y
,
∂f3

∂Z
3 (9)

q
∂q1

∂X
,
∂q2

∂Y
,
∂q3

∂Z
3 (9)

r
∂r1

∂X
,
∂r2

∂Y
,
∂r3

∂Z
3 (9)

a(mn)

∂a(mm)
1

∂X
,
∂a(mm)

2

∂Y
,
∂a(mm)

3

∂Z
(for m = 1, 2, 3),

∂a(12)
1

∂Y
,
∂a(12)

2

∂X
,
∂a(13)

1

∂Z
,
∂a(13)

1

∂X
,
∂a(23)

2

∂Z
,
∂a(23)

3

∂Y
15 (81)

b(mn) As for a(mn) 15 (81)

When combined with the microscale boundary conditions (3.9), (3.15) and (3.22), these impose
further symmetries on the solution components q, r, A, B and f. For example, consider the
X -component of the boundary condition (3.22):

∂f1
∂X

n1 + ∂f1
∂Y

n2 + ∂f1
∂Z

n3 = −n1, on ∂�̂f, (B4)

where each product on the left-hand side must be odd in X , and even in Y and Z to match the
normal component n1 on the right-hand side. This implies that

∂f1
∂X

, even in X , Y , Z, (B5)

∂f1
∂Y

, odd in X , Y , even in Z, (B6)

∂f1
∂Z

, odd in X , Z, even in Y . (B7)

Therefore, when each of these quantities is integrated over the hydrogel (cell) volume in (4.8)
to calculate Keff only the integral of the X -derivative (B5) above is non-zero since it is even in
all three dimensions. Applying a similar argument to the other components of f, we find that in
(3.22) only three of the nine components of the volume integral terms are non-zero (listed in
Table B1), and that Keff is diagonal.

An identical argument is applied to the boundary conditions (3.9) for q and r. Although the
form of this boundary condition is slightly more complicated, the symmetry properties of the
components are the same as for f, so calculation of Geff in (4.15) only requires the evaluation of
six volume integrals (listed in Table B1), and we note here that Geff is diagonal.

A similar procedure is performed for a(mn) and b(mn), although it is necessary to first exploit
the symmetry properties of C and D. The constitutive assumptions that both the fibres and
the solid phase of the hydrogel are linearly elastic, (2.20) and (2.23), mean that C and D are
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right-symmetric and left-symmetric (that is Cijkl =Cijlk and Cijkl =Cjikl). It follows from the
right-symmetry of C and D, and from (3.15), that

a(12) = a(21), a(13) = a(31), a(23) = a(32), (B8)

b(12) = b(21), b(13) = b(31), b(23) = b(32), (B9)

which reduces the number of required calculations; it is only necessary to consider 18
components of the rank 3 tensors A and B, rather than the full 27.

The left-symmetry of C and D implies that the right-hand side of each component of (3.15)
is proportional to a single component of the normal vector n. Careful consideration of each
component of this boundary condition reveals the symmetry properties of the various derivatives
of a(mn) and b(mn) which are required for calculation of Ceff in (4.14). Only 15 of the original 81
volume integrals are non-zero and these are listed in Table B1. To summarise, by exploiting the
geometric cell symmetry and linearly elastic constitutive relations only 39 of the original 189
volume integrals need to be evaluated to calculate the effective macroscale properties.
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