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Key Points

•MAC leads to signifi-
cantly increased infec-
tions per 100 days at
risk (infection density)
compared with RIC/
NMA in the first
100 days.

• These higher infection
rates were caused by
a significantly higher
bacterial infection den-
sity in the MAC group.

Presumably, reduced-intensity/nonmyeloablative conditioning (RIC/NMA) for allogeneic

hematopoietic cell transplantation (alloHCT) results in reduced infections compared with

myeloablative conditioning (MAC) regimens; however, published evidence is limited. In this

Center for International Blood and Marrow Transplant Research study, 1755 patients (aged

$40 years) with acute myeloid leukemia in first complete remission were evaluated for

infections occurring within 100 days after T-cell replete alloHCT. Patients receiving RIC/NMA

(n 5 777) compared with those receiving MAC (n 5 978) were older and underwent

transplantation more recently; however, the groups were similar regarding Karnofsky

performance score, HCT–comorbidity index, and cytogenetic risk. One or more infections

occurred in 1045 (59.5%) patients (MAC, 595 [61%]; RIC/NMA, 450 [58%]; P 5 .21) by day 100.

The median time to initial infection after MAC conditioning occurred earlier (MAC, 15 days

[range,,1-99 days]; RIC/NMA, 21 days [range,,1-100 days]; P, .001). Patients receiving MAC

were more likely to experience at least 1 bacterial infection by day 100 (MAC, 46% [95%

confidence interval (CI), 43-49]; RIC/NMA, 37% [95% CI, 34-41]; P 5 .0004), whereas at least

a single viral infection was more prevalent in the RIC/NMA cohort (MAC, 34% [95% CI, 31-37];

RIC/NMA, 39% [95% CI, 36-42]; P5 .046). MAC remained a risk factor for bacterial infections in

multivariable analysis (relative risk, 1.44; 95% CI, 1.23-1.67; P , .0001). Moreover, the rate of

any infection per patient-days at risk in the first 100 days (infection density) after alloHCTwas

greater for the MAC cohort (1.21; 95% CI, 1.11-1.32; P , .0001). RIC/NMA was associated with

reduced infections, especially bacterial infections, in the first 100 days after alloHCT.
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Introduction

Allogeneic hematopoietic cell transplantation (alloHCT) is increas-
ingly used for the treatment of hematologic malignancies. Due to
the development of nonmyeloablative (NMA) or reduced-intensity
conditioning regimens (RICs), older patients and patients with
comorbidities are more frequently offered alloHCT.1-4 Overall
survival seems similar in patients with hematologic malignancies
after either a myeloablative (MAC) or an RIC/NMA regimen.
However, an increased relapse is offset by a reduced nonrelapse
mortality (NRM) and affects relapse-free survival.5-14 Bacterial
infections early after alloHCT are associated with increased
mortality.15 Factors associated with decreased infections after
alloHCT include less mucositis,16-19 shorter duration and de-
creased severity of neutropenia/lymphopenia,16 and faster immune
recovery,20 all of which are observed more frequently with RIC/NMA
than with MAC.21,22 The incidence of infections, a common and
often severe complication of alloHCT, is expected to be lower
after RIC/NMA compared with MAC and thus contribute to the
decreased NRM.23-25

In this large Center for International Blood and Marrow Transplant
Research (CIBMTR) retrospective study, we compared the in-
cidence and outcomes of bacterial, viral, and fungal infections
occurring in the first 100 days after alloHCT in adult patients with
acute myeloid leukemia (AML) in first complete remission receiving
RIC/NMA or MAC.

Methods

The CIBMTR is a working group of .400 transplantation centers
worldwide that contribute detailed data on HCT patients to the
statistical center at the Medical College of Wisconsin. Participating
centers are required to report all consecutive transplantations and
to follow up patients longitudinally. Computerized checks for
discrepancies, physicians’ review of submitted data, and on-site
audits of participating centers ensure data quality.

The CIBMTR performs observational studies in compliance with all
applicable federal regulations pertaining to the protection of human
research participants. The CIBMTR collects data at 2 levels:
Transplant Essential Data (TED) and Comprehensive Report Form
(CRF) data. TED data include disease type, age, sex, pretransplan-
tation disease stage and chemotherapy responsiveness, date of
diagnosis, graft type (bone marrow–derived and/or blood-derived
stem cells), conditioning regimen, posttransplantation disease pro-
gression and survival, development of a new malignancy, and cause
of death. All CIBMTR centers contribute TED data. A subset of
registered patients selected by weighted randomization has CRF
data that include more detailed disease and pretransplantation and
posttransplantation clinical information, including infection data. TED-
and CRF-level data are collected pretransplantation, 100 days and
6 months post-HCT, and annually thereafter or until death. The current
analysis includes only CIBMTR CRF data. All patients provided written
informed consent.

The Institutional Review Boards of the National Marrow Donor
Program and the Medical College of Wisconsin approved
this study.

Patients

The study population consisted of: (1) patients aged $40 years
(patients aged ,40 years were excluded, given that younger
patients with AML were expected to receive a MAC but actually
received an RIC most likely indicates an existent comorbid condition
and would have led to inherent biases); (2) patients who received
alloHCT for AML in first complete remission (to decrease heterogeneity
in previous chemotherapy and thus in previous infectious exposures);
and (3) patients whose data were reported to the CIBMTR between
2006 and December 2013. All T-replete donor sources (ie, sibling,
unrelated donors, umbilical cord blood [UCB]) except haploidentical
donors and all graft sources (ie, peripheral blood, bone marrow, UCB)
were included. HLA matching criteria were defined as previously
reported.26 Previous alloHCT, ex vivo T-cell depletion, HIV seroposi-
tivity, ex vivo manipulated UCB, and UCB accompanied by another
source of stem cells were excluded. There was no exclusion regarding
conditioning regimen (eg, antithymocyte globulin [ATG], total body
irradiation). Centers without patients in both the MAC and RIC/NMA
categories were excluded to minimize center bias.

Definitions

Infection data reported to theCIBMTRare captured as amicroorganism,
site(s) of infection, and date of onset of infection. No information on
symptoms, diagnostic criteria, or therapy of infection is collected.
Infections are determined by the center as significant for reporting based
on educational information and center-specific diagnostic test results.
Because patients can have multiple infections, recurrent infections
require a period of negative cultures, which differ by microrganism.27

Furthermore, multiple infections require assessment of infection density
determined by the number of infections per potential days at risk during
the first 100 days after transplantation.28 Conditioning intensity was
determined by using standard criteria.29 Neutropenia is defined as the
time from transplantation until the absolute neutrophil count was.0.53
109/L for the first of 3 days after the nadir.

End points

The primary end point was the comparison of the incidence of any
infection within the first 100 days posttransplantation based on
conditioning intensity (MAC vs RIC/NMA). Secondary end points
specifically compared the incidence of bacterial, viral, and fungal
infections between conditioning intensities as well as infection
density for total infections and according to microbial category to
account for multiple infections.

Statistical analysis

Patient-, disease-, and treatment-related factors were compared by
using the x2 test if variables were categorical or the Mann-Whitney
U test if variables were continuous. Cumulative incidence of
infection examined the first event of infection (overall) or according
to the type of infection (viral, fungal or bacterial) using death as
a competing risk. Poisson regression examined infection density as
a ratio of MAC to RIC/NMA to account for multiple infections for
both overall infections and according to microbial category.

A cause-specific hazards model was conducted for multivariable
analysis for infections to handle competing risks and was examined
for the primary and secondary outcomes of infection.30 Variables
examined in each model included the main effect variable (MAC vs
RIC/NMA). Presumed risk factors for infection, including age,
Karnofsky performance score, cytogenetic risk group, time from
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Table 1. Patient characteristics in MAC and RIC/NMA groups

Variable MAC (n 5 978) RIC/NMA (n 5 777) P

Male sex, n (%) 489 (50) 448 (58) .0

Age, median (range), y 52 (40-71) 61 (41-81) ,.001

40-49 404 (41) 87 (11) ,.001

50-59 451 (46) 237 (31)

$60 123 (13) 453 (58)

Performance score, n (%) .269

,90 300 (31) 258 (33)

$90 662 (68) 502 (65)

Missing 16 (2) 17 (2)

HCT–comorbidity index, n (%) .173

0 268 (27) 190 (24)

1-2 221 (23) 179 (23)

$3 263 (27) 236 (30)

Not collected (before 2007) 216 (22) 159 (20)

Missing 10 (1) 13 (2)

Presence of previous MDS, yes, n (%) 155 (16) 173 (22) .003

Cytogenetic risk, n (%) .31

Favorable 26 (3) 20 (3)

Intermediate 608 (62) 469 (60)

Poor 285 (29) 232 (30)

Not tested 22 (2) 12 (2)

Missing 37 (4) 44 (6)

Time from diagnosis to AlloHCT, median (range), mo 5 (2-12) 5 (,1-13) ,.001

Donor/recipient HLA match, n (%) ,.001

Cord blood 88 (9) 169 (22)

Matched related donor 381 (39) 216 (28)

Well-matched unrelated 391 (40) 299 (38)

Partially matched unrelated 94 (10) 66 (8)

Mismatched unrelated 4 (, 1) 3 (, 1)

Unrelated (HLA match information missing) 20 (2) 24 (3)

Graft type, n (%) ,.001

Bone marrow 136 (14) 55 (7)

Peripheral blood 754 (77) 553 (71)

Cord blood 88 (9) 169 (22)

GVHD prophylaxis, n (%) ,.001

TAC/CsA 1 MTX 6 others (not MMF) 657 (67) 290 (37)

TAC/CsA 1 MMF 6 others (not MTX) 202 (21) 378 (49)

TAC/CsA 6 others (not MMF/MTX) 96 (10) 70 (9)

Other GVHD prophylaxis* 23 (2) 39 (5)

ATG/alemtuzumabas conditioningorGVHDprophylaxis, n (%) ,.001

ATG alone 236 (24) 276 (36)

Alemtuzumab alone 6 (,1) 29 (4)

No ATG or alemtuzumab 736 (75) 472 (61)

Donor-recipient sex match, n (%) .01

Male-male 321 (33) 294 (38)

CsA, cyclosporine; Cy, cyclophosphamide; G-CSF, granulocyte colony-stimulating factor; GM-CSF, granulocyte-monocyte colony-stimulating factor; MMF, mycophenolate mofetil; MTX,
methotrexate; Tac, tacrolimus.

*Other GVHD prophylaxis: MMF 6 others (MAC 5 2, RIC/NMA 5 6), sirolimus 6 others (MAC 5 4, RIC/NMA 5 9), others (MAC 5 17, RIC/NMA 5 24).
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diagnosis to transplantation, HCT–comorbidity index, donor/
recipient HLA match, use of total body irradiation, use of ATG/
alemtuzumab, history of pre-HCT fungal infection, occurrence of
neutrophil recovery before infection, and occurrence of acute graft-
versus-host disease (GVHD) before infection, were examined in
each model. For each bacterial, viral, and fungal infection, the other
2 infections are added as time-dependent covariates examined as
occurring before the infection of interest. The stepwise selection
method was used to identify significant risk factors associated with
the outcomes. Factors significantly associated with the outcome
variable at a 5% level were retained in the final model. Neutrophil
recovery and acute GVHD were then tested as time-dependent
covariates. If at least 1 of either neutrophil recovery or acute GVHD
was significant and at least 1 of the other 2 infections was
significant, the interaction between them was examined. The
proportional hazards assumption was examined. If violated, the
variable was reported as a time-dependent covariate. The center
effect was examined by using the score test of Commenges and
Andersen.31 Interactions between the main effect and significant
covariates were examined. In particular, an interaction between the
main effect and recipient age was checked for all outcomes. Models
using propensity scoring were examined, with outcomes similar to
results of cause-specific modeling; therefore, only cause-specific
models are reported.

Results

Patient characteristics and general outcomes

Table 1 shows the characteristics of the patient cohort. All patients
had AML in first remission, with 978 patients receiving MAC and

777 patients receiving RIC/NMA. Patients receiving RIC/NMA were
older and underwent transplantation more recently. The groups
were similar regarding Karnofsky performance score, HCT–
comorbidity index, and cytogenetic risk; however, patients receiving
RIC/NMA had more frequent previous myelodysplastic syndrome
(MDS). As pertains to infection risks, the groups had a similar
frequency of fungal infection before alloHCT and planned use of
growth factors but those receiving RIC/NMA had more in vivo T-cell
depletion with either ATG or alemtuzumab.

Although the median time from diagnosis to transplantation for both
MAC and RIC/NMA transplant recipients was 5 months, the ranges
differed (2-12 months for MAC recipients and ,1-13 months for
RIC/NMA recipients), with 73% of the MAC group receiving their
transplant ,6 months from diagnosis vs 65% in the RIC/NMA
group (P , .001). The median time to engraftment and GVHD, as
well as the cumulative incidence of acute (grade II-IV) and chronic
GVHD, is presented in Table 2. The median follow-up of survivors
was longer after MAC (MAC, 59 months [range, 3-102 months];
RIC/NMA, 48 months [range, 3-105 months]; P 5 .002). At 1 year
posttransplant, relapse predominated as the primary cause of death
(MAC, 47%; RIC/NMA, 54%) (Table 3). Infection as a primary or
contributing cause of death was reported in 33% of MAC patients
and 25% of RIC/NMA patients.

Effect of conditioning regimen on posttransplantation

infections by day 100

Of 1755 patients, 1045 (59.5%) patients (MAC, 595 [61%]; RIC/
NMA, 450 [58%]; P 5 .21) experienced at least 1 infection. The
median time to infection for patients after MAC conditioning

Table 1. (continued)

Variable MAC (n 5 978) RIC/NMA (n 5 777) P

Male-female 295 (30) 181 (23)

Female-male 168 (17) 154 (20)

Female-female 193 (20) 148 (19)

Missing 1 (, 1) 0

Donor-recipient CMV status, n (%) .44

1/1 272 (28) 189 (24)

1/2 92 (9) 76 (10)

2/1 332 (34) 300 (39)

2/2 269 (28) 200 (26)

Missing 13 (1) 12 (2)

Total body irradiation, yes, n (%) 300 (31) 312 (40) ,.001

Planned G-CSF, GM-CSF use, yes, n (%) 363 (37) 293 (38) .29

History of clinically significant fungal infection, yes, n (%) 115 (12) 102 (13) .67

Year of transplant, n (%) ,.001

2006-2007 216 (22) 159 (20)

2008-2009 336 (34) 259 (33)

2010-2011 236 (24) 143 (18)

2012-2013 190 (19) 216 (28)

CsA, cyclosporine; Cy, cyclophosphamide; G-CSF, granulocyte colony-stimulating factor; GM-CSF, granulocyte-monocyte colony-stimulating factor; MMF, mycophenolate mofetil; MTX,
methotrexate; Tac, tacrolimus.
*Other GVHD prophylaxis: MMF 6 others (MAC 5 2, RIC/NMA 5 6), sirolimus 6 others (MAC 5 4, RIC/NMA 5 9), others (MAC 5 17, RIC/NMA 5 24).
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occurred at 15 days (range, ,1-99 days) and was 21 days (range,
,1-100 days) for the RIC/NMA cohort (P , .001) (Figure 1). The
cumulative incidence of infections is shown in Figure 2. Patients
receiving MAC had a greater probability of developing at least 1
bacterial infection by day 100 (cumulative incidence: MAC, 46%
[95% confidence interval (CI), 43-49]; RIC/NMA, 37% [95% CI,
34-41]; P5 .0004), whereas patients in the RIC/NMA cohort were
more likely to develop at least 1 viral infection (MAC, 34% [95% CI,
31-37]; RIC/NMA, 39% [95% CI, 36-42]; P 5 .046). In addition,
the rate of any infection, accounting for multiple infections, per
patient days at risk in the first 100 days (infection density) after HCT
was greater for the MAC cohort. Infection densities for broad
subsets of bacterial, viral, and fungal infections are shown in
Figure 3. The increased bacterial infections after MAC were due to
gram-positive bacteria, and the increased viral infections in
RIC/NMA were due to cytomegalovirus (CMV). Setting the mean
of RIC/NMA infection rate at 1, the mean ratio of any infection in the
MAC group was significantly higher at 1.21 (95% CI, 1.11-1.32)
infections per patient in the first 100 days (P , .0001) (Figure 4).
These higher infection rates were caused by a significantly higher
bacterial infection density in the MAC group at 1.36 (95% CI, 1.21-
1.54) bacterial infections per patient in the first 100 days (P ,
.0001). Fungal and viral infection rates were similar between the
MAC and the RIC/NMA groups.

Risk factors for infection

In multivariable analysis (Table 4), a center effect was observed and
adjusted for when assessing the risk of developing any infection and
viral infections by day 100 but was not observed for either bacterial
or fungal infection. Patients receiving MAC conditioning, compared
with those receiving RIC/NMA conditioning, had a significantly
increased risk of any infection, bacterial, fungal, or viral (relative risk
[RR], 1.28; 95% CI, 1.11-1.48; P , .001) and bacterial infections
(RR, 1.44; 95% CI, 1.23-1.67; P , .0001) but not viral (RR, 1.00;
95% CI, 0.82-1.21; P 5 .9930) or fungal (RR, 0.99; 95% CI, 0.64-
1.54; P 5 .969) infections.

Additional factors associated with an increased risk of any infection
include UCB as the stem cell source (RR, 1.81; 95% CI, 1.40-2.34;
P , .0001), use of ATG/alemtuzumab (RR, 1.33; 95% CI, 1.13-
1.55; P 5 .0004), HCT–comorbidity index $3 (RR, 1.19; 95% CI,
1.02-1.38; P 5 .0008), and development of acute GVHD grades II
to IV (RR, 1.53; 95%CI, 1.33-1.77; P, .0001). In addition to MAC,
there was an increased risk of bacterial infections for patients
receiving UCB (RR, 1.57; 95% CI, 1.27-1.95; P # .0001), having
a previous viral infection (RR, 1.82; 95% CI 1.46-2.26; P, .0001),

or experiencing a previous fungal infection (RR, 2.13; 95%CI, 1.38-
3.30; P5 .0007). As expected, neutrophil recovery (ie, resolution of
neutropenia due to engraftment) decreased the risk of bacterial
infection (RR, 0.60; 95% CI, 0.44-0.81; P 5 .0009). An increased
risk of viral infections was observed in patients with an HCT–
comorbidity index $3 (RR, 1.26; 95% CI, 1.03-1.55; P 5 .0270),
UCB (RR, 2.63; 95% CI, 2.06-3.35; P, .0001), partially matched/
mismatched unrelated donors (RR, 1.46; 95% CI, 1.10-1.93; P 5
.0078), previous acute GVHD (RR, 1.73; 95% CI, 1.46-2.06; P ,
.0001), and previous bacterial infection (RR, 1.40; 95% CI, 1.18-
1.67; P5 .0002). In addition, patients receiving ATG/alemtuzumab
had an increased risk of viral infections during the first 39 days
posttransplantation (RR, 2.48; 95% CI, 1.94-3.15; P , .0001);
however, by day 40, this negative impact was lost. Moreover, there
was no interaction between conditioning intensity and ATG/
alemtuzumab. For fungal infections, the risk increased for recipients
of UCB (RR, 2.65; 95% CI, 1.41-5.00; P 5 .0026), those with
previous bacterial infections (RR, 1.81; 95% CI, 1.41-2.89; P 5
.0119), or those with previous viral infections (RR, 2.17; 95% CI,

Table 2. Comparisons the MAC and RIC/NMA groups regarding engraftment and GVHD

Variable MAC (n 5 978) RIC/NMA (n 5 777) P

Neutrophil recovery, median (range), d

Time from transplant to engraftment 14 (1-111) 15 (,1-96) .497

Acute GVHD grades II-IV

Cumulative incidence (95% CI), % 38 (35-41) 31 (27-34) .0011

Time from transplantation to acuteGVHDgrades II-IV,median (range), d 28 (7-176) 33 (9-177) ,.001

Chronic GVHD

Cumulative incidence (95% CI), % 30 (27-33) 23 (20-26) .0018

Time from transplantation to chronic GVHD, median (range), mo 6 (2-72) 6 (2-67) .801

Table 3. Cause of death (COD) by 1 year posttransplantation

COD MAC RIC/NMA

No. of deaths 275 301

Recurrent/persistent disease, n (%) 120 (44) 169 (56)

Infection as contributing COD, n 17 21

Infection, n (%) 47 (17) 38 (13)

GVHD 38 (14) 30 (10)

Infection as contributing COD, n 12 7

Organ Failure 45 (16) 31 (10)

Infection as contributing COD, n 10 6

Interstitial pneumonitis 9 (3) 2 (, 1)

Infection as contributing COD, n 2 0

Graft rejection 4 (1) 10 (3)

Infection as contributing COD, n 2 2

Secondary malignancy 1 (,1) 6 (2)

Infection as contributing COD, n 1 0

Hemorrhage 2 (,1) 6 (2)

Infection as contributing COD, n 1 0

Other cause, n (%) 5 (2) 7 (2)

Unknown, n (%) 4 (1) 2 (,1)
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1.28-3.67; P 5 .0038) but was decreased with neutrophil
recovery (RR, 0.37; 95% CI, 0.18-0.74; P 5 .0053). Total body
irradiation was not associated with infections in multivariable
analysis.

Discussion

Our data show that, for patients receiving alloHCT for AML in first
remission, MAC was associated with greater infection events of
any type (bacterial, fungal, or viral) in the first 100 days after
transplantation. This effect was driven primarily by bacterial
infections. Viral infections were slightly higher in patients receiving
RIC/NMA conditioning, and fungal infections were similar regard-
less of conditioning intensity. Beyond conditioning intensity,
additional risk factors for infection varied according to the infection
examined, although receipt of a UCB graft and a previous infection
of another type were consistent across the multivariable analyses.

A higher incidence of bacterial infections after MAC has been
previously reported. Kim et al32 reported that bacterial infections
were higher during the entire follow-up period of ;700 days (14%
vs 5%; P 5 .012) after MAC, whereas the incidence of fungal and
viral infections was similar after MAC compared with RIC. That
study reported that both bacterial infections preengraftment and
from engraftment to day 100 were greater in the MAC group
compared with the RIC group (8% vs 4% [P5 .269] and 4% vs 0%
[P 5 .095], respectively). Of note, cumulative incidence of
infections was less common in the study of Kim et al than that
of our study, perhaps due to a much younger population (median
age, 35 years). Neutropenia is a known risk for bacterial infec-
tions. Although several studies have reported shortened time to
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engraftment after RIC/NMA, our cohorts had a similar median time
to neutrophil recovery.6,33-36 However, the current data show that
neutrophil recovery decreased the risk of bacterial infection by
40%. It is possible that bacterial infections are influenced not
only by duration of neutropenia but also by the severity of
neutropenia.24,34 Unfortunately, the CIBMTR does not capture
severity, only the time to neutrophil engraftment; severity was
therefore not examined in this analysis. Interestingly, UCB, known to
result in prolonged time to engraftment, was an independent risk
factor for bacterial infections and corroborates a previously
published CIBMTR analysis.20,37 Another hypothesis for increased
bacterial infections after MAC is that most early bacterial infections
originate from gastrointestinal (GI) flora and that MAC causes
increased mucosal damage in the GI tract.36,38,39 Acute GVHD,
reportedly more common with MAC compared with RIC,5,7,8,40,41

might be another reason for more GI mucosal damage. Although
our data showed an increased incidence of acute GVHD grades II
to IV after MAC, the development of acute GVHD before an
infection was associated with an increased risk of viral infections
specifically, but it also increased the risk of any infection in the first

100 days. Our data indicate that these bacterial infections are
driven by gram-positive organisms often associated with oropha-
ryngeal flora rather than the gram-negative bacteria associated with
lower GI tract damage. Consequently, the impact of mucosal
damage from conditioning may be the driver for bacterial infection,
whereas the increased immunosuppression associated with acute
GVHD treatment may trigger the higher risk for viral infections.

We identified a slightly higher probability of developing a single viral
infection by day 100 in the RIC/NMA group compared with the
MAC group; however, the number of viral infections when
accounting for multiple viral infections per patient per days at risk
(infection density) was similar between the 2 groups. This result
suggests that those patients receiving MAC and developing at least
a single viral infection were either more likely to have multiple viral
infections more frequently than the RIC/NMA group, that the days at
risk in the RIC/NMA group were less because of early mortality, or
a combination of both factors. The published data are conflicting
regarding the effect of conditioning intensity on viral infections.
Similar to our data, Satwani et al42 reported that viral infections
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were not significantly affected by conditioning intensity in a pediatric
cohort. However, when examining only CMV, a small, randomized
prospective study reported that CMV infection was more common
in patients receiving MAC (14 of 19) compared with RIC (6 of 18;
P 5 .02).19 Notably, a larger study found that CMV-seropositive
recipients had less high-grade CMV viremia (CMV pp65 antigene-
mia.10/200000 peripheral blood leukocytes or polymerase chain
reaction [PCR] .1000 copies/mL) (hazard ratio, 0.7; 95% CI, 0.5-
0.9; P 5 .02) after NMA than after MAC; however, there was no
difference in overall CMV infection rates.23 Although our study did
not examine CMV alone, a comparison of the median infection
density found similar rates of CMV infection after MAC and RIC/
NMA conditioning. As expected, factors associated with increased
immunosuppression were associated with viral infections by day
100. Interestingly, use of ATG or alemtuzumab as a component of
conditioning or GVHD prophylaxis was nonproportional in the
multivariable analysis and associated with early viral infections
before 40 days; however, by 40 days after transplantation, the
impact was lost. ATG use was reportedly associated with increased
NRM in a previous CIBMTR study.43 Furthermore, the development
of acute GVHD preceding infection was associated with increased
risk of viral infections, most likely due to the initiation or addition of
immunosuppression to treat the episode of acute GVHD, as well as
the innate immune dysfunction associated with GVHD precluding
the patient from clearing a viral infection and/or preventing viral
reactivation.

Fungal infections, fortunately, remain a rare event in the first
3 months after transplantation, with a similar occurrence regardless
of conditioning intensity. In accordance with our data, other studies
have not identified a difference in fungal infections or an increased
risk of atypical mold infections based on conditioning intensity.42,44

Notable factors that contributed include receipt of UCB and lack of
neutrophil recovery by the time of infection. Furthermore, a previous
bacterial infection and a previous viral infection both resulted in an
increased risk of subsequent fungal infection. Congruent with our

data, Yong et al45 previously reported that previous CMV reactiva-
tion is associated with risk of invasive fungal infection (IFI). This
association may simply sow profound immune compromise, although
it is notable that neither ATG or alemtuzumab use nor preceding
acute GVHD was associated with an increased risk of fungal
infection. However, this scenario may simply be a function of too few
events. Preexisting IFIs are a known risk factor for posttransplantation
IFI and increasedmortality.46 In the current study, the numbers of pre-
HCT fungal infections were small and similar in each condition-
ing cohort, potentially accounting for the lack of significance in the
multivariable analysis. However, in a CIBMTR study examining the
impact of pretransplantation IFI, Maziarz et al46 reported a greater
likelihood of experiencing a posttransplantation IFI in patients with
preexisting IFI compared with those with no history of IFI (RR, 1.35;
95% CI, 1.16-1.58; P 5 .001). Notably, conditioning intensity was
not an independent risk factor for posttransplantation IFI in that the
analysis enriched for patients with pretransplantation IFI.

Our study has limitations. One significant limitation is examination
of infections occurring only in the first 100 days. However, the
differences in infections mediated by conditioning intensity are
expected to occur early, in the peri-transplantation period. Other
studies have shown that very early (first 30 days) infections were less
common after RIC/NMA compared with MAC but that this differences
does not persist.34,35,47 Junghanss et al34 reported that NMA was
associated with fewer episodes of bacteremia during the first 30 days
(9% vs 27%; P 5 .01) and a trend to fewer episodes of bacteremia
during the first 100 days posttransplantation (27% vs 41%; P 5 .7).
Later infections from ongoing immunocompromise are likely simi-
lar, regardless of initial conditioning intensity. As patients leave the
transplantation center, common infections such as bacterial pneumo-
nia and viral upper respiratory tract infections are less likely to be
reported back to the transplantation center and, consequently, to the
CIBMTR, which therefore necessitated the truncation of infections
by day 100 for this analysis. The current study did not examine the
impact of these infections on survival specifically. This approach was
chosen to focus on the frequency and likelihood of infections, in total
and by broad category, after these 2 conditioning intensities. However,
infection as the reported primary cause of death by 1 year after
HCT was similar (MAC, 17%; RIC/NMA, 13%) in our cohorts. Finally,
we do not have detailed information regarding antimicrobial pro-
phylaxis, severity of infection, or treatment of infection. In addition,
diagnostic criteria for infection or reactivation, such as PCR viral loads,
are not available. The prophylaxis data, in particular, may alter frequency
of infection. To account for these, our data set was limited to centers
with patients in both the MAC and RIC/NMA cohorts because centers
would be expected to have fairly uniform antimicrobial prophylaxis
regimens, indications for treatment based on viral load PCRs, and
antimicrobial management. Furthermore, we also assessed for a center
effect to account for potential biases of these unavailable, but pertinent,
data. Although patients in the RIC/NMA group had more previous
MDS and we did not examine directly its effect, time to transplantation
was not significant for any infection in the multivariable analysis.

In conclusion, RIC/NMA alloHCT is associated with a decreased
risk of any infection and particularly early bacterial infections. The
risk of viral and fungal infections per days at risk is similar.
Furthermore, a preceding infection of one type (bacterial/fungal/
viral) increases the likelihood of subsequent infection. Recipients of
UCB have increased risk of all types of infection. In the future,
efforts to modify conditioning regimens, perhaps with more targeted
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Table 4. Multivariable analysis for risk factors for development of

infections

Variable n

RR of infection

(95% CI) P

Any infection (bacterial/viral/fungal)*

Main effect variable .0006

RIC/NMA 777 1.00

MAC 978 1.28 (1.11-1.48)

HCT–comorbidity index ,.0001

0 458 1.00

1-2 400 1.14 (0.96-1.36) .1318

$3 499 1.19 (1.02-1.38) .0261

NA (before 2007) 375 0.70 (0.57-0.86) .0008

Missing 23 1.28 (0.77-2.14) .3335

Donor/recipient HLA match ,.0001

HLA-identical related donor 597 1.00

UCB 257 1.81 (1.40-2.34) ,.0001

Well-matched unrelated 690 0.97 (0.80-1.18) .7708

Partially matched/mismatched unrelated 167 1.19 (0.95-1.49) .187

Unrelated—match unknown 44 1.68 (1.20-2.35) .0024

ATG/alemtuzumab peri-HCT .0004

No 1208 1.00

Yes 547 1.33 (1.13-1.55)

Acute GVHD grades II-IV before infection ,.0001

No 1135 1.00

Yes 620 1.53 (1.33-1.77)

Bacterial infection

Main effect variable ,.0001

RIC/NMA 777 1.00

MAC 978 1.44 (1.23-1.67)

Donor/recipient HLA match ,.0001

HLA-identical related donor 597 1.00

UCB 257 1.57 (1.27-1.95) ,.0001

Well-matched unrelated 690 0.90 (0.76 –1.08) .2531

Partially matched/mismatched unrelated 167 1.00 (0.76-1.30) .9752

Unrelated—match unknown 44 0.70 (0.41-1.20) .1937

Neutrophil engraftment before infection .0009

No 396 1.00

Yes 1359 0.60 (0.44-0.81)

Viral infection before bacterial infection ,.0001

No 1323 1.00

Yes 432 1.82 (1.46-2.26)

Fungal infection before bacterial infection .0007

No 1706 1.00

Yes 49 2.13 (1.38-3.30)

Viral infection*

Main effect variable .9930

RIC/NMA 777 1.00

MAC 978 1.00 (0.82-1.21)

Table 4. (continued)

Variable n

RR of infection

(95% CI) P

HCT–comorbidity index .0001

0 458 1.00

1-2 400 1.09 (0.85-1.40) .5118

$3 499 1.26 (1.03-1.55) .0270

NA (before 2007) 375 0.62 (0.45-0.86) .0036

Missing 23 1.45 (0.88-2.38) .1495

Donor/recipient HLA match ,.0001

HLA-identical related donor 597 1.00

UCB 257 2.63 (2.06-3.35) ,.0001

Well-matched unrelated 690 1.19 (0.96-1.49) .1152

Partially matched/mismatched unrelated 167 1.46 (1.10-1.93) .0078

Unrelated—match unknown 44 2.50 (1.52-4.11) .0003

ATG/alemtuzumab peri-HCT, #39 d ,.0001

No 1208 1.00

Yes 547 2.48(1.94-3.15)

ATG/alemtuzumab peri-HCT, .39 d .8328

No 1417 1.00

Yes 338 1.03 (0.77-1.38)

Acute GVHD grades II-IV before infection ,.0001

No 1116 1.00

Yes 639 1.73 (1.46-2.06)

Bacterial infection before viral infection .0002

No 1140 1.00

Yes 615 1.40 (1.18-1.67)

Fungal infection

Main effect variable .9696

RIC/NMA 777 1.00

MAC 978 0.99 (0.64-1.54)

Donor/recipient HLA match .0226

HLA-identical related donor 597 1.00

UCB 257 2.65 (1.41-5.00) .0026

Well-matched unrelated 690 1.31 (0.72-2.38) .3684

Partially matched/mismatched unrelated 167 1.49 (0.65-3.44) .3467

Unrelated—match unknown 44 2.74 (0.92-8.15) .0708

Neutrophil engraftment before infection .0053

No 65 1.00

Yes 1690 0.37 (0.18-0.74)

Bacterial infection before viral infection .0119

No 1037 1.00

Yes 718 1.81 (1.14-2.89)

Viral infection before bacterial infection .0038

No 1135 1.00

Yes 620 2.17 (1.28-3.67)

*Center effect identified.
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therapies with less toxicity, may decrease infections, especially
bacterial infections. Moreover, antibiotic prophylaxis might be
modified by conditioning intensity.
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