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SUMMARY

Antibodies are Y-shaped proteins essential for im-
mune response. Their capability to recognize anti-
gens with high specificity makes them excellent
therapeutic targets. Understanding the structural
basis of antibody-antigen interactions is therefore
crucial for improving our ability to design efficient
biological drugs. Computational approaches such
as molecular docking are providing a valuable and
fast alternative to experimental structural character-
ization for these complexes. We investigate here
how information about complementarity-determining
regions and binding epitopes can be used to drive the
modeling process, and present a comparative study
of four different docking software suites (ClusPro,
LightDock, ZDOCK, and HADDOCK) providing spe-
cific options for antibody-antigen modeling. Their
performance on a dataset of 16 complexes is re-
ported. HADDOCK, which includes information to
drive the docking, is shown to perform best in terms
of both success rate and quality of the generated
models in both the presence and absence of informa-
tion about the epitope on the antigen.

INTRODUCTION

Antibodies are essential components of the immune response.

Their capability to recognize antigens with high specificity along

with their modular anatomy, which facilitates their design and en-

gineering, makes them excellent therapeutic targets (Kaplon and

Reichert, 2019). For the design of efficient biological drugs

(Morea et al., 2000) based on antibodies it is crucial to properly

understand the structural basis of antibody-antigen interactions.

Antibodies are Y-shaped proteins usually composed of two

pairs of identical polypeptide chains named light and heavy

chains. On the basis of their structural and sequence variability,

it is possible to identify variable and constant domains, more

specifically one variable and one constant domain for the light

chain and one variable and three or more constant domains for

the heavy one. The variable domain is composed of a very well

conserved framework containing six hypervariable loops (HV

loops), three from the light chain and three from the heavy chain.
These are part of the so-called complementarity-determining re-

gions (CDRs) (Wu, 2004). These regions, and in particular the HV

loops, are crucial for antigen recognition and specificity (Novotný

et al., 1983). The position of HV loops is known a priori and can

be inferred given only the antibody sequence (Al-Lazikani et al.,

1997). Despite the majority of the antibody-binding residues be-

ing included in the CDRs (Kunik et al., 2012; MacCallum et al.,

1996), it has been shown that residues that fall outside these

CDRs can also play a crucial role in the antigen recognition pro-

cess (Narciso et al., 2011). Various experimental methods have

been proposed to investigate the role of each residue in the an-

tigen recognition process such as, for example, hydrogen/

deuterium (H/D) exchange (Lim et al., 2017), mutagenesis anal-

ysis (Fontayne et al., 2007), or the classical structural methods

such as nuclear magnetic resonance (NMR) and X-ray crystal-

lography. These provide various levels of information about the

key antibody and antigen residues involved in the interaction,

but most of them require high cost and effort. Computational ap-

proaches able to predict antibody-antigen structures would offer

a valuable and fast alternative. For the antibody, the residues

involved in the binding, the so-called paratope residues, can

be predicted quite accurately through various computational ap-

proaches (Krawczyk et al., 2013; Kunik et al., 2012; Liberis et al.,

2018; Olimpieri et al., 2013). The identification or prediction of the

set of antigen residues that are recognized by the antibody is,

however, the most challenging part. Although several methods

have been reported (Ansari and Raghava, 2010; Jespersen

et al., 2017; Krawczyk et al., 2014; Kringelum et al., 2012;

Liang et al., 2010; Qi et al., 2014; Rubinstein et al., 2009; Sela-

Culang et al., 2015), epitope prediction remains an open issue

(Ponomarenko and Bourne, 2007). In this context, docking ap-

proaches could present a valuable alternative to the available

epitope prediction methods, provided near-native solutions

can be generated and recognized.

Different docking algorithms have been developed over the

years to predict the three-dimensional (3D) structure of biological

complexes starting from the free, unbound structures of the

components (Moreira et al., 2010). These approaches rely on

the generation of thousands of possible complex conformations

ormodels, which are successively ranked according to a specific

scoring function to identify or predict themodels that are close to

the real conformation (near-native solutions). Most protein-pro-

tein docking algorithms do not consider possible conformational

changes occurring upon binding (rigid-body docking). This is the

case for software such as ClusPro (Kozakov et al., 2017) and

ZDOCK (Chen and Weng, 2002) that are based on the fast
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Figure 1. Summary of the Three Docking

Scenarios Used in This Work

The first case represents the situation in which no

previous information about the epitope is known, so

the docking is performed exploring the whole sur-

face of the antigen while for the antibody the HV

loops are provided. In the second scenario, the

antibody HV loops and a loose epitope definition

corresponding to the antigen residues within 9 Å

from the antibody are used to drive the docking.

Finally, in the third scenario the real interfaces of

both the antigen and the antibody (defined at 4.5 Å

distance) are used.
Fourier transform search algorithm (Katchalski-Katzir et al.,

1992). In most cases, however, protein flexibility is a crucial fac-

tor to be considered (Kotev et al., 2016). Approaches that allow

for flexibility of side chains and/or backbone have also been

developed, such as ATTRACT (De Vries et al., 2015), LightDock

(Jiménez-Garcı́a et al., 2018), SwarmDock (Torchala et al., 2013),

SnugDock (Sircar and Gray, 2010), and HADDOCK (De Vries

et al., 2010). The former three do so by using normal modes,

the latter two by allowing some flexibility along side chains and

the backbone during a refinement stage.

Docking methods can be classified into two categories ac-

cording to the sampling strategy applied during the simulation

(excluding the template-based docking approaches when a ho-

mologous interface can be identified, a less relevant approach

for antibody-antigen complexes). The first class includes algo-
120 Structure 28, 119–129, January 7, 2020
rithms that do not take into account any

previous information about the putative

binding interfaces and perform an exhaus-

tive search of the interaction space, the

so-called ab initio docking methods

(Ritchie, 2008). Nonetheless, in many

cases experimental information can be

used during the scoring step to select

near-native models. The second class

consists of docking approaches where

sampling is driven by experimental data,

coming, for example, from mutagenesis,

mass spectrometry (MS) (H/D exchange

and/or crosslinking experiments), NMR

analysis, or predicted information about

the binding interface. These fall under the

so-called information-driven or integrative

modeling approaches (Rodrigues and

Bonvin, 2014). The performances of dock-

ing methods is continuously assessed by

the Critical Assessment of Predicted Inter-

actions (CAPRI) experiment (Janin et al.,

2003; Méndez et al., 2003), stimulating re-

searchers’ efforts toward the development

of more accurate docking and scoring

algorithms.

All docking approaches rely on the avail-

ability of 3D structures or models of the

components. Since antibodies have a

very conserved framework and the confor-
mation of five out of six loops can be quite reliably predicted

(Chothia et al., 1989), modeling methods specific for antibodies

are able to generate reasonably accurate structures (Leem et al.,

2016; Lepore et al., 2017; Weitzner et al., 2017; Yamashita et al.,

2014). The main problems in this field are related to predicting

the conformation of the H3 loop, which remains challenging

due to its high structural and length variability (Shirai et al.,

1996; Weitzner et al., 2015). Methods specifically tailored to pre-

dict its conformation have been developed (Choi and Deane,

2010; Messih et al., 2014) to improve the accuracy of the anti-

body modeling systems.

Despite great progress in predicting protein-protein com-

plexes, docking of antibody-antigen complexes is still chal-

lenging (Pedotti et al., 2011; Ponomarenko and Bourne, 2007;

Vajda, 2005) due to the inherent properties of their interfaces



Table 1. Classification of Docking Models in the Classes ***, **,

and * according to Fnat and Either Ligand RMSD or i-RMSD

Measures

Class Fnat Ligand RMSD (Å) i-RMSD (Å)

High (***) R0.5 %1.0 or %1.0

Medium (**) R0.3 %5.0 or %2.0

Acceptable (*) R0.1 %10.0 or %4.0
(Lo Conte et al., 1999; Sela-Culang et al., 2013). In this work,

we present an assessment of the performance of ClusPro,

HADDOCK, LightDock, and ZDOCK in predicting antibody-anti-

gen structures. All of these software packages allow the use in

various ways of a priori knowledge, e.g., the hypervariable loops,

into the modeling process to drive or limit the sampling and/or

score the docking models. For the antigen, we use different

levels of information to define the epitope. Using a set of 16 anti-

body-antigen complexes corresponding to the new entries from

the docking benchmark 5 (BM5) (Vreven et al., 2015) for which

unbound structures are available, we compare the performance

of the various docking software applications following several

strategies to include information about the binding regions.

RESULTS

Antibody-antigen docking was performed following three

different scenarios in order to mimic different levels of informa-

tion that can be obtained about the antibody and antigen

residues involved in the binding. The first scenario (HV-Surf) in-

cludes information about the antibody (HV loops) but no infor-

mation about the epitope; in the second scenario (HV-Epi 9), a

vague definition of the epitope is provided based on all residues

within 9 Å from the antibody in the reference structure; finally,

the third scenario (Real interface) represents the ideal case

whereby both interfaces are well characterized (see Figure 1).

Further information about the scenarios can be found in STAR

Methods. This information was used differently in the various

docking software depending on their ability to deal with it. In

short (for details see STAR Methods), HADDOCK follows a

data-driven sampling strategy whereby the information is

encoded into ambiguous restraints to drive the docking;

LightDock uses the information both to limit the sampling to

specific regions and in scoring, while ClusPro and ZDOCK

include this information in their scoring functions in order to

select the correct models.

Docking Performance: Single Structure
We analyzed the performance of the four docking methods in

predicting antibody-antigen complexes in terms of success

rate calculated as the percentage of cases in which at least

one acceptable, medium, or high-quality model (see Table 1) is

found in the top N ranked solutions. The success rate for the

top 1, 5, 10, 20, 50, and 100 is shown in Figure 2 for each docking

method and scenario as described in STAR Methods. The first

panel refers to the HV-Surf scenario and the second to the HV-

Epi 9, and the third shows the success rate obtained using the

real interface information in the docking. The latter represents

the gold standard achievable by each docking approach, i.e.,

the best accuracy that can be reached for this dataset given a
perfect interface definition (but no specific contacts) and starting

from the unbound structures of the components.

In the absence of any kind of information about the epitope (HV

loops—surface; top row in Figure 2) the overall performance is

rather low for all methods. HADDOCK reaches a success rate

of 25% in the top 1, which is higher than ClusPro (6.2%), ZDOCK

(6.2%), and LightDock (0%). Note that considering the limited

size of the benchmark, a difference of 6.2% only corresponds

to one more successfully predicted complex. The differences

are smaller for the top 10 (the typical number ofmodels evaluated

in CAPRI), with HADDOCK and ZDOCK leading with 31.2%, fol-

lowed by ClusPro with 18.7%. Considering the top 100, in this

scenario LightDock outperforms the other methods with a suc-

cess rate of 68.7%. This is linked to the fact that LightDock is

based on a very effective sampling strategy, but the scoring func-

tion used is not accurate for this type of complex.

By providing a low-accuracy definition of the epitope region

(HV-Epi 9; middle row in Figure 2), the success rate increases

significantly. For example, HADDOCK and ClusPro are able to

predict correct models for 75% and 68.7%, respectively, of the

cases already in the top 5 (43.8% in the top 1 for both), followed

by ZDOCK (56.3%) and LightDock (37.4%).

The bottom row in Figure 2 (Real interface) shows the results

when both interfaces are perfectly characterized such that the

exact residues involved in the binding are used in the docking.

In this case, HADDOCK ranks acceptablemodels in the top 1 po-

sition for all 16 complexes of the dataset (100% success rate),

while ZDOCK, ClusPro, and LightDock reach success rates of

81.2%, 75%, and 31.2%, respectively.

ClusPro offers an automated masking of non-CDR regions for

antibodies. We had, however, manually defined the HV loops for

consistency between all software. We therefore evaluated

whether this affected the docking performance by repeating

the docking using the automated masking of non-CDR regions

for all docking scenarios. The automatic identification of the

CDR regions in the first scenario led to a higher success rate

(e.g., top 10 increased from 18.7% to 31.3%) (see Figure S1).

On the other hand, in the second scenario the automated mask-

ing of non-CDR regions, while overall leading to an improvement

of the quality of the generated models, resulted in a decrease of

the success rate (except for the top 10 of scenario 2 that

increased from 67.7% to 75%). For the third scenario, as ex-

pected, driving the docking using the automatic masking of the

non-CDR regions rather than the real interface led to a significant

decrease in both the success rate (e.g., top 10 drops from 100%

to 87.5%) and quality of the generated models.

Overall, Figure 2 shows that HADDOCK is performing best in

every scenario. Even in the cases where ClusPro, LightDock,

and ZDOCK are able to reach comparable results (e.g., top 50

HV-Epi 9 scenario), the quality of the generatedmodels is usually

not as good as those produced by HADDOCK. This can be

attributed to the different strategies of using information between

the various software, with HADDOCK directly using restraints

during the sampling/refinement stages, and not only for filtering

and/or scoring as is the case in the other software.

Figure 3 shows the performance for each complex. Com-

plexes are grouped into two classes, rigid and medium, accord-

ing to the classification provided in docking benchmark BM5,

which is based on the interface root-mean-square deviation
Structure 28, 119–129, January 7, 2020 121
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Figure 2. ClusPro, HADDOCK, LightDock, and ZDOCKSuccess Rate for the Three Scenarios Described in ThisWork as a Function of the Top

1, 5, 10, 20, 50, and 100 Ranked Models

The top row (HV-Surf) shows the success rate using the antibody HV loops and the entire antigen surface as restraints. The second row represents the success

rate achieved by driving the docking with the antibody HV loops and a loose epitope definition using a 9 Å cutoff. The third row shows the docking results using the

true interfaces (defined at 4.5 Å). The color coding indicates the quality of themodels according to CAPRI criteria (see STARMethods). See also Tables S1–S4 and

Figures S1–S4.
(i-RMSD) and the fraction of non-native residue contacts (Vreven

et al., 2015).

Overall, all methods achieve good results for the most rigid

structures (PDB: 3EOA, 3MXW, 4G6M, and 3RVW)when a vague

definition of the epitope is provided. HADDOCK is able to pro-

vide for 3MXW and 4G6M sub-angstrom high-quality models

as top-ranking models. Although HADDOCK and LightDock

allow flexibility of the molecules, the difference in terms of accu-

racy between them and ClusPro or ZDOCK for rigid and medium

complexes is not striking. This is probably due to the rather

limited conformational change that occurs upon binding of the

antibody to the antigen (average i-RMSD of 0.97 ± 0.50 Å for

all entries in this dataset, with minimum and maximum values

of 0.39 Å and 1.86 Å, respectively) (Vreven et al., 2015). For

each complex and scenario, the i-RMSD and fraction of native

contacts (Fnat) values for the first acceptable and best models

for all of the software used in this study are reported in Tables

S1–S4.

HADDOCK Performance: Cluster Based
Many approaches perform a clustering after docking in order to

group together similar models and simplify the analysis. This has

been demonstrated to significantly improve the accuracy of the

scoring. The most widely used parameter to measure similarities

among different structures is the positional RMSD. The fraction

of common contacts (FCC) has been introduced as a fast and
122 Structure 28, 119–129, January 7, 2020
valuable alternative to classical RMSD-based methods (Ro-

drigues et al., 2012). FCC clustering is used by default in

HADDOCK to cluster the docking models using a default cutoff

of 0.6. This has been optimized on classical protein-protein sys-

tems. Taking into account the result of the cluster analysis, it is

possible to express the success rate as the percentage of cases

in which there is at least one acceptable, medium, or high-quality

model in the top four cluster members of the top 1, 2, 3, 4, and 5

clusters. In this work clusters were ranked by the average

HADDOCK score of their top 4 models (the default scoring

scheme of the HADDOCK server [De Vries et al., 2010]). The

cluster-based success rate of HADDOCK is shown in Figure 4

for the three different scenarios.

Comparing Figures 4 and 2, and in particular the success rate

for top 1 and top 5, one can clearly see how cluster-based

scoring increases the success rate of HADDOCK when informa-

tion about the epitope is provided, but reduces it when no infor-

mation on the antigen is available and the entire antigen surface

is used to drive the docking. This is due to the fact that the

sampling around the entire surface of the antigen leads to the

generation ofmany possible different conformations. This results

in many local minima of the energy landscape, which the

HADDOCK scoring function is not able to distinguish properly.

Also, a slightly lower number of models do fall into clusters in

this case as illustrated by the clustering coverage calculated

as the fraction of clustered models with average values of
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Figure 3. Performance of ClusPro, HADDOCK, and ZDOCK as a Function of the Number of Ranked Models per Complex and per Scenario

The dataset is split into rigid and medium complexes according to the docking benchmark 5 (BM5) definition. For each class, the complexes are sorted from

bottom to top in increasing interface Ca-RMSD between the reference and the superimposed unbound structures. The color coding indicates the quality of the

models according to CAPRI criteria (see STAR Methods).
0.83 ± 0.10, 0.93 ± 0.04, and 0.99 ± 0.003, respectively, for the

HV-Surf, HV-Epi 9, and Real interface scenarios. However,

even with a rather loose definition of the epitope (HV-Epi 9 sce-

nario), clustering leads to an improvement in scoring perfor-

mance from 43.8% to 56.3% for top 1. These results indicate

that different scoring strategies should ideally be followed de-

pending on the availability (or not) of epitope information.

Sampling Performance
Docking involves two different steps, the sampling for the gener-

ation of thousands of models and the scoring to select the best

(near-native) models according to a specific scoring function.

Most software includes the information about the binding inter-

face at the scoring stage, but HADDOCK is the only system

that uses this information to drive the sampling (the information

is encoded into an additional energy term that generates forces
to drive the minimization and molecular dynamics steps). The ef-

fect of these different strategies can be noticed by calculating

the number of acceptable, medium, or high-quality models

generated out of the total number of produced models. This

number is summarized for each software suite in Figure 5 (see

also Tables S5–S8). One can clearly see how the driving strategy

implemented in HADDOCK leads to the generation of a much

higher number of goodmodels when information about the inter-

face is provided (HV-Epi 9 and Real interface scenarios). There

is, however, the danger that no single acceptable model might

be generated in the case of bad information. The other software,

ClusPro, LightDock, and ZDOCK, use the interface information

only at the scoring level (except for LightDock, which filters start-

ing swarms to sample around the provided binding site). These

have the advantage that they perform an exhaustive search of

the interaction space, but this comes at the cost of a small
Structure 28, 119–129, January 7, 2020 123
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Figure 4. HADDOCKCluster-Based Success Rate for the Three Docking Scenarios as a Function of the Top 1, 2, 3, 4, and 5 Ranked Clusters

The color coding indicates the quality of the models according to CAPRI criteria (see STAR Methods).
number of near-native models generated. In this case, the

scoring becomes crucial in identifying the acceptable models.

H3 Loop Modeling Performance
As already mentioned, the H3 loop of antibodies is the most

important loop involved in antigen recognition. Its accurate

modeling is still a challenge due to its high structural and

sequence variability. Of the four docking software applications

used in this work, two allow for conformational changes during

the docking, namely HADDOCK and LightDock. We analyzed

their capability of inducing the appropriate conformational

changes of the loop upon binding with the antigen. For this,

we superimposed the antibody framework residues of the

bound and unbound structure and calculated the RMSD of H3

(H3unbound). We then repeated the same procedure for each

docking model compared with the native complex (H3model).

For both HADDOCK and LightDock, models produced from

the different scenarios were merged and split into correct

(i-RMSD % 4Å) and wrong models (i-RMSD > 4Å). Figure 6

shows the distribution of H3model versus H3unbound for correct

and wrong models. Values below the diagonal correspond to

an improvement of the conformation of the H3 loop. Overall,

for HADDOCK (Figure 6A) the flexible refinement tends to in-

crease the RMSD of the H3 loop for complexes that show a

low H3 conformational change upon binding but, in contrast,

for complexes undergoing larger conformational changes of

H3unbound, the refinement leads to improvement in the H3 confor-

mation, especially in the scenarios where information about the
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epitope is provided (HV-Epi 9 and Real interface), with a

maximum observed improvement of 1.25 Å. In the case of

LightDock (Figure 6B), the final selected H3 loop conformation

from normal modes remains very close to the unbound form,

with no remarkable changes in terms of RMSD.

To further investigate the impact of the HADDOCK flexible

refinement stage on the H3 loop conformation, we analyzed

the Fnat that H3 makes at the rigid-body docking stage (H3it0)

and after flexible refinement (H3water). Figure 7 plots H3water

versus H3it0 for the three different scenarios discussed in this

work, taking into account the quality of the models. In this

case, all points above the diagonal correspond to an improve-

ment in Fnat after flexible refinement. Figure 7 clearly shows

that for most cases the flexible refinement improves the number

of native contacts made by H3, with a maximum improvement

observed of 0.72. This is more evident for the last two scenarios

(HV-Epi 9 and Real interface), indicating that an accurate selec-

tion of the native interface is crucial in improving the H3 confor-

mation during the simulation. A deeper analysis of the impact of

HADDOCK flexible refinement on the quality of the models is re-

ported in terms of distribution of i-RMSD and Fnat differences in

Figures S5 and S6.

DISCUSSION

This work aimed at comparing four well-established protein-pro-

tein docking software suites (ClusPro, HADDOCK, LightDock,

and ZDOCK) in their accuracy for predicting antibody-antigen
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Figure 5. Percentages of Acceptable, Medium and High-Quality Models Generated by Each Software per Complex and per Scenario

Complexes are split into rigid and medium categories according to the Docking Benchmark5 definition. Note that the y axis scales are different for each docking

method for better readability. The color coding indicates the quality of the models according to CAPRI criteria (see STAR Methods). See also Tables S5–S8.
complexes assuming different amounts of available experi-

mental information. Alternative docking methods do exist, such

as SwarmDock and SnugDock, but these were not considered

in this work for various reasons. The SwarmDock server does

not allow the user to automate the runs for high-throughput

docking, requiring manual selection of each residue in the HV

loops and epitope. Furthermore, the option in SwarmDock to

specify specific interface residues is still experimental and not

yet properly tested (Dr. Paul Bates, personal communication).

For these reasons, we did not include it in this work. With regard

to SnugDock, it requires the two molecules to be preoriented

before optimizing them, which prevents making a fair compari-

son with the docking scenarios considered in this work.

While for the antibody a proxy of the binding interface can be

extracted from the sequence and in particular the HV loops (Al-

Lazikani et al., 1997; Novotný et al., 1983; Sela-Culang et al.,
2013), predicting the epitope on the antigen is amore challenging

problem. Despite many efforts to develop reliable methods to

predict the antibody-specific epitopes, most approaches pub-

lished to date are still very limited in their accuracy. Driving a

docking process or filtering docking poses using predicted epi-

topes can thus be detrimental to the accuracy of the complex

structure prediction. There are, however, experimental methods

such asH/D exchange detected byMS that can providemore ac-

curate information. In this work, we focus on defining the best

way of including available epitope information to guide the

modeling process. To this end, we investigated three different

scenarios that mimic different levels of knowledge about the

epitope: In the first scenario, no information is available and the

sampling/scoring must involve the entire surface of the antigen;

in the second case, a loose definition of the epitope is assumed

(a larger surface than the real interface); finally, the third scenario
Structure 28, 119–129, January 7, 2020 125
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Figure 6. H3 Loop RMSD (Å) from the Bound Conformation for the Docked Models (H3model) versus the Starting Unbound Conformation

(H3unbound)

HADDOCK models (A) and LightDock models (B). Correct and wrong models were defined according to their i-RMSD from the reference structure using a 4 Å

cutoff.
represents the ideal case whereby both antibody and antigen in-

terfaces are well characterized. HADDOCK, which has been

developed to make use of available information, is performing

best in terms of both success rate and quality of the generated

models in all of the described scenarios. Analysis of the

HADDOCKscoring performance per scenario indicates that clus-

tering is beneficial provided some reasonably accurate informa-

tion is available for the epitope. If this is not the case, a single

structure-based scoring approach might perform better, but still

with rather low success rate (31.2% for both top 5 and top 10).

In this work, the unbound forms of antibodies were used to

perform the docking, but often in reality only the antibody

sequence is known; therefore, we assessed HADDOCK accu-

racy using antibody models generated with the PIGSpro web-

server (https://cassandra.med.uniroma1.it/pigspro/) (Lepore
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et al., 2017). There are many other tools with which to model an-

tibodies, but it is outside the scope of this work to compare their

impact on the docking results. Results and method are reported

in Figure S2. The use of antibody models results in a significant

decrease of the success rate in all scenarios. For example, the

top 10 success rate using antibody models drops from 31.2%,

75%, and 100% to 18.7%, 68.7%, and 75%, respectively, for

the first, second, and third scenarios. This will of course depend

on the antibody modeling strategy, but it is outside the scope of

this work to compare different modeling software/servers.

The sampling used in this work for HADDOCK differs from the

default settings. While for the first scenario this is the recommen-

ded setting for cases with limited or no information on binding

sites (this was also the sampling used in the BM5 benchmarking

[Vreven et al., 2015]), the sampling in the two other scenarios

https://cassandra.med.uniroma1.it/pigspro/
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(5,000/400/400) differs from the default settings (1,000/200/200).

For comparison, we reran the docking for these two scenarios

using default sampling settings. The results, presented in Fig-

ure S3, show that even with default settings, given a reasonable

definition of the epitope (HV-Epi 9 scenario), good results are ob-

tained with default sampling, with 87.5% top 10 success rate

versus 75% for the increased sampling. For the third scenario,

the reduced sampling does not seem to have an impact on the

success rate but rather slightly affects the quality of the gener-

ated models.

Another difference to note for HADDOCK between scenarios

2 and 3 is the definition of the interface information on the

epitope side: while for the true interface (scenario 3) the inter-

face residues were treated as ‘‘active’’ in the definition of inter-

action restraints, they were defined as passive in scenario 2.

To verify whether this might have affected the performance,

we repeated scenario 3 defining the epitope residues as pas-

sive. The results, presented in Figure S4, show that the passive

definition of the antigen interface residues leads to a decrease

of the success rate (e.g., from 100% to 87.6% for the top 10),

while the quality of the generated models does not change

significantly.

We further analyzed the capability of HADDOCK and

LightDock, the only two software suites that allow flexibility of

the components among the tested ones, in improving the H3

loop conformation. In fact, it has been largely demonstrated

that the H3 loop is crucial for antigen recognition, but its

modeling represents one of the biggest pitfalls in the antibody

modeling field. Only when the H3 loop underwent a large confor-

mational change upon binding did HADDOCK succeed in

improving its conformation (measured in terms of RMSDs) to-

ward the bound form, while the LightDock models did not

show any significant conformational changes. While the induced

conformational changes are rather limited in terms of RMSDs,
the flexible refinement stages of HADDOCK do lead to a signifi-

cant increase in the number of native contacts made by H3, and

this effect is more evident when information about the epitope is

provided to the system. This is relevant, since it will allow a better

identification/prediction of key interactions.

One of the main benefits of this work is to offer researchers a

clear overview about the state of the art of antibody-antigen

structure prediction (for the software considered) and the various

strategies that can be followed depending on the available infor-

mation. Provided that a vague definition of the epitope can be

obtained, reasonably accurate models can be obtained, with

HADDOCK performing best among the four software applica-

tions compared. Finally, our analysis also indicates that there

remain multiple opportunities for improvements, especially in

modeling conformational changes, with the H3 loop as a partic-

ular challenge, but also in scoring, considering that all software

achieved fairly good performance in the top 100, although

this significantly dropped in most cases when only the top 10

or lower were considered.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

ClusPro (Kozakov et al., 2017) https://cluspro.org/

HADDOCK (De Vries et al., 2010) https://haddock.science.uu.nl/services/HADDOCK2.2

LightDock (Jiménez-Garcı́a et al., 2019) https://github.com/brianjimenez/lightdock

ZDOCK (Pierce et al., 2011) http://zdock.umassmed.edu

PIGSpro (Lepore et al., 2017) https://cassandra.med.uniroma1.it/pigspro/

Deposited Data

Raw and analyzed data This paper https://data.sbgrid.org/dataset/686/

Others

Docking Benchmark v5 (Vreven et al., 2015) http://zlab.umassmed.edu/benchmark/
LEAD CONTACT AND MATERIALS AVAILABILITY

All data gathered for this work are publicly available and can be find at: https://data.sbgrid.org/dataset/686/.

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Alexandre M.J.J.

Bonvin (a.m.j.j.bonvin@uu.nl).

METHOD DETAILS

Dataset
The dataset used in this work includes 16 complexes, all with available unbound structures, which represent the new antibody-an-

tigen entries of the protein-protein benchmark version 5.0 (Vreven et al., 2015). These were selected because none were used for

training/scoring optimization of any of the docking software considered in this work. Antibody structures were renumbered using

an in-house R script. Only the variable domain was used for the docking. Antibodies and antigens were each randomly translated

and rotated in order to avoid any bias related to the starting orientation (this is required since the structures in the docking benchmark

are pre-oriented onto their reference bound complex).

Docking Scenarios
All methods allow the user to provide information about the binding interface. Nevertheless, only HADDOCK applies a purely data-

driven sampling strategy in order to create models in agreement with the provided information. LightDock uses this information both

to limit the sampling to specific regions and in scoring, while ClusPro and ZDOCK include this information into their scoring functions

in order to select the correct models. In this case the methods are able to assign a better score to the models that better satisfy the

given restraints.

For each complex three different docking runs were performed in order to represent different scenarios corresponding to different

amounts of available experimental information (Figure 1):

(1) HV - Surf: No information about the epitope residues are provided to the docking algorithm. Only knowledge of the antibody

HV loops, defined according to the Chothia numbering scheme (Al-Lazikani et al., 1997), is used in the docking. For HADDOCK

this was complemented by all solvent-exposed antigen residues defined by selecting those with a relative accessible surface

area (RSA) R 40% (calculated with NACCESS (Hubbard and Thornton, 1993)).

(2) HV – Epi 9: This scenario represents the case in which only a vague definition of the epitope region is provided. To mimic this

situation the epitopewas defined by selecting all antigen residueswithin 9Å from the antibody. The docking runwas performed

by providing to the docking algorithms the HV loops residues and the 9Å epitope.

(3) Real interface: In this ideal scenario both antibody and the antigen interfaces are well characterized. All interface residues

selected using a distance cutoff of 4.5Å were given to the docking software.
Docking Settings
Four docking methods were compared in this work: ClusPro (Kozakov et al., 2017), HADDOCK (De Vries et al., 2010), LightDock (Ji-

ménez-Garcı́a et al., 2019) and, ZDOCK (Pierce et al., 2011).
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TheClusProwebserver (https://cluspro.org) was used in the AntibodyMode (Brenke et al., 2012) using default settings. Information

was provided in the form of attractive residues.

ZDOCK predictions were obtained using version 3.0.2. The sampling was set to 2000 models. ZDOCK allows the user to assign a

highly unfavourable contact energy to the residues which are known not to be involved in the binding. Accordingly, all residues not

included in the defined interfaces were blocked.

For LightDock we used release 0.5.6 (Jiménez-Garcı́a et al., 2019) of the software which provides a mechanism for including res-

idue restraints. At the receptor level, the surface swarms used in the simulation are filtered according to the Euclidean distance of the

restraints on the provided receptor residues: Only the ten closest swarms for each receptor residue restraint are kept. An additional

energy term is added to the scoring function (DFIRE (Zhou and Zhou, 2009) in this work) that accounts for the percentage of satisfied

restraints. The predictions are filtered with a minimum 40% cutoff of satisfied restraints, at both receptor and ligand levels. For the

remaining parameters default settings were: ANM enabled (10 first non-trivial modes for both receptor and ligand), 400 swarms

before filtering by restraints, 200 glowworms per swarm and 100 simulation steps.

Finally, HADDOCK version 2.2 was used with default settings except that the rigid-body (it0) sampling was increased to 5000

models for the HV – Epi9 and the Real interface run and to 10000 for the HV – Surf scenario. The flexible (it1) and water refinement

sampling were set to 400 models for all scenarios (Dominguez et al., 2003). This corresponds to an increased sampling compared to

the default settings. In general the least information is available to drive the docking in HADDOCK the larger the sampling should be.

The docking was performed using the web server version of HADDOCK (Van Zundert et al., 2016) (https://haddock.science.uu.nl). In

the case of the Real interface scenario, the random removal of restraints (by default 50% of restraints are randomly discarded for

each docking trial) was turned off. The information about the binding interface was encoded in the form of active and passive res-

idues: The antibody HV loops and paratope residues were provided as active, while, for the antigen, the surface and the epitope res-

idues, selected using a 9Å cutoff were defined as passive for the first two scenarios. For the third, ideal scenario, the true interface

epitope residues selected at 4.5Å distance cutoff were classified as active. The distinction between active and passive means that an

active residue not at the interface (defined as the union of active and passive residues of the partner molecule) will result in an energy

penalty while this is not the case for passive residues.

In all the methods, the antibody was treated as the receptor partner and the antigen as ligand.

HADDOCK Clustering Parameters
By default, HADDOCK performs a cluster analysis. In this work clustering was based on the Fraction of Common Contacts (FCC)

(Rodrigues et al., 2012) using 0.6 as cutoff and 4 as minimum cluster size. The clusters were sorted according to the average

HADDOCK score of the best 4 model of each cluster, from the lowest HADDOCK score to the highest.

Evaluation Criteria
Docking models were classified as high (***), medium (**) of low (*) quality according to the CAPRI criteria (Janin et al., 2003; Méndez

et al., 2003) (see Table 1) based on their similarities with the native structure by calculating the interface root mean square deviation

(i-RMSD), the ligand root mean square deviation (L-RMSD) and the fraction of native contacts (Fnat). Briefly, the i-RMSD is calculated

on the backbone atoms of all interface residues of the native complex defined using a 10Å cutoff and the L-RMSD is calculated by

superimposing on the backbone atoms of the antibody and calculating the RMSD of the antigen backbone atoms. Finally, Fnat is

calculated as number of native contacts in a docking model divided by the total number of contacts in the reference structure.

Fnat has been calculated using is house scripts while fitting and RMSD calculations were performed using the McLachlan algorithm

(McLachlan, 1982) as implemented in the program ProFit (http://www.bioinf.org.uk/software/profit/) from the SBGrid distribution

(Morin et al., 2013).

DATA AND CODE AVAILABILITY

All models generated using the four software and the different scenarios, together with their quality statistics and scores have been

deposited into the SBGrid data repository (Meyer et al., 2016) and can be find at: https://data.sbgrid.org/dataset/686/. Links to the

various software used in this work are provided in the Key Resources Table.
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